1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeVectors method.
10 //
11 // The vector legalizer looks for vector operations which might need to be
12 // scalarized and legalizes them. This is a separate step from Legalize because
13 // scalarizing can introduce illegal types.  For example, suppose we have an
14 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16 // operation, which introduces nodes with the illegal type i64 which must be
17 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18 // the operation must be unrolled, which introduces nodes with the illegal
19 // type i8 which must be promoted.
20 //
21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22 // or operations that happen to take a vector which are custom-lowered;
23 // the legalization for such operations never produces nodes
24 // with illegal types, so it's okay to put off legalizing them until
25 // SelectionDAG::Legalize runs.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGNodes.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/MachineValueType.h"
43 #include "llvm/Support/MathExtras.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <iterator>
47 #include <utility>
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "legalizevectorops"
52 
53 namespace {
54 
55 class VectorLegalizer {
56   SelectionDAG& DAG;
57   const TargetLowering &TLI;
58   bool Changed = false; // Keep track of whether anything changed
59 
60   /// For nodes that are of legal width, and that have more than one use, this
61   /// map indicates what regularized operand to use.  This allows us to avoid
62   /// legalizing the same thing more than once.
63   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
64 
65   /// Adds a node to the translation cache.
66   void AddLegalizedOperand(SDValue From, SDValue To) {
67     LegalizedNodes.insert(std::make_pair(From, To));
68     // If someone requests legalization of the new node, return itself.
69     if (From != To)
70       LegalizedNodes.insert(std::make_pair(To, To));
71   }
72 
73   /// Legalizes the given node.
74   SDValue LegalizeOp(SDValue Op);
75 
76   /// Assuming the node is legal, "legalize" the results.
77   SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
78 
79   /// Implements unrolling a VSETCC.
80   SDValue UnrollVSETCC(SDValue Op);
81 
82   /// Implement expand-based legalization of vector operations.
83   ///
84   /// This is just a high-level routine to dispatch to specific code paths for
85   /// operations to legalize them.
86   SDValue Expand(SDValue Op);
87 
88   /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
89   /// FP_TO_SINT isn't legal.
90   SDValue ExpandFP_TO_UINT(SDValue Op);
91 
92   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
93   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
94   SDValue ExpandUINT_TO_FLOAT(SDValue Op);
95 
96   /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
97   SDValue ExpandSEXTINREG(SDValue Op);
98 
99   /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
100   ///
101   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
102   /// type. The contents of the bits in the extended part of each element are
103   /// undef.
104   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
105 
106   /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
107   ///
108   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
109   /// type, then shifts left and arithmetic shifts right to introduce a sign
110   /// extension.
111   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
112 
113   /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
114   ///
115   /// Shuffles the low lanes of the operand into place and blends zeros into
116   /// the remaining lanes, finally bitcasting to the proper type.
117   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
118 
119   /// Implement expand-based legalization of ABS vector operations.
120   /// If following expanding is legal/custom then do it:
121   /// (ABS x) --> (XOR (ADD x, (SRA x, sizeof(x)-1)), (SRA x, sizeof(x)-1))
122   /// else unroll the operation.
123   SDValue ExpandABS(SDValue Op);
124 
125   /// Expand bswap of vectors into a shuffle if legal.
126   SDValue ExpandBSWAP(SDValue Op);
127 
128   /// Implement vselect in terms of XOR, AND, OR when blend is not
129   /// supported by the target.
130   SDValue ExpandVSELECT(SDValue Op);
131   SDValue ExpandSELECT(SDValue Op);
132   SDValue ExpandLoad(SDValue Op);
133   SDValue ExpandStore(SDValue Op);
134   SDValue ExpandFNEG(SDValue Op);
135   SDValue ExpandFSUB(SDValue Op);
136   SDValue ExpandBITREVERSE(SDValue Op);
137   SDValue ExpandCTPOP(SDValue Op);
138   SDValue ExpandCTLZ(SDValue Op);
139   SDValue ExpandCTTZ(SDValue Op);
140   SDValue ExpandFunnelShift(SDValue Op);
141   SDValue ExpandROT(SDValue Op);
142   SDValue ExpandFMINNUM_FMAXNUM(SDValue Op);
143   SDValue ExpandMULO(SDValue Op);
144   SDValue ExpandAddSubSat(SDValue Op);
145   SDValue ExpandFixedPointMul(SDValue Op);
146   SDValue ExpandStrictFPOp(SDValue Op);
147 
148   /// Implements vector promotion.
149   ///
150   /// This is essentially just bitcasting the operands to a different type and
151   /// bitcasting the result back to the original type.
152   SDValue Promote(SDValue Op);
153 
154   /// Implements [SU]INT_TO_FP vector promotion.
155   ///
156   /// This is a [zs]ext of the input operand to a larger integer type.
157   SDValue PromoteINT_TO_FP(SDValue Op);
158 
159   /// Implements FP_TO_[SU]INT vector promotion of the result type.
160   ///
161   /// It is promoted to a larger integer type.  The result is then
162   /// truncated back to the original type.
163   SDValue PromoteFP_TO_INT(SDValue Op);
164 
165 public:
166   VectorLegalizer(SelectionDAG& dag) :
167       DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
168 
169   /// Begin legalizer the vector operations in the DAG.
170   bool Run();
171 };
172 
173 } // end anonymous namespace
174 
175 bool VectorLegalizer::Run() {
176   // Before we start legalizing vector nodes, check if there are any vectors.
177   bool HasVectors = false;
178   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
179        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
180     // Check if the values of the nodes contain vectors. We don't need to check
181     // the operands because we are going to check their values at some point.
182     for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
183          J != E; ++J)
184       HasVectors |= J->isVector();
185 
186     // If we found a vector node we can start the legalization.
187     if (HasVectors)
188       break;
189   }
190 
191   // If this basic block has no vectors then no need to legalize vectors.
