1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeVectors method.
10 //
11 // The vector legalizer looks for vector operations which might need to be
12 // scalarized and legalizes them. This is a separate step from Legalize because
13 // scalarizing can introduce illegal types.  For example, suppose we have an
14 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16 // operation, which introduces nodes with the illegal type i64 which must be
17 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18 // the operation must be unrolled, which introduces nodes with the illegal
19 // type i8 which must be promoted.
20 //
21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22 // or operations that happen to take a vector which are custom-lowered;
23 // the legalization for such operations never produces nodes
24 // with illegal types, so it's okay to put off legalizing them until
25 // SelectionDAG::Legalize runs.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGNodes.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Support/MathExtras.h"
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <utility>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "legalizevectorops"
53 
54 namespace {
55 
56 class VectorLegalizer {
57   SelectionDAG& DAG;
58   const TargetLowering &TLI;
59   bool Changed = false; // Keep track of whether anything changed
60 
61   /// For nodes that are of legal width, and that have more than one use, this
62   /// map indicates what regularized operand to use.  This allows us to avoid
63   /// legalizing the same thing more than once.
64   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
65 
66   /// Adds a node to the translation cache.
67   void AddLegalizedOperand(SDValue From, SDValue To) {
68     LegalizedNodes.insert(std::make_pair(From, To));
69     // If someone requests legalization of the new node, return itself.
70     if (From != To)
71       LegalizedNodes.insert(std::make_pair(To, To));
72   }
73 
74   /// Legalizes the given node.
75   SDValue LegalizeOp(SDValue Op);
76 
77   /// Assuming the node is legal, "legalize" the results.
78   SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result);
79 
80   /// Make sure Results are legal and update the translation cache.
81   SDValue RecursivelyLegalizeResults(SDValue Op,
82                                      MutableArrayRef<SDValue> Results);
83 
84   /// Wrapper to interface LowerOperation with a vector of Results.
85   /// Returns false if the target wants to use default expansion. Otherwise
86   /// returns true. If return is true and the Results are empty, then the
87   /// target wants to keep the input node as is.
88   bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results);
89 
90   /// Implements unrolling a VSETCC.
91   SDValue UnrollVSETCC(SDNode *Node);
92 
93   /// Implement expand-based legalization of vector operations.
94   ///
95   /// This is just a high-level routine to dispatch to specific code paths for
96   /// operations to legalize them.
97   void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results);
98 
99   /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
100   /// FP_TO_SINT isn't legal.
101   void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
102 
103   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
104   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
105   void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
106 
107   /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
108   SDValue ExpandSEXTINREG(SDNode *Node);
109 
110   /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
111   ///
112   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
113   /// type. The contents of the bits in the extended part of each element are
114   /// undef.
115   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node);
116 
117   /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
118   ///
119   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
120   /// type, then shifts left and arithmetic shifts right to introduce a sign
121   /// extension.
122   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node);
123 
124   /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
125   ///
126   /// Shuffles the low lanes of the operand into place and blends zeros into
127   /// the remaining lanes, finally bitcasting to the proper type.
128   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node);
129 
130   /// Expand bswap of vectors into a shuffle if legal.
131   SDValue ExpandBSWAP(SDNode *Node);
132 
133   /// Implement vselect in terms of XOR, AND, OR when blend is not
134   /// supported by the target.
135   SDValue ExpandVSELECT(SDNode *Node);
136   SDValue ExpandSELECT(SDNode *Node);
137   std::pair<SDValue, SDValue> ExpandLoad(SDNode *N);
138   SDValue ExpandStore(SDNode *N);
139   SDValue ExpandFNEG(SDNode *Node);
140   void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results);
141   void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results);
142   void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
143   void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
144   void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
145   void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results);
146   SDValue ExpandStrictFPOp(SDNode *Node);
147   void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
148   void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results);
149 
150   void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
151 
152   /// Implements vector promotion.
153   ///
154   /// This is essentially just bitcasting the operands to a different type and
155   /// bitcasting the result back to the original type.
156   void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results);
157 
158   /// Implements [SU]INT_TO_FP vector promotion.
159   ///
160   /// This is a [zs]ext of the input operand to a larger integer type.
161   void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results);
162 
163   /// Implements FP_TO_[SU]INT vector promotion of the result type.
164   ///
165   /// It is promoted to a larger integer type.  The result is then
166   /// truncated back to the original type.
167   void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
168 
169 public:
170   VectorLegalizer(SelectionDAG& dag) :
171       DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
172 
173   /// Begin legalizer the vector operations in the DAG.
174   bool Run();
175 };
176 
177 } // end anonymous namespace
178 
179 bool VectorLegalizer::Run() {
180   // Before we start legalizing vector nodes, check if there are any vectors.
181   bool HasVectors = false;
182   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
183        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
184     // Check if the values of the nodes contain vectors. We don't need to check
185     // the operands because we are going to check their values at some point.
186     HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); });
187 
188     // If we found a vector node we can start the legalization.
189     if (HasVectors)
190       break;
191   }
192 
193   // If this basic block has no vectors then no need to legalize vectors.
194   if (!HasVectors)
195     return false;
196 
197   // The legalize process is inherently a bottom-up recursive process (users
198   // legalize their uses before themselves).  Given infinite stack space, we
199   // could just start legalizing on the root and traverse the whole graph.  In
200   // practice however, this causes us to run out of stack space on large basic
201   // blocks.  To avoid this problem, compute an ordering of the nodes where each
202   // node is only legalized after all of its operands are legalized.
203   DAG.AssignTopologicalOrder();
204   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
205        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
206     LegalizeOp(SDValue(&*I, 0));
207 
208   // Finally, it's possible the root changed.  Get the new root.
209   SDValue OldRoot = DAG.getRoot();
210   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
211   DAG.setRoot(LegalizedNodes[OldRoot]);
212 
213   LegalizedNodes.clear();
214 
215   // Remove dead nodes now.
216   DAG.RemoveDeadNodes();
217 
218   return Changed;
219 }
220 
221 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) {
222   assert(Op->getNumValues() == Result->getNumValues() &&
223          "Unexpected number of results");
224   // Generic legalization: just pass the operand through.
