1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::Legalize method. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/CodeGen/ISDOpcodes.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineMemOperand.h" 24 #include "llvm/CodeGen/RuntimeLibcalls.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/SelectionDAGNodes.h" 27 #include "llvm/CodeGen/TargetFrameLowering.h" 28 #include "llvm/CodeGen/TargetLowering.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/Compiler.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/MachineValueType.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetOptions.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <cstdint> 50 #include <tuple> 51 #include <utility> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "legalizedag" 56 57 namespace { 58 59 /// Keeps track of state when getting the sign of a floating-point value as an 60 /// integer. 61 struct FloatSignAsInt { 62 EVT FloatVT; 63 SDValue Chain; 64 SDValue FloatPtr; 65 SDValue IntPtr; 66 MachinePointerInfo IntPointerInfo; 67 MachinePointerInfo FloatPointerInfo; 68 SDValue IntValue; 69 APInt SignMask; 70 uint8_t SignBit; 71 }; 72 73 //===----------------------------------------------------------------------===// 74 /// This takes an arbitrary SelectionDAG as input and 75 /// hacks on it until the target machine can handle it. This involves 76 /// eliminating value sizes the machine cannot handle (promoting small sizes to 77 /// large sizes or splitting up large values into small values) as well as 78 /// eliminating operations the machine cannot handle. 79 /// 80 /// This code also does a small amount of optimization and recognition of idioms 81 /// as part of its processing. For example, if a target does not support a 82 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 83 /// will attempt merge setcc and brc instructions into brcc's. 84 class SelectionDAGLegalize { 85 const TargetMachine &TM; 86 const TargetLowering &TLI; 87 SelectionDAG &DAG; 88 89 /// The set of nodes which have already been legalized. We hold a 90 /// reference to it in order to update as necessary on node deletion. 91 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 92 93 /// A set of all the nodes updated during legalization. 94 SmallSetVector<SDNode *, 16> *UpdatedNodes; 95 96 EVT getSetCCResultType(EVT VT) const { 97 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 98 } 99 100 // Libcall insertion helpers. 101 102 public: 103 SelectionDAGLegalize(SelectionDAG &DAG, 104 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 105 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 106 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 107 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 108 109 /// Legalizes the given operation. 110 void LegalizeOp(SDNode *Node); 111 112 private: 113 SDValue OptimizeFloatStore(StoreSDNode *ST); 114 115 void LegalizeLoadOps(SDNode *Node); 116 void LegalizeStoreOps(SDNode *Node); 117 118 /// Some targets cannot handle a variable 119 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 120 /// is necessary to spill the vector being inserted into to memory, perform 121 /// the insert there, and then read the result back. 122 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 123 const SDLoc &dl); 124 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 125 const SDLoc &dl); 126 127 /// Return a vector shuffle operation which 128 /// performs the same shuffe in terms of order or result bytes, but on a type 129 /// whose vector element type is narrower than the original shuffle type. 130 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 131 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 132 SDValue N1, SDValue N2, 133 ArrayRef<int> Mask) const; 134 135 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 136 bool &NeedInvert, const SDLoc &dl); 137 138 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 139 140 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC, 141 SDNode *Node, bool isSigned); 142 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 143 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 144 RTLIB::Libcall Call_F128, 145 RTLIB::Libcall Call_PPCF128); 146 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 147 RTLIB::Libcall Call_I8, 148 RTLIB::Libcall Call_I16, 149 RTLIB::Libcall Call_I32, 150 RTLIB::Libcall Call_I64, 151 RTLIB::Libcall Call_I128); 152 SDValue ExpandArgFPLibCall(SDNode *Node, 153 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, 154 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, 155 RTLIB::Libcall Call_PPCF128); 156 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 157 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 158 159 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 160 const SDLoc &dl); 161 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 162 const SDLoc &dl, SDValue ChainIn); 163 SDValue ExpandBUILD_VECTOR(SDNode *Node); 164 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 165 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 166 SmallVectorImpl<SDValue> &Results); 167 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 168 SDValue Value) const; 169 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 170 SDValue NewIntValue) const; 171 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 172 SDValue ExpandFABS(SDNode *Node) const; 173 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0, EVT DestVT, 174 const SDLoc &dl); 175 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, 176 const SDLoc &dl); 177 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, 178 const SDLoc &dl); 179 180 SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl); 181 SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl); 182 183 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 184 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 185 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 186 187 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 188 SDValue ExpandConstant(ConstantSDNode *CP); 189 190 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 191 bool ExpandNode(SDNode *Node); 192 void ConvertNodeToLibcall(SDNode *Node); 193 void PromoteNode(SDNode *Node); 194 195 public: 196 // Node replacement helpers 197 198 void ReplacedNode(SDNode *N) { 199 LegalizedNodes.erase(N); 200 if (UpdatedNodes) 201 UpdatedNodes->insert(N); 202 } 203 204 void ReplaceNode(SDNode *Old, SDNode *New) { 205 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 206 dbgs() << " with: "; New->dump(&DAG)); 207 208 assert(Old->getNumValues() == New->getNumValues() && 209 "Replacing one node with another that produces a different number " 210 "of values!"); 211 DAG.ReplaceAllUsesWith(Old, New); 212 if (UpdatedNodes) 213 UpdatedNodes->insert(New); 214 ReplacedNode(Old); 215 } 216 217 void ReplaceNode(SDValue Old, SDValue New) { 218 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 219 dbgs() << " with: "; New->dump(&DAG)); 220 221 DAG.ReplaceAllUsesWith(Old, New); 222 if (UpdatedNodes) 223 UpdatedNodes->insert(New.getNode()); 224 ReplacedNode(Old.getNode()); 225 } 226 227 void ReplaceNode(SDNode *Old, const SDValue *New) { 228 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 229 230 DAG.ReplaceAllUsesWith(Old, New); 231 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 232 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); 233 New[i]->dump(&DAG)); 234 if (UpdatedNodes) 235 UpdatedNodes->insert(New[i].getNode()); 236 } 237 ReplacedNode(Old); 238 } 239 }; 240 241 } // end anonymous namespace 242 243 /// Return a vector shuffle operation which 244 /// performs the same shuffle in terms of order or result bytes, but on a type 245 /// whose vector element type is narrower than the original shuffle type. 246 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 247 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 248 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 249 ArrayRef<int> Mask) const { 250 unsigned NumMaskElts = VT.getVectorNumElements(); 251 unsigned NumDestElts = NVT.getVectorNumElements(); 252 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 253 254 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 255 256 if (NumEltsGrowth == 1) 257 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 258 259 SmallVector<int, 8> NewMask; 260 for (unsigned i = 0; i != NumMaskElts; ++i) { 261 int Idx = Mask[i]; 262 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 263 if (Idx < 0) 264 NewMask.push_back(-1); 265 else 266 NewMask.push_back(Idx * NumEltsGrowth + j); 267 } 268 } 269 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 270 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 271 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 272 } 273 274 /// Expands the ConstantFP node to an integer constant or 275 /// a load from the constant pool. 276 SDValue 277 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 278 bool Extend = false; 279 SDLoc dl(CFP); 280 281 // If a FP immediate is precise when represented as a float and if the 282 // target can do an extending load from float to double, we put it into 283 // the constant pool as a float, even if it's is statically typed as a 284 // double. This shrinks FP constants and canonicalizes them for targets where 285 // an FP extending load is the same cost as a normal load (such as on the x87 286 // fp stack or PPC FP unit). 287 EVT VT = CFP->getValueType(0); 288 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 289 if (!UseCP) { 290 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 291 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 292 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 293 } 294 295 APFloat APF = CFP->getValueAPF(); 296 EVT OrigVT = VT; 297 EVT SVT = VT; 298 299 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 300 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 301 if (!APF.isSignaling()) { 302 while (SVT != MVT::f32 && SVT != MVT::f16) { 303 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 304 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 305 // Only do this if the target has a native EXTLOAD instruction from 306 // smaller type. 307 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 308 TLI.ShouldShrinkFPConstant(OrigVT)) { 309 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 310 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 311 VT = SVT; 312 Extend = true; 313 } 314 } 315 } 316 317 SDValue CPIdx = 318 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 319 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 320 if (Extend) { 321 SDValue Result = DAG.getExtLoad( 322 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 323 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 324 Alignment); 325 return Result; 326 } 327 SDValue Result = DAG.getLoad( 328 OrigVT, dl, DAG.getEntryNode(), CPIdx, 329 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 330 return Result; 331 } 332 333 /// Expands the Constant node to a load from the constant pool. 334 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 335 SDLoc dl(CP); 336 EVT VT = CP->getValueType(0); 337 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 338 TLI.getPointerTy(DAG.getDataLayout())); 339 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 340 SDValue Result = DAG.getLoad( 341 VT, dl, DAG.getEntryNode(), CPIdx, 342 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 343 return Result; 344 } 345 346 /// Some target cannot handle a variable insertion index for the 347 /// INSERT_VECTOR_ELT instruction. In this case, it 348 /// is necessary to spill the vector being inserted into to memory, perform 349 /// the insert there, and then read the result back. 350 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 351 SDValue Val, 352 SDValue Idx, 353 const SDLoc &dl) { 354 SDValue Tmp1 = Vec; 355 SDValue Tmp2 = Val; 356 SDValue Tmp3 = Idx; 357 358 // If the target doesn't support this, we have to spill the input vector 359 // to a temporary stack slot, update the element, then reload it. This is 360 // badness. We could also load the value into a vector register (either 361 // with a "move to register" or "extload into register" instruction, then 362 // permute it into place, if the idx is a constant and if the idx is 363 // supported by the target. 364 EVT VT = Tmp1.getValueType(); 365 EVT EltVT = VT.getVectorElementType(); 366 SDValue StackPtr = DAG.CreateStackTemporary(VT); 367 368 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 369 370 // Store the vector. 371 SDValue Ch = DAG.getStore( 372 DAG.getEntryNode(), dl, Tmp1, StackPtr, 373 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 374 375 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 376 377 // Store the scalar value. 378 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT); 379 // Load the updated vector. 380 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 381 DAG.getMachineFunction(), SPFI)); 382 } 383 384 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 385 SDValue Idx, 386 const SDLoc &dl) { 387 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 388 // SCALAR_TO_VECTOR requires that the type of the value being inserted 389 // match the element type of the vector being created, except for 390 // integers in which case the inserted value can be over width. 391 EVT EltVT = Vec.getValueType().getVectorElementType(); 392 if (Val.getValueType() == EltVT || 393 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 394 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 395 Vec.getValueType(), Val); 396 397 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 398 // We generate a shuffle of InVec and ScVec, so the shuffle mask 399 // should be 0,1,2,3,4,5... with the appropriate element replaced with 400 // elt 0 of the RHS. 401 SmallVector<int, 8> ShufOps; 402 for (unsigned i = 0; i != NumElts; ++i) 403 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 404 405 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 406 } 407 } 408 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 409 } 410 411 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 412 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); 413 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 414 // FIXME: We shouldn't do this for TargetConstantFP's. 415 // FIXME: move this to the DAG Combiner! Note that we can't regress due 416 // to phase ordering between legalized code and the dag combiner. This 417 // probably means that we need to integrate dag combiner and legalizer 418 // together. 419 // We generally can't do this one for long doubles. 420 SDValue Chain = ST->getChain(); 421 SDValue Ptr = ST->getBasePtr(); 422 unsigned Alignment = ST->getAlignment(); 423 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 424 AAMDNodes AAInfo = ST->getAAInfo(); 425 SDLoc dl(ST); 426 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 427 if (CFP->getValueType(0) == MVT::f32 && 428 TLI.isTypeLegal(MVT::i32)) { 429 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 430 bitcastToAPInt().zextOrTrunc(32), 431 SDLoc(CFP), MVT::i32); 432 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), Alignment, 433 MMOFlags, AAInfo); 434 } 435 436 if (CFP->getValueType(0) == MVT::f64) { 437 // If this target supports 64-bit registers, do a single 64-bit store. 438 if (TLI.isTypeLegal(MVT::i64)) { 439 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 440 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 441 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 442 Alignment, MMOFlags, AAInfo); 443 } 444 445 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 446 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 447 // stores. If the target supports neither 32- nor 64-bits, this 448 // xform is certainly not worth it. 449 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 450 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 451 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 452 if (DAG.getDataLayout().isBigEndian()) 453 std::swap(Lo, Hi); 454 455 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), Alignment, 456 MMOFlags, AAInfo); 457 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 458 DAG.getConstant(4, dl, Ptr.getValueType())); 459 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 460 ST->getPointerInfo().getWithOffset(4), 461 MinAlign(Alignment, 4U), MMOFlags, AAInfo); 462 463 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 464 } 465 } 466 } 467 return SDValue(nullptr, 0); 468 } 469 470 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 471 StoreSDNode *ST = cast<StoreSDNode>(Node); 472 SDValue Chain = ST->getChain(); 473 SDValue Ptr = ST->getBasePtr(); 474 SDLoc dl(Node); 475 476 unsigned Alignment = ST->getAlignment(); 477 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 478 AAMDNodes AAInfo = ST->getAAInfo(); 479 480 if (!ST->isTruncatingStore()) { 481 LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); 482 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 483 ReplaceNode(ST, OptStore); 484 return; 485 } 486 487 SDValue Value = ST->getValue(); 488 MVT VT = Value.getSimpleValueType(); 489 switch (TLI.getOperationAction(ISD::STORE, VT)) { 490 default: llvm_unreachable("This action is not supported yet!"); 491 case TargetLowering::Legal: { 492 // If this is an unaligned store and the target doesn't support it, 493 // expand it. 494 EVT MemVT = ST->getMemoryVT(); 495 unsigned AS = ST->getAddressSpace(); 496 unsigned Align = ST->getAlignment(); 497 const DataLayout &DL = DAG.getDataLayout(); 498 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 499 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 500 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 501 ReplaceNode(SDValue(ST, 0), Result); 502 } else 503 LLVM_DEBUG(dbgs() << "Legal store\n"); 504 break; 505 } 506 case TargetLowering::Custom: { 507 LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); 508 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 509 if (Res && Res != SDValue(Node, 0)) 510 ReplaceNode(SDValue(Node, 0), Res); 511 return; 512 } 513 case TargetLowering::Promote: { 514 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 515 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 516 "Can only promote stores to same size type"); 517 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 518 SDValue Result = 519 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 520 Alignment, MMOFlags, AAInfo); 521 ReplaceNode(SDValue(Node, 0), Result); 522 break; 523 } 524 } 525 return; 526 } 527 528 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); 529 SDValue Value = ST->getValue(); 530 EVT StVT = ST->getMemoryVT(); 531 unsigned StWidth = StVT.getSizeInBits(); 532 auto &DL = DAG.getDataLayout(); 533 534 if (StWidth != StVT.getStoreSizeInBits()) { 535 // Promote to a byte-sized store with upper bits zero if not 536 // storing an integral number of bytes. For example, promote 537 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 538 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), 539 StVT.getStoreSizeInBits()); 540 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 541 SDValue Result = 542 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 543 Alignment, MMOFlags, AAInfo); 544 ReplaceNode(SDValue(Node, 0), Result); 545 } else if (StWidth & (StWidth - 1)) { 546 // If not storing a power-of-2 number of bits, expand as two stores. 547 assert(!StVT.isVector() && "Unsupported truncstore!"); 548 unsigned LogStWidth = Log2_32(StWidth); 549 assert(LogStWidth < 32); 550 unsigned RoundWidth = 1 << LogStWidth; 551 assert(RoundWidth < StWidth); 552 unsigned ExtraWidth = StWidth - RoundWidth; 553 assert(ExtraWidth < RoundWidth); 554 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 555 "Store size not an integral number of bytes!"); 556 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 557 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 558 SDValue Lo, Hi; 559 unsigned IncrementSize; 560 561 if (DL.isLittleEndian()) { 562 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 563 // Store the bottom RoundWidth bits. 564 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 565 RoundVT, Alignment, MMOFlags, AAInfo); 566 567 // Store the remaining ExtraWidth bits. 568 IncrementSize = RoundWidth / 8; 569 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 570 DAG.getConstant(IncrementSize, dl, 571 Ptr.getValueType())); 572 Hi = DAG.getNode( 573 ISD::SRL, dl, Value.getValueType(), Value, 574 DAG.getConstant(RoundWidth, dl, 575 TLI.getShiftAmountTy(Value.getValueType(), DL))); 576 Hi = DAG.getTruncStore( 577 Chain, dl, Hi, Ptr, 578 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, 579 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); 580 } else { 581 // Big endian - avoid unaligned stores. 