1 //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::LegalizeVectors method. 11 // 12 // The vector legalizer looks for vector operations which might need to be 13 // scalarized and legalizes them. This is a separate step from Legalize because 14 // scalarizing can introduce illegal types. For example, suppose we have an 15 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 17 // operation, which introduces nodes with the illegal type i64 which must be 18 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 19 // the operation must be unrolled, which introduces nodes with the illegal 20 // type i8 which must be promoted. 21 // 22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 23 // or operations that happen to take a vector which are custom-lowered; 24 // the legalization for such operations never produces nodes 25 // with illegal types, so it's okay to put off legalizing them until 26 // SelectionDAG::Legalize runs. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/Target/TargetLowering.h" 32 using namespace llvm; 33 34 namespace { 35 class VectorLegalizer { 36 SelectionDAG& DAG; 37 const TargetLowering &TLI; 38 bool Changed; // Keep track of whether anything changed 39 40 /// For nodes that are of legal width, and that have more than one use, this 41 /// map indicates what regularized operand to use. This allows us to avoid 42 /// legalizing the same thing more than once. 43 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 44 45 /// \brief Adds a node to the translation cache. 46 void AddLegalizedOperand(SDValue From, SDValue To) { 47 LegalizedNodes.insert(std::make_pair(From, To)); 48 // If someone requests legalization of the new node, return itself. 49 if (From != To) 50 LegalizedNodes.insert(std::make_pair(To, To)); 51 } 52 53 /// \brief Legalizes the given node. 54 SDValue LegalizeOp(SDValue Op); 55 56 /// \brief Assuming the node is legal, "legalize" the results. 57 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 58 59 /// \brief Implements unrolling a VSETCC. 60 SDValue UnrollVSETCC(SDValue Op); 61 62 /// \brief Implement expand-based legalization of vector operations. 63 /// 64 /// This is just a high-level routine to dispatch to specific code paths for 65 /// operations to legalize them. 66 SDValue Expand(SDValue Op); 67 68 /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if 69 /// FSUB isn't legal. 70 /// 71 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 72 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 73 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 74 75 /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 76 SDValue ExpandSEXTINREG(SDValue Op); 77 78 /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG. 79 /// 80 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 81 /// type. The contents of the bits in the extended part of each element are 82 /// undef. 83 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); 84 85 /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG. 86 /// 87 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 88 /// type, then shifts left and arithmetic shifts right to introduce a sign 89 /// extension. 90 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); 91 92 /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG. 93 /// 94 /// Shuffles the low lanes of the operand into place and blends zeros into 95 /// the remaining lanes, finally bitcasting to the proper type. 96 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); 97 98 /// \brief Expand bswap of vectors into a shuffle if legal. 99 SDValue ExpandBSWAP(SDValue Op); 100 101 /// \brief Implement vselect in terms of XOR, AND, OR when blend is not 102 /// supported by the target. 103 SDValue ExpandVSELECT(SDValue Op); 104 SDValue ExpandSELECT(SDValue Op); 105 SDValue ExpandLoad(SDValue Op); 106 SDValue ExpandStore(SDValue Op); 107 SDValue ExpandFNEG(SDValue Op); 108 SDValue ExpandBITREVERSE(SDValue Op); 109 SDValue ExpandCTLZ_CTTZ_ZERO_UNDEF(SDValue Op); 110 111 /// \brief Implements vector promotion. 112 /// 113 /// This is essentially just bitcasting the operands to a different type and 114 /// bitcasting the result back to the original type. 115 SDValue Promote(SDValue Op); 116 117 /// \brief Implements [SU]INT_TO_FP vector promotion. 118 /// 119 /// This is a [zs]ext of the input operand to the next size up. 120 SDValue PromoteINT_TO_FP(SDValue Op); 121 122 /// \brief Implements FP_TO_[SU]INT vector promotion of the result type. 123 /// 124 /// It is promoted to the next size up integer type. The result is then 125 /// truncated back to the original type. 126 SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned); 127 128 public: 129 /// \brief Begin legalizer the vector operations in the DAG. 130 bool Run(); 131 VectorLegalizer(SelectionDAG& dag) : 132 DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {} 133 }; 134 135 bool VectorLegalizer::Run() { 136 // Before we start legalizing vector nodes, check if there are any vectors. 