1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::Legalize method. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/CodeGen/ISDOpcodes.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/RuntimeLibcalls.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/SelectionDAGNodes.h" 28 #include "llvm/CodeGen/TargetFrameLowering.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/CodeGen/ValueTypes.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstdint> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "legalizedag" 57 58 namespace { 59 60 /// Keeps track of state when getting the sign of a floating-point value as an 61 /// integer. 62 struct FloatSignAsInt { 63 EVT FloatVT; 64 SDValue Chain; 65 SDValue FloatPtr; 66 SDValue IntPtr; 67 MachinePointerInfo IntPointerInfo; 68 MachinePointerInfo FloatPointerInfo; 69 SDValue IntValue; 70 APInt SignMask; 71 uint8_t SignBit; 72 }; 73 74 //===----------------------------------------------------------------------===// 75 /// This takes an arbitrary SelectionDAG as input and 76 /// hacks on it until the target machine can handle it. This involves 77 /// eliminating value sizes the machine cannot handle (promoting small sizes to 78 /// large sizes or splitting up large values into small values) as well as 79 /// eliminating operations the machine cannot handle. 80 /// 81 /// This code also does a small amount of optimization and recognition of idioms 82 /// as part of its processing. For example, if a target does not support a 83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 84 /// will attempt merge setcc and brc instructions into brcc's. 85 class SelectionDAGLegalize { 86 const TargetMachine &TM; 87 const TargetLowering &TLI; 88 SelectionDAG &DAG; 89 90 /// The set of nodes which have already been legalized. We hold a 91 /// reference to it in order to update as necessary on node deletion. 92 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 93 94 /// A set of all the nodes updated during legalization. 95 SmallSetVector<SDNode *, 16> *UpdatedNodes; 96 97 EVT getSetCCResultType(EVT VT) const { 98 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 99 } 100 101 // Libcall insertion helpers. 102 103 public: 104 SelectionDAGLegalize(SelectionDAG &DAG, 105 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 106 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 107 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 108 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 109 110 /// Legalizes the given operation. 111 void LegalizeOp(SDNode *Node); 112 113 private: 114 SDValue OptimizeFloatStore(StoreSDNode *ST); 115 116 void LegalizeLoadOps(SDNode *Node); 117 void LegalizeStoreOps(SDNode *Node); 118 119 /// Some targets cannot handle a variable 120 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 121 /// is necessary to spill the vector being inserted into to memory, perform 122 /// the insert there, and then read the result back. 123 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 124 const SDLoc &dl); 125 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 126 const SDLoc &dl); 127 128 /// Return a vector shuffle operation which 129 /// performs the same shuffe in terms of order or result bytes, but on a type 130 /// whose vector element type is narrower than the original shuffle type. 131 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 132 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 133 SDValue N1, SDValue N2, 134 ArrayRef<int> Mask) const; 135 136 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 137 bool &NeedInvert, const SDLoc &dl, SDValue &Chain, 138 bool IsSignaling = false); 139 140 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 141 142 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 143 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 144 RTLIB::Libcall Call_F128, 145 RTLIB::Libcall Call_PPCF128, 146 SmallVectorImpl<SDValue> &Results); 147 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 148 RTLIB::Libcall Call_I8, 149 RTLIB::Libcall Call_I16, 150 RTLIB::Libcall Call_I32, 151 RTLIB::Libcall Call_I64, 152 RTLIB::Libcall Call_I128); 153 void ExpandArgFPLibCall(SDNode *Node, 154 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, 155 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, 156 RTLIB::Libcall Call_PPCF128, 157 SmallVectorImpl<SDValue> &Results); 158 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 159 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 160 161 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 162 const SDLoc &dl); 163 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 164 const SDLoc &dl, SDValue ChainIn); 165 SDValue ExpandBUILD_VECTOR(SDNode *Node); 166 SDValue ExpandSPLAT_VECTOR(SDNode *Node); 167 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 168 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 169 SmallVectorImpl<SDValue> &Results); 170 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 171 SDValue Value) const; 172 