582 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 583 // Store the top RoundWidth bits. 584 Hi = DAG.getNode( 585 ISD::SRL, dl, Value.getValueType(), Value, 586 DAG.getConstant(ExtraWidth, dl, 587 TLI.getShiftAmountTy(Value.getValueType(), DL))); 588 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), 589 RoundVT, Alignment, MMOFlags, AAInfo); 590 591 // Store the remaining ExtraWidth bits. 592 IncrementSize = RoundWidth / 8; 593 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 594 DAG.getConstant(IncrementSize, dl, 595 Ptr.getValueType())); 596 Lo = DAG.getTruncStore( 597 Chain, dl, Value, Ptr, 598 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, 599 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); 600 } 601 602 // The order of the stores doesn't matter. 603 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 604 ReplaceNode(SDValue(Node, 0), Result); 605 } else { 606 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 607 default: llvm_unreachable("This action is not supported yet!"); 608 case TargetLowering::Legal: { 609 EVT MemVT = ST->getMemoryVT(); 610 unsigned AS = ST->getAddressSpace(); 611 unsigned Align = ST->getAlignment(); 612 // If this is an unaligned store and the target doesn't support it, 613 // expand it. 614 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 615 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 616 ReplaceNode(SDValue(ST, 0), Result); 617 } 618 break; 619 } 620 case TargetLowering::Custom: { 621 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 622 if (Res && Res != SDValue(Node, 0)) 623 ReplaceNode(SDValue(Node, 0), Res); 624 return; 625 } 626 case TargetLowering::Expand: 627 assert(!StVT.isVector() && 628 "Vector Stores are handled in LegalizeVectorOps"); 629 630 SDValue Result; 631 632 // TRUNCSTORE:i16 i32 -> STORE i16 633 if (TLI.isTypeLegal(StVT)) { 634 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 635 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 636 Alignment, MMOFlags, AAInfo); 637 } else { 638 // The in-memory type isn't legal. Truncate to the type it would promote 639 // to, and then do a truncstore. 640 Value = DAG.getNode(ISD::TRUNCATE, dl, 641 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 642 Value); 643 Result = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 644 StVT, Alignment, MMOFlags, AAInfo); 645 } 646 647 ReplaceNode(SDValue(Node, 0), Result); 648 break; 649 } 650 } 651 } 652 653 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 654 LoadSDNode *LD = cast<LoadSDNode>(Node); 655 SDValue Chain = LD->getChain(); // The chain. 656 SDValue Ptr = LD->getBasePtr(); // The base pointer. 657 SDValue Value; // The value returned by the load op. 658 SDLoc dl(Node); 659 660 ISD::LoadExtType ExtType = LD->getExtensionType(); 661 if (ExtType == ISD::NON_EXTLOAD) { 662 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 663 MVT VT = Node->getSimpleValueType(0); 664 SDValue RVal = SDValue(Node, 0); 665 SDValue RChain = SDValue(Node, 1); 666 667 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 668 default: llvm_unreachable("This action is not supported yet!"); 669 case TargetLowering::Legal: { 670 EVT MemVT = LD->getMemoryVT(); 671 unsigned AS = LD->getAddressSpace(); 672 unsigned Align = LD->getAlignment(); 673 const DataLayout &DL = DAG.getDataLayout(); 674 // If this is an unaligned load and the target doesn't support it, 675 // expand it. 676 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 677 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 678 } 679 break; 680 } 681 case TargetLowering::Custom: 682 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 683 RVal = Res; 684 RChain = Res.getValue(1); 685 } 686 break; 687 688 case TargetLowering::Promote: { 689 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 690 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 691 "Can only promote loads to same size type"); 692 693 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 694 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 695 RChain = Res.getValue(1); 696 break; 697 } 698 } 699 if (RChain.getNode() != Node) { 700 assert(RVal.getNode() != Node && "Load must be completely replaced"); 701 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 702 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 703 if (UpdatedNodes) { 704 UpdatedNodes->insert(RVal.getNode()); 705 UpdatedNodes->insert(RChain.getNode()); 706 } 707 ReplacedNode(Node); 708 } 709 return; 710 } 711 712 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); 713 EVT SrcVT = LD->getMemoryVT(); 714 unsigned SrcWidth = SrcVT.getSizeInBits(); 715 unsigned Alignment = LD->getAlignment(); 716 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 717 AAMDNodes AAInfo = LD->getAAInfo(); 718 719 if (SrcWidth != SrcVT.getStoreSizeInBits() && 720 // Some targets pretend to have an i1 loading operation, and actually 721 // load an i8. This trick is correct for ZEXTLOAD because the top 7 722 // bits are guaranteed to be zero; it helps the optimizers understand 723 // that these bits are zero. It is also useful for EXTLOAD, since it 724 // tells the optimizers that those bits are undefined. It would be 725 // nice to have an effective generic way of getting these benefits... 726 // Until such a way is found, don't insist on promoting i1 here. 727 (SrcVT != MVT::i1 || 728 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 729 TargetLowering::Promote)) { 730 // Promote to a byte-sized load if not loading an integral number of 731 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 732 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 733 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 734 SDValue Ch; 735 736 // The extra bits are guaranteed to be zero, since we stored them that 737 // way. A zext load from NVT thus automatically gives zext from SrcVT. 738 739 ISD::LoadExtType NewExtType = 740 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 741 742 SDValue Result = 743 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), Chain, Ptr, 744 LD->getPointerInfo(), NVT, Alignment, MMOFlags, AAInfo); 745 746 Ch = Result.getValue(1); // The chain. 747 748 if (ExtType == ISD::SEXTLOAD) 749 // Having the top bits zero doesn't help when sign extending. 750 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 751 Result.getValueType(), 752 Result, DAG.getValueType(SrcVT)); 753 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 754 // All the top bits are guaranteed to be zero - inform the optimizers. 755 Result = DAG.getNode(ISD::AssertZext, dl, 756 Result.getValueType(), Result, 757 DAG.getValueType(SrcVT)); 758 759 Value = Result; 760 Chain = Ch; 761 } else if (SrcWidth & (SrcWidth - 1)) { 762 // If not loading a power-of-2 number of bits, expand as two loads. 763 assert(!SrcVT.isVector() && "Unsupported extload!"); 764 unsigned LogSrcWidth = Log2_32(SrcWidth); 765 assert(LogSrcWidth < 32); 766 unsigned RoundWidth = 1 << LogSrcWidth; 767 assert(RoundWidth < SrcWidth); 768 unsigned ExtraWidth = SrcWidth - RoundWidth; 769 assert(ExtraWidth < RoundWidth); 770 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 771 "Load size not an integral number of bytes!"); 772 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 773 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 774 SDValue Lo, Hi, Ch; 775 unsigned IncrementSize; 776 auto &DL = DAG.getDataLayout(); 777 778 if (DL.isLittleEndian()) { 779 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 780 // Load the bottom RoundWidth bits. 781 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 782 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, 783 AAInfo); 784 785 // Load the remaining ExtraWidth bits. 786 IncrementSize = RoundWidth / 8; 787 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 788 DAG.getConstant(IncrementSize, dl, 789 Ptr.getValueType())); 790 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 791 LD->getPointerInfo().getWithOffset(IncrementSize), 792 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, 793 AAInfo); 794 795 // Build a factor node to remember that this load is independent of 796 // the other one. 797 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 798 Hi.getValue(1)); 799 800 // Move the top bits to the right place. 801 Hi = DAG.getNode( 802 ISD::SHL, dl, Hi.getValueType(), Hi, 803 DAG.getConstant(RoundWidth, dl, 804 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 805 806 // Join the hi and lo parts. 807 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 808 } else { 809 // Big endian - avoid unaligned loads. 810 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 811 // Load the top RoundWidth bits. 812 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 813 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, 814 AAInfo); 815 816 // Load the remaining ExtraWidth bits. 817 IncrementSize = RoundWidth / 8; 818 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 819 DAG.getConstant(IncrementSize, dl, 820 Ptr.getValueType())); 821 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 822 LD->getPointerInfo().getWithOffset(IncrementSize), 823 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, 824 AAInfo); 825 826 // Build a factor node to remember that this load is independent of 827 // the other one. 828 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 829 Hi.getValue(1)); 830 831 // Move the top bits to the right place. 832 Hi = DAG.getNode( 833 ISD::SHL, dl, Hi.getValueType(), Hi, 834 DAG.getConstant(ExtraWidth, dl, 835 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 836 837 // Join the hi and lo parts. 838 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 839 } 840 841 Chain = Ch; 842 } else { 843 bool isCustom = false; 844 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 845 SrcVT.getSimpleVT())) { 846 default: llvm_unreachable("This action is not supported yet!"); 847 case TargetLowering::Custom: 848 isCustom = true; 849 LLVM_FALLTHROUGH; 850 case TargetLowering::Legal: 851 Value = SDValue(Node, 0); 852 Chain = SDValue(Node, 1); 853 854 if (isCustom) { 855 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 856 Value = Res; 857 Chain = Res.getValue(1); 858 } 859 } else { 860 // If this is an unaligned load and the target doesn't support it, 861 // expand it. 862 EVT MemVT = LD->getMemoryVT(); 863 unsigned AS = LD->getAddressSpace(); 864 unsigned Align = LD->getAlignment(); 865 const DataLayout &DL = DAG.getDataLayout(); 866 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 867 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 868 } 869 } 870 break; 871 872 case TargetLowering::Expand: { 873 EVT DestVT = Node->getValueType(0); 874 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 875 // If the source type is not legal, see if there is a legal extload to 876 // an intermediate type that we can then extend further. 877 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 878 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 879 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 880 // If we are loading a legal type, this is a non-extload followed by a 881 // full extend. 882 ISD::LoadExtType MidExtType = 883 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 884 885 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 886 SrcVT, LD->getMemOperand()); 887 unsigned ExtendOp = 888 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 889 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 890 Chain = Load.getValue(1); 891 break; 892 } 893 894 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 895 // normal undefined upper bits behavior to allow using an in-reg extend 896 // with the illegal FP type, so load as an integer and do the 897 // from-integer conversion. 898 if (SrcVT.getScalarType() == MVT::f16) { 899 EVT ISrcVT = SrcVT.changeTypeToInteger(); 900 EVT IDestVT = DestVT.changeTypeToInteger(); 901 EVT LoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 902 903 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, LoadVT, 904 Chain, Ptr, ISrcVT, 905 LD->getMemOperand()); 906 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 907 Chain = Result.getValue(1); 908 break; 909 } 910 } 911 912 assert(!SrcVT.isVector() && 913 "Vector Loads are handled in LegalizeVectorOps"); 914 915 // FIXME: This does not work for vectors on most targets. Sign- 916 // and zero-extend operations are currently folded into extending 917 // loads, whether they are legal or not, and then we end up here 918 // without any support for legalizing them. 919 assert(ExtType != ISD::EXTLOAD && 920 "EXTLOAD should always be supported!"); 921 // Turn the unsupported load into an EXTLOAD followed by an 922 // explicit zero/sign extend inreg. 923 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 924 Node->getValueType(0), 925 Chain, Ptr, SrcVT, 926 LD->getMemOperand()); 927 SDValue ValRes; 928 if (ExtType == ISD::SEXTLOAD) 929 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 930 Result.getValueType(), 931 Result, DAG.getValueType(SrcVT)); 932 else 933 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); 934 Value = ValRes; 935 Chain = Result.getValue(1); 936 break; 937 } 938 } 939 } 940 941 // Since loads produce two values, make sure to remember that we legalized 942 // both of them. 943 if (Chain.getNode() != Node) { 944 assert(Value.getNode() != Node && "Load must be completely replaced"); 945 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 946 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 947 if (UpdatedNodes) { 948 UpdatedNodes->insert(Value.getNode()); 949 UpdatedNodes->insert(Chain.getNode()); 950 } 951 ReplacedNode(Node); 952 } 953 } 954 955 /// Return a legal replacement for the given operation, with all legal operands. 956 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 957 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 958 959 // Allow illegal target nodes and illegal registers. 960 if (Node->getOpcode() == ISD::TargetConstant || 961 Node->getOpcode() == ISD::Register) 962 return; 963 964 #ifndef NDEBUG 965 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 966 assert((TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 967 TargetLowering::TypeLegal || 968 TLI.isTypeLegal(Node->getValueType(i))) && 969 "Unexpected illegal type!"); 970 971 for (const SDValue &Op : Node->op_values()) 972 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 973 TargetLowering::TypeLegal || 974 TLI.isTypeLegal(Op.getValueType()) || 975 Op.getOpcode() == ISD::TargetConstant || 976 Op.getOpcode() == ISD::Register) && 977 "Unexpected illegal type!"); 978 #endif 979 980 // Figure out the correct action; the way to query this varies by opcode 981 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 982 bool SimpleFinishLegalizing = true; 983 switch (Node->getOpcode()) { 984 case ISD::INTRINSIC_W_CHAIN: 985 case ISD::INTRINSIC_WO_CHAIN: 986 case ISD::INTRINSIC_VOID: 987 case ISD::STACKSAVE: 988 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 989 break; 990 case ISD::GET_DYNAMIC_AREA_OFFSET: 991 Action = TLI.getOperationAction(Node->getOpcode(), 992 Node->getValueType(0)); 993 break; 994 case ISD::VAARG: 995 Action = TLI.getOperationAction(Node->getOpcode(), 996 Node->getValueType(0)); 997 if (Action != TargetLowering::Promote) 998 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 999 break; 1000 case ISD::FP_TO_FP16: 1001 case ISD::SINT_TO_FP: 1002 case ISD::UINT_TO_FP: 1003 case ISD::EXTRACT_VECTOR_ELT: 1004 case ISD::LROUND: 1005 case ISD::LLROUND: 1006 Action = TLI.getOperationAction(Node->getOpcode(), 1007 Node->getOperand(0).getValueType()); 1008 break; 1009 case ISD::FP_ROUND_INREG: 1010 case ISD::SIGN_EXTEND_INREG: { 1011 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1012 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1013 break; 1014 } 1015 case ISD::ATOMIC_STORE: 1016 Action = TLI.getOperationAction(Node->getOpcode(), 1017 Node->getOperand(2).getValueType()); 1018 break; 1019 case ISD::SELECT_CC: 1020 case ISD::SETCC: 1021 case ISD::BR_CC: { 1022 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 1023 Node->getOpcode() == ISD::SETCC ? 2 : 1; 1024 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; 1025 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1026 ISD::CondCode CCCode = 1027 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1028 Action = TLI.getCondCodeAction(CCCode, OpVT); 1029 if (Action == TargetLowering::Legal) { 1030 if (Node->getOpcode() == ISD::SELECT_CC) 1031 Action = TLI.getOperationAction(Node->getOpcode(), 1032 Node->getValueType(0)); 1033 else 1034 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1035 } 1036 break; 1037 } 1038 case ISD::LOAD: 1039 case ISD::STORE: 1040 // FIXME: Model these properly. LOAD and STORE are complicated, and 1041 // STORE expects the unlegalized operand in some cases. 1042 SimpleFinishLegalizing = false; 1043 break; 1044 case ISD::CALLSEQ_START: 1045 case ISD::CALLSEQ_END: 1046 // FIXME: This shouldn't be necessary. These nodes have special properties 1047 // dealing with the recursive nature of legalization. Removing this 1048 // special case should be done as part of making LegalizeDAG non-recursive. 1049 SimpleFinishLegalizing = false; 1050 break; 1051 case ISD::EXTRACT_ELEMENT: 1052 case ISD::FLT_ROUNDS_: 1053 case ISD::MERGE_VALUES: 1054 case ISD::EH_RETURN: 1055 case ISD::FRAME_TO_ARGS_OFFSET: 1056 case ISD::EH_DWARF_CFA: 1057 case ISD::EH_SJLJ_SETJMP: 1058 case ISD::EH_SJLJ_LONGJMP: 1059 case ISD::EH_SJLJ_SETUP_DISPATCH: 1060 // These operations lie about being legal: when they claim to be legal, 1061 // they should actually be expanded. 1062 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1063 if (Action == TargetLowering::Legal) 1064 Action = TargetLowering::Expand; 1065 break; 1066 case ISD::INIT_TRAMPOLINE: 1067 case ISD::ADJUST_TRAMPOLINE: 1068 case ISD::FRAMEADDR: 1069 case ISD::RETURNADDR: 1070 case ISD::ADDROFRETURNADDR: 1071 case ISD::SPONENTRY: 1072 // These operations lie about being legal: when they claim to be legal, 1073 // they should actually be custom-lowered. 1074 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1075 if (Action == TargetLowering::Legal) 1076 Action = TargetLowering::Custom; 1077 break; 1078 case ISD::READCYCLECOUNTER: 1079 // READCYCLECOUNTER returns an i64, even if type legalization might have 1080 // expanded that to several smaller types. 1081 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1082 break; 1083 case ISD::READ_REGISTER: 1084 case ISD::WRITE_REGISTER: 1085 // Named register is legal in the DAG, but blocked by register name 1086 // selection if not implemented by target (to chose the correct register) 1087 // They'll be converted to Copy(To/From)Reg. 1088 Action = TargetLowering::Legal; 1089 break; 1090 case ISD::DEBUGTRAP: 1091 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1092 if (Action == TargetLowering::Expand) { 1093 // replace ISD::DEBUGTRAP with ISD::TRAP 1094 SDValue NewVal; 1095 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1096 Node->getOperand(0)); 1097 ReplaceNode(Node, NewVal.getNode()); 1098 LegalizeOp(NewVal.getNode()); 1099 return; 1100 } 1101 break; 1102 case ISD::STRICT_FADD: 1103 case ISD::STRICT_FSUB: 1104 case ISD::STRICT_FMUL: 1105 case ISD::STRICT_FDIV: 1106 case ISD::STRICT_FREM: 1107 case ISD::STRICT_FSQRT: 1108 case ISD::STRICT_FMA: 1109 case ISD::STRICT_FPOW: 1110 case ISD::STRICT_FPOWI: 1111 case ISD::STRICT_FSIN: 1112 case ISD::STRICT_FCOS: 1113 case ISD::STRICT_FEXP: 1114 case ISD::STRICT_FEXP2: 1115 case ISD::STRICT_FLOG: 1116 case ISD::STRICT_FLOG10: 1117 case ISD::STRICT_FLOG2: 1118 case ISD::STRICT_FRINT: 1119 case ISD::STRICT_FNEARBYINT: 1120 case ISD::STRICT_FMAXNUM: 1121 case ISD::STRICT_FMINNUM: 1122 case ISD::STRICT_FCEIL: 1123 case ISD::STRICT_FFLOOR: 1124 case ISD::STRICT_FROUND: 1125 case ISD::STRICT_FTRUNC: 1126 case ISD::STRICT_FP_ROUND: 1127 case ISD::STRICT_FP_EXTEND: 1128 // These pseudo-ops get legalized as if they were their non-strict 1129 // equivalent. For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT 1130 // is also legal, but if ISD::FSQRT requires expansion then so does 1131 // ISD::STRICT_FSQRT. 