192   if (!HasVectors)
193     return false;
194 
195   // The legalize process is inherently a bottom-up recursive process (users
196   // legalize their uses before themselves).  Given infinite stack space, we
197   // could just start legalizing on the root and traverse the whole graph.  In
198   // practice however, this causes us to run out of stack space on large basic
199   // blocks.  To avoid this problem, compute an ordering of the nodes where each
200   // node is only legalized after all of its operands are legalized.
201   DAG.AssignTopologicalOrder();
202   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
203        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
204     LegalizeOp(SDValue(&*I, 0));
205 
206   // Finally, it's possible the root changed.  Get the new root.
207   SDValue OldRoot = DAG.getRoot();
208   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
209   DAG.setRoot(LegalizedNodes[OldRoot]);
210 
211   LegalizedNodes.clear();
212 
213   // Remove dead nodes now.
214   DAG.RemoveDeadNodes();
215 
216   return Changed;
217 }
218 
219 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
220   // Generic legalization: just pass the operand through.
221   for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
222     AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
223   return Result.getValue(Op.getResNo());
224 }
225 
226 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
227   // Note that LegalizeOp may be reentered even from single-use nodes, which
228   // means that we always must cache transformed nodes.
229   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
230   if (I != LegalizedNodes.end()) return I->second;
231 
232   SDNode* Node = Op.getNode();
233 
234   // Legalize the operands
235   SmallVector<SDValue, 8> Ops;
236   for (const SDValue &Op : Node->op_values())
237     Ops.push_back(LegalizeOp(Op));
238 
239   SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops),
240                            Op.getResNo());
241 
242   if (Op.getOpcode() == ISD::LOAD) {
243     LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
244     ISD::LoadExtType ExtType = LD->getExtensionType();
245     if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) {
246       LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: ";
247                  Node->dump(&DAG));
248       switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
249                                    LD->getMemoryVT())) {
250       default: llvm_unreachable("This action is not supported yet!");
251       case TargetLowering::Legal:
252         return TranslateLegalizeResults(Op, Result);
253       case TargetLowering::Custom:
254         if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
255           assert(Lowered->getNumValues() == Op->getNumValues() &&
256                  "Unexpected number of results");
257           if (Lowered != Result) {
258             // Make sure the new code is also legal.
259             Lowered = LegalizeOp(Lowered);
260             Changed = true;
261           }
262           return TranslateLegalizeResults(Op, Lowered);
263         }
264         LLVM_FALLTHROUGH;
265       case TargetLowering::Expand:
266         Changed = true;
267         return ExpandLoad(Op);
268       }
269     }
270   } else if (Op.getOpcode() == ISD::STORE) {
271     StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
272     EVT StVT = ST->getMemoryVT();
273     MVT ValVT = ST->getValue().getSimpleValueType();
274     if (StVT.isVector() && ST->isTruncatingStore()) {
275       LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: ";
276                  Node->dump(&DAG));
277       switch (TLI.getTruncStoreAction(ValVT, StVT)) {
278       default: llvm_unreachable("This action is not supported yet!");
279       case TargetLowering::Legal:
280         return TranslateLegalizeResults(Op, Result);
281       case TargetLowering::Custom: {
282         SDValue Lowered = TLI.LowerOperation(Result, DAG);
283         if (Lowered != Result) {
284           // Make sure the new code is also legal.
285           Lowered = LegalizeOp(Lowered);
286           Changed = true;
287         }
288         return TranslateLegalizeResults(Op, Lowered);
289       }
290       case TargetLowering::Expand:
291         Changed = true;
292         return ExpandStore(Op);
293       }
294     }
295   }
296 
297   bool HasVectorValueOrOp = false;
298   for (auto J = Node->value_begin(), E = Node->value_end(); J != E; ++J)
299     HasVectorValueOrOp |= J->isVector();
300   for (const SDValue &Op : Node->op_values())
301     HasVectorValueOrOp |= Op.getValueType().isVector();
302 
303   if (!HasVectorValueOrOp)
304     return TranslateLegalizeResults(Op, Result);
305 
306   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
307   switch (Op.getOpcode()) {
308   default:
309     return TranslateLegalizeResults(Op, Result);
310   case ISD::STRICT_FADD:
311   case ISD::STRICT_FSUB:
312   case ISD::STRICT_FMUL:
313   case ISD::STRICT_FDIV:
314   case ISD::STRICT_FREM:
315   case ISD::STRICT_FSQRT:
316   case ISD::STRICT_FMA:
317   case ISD::STRICT_FPOW:
318   case ISD::STRICT_FPOWI:
319   case ISD::STRICT_FSIN:
320   case ISD::STRICT_FCOS:
321   case ISD::STRICT_FEXP:
322   case ISD::STRICT_FEXP2:
323   case ISD::STRICT_FLOG:
324   case ISD::STRICT_FLOG10:
325   case ISD::STRICT_FLOG2:
326   case ISD::STRICT_FRINT:
327   case ISD::STRICT_FNEARBYINT:
328   case ISD::STRICT_FMAXNUM:
329   case ISD::STRICT_FMINNUM:
330   case ISD::STRICT_FCEIL:
331   case ISD::STRICT_FFLOOR:
332   case ISD::STRICT_FROUND:
333   case ISD::STRICT_FTRUNC:
334   case ISD::STRICT_FP_ROUND:
335   case ISD::STRICT_FP_EXTEND:
336     // These pseudo-ops get legalized as if they were their non-strict
337     // equivalent.  For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT
338     // is also legal, but if ISD::FSQRT requires expansion then so does
339     // ISD::STRICT_FSQRT.