137 bool HasVectors = false; 138 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 139 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 140 // Check if the values of the nodes contain vectors. We don't need to check 141 // the operands because we are going to check their values at some point. 142 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 143 J != E; ++J) 144 HasVectors |= J->isVector(); 145 146 // If we found a vector node we can start the legalization. 147 if (HasVectors) 148 break; 149 } 150 151 // If this basic block has no vectors then no need to legalize vectors. 152 if (!HasVectors) 153 return false; 154 155 // The legalize process is inherently a bottom-up recursive process (users 156 // legalize their uses before themselves). Given infinite stack space, we 157 // could just start legalizing on the root and traverse the whole graph. In 158 // practice however, this causes us to run out of stack space on large basic 159 // blocks. To avoid this problem, compute an ordering of the nodes where each 160 // node is only legalized after all of its operands are legalized. 161 DAG.AssignTopologicalOrder(); 162 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 163 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 164 LegalizeOp(SDValue(&*I, 0)); 165 166 // Finally, it's possible the root changed. Get the new root. 167 SDValue OldRoot = DAG.getRoot(); 168 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 169 DAG.setRoot(LegalizedNodes[OldRoot]); 170 171 LegalizedNodes.clear(); 172 173 // Remove dead nodes now. 174 DAG.RemoveDeadNodes(); 175 176 return Changed; 177 } 178 179 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 180 // Generic legalization: just pass the operand through. 181 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 182 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 183 return Result.getValue(Op.getResNo()); 184 } 185 186 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 187 // Note that LegalizeOp may be reentered even from single-use nodes, which 188 // means that we always must cache transformed nodes. 189 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 190 if (I != LegalizedNodes.end()) return I->second; 191 192 SDNode* Node = Op.getNode(); 193 194 // Legalize the operands 195 SmallVector<SDValue, 8> Ops; 196 for (const SDValue &Op : Node->op_values()) 197 Ops.push_back(LegalizeOp(Op)); 198 199 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0); 200 201 bool HasVectorValue = false; 202 if (Op.getOpcode() == ISD::LOAD) { 203 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 204 ISD::LoadExtType ExtType = LD->getExtensionType(); 205 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) 206 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 207 LD->getMemoryVT())) { 208 default: llvm_unreachable("This action is not supported yet!"); 209 case TargetLowering::Legal: 210 return TranslateLegalizeResults(Op, Result); 211 case TargetLowering::Custom: 212 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { 213 if (Lowered == Result) 214 return TranslateLegalizeResults(Op, Lowered); 215 Changed = true; 216 if (Lowered->getNumValues() != Op->getNumValues()) { 217 // This expanded to something other than the load. Assume the 218 // lowering code took care of any chain values, and just handle the 219 // returned value. 220 assert(Result.getValue(1).use_empty() && 221 "There are still live users of the old chain!"); 222 return LegalizeOp(Lowered); 223 } 224 return TranslateLegalizeResults(Op, Lowered); 225 } 226 case TargetLowering::Expand: 227 Changed = true; 228 return LegalizeOp(ExpandLoad(Op)); 229 } 230 } else if (Op.getOpcode() == ISD::STORE) { 231 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 232 EVT StVT = ST->getMemoryVT(); 233 MVT ValVT = ST->getValue().getSimpleValueType(); 234 if (StVT.isVector() && ST->isTruncatingStore()) 235 switch (TLI.getTruncStoreAction(ValVT, StVT)) { 236 default: llvm_unreachable("This action is not supported yet!"); 237 case TargetLowering::Legal: 238 return TranslateLegalizeResults(Op, Result); 239 case TargetLowering::Custom: { 240 SDValue Lowered = TLI.LowerOperation(Result, DAG); 241 Changed = Lowered != Result; 242 return TranslateLegalizeResults(Op, Lowered); 243 } 244 case TargetLowering::Expand: 245 Changed = true; 246 return LegalizeOp(ExpandStore(Op)); 247 } 248 } else if (Op.getOpcode() == ISD::MSCATTER || Op.getOpcode() == ISD::MSTORE) 249 HasVectorValue = true; 250 251 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); 252 J != E; 253 ++J) 254 HasVectorValue |= J->isVector(); 255 if (!HasVectorValue) 256 return TranslateLegalizeResults(Op, Result); 257 258 EVT QueryType; 259 switch (Op.getOpcode()) { 260 default: 261 return TranslateLegalizeResults(Op, Result); 