225   for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i)
226     AddLegalizedOperand(Op.getValue(i), SDValue(Result, i));
227   return SDValue(Result, Op.getResNo());
228 }
229 
230 SDValue
231 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op,
232                                             MutableArrayRef<SDValue> Results) {
233   assert(Results.size() == Op->getNumValues() &&
234          "Unexpected number of results");
235   // Make sure that the generated code is itself legal.
236   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
237     Results[i] = LegalizeOp(Results[i]);
238     AddLegalizedOperand(Op.getValue(i), Results[i]);
239   }
240 
241   return Results[Op.getResNo()];
242 }
243 
244 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
245   // Note that LegalizeOp may be reentered even from single-use nodes, which
246   // means that we always must cache transformed nodes.
247   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
248   if (I != LegalizedNodes.end()) return I->second;
249 
250   // Legalize the operands
251   SmallVector<SDValue, 8> Ops;
252   for (const SDValue &Oper : Op->op_values())
253     Ops.push_back(LegalizeOp(Oper));
254 
255   SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops);
256 
257   if (Op.getOpcode() == ISD::LOAD) {
258     LoadSDNode *LD = cast<LoadSDNode>(Node);
259     ISD::LoadExtType ExtType = LD->getExtensionType();
260     if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) {
261       LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: ";
262                  Node->dump(&DAG));
263       switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
264                                    LD->getMemoryVT())) {
265       default: llvm_unreachable("This action is not supported yet!");
266       case TargetLowering::Legal:
267         return TranslateLegalizeResults(Op, Node);
268       case TargetLowering::Custom: {
269         SmallVector<SDValue, 2> ResultVals;
270         if (LowerOperationWrapper(Node, ResultVals)) {
271           if (ResultVals.empty())
272             return TranslateLegalizeResults(Op, Node);
273 
274           Changed = true;
275           return RecursivelyLegalizeResults(Op, ResultVals);
276         }
277         LLVM_FALLTHROUGH;
278       }
279       case TargetLowering::Expand: {
280         Changed = true;
281         std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node);
282         AddLegalizedOperand(Op.getValue(0), Tmp.first);
283         AddLegalizedOperand(Op.getValue(1), Tmp.second);
284         return Op.getResNo() ? Tmp.first : Tmp.second;
285       }
286       }
287     }
288   } else if (Op.getOpcode() == ISD::STORE) {
289     StoreSDNode *ST = cast<StoreSDNode>(Node);
290     EVT StVT = ST->getMemoryVT();
291     MVT ValVT = ST->getValue().getSimpleValueType();
292     if (StVT.isVector() && ST->isTruncatingStore()) {
293       LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: ";
294                  Node->dump(&DAG));
295       switch (TLI.getTruncStoreAction(ValVT, StVT)) {
296       default: llvm_unreachable("This action is not supported yet!");
297       case TargetLowering::Legal:
298         return TranslateLegalizeResults(Op, Node);
299       case TargetLowering::Custom: {
300         SmallVector<SDValue, 1> ResultVals;
301         if (LowerOperationWrapper(Node, ResultVals)) {
302           if (ResultVals.empty())
303             return TranslateLegalizeResults(Op, Node);
304 
305           Changed = true;
306           return RecursivelyLegalizeResults(Op, ResultVals);
307         }
308         LLVM_FALLTHROUGH;
309       }
310       case TargetLowering::Expand: {
311         Changed = true;
312         SDValue Chain = ExpandStore(Node);
313         AddLegalizedOperand(Op, Chain);
314         return Chain;
315       }
316       }
317     }
318   }
319 
320   bool HasVectorValueOrOp =
321       llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) ||
322       llvm::any_of(Node->op_values(),
323                    [](SDValue O) { return O.getValueType().isVector(); });
324   if (!HasVectorValueOrOp)
325     return TranslateLegalizeResults(Op, Node);
326 
327   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
328   EVT ValVT;
329   switch (Op.getOpcode()) {
330   default:
331     return TranslateLegalizeResults(Op, Node);
332   case ISD::MERGE_VALUES:
333     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
334     // This operation lies about being legal: when it claims to be legal,
335     // it should actually be expanded.
336     if (Action == TargetLowering::Legal)
337       Action = TargetLowering::Expand;
338     break;
339 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
340   case ISD::STRICT_##DAGN:
341 #include "llvm/IR/ConstrainedOps.def"
342     ValVT = Node->getValueType(0);
343     if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP ||
344         Op.getOpcode() == ISD::STRICT_UINT_TO_FP)
345       ValVT = Node->getOperand(1).getValueType();
346     Action = TLI.getOperationAction(Node->getOpcode(), ValVT);
347     // If we're asked to expand a strict vector floating-point operation,
348     // by default we're going to simply unroll it.  That is usually the
349     // best approach, except in the case where the resulting strict (scalar)
350     // operations would themselves use the fallback mutation to non-strict.
351     // In that specific case, just do the fallback on the vector op.
