1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::Legalize method. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/CodeGen/ISDOpcodes.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/RuntimeLibcalls.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/SelectionDAGNodes.h" 28 #include "llvm/CodeGen/TargetFrameLowering.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/CodeGen/ValueTypes.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include <cassert> 49 #include <cstdint> 50 #include <tuple> 51 #include <utility> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "legalizedag" 56 57 namespace { 58 59 /// Keeps track of state when getting the sign of a floating-point value as an 60 /// integer. 61 struct FloatSignAsInt { 62 EVT FloatVT; 63 SDValue Chain; 64 SDValue FloatPtr; 65 SDValue IntPtr; 66 MachinePointerInfo IntPointerInfo; 67 MachinePointerInfo FloatPointerInfo; 68 SDValue IntValue; 69 APInt SignMask; 70 uint8_t SignBit; 71 }; 72 73 //===----------------------------------------------------------------------===// 74 /// This takes an arbitrary SelectionDAG as input and 75 /// hacks on it until the target machine can handle it. This involves 76 /// eliminating value sizes the machine cannot handle (promoting small sizes to 77 /// large sizes or splitting up large values into small values) as well as 78 /// eliminating operations the machine cannot handle. 79 /// 80 /// This code also does a small amount of optimization and recognition of idioms 81 /// as part of its processing. For example, if a target does not support a 82 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 83 /// will attempt merge setcc and brc instructions into brcc's. 84 class SelectionDAGLegalize { 85 const TargetMachine &TM; 86 const TargetLowering &TLI; 87 SelectionDAG &DAG; 88 89 /// The set of nodes which have already been legalized. We hold a 90 /// reference to it in order to update as necessary on node deletion. 91 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 92 93 /// A set of all the nodes updated during legalization. 94 SmallSetVector<SDNode *, 16> *UpdatedNodes; 95 96 EVT getSetCCResultType(EVT VT) const { 97 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 98 } 99 100 // Libcall insertion helpers. 101 102 public: 103 SelectionDAGLegalize(SelectionDAG &DAG, 104 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 105 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 106 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 107 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 108 109 /// Legalizes the given operation. 110 void LegalizeOp(SDNode *Node); 111 112 private: 113 SDValue OptimizeFloatStore(StoreSDNode *ST); 114 115 void LegalizeLoadOps(SDNode *Node); 116 void LegalizeStoreOps(SDNode *Node); 117 118 /// Some targets cannot handle a variable 119 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 120 /// is necessary to spill the vector being inserted into to memory, perform 121 /// the insert there, and then read the result back. 122 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 123 const SDLoc &dl); 124 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 125 const SDLoc &dl); 126 127 /// Return a vector shuffle operation which 128 /// performs the same shuffe in terms of order or result bytes, but on a type 129 /// whose vector element type is narrower than the original shuffle type. 130 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 131 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 132 SDValue N1, SDValue N2, 133 ArrayRef<int> Mask) const; 134 135 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 136 137 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall LC, 138 SmallVectorImpl<SDValue> &Results); 139 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 140 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 141 RTLIB::Libcall Call_F128, 142 RTLIB::Libcall Call_PPCF128, 143 SmallVectorImpl<SDValue> &Results); 144 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, RTLIB::Libcall Call_I8, 145 RTLIB::Libcall Call_I16, RTLIB::Libcall Call_I32, 146 RTLIB::Libcall Call_I64, RTLIB::Libcall Call_I128, 147 RTLIB::Libcall Call_IEXT); 148 void ExpandArgFPLibCall(SDNode *Node, 149 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, 150 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, 151 RTLIB::Libcall Call_PPCF128, 152 SmallVectorImpl<SDValue> &Results); 153 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 154 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 155 156 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 157 const SDLoc &dl); 158 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 159 const SDLoc &dl, SDValue ChainIn); 160 SDValue ExpandBUILD_VECTOR(SDNode *Node); 161 SDValue ExpandSPLAT_VECTOR(SDNode *Node); 162 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 163 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 164 SmallVectorImpl<SDValue> &Results); 165 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 166 SDValue Value) const; 167 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 168 SDValue NewIntValue) const; 169 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 170 SDValue ExpandFABS(SDNode *Node) const; 171 SDValue ExpandFNEG(SDNode *Node) const; 172 SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain); 173 void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl, 174 SmallVectorImpl<SDValue> &Results); 175 void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 176 SmallVectorImpl<SDValue> &Results); 177 SDValue PromoteLegalFP_TO_INT_SAT(SDNode *Node, const SDLoc &dl); 178 179 SDValue ExpandPARITY(SDValue Op, const SDLoc &dl); 180 181 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 182 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 183 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 184 185 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 186 SDValue ExpandConstant(ConstantSDNode *CP); 187 188 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 189 bool ExpandNode(SDNode *Node); 190 void ConvertNodeToLibcall(SDNode *Node); 191 void PromoteNode(SDNode *Node); 192 193 public: 194 // Node replacement helpers 195 196 void ReplacedNode(SDNode *N) { 197 LegalizedNodes.erase(N); 198 if (UpdatedNodes) 199 UpdatedNodes->insert(N); 200 } 201 202 void ReplaceNode(SDNode *Old, SDNode *New) { 203 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 204 dbgs() << " with: "; New->dump(&DAG)); 205 206 assert(Old->getNumValues() == New->getNumValues() && 207 "Replacing one node with another that produces a different number " 208 "of values!"); 209 DAG.ReplaceAllUsesWith(Old, New); 210 if (UpdatedNodes) 211 UpdatedNodes->insert(New); 212 ReplacedNode(Old); 213 } 214 215 void ReplaceNode(SDValue Old, SDValue New) { 216 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 217 dbgs() << " with: "; New->dump(&DAG)); 218 219 DAG.ReplaceAllUsesWith(Old, New); 220 if (UpdatedNodes) 221 UpdatedNodes->insert(New.getNode()); 222 ReplacedNode(Old.getNode()); 223 } 224 225 void ReplaceNode(SDNode *Old, const SDValue *New) { 226 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 227 228 DAG.ReplaceAllUsesWith(Old, New); 229 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 230 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); 231 New[i]->dump(&DAG)); 232 if (UpdatedNodes) 233 UpdatedNodes->insert(New[i].getNode()); 234 } 235 ReplacedNode(Old); 236 } 237 238 void ReplaceNodeWithValue(SDValue Old, SDValue New) { 239 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 240 dbgs() << " with: "; New->dump(&DAG)); 241 242 DAG.ReplaceAllUsesOfValueWith(Old, New); 243 if (UpdatedNodes) 244 UpdatedNodes->insert(New.getNode()); 245 ReplacedNode(Old.getNode()); 246 } 247 }; 248 249 } // end anonymous namespace 250 251 /// Return a vector shuffle operation which 252 /// performs the same shuffle in terms of order or result bytes, but on a type 253 /// whose vector element type is narrower than the original shuffle type. 254 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 255 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 256 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 257 ArrayRef<int> Mask) const { 258 unsigned NumMaskElts = VT.getVectorNumElements(); 259 unsigned NumDestElts = NVT.getVectorNumElements(); 260 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 261 262 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 263 264 if (NumEltsGrowth == 1) 265 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 266 267 SmallVector<int, 8> NewMask; 268 for (unsigned i = 0; i != NumMaskElts; ++i) { 269 int Idx = Mask[i]; 270 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 271 if (Idx < 0) 272 NewMask.push_back(-1); 273 else 274 NewMask.push_back(Idx * NumEltsGrowth + j); 275 } 276 } 277 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 278 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 279 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 280 } 281 282 /// Expands the ConstantFP node to an integer constant or 283 /// a load from the constant pool. 284 SDValue 285 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 286 bool Extend = false; 287 SDLoc dl(CFP); 288 289 // If a FP immediate is precise when represented as a float and if the 290 // target can do an extending load from float to double, we put it into 291 // the constant pool as a float, even if it's is statically typed as a 292 // double. This shrinks FP constants and canonicalizes them for targets where 293 // an FP extending load is the same cost as a normal load (such as on the x87 294 // fp stack or PPC FP unit). 295 EVT VT = CFP->getValueType(0); 296 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 297 if (!UseCP) { 298 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 299 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 300 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 301 } 302 303 APFloat APF = CFP->getValueAPF(); 304 EVT OrigVT = VT; 305 EVT SVT = VT; 306 307 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 308 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 309 if (!APF.isSignaling()) { 310 while (SVT != MVT::f32 && SVT != MVT::f16) { 311 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 312 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 313 // Only do this if the target has a native EXTLOAD instruction from 314 // smaller type. 315 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 316 TLI.ShouldShrinkFPConstant(OrigVT)) { 317 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 318 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 319 VT = SVT; 320 Extend = true; 321 } 322 } 323 } 324 325 SDValue CPIdx = 326 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 327 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 328 if (Extend) { 329 SDValue Result = DAG.getExtLoad( 330 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 331 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 332 Alignment); 333 return Result; 334 } 335 SDValue Result = DAG.getLoad( 336 OrigVT, dl, DAG.getEntryNode(), CPIdx, 337 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 338 return Result; 339 } 340 341 /// Expands the Constant node to a load from the constant pool. 342 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 343 SDLoc dl(CP); 344 EVT VT = CP->getValueType(0); 345 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 346 TLI.getPointerTy(DAG.getDataLayout())); 347 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 348 SDValue Result = DAG.getLoad( 349 VT, dl, DAG.getEntryNode(), CPIdx, 350 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 351 return Result; 352 } 353 354 /// Some target cannot handle a variable insertion index for the 355 /// INSERT_VECTOR_ELT instruction. In this case, it 356 /// is necessary to spill the vector being inserted into to memory, perform 357 /// the insert there, and then read the result back. 358 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 359 SDValue Val, 360 SDValue Idx, 361 const SDLoc &dl) { 362 SDValue Tmp1 = Vec; 363 SDValue Tmp2 = Val; 364 SDValue Tmp3 = Idx; 365 366 // If the target doesn't support this, we have to spill the input vector 367 // to a temporary stack slot, update the element, then reload it. This is 368 // badness. We could also load the value into a vector register (either 369 // with a "move to register" or "extload into register" instruction, then 370 // permute it into place, if the idx is a constant and if the idx is 371 // supported by the target. 372 EVT VT = Tmp1.getValueType(); 373 EVT EltVT = VT.getVectorElementType(); 374 SDValue StackPtr = DAG.CreateStackTemporary(VT); 375 376 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 377 378 // Store the vector. 379 SDValue Ch = DAG.getStore( 380 DAG.getEntryNode(), dl, Tmp1, StackPtr, 381 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 382 383 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 384 385 // Store the scalar value. 386 Ch = DAG.getTruncStore( 387 Ch, dl, Tmp2, StackPtr2, 388 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT); 389 // Load the updated vector. 390 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 391 DAG.getMachineFunction(), SPFI)); 392 } 393 394 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 395 SDValue Idx, 396 const SDLoc &dl) { 397 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 398 // SCALAR_TO_VECTOR requires that the type of the value being inserted 399 // match the element type of the vector being created, except for 400 // integers in which case the inserted value can be over width. 401 EVT EltVT = Vec.getValueType().getVectorElementType(); 402 if (Val.getValueType() == EltVT || 403 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 404 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 405 Vec.getValueType(), Val); 406 407 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 408 // We generate a shuffle of InVec and ScVec, so the shuffle mask 409 // should be 0,1,2,3,4,5... with the appropriate element replaced with 410 // elt 0 of the RHS. 411 SmallVector<int, 8> ShufOps; 412 for (unsigned i = 0; i != NumElts; ++i) 413 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 414 415 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 416 } 417 } 418 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 419 } 420 421 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 422 if (!ISD::isNormalStore(ST)) 423 return SDValue(); 424 425 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); 426 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 427 // FIXME: move this to the DAG Combiner! Note that we can't regress due 428 // to phase ordering between legalized code and the dag combiner. This 429 // probably means that we need to integrate dag combiner and legalizer 430 // together. 431 // We generally can't do this one for long doubles. 432 SDValue Chain = ST->getChain(); 433 SDValue Ptr = ST->getBasePtr(); 434 SDValue Value = ST->getValue(); 435 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 436 AAMDNodes AAInfo = ST->getAAInfo(); 437 SDLoc dl(ST); 438 439 // Don't optimise TargetConstantFP 440 if (Value.getOpcode() == ISD::TargetConstantFP) 441 return SDValue(); 442 443 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) { 444 if (CFP->getValueType(0) == MVT::f32 && 445 TLI.isTypeLegal(MVT::i32)) { 446 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 447 bitcastToAPInt().zextOrTrunc(32), 448 SDLoc(CFP), MVT::i32); 449 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 450 ST->getOriginalAlign(), MMOFlags, AAInfo); 451 } 452 453 if (CFP->getValueType(0) == MVT::f64) { 454 // If this target supports 64-bit registers, do a single 64-bit store. 455 if (TLI.isTypeLegal(MVT::i64)) { 456 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 457 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 458 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 459 ST->getOriginalAlign(), MMOFlags, AAInfo); 460 } 461 462 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 463 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 464 // stores. If the target supports neither 32- nor 64-bits, this 465 // xform is certainly not worth it. 466 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 467 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 468 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 469 if (DAG.getDataLayout().isBigEndian()) 470 std::swap(Lo, Hi); 471 472 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), 473 ST->getOriginalAlign(), MMOFlags, AAInfo); 474 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), dl); 475 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 476 ST->getPointerInfo().getWithOffset(4), 477 ST->getOriginalAlign(), MMOFlags, AAInfo); 478 479 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 480 } 481 } 482 } 483 return SDValue(); 484 } 485 486 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 487 StoreSDNode *ST = cast<StoreSDNode>(Node); 488 SDValue Chain = ST->getChain(); 489 SDValue Ptr = ST->getBasePtr(); 490 SDLoc dl(Node); 491 492 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 493 AAMDNodes AAInfo = ST->getAAInfo(); 494 495 if (!ST->isTruncatingStore()) { 496 LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); 497 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 498 ReplaceNode(ST, OptStore); 499 return; 500 } 501 502 SDValue Value = ST->getValue(); 503 MVT VT = Value.getSimpleValueType(); 504 switch (TLI.getOperationAction(ISD::STORE, VT)) { 505 default: llvm_unreachable("This action is not supported yet!"); 506 case TargetLowering::Legal: { 507 // If this is an unaligned store and the target doesn't support it, 508 // expand it. 509 EVT MemVT = ST->getMemoryVT(); 510 const DataLayout &DL = DAG.getDataLayout(); 511 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 512 *ST->getMemOperand())) { 513 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 514 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 515 ReplaceNode(SDValue(ST, 0), Result); 516 } else 517 LLVM_DEBUG(dbgs() << "Legal store\n"); 518 break; 519 } 520 case TargetLowering::Custom: { 521 LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); 522 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 523 if (Res && Res != SDValue(Node, 0)) 524 ReplaceNode(SDValue(Node, 0), Res); 525 return; 526 } 527 case TargetLowering::Promote: { 528 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 529 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 530 "Can only promote stores to same size type"); 531 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 532 SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 533 ST->getOriginalAlign(), MMOFlags, AAInfo); 534 ReplaceNode(SDValue(Node, 0), Result); 535 break; 536 } 537 } 538 return; 539 } 540 541 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); 542 SDValue Value = ST->getValue(); 543 EVT StVT = ST->getMemoryVT(); 544 TypeSize StWidth = StVT.getSizeInBits(); 545 TypeSize StSize = StVT.getStoreSizeInBits(); 546 auto &DL = DAG.getDataLayout(); 547 548 if (StWidth != StSize) { 549 // Promote to a byte-sized store with upper bits zero if not 550 // storing an integral number of bytes. For example, promote 551 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 552 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StSize.getFixedSize()); 553 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 554 SDValue Result = 555 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 556 ST->getOriginalAlign(), MMOFlags, AAInfo); 557 ReplaceNode(SDValue(Node, 0), Result); 558 } else if (!StVT.isVector() && !isPowerOf2_64(StWidth.getFixedSize())) { 559 // If not storing a power-of-2 number of bits, expand as two stores. 560 assert(!StVT.isVector() && "Unsupported truncstore!"); 561 unsigned StWidthBits = StWidth.getFixedSize(); 562 unsigned LogStWidth = Log2_32(StWidthBits); 563 assert(LogStWidth < 32); 564 unsigned RoundWidth = 1 << LogStWidth; 565 assert(RoundWidth < StWidthBits); 566 unsigned ExtraWidth = StWidthBits - RoundWidth; 567 assert(ExtraWidth < RoundWidth); 568 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 569 "Store size not an integral number of bytes!"); 570 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 571 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 572 SDValue Lo, Hi; 573 unsigned IncrementSize; 574 575 if (DL.isLittleEndian()) { 576 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 577 // Store the bottom RoundWidth bits. 578 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 579 RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 580 581 // Store the remaining ExtraWidth bits. 582 IncrementSize = RoundWidth / 8; 583 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 584 Hi = DAG.getNode( 585 ISD::SRL, dl, Value.getValueType(), Value, 586 DAG.getConstant(RoundWidth, dl, 587 TLI.getShiftAmountTy(Value.getValueType(), DL))); 588 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, 589 ST->getPointerInfo().getWithOffset(IncrementSize), 590 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 591 } else { 592 // Big endian - avoid unaligned stores. 593 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 594 // Store the top RoundWidth bits. 595 Hi = DAG.getNode( 596 ISD::SRL, dl, Value.getValueType(), Value, 597 DAG.getConstant(ExtraWidth, dl, 598 TLI.getShiftAmountTy(Value.getValueType(), DL))); 599 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT, 600 ST->getOriginalAlign(), MMOFlags, AAInfo); 601 602 // Store the remaining ExtraWidth bits. 603 IncrementSize = RoundWidth / 8; 604 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 605 DAG.getConstant(IncrementSize, dl, 606 Ptr.getValueType())); 607 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, 608 ST->getPointerInfo().getWithOffset(IncrementSize), 609 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 610 } 611 612 // The order of the stores doesn't matter. 613 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 614 ReplaceNode(SDValue(Node, 0), Result); 615 } else { 616 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 617 default: llvm_unreachable("This action is not supported yet!"); 618 case TargetLowering::Legal: { 619 EVT MemVT = ST->getMemoryVT(); 620 // If this is an unaligned store and the target doesn't support it, 621 // expand it. 622 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 623 *ST->getMemOperand())) { 624 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 625 ReplaceNode(SDValue(ST, 0), Result); 626 } 627 break; 628 } 629 case TargetLowering::Custom: { 630 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 631 if (Res && Res != SDValue(Node, 0)) 632 ReplaceNode(SDValue(Node, 0), Res); 633 return; 634 } 635 case TargetLowering::Expand: 636 assert(!StVT.isVector() && 637 "Vector Stores are handled in LegalizeVectorOps"); 638 639 SDValue Result; 640 641 // TRUNCSTORE:i16 i32 -> STORE i16 642 if (TLI.isTypeLegal(StVT)) { 643 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 644 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 645 ST->getOriginalAlign(), MMOFlags, AAInfo); 646 } else { 647 // The in-memory type isn't legal. Truncate to the type it would promote 648 // to, and then do a truncstore. 