262 case ISD::ADD: 263 case ISD::SUB: 264 case ISD::MUL: 265 case ISD::SDIV: 266 case ISD::UDIV: 267 case ISD::SREM: 268 case ISD::UREM: 269 case ISD::SDIVREM: 270 case ISD::UDIVREM: 271 case ISD::FADD: 272 case ISD::FSUB: 273 case ISD::FMUL: 274 case ISD::FDIV: 275 case ISD::FREM: 276 case ISD::AND: 277 case ISD::OR: 278 case ISD::XOR: 279 case ISD::SHL: 280 case ISD::SRA: 281 case ISD::SRL: 282 case ISD::ROTL: 283 case ISD::ROTR: 284 case ISD::BSWAP: 285 case ISD::BITREVERSE: 286 case ISD::CTLZ: 287 case ISD::CTTZ: 288 case ISD::CTLZ_ZERO_UNDEF: 289 case ISD::CTTZ_ZERO_UNDEF: 290 case ISD::CTPOP: 291 case ISD::SELECT: 292 case ISD::VSELECT: 293 case ISD::SELECT_CC: 294 case ISD::SETCC: 295 case ISD::ZERO_EXTEND: 296 case ISD::ANY_EXTEND: 297 case ISD::TRUNCATE: 298 case ISD::SIGN_EXTEND: 299 case ISD::FP_TO_SINT: 300 case ISD::FP_TO_UINT: 301 case ISD::FNEG: 302 case ISD::FABS: 303 case ISD::FMINNUM: 304 case ISD::FMAXNUM: 305 case ISD::FMINNAN: 306 case ISD::FMAXNAN: 307 case ISD::FCOPYSIGN: 308 case ISD::FSQRT: 309 case ISD::FSIN: 310 case ISD::FCOS: 311 case ISD::FPOWI: 312 case ISD::FPOW: 313 case ISD::FLOG: 314 case ISD::FLOG2: 315 case ISD::FLOG10: 316 case ISD::FEXP: 317 case ISD::FEXP2: 318 case ISD::FCEIL: 319 case ISD::FTRUNC: 320 case ISD::FRINT: 321 case ISD::FNEARBYINT: 322 case ISD::FROUND: 323 case ISD::FFLOOR: 324 case ISD::FP_ROUND: 325 case ISD::FP_EXTEND: 326 case ISD::FMA: 327 case ISD::SIGN_EXTEND_INREG: 328 case ISD::ANY_EXTEND_VECTOR_INREG: 329 case ISD::SIGN_EXTEND_VECTOR_INREG: 330 case ISD::ZERO_EXTEND_VECTOR_INREG: 331 case ISD::SMIN: 332 case ISD::SMAX: 333 case ISD::UMIN: 334 case ISD::UMAX: 335 QueryType = Node->getValueType(0); 336 break; 337 case ISD::FP_ROUND_INREG: 338 QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 339 break; 340 case ISD::SINT_TO_FP: 341 case ISD::UINT_TO_FP: 342 QueryType = Node->getOperand(0).getValueType(); 343 break; 344 case ISD::MSCATTER: 345 QueryType = cast<MaskedScatterSDNode>(Node)->getValue().getValueType(); 346 break; 347 case ISD::MSTORE: 348 QueryType = cast<MaskedStoreSDNode>(Node)->getValue().getValueType(); 349 break; 350 } 351 352 switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) { 353 default: llvm_unreachable("This action is not supported yet!"); 354 case TargetLowering::Promote: 355 Result = Promote(Op); 356 Changed = true; 357 break; 358 case TargetLowering::Legal: 359 break; 360 case TargetLowering::Custom: { 361 SDValue Tmp1 = TLI.LowerOperation(Op, DAG); 362 if (Tmp1.getNode()) { 363 Result = Tmp1; 364 break; 365 } 366 // FALL THROUGH 367 } 368 case TargetLowering::Expand: 369 Result = Expand(Op); 370 } 371 372 // Make sure that the generated code is itself legal. 373 if (Result != Op) { 374 Result = LegalizeOp(Result); 375 Changed = true; 376 } 377 378 // Note that LegalizeOp may be reentered even from single-use nodes, which 379 // means that we always must cache transformed nodes. 380 AddLegalizedOperand(Op, Result); 381 return Result; 382 } 383 384 SDValue VectorLegalizer::Promote(SDValue Op) { 385 // For a few operations there is a specific concept for promotion based on 386 // the operand's type. 387 switch (Op.getOpcode()) { 388 case ISD::SINT_TO_FP: 389 case ISD::UINT_TO_FP: 390 // "Promote" the operation by extending the operand. 391 return PromoteINT_TO_FP(Op); 392 case ISD::FP_TO_UINT: 393 case ISD::FP_TO_SINT: 394 // Promote the operation by extending the operand. 395 return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT); 396 } 397 398 // There are currently two cases of vector promotion: 399 // 1) Bitcasting a vector of integers to a different type to a vector of the 400 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 401 // 2) Extending a vector of floats to a vector of the same number of larger 402 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 403 MVT VT = Op.getSimpleValueType(); 404 assert(Op.getNode()->getNumValues() == 1 && 405 "Can't promote a vector with multiple results!"); 406 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 407 SDLoc dl(Op); 408 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 409 410 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 411 if (Op.getOperand(j).getValueType().isVector()) 412 if (Op.getOperand(j) 413 .getValueType() 414 .getVectorElementType() 415 .isFloatingPoint() && 416 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 417 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); 418 else 419 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 420 else 421 Operands[j] = Op.getOperand(j); 422 } 423 424 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags()); 425 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 426 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 427 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 428 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl)); 429 else 430 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 431 } 432 433 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { 434 // INT_TO_FP operations may require the input operand be promoted even 435 // when the type is otherwise legal. 