352     if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() &&
353         TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) ==
354             TargetLowering::Legal) {
355       EVT EltVT = ValVT.getVectorElementType();
356       if (TLI.getOperationAction(Node->getOpcode(), EltVT)
357           == TargetLowering::Expand &&
358           TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT)
359           == TargetLowering::Legal)
360         Action = TargetLowering::Legal;
361     }
362     break;
363   case ISD::ADD:
364   case ISD::SUB:
365   case ISD::MUL:
366   case ISD::MULHS:
367   case ISD::MULHU:
368   case ISD::SDIV:
369   case ISD::UDIV:
370   case ISD::SREM:
371   case ISD::UREM:
372   case ISD::SDIVREM:
373   case ISD::UDIVREM:
374   case ISD::FADD:
375   case ISD::FSUB:
376   case ISD::FMUL:
377   case ISD::FDIV:
378   case ISD::FREM:
379   case ISD::AND:
380   case ISD::OR:
381   case ISD::XOR:
382   case ISD::SHL:
383   case ISD::SRA:
384   case ISD::SRL:
385   case ISD::FSHL:
386   case ISD::FSHR:
387   case ISD::ROTL:
388   case ISD::ROTR:
389   case ISD::ABS:
390   case ISD::BSWAP:
391   case ISD::BITREVERSE:
392   case ISD::CTLZ:
393   case ISD::CTTZ:
394   case ISD::CTLZ_ZERO_UNDEF:
395   case ISD::CTTZ_ZERO_UNDEF:
396   case ISD::CTPOP:
397   case ISD::SELECT:
398   case ISD::VSELECT:
399   case ISD::SELECT_CC:
400   case ISD::SETCC:
401   case ISD::ZERO_EXTEND:
402   case ISD::ANY_EXTEND:
403   case ISD::TRUNCATE:
404   case ISD::SIGN_EXTEND:
405   case ISD::FP_TO_SINT:
406   case ISD::FP_TO_UINT:
407   case ISD::FNEG:
408   case ISD::FABS:
409   case ISD::FMINNUM:
410   case ISD::FMAXNUM:
411   case ISD::FMINNUM_IEEE:
412   case ISD::FMAXNUM_IEEE:
413   case ISD::FMINIMUM:
414   case ISD::FMAXIMUM:
415   case ISD::FCOPYSIGN:
416   case ISD::FSQRT:
417   case ISD::FSIN:
418   case ISD::FCOS:
419   case ISD::FPOWI:
420   case ISD::FPOW:
421   case ISD::FLOG:
422   case ISD::FLOG2:
423   case ISD::FLOG10:
424   case ISD::FEXP:
425   case ISD::FEXP2:
426   case ISD::FCEIL:
427   case ISD::FTRUNC:
428   case ISD::FRINT:
429   case ISD::FNEARBYINT:
430   case ISD::FROUND:
431   case ISD::FROUNDEVEN:
432   case ISD::FFLOOR:
433   case ISD::FP_ROUND:
434   case ISD::FP_EXTEND:
435   case ISD::FMA:
436   case ISD::SIGN_EXTEND_INREG:
437   case ISD::ANY_EXTEND_VECTOR_INREG:
438   case ISD::SIGN_EXTEND_VECTOR_INREG:
439   case ISD::ZERO_EXTEND_VECTOR_INREG:
440   case ISD::SMIN:
441   case ISD::SMAX:
442   case ISD::UMIN:
443   case ISD::UMAX:
444   case ISD::SMUL_LOHI:
445   case ISD::UMUL_LOHI:
446   case ISD::SADDO:
447   case ISD::UADDO:
448   case ISD::SSUBO:
449   case ISD::USUBO:
450   case ISD::SMULO:
451   case ISD::UMULO:
452   case ISD::FCANONICALIZE:
453   case ISD::SADDSAT:
454   case ISD::UADDSAT:
455   case ISD::SSUBSAT:
456   case ISD::USUBSAT:
457   case ISD::SSHLSAT:
458   case ISD::USHLSAT:
459     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
460     break;
461   case ISD::SMULFIX:
462   case ISD::SMULFIXSAT:
463   case ISD::UMULFIX:
464   case ISD::UMULFIXSAT:
465   case ISD::SDIVFIX:
466   case ISD::SDIVFIXSAT:
467   case ISD::UDIVFIX:
468   case ISD::UDIVFIXSAT: {
469     unsigned Scale = Node->getConstantOperandVal(2);
470     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
471                                               Node->getValueType(0), Scale);
472     break;
473   }
474   case ISD::VECREDUCE_SEQ_FADD:
475     Action = TLI.getOperationAction(Node->getOpcode(),
476                                     Node->getOperand(1).getValueType());
477     break;
478   case ISD::SINT_TO_FP:
479   case ISD::UINT_TO_FP:
480   case ISD::VECREDUCE_ADD:
481   case ISD::VECREDUCE_MUL:
482   case ISD::VECREDUCE_AND:
483   case ISD::VECREDUCE_OR:
484   case ISD::VECREDUCE_XOR:
485   case ISD::VECREDUCE_SMAX:
486   case ISD::VECREDUCE_SMIN:
487   case ISD::VECREDUCE_UMAX:
488   case ISD::VECREDUCE_UMIN:
489   case ISD::VECREDUCE_FADD:
490   case ISD::VECREDUCE_FMUL:
491   case ISD::VECREDUCE_FMAX:
492   case ISD::VECREDUCE_FMIN:
493     Action = TLI.getOperationAction(Node->getOpcode(),
494                                     Node->getOperand(0).getValueType());
495     break;
496   }
497 
498   LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
499 
500   SmallVector<SDValue, 8> ResultVals;
501   switch (Action) {
502   default: llvm_unreachable("This action is not supported yet!");
503   case TargetLowering::Promote:
504     LLVM_DEBUG(dbgs() << "Promoting\n");
505     Promote(Node, ResultVals);
506     assert(!ResultVals.empty() && "No results for promotion?");
507     break;
508   case TargetLowering::Legal:
509     LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
510     break;
511   case TargetLowering::Custom:
512     LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
513     if (LowerOperationWrapper(Node, ResultVals))
514       break;
515     LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
516     LLVM_FALLTHROUGH;
517   case TargetLowering::Expand:
518     LLVM_DEBUG(dbgs() << "Expanding\n");
519     Expand(Node, ResultVals);
520     break;
521   }
522 
523   if (ResultVals.empty())
524     return TranslateLegalizeResults(Op, Node);
525 
526   Changed = true;
527   return RecursivelyLegalizeResults(Op, ResultVals);
528 }
529 
530 // FIME: This is very similar to the X86 override of
531 // TargetLowering::LowerOperationWrapper. Can we merge them somehow?
532 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node,
533                                             SmallVectorImpl<SDValue> &Results) {
534   SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
535 
536   if (!Res.getNode())
537     return false;
538 
539   if (Res == SDValue(Node, 0))
540     return true;
541 
542   // If the original node has one result, take the return value from
543   // LowerOperation as is. It might not be result number 0.
544   if (Node->getNumValues() == 1) {
545     Results.push_back(Res);
546     return true;
547   }
548 
549   // If the original node has multiple results, then the return node should
550   // have the same number of results.