1132 Action = TLI.getStrictFPOperationAction(Node->getOpcode(), 1133 Node->getValueType(0)); 1134 break; 1135 case ISD::SADDSAT: 1136 case ISD::UADDSAT: 1137 case ISD::SSUBSAT: 1138 case ISD::USUBSAT: { 1139 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1140 break; 1141 } 1142 case ISD::SMULFIX: 1143 case ISD::SMULFIXSAT: 1144 case ISD::UMULFIX: { 1145 unsigned Scale = Node->getConstantOperandVal(2); 1146 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 1147 Node->getValueType(0), Scale); 1148 break; 1149 } 1150 case ISD::MSCATTER: 1151 Action = TLI.getOperationAction(Node->getOpcode(), 1152 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 1153 break; 1154 case ISD::MSTORE: 1155 Action = TLI.getOperationAction(Node->getOpcode(), 1156 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 1157 break; 1158 case ISD::VECREDUCE_FADD: 1159 case ISD::VECREDUCE_FMUL: 1160 case ISD::VECREDUCE_ADD: 1161 case ISD::VECREDUCE_MUL: 1162 case ISD::VECREDUCE_AND: 1163 case ISD::VECREDUCE_OR: 1164 case ISD::VECREDUCE_XOR: 1165 case ISD::VECREDUCE_SMAX: 1166 case ISD::VECREDUCE_SMIN: 1167 case ISD::VECREDUCE_UMAX: 1168 case ISD::VECREDUCE_UMIN: 1169 case ISD::VECREDUCE_FMAX: 1170 case ISD::VECREDUCE_FMIN: 1171 Action = TLI.getOperationAction( 1172 Node->getOpcode(), Node->getOperand(0).getValueType()); 1173 break; 1174 default: 1175 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1176 Action = TargetLowering::Legal; 1177 } else { 1178 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1179 } 1180 break; 1181 } 1182 1183 if (SimpleFinishLegalizing) { 1184 SDNode *NewNode = Node; 1185 switch (Node->getOpcode()) { 1186 default: break; 1187 case ISD::SHL: 1188 case ISD::SRL: 1189 case ISD::SRA: 1190 case ISD::ROTL: 1191 case ISD::ROTR: { 1192 // Legalizing shifts/rotates requires adjusting the shift amount 1193 // to the appropriate width. 1194 SDValue Op0 = Node->getOperand(0); 1195 SDValue Op1 = Node->getOperand(1); 1196 if (!Op1.getValueType().isVector()) { 1197 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1198 // The getShiftAmountOperand() may create a new operand node or 1199 // return the existing one. If new operand is created we need 1200 // to update the parent node. 1201 // Do not try to legalize SAO here! It will be automatically legalized 1202 // in the next round. 1203 if (SAO != Op1) 1204 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1205 } 1206 } 1207 break; 1208 case ISD::FSHL: 1209 case ISD::FSHR: 1210 case ISD::SRL_PARTS: 1211 case ISD::SRA_PARTS: 1212 case ISD::SHL_PARTS: { 1213 // Legalizing shifts/rotates requires adjusting the shift amount 1214 // to the appropriate width. 1215 SDValue Op0 = Node->getOperand(0); 1216 SDValue Op1 = Node->getOperand(1); 1217 SDValue Op2 = Node->getOperand(2); 1218 if (!Op2.getValueType().isVector()) { 1219 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1220 // The getShiftAmountOperand() may create a new operand node or 1221 // return the existing one. If new operand is created we need 1222 // to update the parent node. 1223 if (SAO != Op2) 1224 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1225 } 1226 break; 1227 } 1228 } 1229 1230 if (NewNode != Node) { 1231 ReplaceNode(Node, NewNode); 1232 Node = NewNode; 1233 } 1234 switch (Action) { 1235 case TargetLowering::Legal: 1236 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 1237 return; 1238 case TargetLowering::Custom: 1239 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 1240 // FIXME: The handling for custom lowering with multiple results is 1241 // a complete mess. 1242 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1243 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1244 return; 1245 1246 if (Node->getNumValues() == 1) { 1247 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1248 // We can just directly replace this node with the lowered value. 1249 ReplaceNode(SDValue(Node, 0), Res); 1250 return; 1251 } 1252 1253 SmallVector<SDValue, 8> ResultVals; 1254 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1255 ResultVals.push_back(Res.getValue(i)); 1256 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1257 ReplaceNode(Node, ResultVals.data()); 1258 return; 1259 } 1260 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 1261 LLVM_FALLTHROUGH; 1262 case TargetLowering::Expand: 1263 if (ExpandNode(Node)) 1264 return; 1265 LLVM_FALLTHROUGH; 1266 case TargetLowering::LibCall: 1267 ConvertNodeToLibcall(Node); 1268 return; 1269 case TargetLowering::Promote: 1270 PromoteNode(Node); 1271 return; 1272 } 1273 } 1274 1275 switch (Node->getOpcode()) { 1276 default: 1277 #ifndef NDEBUG 1278 dbgs() << "NODE: "; 1279 Node->dump( &DAG); 1280 dbgs() << "\n"; 1281 #endif 1282 llvm_unreachable("Do not know how to legalize this operator!"); 1283 1284 case ISD::CALLSEQ_START: 1285 case ISD::CALLSEQ_END: 1286 break; 1287 case ISD::LOAD: 1288 return LegalizeLoadOps(Node); 1289 case ISD::STORE: 1290 return LegalizeStoreOps(Node); 1291 } 1292 } 1293 1294 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1295 SDValue Vec = Op.getOperand(0); 1296 SDValue Idx = Op.getOperand(1); 1297 SDLoc dl(Op); 1298 1299 // Before we generate a new store to a temporary stack slot, see if there is 1300 // already one that we can use. There often is because when we scalarize 1301 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1302 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1303 // the vector. If all are expanded here, we don't want one store per vector 1304 // element. 1305 1306 // Caches for hasPredecessorHelper 1307 SmallPtrSet<const SDNode *, 32> Visited; 1308 SmallVector<const SDNode *, 16> Worklist; 1309 Visited.insert(Op.getNode()); 1310 Worklist.push_back(Idx.getNode()); 1311 SDValue StackPtr, Ch; 1312 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), 1313 UE = Vec.getNode()->use_end(); UI != UE; ++UI) { 1314 SDNode *User = *UI; 1315 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1316 if (ST->isIndexed() || ST->isTruncatingStore() || 1317 ST->getValue() != Vec) 1318 continue; 1319 1320 // Make sure that nothing else could have stored into the destination of 1321 // this store. 1322 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1323 continue; 1324 1325 // If the index is dependent on the store we will introduce a cycle when 1326 // creating the load (the load uses the index, and by replacing the chain 1327 // we will make the index dependent on the load). Also, the store might be 1328 // dependent on the extractelement and introduce a cycle when creating 1329 // the load. 1330 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1331 ST->hasPredecessor(Op.getNode())) 1332 continue; 1333 1334 StackPtr = ST->getBasePtr(); 1335 Ch = SDValue(ST, 0); 1336 break; 1337 } 1338 } 1339 1340 EVT VecVT = Vec.getValueType(); 1341 1342 if (!Ch.getNode()) { 1343 // Store the value to a temporary stack slot, then LOAD the returned part. 1344 StackPtr = DAG.CreateStackTemporary(VecVT); 1345 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1346 MachinePointerInfo()); 1347 } 1348 1349 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1350 1351 SDValue NewLoad; 1352 1353 if (Op.getValueType().isVector()) 1354 NewLoad = 1355 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); 1356 else 1357 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1358 MachinePointerInfo(), 1359 VecVT.getVectorElementType()); 1360 1361 // Replace the chain going out of the store, by the one out of the load. 1362 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1363 1364 // We introduced a cycle though, so update the loads operands, making sure 1365 // to use the original store's chain as an incoming chain. 1366 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1367 NewLoad->op_end()); 1368 NewLoadOperands[0] = Ch; 1369 NewLoad = 1370 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1371 return NewLoad; 1372 } 1373 1374 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1375 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1376 1377 SDValue Vec = Op.getOperand(0); 1378 SDValue Part = Op.getOperand(1); 1379 SDValue Idx = Op.getOperand(2); 1380 SDLoc dl(Op); 1381 1382 // Store the value to a temporary stack slot, then LOAD the returned part. 1383 EVT VecVT = Vec.getValueType(); 1384 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1385 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1386 MachinePointerInfo PtrInfo = 1387 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1388 1389 // First store the whole vector. 1390 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1391 1392 // Then store the inserted part. 1393 SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1394 1395 // Store the subvector. 1396 Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, MachinePointerInfo()); 1397 1398 // Finally, load the updated vector. 1399 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1400 } 1401 1402 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1403 // We can't handle this case efficiently. Allocate a sufficiently 1404 // aligned object on the stack, store each element into it, then load 1405 // the result as a vector. 1406 // Create the stack frame object. 1407 EVT VT = Node->getValueType(0); 1408 EVT EltVT = VT.getVectorElementType(); 1409 SDLoc dl(Node); 1410 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1411 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1412 MachinePointerInfo PtrInfo = 1413 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1414 1415 // Emit a store of each element to the stack slot. 1416 SmallVector<SDValue, 8> Stores; 1417 unsigned TypeByteSize = EltVT.getSizeInBits() / 8; 1418 // Store (in the right endianness) the elements to memory. 1419 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1420 // Ignore undef elements. 1421 if (Node->getOperand(i).isUndef()) continue; 1422 1423 unsigned Offset = TypeByteSize*i; 1424 1425 SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType()); 1426 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); 1427 1428 // If the destination vector element type is narrower than the source 1429 // element type, only store the bits necessary. 1430 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { 1431 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1432 Node->getOperand(i), Idx, 1433 PtrInfo.getWithOffset(Offset), EltVT)); 1434 } else 1435 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1436 Idx, PtrInfo.getWithOffset(Offset))); 1437 } 1438 1439 SDValue StoreChain; 1440 if (!Stores.empty()) // Not all undef elements? 1441 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1442 else 1443 StoreChain = DAG.getEntryNode(); 1444 1445 // Result is a load from the stack slot. 1446 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1447 } 1448 1449 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1450 /// containing the sign bit if the target has no integer value capable of 1451 /// holding all bits of the floating-point value. 1452 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1453 const SDLoc &DL, 1454 SDValue Value) const { 1455 EVT FloatVT = Value.getValueType(); 1456 unsigned NumBits = FloatVT.getSizeInBits(); 1457 State.FloatVT = FloatVT; 1458 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1459 // Convert to an integer of the same size. 1460 if (TLI.isTypeLegal(IVT)) { 1461 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1462 State.SignMask = APInt::getSignMask(NumBits); 1463 State.SignBit = NumBits - 1; 1464 return; 1465 } 1466 1467 auto &DataLayout = DAG.getDataLayout(); 1468 // Store the float to memory, then load the sign part out as an integer. 1469 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1470 // First create a temporary that is aligned for both the load and store. 1471 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1472 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1473 // Then store the float to it. 1474 State.FloatPtr = StackPtr; 1475 MachineFunction &MF = DAG.getMachineFunction(); 1476 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1477 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1478 State.FloatPointerInfo); 1479 1480 SDValue IntPtr; 1481 if (DataLayout.isBigEndian()) { 1482 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1483 // Load out a legal integer with the same sign bit as the float. 1484 IntPtr = StackPtr; 1485 State.IntPointerInfo = State.FloatPointerInfo; 1486 } else { 1487 // Advance the pointer so that the loaded byte will contain the sign bit. 1488 unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1; 1489 IntPtr = DAG.getNode(ISD::ADD, DL, StackPtr.getValueType(), StackPtr, 1490 DAG.getConstant(ByteOffset, DL, StackPtr.getValueType())); 1491 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1492 ByteOffset); 1493 } 1494 1495 State.IntPtr = IntPtr; 1496 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1497 State.IntPointerInfo, MVT::i8); 1498 State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7); 1499 State.SignBit = 7; 1500 } 1501 1502 /// Replace the integer value produced by getSignAsIntValue() with a new value 1503 /// and cast the result back to a floating-point type. 1504 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1505 const SDLoc &DL, 1506 SDValue NewIntValue) const { 1507 if (!State.Chain) 1508 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1509 1510 // Override the part containing the sign bit in the value stored on the stack. 1511 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1512 State.IntPointerInfo, MVT::i8); 1513 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1514 State.FloatPointerInfo); 1515 } 1516 1517 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1518 SDLoc DL(Node); 1519 SDValue Mag = Node->getOperand(0); 1520 SDValue Sign = Node->getOperand(1); 1521 1522 // Get sign bit into an integer value. 1523 FloatSignAsInt SignAsInt; 1524 getSignAsIntValue(SignAsInt, DL, Sign); 1525 1526 EVT IntVT = SignAsInt.IntValue.getValueType(); 1527 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1528 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1529 SignMask); 1530 1531 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1532 EVT FloatVT = Mag.getValueType(); 1533 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1534 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1535 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1536 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1537 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1538 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1539 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1540 } 1541 1542 // Transform Mag value to integer, and clear the sign bit. 1543 FloatSignAsInt MagAsInt; 1544 getSignAsIntValue(MagAsInt, DL, Mag); 1545 EVT MagVT = MagAsInt.IntValue.getValueType(); 1546 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1547 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1548 ClearSignMask); 1549 1550 // Get the signbit at the right position for MagAsInt. 1551 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1552 EVT ShiftVT = IntVT; 1553 if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) { 1554 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1555 ShiftVT = MagVT; 1556 } 1557 if (ShiftAmount > 0) { 1558 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); 1559 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); 1560 } else if (ShiftAmount < 0) { 1561 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); 1562 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); 1563 } 1564 if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) { 1565 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1566 } 1567 1568 // Store the part with the modified sign and convert back to float. 1569 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1570 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1571 } 1572 1573 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1574 SDLoc DL(Node); 1575 SDValue Value = Node->getOperand(0); 1576 1577 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1578 EVT FloatVT = Value.getValueType(); 1579 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1580 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1581 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1582 } 1583 1584 // Transform value to integer, clear the sign bit and transform back. 1585 FloatSignAsInt ValueAsInt; 1586 getSignAsIntValue(ValueAsInt, DL, Value); 1587 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1588 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1589 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1590 ClearSignMask); 1591 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1592 } 1593 1594 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1595 SmallVectorImpl<SDValue> &Results) { 1596 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1597 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1598 " not tell us which reg is the stack pointer!"); 1599 SDLoc dl(Node); 1600 EVT VT = Node->getValueType(0); 1601 SDValue Tmp1 = SDValue(Node, 0); 1602 SDValue Tmp2 = SDValue(Node, 1); 1603 SDValue Tmp3 = Node->getOperand(2); 1604 SDValue Chain = Tmp1.getOperand(0); 1605 1606 // Chain the dynamic stack allocation so that it doesn't modify the stack 1607 // pointer when other instructions are using the stack. 1608 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1609 1610 SDValue Size = Tmp2.getOperand(1); 1611 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1612 Chain = SP.getValue(1); 1613 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1614 unsigned StackAlign = 1615 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 1616 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 1617 if (Align > StackAlign) 1618 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1619 DAG.getConstant(-(uint64_t)Align, dl, VT)); 1620 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1621 1622 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1623 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1624 1625 Results.push_back(Tmp1); 1626 Results.push_back(Tmp2); 1627 } 1628 1629 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current 1630 /// target. 1631 /// 1632 /// If the SETCC has been legalized using AND / OR, then the legalized node 1633 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert 1634 /// will be set to false. 1635 /// 1636 /// If the SETCC has been legalized by using getSetCCSwappedOperands(), 1637 /// then the values of LHS and RHS will be swapped, CC will be set to the 1638 /// new condition, and NeedInvert will be set to false. 1639 /// 1640 /// If the SETCC has been legalized using the inverse condcode, then LHS and 1641 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert 1642 /// will be set to true. The caller must invert the result of the SETCC with 1643 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect 1644 /// of a true/false result. 1645 /// 1646 /// \returns true if the SetCC has been legalized, false if it hasn't. 1647 bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, SDValue &LHS, 1648 SDValue &RHS, SDValue &CC, 1649 bool &NeedInvert, 1650 const SDLoc &dl) { 1651 MVT OpVT = LHS.getSimpleValueType(); 1652 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1653 NeedInvert = false; 1654 bool NeedSwap = false; 1655 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1656 default: llvm_unreachable("Unknown condition code action!"); 1657 case TargetLowering::Legal: 1658 // Nothing to do. 1659 break; 1660 case TargetLowering::Expand: { 1661 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 1662 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1663 std::swap(LHS, RHS); 1664 CC = DAG.getCondCode(InvCC); 1665 return true; 1666 } 1667 // Swapping operands didn't work. Try inverting the condition. 1668 InvCC = getSetCCInverse(CCCode, OpVT.isInteger()); 1669 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1670 // If inverting the condition is not enough, try swapping operands 1671 // on top of it. 1672 InvCC = ISD::getSetCCSwappedOperands(InvCC); 1673 NeedSwap = true; 1674 } 1675 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1676 CC = DAG.getCondCode(InvCC); 1677 NeedInvert = true; 1678 if (NeedSwap) 1679 std::swap(LHS, RHS); 1680 return true; 1681 } 1682 1683 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1684 unsigned Opc = 0; 1685 switch (CCCode) { 1686 default: llvm_unreachable("Don't know how to expand this condition!"); 1687 case ISD::SETO: 1688 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) 1689 && "If SETO is expanded, SETOEQ must be legal!"); 1690 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; 1691 case ISD::SETUO: 1692 assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT) 1693 && "If SETUO is expanded, SETUNE must be legal!"); 1694 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break; 1695 case ISD::SETOEQ: 1696 case ISD::SETOGT: 1697 case ISD::SETOGE: 1698 case ISD::SETOLT: 1699 case ISD::SETOLE: 1700 case ISD::SETONE: 1701 case ISD::SETUEQ: 1702 case ISD::SETUNE: 1703 case ISD::SETUGT: 1704 case ISD::SETUGE: 1705 case ISD::SETULT: 1706 case ISD::SETULE: 1707 // If we are floating point, assign and break, otherwise fall through. 