436 EVT VT = Op.getOperand(0).getValueType(); 437 assert(Op.getNode()->getNumValues() == 1 && 438 "Can't promote a vector with multiple results!"); 439 440 // Normal getTypeToPromoteTo() doesn't work here, as that will promote 441 // by widening the vector w/ the same element width and twice the number 442 // of elements. We want the other way around, the same number of elements, 443 // each twice the width. 444 // 445 // Increase the bitwidth of the element to the next pow-of-two 446 // (which is greater than 8 bits). 447 448 EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 449 assert(NVT.isSimple() && "Promoting to a non-simple vector type!"); 450 SDLoc dl(Op); 451 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 452 453 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 454 ISD::SIGN_EXTEND; 455 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 456 if (Op.getOperand(j).getValueType().isVector()) 457 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 458 else 459 Operands[j] = Op.getOperand(j); 460 } 461 462 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 463 } 464 465 // For FP_TO_INT we promote the result type to a vector type with wider 466 // elements and then truncate the result. This is different from the default 467 // PromoteVector which uses bitcast to promote thus assumning that the 468 // promoted vector type has the same overall size. 469 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) { 470 assert(Op.getNode()->getNumValues() == 1 && 471 "Can't promote a vector with multiple results!"); 472 EVT VT = Op.getValueType(); 473 474 EVT NewVT; 475 unsigned NewOpc; 476 while (1) { 477 NewVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 478 assert(NewVT.isSimple() && "Promoting to a non-simple vector type!"); 479 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) { 480 NewOpc = ISD::FP_TO_SINT; 481 break; 482 } 483 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) { 484 NewOpc = ISD::FP_TO_UINT; 485 break; 486 } 487 } 488 489 SDLoc loc(Op); 490 SDValue promoted = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0)); 491 return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted); 492 } 493 494 495 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 496 SDLoc dl(Op); 497 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 498 SDValue Chain = LD->getChain(); 499 SDValue BasePTR = LD->getBasePtr(); 500 EVT SrcVT = LD->getMemoryVT(); 501 ISD::LoadExtType ExtType = LD->getExtensionType(); 502 503 SmallVector<SDValue, 8> Vals; 504 SmallVector<SDValue, 8> LoadChains; 505 unsigned NumElem = SrcVT.getVectorNumElements(); 506 507 EVT SrcEltVT = SrcVT.getScalarType(); 508 EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType(); 509 510 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 511 // When elements in a vector is not byte-addressable, we cannot directly 512 // load each element by advancing pointer, which could only address bytes. 513 // Instead, we load all significant words, mask bits off, and concatenate 514 // them to form each element. Finally, they are extended to destination 515 // scalar type to build the destination vector. 516 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout()); 517 518 assert(WideVT.isRound() && 519 "Could not handle the sophisticated case when the widest integer is" 520 " not power of 2."); 521 assert(WideVT.bitsGE(SrcEltVT) && 522 "Type is not legalized?"); 523 524 unsigned WideBytes = WideVT.getStoreSize(); 525 unsigned Offset = 0; 526 unsigned RemainingBytes = SrcVT.getStoreSize(); 527 SmallVector<SDValue, 8> LoadVals; 528 529 while (RemainingBytes > 0) { 530 SDValue ScalarLoad; 531 unsigned LoadBytes = WideBytes; 532 533 if (RemainingBytes >= LoadBytes) { 534 ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR, 535 LD->getPointerInfo().getWithOffset(Offset), 536 LD->isVolatile(), LD->isNonTemporal(), 537 LD->isInvariant(), 538 MinAlign(LD->getAlignment(), Offset), 539 LD->getAAInfo()); 540 } else { 541 EVT LoadVT = WideVT; 542 while (RemainingBytes < LoadBytes) { 543 LoadBytes >>= 1; // Reduce the load size by half. 544 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 545 } 546 ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 547 LD->getPointerInfo().getWithOffset(Offset), 548 LoadVT, LD->isVolatile(), 549 LD->isNonTemporal(), LD->isInvariant(), 550 MinAlign(LD->getAlignment(), Offset), 551 LD->getAAInfo()); 552 } 553 554 RemainingBytes -= LoadBytes; 555 Offset += LoadBytes; 556 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 557 DAG.getConstant(LoadBytes, dl, 558 BasePTR.getValueType())); 559 560 LoadVals.push_back(ScalarLoad.getValue(0)); 561 