1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::LegalizeVectors method. 10 // 11 // The vector legalizer looks for vector operations which might need to be 12 // scalarized and legalizes them. This is a separate step from Legalize because 13 // scalarizing can introduce illegal types. For example, suppose we have an 14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 16 // operation, which introduces nodes with the illegal type i64 which must be 17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 18 // the operation must be unrolled, which introduces nodes with the illegal 19 // type i8 which must be promoted. 20 // 21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 22 // or operations that happen to take a vector which are custom-lowered; 23 // the legalization for such operations never produces nodes 24 // with illegal types, so it's okay to put off legalizing them until 25 // SelectionDAG::Legalize runs. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/SelectionDAGNodes.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/ValueTypes.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include <cassert> 46 #include <cstdint> 47 #include <iterator> 48 #include <utility> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "legalizevectorops" 53 54 namespace { 55 56 class VectorLegalizer { 57 SelectionDAG& DAG; 58 const TargetLowering &TLI; 59 bool Changed = false; // Keep track of whether anything changed 60 61 /// For nodes that are of legal width, and that have more than one use, this 62 /// map indicates what regularized operand to use. This allows us to avoid 63 /// legalizing the same thing more than once. 64 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 65 66 /// Adds a node to the translation cache. 67 void AddLegalizedOperand(SDValue From, SDValue To) { 68 LegalizedNodes.insert(std::make_pair(From, To)); 69 // If someone requests legalization of the new node, return itself. 70 if (From != To) 71 LegalizedNodes.insert(std::make_pair(To, To)); 72 } 73 74 /// Legalizes the given node. 75 SDValue LegalizeOp(SDValue Op); 76 77 /// Assuming the node is legal, "legalize" the results. 78 SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result); 79 80 /// Make sure Results are legal and update the translation cache. 81 SDValue RecursivelyLegalizeResults(SDValue Op, 82 MutableArrayRef<SDValue> Results); 83 84 /// Wrapper to interface LowerOperation with a vector of Results. 85 /// Returns false if the target wants to use default expansion. Otherwise 86 /// returns true. If return is true and the Results are empty, then the 87 /// target wants to keep the input node as is. 88 bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results); 89 90 /// Implements unrolling a VSETCC. 91 SDValue UnrollVSETCC(SDNode *Node); 92 93 /// Implement expand-based legalization of vector operations. 94 /// 95 /// This is just a high-level routine to dispatch to specific code paths for 96 /// operations to legalize them. 97 void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results); 98 99 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if 100 /// FP_TO_SINT isn't legal. 101 void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 102 103 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 104 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 105 void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 106 107 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 108 SDValue ExpandSEXTINREG(SDNode *Node); 109 110 /// Implement expansion for ANY_EXTEND_VECTOR_INREG. 111 /// 112 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 113 /// type. The contents of the bits in the extended part of each element are 114 /// undef. 115 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node); 116 117 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. 118 /// 119 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 120 /// type, then shifts left and arithmetic shifts right to introduce a sign 121 /// extension. 122 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node); 123 124 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. 125 /// 126 /// Shuffles the low lanes of the operand into place and blends zeros into 127 /// the remaining lanes, finally bitcasting to the proper type. 128 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node); 129 130 /// Expand bswap of vectors into a shuffle if legal. 131 SDValue ExpandBSWAP(SDNode *Node); 132 133 /// Implement vselect in terms of XOR, AND, OR when blend is not 134 /// supported by the target. 135 SDValue ExpandVSELECT(SDNode *Node); 136 SDValue ExpandSELECT(SDNode *Node); 137 std::pair<SDValue, SDValue> ExpandLoad(SDNode *N); 138 SDValue ExpandStore(SDNode *N); 139 SDValue ExpandFNEG(SDNode *Node); 140 void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results); 141 void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results); 142 void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 143 void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 144 void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 145 void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results); 146 SDValue ExpandStrictFPOp(SDNode *Node); 147 void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); 148 void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results); 149 150 void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); 151 152 /// Implements vector promotion. 153 /// 154 /// This is essentially just bitcasting the operands to a different type and 155 /// bitcasting the result back to the original type. 156 void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results); 157 158 /// Implements [SU]INT_TO_FP vector promotion. 159 /// 160 /// This is a [zs]ext of the input operand to a larger integer type. 161 void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results); 162 163 /// Implements FP_TO_[SU]INT vector promotion of the result type. 164 /// 165 /// It is promoted to a larger integer type. The result is then 166 /// truncated back to the original type. 167 void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 168 169 public: 170 VectorLegalizer(SelectionDAG& dag) : 171 DAG(dag), TLI(dag.getTargetLoweringInfo()) {} 172 173 /// Begin legalizer the vector operations in the DAG. 174 bool Run(); 175 }; 176 177 } // end anonymous namespace 178 179 bool VectorLegalizer::Run() { 180 // Before we start legalizing vector nodes, check if there are any vectors. 