551   assert((Node->getNumValues() == Res->getNumValues()) &&
552          "Lowering returned the wrong number of results!");
553 
554   // Places new result values base on N result number.
555   for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I)
556     Results.push_back(Res.getValue(I));
557 
558   return true;
559 }
560 
561 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
562   // For a few operations there is a specific concept for promotion based on
563   // the operand's type.
564   switch (Node->getOpcode()) {
565   case ISD::SINT_TO_FP:
566   case ISD::UINT_TO_FP:
567   case ISD::STRICT_SINT_TO_FP:
568   case ISD::STRICT_UINT_TO_FP:
569     // "Promote" the operation by extending the operand.
570     PromoteINT_TO_FP(Node, Results);
571     return;
572   case ISD::FP_TO_UINT:
573   case ISD::FP_TO_SINT:
574   case ISD::STRICT_FP_TO_UINT:
575   case ISD::STRICT_FP_TO_SINT:
576     // Promote the operation by extending the operand.
577     PromoteFP_TO_INT(Node, Results);
578     return;
579   case ISD::FP_ROUND:
580   case ISD::FP_EXTEND:
581     // These operations are used to do promotion so they can't be promoted
582     // themselves.
583     llvm_unreachable("Don't know how to promote this operation!");
584   }
585 
586   // There are currently two cases of vector promotion:
587   // 1) Bitcasting a vector of integers to a different type to a vector of the
588   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
589   // 2) Extending a vector of floats to a vector of the same number of larger
590   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
591   assert(Node->getNumValues() == 1 &&
592          "Can't promote a vector with multiple results!");
593   MVT VT = Node->getSimpleValueType(0);
594   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
595   SDLoc dl(Node);
596   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
597 
598   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
599     if (Node->getOperand(j).getValueType().isVector())
600       if (Node->getOperand(j)
601               .getValueType()
602               .getVectorElementType()
603               .isFloatingPoint() &&
604           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
605         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j));
606       else
607         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j));
608     else
609       Operands[j] = Node->getOperand(j);
610   }
611 
612   SDValue Res =
613       DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags());
614 
615   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
616       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
617        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
618     Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl));
619   else
620     Res = DAG.getNode(ISD::BITCAST, dl, VT, Res);
621 
622   Results.push_back(Res);
623 }
624 
625 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node,
626                                        SmallVectorImpl<SDValue> &Results) {
627   // INT_TO_FP operations may require the input operand be promoted even
628   // when the type is otherwise legal.
629   bool IsStrict = Node->isStrictFPOpcode();
630   MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType();
631   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
632   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
633          "Vectors have different number of elements!");
634 
635   SDLoc dl(Node);
636   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
637 
638   unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP ||
639                   Node->getOpcode() == ISD::STRICT_UINT_TO_FP)
640                      ? ISD::ZERO_EXTEND
641                      : ISD::SIGN_EXTEND;
642   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
643     if (Node->getOperand(j).getValueType().isVector())
644       Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j));
645     else
646       Operands[j] = Node->getOperand(j);
647   }
648 
649   if (IsStrict) {
650     SDValue Res = DAG.getNode(Node->getOpcode(), dl,
651                               {Node->getValueType(0), MVT::Other}, Operands);
652     Results.push_back(Res);
653     Results.push_back(Res.getValue(1));
654     return;
655   }
656 
657   SDValue Res =
658       DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands);
659   Results.push_back(Res);
660 }
661 
662 // For FP_TO_INT we promote the result type to a vector type with wider
663 // elements and then truncate the result.  This is different from the default
664 // PromoteVector which uses bitcast to promote thus assumning that the
665 // promoted vector type has the same overall size.
666 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node,
667                                        SmallVectorImpl<SDValue> &Results) {
668   MVT VT = Node->getSimpleValueType(0);
669   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
670   bool IsStrict = Node->isStrictFPOpcode();
671   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
672          "Vectors have different number of elements!");
673 
674   unsigned NewOpc = Node->getOpcode();
675   // Change FP_TO_UINT to FP_TO_SINT if possible.
676   // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
677   if (NewOpc == ISD::FP_TO_UINT &&
678       TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
679     NewOpc = ISD::FP_TO_SINT;
680 
681   if (NewOpc == ISD::STRICT_FP_TO_UINT &&
682       TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT))
683     NewOpc = ISD::STRICT_FP_TO_SINT;
684 
685   SDLoc dl(Node);
686   SDValue Promoted, Chain;
687   if (IsStrict) {
688     Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other},
689                            {Node->getOperand(0), Node->getOperand(1)});
690     Chain = Promoted.getValue(1);
691   } else
692     Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0));
693 
694   // Assert that the converted value fits in the original type.  If it doesn't
695   // (eg: because the value being converted is too big), then the result of the
696   // original operation was undefined anyway, so the assert is still correct.