LoadChains.push_back(ScalarLoad.getValue(1)); 562 } 563 564 // Extract bits, pack and extend/trunc them into destination type. 565 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 566 SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT); 567 568 unsigned BitOffset = 0; 569 unsigned WideIdx = 0; 570 unsigned WideBits = WideVT.getSizeInBits(); 571 572 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 573 SDValue Lo, Hi, ShAmt; 574 575 if (BitOffset < WideBits) { 576 ShAmt = DAG.getConstant( 577 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 578 Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 579 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 580 } 581 582 BitOffset += SrcEltBits; 583 if (BitOffset >= WideBits) { 584 WideIdx++; 585 BitOffset -= WideBits; 586 if (BitOffset > 0) { 587 ShAmt = DAG.getConstant( 588 SrcEltBits - BitOffset, dl, 589 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 590 Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 591 Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask); 592 } 593 } 594 595 if (Hi.getNode()) 596 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 597 598 switch (ExtType) { 599 default: llvm_unreachable("Unknown extended-load op!"); 600 case ISD::EXTLOAD: 601 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 602 break; 603 case ISD::ZEXTLOAD: 604 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 605 break; 606 case ISD::SEXTLOAD: 607 ShAmt = 608 DAG.getConstant(WideBits - SrcEltBits, dl, 609 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 610 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 611 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 612 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 613 break; 614 } 615 Vals.push_back(Lo); 616 } 617 } else { 618 unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8; 619 620 for (unsigned Idx=0; Idx<NumElem; Idx++) { 621 SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl, 622 Op.getNode()->getValueType(0).getScalarType(), 623 Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride), 624 SrcVT.getScalarType(), 625 LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), 626 MinAlign(LD->getAlignment(), Idx * Stride), LD->getAAInfo()); 627 628 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 629 DAG.getConstant(Stride, dl, BasePTR.getValueType())); 630 631 Vals.push_back(ScalarLoad.getValue(0)); 632 LoadChains.push_back(ScalarLoad.getValue(1)); 633 } 634 } 635 636 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 637 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, 638 Op.getNode()->getValueType(0), Vals); 639 640 AddLegalizedOperand(Op.getValue(0), Value); 641 AddLegalizedOperand(Op.getValue(1), NewChain); 642 643 return (Op.getResNo() ? NewChain : Value); 644 } 645 646 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 647 SDLoc dl(Op); 648 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 649 SDValue Chain = ST->getChain(); 650 SDValue BasePTR = ST->getBasePtr(); 651 SDValue Value = ST->getValue(); 652 EVT StVT = ST->getMemoryVT(); 653 654 unsigned Alignment = ST->getAlignment(); 655 bool isVolatile = ST->isVolatile(); 656 bool isNonTemporal = ST->isNonTemporal(); 657 AAMDNodes AAInfo = ST->getAAInfo(); 658 659 unsigned NumElem = StVT.getVectorNumElements(); 660 // The type of the data we want to save 661 EVT RegVT = Value.getValueType(); 662 EVT RegSclVT = RegVT.getScalarType(); 663 // The type of data as saved in memory. 664 EVT MemSclVT = StVT.getScalarType(); 665 666 // Cast floats into integers 667 unsigned ScalarSize = MemSclVT.getSizeInBits(); 668 669 // Round odd types to the next pow of two. 670 if (!isPowerOf2_32(ScalarSize)) 671 ScalarSize = NextPowerOf2(ScalarSize); 672 673 // Store Stride in bytes 674 unsigned Stride = ScalarSize/8; 675 // Extract each of the elements from the original vector 676 // and save them into memory individually. 677 SmallVector<SDValue, 8> Stores; 678 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 679 SDValue Ex = DAG.getNode( 680 ISD::EXTRACT_VECTOR_ELT, dl, RegSclVT, Value, 681 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 682 683 // This scalar TruncStore may be illegal, but we legalize it later. 