181 bool HasVectors = false; 182 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 183 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 184 // Check if the values of the nodes contain vectors. We don't need to check 185 // the operands because we are going to check their values at some point. 186 HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); }); 187 188 // If we found a vector node we can start the legalization. 189 if (HasVectors) 190 break; 191 } 192 193 // If this basic block has no vectors then no need to legalize vectors. 194 if (!HasVectors) 195 return false; 196 197 // The legalize process is inherently a bottom-up recursive process (users 198 // legalize their uses before themselves). Given infinite stack space, we 199 // could just start legalizing on the root and traverse the whole graph. In 200 // practice however, this causes us to run out of stack space on large basic 201 // blocks. To avoid this problem, compute an ordering of the nodes where each 202 // node is only legalized after all of its operands are legalized. 203 DAG.AssignTopologicalOrder(); 204 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 205 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 206 LegalizeOp(SDValue(&*I, 0)); 207 208 // Finally, it's possible the root changed. Get the new root. 209 SDValue OldRoot = DAG.getRoot(); 210 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 211 DAG.setRoot(LegalizedNodes[OldRoot]); 212 213 LegalizedNodes.clear(); 214 215 // Remove dead nodes now. 216 DAG.RemoveDeadNodes(); 217 218 return Changed; 219 } 220 221 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) { 222 assert(Op->getNumValues() == Result->getNumValues() && 223 "Unexpected number of results"); 224 // Generic legalization: just pass the operand through. 225 for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i) 226 AddLegalizedOperand(Op.getValue(i), SDValue(Result, i)); 227 return SDValue(Result, Op.getResNo()); 228 } 229 230 SDValue 231 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op, 232 MutableArrayRef<SDValue> Results) { 233 assert(Results.size() == Op->getNumValues() && 234 "Unexpected number of results"); 235 // Make sure that the generated code is itself legal. 236 for (unsigned i = 0, e = Results.size(); i != e; ++i) { 237 Results[i] = LegalizeOp(Results[i]); 238 AddLegalizedOperand(Op.getValue(i), Results[i]); 239 } 240 241 return Results[Op.getResNo()]; 242 } 243 244 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 245 // Note that LegalizeOp may be reentered even from single-use nodes, which 246 // means that we always must cache transformed nodes. 247 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 248 if (I != LegalizedNodes.end()) return I->second; 249 250 // Legalize the operands 251 SmallVector<SDValue, 8> Ops; 252 for (const SDValue &Oper : Op->op_values()) 253 Ops.push_back(LegalizeOp(Oper)); 254 255 SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops); 256 257 if (Op.getOpcode() == ISD::LOAD) { 258 LoadSDNode *LD = cast<LoadSDNode>(Node); 259 ISD::LoadExtType ExtType = LD->getExtensionType(); 260 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) { 261 LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: "; 262 Node->dump(&DAG)); 263 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 264 LD->getMemoryVT())) { 265 default: llvm_unreachable("This action is not supported yet!"); 266 case TargetLowering::Legal: 267 return TranslateLegalizeResults(Op, Node); 268 case TargetLowering::Custom: { 269 SmallVector<SDValue, 2> ResultVals; 270 if (LowerOperationWrapper(Node, ResultVals)) { 271 if (ResultVals.empty()) 272 return TranslateLegalizeResults(Op, Node); 273 274 Changed = true; 275 return RecursivelyLegalizeResults(Op, ResultVals); 276 } 277 LLVM_FALLTHROUGH; 278 } 279 case TargetLowering::Expand: { 280 Changed = true; 281 std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node); 282 AddLegalizedOperand(Op.getValue(0), Tmp.first); 283 AddLegalizedOperand(Op.getValue(1), Tmp.second); 284 return Op.getResNo() ? Tmp.first : Tmp.second; 285 } 286 } 287 } 288 } else if (Op.getOpcode() == ISD::STORE) { 289 StoreSDNode *ST = cast<StoreSDNode>(Node); 290 EVT StVT = ST->getMemoryVT(); 291 MVT ValVT = ST->getValue().getSimpleValueType(); 292 if (StVT.isVector() && ST->isTruncatingStore()) { 293 LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: "; 294 Node->dump(&DAG)); 295 switch (TLI.getTruncStoreAction(ValVT, StVT)) { 296 default: llvm_unreachable("This action is not supported yet!"); 297 case TargetLowering::Legal: 298 return TranslateLegalizeResults(Op, Node); 299 case TargetLowering::Custom: { 300 SmallVector<SDValue, 1> ResultVals; 301 if (LowerOperationWrapper(Node, ResultVals)) { 302 if (ResultVals.empty()) 303 return TranslateLegalizeResults(Op, Node); 304 305 Changed = true; 306 return RecursivelyLegalizeResults(Op, ResultVals); 307 } 308 LLVM_FALLTHROUGH; 309 } 310 case TargetLowering::Expand: { 311 Changed = true; 312 SDValue Chain = ExpandStore(Node); 313 AddLegalizedOperand(Op, Chain); 314 return Chain; 315 } 316 } 317 } 318 } 319 320 bool HasVectorValueOrOp = 321 llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) || 322 llvm::any_of(Node->op_values(), 323 [](SDValue O) { return O.getValueType().isVector(); }); 324 if (!HasVectorValueOrOp) 325 return TranslateLegalizeResults(Op, Node); 326 327 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 328 EVT ValVT; 329 switch (Op.getOpcode()) { 330 default: 331 return TranslateLegalizeResults(Op, Node); 332 case ISD::MERGE_VALUES: 333 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 334 // This operation lies about being legal: when it claims to be legal, 335 // it should actually be expanded. 336 if (Action == TargetLowering::Legal) 337 Action = TargetLowering::Expand; 338 break; 339 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 340 case ISD::STRICT_##DAGN: 341 #include "llvm/IR/ConstrainedOps.def" 342 ValVT = Node->getValueType(0); 343 if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP || 344 Op.getOpcode() == ISD::STRICT_UINT_TO_FP) 345 ValVT = Node->getOperand(1).getValueType(); 346 Action = TLI.getOperationAction(Node->getOpcode(), ValVT); 347 // If we're asked to expand a strict vector floating-point operation, 348 // by default we're going to simply unroll it. That is usually the 349 // best approach, except in the case where the resulting strict (scalar) 350 // operations would themselves use the fallback mutation to non-strict. 