649 Value = DAG.getNode(ISD::TRUNCATE, dl, 650 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 651 Value); 652 Result = 653 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT, 654 ST->getOriginalAlign(), MMOFlags, AAInfo); 655 } 656 657 ReplaceNode(SDValue(Node, 0), Result); 658 break; 659 } 660 } 661 } 662 663 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 664 LoadSDNode *LD = cast<LoadSDNode>(Node); 665 SDValue Chain = LD->getChain(); // The chain. 666 SDValue Ptr = LD->getBasePtr(); // The base pointer. 667 SDValue Value; // The value returned by the load op. 668 SDLoc dl(Node); 669 670 ISD::LoadExtType ExtType = LD->getExtensionType(); 671 if (ExtType == ISD::NON_EXTLOAD) { 672 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 673 MVT VT = Node->getSimpleValueType(0); 674 SDValue RVal = SDValue(Node, 0); 675 SDValue RChain = SDValue(Node, 1); 676 677 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 678 default: llvm_unreachable("This action is not supported yet!"); 679 case TargetLowering::Legal: { 680 EVT MemVT = LD->getMemoryVT(); 681 const DataLayout &DL = DAG.getDataLayout(); 682 // If this is an unaligned load and the target doesn't support it, 683 // expand it. 684 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 685 *LD->getMemOperand())) { 686 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 687 } 688 break; 689 } 690 case TargetLowering::Custom: 691 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 692 RVal = Res; 693 RChain = Res.getValue(1); 694 } 695 break; 696 697 case TargetLowering::Promote: { 698 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 699 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 700 "Can only promote loads to same size type"); 701 702 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 703 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 704 RChain = Res.getValue(1); 705 break; 706 } 707 } 708 if (RChain.getNode() != Node) { 709 assert(RVal.getNode() != Node && "Load must be completely replaced"); 710 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 711 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 712 if (UpdatedNodes) { 713 UpdatedNodes->insert(RVal.getNode()); 714 UpdatedNodes->insert(RChain.getNode()); 715 } 716 ReplacedNode(Node); 717 } 718 return; 719 } 720 721 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); 722 EVT SrcVT = LD->getMemoryVT(); 723 TypeSize SrcWidth = SrcVT.getSizeInBits(); 724 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 725 AAMDNodes AAInfo = LD->getAAInfo(); 726 727 if (SrcWidth != SrcVT.getStoreSizeInBits() && 728 // Some targets pretend to have an i1 loading operation, and actually 729 // load an i8. This trick is correct for ZEXTLOAD because the top 7 730 // bits are guaranteed to be zero; it helps the optimizers understand 731 // that these bits are zero. It is also useful for EXTLOAD, since it 732 // tells the optimizers that those bits are undefined. It would be 733 // nice to have an effective generic way of getting these benefits... 734 // Until such a way is found, don't insist on promoting i1 here. 735 (SrcVT != MVT::i1 || 736 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 737 TargetLowering::Promote)) { 738 // Promote to a byte-sized load if not loading an integral number of 739 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 740 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 741 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 742 SDValue Ch; 743 744 // The extra bits are guaranteed to be zero, since we stored them that 745 // way. A zext load from NVT thus automatically gives zext from SrcVT. 746 747 ISD::LoadExtType NewExtType = 748 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 749 750 SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 751 Chain, Ptr, LD->getPointerInfo(), NVT, 752 LD->getOriginalAlign(), MMOFlags, AAInfo); 753 754 Ch = Result.getValue(1); // The chain. 755 756 if (ExtType == ISD::SEXTLOAD) 757 // Having the top bits zero doesn't help when sign extending. 758 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 759 Result.getValueType(), 760 Result, DAG.getValueType(SrcVT)); 761 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 762 // All the top bits are guaranteed to be zero - inform the optimizers. 763 Result = DAG.getNode(ISD::AssertZext, dl, 764 Result.getValueType(), Result, 765 DAG.getValueType(SrcVT)); 766 767 Value = Result; 768 Chain = Ch; 769 } else if (!isPowerOf2_64(SrcWidth.getKnownMinSize())) { 770 // If not loading a power-of-2 number of bits, expand as two loads. 771 assert(!SrcVT.isVector() && "Unsupported extload!"); 772 unsigned SrcWidthBits = SrcWidth.getFixedSize(); 773 unsigned LogSrcWidth = Log2_32(SrcWidthBits); 774 assert(LogSrcWidth < 32); 775 unsigned RoundWidth = 1 << LogSrcWidth; 776 assert(RoundWidth < SrcWidthBits); 777 unsigned ExtraWidth = SrcWidthBits - RoundWidth; 778 assert(ExtraWidth < RoundWidth); 779 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 780 "Load size not an integral number of bytes!"); 781 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 782 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 783 SDValue Lo, Hi, Ch; 784 unsigned IncrementSize; 785 auto &DL = DAG.getDataLayout(); 786 787 if (DL.isLittleEndian()) { 788 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 789 // Load the bottom RoundWidth bits. 790 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 791 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 792 MMOFlags, AAInfo); 793 794 // Load the remaining ExtraWidth bits. 795 IncrementSize = RoundWidth / 8; 796 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 797 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 798 LD->getPointerInfo().getWithOffset(IncrementSize), 799 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 800 801 // Build a factor node to remember that this load is independent of 802 // the other one. 803 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 804 Hi.getValue(1)); 805 806 // Move the top bits to the right place. 807 Hi = DAG.getNode( 808 ISD::SHL, dl, Hi.getValueType(), Hi, 809 DAG.getConstant(RoundWidth, dl, 810 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 811 812 // Join the hi and lo parts. 813 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 814 } else { 815 // Big endian - avoid unaligned loads. 816 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 817 // Load the top RoundWidth bits. 818 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 819 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 820 MMOFlags, AAInfo); 821 822 // Load the remaining ExtraWidth bits. 823 IncrementSize = RoundWidth / 8; 824 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 825 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 826 LD->getPointerInfo().getWithOffset(IncrementSize), 827 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 828 829 // Build a factor node to remember that this load is independent of 830 // the other one. 831 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 832 Hi.getValue(1)); 833 834 // Move the top bits to the right place. 835 Hi = DAG.getNode( 836 ISD::SHL, dl, Hi.getValueType(), Hi, 837 DAG.getConstant(ExtraWidth, dl, 838 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 839 840 // Join the hi and lo parts. 841 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 842 } 843 844 Chain = Ch; 845 } else { 846 bool isCustom = false; 847 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 848 SrcVT.getSimpleVT())) { 849 default: llvm_unreachable("This action is not supported yet!"); 850 case TargetLowering::Custom: 851 isCustom = true; 852 LLVM_FALLTHROUGH; 853 case TargetLowering::Legal: 854 Value = SDValue(Node, 0); 855 Chain = SDValue(Node, 1); 856 857 if (isCustom) { 858 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 859 Value = Res; 860 Chain = Res.getValue(1); 861 } 862 } else { 863 // If this is an unaligned load and the target doesn't support it, 864 // expand it. 865 EVT MemVT = LD->getMemoryVT(); 866 const DataLayout &DL = DAG.getDataLayout(); 867 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, 868 *LD->getMemOperand())) { 869 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 870 } 871 } 872 break; 873 874 case TargetLowering::Expand: { 875 EVT DestVT = Node->getValueType(0); 876 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 877 // If the source type is not legal, see if there is a legal extload to 878 // an intermediate type that we can then extend further. 879 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 880 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 881 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 882 // If we are loading a legal type, this is a non-extload followed by a 883 // full extend. 884 ISD::LoadExtType MidExtType = 885 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 886 887 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 888 SrcVT, LD->getMemOperand()); 889 unsigned ExtendOp = 890 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 891 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 892 Chain = Load.getValue(1); 893 break; 894 } 895 896 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 897 // normal undefined upper bits behavior to allow using an in-reg extend 898 // with the illegal FP type, so load as an integer and do the 899 // from-integer conversion. 900 if (SrcVT.getScalarType() == MVT::f16) { 901 EVT ISrcVT = SrcVT.changeTypeToInteger(); 902 EVT IDestVT = DestVT.changeTypeToInteger(); 903 EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 904 905 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain, 906 Ptr, ISrcVT, LD->getMemOperand()); 907 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 908 Chain = Result.getValue(1); 909 break; 910 } 911 } 912 913 assert(!SrcVT.isVector() && 914 "Vector Loads are handled in LegalizeVectorOps"); 915 916 // FIXME: This does not work for vectors on most targets. Sign- 917 // and zero-extend operations are currently folded into extending 918 // loads, whether they are legal or not, and then we end up here 919 // without any support for legalizing them. 920 assert(ExtType != ISD::EXTLOAD && 921 "EXTLOAD should always be supported!"); 922 // Turn the unsupported load into an EXTLOAD followed by an 923 // explicit zero/sign extend inreg. 924 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 925 Node->getValueType(0), 926 Chain, Ptr, SrcVT, 927 LD->getMemOperand()); 928 SDValue ValRes; 929 if (ExtType == ISD::SEXTLOAD) 930 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 931 Result.getValueType(), 932 Result, DAG.getValueType(SrcVT)); 933 else 934 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT); 935 Value = ValRes; 936 Chain = Result.getValue(1); 937 break; 938 } 939 } 940 } 941 942 // Since loads produce two values, make sure to remember that we legalized 943 // both of them. 944 if (Chain.getNode() != Node) { 945 assert(Value.getNode() != Node && "Load must be completely replaced"); 946 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 947 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 948 if (UpdatedNodes) { 949 UpdatedNodes->insert(Value.getNode()); 950 UpdatedNodes->insert(Chain.getNode()); 951 } 952 ReplacedNode(Node); 953 } 954 } 955 956 /// Return a legal replacement for the given operation, with all legal operands. 957 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 958 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 959 960 // Allow illegal target nodes and illegal registers. 961 if (Node->getOpcode() == ISD::TargetConstant || 962 Node->getOpcode() == ISD::Register) 963 return; 964 965 #ifndef NDEBUG 966 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 967 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 968 TargetLowering::TypeLegal && 969 "Unexpected illegal type!"); 970 971 for (const SDValue &Op : Node->op_values()) 972 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 973 TargetLowering::TypeLegal || 974 Op.getOpcode() == ISD::TargetConstant || 975 Op.getOpcode() == ISD::Register) && 976 "Unexpected illegal type!"); 977 #endif 978 979 // Figure out the correct action; the way to query this varies by opcode 980 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 981 bool SimpleFinishLegalizing = true; 982 switch (Node->getOpcode()) { 983 case ISD::INTRINSIC_W_CHAIN: 984 case ISD::INTRINSIC_WO_CHAIN: 985 case ISD::INTRINSIC_VOID: 986 case ISD::STACKSAVE: 987 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 988 break; 989 case ISD::GET_DYNAMIC_AREA_OFFSET: 990 Action = TLI.getOperationAction(Node->getOpcode(), 991 Node->getValueType(0)); 992 break; 993 case ISD::VAARG: 994 Action = TLI.getOperationAction(Node->getOpcode(), 995 Node->getValueType(0)); 996 if (Action != TargetLowering::Promote) 997 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 998 break; 999 case ISD::FP_TO_FP16: 1000 case ISD::SINT_TO_FP: 1001 case ISD::UINT_TO_FP: 1002 case ISD::EXTRACT_VECTOR_ELT: 1003 case ISD::LROUND: 1004 case ISD::LLROUND: 1005 case ISD::LRINT: 1006 case ISD::LLRINT: 1007 Action = TLI.getOperationAction(Node->getOpcode(), 1008 Node->getOperand(0).getValueType()); 1009 break; 1010 case ISD::STRICT_FP_TO_FP16: 1011 case ISD::STRICT_SINT_TO_FP: 1012 case ISD::STRICT_UINT_TO_FP: 1013 case ISD::STRICT_LRINT: 1014 case ISD::STRICT_LLRINT: 1015 case ISD::STRICT_LROUND: 1016 case ISD::STRICT_LLROUND: 1017 // These pseudo-ops are the same as the other STRICT_ ops except 1018 // they are registered with setOperationAction() using the input type 1019 // instead of the output type. 1020 Action = TLI.getOperationAction(Node->getOpcode(), 1021 Node->getOperand(1).getValueType()); 1022 break; 1023 case ISD::SIGN_EXTEND_INREG: { 1024 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1025 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1026 break; 1027 } 1028 case ISD::ATOMIC_STORE: 1029 Action = TLI.getOperationAction(Node->getOpcode(), 1030 Node->getOperand(2).getValueType()); 1031 break; 1032 case ISD::SELECT_CC: 1033 case ISD::STRICT_FSETCC: 1034 case ISD::STRICT_FSETCCS: 1035 case ISD::SETCC: 1036 case ISD::VP_SETCC: 1037 case ISD::BR_CC: { 1038 unsigned Opc = Node->getOpcode(); 1039 unsigned CCOperand = Opc == ISD::SELECT_CC ? 4 1040 : Opc == ISD::STRICT_FSETCC ? 3 1041 : Opc == ISD::STRICT_FSETCCS ? 3 1042 : (Opc == ISD::SETCC || Opc == ISD::VP_SETCC) ? 2 1043 : 1; 1044 unsigned CompareOperand = Opc == ISD::BR_CC ? 2 1045 : Opc == ISD::STRICT_FSETCC ? 1 1046 : Opc == ISD::STRICT_FSETCCS ? 1 1047 : 0; 1048 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1049 ISD::CondCode CCCode = 1050 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1051 Action = TLI.getCondCodeAction(CCCode, OpVT); 1052 if (Action == TargetLowering::Legal) { 1053 if (Node->getOpcode() == ISD::SELECT_CC) 1054 Action = TLI.getOperationAction(Node->getOpcode(), 1055 Node->getValueType(0)); 1056 else 1057 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1058 } 1059 break; 1060 } 1061 case ISD::LOAD: 1062 case ISD::STORE: 1063 // FIXME: Model these properly. LOAD and STORE are complicated, and 1064 // STORE expects the unlegalized operand in some cases. 1065 SimpleFinishLegalizing = false; 1066 break; 1067 case ISD::CALLSEQ_START: 1068 case ISD::CALLSEQ_END: 1069 // FIXME: This shouldn't be necessary. These nodes have special properties 1070 // dealing with the recursive nature of legalization. Removing this 1071 // special case should be done as part of making LegalizeDAG non-recursive. 1072 SimpleFinishLegalizing = false; 1073 break; 1074 case ISD::EXTRACT_ELEMENT: 1075 case ISD::FLT_ROUNDS_: 1076 case ISD::MERGE_VALUES: 1077 case ISD::EH_RETURN: 1078 case ISD::FRAME_TO_ARGS_OFFSET: 1079 case ISD::EH_DWARF_CFA: 1080 case ISD::EH_SJLJ_SETJMP: 1081 case ISD::EH_SJLJ_LONGJMP: 1082 case ISD::EH_SJLJ_SETUP_DISPATCH: 1083 // These operations lie about being legal: when they claim to be legal, 1084 // they should actually be expanded. 1085 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1086 if (Action == TargetLowering::Legal) 1087 Action = TargetLowering::Expand; 1088 break; 1089 case ISD::INIT_TRAMPOLINE: 1090 case ISD::ADJUST_TRAMPOLINE: 1091 case ISD::FRAMEADDR: 1092 case ISD::RETURNADDR: 1093 case ISD::ADDROFRETURNADDR: 1094 case ISD::SPONENTRY: 1095 // These operations lie about being legal: when they claim to be legal, 1096 // they should actually be custom-lowered. 1097 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1098 if (Action == TargetLowering::Legal) 1099 Action = TargetLowering::Custom; 1100 break; 1101 case ISD::READCYCLECOUNTER: 1102 // READCYCLECOUNTER returns an i64, even if type legalization might have 1103 // expanded that to several smaller types. 1104 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1105 break; 1106 case ISD::READ_REGISTER: 1107 case ISD::WRITE_REGISTER: 1108 // Named register is legal in the DAG, but blocked by register name 1109 // selection if not implemented by target (to chose the correct register) 1110 // They'll be converted to Copy(To/From)Reg. 1111 Action = TargetLowering::Legal; 1112 break; 1113 case ISD::UBSANTRAP: 1114 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1115 if (Action == TargetLowering::Expand) { 1116 // replace ISD::UBSANTRAP with ISD::TRAP 1117 SDValue NewVal; 1118 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1119 Node->getOperand(0)); 1120 ReplaceNode(Node, NewVal.getNode()); 1121 LegalizeOp(NewVal.getNode()); 1122 return; 1123 } 1124 break; 1125 case ISD::DEBUGTRAP: 1126 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1127 if (Action == TargetLowering::Expand) { 1128 // replace ISD::DEBUGTRAP with ISD::TRAP 1129 SDValue NewVal; 1130 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1131 Node->getOperand(0)); 1132 ReplaceNode(Node, NewVal.getNode()); 1133 LegalizeOp(NewVal.getNode()); 1134 return; 1135 } 1136 break; 1137 case ISD::SADDSAT: 1138 case ISD::UADDSAT: 1139 case ISD::SSUBSAT: 1140 case ISD::USUBSAT: 1141 case ISD::SSHLSAT: 1142 case ISD::USHLSAT: 1143 case ISD::FP_TO_SINT_SAT: 1144 case ISD::FP_TO_UINT_SAT: 1145 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1146 break; 1147 case ISD::SMULFIX: 1148 case ISD::SMULFIXSAT: 1149 case ISD::UMULFIX: 1150 case ISD::UMULFIXSAT: 1151 case ISD::SDIVFIX: 1152 case ISD::SDIVFIXSAT: 1153 case ISD::UDIVFIX: 1154 case ISD::UDIVFIXSAT: { 1155 unsigned Scale = Node->getConstantOperandVal(2); 1156 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 1157 Node->getValueType(0), Scale); 1158 break; 1159 } 1160 case ISD::MSCATTER: 1161 Action = TLI.getOperationAction(Node->getOpcode(), 1162 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 1163 break; 1164 case ISD::MSTORE: 1165 Action = TLI.getOperationAction(Node->getOpcode(), 1166 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 1167 break; 1168 case ISD::VP_SCATTER: 1169 Action = TLI.getOperationAction( 1170 Node->getOpcode(), 1171 cast<VPScatterSDNode>(Node)->getValue().getValueType()); 1172 break; 1173 case ISD::VP_STORE: 1174 Action = TLI.getOperationAction( 1175 Node->getOpcode(), 1176 cast<VPStoreSDNode>(Node)->getValue().getValueType()); 1177 break; 1178 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 1179 Action = TLI.getOperationAction( 1180 Node->getOpcode(), 1181 cast<VPStridedStoreSDNode>(Node)->getValue().getValueType()); 1182 break; 1183 case ISD::VECREDUCE_FADD: 1184 case ISD::VECREDUCE_FMUL: 1185 case ISD::VECREDUCE_ADD: 1186 case ISD::VECREDUCE_MUL: 1187 case ISD::VECREDUCE_AND: 1188 case ISD::VECREDUCE_OR: 1189 case ISD::VECREDUCE_XOR: 1190 case ISD::VECREDUCE_SMAX: 1191 case ISD::VECREDUCE_SMIN: 1192 case ISD::VECREDUCE_UMAX: 1193 case ISD::VECREDUCE_UMIN: 1194 case ISD::VECREDUCE_FMAX: 1195 case ISD::VECREDUCE_FMIN: 1196 Action = TLI.getOperationAction( 1197 Node->getOpcode(), Node->getOperand(0).getValueType()); 1198 break; 1199 case ISD::VECREDUCE_SEQ_FADD: 1200 case ISD::VECREDUCE_SEQ_FMUL: 1201 case ISD::VP_REDUCE_FADD: 1202 case ISD::VP_REDUCE_FMUL: 1203 case ISD::VP_REDUCE_ADD: 1204 case ISD::VP_REDUCE_MUL: 1205 case ISD::VP_REDUCE_AND: 1206 case ISD::VP_REDUCE_OR: 1207 case ISD::VP_REDUCE_XOR: 1208 case ISD::VP_REDUCE_SMAX: 1209 case ISD::VP_REDUCE_SMIN: 1210 case ISD::VP_REDUCE_UMAX: 1211 case ISD::VP_REDUCE_UMIN: 1212 case ISD::VP_REDUCE_FMAX: 1213 case ISD::VP_REDUCE_FMIN: 1214 case ISD::VP_REDUCE_SEQ_FADD: 1215 case ISD::VP_REDUCE_SEQ_FMUL: 1216 Action = TLI.getOperationAction( 1217 Node->getOpcode(), Node->getOperand(1).getValueType()); 1218 break; 1219 default: 1220 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1221 Action = TLI.getCustomOperationAction(*Node); 1222 } else { 1223 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1224 } 1225 break; 1226 } 1227 1228 if (SimpleFinishLegalizing) { 1229 SDNode *NewNode = Node; 1230 switch (Node->getOpcode()) { 1231 default: break; 1232 case ISD::SHL: 1233 case ISD::SRL: 1234 case ISD::SRA: 1235 case ISD::ROTL: 1236 case ISD::ROTR: { 1237 // Legalizing shifts/rotates requires adjusting the shift amount 1238 // to the appropriate width. 1239 SDValue Op0 = Node->getOperand(0); 1240 SDValue Op1 = Node->getOperand(1); 1241 if (!Op1.getValueType().isVector()) { 1242 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1243 // The getShiftAmountOperand() may create a new operand node or 1244 // return the existing one. If new operand is created we need 1245 // to update the parent node. 1246 // Do not try to legalize SAO here! It will be automatically legalized 1247 // in the next round. 1248 if (SAO != Op1) 1249 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1250 } 1251 } 1252 break; 1253 case ISD::FSHL: 1254 case ISD::FSHR: 1255 case ISD::SRL_PARTS: 1256 case ISD::SRA_PARTS: 1257 case ISD::SHL_PARTS: { 1258 // Legalizing shifts/rotates requires adjusting the shift amount 1259 // to the appropriate width. 1260 SDValue Op0 = Node->getOperand(0); 1261 SDValue Op1 = Node->getOperand(1); 1262 SDValue Op2 = Node->getOperand(2); 1263 if (!Op2.getValueType().isVector()) { 1264 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1265 // The getShiftAmountOperand() may create a new operand node or 1266 // return the existing one. If new operand is created we need 1267 // to update the parent node. 1268 if (SAO != Op2) 1269 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1270 } 1271 break; 1272 } 1273 } 1274 1275 if (NewNode != Node) { 1276 ReplaceNode(Node, NewNode); 1277 Node = NewNode; 1278 } 1279 switch (Action) { 1280 case TargetLowering::Legal: 1281 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 1282 return; 1283 case TargetLowering::Custom: 1284 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 1285 // FIXME: The handling for custom lowering with multiple results is 1286 // a complete mess. 1287 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1288 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1289 return; 1290 1291 if (Node->getNumValues() == 1) { 1292 // Verify the new types match the original. Glue is waived because 1293 // ISD::ADDC can be legalized by replacing Glue with an integer type. 1294 assert((Res.getValueType() == Node->getValueType(0) || 1295 Node->getValueType(0) == MVT::Glue) && 1296 "Type mismatch for custom legalized operation"); 1297 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1298 // We can just directly replace this node with the lowered value. 