684 SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR, 685 ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT, 686 isVolatile, isNonTemporal, MinAlign(Alignment, Idx*Stride), 687 AAInfo); 688 689 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, 690 DAG.getConstant(Stride, dl, BasePTR.getValueType())); 691 692 Stores.push_back(Store); 693 } 694 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 695 AddLegalizedOperand(Op, TF); 696 return TF; 697 } 698 699 SDValue VectorLegalizer::Expand(SDValue Op) { 700 switch (Op->getOpcode()) { 701 case ISD::SIGN_EXTEND_INREG: 702 return ExpandSEXTINREG(Op); 703 case ISD::ANY_EXTEND_VECTOR_INREG: 704 return ExpandANY_EXTEND_VECTOR_INREG(Op); 705 case ISD::SIGN_EXTEND_VECTOR_INREG: 706 return ExpandSIGN_EXTEND_VECTOR_INREG(Op); 707 case ISD::ZERO_EXTEND_VECTOR_INREG: 708 return ExpandZERO_EXTEND_VECTOR_INREG(Op); 709 case ISD::BSWAP: 710 return ExpandBSWAP(Op); 711 case ISD::VSELECT: 712 return ExpandVSELECT(Op); 713 case ISD::SELECT: 714 return ExpandSELECT(Op); 715 case ISD::UINT_TO_FP: 716 return ExpandUINT_TO_FLOAT(Op); 717 case ISD::FNEG: 718 return ExpandFNEG(Op); 719 case ISD::SETCC: 720 return UnrollVSETCC(Op); 721 case ISD::BITREVERSE: 722 return ExpandBITREVERSE(Op); 723 case ISD::CTLZ_ZERO_UNDEF: 724 case ISD::CTTZ_ZERO_UNDEF: 725 return ExpandCTLZ_CTTZ_ZERO_UNDEF(Op); 726 default: 727 return DAG.UnrollVectorOp(Op.getNode()); 728 } 729 } 730 731 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 732 // Lower a select instruction where the condition is a scalar and the 733 // operands are vectors. Lower this select to VSELECT and implement it 734 // using XOR AND OR. The selector bit is broadcasted. 735 EVT VT = Op.getValueType(); 736 SDLoc DL(Op); 737 738 SDValue Mask = Op.getOperand(0); 739 SDValue Op1 = Op.getOperand(1); 740 SDValue Op2 = Op.getOperand(2); 741 742 assert(VT.isVector() && !Mask.getValueType().isVector() 743 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 744 745 unsigned NumElem = VT.getVectorNumElements(); 746 747 // If we can't even use the basic vector operations of 748 // AND,OR,XOR, we will have to scalarize the op. 749 // Notice that the operation may be 'promoted' which means that it is 750 // 'bitcasted' to another type which is handled. 751 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 752 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 753 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 754 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 755 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 756 return DAG.UnrollVectorOp(Op.getNode()); 757 758 // Generate a mask operand. 759 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 760 761 // What is the size of each element in the vector mask. 762 EVT BitTy = MaskTy.getScalarType(); 763 764 Mask = DAG.getSelect(DL, BitTy, Mask, 765 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 766 BitTy), 767 DAG.getConstant(0, DL, BitTy)); 768 769 // Broadcast the mask so that the entire vector is all-one or all zero. 770 SmallVector<SDValue, 8> Ops(NumElem, Mask); 771 Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops); 772 773 // Bitcast the operands to be the same type as the mask. 774 // This is needed when we select between FP types because 775 // the mask is a vector of integers. 776 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 777 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 778 779 SDValue AllOnes = DAG.getConstant( 780 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 781 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 782 783 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 784 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 785 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 786 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 787 } 788 789 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 790 EVT VT = Op.getValueType(); 791 792 // Make sure that the SRA and SHL instructions are available. 793 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 794 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 795 return DAG.UnrollVectorOp(Op.getNode()); 796 797 SDLoc DL(Op); 798 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 799 800 unsigned BW = VT.getScalarType().getSizeInBits(); 801 unsigned OrigBW = OrigTy.getScalarType().getSizeInBits(); 802 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 803 804 Op = Op.getOperand(0); 805 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 806 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 807 } 808 809 // Generically expand a vector anyext in register to a shuffle of the relevant 810 // lanes into the appropriate locations, with other lanes left undef. 811 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { 812 SDLoc DL(Op); 813 EVT VT = Op.getValueType(); 814 int NumElements = VT.getVectorNumElements(); 815 SDValue Src = Op.getOperand(0); 816 EVT SrcVT = Src.getValueType(); 817 int NumSrcElements = SrcVT.getVectorNumElements(); 818 819 // Build a base mask of undef shuffles. 820 SmallVector<int, 16> ShuffleMask; 821 ShuffleMask.resize(NumSrcElements, -1); 822 823 // Place the extended lanes into the correct locations. 