1708 if (!OpVT.isInteger()) { 1709 // We can use the 4th bit to tell if we are the unordered 1710 // or ordered version of the opcode. 1711 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 1712 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 1713 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 1714 break; 1715 } 1716 // Fallthrough if we are unsigned integer. 1717 LLVM_FALLTHROUGH; 1718 case ISD::SETLE: 1719 case ISD::SETGT: 1720 case ISD::SETGE: 1721 case ISD::SETLT: 1722 case ISD::SETNE: 1723 case ISD::SETEQ: 1724 // If all combinations of inverting the condition and swapping operands 1725 // didn't work then we have no means to expand the condition. 1726 llvm_unreachable("Don't know how to expand this condition!"); 1727 } 1728 1729 SDValue SetCC1, SetCC2; 1730 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 1731 // If we aren't the ordered or unorder operation, 1732 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 1733 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); 1734 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); 1735 } else { 1736 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 1737 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1); 1738 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2); 1739 } 1740 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1741 RHS = SDValue(); 1742 CC = SDValue(); 1743 return true; 1744 } 1745 } 1746 return false; 1747 } 1748 1749 /// Emit a store/load combination to the stack. This stores 1750 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1751 /// a load from the stack slot to DestVT, extending it if needed. 1752 /// The resultant code need not be legal. 1753 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1754 EVT DestVT, const SDLoc &dl) { 1755 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode()); 1756 } 1757 1758 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1759 EVT DestVT, const SDLoc &dl, 1760 SDValue Chain) { 1761 // Create the stack frame object. 1762 unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment( 1763 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1764 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 1765 1766 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1767 int SPFI = StackPtrFI->getIndex(); 1768 MachinePointerInfo PtrInfo = 1769 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1770 1771 unsigned SrcSize = SrcOp.getValueSizeInBits(); 1772 unsigned SlotSize = SlotVT.getSizeInBits(); 1773 unsigned DestSize = DestVT.getSizeInBits(); 1774 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1775 unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType); 1776 1777 // Emit a store to the stack slot. Use a truncstore if the input value is 1778 // later than DestVT. 1779 SDValue Store; 1780 1781 if (SrcSize > SlotSize) 1782 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo, 1783 SlotVT, SrcAlign); 1784 else { 1785 assert(SrcSize == SlotSize && "Invalid store"); 1786 Store = 1787 DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1788 } 1789 1790 // Result is a load from the stack slot. 1791 if (SlotSize == DestSize) 1792 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1793 1794 assert(SlotSize < DestSize && "Unknown extension!"); 1795 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1796 DestAlign); 1797 } 1798 1799 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1800 SDLoc dl(Node); 1801 // Create a vector sized/aligned stack slot, store the value to element #0, 1802 // then load the whole vector back out. 1803 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1804 1805 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1806 int SPFI = StackPtrFI->getIndex(); 1807 1808 SDValue Ch = DAG.getTruncStore( 1809 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1810 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1811 Node->getValueType(0).getVectorElementType()); 1812 return DAG.getLoad( 1813 Node->getValueType(0), dl, Ch, StackPtr, 1814 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1815 } 1816 1817 static bool 1818 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1819 const TargetLowering &TLI, SDValue &Res) { 1820 unsigned NumElems = Node->getNumOperands(); 1821 SDLoc dl(Node); 1822 EVT VT = Node->getValueType(0); 1823 1824 // Try to group the scalars into pairs, shuffle the pairs together, then 1825 // shuffle the pairs of pairs together, etc. until the vector has 1826 // been built. This will work only if all of the necessary shuffle masks 1827 // are legal. 1828 1829 // We do this in two phases; first to check the legality of the shuffles, 1830 // and next, assuming that all shuffles are legal, to create the new nodes. 1831 for (int Phase = 0; Phase < 2; ++Phase) { 1832 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1833 NewIntermedVals; 1834 for (unsigned i = 0; i < NumElems; ++i) { 1835 SDValue V = Node->getOperand(i); 1836 if (V.isUndef()) 1837 continue; 1838 1839 SDValue Vec; 1840 if (Phase) 1841 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1842 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1843 } 1844 1845 while (IntermedVals.size() > 2) { 1846 NewIntermedVals.clear(); 1847 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1848 // This vector and the next vector are shuffled together (simply to 1849 // append the one to the other). 1850 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1851 1852 SmallVector<int, 16> FinalIndices; 1853 FinalIndices.reserve(IntermedVals[i].second.size() + 1854 IntermedVals[i+1].second.size()); 1855 1856 int k = 0; 1857 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1858 ++j, ++k) { 1859 ShuffleVec[k] = j; 1860 FinalIndices.push_back(IntermedVals[i].second[j]); 1861 } 1862 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1863 ++j, ++k) { 1864 ShuffleVec[k] = NumElems + j; 1865 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1866 } 1867 1868 SDValue Shuffle; 1869 if (Phase) 1870 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1871 IntermedVals[i+1].first, 1872 ShuffleVec); 1873 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1874 return false; 1875 NewIntermedVals.push_back( 1876 std::make_pair(Shuffle, std::move(FinalIndices))); 1877 } 1878 1879 // If we had an odd number of defined values, then append the last 1880 // element to the array of new vectors. 1881 if ((IntermedVals.size() & 1) != 0) 1882 NewIntermedVals.push_back(IntermedVals.back()); 1883 1884 IntermedVals.swap(NewIntermedVals); 1885 } 1886 1887 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1888 "Invalid number of intermediate vectors"); 1889 SDValue Vec1 = IntermedVals[0].first; 1890 SDValue Vec2; 1891 if (IntermedVals.size() > 1) 1892 Vec2 = IntermedVals[1].first; 1893 else if (Phase) 1894 Vec2 = DAG.getUNDEF(VT); 1895 1896 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1897 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1898 ShuffleVec[IntermedVals[0].second[i]] = i; 1899 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1900 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1901 1902 if (Phase) 1903 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1904 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1905 return false; 1906 } 1907 1908 return true; 1909 } 1910 1911 /// Expand a BUILD_VECTOR node on targets that don't 1912 /// support the operation, but do support the resultant vector type. 1913 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1914 unsigned NumElems = Node->getNumOperands(); 1915 SDValue Value1, Value2; 1916 SDLoc dl(Node); 1917 EVT VT = Node->getValueType(0); 1918 EVT OpVT = Node->getOperand(0).getValueType(); 1919 EVT EltVT = VT.getVectorElementType(); 1920 1921 // If the only non-undef value is the low element, turn this into a 1922 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1923 bool isOnlyLowElement = true; 1924 bool MoreThanTwoValues = false; 1925 bool isConstant = true; 1926 for (unsigned i = 0; i < NumElems; ++i) { 1927 SDValue V = Node->getOperand(i); 1928 if (V.isUndef()) 1929 continue; 1930 if (i > 0) 1931 isOnlyLowElement = false; 1932 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1933 isConstant = false; 1934 1935 if (!Value1.getNode()) { 1936 Value1 = V; 1937 } else if (!Value2.getNode()) { 1938 if (V != Value1) 1939 Value2 = V; 1940 } else if (V != Value1 && V != Value2) { 1941 MoreThanTwoValues = true; 1942 } 1943 } 1944 1945 if (!Value1.getNode()) 1946 return DAG.getUNDEF(VT); 1947 1948 if (isOnlyLowElement) 1949 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1950 1951 // If all elements are constants, create a load from the constant pool. 1952 if (isConstant) { 1953 SmallVector<Constant*, 16> CV; 1954 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1955 if (ConstantFPSDNode *V = 1956 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1957 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1958 } else if (ConstantSDNode *V = 1959 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1960 if (OpVT==EltVT) 1961 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1962 else { 1963 // If OpVT and EltVT don't match, EltVT is not legal and the 1964 // element values have been promoted/truncated earlier. Undo this; 1965 // we don't want a v16i8 to become a v16i32 for example. 1966 const ConstantInt *CI = V->getConstantIntValue(); 1967 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1968 CI->getZExtValue())); 1969 } 1970 } else { 1971 assert(Node->getOperand(i).isUndef()); 1972 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1973 CV.push_back(UndefValue::get(OpNTy)); 1974 } 1975 } 1976 Constant *CP = ConstantVector::get(CV); 1977 SDValue CPIdx = 1978 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 1979 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 1980 return DAG.getLoad( 1981 VT, dl, DAG.getEntryNode(), CPIdx, 1982 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 1983 Alignment); 1984 } 1985 1986 SmallSet<SDValue, 16> DefinedValues; 1987 for (unsigned i = 0; i < NumElems; ++i) { 1988 if (Node->getOperand(i).isUndef()) 1989 continue; 1990 DefinedValues.insert(Node->getOperand(i)); 1991 } 1992 1993 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 1994 if (!MoreThanTwoValues) { 1995 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1996 for (unsigned i = 0; i < NumElems; ++i) { 1997 SDValue V = Node->getOperand(i); 1998 if (V.isUndef()) 1999 continue; 2000 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 2001 } 2002 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 2003 // Get the splatted value into the low element of a vector register. 2004 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 2005 SDValue Vec2; 2006 if (Value2.getNode()) 2007 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 2008 else 2009 Vec2 = DAG.getUNDEF(VT); 2010 2011 // Return shuffle(LowValVec, undef, <0,0,0,0>) 2012 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 2013 } 2014 } else { 2015 SDValue Res; 2016 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 2017 return Res; 2018 } 2019 } 2020 2021 // Otherwise, we can't handle this case efficiently. 2022 return ExpandVectorBuildThroughStack(Node); 2023 } 2024 2025 // Expand a node into a call to a libcall. If the result value 2026 // does not fit into a register, return the lo part and set the hi part to the 2027 // by-reg argument. If it does fit into a single register, return the result 2028 // and leave the Hi part unset. 2029 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2030 bool isSigned) { 2031 TargetLowering::ArgListTy Args; 2032 TargetLowering::ArgListEntry Entry; 2033 for (const SDValue &Op : Node->op_values()) { 2034 EVT ArgVT = Op.getValueType(); 2035 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2036 Entry.Node = Op; 2037 Entry.Ty = ArgTy; 2038 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2039 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2040 Args.push_back(Entry); 2041 } 2042 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2043 TLI.getPointerTy(DAG.getDataLayout())); 2044 2045 EVT RetVT = Node->getValueType(0); 2046 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2047 2048 // By default, the input chain to this libcall is the entry node of the 2049 // function. If the libcall is going to be emitted as a tail call then 2050 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2051 // node which is being folded has a non-entry input chain. 2052 SDValue InChain = DAG.getEntryNode(); 2053 2054 // isTailCall may be true since the callee does not reference caller stack 2055 // frame. Check if it's in the right position and that the return types match. 2056 SDValue TCChain = InChain; 2057 const Function &F = DAG.getMachineFunction().getFunction(); 2058 bool isTailCall = 2059 TLI.isInTailCallPosition(DAG, Node, TCChain) && 2060 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 2061 if (isTailCall) 2062 InChain = TCChain; 2063 2064 TargetLowering::CallLoweringInfo CLI(DAG); 2065 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2066 CLI.setDebugLoc(SDLoc(Node)) 2067 .setChain(InChain) 2068 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2069 std::move(Args)) 2070 .setTailCall(isTailCall) 2071 .setSExtResult(signExtend) 2072 .setZExtResult(!signExtend) 2073 .setIsPostTypeLegalization(true); 2074 2075 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2076 2077 if (!CallInfo.second.getNode()) { 2078 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump()); 2079 // It's a tailcall, return the chain (which is the DAG root). 2080 return DAG.getRoot(); 2081 } 2082 2083 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump()); 2084 return CallInfo.first; 2085 } 2086 2087 // Expand a node into a call to a libcall. Similar to 2088 // ExpandLibCall except that the first operand is the in-chain. 2089 std::pair<SDValue, SDValue> 2090 SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC, 2091 SDNode *Node, 2092 bool isSigned) { 2093 SDValue InChain = Node->getOperand(0); 2094 2095 TargetLowering::ArgListTy Args; 2096 TargetLowering::ArgListEntry Entry; 2097 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { 2098 EVT ArgVT = Node->getOperand(i).getValueType(); 2099 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2100 Entry.Node = Node->getOperand(i); 2101 Entry.Ty = ArgTy; 2102 Entry.IsSExt = isSigned; 2103 Entry.IsZExt = !isSigned; 2104 Args.push_back(Entry); 2105 } 2106 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2107 TLI.getPointerTy(DAG.getDataLayout())); 2108 2109 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 2110 2111 TargetLowering::CallLoweringInfo CLI(DAG); 2112 CLI.setDebugLoc(SDLoc(Node)) 2113 .setChain(InChain) 2114 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2115 std::move(Args)) 2116 .setSExtResult(isSigned) 2117 .setZExtResult(!isSigned); 2118 2119 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2120 2121 return CallInfo; 2122 } 2123 2124 SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2125 RTLIB::Libcall Call_F32, 2126 RTLIB::Libcall Call_F64, 2127 RTLIB::Libcall Call_F80, 2128 RTLIB::Libcall Call_F128, 2129 RTLIB::Libcall Call_PPCF128) { 2130 if (Node->isStrictFPOpcode()) 2131 Node = DAG.mutateStrictFPToFP(Node); 2132 2133 RTLIB::Libcall LC; 2134 switch (Node->getSimpleValueType(0).SimpleTy) { 2135 default: llvm_unreachable("Unexpected request for libcall!"); 2136 case MVT::f32: LC = Call_F32; break; 2137 case MVT::f64: LC = Call_F64; break; 2138 case MVT::f80: LC = Call_F80; break; 2139 case MVT::f128: LC = Call_F128; break; 2140 case MVT::ppcf128: LC = Call_PPCF128; break; 2141 } 2142 return ExpandLibCall(LC, Node, false); 2143 } 2144 2145 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2146 RTLIB::Libcall Call_I8, 2147 RTLIB::Libcall Call_I16, 2148 RTLIB::Libcall Call_I32, 2149 RTLIB::Libcall Call_I64, 2150 RTLIB::Libcall Call_I128) { 2151 RTLIB::Libcall LC; 2152 switch (Node->getSimpleValueType(0).SimpleTy) { 2153 default: llvm_unreachable("Unexpected request for libcall!"); 2154 case MVT::i8: LC = Call_I8; break; 2155 case MVT::i16: LC = Call_I16; break; 2156 case MVT::i32: LC = Call_I32; break; 2157 case MVT::i64: LC = Call_I64; break; 2158 case MVT::i128: LC = Call_I128; break; 2159 } 2160 return ExpandLibCall(LC, Node, isSigned); 2161 } 2162 2163 /// Expand the node to a libcall based on first argument type (for instance 2164 /// lround and its variant). 2165 SDValue SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node, 2166 RTLIB::Libcall Call_F32, 2167 RTLIB::Libcall Call_F64, 2168 RTLIB::Libcall Call_F80, 2169 RTLIB::Libcall Call_F128, 2170 RTLIB::Libcall Call_PPCF128) { 2171 RTLIB::Libcall LC; 2172 switch (Node->getOperand(0).getValueType().getSimpleVT().SimpleTy) { 2173 default: llvm_unreachable("Unexpected request for libcall!"); 2174 case MVT::f32: LC = Call_F32; break; 2175 case MVT::f64: LC = Call_F64; break; 2176 case MVT::f80: LC = Call_F80; break; 2177 case MVT::f128: LC = Call_F128; break; 2178 case MVT::ppcf128: LC = Call_PPCF128; break; 2179 } 2180 2181 return ExpandLibCall(LC, Node, false); 2182 } 2183 2184 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2185 void 2186 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2187 SmallVectorImpl<SDValue> &Results) { 2188 unsigned Opcode = Node->getOpcode(); 2189 bool isSigned = Opcode == ISD::SDIVREM; 2190 2191 RTLIB::Libcall LC; 2192 switch (Node->getSimpleValueType(0).SimpleTy) { 2193 default: llvm_unreachable("Unexpected request for libcall!"); 2194 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2195 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2196 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2197 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2198 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2199 } 2200 2201 // The input chain to this libcall is the entry node of the function. 2202 // Legalizing the call will automatically add the previous call to the 2203 // dependence. 2204 SDValue InChain = DAG.getEntryNode(); 2205 2206 EVT RetVT = Node->getValueType(0); 2207 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2208 2209 TargetLowering::ArgListTy Args; 2210 TargetLowering::ArgListEntry Entry; 2211 for (const SDValue &Op : Node->op_values()) { 2212 EVT ArgVT = Op.getValueType(); 2213 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2214 Entry.Node = Op; 2215 Entry.Ty = ArgTy; 2216 Entry.IsSExt = isSigned; 2217 Entry.IsZExt = !isSigned; 2218 Args.push_back(Entry); 2219 } 2220 2221 // Also pass the return address of the remainder. 2222 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2223 Entry.Node = FIPtr; 2224 Entry.Ty = RetTy->getPointerTo(); 2225 Entry.IsSExt = isSigned; 2226 Entry.IsZExt = !isSigned; 2227 Args.push_back(Entry); 2228 2229 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2230 TLI.getPointerTy(DAG.getDataLayout())); 2231 2232 SDLoc dl(Node); 2233 TargetLowering::CallLoweringInfo CLI(DAG); 2234 CLI.setDebugLoc(dl) 2235 .setChain(InChain) 2236 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2237 std::move(Args)) 2238 .setSExtResult(isSigned) 2239 .setZExtResult(!isSigned); 2240 2241 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2242 2243 // Remainder is loaded back from the stack frame. 2244 SDValue Rem = 2245 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2246 Results.push_back(CallInfo.first); 2247 Results.push_back(Rem); 2248 } 2249 2250 /// Return true if sincos libcall is available. 2251 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2252 RTLIB::Libcall LC; 2253 switch (Node->getSimpleValueType(0).SimpleTy) { 2254 default: llvm_unreachable("Unexpected request for libcall!"); 2255 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2256 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2257 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2258 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2259 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2260 } 2261 return TLI.getLibcallName(LC) != nullptr; 2262 } 2263 2264 /// Only issue sincos libcall if both sin and cos are needed. 2265 static bool useSinCos(SDNode *Node) { 2266 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2267 ? ISD::FCOS : ISD::FSIN; 2268 2269 SDValue Op0 = Node->getOperand(0); 2270 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2271 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2272 SDNode *User = *UI; 2273 if (User == Node) 2274 continue; 2275 // The other user might have been turned into sincos already. 2276 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2277 return true; 2278 } 2279 return false; 2280 } 2281 2282 /// Issue libcalls to sincos to compute sin / cos pairs. 