1299 ReplaceNode(SDValue(Node, 0), Res); 1300 return; 1301 } 1302 1303 SmallVector<SDValue, 8> ResultVals; 1304 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 1305 // Verify the new types match the original. Glue is waived because 1306 // ISD::ADDC can be legalized by replacing Glue with an integer type. 1307 assert((Res->getValueType(i) == Node->getValueType(i) || 1308 Node->getValueType(i) == MVT::Glue) && 1309 "Type mismatch for custom legalized operation"); 1310 ResultVals.push_back(Res.getValue(i)); 1311 } 1312 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1313 ReplaceNode(Node, ResultVals.data()); 1314 return; 1315 } 1316 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 1317 LLVM_FALLTHROUGH; 1318 case TargetLowering::Expand: 1319 if (ExpandNode(Node)) 1320 return; 1321 LLVM_FALLTHROUGH; 1322 case TargetLowering::LibCall: 1323 ConvertNodeToLibcall(Node); 1324 return; 1325 case TargetLowering::Promote: 1326 PromoteNode(Node); 1327 return; 1328 } 1329 } 1330 1331 switch (Node->getOpcode()) { 1332 default: 1333 #ifndef NDEBUG 1334 dbgs() << "NODE: "; 1335 Node->dump( &DAG); 1336 dbgs() << "\n"; 1337 #endif 1338 llvm_unreachable("Do not know how to legalize this operator!"); 1339 1340 case ISD::CALLSEQ_START: 1341 case ISD::CALLSEQ_END: 1342 break; 1343 case ISD::LOAD: 1344 return LegalizeLoadOps(Node); 1345 case ISD::STORE: 1346 return LegalizeStoreOps(Node); 1347 } 1348 } 1349 1350 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1351 SDValue Vec = Op.getOperand(0); 1352 SDValue Idx = Op.getOperand(1); 1353 SDLoc dl(Op); 1354 1355 // Before we generate a new store to a temporary stack slot, see if there is 1356 // already one that we can use. There often is because when we scalarize 1357 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1358 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1359 // the vector. If all are expanded here, we don't want one store per vector 1360 // element. 1361 1362 // Caches for hasPredecessorHelper 1363 SmallPtrSet<const SDNode *, 32> Visited; 1364 SmallVector<const SDNode *, 16> Worklist; 1365 Visited.insert(Op.getNode()); 1366 Worklist.push_back(Idx.getNode()); 1367 SDValue StackPtr, Ch; 1368 for (SDNode *User : Vec.getNode()->uses()) { 1369 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1370 if (ST->isIndexed() || ST->isTruncatingStore() || 1371 ST->getValue() != Vec) 1372 continue; 1373 1374 // Make sure that nothing else could have stored into the destination of 1375 // this store. 1376 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1377 continue; 1378 1379 // If the index is dependent on the store we will introduce a cycle when 1380 // creating the load (the load uses the index, and by replacing the chain 1381 // we will make the index dependent on the load). Also, the store might be 1382 // dependent on the extractelement and introduce a cycle when creating 1383 // the load. 1384 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1385 ST->hasPredecessor(Op.getNode())) 1386 continue; 1387 1388 StackPtr = ST->getBasePtr(); 1389 Ch = SDValue(ST, 0); 1390 break; 1391 } 1392 } 1393 1394 EVT VecVT = Vec.getValueType(); 1395 1396 if (!Ch.getNode()) { 1397 // Store the value to a temporary stack slot, then LOAD the returned part. 1398 StackPtr = DAG.CreateStackTemporary(VecVT); 1399 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1400 MachinePointerInfo()); 1401 } 1402 1403 SDValue NewLoad; 1404 1405 if (Op.getValueType().isVector()) { 1406 StackPtr = TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, 1407 Op.getValueType(), Idx); 1408 NewLoad = 1409 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); 1410 } else { 1411 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1412 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1413 MachinePointerInfo(), 1414 VecVT.getVectorElementType()); 1415 } 1416 1417 // Replace the chain going out of the store, by the one out of the load. 1418 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1419 1420 // We introduced a cycle though, so update the loads operands, making sure 1421 // to use the original store's chain as an incoming chain. 1422 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1423 NewLoad->op_end()); 1424 NewLoadOperands[0] = Ch; 1425 NewLoad = 1426 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1427 return NewLoad; 1428 } 1429 1430 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1431 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1432 1433 SDValue Vec = Op.getOperand(0); 1434 SDValue Part = Op.getOperand(1); 1435 SDValue Idx = Op.getOperand(2); 1436 SDLoc dl(Op); 1437 1438 // Store the value to a temporary stack slot, then LOAD the returned part. 1439 EVT VecVT = Vec.getValueType(); 1440 EVT SubVecVT = Part.getValueType(); 1441 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1442 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1443 MachinePointerInfo PtrInfo = 1444 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1445 1446 // First store the whole vector. 1447 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1448 1449 // Then store the inserted part. 1450 SDValue SubStackPtr = 1451 TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, SubVecVT, Idx); 1452 1453 // Store the subvector. 1454 Ch = DAG.getStore( 1455 Ch, dl, Part, SubStackPtr, 1456 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1457 1458 // Finally, load the updated vector. 1459 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1460 } 1461 1462 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1463 assert((Node->getOpcode() == ISD::BUILD_VECTOR || 1464 Node->getOpcode() == ISD::CONCAT_VECTORS) && 1465 "Unexpected opcode!"); 1466 1467 // We can't handle this case efficiently. Allocate a sufficiently 1468 // aligned object on the stack, store each operand into it, then load 1469 // the result as a vector. 1470 // Create the stack frame object. 1471 EVT VT = Node->getValueType(0); 1472 EVT MemVT = isa<BuildVectorSDNode>(Node) ? VT.getVectorElementType() 1473 : Node->getOperand(0).getValueType(); 1474 SDLoc dl(Node); 1475 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1476 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1477 MachinePointerInfo PtrInfo = 1478 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1479 1480 // Emit a store of each element to the stack slot. 1481 SmallVector<SDValue, 8> Stores; 1482 unsigned TypeByteSize = MemVT.getSizeInBits() / 8; 1483 assert(TypeByteSize > 0 && "Vector element type too small for stack store!"); 1484 1485 // If the destination vector element type of a BUILD_VECTOR is narrower than 1486 // the source element type, only store the bits necessary. 1487 bool Truncate = isa<BuildVectorSDNode>(Node) && 1488 MemVT.bitsLT(Node->getOperand(0).getValueType()); 1489 1490 // Store (in the right endianness) the elements to memory. 1491 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1492 // Ignore undef elements. 1493 if (Node->getOperand(i).isUndef()) continue; 1494 1495 unsigned Offset = TypeByteSize*i; 1496 1497 SDValue Idx = DAG.getMemBasePlusOffset(FIPtr, TypeSize::Fixed(Offset), dl); 1498 1499 if (Truncate) 1500 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1501 Node->getOperand(i), Idx, 1502 PtrInfo.getWithOffset(Offset), MemVT)); 1503 else 1504 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1505 Idx, PtrInfo.getWithOffset(Offset))); 1506 } 1507 1508 SDValue StoreChain; 1509 if (!Stores.empty()) // Not all undef elements? 1510 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1511 else 1512 StoreChain = DAG.getEntryNode(); 1513 1514 // Result is a load from the stack slot. 1515 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1516 } 1517 1518 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1519 /// containing the sign bit if the target has no integer value capable of 1520 /// holding all bits of the floating-point value. 1521 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1522 const SDLoc &DL, 1523 SDValue Value) const { 1524 EVT FloatVT = Value.getValueType(); 1525 unsigned NumBits = FloatVT.getScalarSizeInBits(); 1526 State.FloatVT = FloatVT; 1527 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1528 // Convert to an integer of the same size. 1529 if (TLI.isTypeLegal(IVT)) { 1530 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1531 State.SignMask = APInt::getSignMask(NumBits); 1532 State.SignBit = NumBits - 1; 1533 return; 1534 } 1535 1536 auto &DataLayout = DAG.getDataLayout(); 1537 // Store the float to memory, then load the sign part out as an integer. 1538 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1539 // First create a temporary that is aligned for both the load and store. 1540 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1541 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1542 // Then store the float to it. 1543 State.FloatPtr = StackPtr; 1544 MachineFunction &MF = DAG.getMachineFunction(); 1545 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1546 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1547 State.FloatPointerInfo); 1548 1549 SDValue IntPtr; 1550 if (DataLayout.isBigEndian()) { 1551 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1552 // Load out a legal integer with the same sign bit as the float. 1553 IntPtr = StackPtr; 1554 State.IntPointerInfo = State.FloatPointerInfo; 1555 } else { 1556 // Advance the pointer so that the loaded byte will contain the sign bit. 1557 unsigned ByteOffset = (NumBits / 8) - 1; 1558 IntPtr = 1559 DAG.getMemBasePlusOffset(StackPtr, TypeSize::Fixed(ByteOffset), DL); 1560 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1561 ByteOffset); 1562 } 1563 1564 State.IntPtr = IntPtr; 1565 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1566 State.IntPointerInfo, MVT::i8); 1567 State.SignMask = APInt::getOneBitSet(LoadTy.getScalarSizeInBits(), 7); 1568 State.SignBit = 7; 1569 } 1570 1571 /// Replace the integer value produced by getSignAsIntValue() with a new value 1572 /// and cast the result back to a floating-point type. 1573 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1574 const SDLoc &DL, 1575 SDValue NewIntValue) const { 1576 if (!State.Chain) 1577 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1578 1579 // Override the part containing the sign bit in the value stored on the stack. 1580 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1581 State.IntPointerInfo, MVT::i8); 1582 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1583 State.FloatPointerInfo); 1584 } 1585 1586 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1587 SDLoc DL(Node); 1588 SDValue Mag = Node->getOperand(0); 1589 SDValue Sign = Node->getOperand(1); 1590 1591 // Get sign bit into an integer value. 1592 FloatSignAsInt SignAsInt; 1593 getSignAsIntValue(SignAsInt, DL, Sign); 1594 1595 EVT IntVT = SignAsInt.IntValue.getValueType(); 1596 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1597 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1598 SignMask); 1599 1600 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1601 EVT FloatVT = Mag.getValueType(); 1602 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1603 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1604 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1605 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1606 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1607 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1608 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1609 } 1610 1611 // Transform Mag value to integer, and clear the sign bit. 1612 FloatSignAsInt MagAsInt; 1613 getSignAsIntValue(MagAsInt, DL, Mag); 1614 EVT MagVT = MagAsInt.IntValue.getValueType(); 1615 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1616 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1617 ClearSignMask); 1618 1619 // Get the signbit at the right position for MagAsInt. 1620 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1621 EVT ShiftVT = IntVT; 1622 if (SignBit.getScalarValueSizeInBits() < 1623 ClearedSign.getScalarValueSizeInBits()) { 1624 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1625 ShiftVT = MagVT; 1626 } 1627 if (ShiftAmount > 0) { 1628 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); 1629 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); 1630 } else if (ShiftAmount < 0) { 1631 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); 1632 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); 1633 } 1634 if (SignBit.getScalarValueSizeInBits() > 1635 ClearedSign.getScalarValueSizeInBits()) { 1636 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1637 } 1638 1639 // Store the part with the modified sign and convert back to float. 1640 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1641 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1642 } 1643 1644 SDValue SelectionDAGLegalize::ExpandFNEG(SDNode *Node) const { 1645 // Get the sign bit as an integer. 1646 SDLoc DL(Node); 1647 FloatSignAsInt SignAsInt; 1648 getSignAsIntValue(SignAsInt, DL, Node->getOperand(0)); 1649 EVT IntVT = SignAsInt.IntValue.getValueType(); 1650 1651 // Flip the sign. 1652 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1653 SDValue SignFlip = 1654 DAG.getNode(ISD::XOR, DL, IntVT, SignAsInt.IntValue, SignMask); 1655 1656 // Convert back to float. 1657 return modifySignAsInt(SignAsInt, DL, SignFlip); 1658 } 1659 1660 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1661 SDLoc DL(Node); 1662 SDValue Value = Node->getOperand(0); 1663 1664 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1665 EVT FloatVT = Value.getValueType(); 1666 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1667 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1668 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1669 } 1670 1671 // Transform value to integer, clear the sign bit and transform back. 1672 FloatSignAsInt ValueAsInt; 1673 getSignAsIntValue(ValueAsInt, DL, Value); 1674 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1675 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1676 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1677 ClearSignMask); 1678 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1679 } 1680 1681 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1682 SmallVectorImpl<SDValue> &Results) { 1683 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1684 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1685 " not tell us which reg is the stack pointer!"); 1686 SDLoc dl(Node); 1687 EVT VT = Node->getValueType(0); 1688 SDValue Tmp1 = SDValue(Node, 0); 1689 SDValue Tmp2 = SDValue(Node, 1); 1690 SDValue Tmp3 = Node->getOperand(2); 1691 SDValue Chain = Tmp1.getOperand(0); 1692 1693 // Chain the dynamic stack allocation so that it doesn't modify the stack 1694 // pointer when other instructions are using the stack. 1695 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1696 1697 SDValue Size = Tmp2.getOperand(1); 1698 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1699 Chain = SP.getValue(1); 1700 Align Alignment = cast<ConstantSDNode>(Tmp3)->getAlignValue(); 1701 const TargetFrameLowering *TFL = DAG.getSubtarget().getFrameLowering(); 1702 unsigned Opc = 1703 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 1704 ISD::ADD : ISD::SUB; 1705 1706 Align StackAlign = TFL->getStackAlign(); 1707 Tmp1 = DAG.getNode(Opc, dl, VT, SP, Size); // Value 1708 if (Alignment > StackAlign) 1709 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1710 DAG.getConstant(-Alignment.value(), dl, VT)); 1711 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1712 1713 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1714 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1715 1716 Results.push_back(Tmp1); 1717 Results.push_back(Tmp2); 1718 } 1719 1720 /// Emit a store/load combination to the stack. This stores 1721 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1722 /// a load from the stack slot to DestVT, extending it if needed. 1723 /// The resultant code need not be legal. 1724 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1725 EVT DestVT, const SDLoc &dl) { 1726 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode()); 1727 } 1728 1729 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1730 EVT DestVT, const SDLoc &dl, 1731 SDValue Chain) { 1732 unsigned SrcSize = SrcOp.getValueSizeInBits(); 1733 unsigned SlotSize = SlotVT.getSizeInBits(); 1734 unsigned DestSize = DestVT.getSizeInBits(); 1735 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1736 Align DestAlign = DAG.getDataLayout().getPrefTypeAlign(DestType); 1737 1738 // Don't convert with stack if the load/store is expensive. 1739 if ((SrcSize > SlotSize && 1740 !TLI.isTruncStoreLegalOrCustom(SrcOp.getValueType(), SlotVT)) || 1741 (SlotSize < DestSize && 1742 !TLI.isLoadExtLegalOrCustom(ISD::EXTLOAD, DestVT, SlotVT))) 1743 return SDValue(); 1744 1745 // Create the stack frame object. 1746 Align SrcAlign = DAG.getDataLayout().getPrefTypeAlign( 1747 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1748 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT.getStoreSize(), SrcAlign); 1749 1750 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1751 int SPFI = StackPtrFI->getIndex(); 1752 MachinePointerInfo PtrInfo = 1753 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1754 1755 // Emit a store to the stack slot. Use a truncstore if the input value is 1756 // later than DestVT. 1757 SDValue Store; 1758 1759 if (SrcSize > SlotSize) 1760 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo, 1761 SlotVT, SrcAlign); 1762 else { 1763 assert(SrcSize == SlotSize && "Invalid store"); 1764 Store = 1765 DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1766 } 1767 1768 // Result is a load from the stack slot. 1769 if (SlotSize == DestSize) 1770 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1771 1772 assert(SlotSize < DestSize && "Unknown extension!"); 1773 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1774 DestAlign); 1775 } 1776 1777 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1778 SDLoc dl(Node); 1779 // Create a vector sized/aligned stack slot, store the value to element #0, 1780 // then load the whole vector back out. 1781 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1782 1783 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1784 int SPFI = StackPtrFI->getIndex(); 1785 1786 SDValue Ch = DAG.getTruncStore( 1787 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1788 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1789 Node->getValueType(0).getVectorElementType()); 1790 return DAG.getLoad( 1791 Node->getValueType(0), dl, Ch, StackPtr, 1792 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1793 } 1794 1795 static bool 1796 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1797 const TargetLowering &TLI, SDValue &Res) { 1798 unsigned NumElems = Node->getNumOperands(); 1799 SDLoc dl(Node); 1800 EVT VT = Node->getValueType(0); 1801 1802 // Try to group the scalars into pairs, shuffle the pairs together, then 1803 // shuffle the pairs of pairs together, etc. until the vector has 1804 // been built. This will work only if all of the necessary shuffle masks 1805 // are legal. 1806 1807 // We do this in two phases; first to check the legality of the shuffles, 1808 // and next, assuming that all shuffles are legal, to create the new nodes. 1809 for (int Phase = 0; Phase < 2; ++Phase) { 1810 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1811 NewIntermedVals; 1812 for (unsigned i = 0; i < NumElems; ++i) { 1813 SDValue V = Node->getOperand(i); 1814 if (V.isUndef()) 1815 continue; 1816 1817 SDValue Vec; 1818 if (Phase) 1819 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1820 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1821 } 1822 1823 while (IntermedVals.size() > 2) { 1824 NewIntermedVals.clear(); 1825 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1826 // This vector and the next vector are shuffled together (simply to 1827 // append the one to the other). 1828 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1829 1830 SmallVector<int, 16> FinalIndices; 1831 FinalIndices.reserve(IntermedVals[i].second.size() + 1832 IntermedVals[i+1].second.size()); 1833 1834 int k = 0; 1835 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1836 ++j, ++k) { 1837 ShuffleVec[k] = j; 1838 FinalIndices.push_back(IntermedVals[i].second[j]); 1839 } 1840 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1841 ++j, ++k) { 1842 ShuffleVec[k] = NumElems + j; 1843 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1844 } 1845 1846 SDValue Shuffle; 1847 if (Phase) 1848 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1849 IntermedVals[i+1].first, 1850 ShuffleVec); 1851 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1852 return false; 1853 NewIntermedVals.push_back( 1854 std::make_pair(Shuffle, std::move(FinalIndices))); 1855 } 1856 1857 // If we had an odd number of defined values, then append the last 1858 // element to the array of new vectors. 1859 if ((IntermedVals.size() & 1) != 0) 1860 NewIntermedVals.push_back(IntermedVals.back()); 1861 1862 IntermedVals.swap(NewIntermedVals); 1863 } 1864 1865 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1866 "Invalid number of intermediate vectors"); 1867 SDValue Vec1 = IntermedVals[0].first; 1868 SDValue Vec2; 1869 if (IntermedVals.size() > 1) 1870 Vec2 = IntermedVals[1].first; 1871 else if (Phase) 1872 Vec2 = DAG.getUNDEF(VT); 1873 1874 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1875 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1876 ShuffleVec[IntermedVals[0].second[i]] = i; 1877 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1878 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1879 1880 if (Phase) 1881 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1882 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1883 return false; 1884 } 1885 1886 return true; 1887 } 1888 1889 /// Expand a BUILD_VECTOR node on targets that don't 1890 /// support the operation, but do support the resultant vector type. 1891 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1892 unsigned NumElems = Node->getNumOperands(); 1893 SDValue Value1, Value2; 1894 SDLoc dl(Node); 1895 EVT VT = Node->getValueType(0); 1896 EVT OpVT = Node->getOperand(0).getValueType(); 1897 EVT EltVT = VT.getVectorElementType(); 1898 1899 // If the only non-undef value is the low element, turn this into a 1900 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1901 bool isOnlyLowElement = true; 1902 bool MoreThanTwoValues = false; 1903 bool isConstant = true; 1904 for (unsigned i = 0; i < NumElems; ++i) { 1905 SDValue V = Node->getOperand(i); 1906 if (V.isUndef()) 1907 continue; 1908 if (i > 0) 1909 isOnlyLowElement = false; 1910 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1911 isConstant = false; 1912 1913 if (!Value1.getNode()) { 1914 Value1 = V; 1915 } else if (!Value2.getNode()) { 1916 if (V != Value1) 1917 Value2 = V; 1918 } else if (V != Value1 && V != Value2) { 1919 MoreThanTwoValues = true; 1920 } 1921 } 1922 1923 if (!Value1.getNode()) 1924 return DAG.getUNDEF(VT); 1925 1926 if (isOnlyLowElement) 1927 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1928 1929 // If all elements are constants, create a load from the constant pool. 1930 if (isConstant) { 1931 SmallVector<Constant*, 16> CV; 1932 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1933 if (ConstantFPSDNode *V = 1934 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1935 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1936 } else if (ConstantSDNode *V = 1937 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1938 if (OpVT==EltVT) 1939 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1940 else { 1941 // If OpVT and EltVT don't match, EltVT is not legal and the 1942 // element values have been promoted/truncated earlier. Undo this; 1943 // we don't want a v16i8 to become a v16i32 for example. 