340     Action = TLI.getStrictFPOperationAction(Node->getOpcode(),
341                                             Node->getValueType(0));
342     break;
343   case ISD::ADD:
344   case ISD::SUB:
345   case ISD::MUL:
346   case ISD::MULHS:
347   case ISD::MULHU:
348   case ISD::SDIV:
349   case ISD::UDIV:
350   case ISD::SREM:
351   case ISD::UREM:
352   case ISD::SDIVREM:
353   case ISD::UDIVREM:
354   case ISD::FADD:
355   case ISD::FSUB:
356   case ISD::FMUL:
357   case ISD::FDIV:
358   case ISD::FREM:
359   case ISD::AND:
360   case ISD::OR:
361   case ISD::XOR:
362   case ISD::SHL:
363   case ISD::SRA:
364   case ISD::SRL:
365   case ISD::FSHL:
366   case ISD::FSHR:
367   case ISD::ROTL:
368   case ISD::ROTR:
369   case ISD::ABS:
370   case ISD::BSWAP:
371   case ISD::BITREVERSE:
372   case ISD::CTLZ:
373   case ISD::CTTZ:
374   case ISD::CTLZ_ZERO_UNDEF:
375   case ISD::CTTZ_ZERO_UNDEF:
376   case ISD::CTPOP:
377   case ISD::SELECT:
378   case ISD::VSELECT:
379   case ISD::SELECT_CC:
380   case ISD::SETCC:
381   case ISD::ZERO_EXTEND:
382   case ISD::ANY_EXTEND:
383   case ISD::TRUNCATE:
384   case ISD::SIGN_EXTEND:
385   case ISD::FP_TO_SINT:
386   case ISD::FP_TO_UINT:
387   case ISD::FNEG:
388   case ISD::FABS:
389   case ISD::FMINNUM:
390   case ISD::FMAXNUM:
391   case ISD::FMINNUM_IEEE:
392   case ISD::FMAXNUM_IEEE:
393   case ISD::FMINIMUM:
394   case ISD::FMAXIMUM:
395   case ISD::FCOPYSIGN:
396   case ISD::FSQRT:
397   case ISD::FSIN:
398   case ISD::FCOS:
399   case ISD::FPOWI:
400   case ISD::FPOW:
401   case ISD::FLOG:
402   case ISD::FLOG2:
403   case ISD::FLOG10:
404   case ISD::FEXP:
405   case ISD::FEXP2:
406   case ISD::FCEIL:
407   case ISD::FTRUNC:
408   case ISD::FRINT:
409   case ISD::FNEARBYINT:
410   case ISD::FROUND:
411   case ISD::FFLOOR:
412   case ISD::FP_ROUND:
413   case ISD::FP_EXTEND:
414   case ISD::FMA:
415   case ISD::SIGN_EXTEND_INREG:
416   case ISD::ANY_EXTEND_VECTOR_INREG:
417   case ISD::SIGN_EXTEND_VECTOR_INREG:
418   case ISD::ZERO_EXTEND_VECTOR_INREG:
419   case ISD::SMIN:
420   case ISD::SMAX:
421   case ISD::UMIN:
422   case ISD::UMAX:
423   case ISD::SMUL_LOHI:
424   case ISD::UMUL_LOHI:
425   case ISD::SMULO:
426   case ISD::UMULO:
427   case ISD::FCANONICALIZE:
428   case ISD::SADDSAT:
429   case ISD::UADDSAT:
430   case ISD::SSUBSAT:
431   case ISD::USUBSAT:
432     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
433     break;
434   case ISD::SMULFIX:
435   case ISD::UMULFIX: {
436     unsigned Scale = Node->getConstantOperandVal(2);
437     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
438                                               Node->getValueType(0), Scale);
439     break;
440   }
441   case ISD::FP_ROUND_INREG:
442     Action = TLI.getOperationAction(Node->getOpcode(),
443                cast<VTSDNode>(Node->getOperand(1))->getVT());
444     break;
445   case ISD::SINT_TO_FP:
446   case ISD::UINT_TO_FP:
447   case ISD::VECREDUCE_ADD:
448   case ISD::VECREDUCE_MUL:
449   case ISD::VECREDUCE_AND:
450   case ISD::VECREDUCE_OR:
451   case ISD::VECREDUCE_XOR:
452   case ISD::VECREDUCE_SMAX:
453   case ISD::VECREDUCE_SMIN:
454   case ISD::VECREDUCE_UMAX:
455   case ISD::VECREDUCE_UMIN:
456   case ISD::VECREDUCE_FADD:
457   case ISD::VECREDUCE_FMUL:
458   case ISD::VECREDUCE_FMAX:
459   case ISD::VECREDUCE_FMIN:
460     Action = TLI.getOperationAction(Node->getOpcode(),
461                                     Node->getOperand(0).getValueType());
462     break;
463   }
464 
465   LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
466 
467   switch (Action) {
468   default: llvm_unreachable("This action is not supported yet!");
469   case TargetLowering::Promote:
470     Result = Promote(Op);
471     Changed = true;
472     break;
473   case TargetLowering::Legal:
474     LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
475     break;
476   case TargetLowering::Custom: {
477     LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
478     if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) {
479       LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
480       Result = Tmp1;
481       break;
482     }
483     LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
484     LLVM_FALLTHROUGH;
485   }
486   case TargetLowering::Expand:
487     Result = Expand(Op);
488   }
489 
490   // Make sure that the generated code is itself legal.
491   if (Result != Op) {
492     Result = LegalizeOp(Result);
493     Changed = true;
494   }
495 
496   // Note that LegalizeOp may be reentered even from single-use nodes, which
497   // means that we always must cache transformed nodes.
498   AddLegalizedOperand(Op, Result);
499   return Result;
500 }
501 
502 SDValue VectorLegalizer::Promote(SDValue Op) {
503   // For a few operations there is a specific concept for promotion based on
504   // the operand's type.
505   switch (Op.getOpcode()) {
506   case ISD::SINT_TO_FP:
507   case ISD::UINT_TO_FP:
508     // "Promote" the operation by extending the operand.
509     return PromoteINT_TO_FP(Op);
510   case ISD::FP_TO_UINT:
511   case ISD::FP_TO_SINT:
512     // Promote the operation by extending the operand.