351 // In that specific case, just do the fallback on the vector op. 352 if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() && 353 TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) == 354 TargetLowering::Legal) { 355 EVT EltVT = ValVT.getVectorElementType(); 356 if (TLI.getOperationAction(Node->getOpcode(), EltVT) 357 == TargetLowering::Expand && 358 TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT) 359 == TargetLowering::Legal) 360 Action = TargetLowering::Legal; 361 } 362 break; 363 case ISD::ADD: 364 case ISD::SUB: 365 case ISD::MUL: 366 case ISD::MULHS: 367 case ISD::MULHU: 368 case ISD::SDIV: 369 case ISD::UDIV: 370 case ISD::SREM: 371 case ISD::UREM: 372 case ISD::SDIVREM: 373 case ISD::UDIVREM: 374 case ISD::FADD: 375 case ISD::FSUB: 376 case ISD::FMUL: 377 case ISD::FDIV: 378 case ISD::FREM: 379 case ISD::AND: 380 case ISD::OR: 381 case ISD::XOR: 382 case ISD::SHL: 383 case ISD::SRA: 384 case ISD::SRL: 385 case ISD::FSHL: 386 case ISD::FSHR: 387 case ISD::ROTL: 388 case ISD::ROTR: 389 case ISD::ABS: 390 case ISD::BSWAP: 391 case ISD::BITREVERSE: 392 case ISD::CTLZ: 393 case ISD::CTTZ: 394 case ISD::CTLZ_ZERO_UNDEF: 395 case ISD::CTTZ_ZERO_UNDEF: 396 case ISD::CTPOP: 397 case ISD::SELECT: 398 case ISD::VSELECT: 399 case ISD::SELECT_CC: 400 case ISD::SETCC: 401 case ISD::ZERO_EXTEND: 402 case ISD::ANY_EXTEND: 403 case ISD::TRUNCATE: 404 case ISD::SIGN_EXTEND: 405 case ISD::FP_TO_SINT: 406 case ISD::FP_TO_UINT: 407 case ISD::FNEG: 408 case ISD::FABS: 409 case ISD::FMINNUM: 410 case ISD::FMAXNUM: 411 case ISD::FMINNUM_IEEE: 412 case ISD::FMAXNUM_IEEE: 413 case ISD::FMINIMUM: 414 case ISD::FMAXIMUM: 415 case ISD::FCOPYSIGN: 416 case ISD::FSQRT: 417 case ISD::FSIN: 418 case ISD::FCOS: 419 case ISD::FPOWI: 420 case ISD::FPOW: 421 case ISD::FLOG: 422 case ISD::FLOG2: 423 case ISD::FLOG10: 424 case ISD::FEXP: 425 case ISD::FEXP2: 426 case ISD::FCEIL: 427 case ISD::FTRUNC: 428 case ISD::FRINT: 429 case ISD::FNEARBYINT: 430 case ISD::FROUND: 431 case ISD::FROUNDEVEN: 432 case ISD::FFLOOR: 433 case ISD::FP_ROUND: 434 case ISD::FP_EXTEND: 435 case ISD::FMA: 436 case ISD::SIGN_EXTEND_INREG: 437 case ISD::ANY_EXTEND_VECTOR_INREG: 438 case ISD::SIGN_EXTEND_VECTOR_INREG: 439 case ISD::ZERO_EXTEND_VECTOR_INREG: 440 case ISD::SMIN: 441 case ISD::SMAX: 442 case ISD::UMIN: 443 case ISD::UMAX: 444 case ISD::SMUL_LOHI: 445 case ISD::UMUL_LOHI: 446 case ISD::SADDO: 447 case ISD::UADDO: 448 case ISD::SSUBO: 449 case ISD::USUBO: 450 case ISD::SMULO: 451 case ISD::UMULO: 452 case ISD::FCANONICALIZE: 453 case ISD::SADDSAT: 454 case ISD::UADDSAT: 455 case ISD::SSUBSAT: 456 case ISD::USUBSAT: 457 case ISD::SSHLSAT: 458 case ISD::USHLSAT: 459 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 460 break; 461 case ISD::SMULFIX: 462 case ISD::SMULFIXSAT: 463 case ISD::UMULFIX: 464 case ISD::UMULFIXSAT: 465 case ISD::SDIVFIX: 466 case ISD::SDIVFIXSAT: 467 case ISD::UDIVFIX: 468 case ISD::UDIVFIXSAT: { 469 unsigned Scale = Node->getConstantOperandVal(2); 470 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 471 Node->getValueType(0), Scale); 472 break; 473 } 474 case ISD::VECREDUCE_SEQ_FADD: 475 Action = TLI.getOperationAction(Node->getOpcode(), 476 Node->getOperand(1).getValueType()); 477 break; 478 case ISD::SINT_TO_FP: 479 case ISD::UINT_TO_FP: 480 case ISD::VECREDUCE_ADD: 481 case ISD::VECREDUCE_MUL: 482 case ISD::VECREDUCE_AND: 483 case ISD::VECREDUCE_OR: 484 case ISD::VECREDUCE_XOR: 485 case ISD::VECREDUCE_SMAX: 486 case ISD::VECREDUCE_SMIN: 487 case ISD::VECREDUCE_UMAX: 488 case ISD::VECREDUCE_UMIN: 489 case ISD::VECREDUCE_FADD: 490 case ISD::VECREDUCE_FMUL: 491 case ISD::VECREDUCE_FMAX: 492 case ISD::VECREDUCE_FMIN: 493 Action = TLI.getOperationAction(Node->getOpcode(), 494 Node->getOperand(0).getValueType()); 495 break; 496 } 497 498 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); 499 500 SmallVector<SDValue, 8> ResultVals; 501 switch (Action) { 502 default: llvm_unreachable("This action is not supported yet!"); 503 case TargetLowering::Promote: 504 LLVM_DEBUG(dbgs() << "Promoting\n"); 505 Promote(Node, ResultVals); 506 assert(!ResultVals.empty() && "No results for promotion?"); 507 break; 508 case TargetLowering::Legal: 509 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 510 break; 511 case TargetLowering::Custom: 512 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 513 if (LowerOperationWrapper(Node, ResultVals)) 514 break; 515 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 516 LLVM_FALLTHROUGH; 517 case TargetLowering::Expand: 518 LLVM_DEBUG(dbgs() << "Expanding\n"); 519 Expand(Node, ResultVals); 520 break; 521 } 522 523 if (ResultVals.empty()) 524 return TranslateLegalizeResults(Op, Node); 525 526 Changed = true; 527 return RecursivelyLegalizeResults(Op, ResultVals); 528 } 529 530 // FIME: This is very similar to the X86 override of 531 // TargetLowering::LowerOperationWrapper. Can we merge them somehow? 532 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node, 533 SmallVectorImpl<SDValue> &Results) { 534 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 535 536 if (!Res.getNode()) 537 return false; 538 539 if (Res == SDValue(Node, 0)) 540 return true; 541 542 // If the original node has one result, take the return value from 543 // LowerOperation as is. It might not be result number 0. 544 if (Node->getNumValues() == 1) { 545 Results.push_back(Res); 546 return true; 547 } 548 549 // If the original node has multiple results, then the return node should 550 // have the same number of results. 551 assert((Node->getNumValues() == Res->getNumValues()) && 552 "Lowering returned the wrong number of results!"); 553 554 // Places new result values base on N result number. 555 for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I) 556 Results.push_back(Res.getValue(I)); 557 558 return true; 559 } 560 561 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) { 562 // For a few operations there is a specific concept for promotion based on 563 // the operand's type. 564 switch (Node->getOpcode()) { 565 case ISD::SINT_TO_FP: 566 case ISD::UINT_TO_FP: 567 case ISD::STRICT_SINT_TO_FP: 568 case ISD::STRICT_UINT_TO_FP: 569 // "Promote" the operation by extending the operand. 