1944 const ConstantInt *CI = V->getConstantIntValue(); 1945 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1946 CI->getZExtValue())); 1947 } 1948 } else { 1949 assert(Node->getOperand(i).isUndef()); 1950 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1951 CV.push_back(UndefValue::get(OpNTy)); 1952 } 1953 } 1954 Constant *CP = ConstantVector::get(CV); 1955 SDValue CPIdx = 1956 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 1957 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 1958 return DAG.getLoad( 1959 VT, dl, DAG.getEntryNode(), CPIdx, 1960 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 1961 Alignment); 1962 } 1963 1964 SmallSet<SDValue, 16> DefinedValues; 1965 for (unsigned i = 0; i < NumElems; ++i) { 1966 if (Node->getOperand(i).isUndef()) 1967 continue; 1968 DefinedValues.insert(Node->getOperand(i)); 1969 } 1970 1971 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 1972 if (!MoreThanTwoValues) { 1973 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1974 for (unsigned i = 0; i < NumElems; ++i) { 1975 SDValue V = Node->getOperand(i); 1976 if (V.isUndef()) 1977 continue; 1978 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1979 } 1980 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1981 // Get the splatted value into the low element of a vector register. 1982 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1983 SDValue Vec2; 1984 if (Value2.getNode()) 1985 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 1986 else 1987 Vec2 = DAG.getUNDEF(VT); 1988 1989 // Return shuffle(LowValVec, undef, <0,0,0,0>) 1990 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1991 } 1992 } else { 1993 SDValue Res; 1994 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 1995 return Res; 1996 } 1997 } 1998 1999 // Otherwise, we can't handle this case efficiently. 2000 return ExpandVectorBuildThroughStack(Node); 2001 } 2002 2003 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) { 2004 SDLoc DL(Node); 2005 EVT VT = Node->getValueType(0); 2006 SDValue SplatVal = Node->getOperand(0); 2007 2008 return DAG.getSplatBuildVector(VT, DL, SplatVal); 2009 } 2010 2011 // Expand a node into a call to a libcall. If the result value 2012 // does not fit into a register, return the lo part and set the hi part to the 2013 // by-reg argument. If it does fit into a single register, return the result 2014 // and leave the Hi part unset. 2015 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2016 bool isSigned) { 2017 TargetLowering::ArgListTy Args; 2018 TargetLowering::ArgListEntry Entry; 2019 for (const SDValue &Op : Node->op_values()) { 2020 EVT ArgVT = Op.getValueType(); 2021 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2022 Entry.Node = Op; 2023 Entry.Ty = ArgTy; 2024 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2025 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2026 Args.push_back(Entry); 2027 } 2028 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2029 TLI.getPointerTy(DAG.getDataLayout())); 2030 2031 EVT RetVT = Node->getValueType(0); 2032 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2033 2034 // By default, the input chain to this libcall is the entry node of the 2035 // function. If the libcall is going to be emitted as a tail call then 2036 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2037 // node which is being folded has a non-entry input chain. 2038 SDValue InChain = DAG.getEntryNode(); 2039 2040 // isTailCall may be true since the callee does not reference caller stack 2041 // frame. Check if it's in the right position and that the return types match. 2042 SDValue TCChain = InChain; 2043 const Function &F = DAG.getMachineFunction().getFunction(); 2044 bool isTailCall = 2045 TLI.isInTailCallPosition(DAG, Node, TCChain) && 2046 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 2047 if (isTailCall) 2048 InChain = TCChain; 2049 2050 TargetLowering::CallLoweringInfo CLI(DAG); 2051 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2052 CLI.setDebugLoc(SDLoc(Node)) 2053 .setChain(InChain) 2054 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2055 std::move(Args)) 2056 .setTailCall(isTailCall) 2057 .setSExtResult(signExtend) 2058 .setZExtResult(!signExtend) 2059 .setIsPostTypeLegalization(true); 2060 2061 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2062 2063 if (!CallInfo.second.getNode()) { 2064 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG)); 2065 // It's a tailcall, return the chain (which is the DAG root). 2066 return DAG.getRoot(); 2067 } 2068 2069 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG)); 2070 return CallInfo.first; 2071 } 2072 2073 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2074 RTLIB::Libcall LC, 2075 SmallVectorImpl<SDValue> &Results) { 2076 if (LC == RTLIB::UNKNOWN_LIBCALL) 2077 llvm_unreachable("Can't create an unknown libcall!"); 2078 2079 if (Node->isStrictFPOpcode()) { 2080 EVT RetVT = Node->getValueType(0); 2081 SmallVector<SDValue, 4> Ops(drop_begin(Node->ops())); 2082 TargetLowering::MakeLibCallOptions CallOptions; 2083 // FIXME: This doesn't support tail calls. 2084 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2085 Ops, CallOptions, 2086 SDLoc(Node), 2087 Node->getOperand(0)); 2088 Results.push_back(Tmp.first); 2089 Results.push_back(Tmp.second); 2090 } else { 2091 SDValue Tmp = ExpandLibCall(LC, Node, false); 2092 Results.push_back(Tmp); 2093 } 2094 } 2095 2096 /// Expand the node to a libcall based on the result type. 2097 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2098 RTLIB::Libcall Call_F32, 2099 RTLIB::Libcall Call_F64, 2100 RTLIB::Libcall Call_F80, 2101 RTLIB::Libcall Call_F128, 2102 RTLIB::Libcall Call_PPCF128, 2103 SmallVectorImpl<SDValue> &Results) { 2104 RTLIB::Libcall LC = RTLIB::getFPLibCall(Node->getSimpleValueType(0), 2105 Call_F32, Call_F64, Call_F80, 2106 Call_F128, Call_PPCF128); 2107 ExpandFPLibCall(Node, LC, Results); 2108 } 2109 2110 SDValue SelectionDAGLegalize::ExpandIntLibCall( 2111 SDNode *Node, bool isSigned, RTLIB::Libcall Call_I8, 2112 RTLIB::Libcall Call_I16, RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64, 2113 RTLIB::Libcall Call_I128, RTLIB::Libcall Call_IEXT) { 2114 RTLIB::Libcall LC; 2115 switch (Node->getSimpleValueType(0).SimpleTy) { 2116 2117 default: 2118 LC = Call_IEXT; 2119 break; 2120 2121 case MVT::i8: LC = Call_I8; break; 2122 case MVT::i16: LC = Call_I16; break; 2123 case MVT::i32: LC = Call_I32; break; 2124 case MVT::i64: LC = Call_I64; break; 2125 case MVT::i128: LC = Call_I128; break; 2126 } 2127 return ExpandLibCall(LC, Node, isSigned); 2128 } 2129 2130 /// Expand the node to a libcall based on first argument type (for instance 2131 /// lround and its variant). 2132 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node, 2133 RTLIB::Libcall Call_F32, 2134 RTLIB::Libcall Call_F64, 2135 RTLIB::Libcall Call_F80, 2136 RTLIB::Libcall Call_F128, 2137 RTLIB::Libcall Call_PPCF128, 2138 SmallVectorImpl<SDValue> &Results) { 2139 EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType(); 2140 RTLIB::Libcall LC = RTLIB::getFPLibCall(InVT.getSimpleVT(), 2141 Call_F32, Call_F64, Call_F80, 2142 Call_F128, Call_PPCF128); 2143 ExpandFPLibCall(Node, LC, Results); 2144 } 2145 2146 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2147 void 2148 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2149 SmallVectorImpl<SDValue> &Results) { 2150 unsigned Opcode = Node->getOpcode(); 2151 bool isSigned = Opcode == ISD::SDIVREM; 2152 2153 RTLIB::Libcall LC; 2154 switch (Node->getSimpleValueType(0).SimpleTy) { 2155 2156 default: 2157 LC = isSigned ? RTLIB::SDIVREM_IEXT : RTLIB::UDIVREM_IEXT; 2158 break; 2159 2160 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2161 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2162 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2163 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2164 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2165 } 2166 2167 // The input chain to this libcall is the entry node of the function. 2168 // Legalizing the call will automatically add the previous call to the 2169 // dependence. 2170 SDValue InChain = DAG.getEntryNode(); 2171 2172 EVT RetVT = Node->getValueType(0); 2173 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2174 2175 TargetLowering::ArgListTy Args; 2176 TargetLowering::ArgListEntry Entry; 2177 for (const SDValue &Op : Node->op_values()) { 2178 EVT ArgVT = Op.getValueType(); 2179 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2180 Entry.Node = Op; 2181 Entry.Ty = ArgTy; 2182 Entry.IsSExt = isSigned; 2183 Entry.IsZExt = !isSigned; 2184 Args.push_back(Entry); 2185 } 2186 2187 // Also pass the return address of the remainder. 2188 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2189 Entry.Node = FIPtr; 2190 Entry.Ty = RetTy->getPointerTo(); 2191 Entry.IsSExt = isSigned; 2192 Entry.IsZExt = !isSigned; 2193 Args.push_back(Entry); 2194 2195 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2196 TLI.getPointerTy(DAG.getDataLayout())); 2197 2198 SDLoc dl(Node); 2199 TargetLowering::CallLoweringInfo CLI(DAG); 2200 CLI.setDebugLoc(dl) 2201 .setChain(InChain) 2202 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2203 std::move(Args)) 2204 .setSExtResult(isSigned) 2205 .setZExtResult(!isSigned); 2206 2207 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2208 2209 // Remainder is loaded back from the stack frame. 2210 SDValue Rem = 2211 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2212 Results.push_back(CallInfo.first); 2213 Results.push_back(Rem); 2214 } 2215 2216 /// Return true if sincos libcall is available. 2217 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2218 RTLIB::Libcall LC; 2219 switch (Node->getSimpleValueType(0).SimpleTy) { 2220 default: llvm_unreachable("Unexpected request for libcall!"); 2221 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2222 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2223 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2224 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2225 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2226 } 2227 return TLI.getLibcallName(LC) != nullptr; 2228 } 2229 2230 /// Only issue sincos libcall if both sin and cos are needed. 2231 static bool useSinCos(SDNode *Node) { 2232 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2233 ? ISD::FCOS : ISD::FSIN; 2234 2235 SDValue Op0 = Node->getOperand(0); 2236 for (const SDNode *User : Op0.getNode()->uses()) { 2237 if (User == Node) 2238 continue; 2239 // The other user might have been turned into sincos already. 2240 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2241 return true; 2242 } 2243 return false; 2244 } 2245 2246 /// Issue libcalls to sincos to compute sin / cos pairs. 2247 void 2248 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2249 SmallVectorImpl<SDValue> &Results) { 2250 RTLIB::Libcall LC; 2251 switch (Node->getSimpleValueType(0).SimpleTy) { 2252 default: llvm_unreachable("Unexpected request for libcall!"); 2253 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2254 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2255 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2256 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2257 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2258 } 2259 2260 // The input chain to this libcall is the entry node of the function. 2261 // Legalizing the call will automatically add the previous call to the 2262 // dependence. 2263 SDValue InChain = DAG.getEntryNode(); 2264 2265 EVT RetVT = Node->getValueType(0); 2266 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2267 2268 TargetLowering::ArgListTy Args; 2269 TargetLowering::ArgListEntry Entry; 2270 2271 // Pass the argument. 2272 Entry.Node = Node->getOperand(0); 2273 Entry.Ty = RetTy; 2274 Entry.IsSExt = false; 2275 Entry.IsZExt = false; 2276 Args.push_back(Entry); 2277 2278 // Pass the return address of sin. 2279 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2280 Entry.Node = SinPtr; 2281 Entry.Ty = RetTy->getPointerTo(); 2282 Entry.IsSExt = false; 2283 Entry.IsZExt = false; 2284 Args.push_back(Entry); 2285 2286 // Also pass the return address of the cos. 2287 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2288 Entry.Node = CosPtr; 2289 Entry.Ty = RetTy->getPointerTo(); 2290 Entry.IsSExt = false; 2291 Entry.IsZExt = false; 2292 Args.push_back(Entry); 2293 2294 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2295 TLI.getPointerTy(DAG.getDataLayout())); 2296 2297 SDLoc dl(Node); 2298 TargetLowering::CallLoweringInfo CLI(DAG); 2299 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2300 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2301 std::move(Args)); 2302 2303 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2304 2305 Results.push_back( 2306 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2307 Results.push_back( 2308 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2309 } 2310 2311 /// This function is responsible for legalizing a 2312 /// INT_TO_FP operation of the specified operand when the target requests that 2313 /// we expand it. At this point, we know that the result and operand types are 2314 /// legal for the target. 2315 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node, 2316 SDValue &Chain) { 2317 bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 2318 Node->getOpcode() == ISD::SINT_TO_FP); 2319 EVT DestVT = Node->getValueType(0); 2320 SDLoc dl(Node); 2321 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 2322 SDValue Op0 = Node->getOperand(OpNo); 2323 EVT SrcVT = Op0.getValueType(); 2324 2325 // TODO: Should any fast-math-flags be set for the created nodes? 2326 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2327 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64) && 2328 (DestVT.bitsLE(MVT::f64) || 2329 TLI.isOperationLegal(Node->isStrictFPOpcode() ? ISD::STRICT_FP_EXTEND 2330 : ISD::FP_EXTEND, 2331 DestVT))) { 2332 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2333 "expansion\n"); 2334 2335 // Get the stack frame index of a 8 byte buffer. 2336 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2337 2338 SDValue Lo = Op0; 2339 // if signed map to unsigned space 2340 if (isSigned) { 2341 // Invert sign bit (signed to unsigned mapping). 2342 Lo = DAG.getNode(ISD::XOR, dl, MVT::i32, Lo, 2343 DAG.getConstant(0x80000000u, dl, MVT::i32)); 2344 } 2345 // Initial hi portion of constructed double. 2346 SDValue Hi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2347 2348 // If this a big endian target, swap the lo and high data. 2349 if (DAG.getDataLayout().isBigEndian()) 2350 std::swap(Lo, Hi); 2351 2352 SDValue MemChain = DAG.getEntryNode(); 2353 2354 // Store the lo of the constructed double. 2355 SDValue Store1 = DAG.getStore(MemChain, dl, Lo, StackSlot, 2356 MachinePointerInfo()); 2357 // Store the hi of the constructed double. 2358 SDValue HiPtr = DAG.getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), dl); 2359 SDValue Store2 = 2360 DAG.getStore(MemChain, dl, Hi, HiPtr, MachinePointerInfo()); 2361 MemChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 2362 2363 // load the constructed double 2364 SDValue Load = 2365 DAG.getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo()); 2366 // FP constant to bias correct the final result 2367 SDValue Bias = DAG.getConstantFP(isSigned ? 2368 BitsToDouble(0x4330000080000000ULL) : 2369 BitsToDouble(0x4330000000000000ULL), 2370 dl, MVT::f64); 2371 // Subtract the bias and get the final result. 2372 SDValue Sub; 2373 SDValue Result; 2374 if (Node->isStrictFPOpcode()) { 2375 Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other}, 2376 {Node->getOperand(0), Load, Bias}); 2377 Chain = Sub.getValue(1); 2378 if (DestVT != Sub.getValueType()) { 2379 std::pair<SDValue, SDValue> ResultPair; 2380 ResultPair = 2381 DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT); 2382 Result = ResultPair.first; 2383 Chain = ResultPair.second; 2384 } 2385 else 2386 Result = Sub; 2387 } else { 2388 Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2389 Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); 2390 } 2391 return Result; 2392 } 2393 2394 if (isSigned) 2395 return SDValue(); 2396 2397 // TODO: Generalize this for use with other types. 2398 if (((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) || 2399 (SrcVT == MVT::i64 && DestVT == MVT::f64)) { 2400 LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32/f64\n"); 2401 // For unsigned conversions, convert them to signed conversions using the 2402 // algorithm from the x86_64 __floatundisf in compiler_rt. That method 2403 // should be valid for i32->f32 as well. 2404 2405 // More generally this transform should be valid if there are 3 more bits 2406 // in the integer type than the significand. Rounding uses the first bit 2407 // after the width of the significand and the OR of all bits after that. So 2408 // we need to be able to OR the shifted out bit into one of the bits that 2409 // participate in the OR. 2410 2411 // TODO: This really should be implemented using a branch rather than a 2412 // select. We happen to get lucky and machinesink does the right 2413 // thing most of the time. This would be a good candidate for a 2414 // pseudo-op, or, even better, for whole-function isel. 2415 EVT SetCCVT = getSetCCResultType(SrcVT); 2416 2417 SDValue SignBitTest = DAG.getSetCC( 2418 dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2419 2420 EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout()); 2421 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 2422 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst); 2423 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 2424 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst); 2425 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 2426 2427 SDValue Slow, Fast; 2428 if (Node->isStrictFPOpcode()) { 2429 // In strict mode, we must avoid spurious exceptions, and therefore 2430 // must make sure to only emit a single STRICT_SINT_TO_FP. 2431 SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0); 2432 Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2433 { Node->getOperand(0), InCvt }); 2434 Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2435 { Fast.getValue(1), Fast, Fast }); 2436 Chain = Slow.getValue(1); 2437 // The STRICT_SINT_TO_FP inherits the exception mode from the 2438 // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can 2439 // never raise any exception. 2440 SDNodeFlags Flags; 2441 Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept()); 2442 Fast->setFlags(Flags); 2443 Flags.setNoFPExcept(true); 2444 Slow->setFlags(Flags); 2445 } else { 2446 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or); 2447 Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt); 2448 Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2449 } 2450 2451 return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast); 2452 } 2453 2454 // Don't expand it if there isn't cheap fadd. 2455 if (!TLI.isOperationLegalOrCustom( 2456 Node->isStrictFPOpcode() ? ISD::STRICT_FADD : ISD::FADD, DestVT)) 2457 return SDValue(); 2458 2459 // The following optimization is valid only if every value in SrcVT (when 2460 // treated as signed) is representable in DestVT. Check that the mantissa 2461 // size of DestVT is >= than the number of bits in SrcVT -1. 2462 assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >= 2463 SrcVT.getSizeInBits() - 1 && 2464 "Cannot perform lossless SINT_TO_FP!"); 2465 2466 SDValue Tmp1; 2467 if (Node->isStrictFPOpcode()) { 2468 Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2469 { Node->getOperand(0), Op0 }); 2470 } else 2471 Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2472 2473 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, 2474 DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2475 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2476 Four = DAG.getIntPtrConstant(4, dl); 2477 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2478 SignSet, Four, Zero); 2479 2480 // If the sign bit of the integer is set, the large number will be treated 2481 // as a negative number. To counteract this, the dynamic code adds an 2482 // offset depending on the data type. 2483 uint64_t FF; 2484 switch (SrcVT.getSimpleVT().SimpleTy) { 2485 default: 2486 return SDValue(); 2487 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2488 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2489 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2490 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2491 } 2492 if (DAG.getDataLayout().isLittleEndian()) 2493 FF <<= 32; 2494 Constant *FudgeFactor = ConstantInt::get( 2495 Type::getInt64Ty(*DAG.getContext()), FF); 2496 2497 SDValue CPIdx = 2498 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2499 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 2500 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2501 Alignment = commonAlignment(Alignment, 4); 2502 SDValue FudgeInReg; 2503 if (DestVT == MVT::f32) 2504 FudgeInReg = DAG.getLoad( 2505 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2506 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2507 Alignment); 2508 else { 2509 SDValue Load = DAG.getExtLoad( 2510 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2511 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2512 Alignment); 2513 HandleSDNode Handle(Load); 2514 LegalizeOp(Load.getNode()); 2515 FudgeInReg = Handle.getValue(); 2516 } 2517 2518 if (Node->isStrictFPOpcode()) { 2519 SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2520 { Tmp1.getValue(1), Tmp1, FudgeInReg }); 2521 Chain = Result.getValue(1); 2522 return Result; 2523 } 2524 2525 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2526 } 2527 2528 /// This function is responsible for legalizing a 2529 /// *INT_TO_FP operation of the specified operand when the target requests that 2530 /// we promote it. At this point, we know that the result and operand types are 2531 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2532 /// operation that takes a larger input. 