697   if (Node->getOpcode() == ISD::FP_TO_UINT ||
698       Node->getOpcode() == ISD::STRICT_FP_TO_UINT)
699     NewOpc = ISD::AssertZext;
700   else
701     NewOpc = ISD::AssertSext;
702 
703   Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted,
704                          DAG.getValueType(VT.getScalarType()));
705   Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
706   Results.push_back(Promoted);
707   if (IsStrict)
708     Results.push_back(Chain);
709 }
710 
711 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) {
712   LoadSDNode *LD = cast<LoadSDNode>(N);
713   return TLI.scalarizeVectorLoad(LD, DAG);
714 }
715 
716 SDValue VectorLegalizer::ExpandStore(SDNode *N) {
717   StoreSDNode *ST = cast<StoreSDNode>(N);
718   SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
719   return TF;
720 }
721 
722 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
723   SDValue Tmp;
724   switch (Node->getOpcode()) {
725   case ISD::MERGE_VALUES:
726     for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
727       Results.push_back(Node->getOperand(i));
728     return;
729   case ISD::SIGN_EXTEND_INREG:
730     Results.push_back(ExpandSEXTINREG(Node));
731     return;
732   case ISD::ANY_EXTEND_VECTOR_INREG:
733     Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node));
734     return;
735   case ISD::SIGN_EXTEND_VECTOR_INREG:
736     Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node));
737     return;
738   case ISD::ZERO_EXTEND_VECTOR_INREG:
739     Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node));
740     return;
741   case ISD::BSWAP:
742     Results.push_back(ExpandBSWAP(Node));
743     return;
744   case ISD::VSELECT:
745     Results.push_back(ExpandVSELECT(Node));
746     return;
747   case ISD::SELECT:
748     Results.push_back(ExpandSELECT(Node));
749     return;
750   case ISD::FP_TO_UINT:
751     ExpandFP_TO_UINT(Node, Results);
752     return;
753   case ISD::UINT_TO_FP:
754     ExpandUINT_TO_FLOAT(Node, Results);
755     return;
756   case ISD::FNEG:
757     Results.push_back(ExpandFNEG(Node));
758     return;
759   case ISD::FSUB:
760     ExpandFSUB(Node, Results);
761     return;
762   case ISD::SETCC:
763     Results.push_back(UnrollVSETCC(Node));
764     return;
765   case ISD::ABS:
766     if (TLI.expandABS(Node, Tmp, DAG)) {
767       Results.push_back(Tmp);
768       return;
769     }
770     break;
771   case ISD::BITREVERSE:
772     ExpandBITREVERSE(Node, Results);
773     return;
774   case ISD::CTPOP:
775     if (TLI.expandCTPOP(Node, Tmp, DAG)) {
776       Results.push_back(Tmp);
777       return;
778     }
779     break;
780   case ISD::CTLZ:
781   case ISD::CTLZ_ZERO_UNDEF:
782     if (TLI.expandCTLZ(Node, Tmp, DAG)) {
783       Results.push_back(Tmp);
784       return;
785     }
786     break;
787   case ISD::CTTZ:
788   case ISD::CTTZ_ZERO_UNDEF:
789     if (TLI.expandCTTZ(Node, Tmp, DAG)) {
790       Results.push_back(Tmp);
791       return;
792     }
793     break;
794   case ISD::FSHL:
795   case ISD::FSHR:
796     if (TLI.expandFunnelShift(Node, Tmp, DAG)) {
797       Results.push_back(Tmp);
798       return;
799     }
800     break;
801   case ISD::ROTL:
802   case ISD::ROTR:
803     if (TLI.expandROT(Node, false /*AllowVectorOps*/, Tmp, DAG)) {
804       Results.push_back(Tmp);
805       return;
806     }
807     break;
808   case ISD::FMINNUM:
809   case ISD::FMAXNUM:
810     if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) {
811       Results.push_back(Expanded);
812       return;
813     }
814     break;
815   case ISD::UADDO:
816   case ISD::USUBO:
817     ExpandUADDSUBO(Node, Results);
818     return;
819   case ISD::SADDO:
820   case ISD::SSUBO:
821     ExpandSADDSUBO(Node, Results);
822     return;
823   case ISD::UMULO:
824   case ISD::SMULO:
825     ExpandMULO(Node, Results);
826     return;
827   case ISD::USUBSAT:
828   case ISD::SSUBSAT:
829   case ISD::UADDSAT:
830   case ISD::SADDSAT:
831     if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) {
832       Results.push_back(Expanded);
833       return;
834     }
835     break;
836   case ISD::SMULFIX:
837   case ISD::UMULFIX:
838     if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) {
839       Results.push_back(Expanded);
840       return;
841     }
842     break;
843   case ISD::SMULFIXSAT:
844   case ISD::UMULFIXSAT:
845     // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly
846     // why. Maybe it results in worse codegen compared to the unroll for some
847     // targets? This should probably be investigated. And if we still prefer to
848     // unroll an explanation could be helpful.
849     break;
850   case ISD::SDIVFIX:
851   case ISD::UDIVFIX:
852     ExpandFixedPointDiv(Node, Results);
853     return;
854   case ISD::SDIVFIXSAT:
855   case ISD::UDIVFIXSAT:
856     break;
857 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
858   case ISD::STRICT_##DAGN:
859 #include "llvm/IR/ConstrainedOps.def"
860     ExpandStrictFPOp(Node, Results);
861     return;
862   case ISD::VECREDUCE_ADD:
863   case ISD::VECREDUCE_MUL:
864   case ISD::VECREDUCE_AND:
865   case ISD::VECREDUCE_OR:
866   case ISD::VECREDUCE_XOR:
867   case ISD::VECREDUCE_SMAX:
868   case ISD::VECREDUCE_SMIN:
869   case ISD::VECREDUCE_UMAX:
870   case ISD::VECREDUCE_UMIN:
871   case ISD::VECREDUCE_FADD:
872   case ISD::VECREDUCE_FMUL:
873   case ISD::VECREDUCE_FMAX:
874   case ISD::VECREDUCE_FMIN:
875     Results.push_back(TLI.expandVecReduce(Node, DAG));
876     return;
877   case ISD::SREM:
878   case ISD::UREM:
879     ExpandREM(Node, Results);
880     return;
881   }
882 
883   Results.push_back(DAG.UnrollVectorOp(Node));
884 }
885 
886 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) {
887   // Lower a select instruction where the condition is a scalar and the
888   // operands are vectors. Lower this select to VSELECT and implement it
889   // using XOR AND OR. The selector bit is broadcasted.
890   EVT VT = Node->getValueType(0);
891   SDLoc DL(Node);
892 
893   SDValue Mask = Node->getOperand(0);
894   SDValue Op1 = Node->getOperand(1);
895   SDValue Op2 = Node->getOperand(2);
896 
897   assert(VT.isVector() && !Mask.getValueType().isVector()
898          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
899 
900   // If we can't even use the basic vector operations of
901   // AND,OR,XOR, we will have to scalarize the op.
902   // Notice that the operation may be 'promoted' which means that it is
903   // 'bitcasted' to another type which is handled.
904   // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
905   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
906       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
907       TLI.getOperationAction(ISD::OR,  VT) == TargetLowering::Expand ||
908       TLI.getOperationAction(ISD::BUILD_VECTOR,  VT) == TargetLowering::Expand)
909     return DAG.UnrollVectorOp(Node);
910 
911   // Generate a mask operand.