570 PromoteINT_TO_FP(Node, Results); 571 return; 572 case ISD::FP_TO_UINT: 573 case ISD::FP_TO_SINT: 574 case ISD::STRICT_FP_TO_UINT: 575 case ISD::STRICT_FP_TO_SINT: 576 // Promote the operation by extending the operand. 577 PromoteFP_TO_INT(Node, Results); 578 return; 579 case ISD::FP_ROUND: 580 case ISD::FP_EXTEND: 581 // These operations are used to do promotion so they can't be promoted 582 // themselves. 583 llvm_unreachable("Don't know how to promote this operation!"); 584 } 585 586 // There are currently two cases of vector promotion: 587 // 1) Bitcasting a vector of integers to a different type to a vector of the 588 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 589 // 2) Extending a vector of floats to a vector of the same number of larger 590 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 591 assert(Node->getNumValues() == 1 && 592 "Can't promote a vector with multiple results!"); 593 MVT VT = Node->getSimpleValueType(0); 594 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 595 SDLoc dl(Node); 596 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 597 598 for (unsigned j = 0; j != Node->getNumOperands(); ++j) { 599 if (Node->getOperand(j).getValueType().isVector()) 600 if (Node->getOperand(j) 601 .getValueType() 602 .getVectorElementType() 603 .isFloatingPoint() && 604 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 605 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j)); 606 else 607 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j)); 608 else 609 Operands[j] = Node->getOperand(j); 610 } 611 612 SDValue Res = 613 DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags()); 614 615 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 616 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 617 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 618 Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl)); 619 else 620 Res = DAG.getNode(ISD::BITCAST, dl, VT, Res); 621 622 Results.push_back(Res); 623 } 624 625 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node, 626 SmallVectorImpl<SDValue> &Results) { 627 // INT_TO_FP operations may require the input operand be promoted even 628 // when the type is otherwise legal. 629 bool IsStrict = Node->isStrictFPOpcode(); 630 MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType(); 631 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 632 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 633 "Vectors have different number of elements!"); 634 635 SDLoc dl(Node); 636 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 637 638 unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP || 639 Node->getOpcode() == ISD::STRICT_UINT_TO_FP) 640 ? ISD::ZERO_EXTEND 641 : ISD::SIGN_EXTEND; 642 for (unsigned j = 0; j != Node->getNumOperands(); ++j) { 643 if (Node->getOperand(j).getValueType().isVector()) 644 Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j)); 645 else 646 Operands[j] = Node->getOperand(j); 647 } 648 649 if (IsStrict) { 650 SDValue Res = DAG.getNode(Node->getOpcode(), dl, 651 {Node->getValueType(0), MVT::Other}, Operands); 652 Results.push_back(Res); 653 Results.push_back(Res.getValue(1)); 654 return; 655 } 656 657 SDValue Res = 658 DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands); 659 Results.push_back(Res); 660 } 661 662 // For FP_TO_INT we promote the result type to a vector type with wider 663 // elements and then truncate the result. This is different from the default 664 // PromoteVector which uses bitcast to promote thus assumning that the 665 // promoted vector type has the same overall size. 666 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node, 667 SmallVectorImpl<SDValue> &Results) { 668 MVT VT = Node->getSimpleValueType(0); 669 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 670 bool IsStrict = Node->isStrictFPOpcode(); 671 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 672 "Vectors have different number of elements!"); 673 674 unsigned NewOpc = Node->getOpcode(); 675 // Change FP_TO_UINT to FP_TO_SINT if possible. 676 // TODO: Should we only do this if FP_TO_UINT itself isn't legal? 677 if (NewOpc == ISD::FP_TO_UINT && 678 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) 679 NewOpc = ISD::FP_TO_SINT; 680 681 if (NewOpc == ISD::STRICT_FP_TO_UINT && 682 TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT)) 683 NewOpc = ISD::STRICT_FP_TO_SINT; 684 685 SDLoc dl(Node); 686 SDValue Promoted, Chain; 687 if (IsStrict) { 688 Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other}, 689 {Node->getOperand(0), Node->getOperand(1)}); 690 Chain = Promoted.getValue(1); 691 } else 692 Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0)); 693 694 // Assert that the converted value fits in the original type. If it doesn't 695 // (eg: because the value being converted is too big), then the result of the 696 // original operation was undefined anyway, so the assert is still correct. 697 if (Node->getOpcode() == ISD::FP_TO_UINT || 698 Node->getOpcode() == ISD::STRICT_FP_TO_UINT) 699 NewOpc = ISD::AssertZext; 700 else 701 NewOpc = ISD::AssertSext; 702 703 Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted, 704 DAG.getValueType(VT.getScalarType())); 705 Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); 706 Results.push_back(Promoted); 707 if (IsStrict) 708 Results.push_back(Chain); 709 } 710 711 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) { 712 LoadSDNode *LD = cast<LoadSDNode>(N); 713 return TLI.scalarizeVectorLoad(LD, DAG); 714 } 715 716 SDValue VectorLegalizer::ExpandStore(SDNode *N) { 717 StoreSDNode *ST = cast<StoreSDNode>(N); 718 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 719 return TF; 720 } 721 722 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) { 723 SDValue Tmp; 724 switch (Node->getOpcode()) { 725 case ISD::MERGE_VALUES: 726 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 727 Results.push_back(Node->getOperand(i)); 728 return; 729 case ISD::SIGN_EXTEND_INREG: 730 Results.push_back(ExpandSEXTINREG(Node)); 731 return; 732 case ISD::ANY_EXTEND_VECTOR_INREG: 733 Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node)); 734 return; 735 case ISD::SIGN_EXTEND_VECTOR_INREG: 736 Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node)); 737 return; 738 case ISD::ZERO_EXTEND_VECTOR_INREG: 739 Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node)); 740 return; 741 case ISD::BSWAP: 742 Results.push_back(ExpandBSWAP(Node)); 743 return; 744 case ISD::VSELECT: 745 Results.push_back(ExpandVSELECT(Node)); 746 