2533 void SelectionDAGLegalize::PromoteLegalINT_TO_FP( 2534 SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) { 2535 bool IsStrict = N->isStrictFPOpcode(); 2536 bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP || 2537 N->getOpcode() == ISD::STRICT_SINT_TO_FP; 2538 EVT DestVT = N->getValueType(0); 2539 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2540 unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP; 2541 unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP; 2542 2543 // First step, figure out the appropriate *INT_TO_FP operation to use. 2544 EVT NewInTy = LegalOp.getValueType(); 2545 2546 unsigned OpToUse = 0; 2547 2548 // Scan for the appropriate larger type to use. 2549 while (true) { 2550 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2551 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2552 2553 // If the target supports SINT_TO_FP of this type, use it. 2554 if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) { 2555 OpToUse = SIntOp; 2556 break; 2557 } 2558 if (IsSigned) 2559 continue; 2560 2561 // If the target supports UINT_TO_FP of this type, use it. 2562 if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) { 2563 OpToUse = UIntOp; 2564 break; 2565 } 2566 2567 // Otherwise, try a larger type. 2568 } 2569 2570 // Okay, we found the operation and type to use. Zero extend our input to the 2571 // desired type then run the operation on it. 2572 if (IsStrict) { 2573 SDValue Res = 2574 DAG.getNode(OpToUse, dl, {DestVT, MVT::Other}, 2575 {N->getOperand(0), 2576 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2577 dl, NewInTy, LegalOp)}); 2578 Results.push_back(Res); 2579 Results.push_back(Res.getValue(1)); 2580 return; 2581 } 2582 2583 Results.push_back( 2584 DAG.getNode(OpToUse, dl, DestVT, 2585 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2586 dl, NewInTy, LegalOp))); 2587 } 2588 2589 /// This function is responsible for legalizing a 2590 /// FP_TO_*INT operation of the specified operand when the target requests that 2591 /// we promote it. At this point, we know that the result and operand types are 2592 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2593 /// operation that returns a larger result. 2594 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 2595 SmallVectorImpl<SDValue> &Results) { 2596 bool IsStrict = N->isStrictFPOpcode(); 2597 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 2598 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 2599 EVT DestVT = N->getValueType(0); 2600 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2601 // First step, figure out the appropriate FP_TO*INT operation to use. 2602 EVT NewOutTy = DestVT; 2603 2604 unsigned OpToUse = 0; 2605 2606 // Scan for the appropriate larger type to use. 2607 while (true) { 2608 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2609 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2610 2611 // A larger signed type can hold all unsigned values of the requested type, 2612 // so using FP_TO_SINT is valid 2613 OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT; 2614 if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2615 break; 2616 2617 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2618 OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT; 2619 if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2620 break; 2621 2622 // Otherwise, try a larger type. 2623 } 2624 2625 // Okay, we found the operation and type to use. 2626 SDValue Operation; 2627 if (IsStrict) { 2628 SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other); 2629 Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp); 2630 } else 2631 Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2632 2633 // Truncate the result of the extended FP_TO_*INT operation to the desired 2634 // size. 2635 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2636 Results.push_back(Trunc); 2637 if (IsStrict) 2638 Results.push_back(Operation.getValue(1)); 2639 } 2640 2641 /// Promote FP_TO_*INT_SAT operation to a larger result type. At this point 2642 /// the result and operand types are legal and there must be a legal 2643 /// FP_TO_*INT_SAT operation for a larger result type. 2644 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT_SAT(SDNode *Node, 2645 const SDLoc &dl) { 2646 unsigned Opcode = Node->getOpcode(); 2647 2648 // Scan for the appropriate larger type to use. 2649 EVT NewOutTy = Node->getValueType(0); 2650 while (true) { 2651 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy + 1); 2652 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2653 2654 if (TLI.isOperationLegalOrCustom(Opcode, NewOutTy)) 2655 break; 2656 } 2657 2658 // Saturation width is determined by second operand, so we don't have to 2659 // perform any fixup and can directly truncate the result. 2660 SDValue Result = DAG.getNode(Opcode, dl, NewOutTy, Node->getOperand(0), 2661 Node->getOperand(1)); 2662 return DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Result); 2663 } 2664 2665 /// Open code the operations for PARITY of the specified operation. 2666 SDValue SelectionDAGLegalize::ExpandPARITY(SDValue Op, const SDLoc &dl) { 2667 EVT VT = Op.getValueType(); 2668 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2669 unsigned Sz = VT.getScalarSizeInBits(); 2670 2671 // If CTPOP is legal, use it. Otherwise use shifts and xor. 2672 SDValue Result; 2673 if (TLI.isOperationLegalOrPromote(ISD::CTPOP, VT)) { 2674 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 2675 } else { 2676 Result = Op; 2677 for (unsigned i = Log2_32_Ceil(Sz); i != 0;) { 2678 SDValue Shift = DAG.getNode(ISD::SRL, dl, VT, Result, 2679 DAG.getConstant(1ULL << (--i), dl, ShVT)); 2680 Result = DAG.getNode(ISD::XOR, dl, VT, Result, Shift); 2681 } 2682 } 2683 2684 return DAG.getNode(ISD::AND, dl, VT, Result, DAG.getConstant(1, dl, VT)); 2685 } 2686 2687 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2688 LLVM_DEBUG(dbgs() << "Trying to expand node\n"); 2689 SmallVector<SDValue, 8> Results; 2690 SDLoc dl(Node); 2691 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2692 bool NeedInvert; 2693 switch (Node->getOpcode()) { 2694 case ISD::ABS: 2695 if ((Tmp1 = TLI.expandABS(Node, DAG))) 2696 Results.push_back(Tmp1); 2697 break; 2698 case ISD::CTPOP: 2699 if ((Tmp1 = TLI.expandCTPOP(Node, DAG))) 2700 Results.push_back(Tmp1); 2701 break; 2702 case ISD::CTLZ: 2703 case ISD::CTLZ_ZERO_UNDEF: 2704 if ((Tmp1 = TLI.expandCTLZ(Node, DAG))) 2705 Results.push_back(Tmp1); 2706 break; 2707 case ISD::CTTZ: 2708 case ISD::CTTZ_ZERO_UNDEF: 2709 if ((Tmp1 = TLI.expandCTTZ(Node, DAG))) 2710 Results.push_back(Tmp1); 2711 break; 2712 case ISD::BITREVERSE: 2713 if ((Tmp1 = TLI.expandBITREVERSE(Node, DAG))) 2714 Results.push_back(Tmp1); 2715 break; 2716 case ISD::BSWAP: 2717 if ((Tmp1 = TLI.expandBSWAP(Node, DAG))) 2718 Results.push_back(Tmp1); 2719 break; 2720 case ISD::PARITY: 2721 Results.push_back(ExpandPARITY(Node->getOperand(0), dl)); 2722 break; 2723 case ISD::FRAMEADDR: 2724 case ISD::RETURNADDR: 2725 case ISD::FRAME_TO_ARGS_OFFSET: 2726 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2727 break; 2728 case ISD::EH_DWARF_CFA: { 2729 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 2730 TLI.getPointerTy(DAG.getDataLayout())); 2731 SDValue Offset = DAG.getNode(ISD::ADD, dl, 2732 CfaArg.getValueType(), 2733 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 2734 CfaArg.getValueType()), 2735 CfaArg); 2736 SDValue FA = DAG.getNode( 2737 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 2738 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2739 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 2740 FA, Offset)); 2741 break; 2742 } 2743 case ISD::FLT_ROUNDS_: 2744 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2745 Results.push_back(Node->getOperand(0)); 2746 break; 2747 case ISD::EH_RETURN: 2748 case ISD::EH_LABEL: 2749 case ISD::PREFETCH: 2750 case ISD::VAEND: 2751 case ISD::EH_SJLJ_LONGJMP: 2752 // If the target didn't expand these, there's nothing to do, so just 2753 // preserve the chain and be done. 2754 Results.push_back(Node->getOperand(0)); 2755 break; 2756 case ISD::READCYCLECOUNTER: 2757 // If the target didn't expand this, just return 'zero' and preserve the 2758 // chain. 2759 Results.append(Node->getNumValues() - 1, 2760 DAG.getConstant(0, dl, Node->getValueType(0))); 2761 Results.push_back(Node->getOperand(0)); 2762 break; 2763 case ISD::EH_SJLJ_SETJMP: 2764 // If the target didn't expand this, just return 'zero' and preserve the 2765 // chain. 2766 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2767 Results.push_back(Node->getOperand(0)); 2768 break; 2769 case ISD::ATOMIC_LOAD: { 2770 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2771 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2772 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2773 SDValue Swap = DAG.getAtomicCmpSwap( 2774 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2775 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2776 cast<AtomicSDNode>(Node)->getMemOperand()); 2777 Results.push_back(Swap.getValue(0)); 2778 Results.push_back(Swap.getValue(1)); 2779 break; 2780 } 2781 case ISD::ATOMIC_STORE: { 2782 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2783 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2784 cast<AtomicSDNode>(Node)->getMemoryVT(), 2785 Node->getOperand(0), 2786 Node->getOperand(1), Node->getOperand(2), 2787 cast<AtomicSDNode>(Node)->getMemOperand()); 2788 Results.push_back(Swap.getValue(1)); 2789 break; 2790 } 2791 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 2792 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 2793 // splits out the success value as a comparison. Expanding the resulting 2794 // ATOMIC_CMP_SWAP will produce a libcall. 2795 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2796 SDValue Res = DAG.getAtomicCmpSwap( 2797 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2798 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 2799 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 2800 2801 SDValue ExtRes = Res; 2802 SDValue LHS = Res; 2803 SDValue RHS = Node->getOperand(1); 2804 2805 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 2806 EVT OuterType = Node->getValueType(0); 2807 switch (TLI.getExtendForAtomicOps()) { 2808 case ISD::SIGN_EXTEND: 2809 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 2810 DAG.getValueType(AtomicType)); 2811 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 2812 Node->getOperand(2), DAG.getValueType(AtomicType)); 2813 ExtRes = LHS; 2814 break; 2815 case ISD::ZERO_EXTEND: 2816 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 2817 DAG.getValueType(AtomicType)); 2818 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2819 ExtRes = LHS; 2820 break; 2821 case ISD::ANY_EXTEND: 2822 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 2823 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2824 break; 2825 default: 2826 llvm_unreachable("Invalid atomic op extension"); 2827 } 2828 2829 SDValue Success = 2830 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 2831 2832 Results.push_back(ExtRes.getValue(0)); 2833 Results.push_back(Success); 2834 Results.push_back(Res.getValue(1)); 2835 break; 2836 } 2837 case ISD::DYNAMIC_STACKALLOC: 2838 ExpandDYNAMIC_STACKALLOC(Node, Results); 2839 break; 2840 case ISD::MERGE_VALUES: 2841 for (unsigned i = 0; i < Node->getNumValues(); i++) 2842 Results.push_back(Node->getOperand(i)); 2843 break; 2844 case ISD::UNDEF: { 2845 EVT VT = Node->getValueType(0); 2846 if (VT.isInteger()) 2847 Results.push_back(DAG.getConstant(0, dl, VT)); 2848 else { 2849 assert(VT.isFloatingPoint() && "Unknown value type!"); 2850 Results.push_back(DAG.getConstantFP(0, dl, VT)); 2851 } 2852 break; 2853 } 2854 case ISD::STRICT_FP_ROUND: 2855 // When strict mode is enforced we can't do expansion because it 2856 // does not honor the "strict" properties. Only libcall is allowed. 2857 if (TLI.isStrictFPEnabled()) 2858 break; 2859 // We might as well mutate to FP_ROUND when FP_ROUND operation is legal 2860 // since this operation is more efficient than stack operation. 2861 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2862 Node->getValueType(0)) 2863 == TargetLowering::Legal) 2864 break; 2865 // We fall back to use stack operation when the FP_ROUND operation 2866 // isn't available. 2867 if ((Tmp1 = EmitStackConvert(Node->getOperand(1), Node->getValueType(0), 2868 Node->getValueType(0), dl, 2869 Node->getOperand(0)))) { 2870 ReplaceNode(Node, Tmp1.getNode()); 2871 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n"); 2872 return true; 2873 } 2874 break; 2875 case ISD::FP_ROUND: 2876 case ISD::BITCAST: 2877 if ((Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 2878 Node->getValueType(0), dl))) 2879 Results.push_back(Tmp1); 2880 break; 2881 case ISD::STRICT_FP_EXTEND: 2882 // When strict mode is enforced we can't do expansion because it 2883 // does not honor the "strict" properties. Only libcall is allowed. 2884 if (TLI.isStrictFPEnabled()) 2885 break; 2886 // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal 2887 // since this operation is more efficient than stack operation. 2888 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2889 Node->getValueType(0)) 2890 == TargetLowering::Legal) 2891 break; 2892 // We fall back to use stack operation when the FP_EXTEND operation 2893 // isn't available. 2894 if ((Tmp1 = EmitStackConvert( 2895 Node->getOperand(1), Node->getOperand(1).getValueType(), 2896 Node->getValueType(0), dl, Node->getOperand(0)))) { 2897 ReplaceNode(Node, Tmp1.getNode()); 2898 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n"); 2899 return true; 2900 } 2901 break; 2902 case ISD::FP_EXTEND: 2903 if ((Tmp1 = EmitStackConvert(Node->getOperand(0), 2904 Node->getOperand(0).getValueType(), 2905 Node->getValueType(0), dl))) 2906 Results.push_back(Tmp1); 2907 break; 2908 case ISD::SIGN_EXTEND_INREG: { 2909 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2910 EVT VT = Node->getValueType(0); 2911 2912 // An in-register sign-extend of a boolean is a negation: 2913 // 'true' (1) sign-extended is -1. 2914 // 'false' (0) sign-extended is 0. 2915 // However, we must mask the high bits of the source operand because the 2916 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 2917 2918 // TODO: Do this for vectors too? 2919 if (ExtraVT.getSizeInBits() == 1) { 2920 SDValue One = DAG.getConstant(1, dl, VT); 2921 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 2922 SDValue Zero = DAG.getConstant(0, dl, VT); 2923 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 2924 Results.push_back(Neg); 2925 break; 2926 } 2927 2928 // NOTE: we could fall back on load/store here too for targets without 2929 // SRA. However, it is doubtful that any exist. 2930 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2931 unsigned BitsDiff = VT.getScalarSizeInBits() - 2932 ExtraVT.getScalarSizeInBits(); 2933 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 2934 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 2935 Node->getOperand(0), ShiftCst); 2936 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 2937 Results.push_back(Tmp1); 2938 break; 2939 } 2940 case ISD::UINT_TO_FP: 2941 case ISD::STRICT_UINT_TO_FP: 2942 if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) { 2943 Results.push_back(Tmp1); 2944 if (Node->isStrictFPOpcode()) 2945 Results.push_back(Tmp2); 2946 break; 2947 } 2948 LLVM_FALLTHROUGH; 2949 case ISD::SINT_TO_FP: 2950 case ISD::STRICT_SINT_TO_FP: 2951 if ((Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2))) { 2952 Results.push_back(Tmp1); 2953 if (Node->isStrictFPOpcode()) 2954 Results.push_back(Tmp2); 2955 } 2956 break; 2957 case ISD::FP_TO_SINT: 2958 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 2959 Results.push_back(Tmp1); 2960 break; 2961 case ISD::STRICT_FP_TO_SINT: 2962 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) { 2963 ReplaceNode(Node, Tmp1.getNode()); 2964 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n"); 2965 return true; 2966 } 2967 break; 2968 case ISD::FP_TO_UINT: 2969 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) 2970 Results.push_back(Tmp1); 2971 break; 2972 case ISD::STRICT_FP_TO_UINT: 2973 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) { 2974 // Relink the chain. 2975 DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2); 2976 // Replace the new UINT result. 2977 ReplaceNodeWithValue(SDValue(Node, 0), Tmp1); 2978 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n"); 2979 return true; 2980 } 2981 break; 2982 case ISD::FP_TO_SINT_SAT: 2983 case ISD::FP_TO_UINT_SAT: 2984 Results.push_back(TLI.expandFP_TO_INT_SAT(Node, DAG)); 2985 break; 2986 case ISD::VAARG: 2987 Results.push_back(DAG.expandVAArg(Node)); 2988 Results.push_back(Results[0].getValue(1)); 2989 break; 2990 case ISD::VACOPY: 2991 Results.push_back(DAG.expandVACopy(Node)); 2992 break; 2993 case ISD::EXTRACT_VECTOR_ELT: 2994 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 2995 // This must be an access of the only element. Return it. 2996 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 2997 Node->getOperand(0)); 2998 else 2999 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 3000 Results.push_back(Tmp1); 3001 break; 3002 case ISD::EXTRACT_SUBVECTOR: 3003 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 3004 break; 3005 case ISD::INSERT_SUBVECTOR: 3006 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 3007 break; 3008 case ISD::CONCAT_VECTORS: 3009 Results.push_back(ExpandVectorBuildThroughStack(Node)); 3010 break; 3011 case ISD::SCALAR_TO_VECTOR: 3012 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3013 break; 3014 case ISD::INSERT_VECTOR_ELT: 3015 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3016 Node->getOperand(1), 3017 Node->getOperand(2), dl)); 3018 break; 3019 case ISD::VECTOR_SHUFFLE: { 3020 SmallVector<int, 32> NewMask; 3021 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3022 3023 EVT VT = Node->getValueType(0); 3024 EVT EltVT = VT.getVectorElementType(); 3025 SDValue Op0 = Node->getOperand(0); 3026 SDValue Op1 = Node->getOperand(1); 3027 if (!TLI.isTypeLegal(EltVT)) { 3028 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3029 3030 // BUILD_VECTOR operands are allowed to be wider than the element type. 3031 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 3032 // it. 3033 if (NewEltVT.bitsLT(EltVT)) { 3034 // Convert shuffle node. 3035 // If original node was v4i64 and the new EltVT is i32, 3036 // cast operands to v8i32 and re-build the mask. 3037 3038 // Calculate new VT, the size of the new VT should be equal to original. 3039 EVT NewVT = 3040 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3041 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 3042 assert(NewVT.bitsEq(VT)); 3043 3044 // cast operands to new VT 3045 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3046 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3047 3048 // Convert the shuffle mask 3049 unsigned int factor = 3050 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3051 3052 // EltVT gets smaller 3053 assert(factor > 0); 3054 3055 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3056 if (Mask[i] < 0) { 3057 for (unsigned fi = 0; fi < factor; ++fi) 3058 NewMask.push_back(Mask[i]); 3059 } 3060 else { 3061 for (unsigned fi = 0; fi < factor; ++fi) 3062 NewMask.push_back(Mask[i]*factor+fi); 3063 } 3064 } 3065 Mask = NewMask; 3066 VT = NewVT; 3067 } 3068 EltVT = NewEltVT; 3069 } 3070 unsigned NumElems = VT.getVectorNumElements(); 3071 SmallVector<SDValue, 16> Ops; 3072 for (unsigned i = 0; i != NumElems; ++i) { 3073 if (Mask[i] < 0) { 3074 Ops.push_back(DAG.getUNDEF(EltVT)); 3075 continue; 3076 } 3077 unsigned Idx = Mask[i]; 3078 if (Idx < NumElems) 3079 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3080 DAG.getVectorIdxConstant(Idx, dl))); 3081 else 3082 Ops.push_back( 3083 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3084 DAG.getVectorIdxConstant(Idx - NumElems, dl))); 3085 } 3086 3087 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 3088 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3089 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3090 Results.push_back(Tmp1); 3091 break; 3092 } 3093 case ISD::VECTOR_SPLICE: { 3094 Results.push_back(TLI.expandVectorSplice(Node, DAG)); 3095 break; 3096 } 3097 case ISD::EXTRACT_ELEMENT: { 3098 EVT OpTy = Node->getOperand(0).getValueType(); 3099 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3100 // 1 -> Hi 3101 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3102 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3103 TLI.getShiftAmountTy( 3104 Node->getOperand(0).getValueType(), 3105 DAG.getDataLayout()))); 3106 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3107 } else { 3108 // 0 -> Lo 3109 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3110 Node->getOperand(0)); 3111 } 3112 Results.push_back(Tmp1); 3113 break; 3114 } 3115 case ISD::STACKSAVE: 3116 // Expand to CopyFromReg if the target set 3117 // StackPointerRegisterToSaveRestore. 3118 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { 3119 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3120 Node->getValueType(0))); 3121 Results.push_back(Results[0].getValue(1)); 3122 } else { 3123 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3124 Results.push_back(Node->getOperand(0)); 3125 } 3126 break; 3127 case ISD::STACKRESTORE: 3128 // Expand to CopyToReg if the target set 3129 // StackPointerRegisterToSaveRestore. 3130 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { 3131 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3132 Node->getOperand(1))); 3133 } else { 3134 Results.push_back(Node->getOperand(0)); 3135 } 3136 break; 3137 case ISD::GET_DYNAMIC_AREA_OFFSET: 3138 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3139 Results.push_back(Results[0].getValue(0)); 3140 break; 3141 case ISD::FCOPYSIGN: 3142 Results.push_back(ExpandFCOPYSIGN(Node)); 3143 break; 3144 case ISD::FNEG: 3145 Results.push_back(ExpandFNEG(Node)); 3146 break; 3147 case ISD::FABS: 3148 Results.push_back(ExpandFABS(Node)); 3149 break; 3150 case ISD::SMIN: 3151 case ISD::SMAX: 3152 case ISD::UMIN: 3153 case ISD::UMAX: { 3154 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3155 ISD::CondCode Pred; 3156 switch (Node->getOpcode()) { 3157 default: llvm_unreachable("How did we get here?"); 3158 case ISD::SMAX: Pred = ISD::SETGT; break; 3159 case ISD::SMIN: Pred = ISD::SETLT; break; 3160 case ISD::UMAX: Pred = ISD::SETUGT; break; 3161 case ISD::UMIN: Pred = ISD::SETULT; break; 3162 } 3163 Tmp1 = Node->getOperand(0); 3164 Tmp2 = Node->getOperand(1); 3165 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3166 Results.push_back(Tmp1); 3167 break; 3168 } 3169 case ISD::FMINNUM: 3170 case ISD::FMAXNUM: { 3171 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) 3172 Results.push_back(Expanded); 3173 break; 3174 } 3175 case ISD::FSIN: 3176 case ISD::FCOS: { 3177 EVT VT = Node->getValueType(0); 3178 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3179 // fcos which share the same operand and both are used. 3180 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3181 isSinCosLibcallAvailable(Node, TLI)) 3182 && useSinCos(Node)) { 3183 SDVTList VTs = DAG.getVTList(VT, VT); 3184 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3185 if (Node->getOpcode() == ISD::FCOS) 3186 Tmp1 = Tmp1.getValue(1); 3187 Results.push_back(Tmp1); 3188 } 3189 break; 3190 } 3191 case ISD::FMAD: 3192 llvm_unreachable("Illegal fmad should never be formed"); 3193 3194 case ISD::FP16_TO_FP: 3195 if (Node->getValueType(0) != MVT::f32) { 3196 // We can extend to types bigger than f32 in two steps without changing 3197 // the result. Since "f16 -> f32" is much more commonly available, give 3198 // CodeGen the option of emitting that before resorting to a libcall. 