513     return PromoteFP_TO_INT(Op);
514   }
515 
516   // There are currently two cases of vector promotion:
517   // 1) Bitcasting a vector of integers to a different type to a vector of the
518   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
519   // 2) Extending a vector of floats to a vector of the same number of larger
520   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
521   MVT VT = Op.getSimpleValueType();
522   assert(Op.getNode()->getNumValues() == 1 &&
523          "Can't promote a vector with multiple results!");
524   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
525   SDLoc dl(Op);
526   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
527 
528   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
529     if (Op.getOperand(j).getValueType().isVector())
530       if (Op.getOperand(j)
531               .getValueType()
532               .getVectorElementType()
533               .isFloatingPoint() &&
534           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
535         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
536       else
537         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
538     else
539       Operands[j] = Op.getOperand(j);
540   }
541 
542   Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags());
543   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
544       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
545        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
546     return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl));
547   else
548     return DAG.getNode(ISD::BITCAST, dl, VT, Op);
549 }
550 
551 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
552   // INT_TO_FP operations may require the input operand be promoted even
553   // when the type is otherwise legal.
554   MVT VT = Op.getOperand(0).getSimpleValueType();
555   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
556   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
557          "Vectors have different number of elements!");
558 
559   SDLoc dl(Op);
560   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
561 
562   unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
563     ISD::SIGN_EXTEND;
564   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
565     if (Op.getOperand(j).getValueType().isVector())
566       Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
567     else
568       Operands[j] = Op.getOperand(j);
569   }
570 
571   return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
572 }
573 
574 // For FP_TO_INT we promote the result type to a vector type with wider
575 // elements and then truncate the result.  This is different from the default
576 // PromoteVector which uses bitcast to promote thus assumning that the
577 // promoted vector type has the same overall size.
578 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op) {
579   MVT VT = Op.getSimpleValueType();
580   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
581   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
582          "Vectors have different number of elements!");
583 
584   unsigned NewOpc = Op->getOpcode();
585   // Change FP_TO_UINT to FP_TO_SINT if possible.
586   // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
587   if (NewOpc == ISD::FP_TO_UINT &&
588       TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
589     NewOpc = ISD::FP_TO_SINT;
590 
591   SDLoc dl(Op);
592   SDValue Promoted  = DAG.getNode(NewOpc, dl, NVT, Op.getOperand(0));
593 
594   // Assert that the converted value fits in the original type.  If it doesn't
595   // (eg: because the value being converted is too big), then the result of the
596   // original operation was undefined anyway, so the assert is still correct.
597   Promoted = DAG.getNode(Op->getOpcode() == ISD::FP_TO_UINT ? ISD::AssertZext
598                                                             : ISD::AssertSext,
599                          dl, NVT, Promoted,
600                          DAG.getValueType(VT.getScalarType()));
601   return DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
602 }
603 
604 SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
605   LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
606 
607   EVT SrcVT = LD->getMemoryVT();
608   EVT SrcEltVT = SrcVT.getScalarType();
609   unsigned NumElem = SrcVT.getVectorNumElements();
610 
611   SDValue NewChain;
612   SDValue Value;
613   if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
614     SDLoc dl(Op);
615 
616     SmallVector<SDValue, 8> Vals;
617     SmallVector<SDValue, 8> LoadChains;
618 
619     EVT DstEltVT = LD->getValueType(0).getScalarType();
620     SDValue Chain = LD->getChain();
621     SDValue BasePTR = LD->getBasePtr();
622     ISD::LoadExtType ExtType = LD->getExtensionType();
623 
624     // When elements in a vector is not byte-addressable, we cannot directly
625     // load each element by advancing pointer, which could only address bytes.
626     // Instead, we load all significant words, mask bits off, and concatenate
627     // them to form each element. Finally, they are extended to destination
628     // scalar type to build the destination vector.
629     EVT WideVT = TLI.getPointerTy(DAG.getDataLayout());
630 
631     assert(WideVT.isRound() &&
632            "Could not handle the sophisticated case when the widest integer is"
633            " not power of 2.");
634     assert(WideVT.bitsGE(SrcEltVT) &&
635            "Type is not legalized?");
636 
637     unsigned WideBytes = WideVT.getStoreSize();
638     unsigned Offset = 0;
639     unsigned RemainingBytes = SrcVT.getStoreSize();
640     SmallVector<SDValue, 8> LoadVals;
641     while (RemainingBytes > 0) {
642       SDValue ScalarLoad;
643       unsigned LoadBytes = WideBytes;
644 
645       if (RemainingBytes >= LoadBytes) {
646         ScalarLoad =
647             DAG.getLoad(WideVT, dl, Chain, BasePTR,
648                         LD->getPointerInfo().getWithOffset(Offset),
649                         MinAlign(LD->getAlignment(), Offset),
650                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
651       } else {
652         EVT LoadVT = WideVT;
653         while (RemainingBytes < LoadBytes) {
654           LoadBytes >>= 1; // Reduce the load size by half.
655           LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
656         }
657         ScalarLoad =
658             DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
659                            LD->getPointerInfo().getWithOffset(Offset), LoadVT,
660                            MinAlign(LD->getAlignment(), Offset),
661                            LD->getMemOperand()->getFlags(), LD->getAAInfo());
662       }
663 
664       RemainingBytes -= LoadBytes;
665       Offset += LoadBytes;
666 
667       BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes);
668 
669       LoadVals.push_back(ScalarLoad.getValue(0));
670       LoadChains.push_back(ScalarLoad.getValue(1));
671     }
672 
673     unsigned BitOffset = 0;
674     unsigned WideIdx = 0;
675     unsigned WideBits = WideVT.getSizeInBits();
676 
677     // Extract bits, pack and extend/trunc them into destination type.