912   EVT MaskTy = VT.changeVectorElementTypeToInteger();
913 
914   // What is the size of each element in the vector mask.
915   EVT BitTy = MaskTy.getScalarType();
916 
917   Mask = DAG.getSelect(DL, BitTy, Mask,
918           DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
919                           BitTy),
920           DAG.getConstant(0, DL, BitTy));
921 
922   // Broadcast the mask so that the entire vector is all-one or all zero.
923   Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
924 
925   // Bitcast the operands to be the same type as the mask.
926   // This is needed when we select between FP types because
927   // the mask is a vector of integers.
928   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
929   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
930 
931   SDValue AllOnes = DAG.getConstant(
932             APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
933   SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
934 
935   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
936   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
937   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
938   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
939 }
940 
941 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) {
942   EVT VT = Node->getValueType(0);
943 
944   // Make sure that the SRA and SHL instructions are available.
945   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
946       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
947     return DAG.UnrollVectorOp(Node);
948 
949   SDLoc DL(Node);
950   EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT();
951 
952   unsigned BW = VT.getScalarSizeInBits();
953   unsigned OrigBW = OrigTy.getScalarSizeInBits();
954   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
955 
956   SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz);
957   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
958 }
959 
960 // Generically expand a vector anyext in register to a shuffle of the relevant
961 // lanes into the appropriate locations, with other lanes left undef.
962 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) {
963   SDLoc DL(Node);
964   EVT VT = Node->getValueType(0);
965   int NumElements = VT.getVectorNumElements();
966   SDValue Src = Node->getOperand(0);
967   EVT SrcVT = Src.getValueType();
968   int NumSrcElements = SrcVT.getVectorNumElements();
969 
970   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
971   // into a larger vector type.
972   if (SrcVT.bitsLE(VT)) {
973     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
974            "ANY_EXTEND_VECTOR_INREG vector size mismatch");
975     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
976     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
977                              NumSrcElements);
978     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
979                       Src, DAG.getVectorIdxConstant(0, DL));
980   }
981 
982   // Build a base mask of undef shuffles.
983   SmallVector<int, 16> ShuffleMask;
984   ShuffleMask.resize(NumSrcElements, -1);
985 
986   // Place the extended lanes into the correct locations.
987   int ExtLaneScale = NumSrcElements / NumElements;
988   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
989   for (int i = 0; i < NumElements; ++i)
990     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
991 
992   return DAG.getNode(
993       ISD::BITCAST, DL, VT,
994       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
995 }
996 
997 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) {
998   SDLoc DL(Node);
999   EVT VT = Node->getValueType(0);
1000   SDValue Src = Node->getOperand(0);
1001   EVT SrcVT = Src.getValueType();
1002 
1003   // First build an any-extend node which can be legalized above when we
1004   // recurse through it.
1005   SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
1006 
1007   // Now we need sign extend. Do this by shifting the elements. Even if these
1008   // aren't legal operations, they have a better chance of being legalized
1009   // without full scalarization than the sign extension does.
1010   unsigned EltWidth = VT.getScalarSizeInBits();
1011   unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
1012   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
1013   return DAG.getNode(ISD::SRA, DL, VT,
1014                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
1015                      ShiftAmount);
1016 }
1017 
1018 // Generically expand a vector zext in register to a shuffle of the relevant
1019 // lanes into the appropriate locations, a blend of zero into the high bits,
1020 // and a bitcast to the wider element type.
1021 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) {
1022   SDLoc DL(Node);
1023   EVT VT = Node->getValueType(0);
1024   int NumElements = VT.getVectorNumElements();
1025   SDValue Src = Node->getOperand(0);
1026   EVT SrcVT = Src.getValueType();
1027   int NumSrcElements = SrcVT.getVectorNumElements();
1028 
1029   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1030   // into a larger vector type.
1031   if (SrcVT.bitsLE(VT)) {
1032     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1033            "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
1034     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1035     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1036                              NumSrcElements);
1037     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
1038                       Src, DAG.getVectorIdxConstant(0, DL));
1039   }
1040 
1041   // Build up a zero vector to blend into this one.
1042   SDValue Zero = DAG.getConstant(0, DL, SrcVT);
1043 
1044   // Shuffle the incoming lanes into the correct position, and pull all other
1045   // lanes from the zero vector.
1046   SmallVector<int, 16> ShuffleMask;
1047   ShuffleMask.reserve(NumSrcElements);
1048   for (int i = 0; i < NumSrcElements; ++i)
1049     ShuffleMask.push_back(i);
1050 
1051   int ExtLaneScale = NumSrcElements / NumElements;
1052   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1053   for (int i = 0; i < NumElements; ++i)
1054     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
1055 
1056   return DAG.getNode(ISD::BITCAST, DL, VT,
1057                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
1058 }
1059 
1060 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
1061   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
1062   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
1063     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
1064       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
1065 }
1066 
1067 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) {
1068   EVT VT = Node->getValueType(0);
1069 
1070   // Generate a byte wise shuffle mask for the BSWAP.
1071   SmallVector<int, 16> ShuffleMask;
1072   createBSWAPShuffleMask(VT, ShuffleMask);
1073   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
1074 
1075   // Only emit a shuffle if the mask is legal.
1076   if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
1077     return DAG.UnrollVectorOp(Node);
1078 
1079   SDLoc DL(Node);
1080   SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1081   Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
1082   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1083 }
1084 
1085 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node,
1086                                        SmallVectorImpl<SDValue> &Results) {
1087   EVT VT = Node->getValueType(0);
1088 
1089   // If we have the scalar operation, it's probably cheaper to unroll it.
1090   if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) {
1091     SDValue Tmp = DAG.UnrollVectorOp(Node);
1092     Results.push_back(Tmp);
1093     return;
1094   }
1095 
1096   // If the vector element width is a whole number of bytes, test if its legal
1097   // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1098   // vector. This greatly reduces the number of bit shifts necessary.