3199 SDValue Res = 3200 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3201 Results.push_back( 3202 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3203 } 3204 break; 3205 case ISD::STRICT_FP16_TO_FP: 3206 if (Node->getValueType(0) != MVT::f32) { 3207 // We can extend to types bigger than f32 in two steps without changing 3208 // the result. Since "f16 -> f32" is much more commonly available, give 3209 // CodeGen the option of emitting that before resorting to a libcall. 3210 SDValue Res = 3211 DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other}, 3212 {Node->getOperand(0), Node->getOperand(1)}); 3213 Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 3214 {Node->getValueType(0), MVT::Other}, 3215 {Res.getValue(1), Res}); 3216 Results.push_back(Res); 3217 Results.push_back(Res.getValue(1)); 3218 } 3219 break; 3220 case ISD::FP_TO_FP16: 3221 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3222 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3223 SDValue Op = Node->getOperand(0); 3224 MVT SVT = Op.getSimpleValueType(); 3225 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3226 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3227 // Under fastmath, we can expand this node into a fround followed by 3228 // a float-half conversion. 3229 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3230 DAG.getIntPtrConstant(0, dl)); 3231 Results.push_back( 3232 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3233 } 3234 } 3235 break; 3236 case ISD::ConstantFP: { 3237 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3238 // Check to see if this FP immediate is already legal. 3239 // If this is a legal constant, turn it into a TargetConstantFP node. 3240 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0), 3241 DAG.shouldOptForSize())) 3242 Results.push_back(ExpandConstantFP(CFP, true)); 3243 break; 3244 } 3245 case ISD::Constant: { 3246 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3247 Results.push_back(ExpandConstant(CP)); 3248 break; 3249 } 3250 case ISD::FSUB: { 3251 EVT VT = Node->getValueType(0); 3252 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3253 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3254 const SDNodeFlags Flags = Node->getFlags(); 3255 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3256 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3257 Results.push_back(Tmp1); 3258 } 3259 break; 3260 } 3261 case ISD::SUB: { 3262 EVT VT = Node->getValueType(0); 3263 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3264 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3265 "Don't know how to expand this subtraction!"); 3266 Tmp1 = DAG.getNOT(dl, Node->getOperand(1), VT); 3267 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3268 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3269 break; 3270 } 3271 case ISD::UREM: 3272 case ISD::SREM: 3273 if (TLI.expandREM(Node, Tmp1, DAG)) 3274 Results.push_back(Tmp1); 3275 break; 3276 case ISD::UDIV: 3277 case ISD::SDIV: { 3278 bool isSigned = Node->getOpcode() == ISD::SDIV; 3279 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3280 EVT VT = Node->getValueType(0); 3281 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3282 SDVTList VTs = DAG.getVTList(VT, VT); 3283 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3284 Node->getOperand(1)); 3285 Results.push_back(Tmp1); 3286 } 3287 break; 3288 } 3289 case ISD::MULHU: 3290 case ISD::MULHS: { 3291 unsigned ExpandOpcode = 3292 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3293 EVT VT = Node->getValueType(0); 3294 SDVTList VTs = DAG.getVTList(VT, VT); 3295 3296 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3297 Node->getOperand(1)); 3298 Results.push_back(Tmp1.getValue(1)); 3299 break; 3300 } 3301 case ISD::UMUL_LOHI: 3302 case ISD::SMUL_LOHI: { 3303 SDValue LHS = Node->getOperand(0); 3304 SDValue RHS = Node->getOperand(1); 3305 MVT VT = LHS.getSimpleValueType(); 3306 unsigned MULHOpcode = 3307 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3308 3309 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3310 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3311 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3312 break; 3313 } 3314 3315 SmallVector<SDValue, 4> Halves; 3316 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3317 assert(TLI.isTypeLegal(HalfType)); 3318 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, dl, LHS, RHS, Halves, 3319 HalfType, DAG, 3320 TargetLowering::MulExpansionKind::Always)) { 3321 for (unsigned i = 0; i < 2; ++i) { 3322 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3323 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3324 SDValue Shift = DAG.getConstant( 3325 HalfType.getScalarSizeInBits(), dl, 3326 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3327 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3328 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3329 } 3330 break; 3331 } 3332 break; 3333 } 3334 case ISD::MUL: { 3335 EVT VT = Node->getValueType(0); 3336 SDVTList VTs = DAG.getVTList(VT, VT); 3337 // See if multiply or divide can be lowered using two-result operations. 3338 // We just need the low half of the multiply; try both the signed 3339 // and unsigned forms. If the target supports both SMUL_LOHI and 3340 // UMUL_LOHI, form a preference by checking which forms of plain 3341 // MULH it supports. 3342 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3343 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3344 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3345 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3346 unsigned OpToUse = 0; 3347 if (HasSMUL_LOHI && !HasMULHS) { 3348 OpToUse = ISD::SMUL_LOHI; 3349 } else if (HasUMUL_LOHI && !HasMULHU) { 3350 OpToUse = ISD::UMUL_LOHI; 3351 } else if (HasSMUL_LOHI) { 3352 OpToUse = ISD::SMUL_LOHI; 3353 } else if (HasUMUL_LOHI) { 3354 OpToUse = ISD::UMUL_LOHI; 3355 } 3356 if (OpToUse) { 3357 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3358 Node->getOperand(1))); 3359 break; 3360 } 3361 3362 SDValue Lo, Hi; 3363 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3364 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3365 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3366 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3367 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3368 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3369 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3370 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3371 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3372 SDValue Shift = 3373 DAG.getConstant(HalfType.getSizeInBits(), dl, 3374 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3375 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3376 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3377 } 3378 break; 3379 } 3380 case ISD::FSHL: 3381 case ISD::FSHR: 3382 if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) 3383 Results.push_back(Expanded); 3384 break; 3385 case ISD::ROTL: 3386 case ISD::ROTR: 3387 if (SDValue Expanded = TLI.expandROT(Node, true /*AllowVectorOps*/, DAG)) 3388 Results.push_back(Expanded); 3389 break; 3390 case ISD::SADDSAT: 3391 case ISD::UADDSAT: 3392 case ISD::SSUBSAT: 3393 case ISD::USUBSAT: 3394 Results.push_back(TLI.expandAddSubSat(Node, DAG)); 3395 break; 3396 case ISD::SSHLSAT: 3397 case ISD::USHLSAT: 3398 Results.push_back(TLI.expandShlSat(Node, DAG)); 3399 break; 3400 case ISD::SMULFIX: 3401 case ISD::SMULFIXSAT: 3402 case ISD::UMULFIX: 3403 case ISD::UMULFIXSAT: 3404 Results.push_back(TLI.expandFixedPointMul(Node, DAG)); 3405 break; 3406 case ISD::SDIVFIX: 3407 case ISD::SDIVFIXSAT: 3408 case ISD::UDIVFIX: 3409 case ISD::UDIVFIXSAT: 3410 if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node), 3411 Node->getOperand(0), 3412 Node->getOperand(1), 3413 Node->getConstantOperandVal(2), 3414 DAG)) { 3415 Results.push_back(V); 3416 break; 3417 } 3418 // FIXME: We might want to retry here with a wider type if we fail, if that 3419 // type is legal. 3420 // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is 3421 // <= 128 (which is the case for all of the default Embedded-C types), 3422 // we will only get here with types and scales that we could always expand 3423 // if we were allowed to generate libcalls to division functions of illegal 3424 // type. But we cannot do that. 3425 llvm_unreachable("Cannot expand DIVFIX!"); 3426 case ISD::ADDCARRY: 3427 case ISD::SUBCARRY: { 3428 SDValue LHS = Node->getOperand(0); 3429 SDValue RHS = Node->getOperand(1); 3430 SDValue Carry = Node->getOperand(2); 3431 3432 bool IsAdd = Node->getOpcode() == ISD::ADDCARRY; 3433 3434 // Initial add of the 2 operands. 3435 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB; 3436 EVT VT = LHS.getValueType(); 3437 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS); 3438 3439 // Initial check for overflow. 3440 EVT CarryType = Node->getValueType(1); 3441 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3442 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 3443 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3444 3445 // Add of the sum and the carry. 3446 SDValue One = DAG.getConstant(1, dl, VT); 3447 SDValue CarryExt = 3448 DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One); 3449 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt); 3450 3451 // Second check for overflow. If we are adding, we can only overflow if the 3452 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0. 3453 // If we are subtracting, we can only overflow if the initial sum is 0 and 3454 // the carry is set, resulting in a new sum of all 1s. 3455 SDValue Zero = DAG.getConstant(0, dl, VT); 3456 SDValue Overflow2 = 3457 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ) 3458 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ); 3459 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2, 3460 DAG.getZExtOrTrunc(Carry, dl, SetCCType)); 3461 3462 SDValue ResultCarry = 3463 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2); 3464 3465 Results.push_back(Sum2); 3466 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT)); 3467 break; 3468 } 3469 case ISD::SADDO: 3470 case ISD::SSUBO: { 3471 SDValue Result, Overflow; 3472 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 3473 Results.push_back(Result); 3474 Results.push_back(Overflow); 3475 break; 3476 } 3477 case ISD::UADDO: 3478 case ISD::USUBO: { 3479 SDValue Result, Overflow; 3480 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 3481 Results.push_back(Result); 3482 Results.push_back(Overflow); 3483 break; 3484 } 3485 case ISD::UMULO: 3486 case ISD::SMULO: { 3487 SDValue Result, Overflow; 3488 if (TLI.expandMULO(Node, Result, Overflow, DAG)) { 3489 Results.push_back(Result); 3490 Results.push_back(Overflow); 3491 } 3492 break; 3493 } 3494 case ISD::BUILD_PAIR: { 3495 EVT PairTy = Node->getValueType(0); 3496 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3497 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3498 Tmp2 = DAG.getNode( 3499 ISD::SHL, dl, PairTy, Tmp2, 3500 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3501 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3502 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3503 break; 3504 } 3505 case ISD::SELECT: 3506 Tmp1 = Node->getOperand(0); 3507 Tmp2 = Node->getOperand(1); 3508 Tmp3 = Node->getOperand(2); 3509 if (Tmp1.getOpcode() == ISD::SETCC) { 3510 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3511 Tmp2, Tmp3, 3512 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3513 } else { 3514 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3515 DAG.getConstant(0, dl, Tmp1.getValueType()), 3516 Tmp2, Tmp3, ISD::SETNE); 3517 } 3518 Tmp1->setFlags(Node->getFlags()); 3519 Results.push_back(Tmp1); 3520 break; 3521 case ISD::BR_JT: { 3522 SDValue Chain = Node->getOperand(0); 3523 SDValue Table = Node->getOperand(1); 3524 SDValue Index = Node->getOperand(2); 3525 3526 const DataLayout &TD = DAG.getDataLayout(); 3527 EVT PTy = TLI.getPointerTy(TD); 3528 3529 unsigned EntrySize = 3530 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3531 3532 // For power-of-two jumptable entry sizes convert multiplication to a shift. 3533 // This transformation needs to be done here since otherwise the MIPS 3534 // backend will end up emitting a three instruction multiply sequence 3535 // instead of a single shift and MSP430 will call a runtime function. 3536 if (llvm::isPowerOf2_32(EntrySize)) 3537 Index = DAG.getNode( 3538 ISD::SHL, dl, Index.getValueType(), Index, 3539 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); 3540 else 3541 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3542 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3543 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3544 Index, Table); 3545 3546 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3547 SDValue LD = DAG.getExtLoad( 3548 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3549 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3550 Addr = LD; 3551 if (TLI.isJumpTableRelative()) { 3552 // For PIC, the sequence is: 3553 // BRIND(load(Jumptable + index) + RelocBase) 3554 // RelocBase can be JumpTable, GOT or some sort of global base. 3555 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3556 TLI.getPICJumpTableRelocBase(Table, DAG)); 3557 } 3558 3559 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); 3560 Results.push_back(Tmp1); 3561 break; 3562 } 3563 case ISD::BRCOND: 3564 // Expand brcond's setcc into its constituent parts and create a BR_CC 3565 // Node. 3566 Tmp1 = Node->getOperand(0); 3567 Tmp2 = Node->getOperand(1); 3568 if (Tmp2.getOpcode() == ISD::SETCC && 3569 TLI.isOperationLegalOrCustom(ISD::BR_CC, 3570 Tmp2.getOperand(0).getValueType())) { 3571 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, Tmp2.getOperand(2), 3572 Tmp2.getOperand(0), Tmp2.getOperand(1), 3573 Node->getOperand(2)); 3574 } else { 3575 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 3576 if (Tmp2.isUndef() || 3577 (Tmp2.getOpcode() == ISD::AND && 3578 isa<ConstantSDNode>(Tmp2.getOperand(1)) && 3579 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) 3580 Tmp3 = Tmp2; 3581 else 3582 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3583 DAG.getConstant(1, dl, Tmp2.getValueType())); 3584 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3585 DAG.getCondCode(ISD::SETNE), Tmp3, 3586 DAG.getConstant(0, dl, Tmp3.getValueType()), 3587 Node->getOperand(2)); 3588 } 3589 Results.push_back(Tmp1); 3590 break; 3591 case ISD::SETCC: 3592 case ISD::VP_SETCC: 3593 case ISD::STRICT_FSETCC: 3594 case ISD::STRICT_FSETCCS: { 3595 bool IsVP = Node->getOpcode() == ISD::VP_SETCC; 3596 bool IsStrict = Node->getOpcode() == ISD::STRICT_FSETCC || 3597 Node->getOpcode() == ISD::STRICT_FSETCCS; 3598 bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS; 3599 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 3600 unsigned Offset = IsStrict ? 1 : 0; 3601 Tmp1 = Node->getOperand(0 + Offset); 3602 Tmp2 = Node->getOperand(1 + Offset); 3603 Tmp3 = Node->getOperand(2 + Offset); 3604 SDValue Mask, EVL; 3605 if (IsVP) { 3606 Mask = Node->getOperand(3 + Offset); 3607 EVL = Node->getOperand(4 + Offset); 3608 } 3609 bool Legalized = TLI.LegalizeSetCCCondCode( 3610 DAG, Node->getValueType(0), Tmp1, Tmp2, Tmp3, Mask, EVL, NeedInvert, dl, 3611 Chain, IsSignaling); 3612 3613 if (Legalized) { 3614 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3615 // condition code, create a new SETCC node. 3616 if (Tmp3.getNode()) { 3617 if (IsStrict) { 3618 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getVTList(), 3619 {Chain, Tmp1, Tmp2, Tmp3}, Node->getFlags()); 3620 Chain = Tmp1.getValue(1); 3621 } else if (IsVP) { 3622 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), 3623 {Tmp1, Tmp2, Tmp3, Mask, EVL}, Node->getFlags()); 3624 } else { 3625 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Tmp1, 3626 Tmp2, Tmp3, Node->getFlags()); 3627 } 3628 } 3629 3630 // If we expanded the SETCC by inverting the condition code, then wrap 3631 // the existing SETCC in a NOT to restore the intended condition. 3632 if (NeedInvert) { 3633 if (!IsVP) 3634 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3635 else 3636 Tmp1 = 3637 DAG.getVPLogicalNOT(dl, Tmp1, Mask, EVL, Tmp1->getValueType(0)); 3638 } 3639 3640 Results.push_back(Tmp1); 3641 if (IsStrict) 3642 Results.push_back(Chain); 3643 3644 break; 3645 } 3646 3647 // FIXME: It seems Legalized is false iff CCCode is Legal. I don't 3648 // understand if this code is useful for strict nodes. 3649 assert(!IsStrict && "Don't know how to expand for strict nodes."); 3650 3651 // Otherwise, SETCC for the given comparison type must be completely 3652 // illegal; expand it into a SELECT_CC. 3653 // FIXME: This drops the mask/evl for VP_SETCC. 3654 EVT VT = Node->getValueType(0); 3655 EVT Tmp1VT = Tmp1.getValueType(); 3656 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3657 DAG.getBoolConstant(true, dl, VT, Tmp1VT), 3658 DAG.getBoolConstant(false, dl, VT, Tmp1VT), Tmp3); 3659 Tmp1->setFlags(Node->getFlags()); 3660 Results.push_back(Tmp1); 3661 break; 3662 } 3663 case ISD::SELECT_CC: { 3664 // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS 3665 Tmp1 = Node->getOperand(0); // LHS 3666 Tmp2 = Node->getOperand(1); // RHS 3667 Tmp3 = Node->getOperand(2); // True 3668 Tmp4 = Node->getOperand(3); // False 3669 EVT VT = Node->getValueType(0); 3670 SDValue Chain; 3671 SDValue CC = Node->getOperand(4); 3672 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3673 3674 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 3675 // If the condition code is legal, then we need to expand this 3676 // node using SETCC and SELECT. 3677 EVT CmpVT = Tmp1.getValueType(); 3678 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3679 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3680 "expanded."); 3681 EVT CCVT = getSetCCResultType(CmpVT); 3682 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags()); 3683 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3684 break; 3685 } 3686 3687 // SELECT_CC is legal, so the condition code must not be. 3688 bool Legalized = false; 3689 // Try to legalize by inverting the condition. This is for targets that 3690 // might support an ordered version of a condition, but not the unordered 3691 // version (or vice versa). 3692 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType()); 3693 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 3694 // Use the new condition code and swap true and false 3695 Legalized = true; 3696 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3697 Tmp1->setFlags(Node->getFlags()); 3698 } else { 3699 // If The inverse is not legal, then try to swap the arguments using 3700 // the inverse condition code. 3701 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3702 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 3703 // The swapped inverse condition is legal, so swap true and false, 3704 // lhs and rhs. 3705 Legalized = true; 3706 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3707 Tmp1->setFlags(Node->getFlags()); 3708 } 3709 } 3710 3711 if (!Legalized) { 3712 Legalized = TLI.LegalizeSetCCCondCode( 3713 DAG, getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, 3714 /*Mask*/ SDValue(), /*EVL*/ SDValue(), NeedInvert, dl, Chain); 3715 3716 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3717 3718 // If we expanded the SETCC by inverting the condition code, then swap 3719 // the True/False operands to match. 3720 if (NeedInvert) 3721 std::swap(Tmp3, Tmp4); 3722 3723 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3724 // condition code, create a new SELECT_CC node. 3725 if (CC.getNode()) { 3726 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3727 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3728 } else { 3729 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3730 CC = DAG.getCondCode(ISD::SETNE); 3731 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3732 Tmp2, Tmp3, Tmp4, CC); 3733 } 3734 Tmp1->setFlags(Node->getFlags()); 3735 } 3736 Results.push_back(Tmp1); 3737 break; 3738 } 3739 case ISD::BR_CC: { 3740 // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS 3741 SDValue Chain; 3742 Tmp1 = Node->getOperand(0); // Chain 3743 Tmp2 = Node->getOperand(2); // LHS 3744 Tmp3 = Node->getOperand(3); // RHS 3745 Tmp4 = Node->getOperand(1); // CC 3746 3747 bool Legalized = TLI.LegalizeSetCCCondCode( 3748 DAG, getSetCCResultType(Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, 3749 /*Mask*/ SDValue(), /*EVL*/ SDValue(), NeedInvert, dl, Chain); 3750 (void)Legalized; 3751 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3752 3753 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3754 // node. 3755 if (Tmp4.getNode()) { 3756 assert(!NeedInvert && "Don't know how to invert BR_CC!"); 3757 3758 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3759 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3760 } else { 3761 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3762 Tmp4 = DAG.getCondCode(NeedInvert ? ISD::SETEQ : ISD::SETNE); 3763 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3764 Tmp2, Tmp3, Node->getOperand(4)); 3765 } 3766 Results.push_back(Tmp1); 3767 break; 3768 } 3769 case ISD::BUILD_VECTOR: 3770 Results.push_back(ExpandBUILD_VECTOR(Node)); 3771 break; 3772 case ISD::SPLAT_VECTOR: 3773 Results.push_back(ExpandSPLAT_VECTOR(Node)); 3774 break; 3775 case ISD::SRA: 3776 case ISD::SRL: 3777 case ISD::SHL: { 3778 // Scalarize vector SRA/SRL/SHL. 3779 EVT VT = Node->getValueType(0); 3780 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3781 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3782 unsigned NumElem = VT.getVectorNumElements(); 3783 3784 SmallVector<SDValue, 8> Scalars; 3785 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3786 SDValue Ex = 3787 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3788 Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl)); 3789 SDValue Sh = 3790 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3791 Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl)); 3792 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3793 VT.getScalarType(), Ex, Sh)); 3794 } 3795 3796 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 3797 Results.push_back(Result); 3798 break; 3799 } 3800 case ISD::VECREDUCE_FADD: 3801 case ISD::VECREDUCE_FMUL: 3802 case ISD::VECREDUCE_ADD: 3803 case ISD::VECREDUCE_MUL: 3804 case ISD::VECREDUCE_AND: 3805 case ISD::VECREDUCE_OR: 3806 case ISD::VECREDUCE_XOR: 3807 case ISD::VECREDUCE_SMAX: 3808 case ISD::VECREDUCE_SMIN: 3809 case ISD::VECREDUCE_UMAX: 3810 case ISD::VECREDUCE_UMIN: 3811 case ISD::VECREDUCE_FMAX: 3812 case ISD::VECREDUCE_FMIN: 3813 Results.push_back(TLI.expandVecReduce(Node, DAG)); 3814 break; 3815 case ISD::GLOBAL_OFFSET_TABLE: 3816 case ISD::GlobalAddress: 3817 case ISD::GlobalTLSAddress: 3818 case ISD::ExternalSymbol: 3819 case ISD::ConstantPool: 3820 case ISD::JumpTable: 3821 case ISD::INTRINSIC_W_CHAIN: 3822 case ISD::INTRINSIC_WO_CHAIN: 3823 case ISD::INTRINSIC_VOID: 3824 // FIXME: Custom lowering for these operations shouldn't return null! 3825 // Return true so that we don't call ConvertNodeToLibcall which also won't 3826 // do anything. 