824 int ExtLaneScale = NumSrcElements / NumElements; 825 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 826 for (int i = 0; i < NumElements; ++i) 827 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 828 829 return DAG.getNode( 830 ISD::BITCAST, DL, VT, 831 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 832 } 833 834 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { 835 SDLoc DL(Op); 836 EVT VT = Op.getValueType(); 837 SDValue Src = Op.getOperand(0); 838 EVT SrcVT = Src.getValueType(); 839 840 // First build an any-extend node which can be legalized above when we 841 // recurse through it. 842 Op = DAG.getAnyExtendVectorInReg(Src, DL, VT); 843 844 // Now we need sign extend. Do this by shifting the elements. Even if these 845 // aren't legal operations, they have a better chance of being legalized 846 // without full scalarization than the sign extension does. 847 unsigned EltWidth = VT.getVectorElementType().getSizeInBits(); 848 unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits(); 849 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 850 return DAG.getNode(ISD::SRA, DL, VT, 851 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 852 ShiftAmount); 853 } 854 855 // Generically expand a vector zext in register to a shuffle of the relevant 856 // lanes into the appropriate locations, a blend of zero into the high bits, 857 // and a bitcast to the wider element type. 858 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { 859 SDLoc DL(Op); 860 EVT VT = Op.getValueType(); 861 int NumElements = VT.getVectorNumElements(); 862 SDValue Src = Op.getOperand(0); 863 EVT SrcVT = Src.getValueType(); 864 int NumSrcElements = SrcVT.getVectorNumElements(); 865 866 // Build up a zero vector to blend into this one. 867 EVT SrcScalarVT = SrcVT.getScalarType(); 868 SDValue ScalarZero = DAG.getTargetConstant(0, DL, SrcScalarVT); 869 SmallVector<SDValue, 4> BuildVectorOperands(NumSrcElements, ScalarZero); 870 SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, DL, SrcVT, BuildVectorOperands); 871 872 // Shuffle the incoming lanes into the correct position, and pull all other 873 // lanes from the zero vector. 874 SmallVector<int, 16> ShuffleMask; 875 ShuffleMask.reserve(NumSrcElements); 876 for (int i = 0; i < NumSrcElements; ++i) 877 ShuffleMask.push_back(i); 878 879 int ExtLaneScale = NumSrcElements / NumElements; 880 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 881 for (int i = 0; i < NumElements; ++i) 882 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 883 884 return DAG.getNode(ISD::BITCAST, DL, VT, 885 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 886 } 887 888 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { 889 EVT VT = Op.getValueType(); 890 891 // Generate a byte wise shuffle mask for the BSWAP. 892 SmallVector<int, 16> ShuffleMask; 893 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 894 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 895 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 896 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 897 898 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 899 900 // Only emit a shuffle if the mask is legal. 901 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 902 return DAG.UnrollVectorOp(Op.getNode()); 903 904 SDLoc DL(Op); 905 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 906 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 907 ShuffleMask.data()); 908 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 909 } 910 911 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) { 912 EVT VT = Op.getValueType(); 913 914 // If we have the scalar operation, it's probably cheaper to unroll it. 915 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) 916 return DAG.UnrollVectorOp(Op.getNode()); 917 918 // If we have the appropriate vector bit operations, it is better to use them 919 // than unrolling and expanding each component. 920 if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) || 921 !TLI.isOperationLegalOrCustom(ISD::SRL, VT) || 922 !TLI.isOperationLegalOrCustom(ISD::AND, VT) || 923 !TLI.isOperationLegalOrCustom(ISD::OR, VT)) 924 return DAG.UnrollVectorOp(Op.getNode()); 925 926 // Let LegalizeDAG handle this later. 927 return Op; 928 } 929 930 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 931 // Implement VSELECT in terms of XOR, AND, OR 932 // on platforms which do not support blend natively. 933 SDLoc DL(Op); 934 935 SDValue Mask = Op.getOperand(0); 936 SDValue Op1 = Op.getOperand(1); 937 SDValue Op2 = Op.getOperand(2); 938 939 EVT VT = Mask.getValueType(); 940 941 // If we can't even use the basic vector operations of 942 // AND,OR,XOR, we will have to scalarize the op. 943 // Notice that the operation may be 'promoted' which means that it is 944 // 'bitcasted' to another type which is handled. 945 // This operation also isn't safe with AND, OR, XOR when the boolean 946 // type is 0/1 as we need an all ones vector constant to mask with. 947 // FIXME: Sign extend 1 to all ones if thats legal on the target. 