678     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
679     SDValue SrcEltBitMask = DAG.getConstant(
680         APInt::getLowBitsSet(WideBits, SrcEltBits), dl, WideVT);
681 
682     for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
683       assert(BitOffset < WideBits && "Unexpected offset!");
684 
685       SDValue ShAmt = DAG.getConstant(
686           BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
687       SDValue Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
688 
689       BitOffset += SrcEltBits;
690       if (BitOffset >= WideBits) {
691         WideIdx++;
692         BitOffset -= WideBits;
693         if (BitOffset > 0) {
694           ShAmt = DAG.getConstant(
695               SrcEltBits - BitOffset, dl,
696               TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
697           SDValue Hi =
698               DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
699           Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
700         }
701       }
702 
703       Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
704 
705       switch (ExtType) {
706       default: llvm_unreachable("Unknown extended-load op!");
707       case ISD::EXTLOAD:
708         Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
709         break;
710       case ISD::ZEXTLOAD:
711         Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
712         break;
713       case ISD::SEXTLOAD:
714         ShAmt =
715             DAG.getConstant(WideBits - SrcEltBits, dl,
716                             TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
717         Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
718         Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
719         Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
720         break;
721       }
722       Vals.push_back(Lo);
723     }
724 
725     NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
726     Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals);
727   } else {
728     SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG);
729     // Skip past MERGE_VALUE node if known.
730     if (Scalarized->getOpcode() == ISD::MERGE_VALUES) {
731       NewChain = Scalarized.getOperand(1);
732       Value = Scalarized.getOperand(0);
733     } else {
734       NewChain = Scalarized.getValue(1);
735       Value = Scalarized.getValue(0);
736     }
737   }
738 
739   AddLegalizedOperand(Op.getValue(0), Value);
740   AddLegalizedOperand(Op.getValue(1), NewChain);
741 
742   return (Op.getResNo() ? NewChain : Value);
743 }
744 
745 SDValue VectorLegalizer::ExpandStore(SDValue Op) {
746   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
747   SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
748   AddLegalizedOperand(Op, TF);
749   return TF;
750 }
751 
752 SDValue VectorLegalizer::Expand(SDValue Op) {
753   switch (Op->getOpcode()) {
754   case ISD::SIGN_EXTEND_INREG:
755     return ExpandSEXTINREG(Op);
756   case ISD::ANY_EXTEND_VECTOR_INREG:
757     return ExpandANY_EXTEND_VECTOR_INREG(Op);
758   case ISD::SIGN_EXTEND_VECTOR_INREG:
759     return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
760   case ISD::ZERO_EXTEND_VECTOR_INREG:
761     return ExpandZERO_EXTEND_VECTOR_INREG(Op);
762   case ISD::BSWAP:
763     return ExpandBSWAP(Op);
764   case ISD::VSELECT:
765     return ExpandVSELECT(Op);
766   case ISD::SELECT:
767     return ExpandSELECT(Op);
768   case ISD::FP_TO_UINT:
769     return ExpandFP_TO_UINT(Op);
770   case ISD::UINT_TO_FP:
771     return ExpandUINT_TO_FLOAT(Op);
772   case ISD::FNEG:
773     return ExpandFNEG(Op);
774   case ISD::FSUB:
775     return ExpandFSUB(Op);
776   case ISD::SETCC:
777     return UnrollVSETCC(Op);
778   case ISD::ABS:
779     return ExpandABS(Op);
780   case ISD::BITREVERSE:
781     return ExpandBITREVERSE(Op);
782   case ISD::CTPOP:
783     return ExpandCTPOP(Op);
784   case ISD::CTLZ:
785   case ISD::CTLZ_ZERO_UNDEF:
786     return ExpandCTLZ(Op);
787   case ISD::CTTZ:
788   case ISD::CTTZ_ZERO_UNDEF:
789     return ExpandCTTZ(Op);
790   case ISD::FSHL:
791   case ISD::FSHR:
792     return ExpandFunnelShift(Op);
793   case ISD::ROTL:
794   case ISD::ROTR:
795     return ExpandROT(Op);
796   case ISD::FMINNUM:
797   case ISD::FMAXNUM:
798     return ExpandFMINNUM_FMAXNUM(Op);
799   case ISD::UMULO:
800   case ISD::SMULO:
801     return ExpandMULO(Op);
802   case ISD::USUBSAT:
803   case ISD::SSUBSAT:
804   case ISD::UADDSAT:
805   case ISD::SADDSAT:
806     return ExpandAddSubSat(Op);
807   case ISD::SMULFIX:
808   case ISD::UMULFIX:
809     return ExpandFixedPointMul(Op);
810   case ISD::STRICT_FADD:
811   case ISD::STRICT_FSUB:
812   case ISD::STRICT_FMUL:
813   case ISD::STRICT_FDIV:
814   case ISD::STRICT_FREM:
815   case ISD::STRICT_FSQRT:
816   case ISD::STRICT_FMA:
817   case ISD::STRICT_FPOW:
818   case ISD::STRICT_FPOWI:
819   case ISD::STRICT_FSIN:
820   case ISD::STRICT_FCOS:
821   case ISD::STRICT_FEXP:
822   case ISD::STRICT_FEXP2:
823   case ISD::STRICT_FLOG:
824   case ISD::STRICT_FLOG10:
825   case ISD::STRICT_FLOG2:
826   case ISD::STRICT_FRINT:
827   case ISD::STRICT_FNEARBYINT:
828   case ISD::STRICT_FMAXNUM:
829   case ISD::STRICT_FMINNUM:
830   case ISD::STRICT_FCEIL:
831   case ISD::STRICT_FFLOOR:
832   case ISD::STRICT_FROUND:
833   case ISD::STRICT_FTRUNC:
834     return ExpandStrictFPOp(Op);
835   case ISD::VECREDUCE_ADD:
836   case ISD::VECREDUCE_MUL:
837   case ISD::VECREDUCE_AND:
838   case ISD::VECREDUCE_OR:
839   case ISD::VECREDUCE_XOR:
840   case ISD::VECREDUCE_SMAX:
841   case ISD::VECREDUCE_SMIN:
842   case ISD::VECREDUCE_UMAX:
843   case ISD::VECREDUCE_UMIN:
844   case ISD::VECREDUCE_FADD:
845   case ISD::VECREDUCE_FMUL:
846   case ISD::VECREDUCE_FMAX:
847   case ISD::VECREDUCE_FMIN:
848     return TLI.expandVecReduce(Op.getNode(), DAG);
849   default:
850     return DAG.UnrollVectorOp(Op.getNode());
851   }
852 }
853 
854 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
855   // Lower a select instruction where the condition is a scalar and the
856   // operands are vectors. Lower this select to VSELECT and implement it
857   // using XOR AND OR. The selector bit is broadcasted.