2283 void 2284 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2285 SmallVectorImpl<SDValue> &Results) { 2286 RTLIB::Libcall LC; 2287 switch (Node->getSimpleValueType(0).SimpleTy) { 2288 default: llvm_unreachable("Unexpected request for libcall!"); 2289 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2290 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2291 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2292 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2293 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2294 } 2295 2296 // The input chain to this libcall is the entry node of the function. 2297 // Legalizing the call will automatically add the previous call to the 2298 // dependence. 2299 SDValue InChain = DAG.getEntryNode(); 2300 2301 EVT RetVT = Node->getValueType(0); 2302 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2303 2304 TargetLowering::ArgListTy Args; 2305 TargetLowering::ArgListEntry Entry; 2306 2307 // Pass the argument. 2308 Entry.Node = Node->getOperand(0); 2309 Entry.Ty = RetTy; 2310 Entry.IsSExt = false; 2311 Entry.IsZExt = false; 2312 Args.push_back(Entry); 2313 2314 // Pass the return address of sin. 2315 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2316 Entry.Node = SinPtr; 2317 Entry.Ty = RetTy->getPointerTo(); 2318 Entry.IsSExt = false; 2319 Entry.IsZExt = false; 2320 Args.push_back(Entry); 2321 2322 // Also pass the return address of the cos. 2323 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2324 Entry.Node = CosPtr; 2325 Entry.Ty = RetTy->getPointerTo(); 2326 Entry.IsSExt = false; 2327 Entry.IsZExt = false; 2328 Args.push_back(Entry); 2329 2330 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2331 TLI.getPointerTy(DAG.getDataLayout())); 2332 2333 SDLoc dl(Node); 2334 TargetLowering::CallLoweringInfo CLI(DAG); 2335 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2336 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2337 std::move(Args)); 2338 2339 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2340 2341 Results.push_back( 2342 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2343 Results.push_back( 2344 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2345 } 2346 2347 /// This function is responsible for legalizing a 2348 /// INT_TO_FP operation of the specified operand when the target requests that 2349 /// we expand it. At this point, we know that the result and operand types are 2350 /// legal for the target. 2351 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0, 2352 EVT DestVT, 2353 const SDLoc &dl) { 2354 EVT SrcVT = Op0.getValueType(); 2355 2356 // TODO: Should any fast-math-flags be set for the created nodes? 2357 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2358 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { 2359 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2360 "expansion\n"); 2361 2362 // Get the stack frame index of a 8 byte buffer. 2363 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2364 2365 // word offset constant for Hi/Lo address computation 2366 SDValue WordOff = DAG.getConstant(sizeof(int), dl, 2367 StackSlot.getValueType()); 2368 // set up Hi and Lo (into buffer) address based on endian 2369 SDValue Hi = StackSlot; 2370 SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(), 2371 StackSlot, WordOff); 2372 if (DAG.getDataLayout().isLittleEndian()) 2373 std::swap(Hi, Lo); 2374 2375 // if signed map to unsigned space 2376 SDValue Op0Mapped; 2377 if (isSigned) { 2378 // constant used to invert sign bit (signed to unsigned mapping) 2379 SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32); 2380 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); 2381 } else { 2382 Op0Mapped = Op0; 2383 } 2384 // store the lo of the constructed double - based on integer input 2385 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo, 2386 MachinePointerInfo()); 2387 // initial hi portion of constructed double 2388 SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2389 // store the hi of the constructed double - biased exponent 2390 SDValue Store2 = 2391 DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo()); 2392 // load the constructed double 2393 SDValue Load = 2394 DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo()); 2395 // FP constant to bias correct the final result 2396 SDValue Bias = DAG.getConstantFP(isSigned ? 2397 BitsToDouble(0x4330000080000000ULL) : 2398 BitsToDouble(0x4330000000000000ULL), 2399 dl, MVT::f64); 2400 // subtract the bias 2401 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2402 // final result 2403 SDValue Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); 2404 return Result; 2405 } 2406 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2407 // Code below here assumes !isSigned without checking again. 2408 2409 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2410 2411 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, 2412 DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2413 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2414 Four = DAG.getIntPtrConstant(4, dl); 2415 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2416 SignSet, Four, Zero); 2417 2418 // If the sign bit of the integer is set, the large number will be treated 2419 // as a negative number. To counteract this, the dynamic code adds an 2420 // offset depending on the data type. 2421 uint64_t FF; 2422 switch (SrcVT.getSimpleVT().SimpleTy) { 2423 default: llvm_unreachable("Unsupported integer type!"); 2424 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2425 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2426 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2427 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2428 } 2429 if (DAG.getDataLayout().isLittleEndian()) 2430 FF <<= 32; 2431 Constant *FudgeFactor = ConstantInt::get( 2432 Type::getInt64Ty(*DAG.getContext()), FF); 2433 2434 SDValue CPIdx = 2435 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2436 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2437 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2438 Alignment = std::min(Alignment, 4u); 2439 SDValue FudgeInReg; 2440 if (DestVT == MVT::f32) 2441 FudgeInReg = DAG.getLoad( 2442 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2443 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2444 Alignment); 2445 else { 2446 SDValue Load = DAG.getExtLoad( 2447 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2448 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2449 Alignment); 2450 HandleSDNode Handle(Load); 2451 LegalizeOp(Load.getNode()); 2452 FudgeInReg = Handle.getValue(); 2453 } 2454 2455 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2456 } 2457 2458 /// This function is responsible for legalizing a 2459 /// *INT_TO_FP operation of the specified operand when the target requests that 2460 /// we promote it. At this point, we know that the result and operand types are 2461 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2462 /// operation that takes a larger input. 2463 SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, 2464 bool isSigned, 2465 const SDLoc &dl) { 2466 // First step, figure out the appropriate *INT_TO_FP operation to use. 2467 EVT NewInTy = LegalOp.getValueType(); 2468 2469 unsigned OpToUse = 0; 2470 2471 // Scan for the appropriate larger type to use. 2472 while (true) { 2473 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2474 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2475 2476 // If the target supports SINT_TO_FP of this type, use it. 2477 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { 2478 OpToUse = ISD::SINT_TO_FP; 2479 break; 2480 } 2481 if (isSigned) continue; 2482 2483 // If the target supports UINT_TO_FP of this type, use it. 2484 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { 2485 OpToUse = ISD::UINT_TO_FP; 2486 break; 2487 } 2488 2489 // Otherwise, try a larger type. 2490 } 2491 2492 // Okay, we found the operation and type to use. Zero extend our input to the 2493 // desired type then run the operation on it. 2494 return DAG.getNode(OpToUse, dl, DestVT, 2495 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2496 dl, NewInTy, LegalOp)); 2497 } 2498 2499 /// This function is responsible for legalizing a 2500 /// FP_TO_*INT operation of the specified operand when the target requests that 2501 /// we promote it. At this point, we know that the result and operand types are 2502 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2503 /// operation that returns a larger result. 2504 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, 2505 bool isSigned, 2506 const SDLoc &dl) { 2507 // First step, figure out the appropriate FP_TO*INT operation to use. 2508 EVT NewOutTy = DestVT; 2509 2510 unsigned OpToUse = 0; 2511 2512 // Scan for the appropriate larger type to use. 2513 while (true) { 2514 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2515 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2516 2517 // A larger signed type can hold all unsigned values of the requested type, 2518 // so using FP_TO_SINT is valid 2519 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { 2520 OpToUse = ISD::FP_TO_SINT; 2521 break; 2522 } 2523 2524 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2525 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { 2526 OpToUse = ISD::FP_TO_UINT; 2527 break; 2528 } 2529 2530 // Otherwise, try a larger type. 2531 } 2532 2533 // Okay, we found the operation and type to use. 2534 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2535 2536 // Truncate the result of the extended FP_TO_*INT operation to the desired 2537 // size. 2538 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2539 } 2540 2541 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts. 2542 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) { 2543 EVT VT = Op.getValueType(); 2544 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2545 unsigned Sz = VT.getScalarSizeInBits(); 2546 2547 SDValue Tmp, Tmp2, Tmp3; 2548 2549 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 2550 // and finally the i1 pairs. 2551 // TODO: We can easily support i4/i2 legal types if any target ever does. 2552 if (Sz >= 8 && isPowerOf2_32(Sz)) { 2553 // Create the masks - repeating the pattern every byte. 2554 APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0)); 2555 APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC)); 2556 APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA)); 2557 APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 2558 APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33)); 2559 APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55)); 2560 2561 // BSWAP if the type is wider than a single byte. 2562 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 2563 2564 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) 2565 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); 2566 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); 2567 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT)); 2568 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 2569 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2570 2571 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) 2572 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); 2573 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); 2574 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT)); 2575 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 2576 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2577 2578 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) 2579 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); 2580 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); 2581 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT)); 2582 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 2583 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2584 return Tmp; 2585 } 2586 2587 Tmp = DAG.getConstant(0, dl, VT); 2588 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 2589 if (I < J) 2590 Tmp2 = 2591 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 2592 else 2593 Tmp2 = 2594 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 2595 2596 APInt Shift(Sz, 1); 2597 Shift <<= J; 2598 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 2599 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 2600 } 2601 2602 return Tmp; 2603 } 2604 2605 /// Open code the operations for BSWAP of the specified operation. 2606 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) { 2607 EVT VT = Op.getValueType(); 2608 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2609 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2610 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 2611 default: llvm_unreachable("Unhandled Expand type in BSWAP!"); 2612 case MVT::i16: 2613 // Use a rotate by 8. This can be further expanded if necessary. 2614 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2615 case MVT::i32: 2616 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2617 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2618 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2619 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2620 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2621 DAG.getConstant(0xFF0000, dl, VT)); 2622 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 2623 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2624 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2625 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2626 case MVT::i64: 2627 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2628 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2629 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2630 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2631 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2632 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2633 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2634 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2635 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 2636 DAG.getConstant(255ULL<<48, dl, VT)); 2637 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 2638 DAG.getConstant(255ULL<<40, dl, VT)); 2639 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 2640 DAG.getConstant(255ULL<<32, dl, VT)); 2641 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 2642 DAG.getConstant(255ULL<<24, dl, VT)); 2643 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2644 DAG.getConstant(255ULL<<16, dl, VT)); 2645 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 2646 DAG.getConstant(255ULL<<8 , dl, VT)); 2647 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2648 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2649 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2650 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2651 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2652 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2653 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2654 } 2655 } 2656 2657 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2658 LLVM_DEBUG(dbgs() << "Trying to expand node\n"); 2659 SmallVector<SDValue, 8> Results; 2660 SDLoc dl(Node); 2661 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2662 bool NeedInvert; 2663 switch (Node->getOpcode()) { 2664 case ISD::ABS: 2665 if (TLI.expandABS(Node, Tmp1, DAG)) 2666 Results.push_back(Tmp1); 2667 break; 2668 case ISD::CTPOP: 2669 if (TLI.expandCTPOP(Node, Tmp1, DAG)) 2670 Results.push_back(Tmp1); 2671 break; 2672 case ISD::CTLZ: 2673 case ISD::CTLZ_ZERO_UNDEF: 2674 if (TLI.expandCTLZ(Node, Tmp1, DAG)) 2675 Results.push_back(Tmp1); 2676 break; 2677 case ISD::CTTZ: 2678 case ISD::CTTZ_ZERO_UNDEF: 2679 if (TLI.expandCTTZ(Node, Tmp1, DAG)) 2680 Results.push_back(Tmp1); 2681 break; 2682 case ISD::BITREVERSE: 2683 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl)); 2684 break; 2685 case ISD::BSWAP: 2686 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2687 break; 2688 case ISD::FRAMEADDR: 2689 case ISD::RETURNADDR: 2690 case ISD::FRAME_TO_ARGS_OFFSET: 2691 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2692 break; 2693 case ISD::EH_DWARF_CFA: { 2694 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 2695 TLI.getPointerTy(DAG.getDataLayout())); 2696 SDValue Offset = DAG.getNode(ISD::ADD, dl, 2697 CfaArg.getValueType(), 2698 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 2699 CfaArg.getValueType()), 2700 CfaArg); 2701 SDValue FA = DAG.getNode( 2702 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 2703 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2704 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 2705 FA, Offset)); 2706 break; 2707 } 2708 case ISD::FLT_ROUNDS_: 2709 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2710 break; 2711 case ISD::EH_RETURN: 2712 case ISD::EH_LABEL: 2713 case ISD::PREFETCH: 2714 case ISD::VAEND: 2715 case ISD::EH_SJLJ_LONGJMP: 2716 // If the target didn't expand these, there's nothing to do, so just 2717 // preserve the chain and be done. 2718 Results.push_back(Node->getOperand(0)); 2719 break; 2720 case ISD::READCYCLECOUNTER: 2721 // If the target didn't expand this, just return 'zero' and preserve the 2722 // chain. 2723 Results.append(Node->getNumValues() - 1, 2724 DAG.getConstant(0, dl, Node->getValueType(0))); 2725 Results.push_back(Node->getOperand(0)); 2726 break; 2727 case ISD::EH_SJLJ_SETJMP: 2728 // If the target didn't expand this, just return 'zero' and preserve the 2729 // chain. 2730 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2731 Results.push_back(Node->getOperand(0)); 2732 break; 2733 case ISD::ATOMIC_LOAD: { 2734 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2735 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2736 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2737 SDValue Swap = DAG.getAtomicCmpSwap( 2738 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2739 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2740 cast<AtomicSDNode>(Node)->getMemOperand()); 2741 Results.push_back(Swap.getValue(0)); 2742 Results.push_back(Swap.getValue(1)); 2743 break; 2744 } 2745 case ISD::ATOMIC_STORE: { 2746 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2747 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2748 cast<AtomicSDNode>(Node)->getMemoryVT(), 2749 Node->getOperand(0), 2750 Node->getOperand(1), Node->getOperand(2), 2751 cast<AtomicSDNode>(Node)->getMemOperand()); 2752 Results.push_back(Swap.getValue(1)); 2753 break; 2754 } 2755 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 2756 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 2757 // splits out the success value as a comparison. Expanding the resulting 2758 // ATOMIC_CMP_SWAP will produce a libcall. 2759 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2760 SDValue Res = DAG.getAtomicCmpSwap( 2761 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2762 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 2763 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 2764 2765 SDValue ExtRes = Res; 2766 SDValue LHS = Res; 2767 SDValue RHS = Node->getOperand(1); 2768 2769 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 2770 EVT OuterType = Node->getValueType(0); 2771 switch (TLI.getExtendForAtomicOps()) { 2772 case ISD::SIGN_EXTEND: 2773 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 2774 DAG.getValueType(AtomicType)); 2775 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 2776 Node->getOperand(2), DAG.getValueType(AtomicType)); 2777 ExtRes = LHS; 2778 break; 2779 case ISD::ZERO_EXTEND: 2780 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 2781 DAG.getValueType(AtomicType)); 2782 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2783 ExtRes = LHS; 2784 break; 2785 case ISD::ANY_EXTEND: 2786 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 2787 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2788 break; 2789 default: 2790 llvm_unreachable("Invalid atomic op extension"); 2791 } 2792 2793 SDValue Success = 2794 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 2795 2796 Results.push_back(ExtRes.getValue(0)); 2797 Results.push_back(Success); 2798 Results.push_back(Res.getValue(1)); 2799 break; 2800 } 2801 case ISD::DYNAMIC_STACKALLOC: 2802 ExpandDYNAMIC_STACKALLOC(Node, Results); 2803 break; 2804 case ISD::MERGE_VALUES: 2805 for (unsigned i = 0; i < Node->getNumValues(); i++) 2806 Results.push_back(Node->getOperand(i)); 2807 break; 2808 case ISD::UNDEF: { 2809 EVT VT = Node->getValueType(0); 2810 if (VT.isInteger()) 2811 Results.push_back(DAG.getConstant(0, dl, VT)); 2812 else { 2813 assert(VT.isFloatingPoint() && "Unknown value type!"); 2814 Results.push_back(DAG.getConstantFP(0, dl, VT)); 2815 } 2816 break; 2817 } 2818 case ISD::STRICT_FP_ROUND: 2819 Tmp1 = EmitStackConvert(Node->getOperand(1), 2820 Node->getValueType(0), 2821 Node->getValueType(0), dl, Node->getOperand(0)); 2822 ReplaceNode(Node, Tmp1.getNode()); 2823 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n"); 2824 return true; 2825 case ISD::FP_ROUND: 2826 case ISD::BITCAST: 2827 Tmp1 = EmitStackConvert(Node->getOperand(0), 2828 Node->getValueType(0), 2829 Node->getValueType(0), dl); 2830 Results.push_back(Tmp1); 2831 break; 2832 case ISD::STRICT_FP_EXTEND: 2833 Tmp1 = EmitStackConvert(Node->getOperand(1), 2834 Node->getOperand(1).getValueType(), 2835 Node->getValueType(0), dl, Node->getOperand(0)); 2836 ReplaceNode(Node, Tmp1.getNode()); 2837 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n"); 2838 return true; 2839 case ISD::FP_EXTEND: 2840 Tmp1 = EmitStackConvert(Node->getOperand(0), 2841 Node->getOperand(0).getValueType(), 2842 Node->getValueType(0), dl); 2843 Results.push_back(Tmp1); 2844 break; 2845 case ISD::SIGN_EXTEND_INREG: { 2846 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2847 EVT VT = Node->getValueType(0); 2848 2849 // An in-register sign-extend of a boolean is a negation: 2850 // 'true' (1) sign-extended is -1. 