948 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 949 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 950 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 951 TLI.getBooleanContents(Op1.getValueType()) != 952 TargetLowering::ZeroOrNegativeOneBooleanContent) 953 return DAG.UnrollVectorOp(Op.getNode()); 954 955 // If the mask and the type are different sizes, unroll the vector op. This 956 // can occur when getSetCCResultType returns something that is different in 957 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 958 if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits()) 959 return DAG.UnrollVectorOp(Op.getNode()); 960 961 // Bitcast the operands to be the same type as the mask. 962 // This is needed when we select between FP types because 963 // the mask is a vector of integers. 964 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 965 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 966 967 SDValue AllOnes = DAG.getConstant( 968 APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), DL, VT); 969 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 970 971 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 972 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 973 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 974 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 975 } 976 977 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 978 EVT VT = Op.getOperand(0).getValueType(); 979 SDLoc DL(Op); 980 981 // Make sure that the SINT_TO_FP and SRL instructions are available. 982 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 983 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 984 return DAG.UnrollVectorOp(Op.getNode()); 985 986 EVT SVT = VT.getScalarType(); 987 assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) && 988 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 989 990 unsigned BW = SVT.getSizeInBits(); 991 SDValue HalfWord = DAG.getConstant(BW/2, DL, VT); 992 993 // Constants to clear the upper part of the word. 994 // Notice that we can also use SHL+SHR, but using a constant is slightly 995 // faster on x86. 996 uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF; 997 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 998 999 // Two to the power of half-word-size. 1000 SDValue TWOHW = DAG.getConstantFP(1 << (BW/2), DL, Op.getValueType()); 1001 1002 // Clear upper part of LO, lower HI 1003 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 1004 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 1005 1006 // Convert hi and lo to floats 1007 // Convert the hi part back to the upper values 1008 // TODO: Can any fast-math-flags be set on these nodes? 1009 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 1010 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 1011 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 1012 1013 // Add the two halves 1014 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 1015 } 1016 1017 1018 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 1019 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 1020 SDLoc DL(Op); 1021 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType()); 1022 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1023 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(), 1024 Zero, Op.getOperand(0)); 1025 } 1026 return DAG.UnrollVectorOp(Op.getNode()); 1027 } 1028 1029 SDValue VectorLegalizer::ExpandCTLZ_CTTZ_ZERO_UNDEF(SDValue Op) { 1030 // If the non-ZERO_UNDEF version is supported we can let LegalizeDAG handle. 1031 unsigned Opc = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF ? ISD::CTLZ : ISD::CTTZ; 1032 if (TLI.isOperationLegalOrCustom(Opc, Op.getValueType())) 1033 return Op; 1034 1035 // Otherwise go ahead and unroll. 1036 return DAG.UnrollVectorOp(Op.getNode()); 1037 } 1038 1039 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 1040 EVT VT = Op.getValueType(); 1041 unsigned NumElems = VT.getVectorNumElements(); 1042 EVT EltVT = VT.getVectorElementType(); 1043 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 1044 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1045 SDLoc dl(Op); 1046 SmallVector<SDValue, 8> Ops(NumElems); 1047 for (unsigned i = 0; i < NumElems; ++i) { 1048 SDValue LHSElem = DAG.getNode( 1049 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1050 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1051 SDValue RHSElem = DAG.getNode( 1052 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1053 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1054 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1055 TLI.getSetCCResultType(DAG.getDataLayout(), 1056 *DAG.getContext(), TmpEltVT), 1057 LHSElem, RHSElem, CC); 1058 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1059 DAG.getConstant(APInt::getAllOnesValue 1060 (EltVT.getSizeInBits()), dl, EltVT), 1061 DAG.getConstant(0, dl, EltVT)); 1062 } 1063 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 1064 } 1065 1066 } 1067 1068 bool SelectionDAG::LegalizeVectors() { 1069 return VectorLegalizer(*this).Run(); 1070 } 1071