858   EVT VT = Op.getValueType();
859   SDLoc DL(Op);
860 
861   SDValue Mask = Op.getOperand(0);
862   SDValue Op1 = Op.getOperand(1);
863   SDValue Op2 = Op.getOperand(2);
864 
865   assert(VT.isVector() && !Mask.getValueType().isVector()
866          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
867 
868   // If we can't even use the basic vector operations of
869   // AND,OR,XOR, we will have to scalarize the op.
870   // Notice that the operation may be 'promoted' which means that it is
871   // 'bitcasted' to another type which is handled.
872   // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
873   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
874       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
875       TLI.getOperationAction(ISD::OR,  VT) == TargetLowering::Expand ||
876       TLI.getOperationAction(ISD::BUILD_VECTOR,  VT) == TargetLowering::Expand)
877     return DAG.UnrollVectorOp(Op.getNode());
878 
879   // Generate a mask operand.
880   EVT MaskTy = VT.changeVectorElementTypeToInteger();
881 
882   // What is the size of each element in the vector mask.
883   EVT BitTy = MaskTy.getScalarType();
884 
885   Mask = DAG.getSelect(DL, BitTy, Mask,
886           DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
887                           BitTy),
888           DAG.getConstant(0, DL, BitTy));
889 
890   // Broadcast the mask so that the entire vector is all-one or all zero.
891   Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
892 
893   // Bitcast the operands to be the same type as the mask.
894   // This is needed when we select between FP types because
895   // the mask is a vector of integers.
896   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
897   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
898 
899   SDValue AllOnes = DAG.getConstant(
900             APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
901   SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
902 
903   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
904   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
905   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
906   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
907 }
908 
909 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
910   EVT VT = Op.getValueType();
911 
912   // Make sure that the SRA and SHL instructions are available.
913   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
914       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
915     return DAG.UnrollVectorOp(Op.getNode());
916 
917   SDLoc DL(Op);
918   EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
919 
920   unsigned BW = VT.getScalarSizeInBits();
921   unsigned OrigBW = OrigTy.getScalarSizeInBits();
922   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
923 
924   Op = Op.getOperand(0);
925   Op =   DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
926   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
927 }
928 
929 // Generically expand a vector anyext in register to a shuffle of the relevant
930 // lanes into the appropriate locations, with other lanes left undef.
931 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
932   SDLoc DL(Op);
933   EVT VT = Op.getValueType();
934   int NumElements = VT.getVectorNumElements();
935   SDValue Src = Op.getOperand(0);
936   EVT SrcVT = Src.getValueType();
937   int NumSrcElements = SrcVT.getVectorNumElements();
938 
939   // Build a base mask of undef shuffles.
940   SmallVector<int, 16> ShuffleMask;
941   ShuffleMask.resize(NumSrcElements, -1);
942 
943   // Place the extended lanes into the correct locations.
944   int ExtLaneScale = NumSrcElements / NumElements;
945   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
946   for (int i = 0; i < NumElements; ++i)
947     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
948 
949   return DAG.getNode(
950       ISD::BITCAST, DL, VT,
951       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
952 }
953 
954 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
955   SDLoc DL(Op);
956   EVT VT = Op.getValueType();
957   SDValue Src = Op.getOperand(0);
958   EVT SrcVT = Src.getValueType();
959 
960   // First build an any-extend node which can be legalized above when we
961   // recurse through it.
962   Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
963 
964   // Now we need sign extend. Do this by shifting the elements. Even if these
965   // aren't legal operations, they have a better chance of being legalized
966   // without full scalarization than the sign extension does.
967   unsigned EltWidth = VT.getScalarSizeInBits();
968   unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
969   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
970   return DAG.getNode(ISD::SRA, DL, VT,
971                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
972                      ShiftAmount);
973 }
974 
975 // Generically expand a vector zext in register to a shuffle of the relevant
976 // lanes into the appropriate locations, a blend of zero into the high bits,
977 // and a bitcast to the wider element type.
978 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
979   SDLoc DL(Op);
980   EVT VT = Op.getValueType();
981   int NumElements = VT.getVectorNumElements();
982   SDValue Src = Op.getOperand(0);
983   EVT SrcVT = Src.getValueType();
984   int NumSrcElements = SrcVT.getVectorNumElements();
985 
986   // Build up a zero vector to blend into this one.
987   SDValue Zero = DAG.getConstant(0, DL, SrcVT);
988 
989   // Shuffle the incoming lanes into the correct position, and pull all other
990   // lanes from the zero vector.
991   SmallVector<int, 16> ShuffleMask;
992   ShuffleMask.reserve(NumSrcElements);
993   for (int i = 0; i < NumSrcElements; ++i)
994     ShuffleMask.push_back(i);
995 
996   int ExtLaneScale = NumSrcElements / NumElements;
997   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
998   for (int i = 0; i < NumElements; ++i)
999     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
1000 
1001   return DAG.getNode(ISD::BITCAST, DL, VT,
1002                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
1003 }
1004 
1005 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
1006   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
1007   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
1008     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
1009       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
1010 }
1011 
1012 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
1013   EVT VT = Op.getValueType();
1014 
1015   // Generate a byte wise shuffle mask for the BSWAP.
1016   SmallVector<int, 16> ShuffleMask;
1017   createBSWAPShuffleMask(VT, ShuffleMask);
1018   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
1019 
1020   // Only emit a shuffle if the mask is legal.