2851 // 'false' (0) sign-extended is 0. 2852 // However, we must mask the high bits of the source operand because the 2853 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 2854 2855 // TODO: Do this for vectors too? 2856 if (ExtraVT.getSizeInBits() == 1) { 2857 SDValue One = DAG.getConstant(1, dl, VT); 2858 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 2859 SDValue Zero = DAG.getConstant(0, dl, VT); 2860 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 2861 Results.push_back(Neg); 2862 break; 2863 } 2864 2865 // NOTE: we could fall back on load/store here too for targets without 2866 // SRA. However, it is doubtful that any exist. 2867 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2868 unsigned BitsDiff = VT.getScalarSizeInBits() - 2869 ExtraVT.getScalarSizeInBits(); 2870 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 2871 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 2872 Node->getOperand(0), ShiftCst); 2873 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 2874 Results.push_back(Tmp1); 2875 break; 2876 } 2877 case ISD::FP_ROUND_INREG: { 2878 // The only way we can lower this is to turn it into a TRUNCSTORE, 2879 // EXTLOAD pair, targeting a temporary location (a stack slot). 2880 2881 // NOTE: there is a choice here between constantly creating new stack 2882 // slots and always reusing the same one. We currently always create 2883 // new ones, as reuse may inhibit scheduling. 2884 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2885 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT, 2886 Node->getValueType(0), dl); 2887 Results.push_back(Tmp1); 2888 break; 2889 } 2890 case ISD::UINT_TO_FP: 2891 if (TLI.expandUINT_TO_FP(Node, Tmp1, DAG)) { 2892 Results.push_back(Tmp1); 2893 break; 2894 } 2895 LLVM_FALLTHROUGH; 2896 case ISD::SINT_TO_FP: 2897 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, 2898 Node->getOperand(0), Node->getValueType(0), dl); 2899 Results.push_back(Tmp1); 2900 break; 2901 case ISD::FP_TO_SINT: 2902 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 2903 Results.push_back(Tmp1); 2904 break; 2905 case ISD::FP_TO_UINT: 2906 if (TLI.expandFP_TO_UINT(Node, Tmp1, DAG)) 2907 Results.push_back(Tmp1); 2908 break; 2909 case ISD::LROUND: 2910 Results.push_back(ExpandArgFPLibCall(Node, RTLIB::LROUND_F32, 2911 RTLIB::LROUND_F64, RTLIB::LROUND_F80, 2912 RTLIB::LROUND_F128, 2913 RTLIB::LROUND_PPCF128)); 2914 break; 2915 case ISD::LLROUND: 2916 Results.push_back(ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32, 2917 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, 2918 RTLIB::LLROUND_F128, 2919 RTLIB::LLROUND_PPCF128)); 2920 break; 2921 case ISD::VAARG: 2922 Results.push_back(DAG.expandVAArg(Node)); 2923 Results.push_back(Results[0].getValue(1)); 2924 break; 2925 case ISD::VACOPY: 2926 Results.push_back(DAG.expandVACopy(Node)); 2927 break; 2928 case ISD::EXTRACT_VECTOR_ELT: 2929 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 2930 // This must be an access of the only element. Return it. 2931 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 2932 Node->getOperand(0)); 2933 else 2934 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 2935 Results.push_back(Tmp1); 2936 break; 2937 case ISD::EXTRACT_SUBVECTOR: 2938 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 2939 break; 2940 case ISD::INSERT_SUBVECTOR: 2941 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 2942 break; 2943 case ISD::CONCAT_VECTORS: 2944 Results.push_back(ExpandVectorBuildThroughStack(Node)); 2945 break; 2946 case ISD::SCALAR_TO_VECTOR: 2947 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 2948 break; 2949 case ISD::INSERT_VECTOR_ELT: 2950 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 2951 Node->getOperand(1), 2952 Node->getOperand(2), dl)); 2953 break; 2954 case ISD::VECTOR_SHUFFLE: { 2955 SmallVector<int, 32> NewMask; 2956 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 2957 2958 EVT VT = Node->getValueType(0); 2959 EVT EltVT = VT.getVectorElementType(); 2960 SDValue Op0 = Node->getOperand(0); 2961 SDValue Op1 = Node->getOperand(1); 2962 if (!TLI.isTypeLegal(EltVT)) { 2963 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 2964 2965 // BUILD_VECTOR operands are allowed to be wider than the element type. 2966 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 2967 // it. 2968 if (NewEltVT.bitsLT(EltVT)) { 2969 // Convert shuffle node. 2970 // If original node was v4i64 and the new EltVT is i32, 2971 // cast operands to v8i32 and re-build the mask. 2972 2973 // Calculate new VT, the size of the new VT should be equal to original. 2974 EVT NewVT = 2975 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 2976 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 2977 assert(NewVT.bitsEq(VT)); 2978 2979 // cast operands to new VT 2980 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 2981 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 2982 2983 // Convert the shuffle mask 2984 unsigned int factor = 2985 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 2986 2987 // EltVT gets smaller 2988 assert(factor > 0); 2989 2990 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 2991 if (Mask[i] < 0) { 2992 for (unsigned fi = 0; fi < factor; ++fi) 2993 NewMask.push_back(Mask[i]); 2994 } 2995 else { 2996 for (unsigned fi = 0; fi < factor; ++fi) 2997 NewMask.push_back(Mask[i]*factor+fi); 2998 } 2999 } 3000 Mask = NewMask; 3001 VT = NewVT; 3002 } 3003 EltVT = NewEltVT; 3004 } 3005 unsigned NumElems = VT.getVectorNumElements(); 3006 SmallVector<SDValue, 16> Ops; 3007 for (unsigned i = 0; i != NumElems; ++i) { 3008 if (Mask[i] < 0) { 3009 Ops.push_back(DAG.getUNDEF(EltVT)); 3010 continue; 3011 } 3012 unsigned Idx = Mask[i]; 3013 if (Idx < NumElems) 3014 Ops.push_back(DAG.getNode( 3015 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3016 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())))); 3017 else 3018 Ops.push_back(DAG.getNode( 3019 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3020 DAG.getConstant(Idx - NumElems, dl, 3021 TLI.getVectorIdxTy(DAG.getDataLayout())))); 3022 } 3023 3024 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 3025 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3026 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3027 Results.push_back(Tmp1); 3028 break; 3029 } 3030 case ISD::EXTRACT_ELEMENT: { 3031 EVT OpTy = Node->getOperand(0).getValueType(); 3032 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3033 // 1 -> Hi 3034 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3035 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3036 TLI.getShiftAmountTy( 3037 Node->getOperand(0).getValueType(), 3038 DAG.getDataLayout()))); 3039 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3040 } else { 3041 // 0 -> Lo 3042 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3043 Node->getOperand(0)); 3044 } 3045 Results.push_back(Tmp1); 3046 break; 3047 } 3048 case ISD::STACKSAVE: 3049 // Expand to CopyFromReg if the target set 3050 // StackPointerRegisterToSaveRestore. 3051 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3052 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3053 Node->getValueType(0))); 3054 Results.push_back(Results[0].getValue(1)); 3055 } else { 3056 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3057 Results.push_back(Node->getOperand(0)); 3058 } 3059 break; 3060 case ISD::STACKRESTORE: 3061 // Expand to CopyToReg if the target set 3062 // StackPointerRegisterToSaveRestore. 3063 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3064 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3065 Node->getOperand(1))); 3066 } else { 3067 Results.push_back(Node->getOperand(0)); 3068 } 3069 break; 3070 case ISD::GET_DYNAMIC_AREA_OFFSET: 3071 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3072 Results.push_back(Results[0].getValue(0)); 3073 break; 3074 case ISD::FCOPYSIGN: 3075 Results.push_back(ExpandFCOPYSIGN(Node)); 3076 break; 3077 case ISD::FNEG: 3078 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3079 Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0)); 3080 // TODO: If FNEG has fast-math-flags, propagate them to the FSUB. 3081 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, 3082 Node->getOperand(0)); 3083 Results.push_back(Tmp1); 3084 break; 3085 case ISD::FABS: 3086 Results.push_back(ExpandFABS(Node)); 3087 break; 3088 case ISD::SMIN: 3089 case ISD::SMAX: 3090 case ISD::UMIN: 3091 case ISD::UMAX: { 3092 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3093 ISD::CondCode Pred; 3094 switch (Node->getOpcode()) { 3095 default: llvm_unreachable("How did we get here?"); 3096 case ISD::SMAX: Pred = ISD::SETGT; break; 3097 case ISD::SMIN: Pred = ISD::SETLT; break; 3098 case ISD::UMAX: Pred = ISD::SETUGT; break; 3099 case ISD::UMIN: Pred = ISD::SETULT; break; 3100 } 3101 Tmp1 = Node->getOperand(0); 3102 Tmp2 = Node->getOperand(1); 3103 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3104 Results.push_back(Tmp1); 3105 break; 3106 } 3107 case ISD::FMINNUM: 3108 case ISD::FMAXNUM: { 3109 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) 3110 Results.push_back(Expanded); 3111 break; 3112 } 3113 case ISD::FSIN: 3114 case ISD::FCOS: { 3115 EVT VT = Node->getValueType(0); 3116 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3117 // fcos which share the same operand and both are used. 3118 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3119 isSinCosLibcallAvailable(Node, TLI)) 3120 && useSinCos(Node)) { 3121 SDVTList VTs = DAG.getVTList(VT, VT); 3122 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3123 if (Node->getOpcode() == ISD::FCOS) 3124 Tmp1 = Tmp1.getValue(1); 3125 Results.push_back(Tmp1); 3126 } 3127 break; 3128 } 3129 case ISD::FMAD: 3130 llvm_unreachable("Illegal fmad should never be formed"); 3131 3132 case ISD::FP16_TO_FP: 3133 if (Node->getValueType(0) != MVT::f32) { 3134 // We can extend to types bigger than f32 in two steps without changing 3135 // the result. Since "f16 -> f32" is much more commonly available, give 3136 // CodeGen the option of emitting that before resorting to a libcall. 3137 SDValue Res = 3138 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3139 Results.push_back( 3140 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3141 } 3142 break; 3143 case ISD::FP_TO_FP16: 3144 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3145 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3146 SDValue Op = Node->getOperand(0); 3147 MVT SVT = Op.getSimpleValueType(); 3148 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3149 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3150 // Under fastmath, we can expand this node into a fround followed by 3151 // a float-half conversion. 3152 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3153 DAG.getIntPtrConstant(0, dl)); 3154 Results.push_back( 3155 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3156 } 3157 } 3158 break; 3159 case ISD::ConstantFP: { 3160 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3161 // Check to see if this FP immediate is already legal. 3162 // If this is a legal constant, turn it into a TargetConstantFP node. 3163 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0), 3164 DAG.getMachineFunction().getFunction().hasOptSize())) 3165 Results.push_back(ExpandConstantFP(CFP, true)); 3166 break; 3167 } 3168 case ISD::Constant: { 3169 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3170 Results.push_back(ExpandConstant(CP)); 3171 break; 3172 } 3173 case ISD::FSUB: { 3174 EVT VT = Node->getValueType(0); 3175 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3176 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3177 const SDNodeFlags Flags = Node->getFlags(); 3178 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3179 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3180 Results.push_back(Tmp1); 3181 } 3182 break; 3183 } 3184 case ISD::SUB: { 3185 EVT VT = Node->getValueType(0); 3186 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3187 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3188 "Don't know how to expand this subtraction!"); 3189 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3190 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, 3191 VT)); 3192 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3193 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3194 break; 3195 } 3196 case ISD::UREM: 3197 case ISD::SREM: { 3198 EVT VT = Node->getValueType(0); 3199 bool isSigned = Node->getOpcode() == ISD::SREM; 3200 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 3201 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3202 Tmp2 = Node->getOperand(0); 3203 Tmp3 = Node->getOperand(1); 3204 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3205 SDVTList VTs = DAG.getVTList(VT, VT); 3206 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); 3207 Results.push_back(Tmp1); 3208 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { 3209 // X % Y -> X-X/Y*Y 3210 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); 3211 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); 3212 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); 3213 Results.push_back(Tmp1); 3214 } 3215 break; 3216 } 3217 case ISD::UDIV: 3218 case ISD::SDIV: { 3219 bool isSigned = Node->getOpcode() == ISD::SDIV; 3220 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3221 EVT VT = Node->getValueType(0); 3222 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3223 SDVTList VTs = DAG.getVTList(VT, VT); 3224 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3225 Node->getOperand(1)); 3226 Results.push_back(Tmp1); 3227 } 3228 break; 3229 } 3230 case ISD::MULHU: 3231 case ISD::MULHS: { 3232 unsigned ExpandOpcode = 3233 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3234 EVT VT = Node->getValueType(0); 3235 SDVTList VTs = DAG.getVTList(VT, VT); 3236 3237 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3238 Node->getOperand(1)); 3239 Results.push_back(Tmp1.getValue(1)); 3240 break; 3241 } 3242 case ISD::UMUL_LOHI: 3243 case ISD::SMUL_LOHI: { 3244 SDValue LHS = Node->getOperand(0); 3245 SDValue RHS = Node->getOperand(1); 3246 MVT VT = LHS.getSimpleValueType(); 3247 unsigned MULHOpcode = 3248 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3249 3250 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3251 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3252 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3253 break; 3254 } 3255 3256 SmallVector<SDValue, 4> Halves; 3257 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3258 assert(TLI.isTypeLegal(HalfType)); 3259 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves, 3260 HalfType, DAG, 3261 TargetLowering::MulExpansionKind::Always)) { 3262 for (unsigned i = 0; i < 2; ++i) { 3263 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3264 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3265 SDValue Shift = DAG.getConstant( 3266 HalfType.getScalarSizeInBits(), dl, 3267 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3268 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3269 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3270 } 3271 break; 3272 } 3273 break; 3274 } 3275 case ISD::MUL: { 3276 EVT VT = Node->getValueType(0); 3277 SDVTList VTs = DAG.getVTList(VT, VT); 3278 // See if multiply or divide can be lowered using two-result operations. 3279 // We just need the low half of the multiply; try both the signed 3280 // and unsigned forms. If the target supports both SMUL_LOHI and 3281 // UMUL_LOHI, form a preference by checking which forms of plain 3282 // MULH it supports. 3283 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3284 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3285 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3286 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3287 unsigned OpToUse = 0; 3288 if (HasSMUL_LOHI && !HasMULHS) { 3289 OpToUse = ISD::SMUL_LOHI; 3290 } else if (HasUMUL_LOHI && !HasMULHU) { 3291 OpToUse = ISD::UMUL_LOHI; 3292 } else if (HasSMUL_LOHI) { 3293 OpToUse = ISD::SMUL_LOHI; 3294 } else if (HasUMUL_LOHI) { 3295 OpToUse = ISD::UMUL_LOHI; 3296 } 3297 if (OpToUse) { 3298 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3299 Node->getOperand(1))); 3300 break; 3301 } 3302 3303 SDValue Lo, Hi; 3304 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3305 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3306 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3307 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3308 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3309 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3310 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3311 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3312 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3313 SDValue Shift = 3314 DAG.getConstant(HalfType.getSizeInBits(), dl, 3315 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3316 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3317 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3318 } 3319 break; 3320 } 3321 case ISD::FSHL: 3322 case ISD::FSHR: 3323 if (TLI.expandFunnelShift(Node, Tmp1, DAG)) 3324 Results.push_back(Tmp1); 3325 break; 3326 case ISD::ROTL: 3327 case ISD::ROTR: 3328 if (TLI.expandROT(Node, Tmp1, DAG)) 3329 Results.push_back(Tmp1); 3330 break; 3331 case ISD::SADDSAT: 3332 case ISD::UADDSAT: 3333 case ISD::SSUBSAT: 3334 case ISD::USUBSAT: 3335 Results.push_back(TLI.expandAddSubSat(Node, DAG)); 3336 break; 3337 case ISD::SMULFIX: 3338 case ISD::SMULFIXSAT: 3339 case ISD::UMULFIX: 3340 Results.push_back(TLI.expandFixedPointMul(Node, DAG)); 3341 break; 3342 case ISD::ADDCARRY: 3343 case ISD::SUBCARRY: { 3344 SDValue LHS = Node->getOperand(0); 3345 SDValue RHS = Node->getOperand(1); 3346 SDValue Carry = Node->getOperand(2); 3347 3348 bool IsAdd = Node->getOpcode() == ISD::ADDCARRY; 3349 3350 // Initial add of the 2 operands. 3351 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB; 3352 EVT VT = LHS.getValueType(); 3353 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS); 3354 3355 // Initial check for overflow. 3356 EVT CarryType = Node->getValueType(1); 3357 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3358 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 3359 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3360 3361 // Add of the sum and the carry. 3362 SDValue CarryExt = 3363 DAG.getZeroExtendInReg(DAG.getZExtOrTrunc(Carry, dl, VT), dl, MVT::i1); 3364 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt); 3365 3366 // Second check for overflow. If we are adding, we can only overflow if the 3367 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0. 