1099   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
1100   if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
1101     SmallVector<int, 16> BSWAPMask;
1102     createBSWAPShuffleMask(VT, BSWAPMask);
1103 
1104     EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
1105     if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
1106         (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
1107          (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
1108           TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
1109           TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
1110           TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
1111       SDLoc DL(Node);
1112       SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1113       Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1114                                 BSWAPMask);
1115       Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1116       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
1117       Results.push_back(Op);
1118       return;
1119     }
1120   }
1121 
1122   // If we have the appropriate vector bit operations, it is better to use them
1123   // than unrolling and expanding each component.
1124   if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
1125       TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1126       TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
1127       TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1128     // Let LegalizeDAG handle this later.
1129     return;
1130 
1131   // Otherwise unroll.
1132   SDValue Tmp = DAG.UnrollVectorOp(Node);
1133   Results.push_back(Tmp);
1134 }
1135 
1136 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) {
1137   // Implement VSELECT in terms of XOR, AND, OR
1138   // on platforms which do not support blend natively.
1139   SDLoc DL(Node);
1140 
1141   SDValue Mask = Node->getOperand(0);
1142   SDValue Op1 = Node->getOperand(1);
1143   SDValue Op2 = Node->getOperand(2);
1144 
1145   EVT VT = Mask.getValueType();
1146 
1147   // If we can't even use the basic vector operations of
1148   // AND,OR,XOR, we will have to scalarize the op.
1149   // Notice that the operation may be 'promoted' which means that it is
1150   // 'bitcasted' to another type which is handled.
1151   // This operation also isn't safe with AND, OR, XOR when the boolean
1152   // type is 0/1 as we need an all ones vector constant to mask with.
1153   // FIXME: Sign extend 1 to all ones if thats legal on the target.
1154   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1155       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1156       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
1157       TLI.getBooleanContents(Op1.getValueType()) !=
1158           TargetLowering::ZeroOrNegativeOneBooleanContent)
1159     return DAG.UnrollVectorOp(Node);
1160 
1161   // If the mask and the type are different sizes, unroll the vector op. This
1162   // can occur when getSetCCResultType returns something that is different in
1163   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1164   if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1165     return DAG.UnrollVectorOp(Node);
1166 
1167   // Bitcast the operands to be the same type as the mask.
1168   // This is needed when we select between FP types because
1169   // the mask is a vector of integers.
1170   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1171   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1172 
1173   SDValue AllOnes = DAG.getConstant(
1174     APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT);
1175   SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
1176 
1177   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1178   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1179   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1180   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
1181 }
1182 
1183 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node,
1184                                        SmallVectorImpl<SDValue> &Results) {
1185   // Attempt to expand using TargetLowering.
1186   SDValue Result, Chain;
1187   if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) {
1188     Results.push_back(Result);
1189     if (Node->isStrictFPOpcode())
1190       Results.push_back(Chain);
1191     return;
1192   }
1193 
1194   // Otherwise go ahead and unroll.
1195   if (Node->isStrictFPOpcode()) {
1196     UnrollStrictFPOp(Node, Results);
1197     return;
1198   }
1199 
1200   Results.push_back(DAG.UnrollVectorOp(Node));
1201 }
1202 
1203 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node,
1204                                           SmallVectorImpl<SDValue> &Results) {
1205   bool IsStrict = Node->isStrictFPOpcode();
1206   unsigned OpNo = IsStrict ? 1 : 0;
1207   SDValue Src = Node->getOperand(OpNo);
1208   EVT VT = Src.getValueType();
1209   SDLoc DL(Node);
1210 
1211   // Attempt to expand using TargetLowering.
1212   SDValue Result;
1213   SDValue Chain;
1214   if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) {
1215     Results.push_back(Result);
1216     if (IsStrict)
1217       Results.push_back(Chain);
1218     return;
1219   }
1220 
1221   // Make sure that the SINT_TO_FP and SRL instructions are available.
1222   if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) ==
1223                          TargetLowering::Expand) ||
1224        (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) ==
1225                         TargetLowering::Expand)) ||
1226       TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) {
1227     if (IsStrict) {
1228       UnrollStrictFPOp(Node, Results);
1229       return;
1230     }
1231 
1232     Results.push_back(DAG.UnrollVectorOp(Node));
1233     return;
1234   }
1235 
1236   unsigned BW = VT.getScalarSizeInBits();
1237   assert((BW == 64 || BW == 32) &&
1238          "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1239 
1240   SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1241 
1242   // Constants to clear the upper part of the word.
1243   // Notice that we can also use SHL+SHR, but using a constant is slightly
1244   // faster on x86.
1245   uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1246   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1247 
1248   // Two to the power of half-word-size.
1249   SDValue TWOHW =
1250       DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0));
1251 
1252   // Clear upper part of LO, lower HI
1253   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord);
1254   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask);
1255 
1256   if (IsStrict) {
1257     // Convert hi and lo to floats
1258     // Convert the hi part back to the upper values
1259     // TODO: Can any fast-math-flags be set on these nodes?
1260     SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1261                               {Node->getValueType(0), MVT::Other},
1262                               {Node->getOperand(0), HI});
1263     fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other},
1264                       {fHI.getValue(1), fHI, TWOHW});
1265     SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1266                               {Node->getValueType(0), MVT::Other},
1267                               {Node->getOperand(0), LO});
1268 
1269     SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1),
1270                              fLO.getValue(1));
1271 
1272     // Add the two halves
1273     SDValue Result =
1274         DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other},
1275                     {TF, fHI, fLO});
1276 
1277     Results.push_back(Result);
1278     Results.push_back(Result.getValue(1));
1279     return;
1280   }
1281 
1282   // Convert hi and lo to floats
1283   // Convert the hi part back to the upper values
1284   // TODO: Can any fast-math-flags be set on these nodes?
1285   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI);
1286   fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW);
1287   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO);
1288 
1289   // Add the two halves
1290   Results.push_back(
1291       DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO));
1292 }
1293 
1294 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) {
1295   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) {
1296     SDLoc DL(Node);
1297     SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0));
1298     // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1299     return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero,
1300                        Node->getOperand(0));
1301   }
1302   return DAG.UnrollVectorOp(Node);
1303 }
1304 
1305 void VectorLegalizer::ExpandFSUB(SDNode *Node,
1306                                  SmallVectorImpl<SDValue> &Results) {
1307   // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1308   // we can defer this to operation legalization where it will be lowered as
1309   // a+(-b).