return; 747 case ISD::SELECT: 748 Results.push_back(ExpandSELECT(Node)); 749 return; 750 case ISD::FP_TO_UINT: 751 ExpandFP_TO_UINT(Node, Results); 752 return; 753 case ISD::UINT_TO_FP: 754 ExpandUINT_TO_FLOAT(Node, Results); 755 return; 756 case ISD::FNEG: 757 Results.push_back(ExpandFNEG(Node)); 758 return; 759 case ISD::FSUB: 760 ExpandFSUB(Node, Results); 761 return; 762 case ISD::SETCC: 763 Results.push_back(UnrollVSETCC(Node)); 764 return; 765 case ISD::ABS: 766 if (TLI.expandABS(Node, Tmp, DAG)) { 767 Results.push_back(Tmp); 768 return; 769 } 770 break; 771 case ISD::BITREVERSE: 772 ExpandBITREVERSE(Node, Results); 773 return; 774 case ISD::CTPOP: 775 if (TLI.expandCTPOP(Node, Tmp, DAG)) { 776 Results.push_back(Tmp); 777 return; 778 } 779 break; 780 case ISD::CTLZ: 781 case ISD::CTLZ_ZERO_UNDEF: 782 if (TLI.expandCTLZ(Node, Tmp, DAG)) { 783 Results.push_back(Tmp); 784 return; 785 } 786 break; 787 case ISD::CTTZ: 788 case ISD::CTTZ_ZERO_UNDEF: 789 if (TLI.expandCTTZ(Node, Tmp, DAG)) { 790 Results.push_back(Tmp); 791 return; 792 } 793 break; 794 case ISD::FSHL: 795 case ISD::FSHR: 796 if (TLI.expandFunnelShift(Node, Tmp, DAG)) { 797 Results.push_back(Tmp); 798 return; 799 } 800 break; 801 case ISD::ROTL: 802 case ISD::ROTR: 803 if (TLI.expandROT(Node, false /*AllowVectorOps*/, Tmp, DAG)) { 804 Results.push_back(Tmp); 805 return; 806 } 807 break; 808 case ISD::FMINNUM: 809 case ISD::FMAXNUM: 810 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) { 811 Results.push_back(Expanded); 812 return; 813 } 814 break; 815 case ISD::UADDO: 816 case ISD::USUBO: 817 ExpandUADDSUBO(Node, Results); 818 return; 819 case ISD::SADDO: 820 case ISD::SSUBO: 821 ExpandSADDSUBO(Node, Results); 822 return; 823 case ISD::UMULO: 824 case ISD::SMULO: 825 ExpandMULO(Node, Results); 826 return; 827 case ISD::USUBSAT: 828 case ISD::SSUBSAT: 829 case ISD::UADDSAT: 830 case ISD::SADDSAT: 831 if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) { 832 Results.push_back(Expanded); 833 return; 834 } 835 break; 836 case ISD::SMULFIX: 837 case ISD::UMULFIX: 838 if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) { 839 Results.push_back(Expanded); 840 return; 841 } 842 break; 843 case ISD::SMULFIXSAT: 844 case ISD::UMULFIXSAT: 845 // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly 846 // why. Maybe it results in worse codegen compared to the unroll for some 847 // targets? This should probably be investigated. And if we still prefer to 848 // unroll an explanation could be helpful. 849 break; 850 case ISD::SDIVFIX: 851 case ISD::UDIVFIX: 852 ExpandFixedPointDiv(Node, Results); 853 return; 854 case ISD::SDIVFIXSAT: 855 case ISD::UDIVFIXSAT: 856 break; 857 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 858 case ISD::STRICT_##DAGN: 859 #include "llvm/IR/ConstrainedOps.def" 860 ExpandStrictFPOp(Node, Results); 861 return; 862 case ISD::VECREDUCE_ADD: 863 case ISD::VECREDUCE_MUL: 864 case ISD::VECREDUCE_AND: 865 case ISD::VECREDUCE_OR: 866 case ISD::VECREDUCE_XOR: 867 case ISD::VECREDUCE_SMAX: 868 case ISD::VECREDUCE_SMIN: 869 case ISD::VECREDUCE_UMAX: 870 case ISD::VECREDUCE_UMIN: 871 case ISD::VECREDUCE_FADD: 872 case ISD::VECREDUCE_FMUL: 873 case ISD::VECREDUCE_FMAX: 874 case ISD::VECREDUCE_FMIN: 875 Results.push_back(TLI.expandVecReduce(Node, DAG)); 876 return; 877 case ISD::SREM: 878 case ISD::UREM: 879 ExpandREM(Node, Results); 880 return; 881 } 882 883 Results.push_back(DAG.UnrollVectorOp(Node)); 884 } 885 886 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) { 887 // Lower a select instruction where the condition is a scalar and the 888 // operands are vectors. Lower this select to VSELECT and implement it 889 // using XOR AND OR. The selector bit is broadcasted. 890 EVT VT = Node->getValueType(0); 891 SDLoc DL(Node); 892 893 SDValue Mask = Node->getOperand(0); 894 SDValue Op1 = Node->getOperand(1); 895 SDValue Op2 = Node->getOperand(2); 896 897 assert(VT.isVector() && !Mask.getValueType().isVector() 898 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 899 900 // If we can't even use the basic vector operations of 901 // AND,OR,XOR, we will have to scalarize the op. 902 // Notice that the operation may be 'promoted' which means that it is 903 // 'bitcasted' to another type which is handled. 904 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 905 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 906 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 907 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 908 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 909 return DAG.UnrollVectorOp(Node); 910 911 // Generate a mask operand. 912 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 913 914 // What is the size of each element in the vector mask. 915 EVT BitTy = MaskTy.getScalarType(); 916 917 Mask = DAG.getSelect(DL, BitTy, Mask, 918 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 919 BitTy), 920 DAG.getConstant(0, DL, BitTy)); 921 922 // Broadcast the mask so that the entire vector is all-one or all zero. 923 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); 924 925 // Bitcast the operands to be the same type as the mask. 926 // This is needed when we select between FP types because 927 // the mask is a vector of integers. 928 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 929 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 930 931 SDValue AllOnes = DAG.getConstant( 932 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 933 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 934 935 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 936 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 937 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 938 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); 939 } 940 941 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) { 942 EVT VT = Node->getValueType(0); 943 944 // Make sure that the SRA and SHL instructions are available. 945 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 946 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 947 return DAG.UnrollVectorOp(Node); 948 949 SDLoc DL(Node); 950 EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT(); 951 952 unsigned BW = VT.getScalarSizeInBits(); 953 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 954 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 955 956 SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz); 957 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 958 } 959 960 // Generically expand a vector anyext in register to a shuffle of the relevant 961 // lanes into the appropriate locations, with other lanes left undef. 