3368 // If we are subtracting, we can only overflow if the initial sum is 0 and 3369 // the carry is set, resulting in a new sum of all 1s. 3370 SDValue Zero = DAG.getConstant(0, dl, VT); 3371 SDValue Overflow2 = 3372 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ) 3373 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ); 3374 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2, 3375 DAG.getZExtOrTrunc(Carry, dl, SetCCType)); 3376 3377 SDValue ResultCarry = 3378 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2); 3379 3380 Results.push_back(Sum2); 3381 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT)); 3382 break; 3383 } 3384 case ISD::SADDO: 3385 case ISD::SSUBO: { 3386 SDValue Result, Overflow; 3387 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 3388 Results.push_back(Result); 3389 Results.push_back(Overflow); 3390 break; 3391 } 3392 case ISD::UADDO: 3393 case ISD::USUBO: { 3394 SDValue Result, Overflow; 3395 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 3396 Results.push_back(Result); 3397 Results.push_back(Overflow); 3398 break; 3399 } 3400 case ISD::UMULO: 3401 case ISD::SMULO: { 3402 SDValue Result, Overflow; 3403 if (TLI.expandMULO(Node, Result, Overflow, DAG)) { 3404 Results.push_back(Result); 3405 Results.push_back(Overflow); 3406 } 3407 break; 3408 } 3409 case ISD::BUILD_PAIR: { 3410 EVT PairTy = Node->getValueType(0); 3411 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3412 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3413 Tmp2 = DAG.getNode( 3414 ISD::SHL, dl, PairTy, Tmp2, 3415 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3416 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3417 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3418 break; 3419 } 3420 case ISD::SELECT: 3421 Tmp1 = Node->getOperand(0); 3422 Tmp2 = Node->getOperand(1); 3423 Tmp3 = Node->getOperand(2); 3424 if (Tmp1.getOpcode() == ISD::SETCC) { 3425 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3426 Tmp2, Tmp3, 3427 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3428 } else { 3429 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3430 DAG.getConstant(0, dl, Tmp1.getValueType()), 3431 Tmp2, Tmp3, ISD::SETNE); 3432 } 3433 Results.push_back(Tmp1); 3434 break; 3435 case ISD::BR_JT: { 3436 SDValue Chain = Node->getOperand(0); 3437 SDValue Table = Node->getOperand(1); 3438 SDValue Index = Node->getOperand(2); 3439 3440 const DataLayout &TD = DAG.getDataLayout(); 3441 EVT PTy = TLI.getPointerTy(TD); 3442 3443 unsigned EntrySize = 3444 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3445 3446 // For power-of-two jumptable entry sizes convert multiplication to a shift. 3447 // This transformation needs to be done here since otherwise the MIPS 3448 // backend will end up emitting a three instruction multiply sequence 3449 // instead of a single shift and MSP430 will call a runtime function. 3450 if (llvm::isPowerOf2_32(EntrySize)) 3451 Index = DAG.getNode( 3452 ISD::SHL, dl, Index.getValueType(), Index, 3453 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); 3454 else 3455 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3456 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3457 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3458 Index, Table); 3459 3460 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3461 SDValue LD = DAG.getExtLoad( 3462 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3463 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3464 Addr = LD; 3465 if (TLI.isJumpTableRelative()) { 3466 // For PIC, the sequence is: 3467 // BRIND(load(Jumptable + index) + RelocBase) 3468 // RelocBase can be JumpTable, GOT or some sort of global base. 3469 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3470 TLI.getPICJumpTableRelocBase(Table, DAG)); 3471 } 3472 3473 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); 3474 Results.push_back(Tmp1); 3475 break; 3476 } 3477 case ISD::BRCOND: 3478 // Expand brcond's setcc into its constituent parts and create a BR_CC 3479 // Node. 3480 Tmp1 = Node->getOperand(0); 3481 Tmp2 = Node->getOperand(1); 3482 if (Tmp2.getOpcode() == ISD::SETCC) { 3483 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3484 Tmp1, Tmp2.getOperand(2), 3485 Tmp2.getOperand(0), Tmp2.getOperand(1), 3486 Node->getOperand(2)); 3487 } else { 3488 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 3489 if (Tmp2.isUndef() || 3490 (Tmp2.getOpcode() == ISD::AND && 3491 isa<ConstantSDNode>(Tmp2.getOperand(1)) && 3492 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) 3493 Tmp3 = Tmp2; 3494 else 3495 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3496 DAG.getConstant(1, dl, Tmp2.getValueType())); 3497 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3498 DAG.getCondCode(ISD::SETNE), Tmp3, 3499 DAG.getConstant(0, dl, Tmp3.getValueType()), 3500 Node->getOperand(2)); 3501 } 3502 Results.push_back(Tmp1); 3503 break; 3504 case ISD::SETCC: { 3505 Tmp1 = Node->getOperand(0); 3506 Tmp2 = Node->getOperand(1); 3507 Tmp3 = Node->getOperand(2); 3508 bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, 3509 Tmp3, NeedInvert, dl); 3510 3511 if (Legalized) { 3512 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3513 // condition code, create a new SETCC node. 3514 if (Tmp3.getNode()) 3515 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3516 Tmp1, Tmp2, Tmp3); 3517 3518 // If we expanded the SETCC by inverting the condition code, then wrap 3519 // the existing SETCC in a NOT to restore the intended condition. 3520 if (NeedInvert) 3521 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3522 3523 Results.push_back(Tmp1); 3524 break; 3525 } 3526 3527 // Otherwise, SETCC for the given comparison type must be completely 3528 // illegal; expand it into a SELECT_CC. 3529 EVT VT = Node->getValueType(0); 3530 int TrueValue; 3531 switch (TLI.getBooleanContents(Tmp1.getValueType())) { 3532 case TargetLowering::ZeroOrOneBooleanContent: 3533 case TargetLowering::UndefinedBooleanContent: 3534 TrueValue = 1; 3535 break; 3536 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3537 TrueValue = -1; 3538 break; 3539 } 3540 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3541 DAG.getConstant(TrueValue, dl, VT), 3542 DAG.getConstant(0, dl, VT), 3543 Tmp3); 3544 Results.push_back(Tmp1); 3545 break; 3546 } 3547 case ISD::SELECT_CC: { 3548 Tmp1 = Node->getOperand(0); // LHS 3549 Tmp2 = Node->getOperand(1); // RHS 3550 Tmp3 = Node->getOperand(2); // True 3551 Tmp4 = Node->getOperand(3); // False 3552 EVT VT = Node->getValueType(0); 3553 SDValue CC = Node->getOperand(4); 3554 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3555 3556 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 3557 // If the condition code is legal, then we need to expand this 3558 // node using SETCC and SELECT. 3559 EVT CmpVT = Tmp1.getValueType(); 3560 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3561 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3562 "expanded."); 3563 EVT CCVT = 3564 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT); 3565 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC); 3566 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3567 break; 3568 } 3569 3570 // SELECT_CC is legal, so the condition code must not be. 3571 bool Legalized = false; 3572 // Try to legalize by inverting the condition. This is for targets that 3573 // might support an ordered version of a condition, but not the unordered 3574 // version (or vice versa). 3575 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, 3576 Tmp1.getValueType().isInteger()); 3577 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 3578 // Use the new condition code and swap true and false 3579 Legalized = true; 3580 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3581 } else { 3582 // If The inverse is not legal, then try to swap the arguments using 3583 // the inverse condition code. 3584 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3585 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 3586 // The swapped inverse condition is legal, so swap true and false, 3587 // lhs and rhs. 3588 Legalized = true; 3589 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3590 } 3591 } 3592 3593 if (!Legalized) { 3594 Legalized = LegalizeSetCCCondCode( 3595 getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert, 3596 dl); 3597 3598 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3599 3600 // If we expanded the SETCC by inverting the condition code, then swap 3601 // the True/False operands to match. 3602 if (NeedInvert) 3603 std::swap(Tmp3, Tmp4); 3604 3605 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3606 // condition code, create a new SELECT_CC node. 3607 if (CC.getNode()) { 3608 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3609 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3610 } else { 3611 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3612 CC = DAG.getCondCode(ISD::SETNE); 3613 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3614 Tmp2, Tmp3, Tmp4, CC); 3615 } 3616 } 3617 Results.push_back(Tmp1); 3618 break; 3619 } 3620 case ISD::BR_CC: { 3621 Tmp1 = Node->getOperand(0); // Chain 3622 Tmp2 = Node->getOperand(2); // LHS 3623 Tmp3 = Node->getOperand(3); // RHS 3624 Tmp4 = Node->getOperand(1); // CC 3625 3626 bool Legalized = LegalizeSetCCCondCode(getSetCCResultType( 3627 Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl); 3628 (void)Legalized; 3629 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3630 3631 assert(!NeedInvert && "Don't know how to invert BR_CC!"); 3632 3633 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3634 // node. 3635 if (Tmp4.getNode()) { 3636 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3637 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3638 } else { 3639 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3640 Tmp4 = DAG.getCondCode(ISD::SETNE); 3641 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3642 Tmp2, Tmp3, Node->getOperand(4)); 3643 } 3644 Results.push_back(Tmp1); 3645 break; 3646 } 3647 case ISD::BUILD_VECTOR: 3648 Results.push_back(ExpandBUILD_VECTOR(Node)); 3649 break; 3650 case ISD::SRA: 3651 case ISD::SRL: 3652 case ISD::SHL: { 3653 // Scalarize vector SRA/SRL/SHL. 3654 EVT VT = Node->getValueType(0); 3655 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3656 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3657 unsigned NumElem = VT.getVectorNumElements(); 3658 3659 SmallVector<SDValue, 8> Scalars; 3660 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3661 SDValue Ex = DAG.getNode( 3662 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0), 3663 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3664 SDValue Sh = DAG.getNode( 3665 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1), 3666 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3667 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3668 VT.getScalarType(), Ex, Sh)); 3669 } 3670 3671 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 3672 ReplaceNode(SDValue(Node, 0), Result); 3673 break; 3674 } 3675 case ISD::VECREDUCE_FADD: 3676 case ISD::VECREDUCE_FMUL: 3677 case ISD::VECREDUCE_ADD: 3678 case ISD::VECREDUCE_MUL: 3679 case ISD::VECREDUCE_AND: 3680 case ISD::VECREDUCE_OR: 3681 case ISD::VECREDUCE_XOR: 3682 case ISD::VECREDUCE_SMAX: 3683 case ISD::VECREDUCE_SMIN: 3684 case ISD::VECREDUCE_UMAX: 3685 case ISD::VECREDUCE_UMIN: 3686 case ISD::VECREDUCE_FMAX: 3687 case ISD::VECREDUCE_FMIN: 3688 Results.push_back(TLI.expandVecReduce(Node, DAG)); 3689 break; 3690 case ISD::GLOBAL_OFFSET_TABLE: 3691 case ISD::GlobalAddress: 3692 case ISD::GlobalTLSAddress: 3693 case ISD::ExternalSymbol: 3694 case ISD::ConstantPool: 3695 case ISD::JumpTable: 3696 case ISD::INTRINSIC_W_CHAIN: 3697 case ISD::INTRINSIC_WO_CHAIN: 3698 case ISD::INTRINSIC_VOID: 3699 // FIXME: Custom lowering for these operations shouldn't return null! 3700 break; 3701 } 3702 3703 // Replace the original node with the legalized result. 3704 if (Results.empty()) { 3705 LLVM_DEBUG(dbgs() << "Cannot expand node\n"); 3706 return false; 3707 } 3708 3709 LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); 3710 ReplaceNode(Node, Results.data()); 3711 return true; 3712 } 3713 3714 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 3715 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); 3716 SmallVector<SDValue, 8> Results; 3717 SDLoc dl(Node); 3718 // FIXME: Check flags on the node to see if we can use a finite call. 3719 bool CanUseFiniteLibCall = TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath; 3720 unsigned Opc = Node->getOpcode(); 3721 switch (Opc) { 3722 case ISD::ATOMIC_FENCE: { 3723 // If the target didn't lower this, lower it to '__sync_synchronize()' call 3724 // FIXME: handle "fence singlethread" more efficiently. 3725 TargetLowering::ArgListTy Args; 3726 3727 TargetLowering::CallLoweringInfo CLI(DAG); 3728 CLI.setDebugLoc(dl) 3729 .setChain(Node->getOperand(0)) 3730 .setLibCallee( 3731 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3732 DAG.getExternalSymbol("__sync_synchronize", 3733 TLI.getPointerTy(DAG.getDataLayout())), 3734 std::move(Args)); 3735 3736 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3737 3738 Results.push_back(CallResult.second); 3739 break; 3740 } 3741 // By default, atomic intrinsics are marked Legal and lowered. Targets 3742 // which don't support them directly, however, may want libcalls, in which 3743 // case they mark them Expand, and we get here. 3744 case ISD::ATOMIC_SWAP: 3745 case ISD::ATOMIC_LOAD_ADD: 3746 case ISD::ATOMIC_LOAD_SUB: 3747 case ISD::ATOMIC_LOAD_AND: 3748 case ISD::ATOMIC_LOAD_CLR: 3749 case ISD::ATOMIC_LOAD_OR: 3750 case ISD::ATOMIC_LOAD_XOR: 3751 case ISD::ATOMIC_LOAD_NAND: 3752 case ISD::ATOMIC_LOAD_MIN: 3753 case ISD::ATOMIC_LOAD_MAX: 3754 case ISD::ATOMIC_LOAD_UMIN: 3755 case ISD::ATOMIC_LOAD_UMAX: 3756 case ISD::ATOMIC_CMP_SWAP: { 3757 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 3758 RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT); 3759 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!"); 3760 3761 std::pair<SDValue, SDValue> Tmp = ExpandChainLibCall(LC, Node, false); 3762 Results.push_back(Tmp.first); 3763 Results.push_back(Tmp.second); 3764 break; 3765 } 3766 case ISD::TRAP: { 3767 // If this operation is not supported, lower it to 'abort()' call 3768 TargetLowering::ArgListTy Args; 3769 TargetLowering::CallLoweringInfo CLI(DAG); 3770 CLI.setDebugLoc(dl) 3771 .setChain(Node->getOperand(0)) 3772 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3773 DAG.getExternalSymbol( 3774 "abort", TLI.getPointerTy(DAG.getDataLayout())), 3775 std::move(Args)); 3776 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3777 3778 Results.push_back(CallResult.second); 3779 break; 3780 } 3781 case ISD::FMINNUM: 3782 case ISD::STRICT_FMINNUM: 3783 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 3784 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 3785 RTLIB::FMIN_PPCF128)); 3786 break; 3787 case ISD::FMAXNUM: 3788 case ISD::STRICT_FMAXNUM: 3789 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 3790 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 3791 RTLIB::FMAX_PPCF128)); 3792 break; 3793 case ISD::FSQRT: 3794 case ISD::STRICT_FSQRT: 3795 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3796 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 3797 RTLIB::SQRT_PPCF128)); 3798 break; 3799 case ISD::FCBRT: 3800 Results.push_back(ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, 3801 RTLIB::CBRT_F80, RTLIB::CBRT_F128, 3802 RTLIB::CBRT_PPCF128)); 3803 break; 3804 case ISD::FSIN: 3805 case ISD::STRICT_FSIN: 3806 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 3807 RTLIB::SIN_F80, RTLIB::SIN_F128, 3808 RTLIB::SIN_PPCF128)); 3809 break; 3810 case ISD::FCOS: 3811 case ISD::STRICT_FCOS: 3812 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 3813 RTLIB::COS_F80, RTLIB::COS_F128, 3814 RTLIB::COS_PPCF128)); 3815 break; 3816 case ISD::FSINCOS: 3817 // Expand into sincos libcall. 3818 ExpandSinCosLibCall(Node, Results); 3819 break; 3820 case ISD::FLOG: 3821 case ISD::STRICT_FLOG: 3822 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log_finite)) 3823 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_FINITE_F32, 3824 RTLIB::LOG_FINITE_F64, 3825 RTLIB::LOG_FINITE_F80, 3826 RTLIB::LOG_FINITE_F128, 3827 RTLIB::LOG_FINITE_PPCF128)); 3828 else 3829 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, 3830 RTLIB::LOG_F80, RTLIB::LOG_F128, 3831 RTLIB::LOG_PPCF128)); 3832 break; 3833 case ISD::FLOG2: 3834 case ISD::STRICT_FLOG2: 3835 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log2_finite)) 3836 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_FINITE_F32, 3837 RTLIB::LOG2_FINITE_F64, 3838 RTLIB::LOG2_FINITE_F80, 3839 RTLIB::LOG2_FINITE_F128, 3840 RTLIB::LOG2_FINITE_PPCF128)); 3841 else 3842 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 3843 RTLIB::LOG2_F80, RTLIB::LOG2_F128, 3844 RTLIB::LOG2_PPCF128)); 3845 break; 3846 case ISD::FLOG10: 3847 case ISD::STRICT_FLOG10: 3848 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log10_finite)) 3849 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_FINITE_F32, 3850 RTLIB::LOG10_FINITE_F64, 3851 RTLIB::LOG10_FINITE_F80, 3852 RTLIB::LOG10_FINITE_F128, 3853 RTLIB::LOG10_FINITE_PPCF128)); 3854 else 3855 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 3856 RTLIB::LOG10_F80, RTLIB::LOG10_F128, 3857 RTLIB::LOG10_PPCF128)); 3858 break; 3859 case ISD::FEXP: 3860 case ISD::STRICT_FEXP: 3861 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp_finite)) 3862 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_FINITE_F32, 3863 RTLIB::EXP_FINITE_F64, 3864 RTLIB::EXP_FINITE_F80, 3865 RTLIB::EXP_FINITE_F128, 3866 RTLIB::EXP_FINITE_PPCF128)); 3867 else 3868 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, 3869 RTLIB::EXP_F80, RTLIB::EXP_F128, 3870 RTLIB::EXP_PPCF128)); 3871 break; 3872 case ISD::FEXP2: 3873 case ISD::STRICT_FEXP2: 3874 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp2_finite)) 3875 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_FINITE_F32, 3876 RTLIB::EXP2_FINITE_F64, 3877 RTLIB::EXP2_FINITE_F80, 3878 RTLIB::EXP2_FINITE_F128, 3879 RTLIB::EXP2_FINITE_PPCF128)); 3880 else 3881 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 3882 RTLIB::EXP2_F80, RTLIB::EXP2_F128, 3883 RTLIB::EXP2_PPCF128)); 3884 break; 3885 case ISD::FTRUNC: 3886 case ISD::STRICT_FTRUNC: 3887 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 3888 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 3889 RTLIB::TRUNC_PPCF128)); 3890 break; 3891 case ISD::FFLOOR: 3892 case ISD::STRICT_FFLOOR: 3893 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 3894 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 3895 RTLIB::FLOOR_PPCF128)); 3896 break; 3897 case ISD::FCEIL: 3898 case ISD::STRICT_FCEIL: 3899 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 3900 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 3901 RTLIB::CEIL_PPCF128)); 3902 break; 3903 case ISD::FRINT: 3904 case ISD::STRICT_FRINT: 3905 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 3906 RTLIB::RINT_F80, RTLIB::RINT_F128, 3907 RTLIB::RINT_PPCF128)); 3908 break; 3909 case ISD::FNEARBYINT: 3910 case ISD::STRICT_FNEARBYINT: 3911 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 3912 RTLIB::NEARBYINT_F64, 3913 RTLIB::NEARBYINT_F80, 3914 RTLIB::NEARBYINT_F128, 3915 RTLIB::NEARBYINT_PPCF128)); 3916 break; 3917 case ISD::FROUND: 3918 case ISD::STRICT_FROUND: 3919 Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32, 3920 RTLIB::ROUND_F64, 3921 RTLIB::ROUND_F80, 3922 RTLIB::ROUND_F128, 3923 RTLIB::ROUND_PPCF128)); 3924 break; 3925 case ISD::FPOWI: 3926 case ISD::STRICT_FPOWI: 3927 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 3928 RTLIB::POWI_F80, RTLIB::POWI_F128, 3929 RTLIB::POWI_PPCF128)); 3930 break; 3931 case ISD::FPOW: 3932 case ISD::STRICT_FPOW: 3933 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_pow_finite)) 3934 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_FINITE_F32, 3935 RTLIB::POW_FINITE_F64, 3936 RTLIB::POW_FINITE_F80, 3937 RTLIB::POW_FINITE_F128, 3938 RTLIB::POW_FINITE_PPCF128)); 3939 else 3940 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, 3941 RTLIB::POW_F80, RTLIB::POW_F128, 3942 RTLIB::POW_PPCF128)); 3943 break; 3944 case ISD::FDIV: 3945 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 3946 RTLIB::DIV_F80, RTLIB::DIV_F128, 3947 RTLIB::DIV_PPCF128)); 3948 break; 3949 case ISD::FREM: 3950 case ISD::STRICT_FREM: 3951 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 3952 RTLIB::REM_F80, RTLIB::REM_F128, 3953 RTLIB::REM_PPCF128)); 3954 break; 3955 case ISD::FMA: 3956 case ISD::STRICT_FMA: 3957 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 3958 RTLIB::FMA_F80, RTLIB::FMA_F128, 3959 RTLIB::FMA_PPCF128)); 3960 break; 3961 case ISD::FADD: 3962 Results.push_back(ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 3963 RTLIB::ADD_F80, RTLIB::ADD_F128, 3964 RTLIB::ADD_PPCF128)); 3965 break; 3966 case ISD::FMUL: 3967 Results.push_back(ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 3968 RTLIB::MUL_F80, RTLIB::MUL_F128, 3969 RTLIB::MUL_PPCF128)); 3970 break; 3971 case ISD::FP16_TO_FP: 3972 if (Node->getValueType(0) == MVT::f32) { 3973 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 3974 } 3975 break; 3976 case ISD::FP_TO_FP16: { 3977 RTLIB::Libcall LC = 3978 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 3979 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 3980 Results.push_back(ExpandLibCall(LC, Node, false)); 3981 break; 3982 } 3983 case ISD::FSUB: 3984 Results.push_back(ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 3985 RTLIB::SUB_F80, RTLIB::SUB_F128, 3986 RTLIB::SUB_PPCF128)); 3987 break; 3988 case ISD::SREM: 3989 Results.push_back(ExpandIntLibCall(Node, true, 3990 RTLIB::SREM_I8, 3991 RTLIB::SREM_I16, RTLIB::SREM_I32, 3992 RTLIB::SREM_I64, RTLIB::SREM_I128)); 3993 break; 3994 case ISD::UREM: 3995 Results.push_back(ExpandIntLibCall(Node, false, 3996 RTLIB::UREM_I8, 3997 RTLIB::UREM_I16, RTLIB::UREM_I32, 3998 RTLIB::UREM_I64, RTLIB::UREM_I128)); 3999 break; 4000 case ISD::SDIV: 4001 Results.push_back(ExpandIntLibCall(Node, true, 4002 RTLIB::SDIV_I8, 4003 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4004 RTLIB::SDIV_I64, RTLIB::SDIV_I128)); 4005 break; 4006 case ISD::UDIV: 4007 Results.push_back(ExpandIntLibCall(Node, false, 4008 RTLIB::UDIV_I8, 4009 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4010 RTLIB::UDIV_I64, RTLIB::UDIV_I128)); 4011 break; 4012 case ISD::SDIVREM: 4013 case ISD::UDIVREM: 4014 // Expand into divrem libcall 4015 ExpandDivRemLibCall(Node, Results); 4016 break; 4017 case ISD::MUL: 4018 Results.push_back(ExpandIntLibCall(Node, false, 4019 RTLIB::MUL_I8, 4020 RTLIB::MUL_I16, RTLIB::MUL_I32, 4021 RTLIB::MUL_I64, RTLIB::MUL_I128)); 4022 break; 4023 case ISD::CTLZ_ZERO_UNDEF: 4024 switch (Node->getSimpleValueType(0).SimpleTy) { 4025 default: 4026 llvm_unreachable("LibCall explicitly requested, but not available"); 4027 case MVT::i32: 4028 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false)); 4029 break; 4030 case MVT::i64: 4031 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false)); 4032 break; 4033 case MVT::i128: 4034 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false)); 4035 break; 4036 } 4037 break; 4038 } 4039 4040 // Replace the original node with the legalized result. 