1310   EVT VT = Node->getValueType(0);
1311   if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1312       TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1313     return; // Defer to LegalizeDAG
1314 
1315   SDValue Tmp = DAG.UnrollVectorOp(Node);
1316   Results.push_back(Tmp);
1317 }
1318 
1319 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node,
1320                                      SmallVectorImpl<SDValue> &Results) {
1321   SDValue Result, Overflow;
1322   TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
1323   Results.push_back(Result);
1324   Results.push_back(Overflow);
1325 }
1326 
1327 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node,
1328                                      SmallVectorImpl<SDValue> &Results) {
1329   SDValue Result, Overflow;
1330   TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
1331   Results.push_back(Result);
1332   Results.push_back(Overflow);
1333 }
1334 
1335 void VectorLegalizer::ExpandMULO(SDNode *Node,
1336                                  SmallVectorImpl<SDValue> &Results) {
1337   SDValue Result, Overflow;
1338   if (!TLI.expandMULO(Node, Result, Overflow, DAG))
1339     std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node);
1340 
1341   Results.push_back(Result);
1342   Results.push_back(Overflow);
1343 }
1344 
1345 void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node,
1346                                           SmallVectorImpl<SDValue> &Results) {
1347   SDNode *N = Node;
1348   if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N),
1349           N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG))
1350     Results.push_back(Expanded);
1351 }
1352 
1353 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node,
1354                                        SmallVectorImpl<SDValue> &Results) {
1355   if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) {
1356     ExpandUINT_TO_FLOAT(Node, Results);
1357     return;
1358   }
1359   if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) {
1360     ExpandFP_TO_UINT(Node, Results);
1361     return;
1362   }
1363 
1364   UnrollStrictFPOp(Node, Results);
1365 }
1366 
1367 void VectorLegalizer::ExpandREM(SDNode *Node,
1368                                 SmallVectorImpl<SDValue> &Results) {
1369   assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) &&
1370          "Expected REM node");
1371 
1372   SDValue Result;
1373   if (!TLI.expandREM(Node, Result, DAG))
1374     Result = DAG.UnrollVectorOp(Node);
1375   Results.push_back(Result);
1376 }
1377 
1378 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node,
1379                                        SmallVectorImpl<SDValue> &Results) {
1380   EVT VT = Node->getValueType(0);
1381   EVT EltVT = VT.getVectorElementType();
1382   unsigned NumElems = VT.getVectorNumElements();
1383   unsigned NumOpers = Node->getNumOperands();
1384   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1385 
1386   EVT TmpEltVT = EltVT;
1387   if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1388       Node->getOpcode() == ISD::STRICT_FSETCCS)
1389     TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(),
1390                                       *DAG.getContext(), TmpEltVT);
1391 
1392   EVT ValueVTs[] = {TmpEltVT, MVT::Other};
1393   SDValue Chain = Node->getOperand(0);
1394   SDLoc dl(Node);
1395 
1396   SmallVector<SDValue, 32> OpValues;
1397   SmallVector<SDValue, 32> OpChains;
1398   for (unsigned i = 0; i < NumElems; ++i) {
1399     SmallVector<SDValue, 4> Opers;
1400     SDValue Idx = DAG.getVectorIdxConstant(i, dl);
1401 
1402     // The Chain is the first operand.
1403     Opers.push_back(Chain);
1404 
1405     // Now process the remaining operands.
1406     for (unsigned j = 1; j < NumOpers; ++j) {
1407       SDValue Oper = Node->getOperand(j);
1408       EVT OperVT = Oper.getValueType();
1409 
1410       if (OperVT.isVector())
1411         Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1412                            OperVT.getVectorElementType(), Oper, Idx);
1413 
1414       Opers.push_back(Oper);
1415     }
1416 
1417     SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers);
1418     SDValue ScalarResult = ScalarOp.getValue(0);
1419     SDValue ScalarChain = ScalarOp.getValue(1);
1420 
1421     if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1422         Node->getOpcode() == ISD::STRICT_FSETCCS)
1423       ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult,
1424                            DAG.getConstant(APInt::getAllOnesValue
1425                                            (EltVT.getSizeInBits()), dl, EltVT),
1426                            DAG.getConstant(0, dl, EltVT));
1427 
1428     OpValues.push_back(ScalarResult);
1429     OpChains.push_back(ScalarChain);
1430   }
1431 
1432   SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
1433   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
1434 
1435   Results.push_back(Result);
1436   Results.push_back(NewChain);
1437 }
1438 
1439 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) {
1440   EVT VT = Node->getValueType(0);
1441   unsigned NumElems = VT.getVectorNumElements();
1442   EVT EltVT = VT.getVectorElementType();
1443   SDValue LHS = Node->getOperand(0);
1444   SDValue RHS = Node->getOperand(1);
1445   SDValue CC = Node->getOperand(2);
1446   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1447   SDLoc dl(Node);
1448   SmallVector<SDValue, 8> Ops(NumElems);
1449   for (unsigned i = 0; i < NumElems; ++i) {
1450     SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1451                                   DAG.getVectorIdxConstant(i, dl));
1452     SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1453                                   DAG.getVectorIdxConstant(i, dl));
1454     Ops[i] = DAG.getNode(ISD::SETCC, dl,
1455                          TLI.getSetCCResultType(DAG.getDataLayout(),
1456                                                 *DAG.getContext(), TmpEltVT),
1457                          LHSElem, RHSElem, CC);
1458     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1459                            DAG.getConstant(APInt::getAllOnesValue
1460                                            (EltVT.getSizeInBits()), dl, EltVT),
1461                            DAG.getConstant(0, dl, EltVT));
1462   }
1463   return DAG.getBuildVector(VT, dl, Ops);
1464 }
1465 
1466 bool SelectionDAG::LegalizeVectors() {
1467   return VectorLegalizer(*this).Run();
1468 }
1469