962 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) { 963 SDLoc DL(Node); 964 EVT VT = Node->getValueType(0); 965 int NumElements = VT.getVectorNumElements(); 966 SDValue Src = Node->getOperand(0); 967 EVT SrcVT = Src.getValueType(); 968 int NumSrcElements = SrcVT.getVectorNumElements(); 969 970 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 971 // into a larger vector type. 972 if (SrcVT.bitsLE(VT)) { 973 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 974 "ANY_EXTEND_VECTOR_INREG vector size mismatch"); 975 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 976 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 977 NumSrcElements); 978 Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), 979 Src, DAG.getVectorIdxConstant(0, DL)); 980 } 981 982 // Build a base mask of undef shuffles. 983 SmallVector<int, 16> ShuffleMask; 984 ShuffleMask.resize(NumSrcElements, -1); 985 986 // Place the extended lanes into the correct locations. 987 int ExtLaneScale = NumSrcElements / NumElements; 988 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 989 for (int i = 0; i < NumElements; ++i) 990 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 991 992 return DAG.getNode( 993 ISD::BITCAST, DL, VT, 994 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 995 } 996 997 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) { 998 SDLoc DL(Node); 999 EVT VT = Node->getValueType(0); 1000 SDValue Src = Node->getOperand(0); 1001 EVT SrcVT = Src.getValueType(); 1002 1003 // First build an any-extend node which can be legalized above when we 1004 // recurse through it. 1005 SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src); 1006 1007 // Now we need sign extend. Do this by shifting the elements. Even if these 1008 // aren't legal operations, they have a better chance of being legalized 1009 // without full scalarization than the sign extension does. 1010 unsigned EltWidth = VT.getScalarSizeInBits(); 1011 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 1012 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 1013 return DAG.getNode(ISD::SRA, DL, VT, 1014 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 1015 ShiftAmount); 1016 } 1017 1018 // Generically expand a vector zext in register to a shuffle of the relevant 1019 // lanes into the appropriate locations, a blend of zero into the high bits, 1020 // and a bitcast to the wider element type. 1021 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) { 1022 SDLoc DL(Node); 1023 EVT VT = Node->getValueType(0); 1024 int NumElements = VT.getVectorNumElements(); 1025 SDValue Src = Node->getOperand(0); 1026 EVT SrcVT = Src.getValueType(); 1027 int NumSrcElements = SrcVT.getVectorNumElements(); 1028 1029 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 1030 // into a larger vector type. 1031 if (SrcVT.bitsLE(VT)) { 1032 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 1033 "ZERO_EXTEND_VECTOR_INREG vector size mismatch"); 1034 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 1035 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 1036 NumSrcElements); 1037 Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), 1038 Src, DAG.getVectorIdxConstant(0, DL)); 1039 } 1040 1041 // Build up a zero vector to blend into this one. 1042 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 1043 1044 // Shuffle the incoming lanes into the correct position, and pull all other 1045 // lanes from the zero vector. 1046 SmallVector<int, 16> ShuffleMask; 1047 ShuffleMask.reserve(NumSrcElements); 1048 for (int i = 0; i < NumSrcElements; ++i) 1049 ShuffleMask.push_back(i); 1050 1051 int ExtLaneScale = NumSrcElements / NumElements; 1052 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 1053 for (int i = 0; i < NumElements; ++i) 1054 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 1055 1056 return DAG.getNode(ISD::BITCAST, DL, VT, 1057 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 1058 } 1059 1060 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 1061 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 1062 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 1063 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 1064 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 1065 } 1066 1067 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) { 1068 EVT VT = Node->getValueType(0); 1069 1070 // Generate a byte wise shuffle mask for the BSWAP. 1071 SmallVector<int, 16> ShuffleMask; 1072 createBSWAPShuffleMask(VT, ShuffleMask); 1073 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 1074 1075 // Only emit a shuffle if the mask is legal. 1076 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 1077 return DAG.UnrollVectorOp(Node); 1078 1079 SDLoc DL(Node); 1080 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); 1081 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 1082 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 1083 } 1084 1085 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node, 1086 SmallVectorImpl<SDValue> &Results) { 1087 EVT VT = Node->getValueType(0); 1088 1089 // If we have the scalar operation, it's probably cheaper to unroll it. 1090 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) { 1091 SDValue Tmp = DAG.UnrollVectorOp(Node); 1092 Results.push_back(Tmp); 1093 return; 1094 } 1095 1096 // If the vector element width is a whole number of bytes, test if its legal 1097 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 1098 // vector. This greatly reduces the number of bit shifts necessary. 1099 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 1100 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 1101 SmallVector<int, 16> BSWAPMask; 1102 createBSWAPShuffleMask(VT, BSWAPMask); 1103 1104 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 1105 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 1106 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 1107 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 1108 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 1109 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 1110 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 1111 SDLoc DL(Node); 1112 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); 1113 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 1114 BSWAPMask); 1115 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 1116 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 1117 Results.push_back(Op); 1118 return; 1119 } 1120 } 1121 1122 // If we have the appropriate vector bit operations, it is better to use them 1123 // than unrolling and expanding each component. 