3827 return true; 3828 } 3829 3830 if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) { 3831 // FIXME: We were asked to expand a strict floating-point operation, 3832 // but there is currently no expansion implemented that would preserve 3833 // the "strict" properties. For now, we just fall back to the non-strict 3834 // version if that is legal on the target. The actual mutation of the 3835 // operation will happen in SelectionDAGISel::DoInstructionSelection. 3836 switch (Node->getOpcode()) { 3837 default: 3838 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3839 Node->getValueType(0)) 3840 == TargetLowering::Legal) 3841 return true; 3842 break; 3843 case ISD::STRICT_FSUB: { 3844 if (TLI.getStrictFPOperationAction( 3845 ISD::STRICT_FSUB, Node->getValueType(0)) == TargetLowering::Legal) 3846 return true; 3847 if (TLI.getStrictFPOperationAction( 3848 ISD::STRICT_FADD, Node->getValueType(0)) != TargetLowering::Legal) 3849 break; 3850 3851 EVT VT = Node->getValueType(0); 3852 const SDNodeFlags Flags = Node->getFlags(); 3853 SDValue Neg = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(2), Flags); 3854 SDValue Fadd = DAG.getNode(ISD::STRICT_FADD, dl, Node->getVTList(), 3855 {Node->getOperand(0), Node->getOperand(1), Neg}, 3856 Flags); 3857 3858 Results.push_back(Fadd); 3859 Results.push_back(Fadd.getValue(1)); 3860 break; 3861 } 3862 case ISD::STRICT_SINT_TO_FP: 3863 case ISD::STRICT_UINT_TO_FP: 3864 case ISD::STRICT_LRINT: 3865 case ISD::STRICT_LLRINT: 3866 case ISD::STRICT_LROUND: 3867 case ISD::STRICT_LLROUND: 3868 // These are registered by the operand type instead of the value 3869 // type. Reflect that here. 3870 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3871 Node->getOperand(1).getValueType()) 3872 == TargetLowering::Legal) 3873 return true; 3874 break; 3875 } 3876 } 3877 3878 // Replace the original node with the legalized result. 3879 if (Results.empty()) { 3880 LLVM_DEBUG(dbgs() << "Cannot expand node\n"); 3881 return false; 3882 } 3883 3884 LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); 3885 ReplaceNode(Node, Results.data()); 3886 return true; 3887 } 3888 3889 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 3890 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); 3891 SmallVector<SDValue, 8> Results; 3892 SDLoc dl(Node); 3893 // FIXME: Check flags on the node to see if we can use a finite call. 3894 unsigned Opc = Node->getOpcode(); 3895 switch (Opc) { 3896 case ISD::ATOMIC_FENCE: { 3897 // If the target didn't lower this, lower it to '__sync_synchronize()' call 3898 // FIXME: handle "fence singlethread" more efficiently. 3899 TargetLowering::ArgListTy Args; 3900 3901 TargetLowering::CallLoweringInfo CLI(DAG); 3902 CLI.setDebugLoc(dl) 3903 .setChain(Node->getOperand(0)) 3904 .setLibCallee( 3905 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3906 DAG.getExternalSymbol("__sync_synchronize", 3907 TLI.getPointerTy(DAG.getDataLayout())), 3908 std::move(Args)); 3909 3910 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3911 3912 Results.push_back(CallResult.second); 3913 break; 3914 } 3915 // By default, atomic intrinsics are marked Legal and lowered. Targets 3916 // which don't support them directly, however, may want libcalls, in which 3917 // case they mark them Expand, and we get here. 3918 case ISD::ATOMIC_SWAP: 3919 case ISD::ATOMIC_LOAD_ADD: 3920 case ISD::ATOMIC_LOAD_SUB: 3921 case ISD::ATOMIC_LOAD_AND: 3922 case ISD::ATOMIC_LOAD_CLR: 3923 case ISD::ATOMIC_LOAD_OR: 3924 case ISD::ATOMIC_LOAD_XOR: 3925 case ISD::ATOMIC_LOAD_NAND: 3926 case ISD::ATOMIC_LOAD_MIN: 3927 case ISD::ATOMIC_LOAD_MAX: 3928 case ISD::ATOMIC_LOAD_UMIN: 3929 case ISD::ATOMIC_LOAD_UMAX: 3930 case ISD::ATOMIC_CMP_SWAP: { 3931 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 3932 AtomicOrdering Order = cast<AtomicSDNode>(Node)->getMergedOrdering(); 3933 RTLIB::Libcall LC = RTLIB::getOUTLINE_ATOMIC(Opc, Order, VT); 3934 EVT RetVT = Node->getValueType(0); 3935 TargetLowering::MakeLibCallOptions CallOptions; 3936 SmallVector<SDValue, 4> Ops; 3937 if (TLI.getLibcallName(LC)) { 3938 // If outline atomic available, prepare its arguments and expand. 3939 Ops.append(Node->op_begin() + 2, Node->op_end()); 3940 Ops.push_back(Node->getOperand(1)); 3941 3942 } else { 3943 LC = RTLIB::getSYNC(Opc, VT); 3944 assert(LC != RTLIB::UNKNOWN_LIBCALL && 3945 "Unexpected atomic op or value type!"); 3946 // Arguments for expansion to sync libcall 3947 Ops.append(Node->op_begin() + 1, Node->op_end()); 3948 } 3949 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 3950 Ops, CallOptions, 3951 SDLoc(Node), 3952 Node->getOperand(0)); 3953 Results.push_back(Tmp.first); 3954 Results.push_back(Tmp.second); 3955 break; 3956 } 3957 case ISD::TRAP: { 3958 // If this operation is not supported, lower it to 'abort()' call 3959 TargetLowering::ArgListTy Args; 3960 TargetLowering::CallLoweringInfo CLI(DAG); 3961 CLI.setDebugLoc(dl) 3962 .setChain(Node->getOperand(0)) 3963 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3964 DAG.getExternalSymbol( 3965 "abort", TLI.getPointerTy(DAG.getDataLayout())), 3966 std::move(Args)); 3967 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3968 3969 Results.push_back(CallResult.second); 3970 break; 3971 } 3972 case ISD::FMINNUM: 3973 case ISD::STRICT_FMINNUM: 3974 ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 3975 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 3976 RTLIB::FMIN_PPCF128, Results); 3977 break; 3978 case ISD::FMAXNUM: 3979 case ISD::STRICT_FMAXNUM: 3980 ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 3981 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 3982 RTLIB::FMAX_PPCF128, Results); 3983 break; 3984 case ISD::FSQRT: 3985 case ISD::STRICT_FSQRT: 3986 ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3987 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 3988 RTLIB::SQRT_PPCF128, Results); 3989 break; 3990 case ISD::FCBRT: 3991 ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, 3992 RTLIB::CBRT_F80, RTLIB::CBRT_F128, 3993 RTLIB::CBRT_PPCF128, Results); 3994 break; 3995 case ISD::FSIN: 3996 case ISD::STRICT_FSIN: 3997 ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 3998 RTLIB::SIN_F80, RTLIB::SIN_F128, 3999 RTLIB::SIN_PPCF128, Results); 4000 break; 4001 case ISD::FCOS: 4002 case ISD::STRICT_FCOS: 4003 ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 4004 RTLIB::COS_F80, RTLIB::COS_F128, 4005 RTLIB::COS_PPCF128, Results); 4006 break; 4007 case ISD::FSINCOS: 4008 // Expand into sincos libcall. 4009 ExpandSinCosLibCall(Node, Results); 4010 break; 4011 case ISD::FLOG: 4012 case ISD::STRICT_FLOG: 4013 ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80, 4014 RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results); 4015 break; 4016 case ISD::FLOG2: 4017 case ISD::STRICT_FLOG2: 4018 ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80, 4019 RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results); 4020 break; 4021 case ISD::FLOG10: 4022 case ISD::STRICT_FLOG10: 4023 ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80, 4024 RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results); 4025 break; 4026 case ISD::FEXP: 4027 case ISD::STRICT_FEXP: 4028 ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80, 4029 RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results); 4030 break; 4031 case ISD::FEXP2: 4032 case ISD::STRICT_FEXP2: 4033 ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80, 4034 RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results); 4035 break; 4036 case ISD::FTRUNC: 4037 case ISD::STRICT_FTRUNC: 4038 ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 4039 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 4040 RTLIB::TRUNC_PPCF128, Results); 4041 break; 4042 case ISD::FFLOOR: 4043 case ISD::STRICT_FFLOOR: 4044 ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 4045 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 4046 RTLIB::FLOOR_PPCF128, Results); 4047 break; 4048 case ISD::FCEIL: 4049 case ISD::STRICT_FCEIL: 4050 ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 4051 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 4052 RTLIB::CEIL_PPCF128, Results); 4053 break; 4054 case ISD::FRINT: 4055 case ISD::STRICT_FRINT: 4056 ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 4057 RTLIB::RINT_F80, RTLIB::RINT_F128, 4058 RTLIB::RINT_PPCF128, Results); 4059 break; 4060 case ISD::FNEARBYINT: 4061 case ISD::STRICT_FNEARBYINT: 4062 ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 4063 RTLIB::NEARBYINT_F64, 4064 RTLIB::NEARBYINT_F80, 4065 RTLIB::NEARBYINT_F128, 4066 RTLIB::NEARBYINT_PPCF128, Results); 4067 break; 4068 case ISD::FROUND: 4069 case ISD::STRICT_FROUND: 4070 ExpandFPLibCall(Node, RTLIB::ROUND_F32, 4071 RTLIB::ROUND_F64, 4072 RTLIB::ROUND_F80, 4073 RTLIB::ROUND_F128, 4074 RTLIB::ROUND_PPCF128, Results); 4075 break; 4076 case ISD::FROUNDEVEN: 4077 case ISD::STRICT_FROUNDEVEN: 4078 ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32, 4079 RTLIB::ROUNDEVEN_F64, 4080 RTLIB::ROUNDEVEN_F80, 4081 RTLIB::ROUNDEVEN_F128, 4082 RTLIB::ROUNDEVEN_PPCF128, Results); 4083 break; 4084 case ISD::FPOWI: 4085 case ISD::STRICT_FPOWI: { 4086 RTLIB::Libcall LC = RTLIB::getPOWI(Node->getSimpleValueType(0)); 4087 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fpowi."); 4088 if (!TLI.getLibcallName(LC)) { 4089 // Some targets don't have a powi libcall; use pow instead. 4090 SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), 4091 Node->getValueType(0), 4092 Node->getOperand(1)); 4093 Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node), 4094 Node->getValueType(0), Node->getOperand(0), 4095 Exponent)); 4096 break; 4097 } 4098 unsigned Offset = Node->isStrictFPOpcode() ? 1 : 0; 4099 bool ExponentHasSizeOfInt = 4100 DAG.getLibInfo().getIntSize() == 4101 Node->getOperand(1 + Offset).getValueType().getSizeInBits(); 4102 if (!ExponentHasSizeOfInt) { 4103 // If the exponent does not match with sizeof(int) a libcall to 4104 // RTLIB::POWI would use the wrong type for the argument. 4105 DAG.getContext()->emitError("POWI exponent does not match sizeof(int)"); 4106 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 4107 break; 4108 } 4109 ExpandFPLibCall(Node, LC, Results); 4110 break; 4111 } 4112 case ISD::FPOW: 4113 case ISD::STRICT_FPOW: 4114 ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 4115 RTLIB::POW_F128, RTLIB::POW_PPCF128, Results); 4116 break; 4117 case ISD::LROUND: 4118 case ISD::STRICT_LROUND: 4119 ExpandArgFPLibCall(Node, RTLIB::LROUND_F32, 4120 RTLIB::LROUND_F64, RTLIB::LROUND_F80, 4121 RTLIB::LROUND_F128, 4122 RTLIB::LROUND_PPCF128, Results); 4123 break; 4124 case ISD::LLROUND: 4125 case ISD::STRICT_LLROUND: 4126 ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32, 4127 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, 4128 RTLIB::LLROUND_F128, 4129 RTLIB::LLROUND_PPCF128, Results); 4130 break; 4131 case ISD::LRINT: 4132 case ISD::STRICT_LRINT: 4133 ExpandArgFPLibCall(Node, RTLIB::LRINT_F32, 4134 RTLIB::LRINT_F64, RTLIB::LRINT_F80, 4135 RTLIB::LRINT_F128, 4136 RTLIB::LRINT_PPCF128, Results); 4137 break; 4138 case ISD::LLRINT: 4139 case ISD::STRICT_LLRINT: 4140 ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32, 4141 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80, 4142 RTLIB::LLRINT_F128, 4143 RTLIB::LLRINT_PPCF128, Results); 4144 break; 4145 case ISD::FDIV: 4146 case ISD::STRICT_FDIV: 4147 ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 4148 RTLIB::DIV_F80, RTLIB::DIV_F128, 4149 RTLIB::DIV_PPCF128, Results); 4150 break; 4151 case ISD::FREM: 4152 case ISD::STRICT_FREM: 4153 ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 4154 RTLIB::REM_F80, RTLIB::REM_F128, 4155 RTLIB::REM_PPCF128, Results); 4156 break; 4157 case ISD::FMA: 4158 case ISD::STRICT_FMA: 4159 ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 4160 RTLIB::FMA_F80, RTLIB::FMA_F128, 4161 RTLIB::FMA_PPCF128, Results); 4162 break; 4163 case ISD::FADD: 4164 case ISD::STRICT_FADD: 4165 ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 4166 RTLIB::ADD_F80, RTLIB::ADD_F128, 4167 RTLIB::ADD_PPCF128, Results); 4168 break; 4169 case ISD::FMUL: 4170 case ISD::STRICT_FMUL: 4171 ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 4172 RTLIB::MUL_F80, RTLIB::MUL_F128, 4173 RTLIB::MUL_PPCF128, Results); 4174 break; 4175 case ISD::FP16_TO_FP: 4176 if (Node->getValueType(0) == MVT::f32) { 4177 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 4178 } 4179 break; 4180 case ISD::STRICT_FP16_TO_FP: { 4181 if (Node->getValueType(0) == MVT::f32) { 4182 TargetLowering::MakeLibCallOptions CallOptions; 4183 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall( 4184 DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions, 4185 SDLoc(Node), Node->getOperand(0)); 4186 Results.push_back(Tmp.first); 4187 Results.push_back(Tmp.second); 4188 } 4189 break; 4190 } 4191 case ISD::FP_TO_FP16: { 4192 RTLIB::Libcall LC = 4193 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 4194 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 4195 Results.push_back(ExpandLibCall(LC, Node, false)); 4196 break; 4197 } 4198 case ISD::STRICT_SINT_TO_FP: 4199 case ISD::STRICT_UINT_TO_FP: 4200 case ISD::SINT_TO_FP: 4201 case ISD::UINT_TO_FP: { 4202 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP 4203 bool IsStrict = Node->isStrictFPOpcode(); 4204 bool Signed = Node->getOpcode() == ISD::SINT_TO_FP || 4205 Node->getOpcode() == ISD::STRICT_SINT_TO_FP; 4206 EVT SVT = Node->getOperand(IsStrict ? 1 : 0).getValueType(); 4207 EVT RVT = Node->getValueType(0); 4208 EVT NVT = EVT(); 4209 SDLoc dl(Node); 4210 4211 // Even if the input is legal, no libcall may exactly match, eg. we don't 4212 // have i1 -> fp conversions. So, it needs to be promoted to a larger type, 4213 // eg: i13 -> fp. Then, look for an appropriate libcall. 4214 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 4215 for (unsigned t = MVT::FIRST_INTEGER_VALUETYPE; 4216 t <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; 4217 ++t) { 4218 NVT = (MVT::SimpleValueType)t; 4219 // The source needs to big enough to hold the operand. 4220 if (NVT.bitsGE(SVT)) 4221 LC = Signed ? RTLIB::getSINTTOFP(NVT, RVT) 4222 : RTLIB::getUINTTOFP(NVT, RVT); 4223 } 4224 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4225 4226 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4227 // Sign/zero extend the argument if the libcall takes a larger type. 4228 SDValue Op = DAG.getNode(Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl, 4229 NVT, Node->getOperand(IsStrict ? 1 : 0)); 4230 TargetLowering::MakeLibCallOptions CallOptions; 4231 CallOptions.setSExt(Signed); 4232 std::pair<SDValue, SDValue> Tmp = 4233 TLI.makeLibCall(DAG, LC, RVT, Op, CallOptions, dl, Chain); 4234 Results.push_back(Tmp.first); 4235 if (IsStrict) 4236 Results.push_back(Tmp.second); 4237 break; 4238 } 4239 case ISD::FP_TO_SINT: 4240 case ISD::FP_TO_UINT: 4241 case ISD::STRICT_FP_TO_SINT: 4242 case ISD::STRICT_FP_TO_UINT: { 4243 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatOp_FP_TO_XINT. 4244 bool IsStrict = Node->isStrictFPOpcode(); 4245 bool Signed = Node->getOpcode() == ISD::FP_TO_SINT || 4246 Node->getOpcode() == ISD::STRICT_FP_TO_SINT; 4247 4248 SDValue Op = Node->getOperand(IsStrict ? 1 : 0); 4249 EVT SVT = Op.getValueType(); 4250 EVT RVT = Node->getValueType(0); 4251 EVT NVT = EVT(); 4252 SDLoc dl(Node); 4253 4254 // Even if the result is legal, no libcall may exactly match, eg. we don't 4255 // have fp -> i1 conversions. So, it needs to be promoted to a larger type, 4256 // eg: fp -> i32. Then, look for an appropriate libcall. 4257 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 4258 for (unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE; 4259 IntVT <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; 4260 ++IntVT) { 4261 NVT = (MVT::SimpleValueType)IntVT; 4262 // The type needs to big enough to hold the result. 4263 if (NVT.bitsGE(RVT)) 4264 LC = Signed ? RTLIB::getFPTOSINT(SVT, NVT) 4265 : RTLIB::getFPTOUINT(SVT, NVT); 4266 } 4267 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4268 4269 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4270 TargetLowering::MakeLibCallOptions CallOptions; 4271 std::pair<SDValue, SDValue> Tmp = 4272 TLI.makeLibCall(DAG, LC, NVT, Op, CallOptions, dl, Chain); 4273 4274 // Truncate the result if the libcall returns a larger type. 4275 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, RVT, Tmp.first)); 4276 if (IsStrict) 4277 Results.push_back(Tmp.second); 4278 break; 4279 } 4280 4281 case ISD::FP_ROUND: 4282 case ISD::STRICT_FP_ROUND: { 4283 // X = FP_ROUND(Y, TRUNC) 4284 // TRUNC is a flag, which is always an integer that is zero or one. 4285 // If TRUNC is 0, this is a normal rounding, if it is 1, this FP_ROUND 4286 // is known to not change the value of Y. 4287 // We can only expand it into libcall if the TRUNC is 0. 4288 bool IsStrict = Node->isStrictFPOpcode(); 4289 SDValue Op = Node->getOperand(IsStrict ? 1 : 0); 4290 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4291 EVT VT = Node->getValueType(0); 4292 assert(cast<ConstantSDNode>(Node->getOperand(IsStrict ? 2 : 1))->isZero() && 4293 "Unable to expand as libcall if it is not normal rounding"); 4294 4295 RTLIB::Libcall LC = RTLIB::getFPROUND(Op.getValueType(), VT); 4296 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4297 4298 TargetLowering::MakeLibCallOptions CallOptions; 4299 std::pair<SDValue, SDValue> Tmp = 4300 TLI.makeLibCall(DAG, LC, VT, Op, CallOptions, SDLoc(Node), Chain); 4301 Results.push_back(Tmp.first); 4302 if (IsStrict) 4303 Results.push_back(Tmp.second); 4304 break; 4305 } 4306 case ISD::FP_EXTEND: { 4307 Results.push_back( 4308 ExpandLibCall(RTLIB::getFPEXT(Node->getOperand(0).getValueType(), 4309 Node->getValueType(0)), 4310 Node, false)); 4311 break; 4312 } 4313 case ISD::STRICT_FP_EXTEND: 4314 case ISD::STRICT_FP_TO_FP16: { 4315 RTLIB::Libcall LC = 4316 Node->getOpcode() == ISD::STRICT_FP_TO_FP16 4317 ? RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16) 4318 : RTLIB::getFPEXT(Node->getOperand(1).getValueType(), 4319 Node->getValueType(0)); 4320 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4321 4322 TargetLowering::MakeLibCallOptions CallOptions; 4323 std::pair<SDValue, SDValue> Tmp = 4324 TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1), 4325 CallOptions, SDLoc(Node), Node->getOperand(0)); 4326 Results.push_back(Tmp.first); 4327 Results.push_back(Tmp.second); 4328 break; 4329 } 4330 case ISD::FSUB: 4331 case ISD::STRICT_FSUB: 4332 ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4333 RTLIB::SUB_F80, RTLIB::SUB_F128, 4334 RTLIB::SUB_PPCF128, Results); 4335 break; 4336 case ISD::SREM: 4337 Results.push_back(ExpandIntLibCall( 4338 Node, true, RTLIB::SREM_I8, RTLIB::SREM_I16, RTLIB::SREM_I32, 4339 RTLIB::SREM_I64, RTLIB::SREM_I128, RTLIB::SREM_IEXT)); 4340 break; 4341 case ISD::UREM: 4342 Results.push_back(ExpandIntLibCall( 4343 Node, false, RTLIB::UREM_I8, RTLIB::UREM_I16, RTLIB::UREM_I32, 4344 RTLIB::UREM_I64, RTLIB::UREM_I128, RTLIB::UREM_IEXT)); 4345 break; 4346 case ISD::SDIV: 4347 Results.push_back(ExpandIntLibCall( 4348 Node, true, RTLIB::SDIV_I8, RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4349 RTLIB::SDIV_I64, RTLIB::SDIV_I128, RTLIB::SDIV_IEXT)); 4350 break; 4351 case ISD::UDIV: 4352 Results.push_back(ExpandIntLibCall( 4353 Node, false, RTLIB::UDIV_I8, RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4354 RTLIB::UDIV_I64, RTLIB::UDIV_I128, RTLIB::UDIV_IEXT)); 4355 break; 4356 case ISD::SDIVREM: 4357 case ISD::UDIVREM: 4358 // Expand into divrem libcall 4359 ExpandDivRemLibCall(Node, Results); 4360 break; 4361 case ISD::MUL: 4362 Results.push_back(ExpandIntLibCall( 4363 Node, false, RTLIB::MUL_I8, RTLIB::MUL_I16, RTLIB::MUL_I32, 4364 RTLIB::MUL_I64, RTLIB::MUL_I128, RTLIB::MUL_IEXT)); 4365 break; 4366 case ISD::CTLZ_ZERO_UNDEF: 4367 switch (Node->getSimpleValueType(0).SimpleTy) { 4368 default: 4369 llvm_unreachable("LibCall explicitly requested, but not available"); 4370 case MVT::i32: 4371 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false)); 4372 break; 4373 case MVT::i64: 4374 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false)); 4375 break; 4376 case MVT::i128: 4377 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false)); 4378 break; 4379 } 4380 break; 4381 } 4382 4383 // Replace the original node with the legalized result. 4384 if (!Results.empty()) { 4385 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); 4386 ReplaceNode(Node, Results.data()); 4387 } else 4388 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); 4389 } 4390 4391 // Determine the vector type to use in place of an original scalar element when 4392 // promoting equally sized vectors. 4393 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4394 MVT EltVT, MVT NewEltVT) { 4395 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4396 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4397 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4398 return MidVT; 4399 } 4400 4401 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4402 LLVM_DEBUG(dbgs() << "Trying to promote node\n"); 4403 SmallVector<SDValue, 8> Results; 4404 MVT OVT = Node->getSimpleValueType(0); 4405 if (Node->getOpcode() == ISD::UINT_TO_FP || 4406 Node->getOpcode() == ISD::SINT_TO_FP || 4407 Node->getOpcode() == ISD::SETCC || 4408 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4409 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4410 OVT = Node->getOperand(0).getSimpleValueType(); 4411 } 4412 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP || 4413 Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 4414 Node->getOpcode() == ISD::STRICT_FSETCC || 4415 Node->getOpcode() == ISD::STRICT_FSETCCS) 4416 OVT = Node->getOperand(1).getSimpleValueType(); 4417 if (Node->getOpcode() == ISD::BR_CC || 4418 Node->getOpcode() == ISD::SELECT_CC) 4419 OVT = Node->getOperand(2).getSimpleValueType(); 4420 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4421 SDLoc dl(Node); 4422 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 4423 switch (Node->getOpcode()) { 4424 case ISD::CTTZ: 4425 case ISD::CTTZ_ZERO_UNDEF: 4426 case ISD::CTLZ: 4427 case ISD::CTLZ_ZERO_UNDEF: 4428 case ISD::CTPOP: 4429 // Zero extend the argument unless its cttz, then use any_extend. 