1021   if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
1022     return DAG.UnrollVectorOp(Op.getNode());
1023 
1024   SDLoc DL(Op);
1025   Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
1026   Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
1027   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1028 }
1029 
1030 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) {
1031   EVT VT = Op.getValueType();
1032 
1033   // If we have the scalar operation, it's probably cheaper to unroll it.
1034   if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType()))
1035     return DAG.UnrollVectorOp(Op.getNode());
1036 
1037   // If the vector element width is a whole number of bytes, test if its legal
1038   // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1039   // vector. This greatly reduces the number of bit shifts necessary.
1040   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
1041   if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
1042     SmallVector<int, 16> BSWAPMask;
1043     createBSWAPShuffleMask(VT, BSWAPMask);
1044 
1045     EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
1046     if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
1047         (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
1048          (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
1049           TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
1050           TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
1051           TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
1052       SDLoc DL(Op);
1053       Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
1054       Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1055                                 BSWAPMask);
1056       Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1057       return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1058     }
1059   }
1060 
1061   // If we have the appropriate vector bit operations, it is better to use them
1062   // than unrolling and expanding each component.
1063   if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) ||
1064       !TLI.isOperationLegalOrCustom(ISD::SRL, VT) ||
1065       !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
1066       !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1067     return DAG.UnrollVectorOp(Op.getNode());
1068 
1069   // Let LegalizeDAG handle this later.
1070   return Op;
1071 }
1072 
1073 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
1074   // Implement VSELECT in terms of XOR, AND, OR
1075   // on platforms which do not support blend natively.
1076   SDLoc DL(Op);
1077 
1078   SDValue Mask = Op.getOperand(0);
1079   SDValue Op1 = Op.getOperand(1);
1080   SDValue Op2 = Op.getOperand(2);
1081 
1082   EVT VT = Mask.getValueType();
1083 
1084   // If we can't even use the basic vector operations of
1085   // AND,OR,XOR, we will have to scalarize the op.
1086   // Notice that the operation may be 'promoted' which means that it is
1087   // 'bitcasted' to another type which is handled.
1088   // This operation also isn't safe with AND, OR, XOR when the boolean
1089   // type is 0/1 as we need an all ones vector constant to mask with.
1090   // FIXME: Sign extend 1 to all ones if thats legal on the target.
1091   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1092       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1093       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
1094       TLI.getBooleanContents(Op1.getValueType()) !=
1095           TargetLowering::ZeroOrNegativeOneBooleanContent)
1096     return DAG.UnrollVectorOp(Op.getNode());
1097 
1098   // If the mask and the type are different sizes, unroll the vector op. This
1099   // can occur when getSetCCResultType returns something that is different in
1100   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1101   if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1102     return DAG.UnrollVectorOp(Op.getNode());
1103 
1104   // Bitcast the operands to be the same type as the mask.
1105   // This is needed when we select between FP types because
1106   // the mask is a vector of integers.
1107   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1108   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1109 
1110   SDValue AllOnes = DAG.getConstant(
1111     APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT);
1112   SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
1113 
1114   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1115   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1116   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1117   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
1118 }
1119 
1120 SDValue VectorLegalizer::ExpandABS(SDValue Op) {
1121   // Attempt to expand using TargetLowering.
1122   SDValue Result;
1123   if (TLI.expandABS(Op.getNode(), Result, DAG))
1124     return Result;
1125 
1126   // Otherwise go ahead and unroll.
1127   return DAG.UnrollVectorOp(Op.getNode());
1128 }
1129 
1130 SDValue VectorLegalizer::ExpandFP_TO_UINT(SDValue Op) {
1131   // Attempt to expand using TargetLowering.
1132   SDValue Result;
1133   if (TLI.expandFP_TO_UINT(Op.getNode(), Result, DAG))
1134     return Result;
1135 
1136   // Otherwise go ahead and unroll.
1137   return DAG.UnrollVectorOp(Op.getNode());
1138 }
1139 
1140 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
1141   EVT VT = Op.getOperand(0).getValueType();
1142   SDLoc DL(Op);
1143 
1144   // Attempt to expand using TargetLowering.
1145   SDValue Result;
1146   if (TLI.expandUINT_TO_FP(Op.getNode(), Result, DAG))
1147     return Result;
1148 
1149   // Make sure that the SINT_TO_FP and SRL instructions are available.
1150   if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
1151       TLI.getOperationAction(ISD::SRL,        VT) == TargetLowering::Expand)
1152     return DAG.UnrollVectorOp(Op.getNode());
1153 
1154   unsigned BW = VT.getScalarSizeInBits();
1155   assert((BW == 64 || BW == 32) &&
1156          "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1157 
1158   SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1159 
1160   // Constants to clear the upper part of the word.
1161   // Notice that we can also use SHL+SHR, but using a constant is slightly
1162   // faster on x86.
1163   uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1164   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1165 
1166   // Two to the power of half-word-size.
1167   SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, Op.getValueType());
1168 
1169   // Clear upper part of LO, lower HI
1170   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
1171   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
1172 
1173   // Convert hi and lo to floats
1174   // Convert the hi part back to the upper values
1175   // TODO: Can any fast-math-flags be set on these nodes?
1176   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
1177           fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
1178   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
1179 
1180   // Add the two halves
1181   return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
1182 }
1183 
1184 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
1185   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
1186     SDLoc DL(Op);
1187     SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType());
1188     // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1189     return DAG.getNode(ISD::FSUB, DL, Op.getValueType(),
1190                        Zero, Op.getOperand(0));
1191   }
1192   return DAG.UnrollVectorOp(Op.getNode());
1193 }
1194 
1195 SDValue VectorLegalizer::ExpandFSUB(SDValue Op) {
1196   // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1197   // we can defer this to operation legalization where it will be lowered as
1198   // a+(-b).