4041 if (!Results.empty()) { 4042 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); 4043 ReplaceNode(Node, Results.data()); 4044 } else 4045 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); 4046 } 4047 4048 // Determine the vector type to use in place of an original scalar element when 4049 // promoting equally sized vectors. 4050 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4051 MVT EltVT, MVT NewEltVT) { 4052 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4053 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4054 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4055 return MidVT; 4056 } 4057 4058 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4059 LLVM_DEBUG(dbgs() << "Trying to promote node\n"); 4060 SmallVector<SDValue, 8> Results; 4061 MVT OVT = Node->getSimpleValueType(0); 4062 if (Node->getOpcode() == ISD::UINT_TO_FP || 4063 Node->getOpcode() == ISD::SINT_TO_FP || 4064 Node->getOpcode() == ISD::SETCC || 4065 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4066 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4067 OVT = Node->getOperand(0).getSimpleValueType(); 4068 } 4069 if (Node->getOpcode() == ISD::BR_CC) 4070 OVT = Node->getOperand(2).getSimpleValueType(); 4071 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4072 SDLoc dl(Node); 4073 SDValue Tmp1, Tmp2, Tmp3; 4074 switch (Node->getOpcode()) { 4075 case ISD::CTTZ: 4076 case ISD::CTTZ_ZERO_UNDEF: 4077 case ISD::CTLZ: 4078 case ISD::CTLZ_ZERO_UNDEF: 4079 case ISD::CTPOP: 4080 // Zero extend the argument. 4081 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4082 if (Node->getOpcode() == ISD::CTTZ) { 4083 // The count is the same in the promoted type except if the original 4084 // value was zero. This can be handled by setting the bit just off 4085 // the top of the original type. 4086 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4087 OVT.getSizeInBits()); 4088 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4089 DAG.getConstant(TopBit, dl, NVT)); 4090 } 4091 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4092 // already the correct result. 4093 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4094 if (Node->getOpcode() == ISD::CTLZ || 4095 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4096 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4097 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4098 DAG.getConstant(NVT.getSizeInBits() - 4099 OVT.getSizeInBits(), dl, NVT)); 4100 } 4101 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4102 break; 4103 case ISD::BITREVERSE: 4104 case ISD::BSWAP: { 4105 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4106 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4107 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4108 Tmp1 = DAG.getNode( 4109 ISD::SRL, dl, NVT, Tmp1, 4110 DAG.getConstant(DiffBits, dl, 4111 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4112 4113 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4114 break; 4115 } 4116 case ISD::FP_TO_UINT: 4117 case ISD::FP_TO_SINT: 4118 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), 4119 Node->getOpcode() == ISD::FP_TO_SINT, dl); 4120 Results.push_back(Tmp1); 4121 break; 4122 case ISD::UINT_TO_FP: 4123 case ISD::SINT_TO_FP: 4124 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), 4125 Node->getOpcode() == ISD::SINT_TO_FP, dl); 4126 Results.push_back(Tmp1); 4127 break; 4128 case ISD::VAARG: { 4129 SDValue Chain = Node->getOperand(0); // Get the chain. 4130 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4131 4132 unsigned TruncOp; 4133 if (OVT.isVector()) { 4134 TruncOp = ISD::BITCAST; 4135 } else { 4136 assert(OVT.isInteger() 4137 && "VAARG promotion is supported only for vectors or integer types"); 4138 TruncOp = ISD::TRUNCATE; 4139 } 4140 4141 // Perform the larger operation, then convert back 4142 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4143 Node->getConstantOperandVal(3)); 4144 Chain = Tmp1.getValue(1); 4145 4146 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4147 4148 // Modified the chain result - switch anything that used the old chain to 4149 // use the new one. 4150 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4151 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4152 if (UpdatedNodes) { 4153 UpdatedNodes->insert(Tmp2.getNode()); 4154 UpdatedNodes->insert(Chain.getNode()); 4155 } 4156 ReplacedNode(Node); 4157 break; 4158 } 4159 case ISD::MUL: 4160 case ISD::SDIV: 4161 case ISD::SREM: 4162 case ISD::UDIV: 4163 case ISD::UREM: 4164 case ISD::AND: 4165 case ISD::OR: 4166 case ISD::XOR: { 4167 unsigned ExtOp, TruncOp; 4168 if (OVT.isVector()) { 4169 ExtOp = ISD::BITCAST; 4170 TruncOp = ISD::BITCAST; 4171 } else { 4172 assert(OVT.isInteger() && "Cannot promote logic operation"); 4173 4174 switch (Node->getOpcode()) { 4175 default: 4176 ExtOp = ISD::ANY_EXTEND; 4177 break; 4178 case ISD::SDIV: 4179 case ISD::SREM: 4180 ExtOp = ISD::SIGN_EXTEND; 4181 break; 4182 case ISD::UDIV: 4183 case ISD::UREM: 4184 ExtOp = ISD::ZERO_EXTEND; 4185 break; 4186 } 4187 TruncOp = ISD::TRUNCATE; 4188 } 4189 // Promote each of the values to the new type. 4190 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4191 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4192 // Perform the larger operation, then convert back 4193 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4194 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4195 break; 4196 } 4197 case ISD::UMUL_LOHI: 4198 case ISD::SMUL_LOHI: { 4199 // Promote to a multiply in a wider integer type. 4200 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 4201 : ISD::SIGN_EXTEND; 4202 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4203 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4204 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 4205 4206 auto &DL = DAG.getDataLayout(); 4207 unsigned OriginalSize = OVT.getScalarSizeInBits(); 4208 Tmp2 = DAG.getNode( 4209 ISD::SRL, dl, NVT, Tmp1, 4210 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 4211 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4212 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 4213 break; 4214 } 4215 case ISD::SELECT: { 4216 unsigned ExtOp, TruncOp; 4217 if (Node->getValueType(0).isVector() || 4218 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4219 ExtOp = ISD::BITCAST; 4220 TruncOp = ISD::BITCAST; 4221 } else if (Node->getValueType(0).isInteger()) { 4222 ExtOp = ISD::ANY_EXTEND; 4223 TruncOp = ISD::TRUNCATE; 4224 } else { 4225 ExtOp = ISD::FP_EXTEND; 4226 TruncOp = ISD::FP_ROUND; 4227 } 4228 Tmp1 = Node->getOperand(0); 4229 // Promote each of the values to the new type. 4230 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4231 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4232 // Perform the larger operation, then round down. 4233 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4234 if (TruncOp != ISD::FP_ROUND) 4235 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4236 else 4237 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4238 DAG.getIntPtrConstant(0, dl)); 4239 Results.push_back(Tmp1); 4240 break; 4241 } 4242 case ISD::VECTOR_SHUFFLE: { 4243 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4244 4245 // Cast the two input vectors. 4246 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4247 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4248 4249 // Convert the shuffle mask to the right # elements. 4250 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4251 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4252 Results.push_back(Tmp1); 4253 break; 4254 } 4255 case ISD::SETCC: { 4256 unsigned ExtOp = ISD::FP_EXTEND; 4257 if (NVT.isInteger()) { 4258 ISD::CondCode CCCode = 4259 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4260 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4261 } 4262 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4263 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4264 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 4265 Tmp1, Tmp2, Node->getOperand(2))); 4266 break; 4267 } 4268 case ISD::BR_CC: { 4269 unsigned ExtOp = ISD::FP_EXTEND; 4270 if (NVT.isInteger()) { 4271 ISD::CondCode CCCode = 4272 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4273 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4274 } 4275 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4276 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4277 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4278 Node->getOperand(0), Node->getOperand(1), 4279 Tmp1, Tmp2, Node->getOperand(4))); 4280 break; 4281 } 4282 case ISD::FADD: 4283 case ISD::FSUB: 4284 case ISD::FMUL: 4285 case ISD::FDIV: 4286 case ISD::FREM: 4287 case ISD::FMINNUM: 4288 case ISD::FMAXNUM: 4289 case ISD::FPOW: 4290 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4291 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4292 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4293 Node->getFlags()); 4294 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4295 Tmp3, DAG.getIntPtrConstant(0, dl))); 4296 break; 4297 case ISD::FMA: 4298 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4299 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4300 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4301 Results.push_back( 4302 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4303 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4304 DAG.getIntPtrConstant(0, dl))); 4305 break; 4306 case ISD::FCOPYSIGN: 4307 case ISD::FPOWI: { 4308 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4309 Tmp2 = Node->getOperand(1); 4310 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4311 4312 // fcopysign doesn't change anything but the sign bit, so 4313 // (fp_round (fcopysign (fpext a), b)) 4314 // is as precise as 4315 // (fp_round (fpext a)) 4316 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4317 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4318 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4319 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4320 break; 4321 } 4322 case ISD::FFLOOR: 4323 case ISD::FCEIL: 4324 case ISD::FRINT: 4325 case ISD::FNEARBYINT: 4326 case ISD::FROUND: 4327 case ISD::FTRUNC: 4328 case ISD::FNEG: 4329 case ISD::FSQRT: 4330 case ISD::FSIN: 4331 case ISD::FCOS: 4332 case ISD::FLOG: 4333 case ISD::FLOG2: 4334 case ISD::FLOG10: 4335 case ISD::FABS: 4336 case ISD::FEXP: 4337 case ISD::FEXP2: 4338 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4339 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4340 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4341 Tmp2, DAG.getIntPtrConstant(0, dl))); 4342 break; 4343 case ISD::BUILD_VECTOR: { 4344 MVT EltVT = OVT.getVectorElementType(); 4345 MVT NewEltVT = NVT.getVectorElementType(); 4346 4347 // Handle bitcasts to a different vector type with the same total bit size 4348 // 4349 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4350 // => 4351 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4352 4353 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4354 "Invalid promote type for build_vector"); 4355 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4356 4357 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4358 4359 SmallVector<SDValue, 8> NewOps; 4360 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4361 SDValue Op = Node->getOperand(I); 4362 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4363 } 4364 4365 SDLoc SL(Node); 4366 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4367 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4368 Results.push_back(CvtVec); 4369 break; 4370 } 4371 case ISD::EXTRACT_VECTOR_ELT: { 4372 MVT EltVT = OVT.getVectorElementType(); 4373 MVT NewEltVT = NVT.getVectorElementType(); 4374 4375 // Handle bitcasts to a different vector type with the same total bit size. 4376 // 4377 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4378 // => 4379 // v4i32:castx = bitcast x:v2i64 4380 // 4381 // i64 = bitcast 4382 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4383 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4384 // 4385 4386 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4387 "Invalid promote type for extract_vector_elt"); 4388 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4389 4390 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4391 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4392 4393 SDValue Idx = Node->getOperand(1); 4394 EVT IdxVT = Idx.getValueType(); 4395 SDLoc SL(Node); 4396 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4397 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4398 4399 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4400 4401 SmallVector<SDValue, 8> NewOps; 4402 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4403 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4404 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4405 4406 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4407 CastVec, TmpIdx); 4408 NewOps.push_back(Elt); 4409 } 4410 4411 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 4412 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4413 break; 4414 } 4415 case ISD::INSERT_VECTOR_ELT: { 4416 MVT EltVT = OVT.getVectorElementType(); 4417 MVT NewEltVT = NVT.getVectorElementType(); 4418 4419 // Handle bitcasts to a different vector type with the same total bit size 4420 // 4421 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4422 // => 4423 // v4i32:castx = bitcast x:v2i64 4424 // v2i32:casty = bitcast y:i64 4425 // 4426 // v2i64 = bitcast 4427 // (v4i32 insert_vector_elt 4428 // (v4i32 insert_vector_elt v4i32:castx, 4429 // (extract_vector_elt casty, 0), 2 * z), 4430 // (extract_vector_elt casty, 1), (2 * z + 1)) 4431 4432 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4433 "Invalid promote type for insert_vector_elt"); 4434 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4435 4436 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4437 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4438 4439 SDValue Val = Node->getOperand(1); 4440 SDValue Idx = Node->getOperand(2); 4441 EVT IdxVT = Idx.getValueType(); 4442 SDLoc SL(Node); 4443 4444 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 4445 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4446 4447 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4448 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4449 4450 SDValue NewVec = CastVec; 4451 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4452 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4453 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4454 4455 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4456 CastVal, IdxOffset); 4457 4458 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 4459 NewVec, Elt, InEltIdx); 4460 } 4461 4462 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 4463 break; 4464 } 4465 case ISD::SCALAR_TO_VECTOR: { 4466 MVT EltVT = OVT.getVectorElementType(); 4467 MVT NewEltVT = NVT.getVectorElementType(); 4468 4469 // Handle bitcasts to different vector type with the same total bit size. 4470 // 4471 // e.g. v2i64 = scalar_to_vector x:i64 4472 // => 4473 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 4474 // 4475 4476 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4477 SDValue Val = Node->getOperand(0); 4478 SDLoc SL(Node); 4479 4480 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4481 SDValue Undef = DAG.getUNDEF(MidVT); 4482 4483 SmallVector<SDValue, 8> NewElts; 4484 NewElts.push_back(CastVal); 4485 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 4486 NewElts.push_back(Undef); 4487 4488 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 4489 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4490 Results.push_back(CvtVec); 4491 break; 4492 } 4493 case ISD::ATOMIC_SWAP: { 4494 AtomicSDNode *AM = cast<AtomicSDNode>(Node); 4495 SDLoc SL(Node); 4496 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal()); 4497 assert(NVT.getSizeInBits() == OVT.getSizeInBits() && 4498 "unexpected promotion type"); 4499 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && 4500 "unexpected atomic_swap with illegal type"); 4501 4502 SDValue NewAtomic 4503 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT, 4504 DAG.getVTList(NVT, MVT::Other), 4505 { AM->getChain(), AM->getBasePtr(), CastVal }, 4506 AM->getMemOperand()); 4507 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); 4508 Results.push_back(NewAtomic.getValue(1)); 4509 break; 4510 } 4511 } 4512 4513 // Replace the original node with the legalized result. 4514 if (!Results.empty()) { 4515 LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); 4516 ReplaceNode(Node, Results.data()); 4517 } else 4518 LLVM_DEBUG(dbgs() << "Could not promote node\n"); 4519 } 4520 4521 /// This is the entry point for the file. 4522 void SelectionDAG::Legalize() { 4523 AssignTopologicalOrder(); 4524 4525 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4526 // Use a delete listener to remove nodes which were deleted during 4527 // legalization from LegalizeNodes. This is needed to handle the situation 4528 // where a new node is allocated by the object pool to the same address of a 4529 // previously deleted node. 4530 DAGNodeDeletedListener DeleteListener( 4531 *this, 4532 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 4533 4534 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 4535 4536 // Visit all the nodes. We start in topological order, so that we see 4537 // nodes with their original operands intact. Legalization can produce 4538 // new nodes which may themselves need to be legalized. Iterate until all 4539 // nodes have been legalized. 4540 while (true) { 4541 bool AnyLegalized = false; 4542 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 4543 --NI; 4544 4545 SDNode *N = &*NI; 4546 if (N->use_empty() && N != getRoot().getNode()) { 4547 ++NI; 4548 DeleteNode(N); 4549 continue; 4550 } 4551 4552 if (LegalizedNodes.insert(N).second) { 4553 AnyLegalized = true; 4554 Legalizer.LegalizeOp(N); 4555 4556 if (N->use_empty() && N != getRoot().getNode()) { 4557 ++NI; 4558 DeleteNode(N); 4559 } 4560 } 4561 } 4562 if (!AnyLegalized) 4563 break; 4564 4565 } 4566 4567 // Remove dead nodes now. 4568 RemoveDeadNodes(); 4569 } 4570 4571 bool SelectionDAG::LegalizeOp(SDNode *N, 4572 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 4573 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4574 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 4575 4576 // Directly insert the node in question, and legalize it. This will recurse 4577 // as needed through operands. 4578 LegalizedNodes.insert(N); 4579 Legalizer.LegalizeOp(N); 4580 4581 return LegalizedNodes.count(N); 4582 } 4583