1124 if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 1125 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1126 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) && 1127 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 1128 // Let LegalizeDAG handle this later. 1129 return; 1130 1131 // Otherwise unroll. 1132 SDValue Tmp = DAG.UnrollVectorOp(Node); 1133 Results.push_back(Tmp); 1134 } 1135 1136 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) { 1137 // Implement VSELECT in terms of XOR, AND, OR 1138 // on platforms which do not support blend natively. 1139 SDLoc DL(Node); 1140 1141 SDValue Mask = Node->getOperand(0); 1142 SDValue Op1 = Node->getOperand(1); 1143 SDValue Op2 = Node->getOperand(2); 1144 1145 EVT VT = Mask.getValueType(); 1146 1147 // If we can't even use the basic vector operations of 1148 // AND,OR,XOR, we will have to scalarize the op. 1149 // Notice that the operation may be 'promoted' which means that it is 1150 // 'bitcasted' to another type which is handled. 1151 // This operation also isn't safe with AND, OR, XOR when the boolean 1152 // type is 0/1 as we need an all ones vector constant to mask with. 1153 // FIXME: Sign extend 1 to all ones if thats legal on the target. 1154 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 1155 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 1156 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 1157 TLI.getBooleanContents(Op1.getValueType()) != 1158 TargetLowering::ZeroOrNegativeOneBooleanContent) 1159 return DAG.UnrollVectorOp(Node); 1160 1161 // If the mask and the type are different sizes, unroll the vector op. This 1162 // can occur when getSetCCResultType returns something that is different in 1163 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 1164 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 1165 return DAG.UnrollVectorOp(Node); 1166 1167 // Bitcast the operands to be the same type as the mask. 1168 // This is needed when we select between FP types because 1169 // the mask is a vector of integers. 1170 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 1171 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 1172 1173 SDValue AllOnes = DAG.getConstant( 1174 APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT); 1175 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 1176 1177 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 1178 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 1179 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 1180 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); 1181 } 1182 1183 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node, 1184 SmallVectorImpl<SDValue> &Results) { 1185 // Attempt to expand using TargetLowering. 1186 SDValue Result, Chain; 1187 if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) { 1188 Results.push_back(Result); 1189 if (Node->isStrictFPOpcode()) 1190 Results.push_back(Chain); 1191 return; 1192 } 1193 1194 // Otherwise go ahead and unroll. 1195 if (Node->isStrictFPOpcode()) { 1196 UnrollStrictFPOp(Node, Results); 1197 return; 1198 } 1199 1200 Results.push_back(DAG.UnrollVectorOp(Node)); 1201 } 1202 1203 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node, 1204 SmallVectorImpl<SDValue> &Results) { 1205 bool IsStrict = Node->isStrictFPOpcode(); 1206 unsigned OpNo = IsStrict ? 1 : 0; 1207 SDValue Src = Node->getOperand(OpNo); 1208 EVT VT = Src.getValueType(); 1209 SDLoc DL(Node); 1210 1211 // Attempt to expand using TargetLowering. 1212 SDValue Result; 1213 SDValue Chain; 1214 if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) { 1215 Results.push_back(Result); 1216 if (IsStrict) 1217 Results.push_back(Chain); 1218 return; 1219 } 1220 1221 // Make sure that the SINT_TO_FP and SRL instructions are available. 1222 if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) == 1223 TargetLowering::Expand) || 1224 (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) == 1225 TargetLowering::Expand)) || 1226 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) { 1227 if (IsStrict) { 1228 UnrollStrictFPOp(Node, Results); 1229 return; 1230 } 1231 1232 Results.push_back(DAG.UnrollVectorOp(Node)); 1233 return; 1234 } 1235 1236 unsigned BW = VT.getScalarSizeInBits(); 1237 assert((BW == 64 || BW == 32) && 1238 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 1239 1240 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 1241 1242 // Constants to clear the upper part of the word. 1243 // Notice that we can also use SHL+SHR, but using a constant is slightly 1244 // faster on x86. 1245 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 1246 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1247 1248 // Two to the power of half-word-size. 1249 SDValue TWOHW = 1250 DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0)); 1251 1252 // Clear upper part of LO, lower HI 1253 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord); 1254 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask); 1255 1256 if (IsStrict) { 1257 // Convert hi and lo to floats 1258 // Convert the hi part back to the upper values 1259 // TODO: Can any fast-math-flags be set on these nodes? 1260 SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, 1261 {Node->getValueType(0), MVT::Other}, 1262 {Node->getOperand(0), HI}); 1263 fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other}, 1264 {fHI.getValue(1), fHI, TWOHW}); 1265 SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, 1266 {Node->getValueType(0), MVT::Other}, 1267 {Node->getOperand(0), LO}); 1268 1269 SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1), 1270 fLO.getValue(1)); 1271 1272 // Add the two halves 1273 SDValue Result = 1274 DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other}, 1275 {TF, fHI, fLO}); 1276 1277 Results.push_back(Result); 1278 Results.push_back(Result.getValue(1)); 1279 return; 1280 } 1281 1282 // Convert hi and lo to floats 1283 // Convert the hi part back to the upper values 1284 // TODO: Can any fast-math-flags be set on these nodes? 