1199   EVT VT = Op.getValueType();
1200   if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1201       TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1202     return Op; // Defer to LegalizeDAG
1203 
1204   return DAG.UnrollVectorOp(Op.getNode());
1205 }
1206 
1207 SDValue VectorLegalizer::ExpandCTPOP(SDValue Op) {
1208   SDValue Result;
1209   if (TLI.expandCTPOP(Op.getNode(), Result, DAG))
1210     return Result;
1211 
1212   return DAG.UnrollVectorOp(Op.getNode());
1213 }
1214 
1215 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) {
1216   SDValue Result;
1217   if (TLI.expandCTLZ(Op.getNode(), Result, DAG))
1218     return Result;
1219 
1220   return DAG.UnrollVectorOp(Op.getNode());
1221 }
1222 
1223 SDValue VectorLegalizer::ExpandCTTZ(SDValue Op) {
1224   SDValue Result;
1225   if (TLI.expandCTTZ(Op.getNode(), Result, DAG))
1226     return Result;
1227 
1228   return DAG.UnrollVectorOp(Op.getNode());
1229 }
1230 
1231 SDValue VectorLegalizer::ExpandFunnelShift(SDValue Op) {
1232   SDValue Result;
1233   if (TLI.expandFunnelShift(Op.getNode(), Result, DAG))
1234     return Result;
1235 
1236   return DAG.UnrollVectorOp(Op.getNode());
1237 }
1238 
1239 SDValue VectorLegalizer::ExpandROT(SDValue Op) {
1240   SDValue Result;
1241   if (TLI.expandROT(Op.getNode(), Result, DAG))
1242     return Result;
1243 
1244   return DAG.UnrollVectorOp(Op.getNode());
1245 }
1246 
1247 SDValue VectorLegalizer::ExpandFMINNUM_FMAXNUM(SDValue Op) {
1248   if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Op.getNode(), DAG))
1249     return Expanded;
1250   return DAG.UnrollVectorOp(Op.getNode());
1251 }
1252 
1253 SDValue VectorLegalizer::ExpandMULO(SDValue Op) {
1254   SDValue Result, Overflow;
1255   if (!TLI.expandMULO(Op.getNode(), Result, Overflow, DAG))
1256     std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Op.getNode());
1257 
1258   if (Op.getResNo() == 0) {
1259     AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow));
1260     return Result;
1261   } else {
1262     AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result));
1263     return Overflow;
1264   }
1265 }
1266 
1267 SDValue VectorLegalizer::ExpandAddSubSat(SDValue Op) {
1268   if (SDValue Expanded = TLI.expandAddSubSat(Op.getNode(), DAG))
1269     return Expanded;
1270   return DAG.UnrollVectorOp(Op.getNode());
1271 }
1272 
1273 SDValue VectorLegalizer::ExpandFixedPointMul(SDValue Op) {
1274   if (SDValue Expanded = TLI.expandFixedPointMul(Op.getNode(), DAG))
1275     return Expanded;
1276   return DAG.UnrollVectorOp(Op.getNode());
1277 }
1278 
1279 SDValue VectorLegalizer::ExpandStrictFPOp(SDValue Op) {
1280   EVT VT = Op.getValueType();
1281   EVT EltVT = VT.getVectorElementType();
1282   unsigned NumElems = VT.getVectorNumElements();
1283   unsigned NumOpers = Op.getNumOperands();
1284   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1285   EVT ValueVTs[] = {EltVT, MVT::Other};
1286   SDValue Chain = Op.getOperand(0);
1287   SDLoc dl(Op);
1288 
1289   SmallVector<SDValue, 32> OpValues;
1290   SmallVector<SDValue, 32> OpChains;
1291   for (unsigned i = 0; i < NumElems; ++i) {
1292     SmallVector<SDValue, 4> Opers;
1293     SDValue Idx = DAG.getConstant(i, dl,
1294                                   TLI.getVectorIdxTy(DAG.getDataLayout()));
1295 
1296     // The Chain is the first operand.
1297     Opers.push_back(Chain);
1298 
1299     // Now process the remaining operands.
1300     for (unsigned j = 1; j < NumOpers; ++j) {
1301       SDValue Oper = Op.getOperand(j);
1302       EVT OperVT = Oper.getValueType();
1303 
1304       if (OperVT.isVector())
1305         Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1306                            OperVT.getVectorElementType(), Oper, Idx);
1307 
1308       Opers.push_back(Oper);
1309     }
1310 
1311     SDValue ScalarOp = DAG.getNode(Op->getOpcode(), dl, ValueVTs, Opers);
1312 
1313     OpValues.push_back(ScalarOp.getValue(0));
1314     OpChains.push_back(ScalarOp.getValue(1));
1315   }
1316 
1317   SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
1318   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
1319 
1320   AddLegalizedOperand(Op.getValue(0), Result);
1321   AddLegalizedOperand(Op.getValue(1), NewChain);
1322 
1323   return Op.getResNo() ? NewChain : Result;
1324 }
1325 
1326 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
1327   EVT VT = Op.getValueType();
1328   unsigned NumElems = VT.getVectorNumElements();
1329   EVT EltVT = VT.getVectorElementType();
1330   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
1331   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1332   SDLoc dl(Op);
1333   SmallVector<SDValue, 8> Ops(NumElems);
1334   for (unsigned i = 0; i < NumElems; ++i) {
1335     SDValue LHSElem = DAG.getNode(
1336         ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1337         DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1338     SDValue RHSElem = DAG.getNode(
1339         ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1340         DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1341     Ops[i] = DAG.getNode(ISD::SETCC, dl,
1342                          TLI.getSetCCResultType(DAG.getDataLayout(),
1343                                                 *DAG.getContext(), TmpEltVT),
1344                          LHSElem, RHSElem, CC);
1345     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1346                            DAG.getConstant(APInt::getAllOnesValue
1347                                            (EltVT.getSizeInBits()), dl, EltVT),
1348                            DAG.getConstant(0, dl, EltVT));
1349   }
1350   return DAG.getBuildVector(VT, dl, Ops);
1351 }
1352 
1353 bool SelectionDAG::LegalizeVectors() {
1354   return VectorLegalizer(*this).Run();
1355 }
1356