4430 if (Node->getOpcode() == ISD::CTTZ || 4431 Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 4432 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 4433 else 4434 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4435 4436 if (Node->getOpcode() == ISD::CTTZ) { 4437 // The count is the same in the promoted type except if the original 4438 // value was zero. This can be handled by setting the bit just off 4439 // the top of the original type. 4440 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4441 OVT.getSizeInBits()); 4442 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4443 DAG.getConstant(TopBit, dl, NVT)); 4444 } 4445 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4446 // already the correct result. 4447 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4448 if (Node->getOpcode() == ISD::CTLZ || 4449 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4450 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4451 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4452 DAG.getConstant(NVT.getSizeInBits() - 4453 OVT.getSizeInBits(), dl, NVT)); 4454 } 4455 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4456 break; 4457 case ISD::BITREVERSE: 4458 case ISD::BSWAP: { 4459 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4460 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4461 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4462 Tmp1 = DAG.getNode( 4463 ISD::SRL, dl, NVT, Tmp1, 4464 DAG.getConstant(DiffBits, dl, 4465 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4466 4467 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4468 break; 4469 } 4470 case ISD::FP_TO_UINT: 4471 case ISD::STRICT_FP_TO_UINT: 4472 case ISD::FP_TO_SINT: 4473 case ISD::STRICT_FP_TO_SINT: 4474 PromoteLegalFP_TO_INT(Node, dl, Results); 4475 break; 4476 case ISD::FP_TO_UINT_SAT: 4477 case ISD::FP_TO_SINT_SAT: 4478 Results.push_back(PromoteLegalFP_TO_INT_SAT(Node, dl)); 4479 break; 4480 case ISD::UINT_TO_FP: 4481 case ISD::STRICT_UINT_TO_FP: 4482 case ISD::SINT_TO_FP: 4483 case ISD::STRICT_SINT_TO_FP: 4484 PromoteLegalINT_TO_FP(Node, dl, Results); 4485 break; 4486 case ISD::VAARG: { 4487 SDValue Chain = Node->getOperand(0); // Get the chain. 4488 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4489 4490 unsigned TruncOp; 4491 if (OVT.isVector()) { 4492 TruncOp = ISD::BITCAST; 4493 } else { 4494 assert(OVT.isInteger() 4495 && "VAARG promotion is supported only for vectors or integer types"); 4496 TruncOp = ISD::TRUNCATE; 4497 } 4498 4499 // Perform the larger operation, then convert back 4500 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4501 Node->getConstantOperandVal(3)); 4502 Chain = Tmp1.getValue(1); 4503 4504 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4505 4506 // Modified the chain result - switch anything that used the old chain to 4507 // use the new one. 4508 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4509 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4510 if (UpdatedNodes) { 4511 UpdatedNodes->insert(Tmp2.getNode()); 4512 UpdatedNodes->insert(Chain.getNode()); 4513 } 4514 ReplacedNode(Node); 4515 break; 4516 } 4517 case ISD::MUL: 4518 case ISD::SDIV: 4519 case ISD::SREM: 4520 case ISD::UDIV: 4521 case ISD::UREM: 4522 case ISD::AND: 4523 case ISD::OR: 4524 case ISD::XOR: { 4525 unsigned ExtOp, TruncOp; 4526 if (OVT.isVector()) { 4527 ExtOp = ISD::BITCAST; 4528 TruncOp = ISD::BITCAST; 4529 } else { 4530 assert(OVT.isInteger() && "Cannot promote logic operation"); 4531 4532 switch (Node->getOpcode()) { 4533 default: 4534 ExtOp = ISD::ANY_EXTEND; 4535 break; 4536 case ISD::SDIV: 4537 case ISD::SREM: 4538 ExtOp = ISD::SIGN_EXTEND; 4539 break; 4540 case ISD::UDIV: 4541 case ISD::UREM: 4542 ExtOp = ISD::ZERO_EXTEND; 4543 break; 4544 } 4545 TruncOp = ISD::TRUNCATE; 4546 } 4547 // Promote each of the values to the new type. 4548 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4549 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4550 // Perform the larger operation, then convert back 4551 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4552 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4553 break; 4554 } 4555 case ISD::UMUL_LOHI: 4556 case ISD::SMUL_LOHI: { 4557 // Promote to a multiply in a wider integer type. 4558 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 4559 : ISD::SIGN_EXTEND; 4560 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4561 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4562 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 4563 4564 auto &DL = DAG.getDataLayout(); 4565 unsigned OriginalSize = OVT.getScalarSizeInBits(); 4566 Tmp2 = DAG.getNode( 4567 ISD::SRL, dl, NVT, Tmp1, 4568 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 4569 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4570 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 4571 break; 4572 } 4573 case ISD::SELECT: { 4574 unsigned ExtOp, TruncOp; 4575 if (Node->getValueType(0).isVector() || 4576 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4577 ExtOp = ISD::BITCAST; 4578 TruncOp = ISD::BITCAST; 4579 } else if (Node->getValueType(0).isInteger()) { 4580 ExtOp = ISD::ANY_EXTEND; 4581 TruncOp = ISD::TRUNCATE; 4582 } else { 4583 ExtOp = ISD::FP_EXTEND; 4584 TruncOp = ISD::FP_ROUND; 4585 } 4586 Tmp1 = Node->getOperand(0); 4587 // Promote each of the values to the new type. 4588 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4589 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4590 // Perform the larger operation, then round down. 4591 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4592 Tmp1->setFlags(Node->getFlags()); 4593 if (TruncOp != ISD::FP_ROUND) 4594 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4595 else 4596 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4597 DAG.getIntPtrConstant(0, dl)); 4598 Results.push_back(Tmp1); 4599 break; 4600 } 4601 case ISD::VECTOR_SHUFFLE: { 4602 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4603 4604 // Cast the two input vectors. 4605 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4606 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4607 4608 // Convert the shuffle mask to the right # elements. 4609 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4610 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4611 Results.push_back(Tmp1); 4612 break; 4613 } 4614 case ISD::VECTOR_SPLICE: { 4615 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 4616 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(1)); 4617 Tmp3 = DAG.getNode(ISD::VECTOR_SPLICE, dl, NVT, Tmp1, Tmp2, 4618 Node->getOperand(2)); 4619 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp3)); 4620 break; 4621 } 4622 case ISD::SELECT_CC: { 4623 SDValue Cond = Node->getOperand(4); 4624 ISD::CondCode CCCode = cast<CondCodeSDNode>(Cond)->get(); 4625 // Type of the comparison operands. 4626 MVT CVT = Node->getSimpleValueType(0); 4627 assert(CVT == OVT && "not handled"); 4628 4629 unsigned ExtOp = ISD::FP_EXTEND; 4630 if (NVT.isInteger()) { 4631 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4632 } 4633 4634 // Promote the comparison operands, if needed. 4635 if (TLI.isCondCodeLegal(CCCode, CVT)) { 4636 Tmp1 = Node->getOperand(0); 4637 Tmp2 = Node->getOperand(1); 4638 } else { 4639 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4640 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4641 } 4642 // Cast the true/false operands. 4643 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4644 Tmp4 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4645 4646 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, NVT, {Tmp1, Tmp2, Tmp3, Tmp4, Cond}, 4647 Node->getFlags()); 4648 4649 // Cast the result back to the original type. 4650 if (ExtOp != ISD::FP_EXTEND) 4651 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1); 4652 else 4653 Tmp1 = DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp1, 4654 DAG.getIntPtrConstant(0, dl)); 4655 4656 Results.push_back(Tmp1); 4657 break; 4658 } 4659 case ISD::SETCC: 4660 case ISD::STRICT_FSETCC: 4661 case ISD::STRICT_FSETCCS: { 4662 unsigned ExtOp = ISD::FP_EXTEND; 4663 if (NVT.isInteger()) { 4664 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4665 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4666 } 4667 if (Node->isStrictFPOpcode()) { 4668 SDValue InChain = Node->getOperand(0); 4669 std::tie(Tmp1, std::ignore) = 4670 DAG.getStrictFPExtendOrRound(Node->getOperand(1), InChain, dl, NVT); 4671 std::tie(Tmp2, std::ignore) = 4672 DAG.getStrictFPExtendOrRound(Node->getOperand(2), InChain, dl, NVT); 4673 SmallVector<SDValue, 2> TmpChains = {Tmp1.getValue(1), Tmp2.getValue(1)}; 4674 SDValue OutChain = DAG.getTokenFactor(dl, TmpChains); 4675 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 4676 Results.push_back(DAG.getNode(Node->getOpcode(), dl, VTs, 4677 {OutChain, Tmp1, Tmp2, Node->getOperand(3)}, 4678 Node->getFlags())); 4679 Results.push_back(Results.back().getValue(1)); 4680 break; 4681 } 4682 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4683 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4684 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, 4685 Tmp2, Node->getOperand(2), Node->getFlags())); 4686 break; 4687 } 4688 case ISD::BR_CC: { 4689 unsigned ExtOp = ISD::FP_EXTEND; 4690 if (NVT.isInteger()) { 4691 ISD::CondCode CCCode = 4692 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4693 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4694 } 4695 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4696 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4697 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4698 Node->getOperand(0), Node->getOperand(1), 4699 Tmp1, Tmp2, Node->getOperand(4))); 4700 break; 4701 } 4702 case ISD::FADD: 4703 case ISD::FSUB: 4704 case ISD::FMUL: 4705 case ISD::FDIV: 4706 case ISD::FREM: 4707 case ISD::FMINNUM: 4708 case ISD::FMAXNUM: 4709 case ISD::FPOW: 4710 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4711 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4712 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4713 Node->getFlags()); 4714 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4715 Tmp3, DAG.getIntPtrConstant(0, dl))); 4716 break; 4717 case ISD::STRICT_FADD: 4718 case ISD::STRICT_FSUB: 4719 case ISD::STRICT_FMUL: 4720 case ISD::STRICT_FDIV: 4721 case ISD::STRICT_FMINNUM: 4722 case ISD::STRICT_FMAXNUM: 4723 case ISD::STRICT_FREM: 4724 case ISD::STRICT_FPOW: 4725 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4726 {Node->getOperand(0), Node->getOperand(1)}); 4727 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4728 {Node->getOperand(0), Node->getOperand(2)}); 4729 Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 4730 Tmp2.getValue(1)); 4731 Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4732 {Tmp3, Tmp1, Tmp2}); 4733 Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4734 {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)}); 4735 Results.push_back(Tmp1); 4736 Results.push_back(Tmp1.getValue(1)); 4737 break; 4738 case ISD::FMA: 4739 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4740 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4741 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4742 Results.push_back( 4743 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4744 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4745 DAG.getIntPtrConstant(0, dl))); 4746 break; 4747 case ISD::STRICT_FMA: 4748 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4749 {Node->getOperand(0), Node->getOperand(1)}); 4750 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4751 {Node->getOperand(0), Node->getOperand(2)}); 4752 Tmp3 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4753 {Node->getOperand(0), Node->getOperand(3)}); 4754 Tmp4 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 4755 Tmp2.getValue(1), Tmp3.getValue(1)); 4756 Tmp4 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4757 {Tmp4, Tmp1, Tmp2, Tmp3}); 4758 Tmp4 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4759 {Tmp4.getValue(1), Tmp4, DAG.getIntPtrConstant(0, dl)}); 4760 Results.push_back(Tmp4); 4761 Results.push_back(Tmp4.getValue(1)); 4762 break; 4763 case ISD::FCOPYSIGN: 4764 case ISD::FPOWI: { 4765 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4766 Tmp2 = Node->getOperand(1); 4767 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4768 4769 // fcopysign doesn't change anything but the sign bit, so 4770 // (fp_round (fcopysign (fpext a), b)) 4771 // is as precise as 4772 // (fp_round (fpext a)) 4773 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4774 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4775 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4776 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4777 break; 4778 } 4779 case ISD::STRICT_FPOWI: 4780 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4781 {Node->getOperand(0), Node->getOperand(1)}); 4782 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4783 {Tmp1.getValue(1), Tmp1, Node->getOperand(2)}); 4784 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4785 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 4786 Results.push_back(Tmp3); 4787 Results.push_back(Tmp3.getValue(1)); 4788 break; 4789 case ISD::FFLOOR: 4790 case ISD::FCEIL: 4791 case ISD::FRINT: 4792 case ISD::FNEARBYINT: 4793 case ISD::FROUND: 4794 case ISD::FROUNDEVEN: 4795 case ISD::FTRUNC: 4796 case ISD::FNEG: 4797 case ISD::FSQRT: 4798 case ISD::FSIN: 4799 case ISD::FCOS: 4800 case ISD::FLOG: 4801 case ISD::FLOG2: 4802 case ISD::FLOG10: 4803 case ISD::FABS: 4804 case ISD::FEXP: 4805 case ISD::FEXP2: 4806 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4807 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4808 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4809 Tmp2, DAG.getIntPtrConstant(0, dl))); 4810 break; 4811 case ISD::STRICT_FFLOOR: 4812 case ISD::STRICT_FCEIL: 4813 case ISD::STRICT_FRINT: 4814 case ISD::STRICT_FNEARBYINT: 4815 case ISD::STRICT_FROUND: 4816 case ISD::STRICT_FROUNDEVEN: 4817 case ISD::STRICT_FTRUNC: 4818 case ISD::STRICT_FSQRT: 4819 case ISD::STRICT_FSIN: 4820 case ISD::STRICT_FCOS: 4821 case ISD::STRICT_FLOG: 4822 case ISD::STRICT_FLOG2: 4823 case ISD::STRICT_FLOG10: 4824 case ISD::STRICT_FEXP: 4825 case ISD::STRICT_FEXP2: 4826 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4827 {Node->getOperand(0), Node->getOperand(1)}); 4828 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4829 {Tmp1.getValue(1), Tmp1}); 4830 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4831 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 4832 Results.push_back(Tmp3); 4833 Results.push_back(Tmp3.getValue(1)); 4834 break; 4835 case ISD::BUILD_VECTOR: { 4836 MVT EltVT = OVT.getVectorElementType(); 4837 MVT NewEltVT = NVT.getVectorElementType(); 4838 4839 // Handle bitcasts to a different vector type with the same total bit size 4840 // 4841 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4842 // => 4843 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4844 4845 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4846 "Invalid promote type for build_vector"); 4847 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4848 4849 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4850 4851 SmallVector<SDValue, 8> NewOps; 4852 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4853 SDValue Op = Node->getOperand(I); 4854 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4855 } 4856 4857 SDLoc SL(Node); 4858 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4859 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4860 Results.push_back(CvtVec); 4861 break; 4862 } 4863 case ISD::EXTRACT_VECTOR_ELT: { 4864 MVT EltVT = OVT.getVectorElementType(); 4865 MVT NewEltVT = NVT.getVectorElementType(); 4866 4867 // Handle bitcasts to a different vector type with the same total bit size. 4868 // 4869 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4870 // => 4871 // v4i32:castx = bitcast x:v2i64 4872 // 4873 // i64 = bitcast 4874 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4875 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4876 // 4877 4878 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4879 "Invalid promote type for extract_vector_elt"); 4880 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4881 4882 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4883 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4884 4885 SDValue Idx = Node->getOperand(1); 4886 EVT IdxVT = Idx.getValueType(); 4887 SDLoc SL(Node); 4888 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4889 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4890 4891 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4892 4893 SmallVector<SDValue, 8> NewOps; 4894 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4895 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4896 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4897 4898 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4899 CastVec, TmpIdx); 4900 NewOps.push_back(Elt); 4901 } 4902 4903 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 4904 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4905 break; 4906 } 4907 case ISD::INSERT_VECTOR_ELT: { 4908 MVT EltVT = OVT.getVectorElementType(); 4909 MVT NewEltVT = NVT.getVectorElementType(); 4910 4911 // Handle bitcasts to a different vector type with the same total bit size 4912 // 4913 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4914 // => 4915 // v4i32:castx = bitcast x:v2i64 4916 // v2i32:casty = bitcast y:i64 4917 // 4918 // v2i64 = bitcast 4919 // (v4i32 insert_vector_elt 4920 // (v4i32 insert_vector_elt v4i32:castx, 4921 // (extract_vector_elt casty, 0), 2 * z), 4922 // (extract_vector_elt casty, 1), (2 * z + 1)) 4923 4924 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4925 "Invalid promote type for insert_vector_elt"); 4926 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4927 4928 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4929 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4930 4931 SDValue Val = Node->getOperand(1); 4932 SDValue Idx = Node->getOperand(2); 4933 EVT IdxVT = Idx.getValueType(); 4934 SDLoc SL(Node); 4935 4936 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 4937 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4938 4939 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4940 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4941 4942 SDValue NewVec = CastVec; 4943 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4944 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4945 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4946 4947 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4948 CastVal, IdxOffset); 4949 4950 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 4951 NewVec, Elt, InEltIdx); 4952 } 4953 4954 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 4955 break; 4956 } 4957 case ISD::SCALAR_TO_VECTOR: { 4958 MVT EltVT = OVT.getVectorElementType(); 4959 MVT NewEltVT = NVT.getVectorElementType(); 4960 4961 // Handle bitcasts to different vector type with the same total bit size. 4962 // 4963 // e.g. v2i64 = scalar_to_vector x:i64 4964 // => 4965 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 4966 // 4967 4968 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4969 SDValue Val = Node->getOperand(0); 4970 SDLoc SL(Node); 4971 4972 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4973 SDValue Undef = DAG.getUNDEF(MidVT); 4974 4975 SmallVector<SDValue, 8> NewElts; 4976 NewElts.push_back(CastVal); 4977 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 4978 NewElts.push_back(Undef); 4979 4980 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 4981 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4982 Results.push_back(CvtVec); 4983 break; 4984 } 4985 case ISD::ATOMIC_SWAP: { 4986 AtomicSDNode *AM = cast<AtomicSDNode>(Node); 4987 SDLoc SL(Node); 4988 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal()); 4989 assert(NVT.getSizeInBits() == OVT.getSizeInBits() && 4990 "unexpected promotion type"); 4991 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && 4992 "unexpected atomic_swap with illegal type"); 4993 4994 SDValue NewAtomic 4995 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT, 4996 DAG.getVTList(NVT, MVT::Other), 4997 { AM->getChain(), AM->getBasePtr(), CastVal }, 4998 AM->getMemOperand()); 4999 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); 5000 Results.push_back(NewAtomic.getValue(1)); 5001 break; 5002 } 5003 } 5004 5005 // Replace the original node with the legalized result. 5006 if (!Results.empty()) { 5007 LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); 5008 ReplaceNode(Node, Results.data()); 5009 } else 5010 LLVM_DEBUG(dbgs() << "Could not promote node\n"); 5011 } 5012 5013 /// This is the entry point for the file. 5014 void SelectionDAG::Legalize() { 5015 AssignTopologicalOrder(); 5016 5017 SmallPtrSet<SDNode *, 16> LegalizedNodes; 5018 // Use a delete listener to remove nodes which were deleted during 5019 // legalization from LegalizeNodes. This is needed to handle the situation 5020 // where a new node is allocated by the object pool to the same address of a 5021 // previously deleted node. 5022 DAGNodeDeletedListener DeleteListener( 5023 *this, 5024 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 5025 5026 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 5027 5028 // Visit all the nodes. We start in topological order, so that we see 5029 // nodes with their original operands intact. Legalization can produce 5030 // new nodes which may themselves need to be legalized. Iterate until all 5031 // nodes have been legalized. 5032 while (true) { 5033 bool AnyLegalized = false; 5034 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 5035 --NI; 5036 5037 SDNode *N = &*NI; 5038 if (N->use_empty() && N != getRoot().getNode()) { 5039 ++NI; 5040 DeleteNode(N); 5041 continue; 5042 } 5043 5044 if (LegalizedNodes.insert(N).second) { 5045 AnyLegalized = true; 5046 Legalizer.LegalizeOp(N); 5047 5048 if (N->use_empty() && N != getRoot().getNode()) { 5049 ++NI; 5050 DeleteNode(N); 5051 } 5052 } 5053 } 5054 if (!AnyLegalized) 5055 break; 5056 5057 } 5058 5059 // Remove dead nodes now. 5060 RemoveDeadNodes(); 5061 } 5062 5063 bool SelectionDAG::LegalizeOp(SDNode *N, 5064 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 5065 SmallPtrSet<SDNode *, 16> LegalizedNodes; 5066 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 5067 5068 // Directly insert the node in question, and legalize it. This will recurse 5069 // as needed through operands. 5070 LegalizedNodes.insert(N); 5071 Legalizer.LegalizeOp(N); 5072 5073 return LegalizedNodes.count(N); 5074 } 5075