1285 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI); 1286 fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW); 1287 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO); 1288 1289 // Add the two halves 1290 Results.push_back( 1291 DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO)); 1292 } 1293 1294 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) { 1295 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) { 1296 SDLoc DL(Node); 1297 SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0)); 1298 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1299 return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero, 1300 Node->getOperand(0)); 1301 } 1302 return DAG.UnrollVectorOp(Node); 1303 } 1304 1305 void VectorLegalizer::ExpandFSUB(SDNode *Node, 1306 SmallVectorImpl<SDValue> &Results) { 1307 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, 1308 // we can defer this to operation legalization where it will be lowered as 1309 // a+(-b). 1310 EVT VT = Node->getValueType(0); 1311 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 1312 TLI.isOperationLegalOrCustom(ISD::FADD, VT)) 1313 return; // Defer to LegalizeDAG 1314 1315 SDValue Tmp = DAG.UnrollVectorOp(Node); 1316 Results.push_back(Tmp); 1317 } 1318 1319 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node, 1320 SmallVectorImpl<SDValue> &Results) { 1321 SDValue Result, Overflow; 1322 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 1323 Results.push_back(Result); 1324 Results.push_back(Overflow); 1325 } 1326 1327 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node, 1328 SmallVectorImpl<SDValue> &Results) { 1329 SDValue Result, Overflow; 1330 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 1331 Results.push_back(Result); 1332 Results.push_back(Overflow); 1333 } 1334 1335 void VectorLegalizer::ExpandMULO(SDNode *Node, 1336 SmallVectorImpl<SDValue> &Results) { 1337 SDValue Result, Overflow; 1338 if (!TLI.expandMULO(Node, Result, Overflow, DAG)) 1339 std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node); 1340 1341 Results.push_back(Result); 1342 Results.push_back(Overflow); 1343 } 1344 1345 void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node, 1346 SmallVectorImpl<SDValue> &Results) { 1347 SDNode *N = Node; 1348 if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N), 1349 N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG)) 1350 Results.push_back(Expanded); 1351 } 1352 1353 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node, 1354 SmallVectorImpl<SDValue> &Results) { 1355 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) { 1356 ExpandUINT_TO_FLOAT(Node, Results); 1357 return; 1358 } 1359 if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) { 1360 ExpandFP_TO_UINT(Node, Results); 1361 return; 1362 } 1363 1364 UnrollStrictFPOp(Node, Results); 1365 } 1366 1367 void VectorLegalizer::ExpandREM(SDNode *Node, 1368 SmallVectorImpl<SDValue> &Results) { 1369 assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) && 1370 "Expected REM node"); 1371 1372 SDValue Result; 1373 if (!TLI.expandREM(Node, Result, DAG)) 1374 Result = DAG.UnrollVectorOp(Node); 1375 Results.push_back(Result); 1376 } 1377 1378 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node, 1379 SmallVectorImpl<SDValue> &Results) { 1380 EVT VT = Node->getValueType(0); 1381 EVT EltVT = VT.getVectorElementType(); 1382 unsigned NumElems = VT.getVectorNumElements(); 1383 unsigned NumOpers = Node->getNumOperands(); 1384 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1385 1386 EVT TmpEltVT = EltVT; 1387 if (Node->getOpcode() == ISD::STRICT_FSETCC || 1388 Node->getOpcode() == ISD::STRICT_FSETCCS) 1389 TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(), 1390 *DAG.getContext(), TmpEltVT); 1391 1392 EVT ValueVTs[] = {TmpEltVT, MVT::Other}; 1393 SDValue Chain = Node->getOperand(0); 1394 SDLoc dl(Node); 1395 1396 SmallVector<SDValue, 32> OpValues; 1397 SmallVector<SDValue, 32> OpChains; 1398 for (unsigned i = 0; i < NumElems; ++i) { 1399 SmallVector<SDValue, 4> Opers; 1400 SDValue Idx = DAG.getVectorIdxConstant(i, dl); 1401 1402 // The Chain is the first operand. 1403 Opers.push_back(Chain); 1404 1405 // Now process the remaining operands. 1406 for (unsigned j = 1; j < NumOpers; ++j) { 1407 SDValue Oper = Node->getOperand(j); 1408 EVT OperVT = Oper.getValueType(); 1409 1410 if (OperVT.isVector()) 1411 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1412 OperVT.getVectorElementType(), Oper, Idx); 1413 1414 Opers.push_back(Oper); 1415 } 1416 1417 SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers); 1418 SDValue ScalarResult = ScalarOp.getValue(0); 1419 SDValue ScalarChain = ScalarOp.getValue(1); 1420 1421 if (Node->getOpcode() == ISD::STRICT_FSETCC || 1422 Node->getOpcode() == ISD::STRICT_FSETCCS) 1423 ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult, 1424 DAG.getConstant(APInt::getAllOnesValue 1425 (EltVT.getSizeInBits()), dl, EltVT), 1426 DAG.getConstant(0, dl, EltVT)); 1427 1428 OpValues.push_back(ScalarResult); 1429 OpChains.push_back(ScalarChain); 1430 } 1431 1432 SDValue Result = DAG.getBuildVector(VT, dl, OpValues); 1433 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); 1434 1435 Results.push_back(Result); 1436 Results.push_back(NewChain); 1437 } 1438 1439 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) { 1440 EVT VT = Node->getValueType(0); 1441 unsigned NumElems = VT.getVectorNumElements(); 1442 EVT EltVT = VT.getVectorElementType(); 1443 SDValue LHS = Node->getOperand(0); 1444 SDValue RHS = Node->getOperand(1); 1445 SDValue CC = Node->getOperand(2); 1446 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1447 SDLoc dl(Node); 1448 SmallVector<SDValue, 8> Ops(NumElems); 1449 for (unsigned i = 0; i < NumElems; ++i) { 1450 SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1451 DAG.getVectorIdxConstant(i, dl)); 1452 SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1453 DAG.getVectorIdxConstant(i, dl)); 1454 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1455 TLI.getSetCCResultType(DAG.getDataLayout(), 1456 *DAG.getContext(), TmpEltVT), 1457 LHSElem, RHSElem, CC); 1458 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1459 DAG.getConstant(APInt::getAllOnesValue 1460 (EltVT.getSizeInBits()), dl, EltVT), 1461 DAG.getConstant(0, dl, EltVT)); 1462 } 1463 return DAG.getBuildVector(VT, dl, Ops); 1464 } 1465 1466 bool SelectionDAG::LegalizeVectors() { 1467 return VectorLegalizer(*this).Run(); 1468 } 1469