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 173 SDValue NewIntValue) const; 174 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 175 SDValue ExpandFABS(SDNode *Node) const; 176 SDValue ExpandFNEG(SDNode *Node) const; 177 SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain); 178 void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl, 179 SmallVectorImpl<SDValue> &Results); 180 void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 181 SmallVectorImpl<SDValue> &Results); 182 183 SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl); 184 SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl); 185 SDValue ExpandPARITY(SDValue Op, const SDLoc &dl); 186 187 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 188 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 189 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 190 191 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 192 SDValue ExpandConstant(ConstantSDNode *CP); 193 194 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 195 bool ExpandNode(SDNode *Node); 196 void ConvertNodeToLibcall(SDNode *Node); 197 void PromoteNode(SDNode *Node); 198 199 public: 200 // Node replacement helpers 201 202 void ReplacedNode(SDNode *N) { 203 LegalizedNodes.erase(N); 204 if (UpdatedNodes) 205 UpdatedNodes->insert(N); 206 } 207 208 void ReplaceNode(SDNode *Old, SDNode *New) { 209 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 210 dbgs() << " with: "; New->dump(&DAG)); 211 212 assert(Old->getNumValues() == New->getNumValues() && 213 "Replacing one node with another that produces a different number " 214 "of values!"); 215 DAG.ReplaceAllUsesWith(Old, New); 216 if (UpdatedNodes) 217 UpdatedNodes->insert(New); 218 ReplacedNode(Old); 219 } 220 221 void ReplaceNode(SDValue Old, SDValue New) { 222 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 223 dbgs() << " with: "; New->dump(&DAG)); 224 225 DAG.ReplaceAllUsesWith(Old, New); 226 if (UpdatedNodes) 227 UpdatedNodes->insert(New.getNode()); 228 ReplacedNode(Old.getNode()); 229 } 230 231 void ReplaceNode(SDNode *Old, const SDValue *New) { 232 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 233 234 DAG.ReplaceAllUsesWith(Old, New); 235 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 236 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); 237 New[i]->dump(&DAG)); 238 if (UpdatedNodes) 239 UpdatedNodes->insert(New[i].getNode()); 240 } 241 ReplacedNode(Old); 242 } 243 244 void ReplaceNodeWithValue(SDValue Old, SDValue New) { 245 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 246 dbgs() << " with: "; New->dump(&DAG)); 247 248 DAG.ReplaceAllUsesOfValueWith(Old, New); 249 if (UpdatedNodes) 250 UpdatedNodes->insert(New.getNode()); 251 ReplacedNode(Old.getNode()); 252 } 253 }; 254 255 } // end anonymous namespace 256 257 /// Return a vector shuffle operation which 258 /// performs the same shuffle in terms of order or result bytes, but on a type 259 /// whose vector element type is narrower than the original shuffle type. 260 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 261 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 262 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 263 ArrayRef<int> Mask) const { 264 unsigned NumMaskElts = VT.getVectorNumElements(); 265 unsigned NumDestElts = NVT.getVectorNumElements(); 266 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 267 268 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 269 270 if (NumEltsGrowth == 1) 271 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 272 273 SmallVector<int, 8> NewMask; 274 for (unsigned i = 0; i != NumMaskElts; ++i) { 275 int Idx = Mask[i]; 276 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 277 if (Idx < 0) 278 NewMask.push_back(-1); 279 else 280 NewMask.push_back(Idx * NumEltsGrowth + j); 281 } 282 } 283 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 284 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 285 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 286 } 287 288 /// Expands the ConstantFP node to an integer constant or 289 /// a load from the constant pool. 290 SDValue 291 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 292 bool Extend = false; 293 SDLoc dl(CFP); 294 295 // If a FP immediate is precise when represented as a float and if the 296 // target can do an extending load from float to double, we put it into 297 // the constant pool as a float, even if it's is statically typed as a 298 // double. This shrinks FP constants and canonicalizes them for targets where 299 // an FP extending load is the same cost as a normal load (such as on the x87 300 // fp stack or PPC FP unit). 301 EVT VT = CFP->getValueType(0); 302 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 303 if (!UseCP) { 304 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 305 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 306 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 307 } 308 309 APFloat APF = CFP->getValueAPF(); 310 EVT OrigVT = VT; 311 EVT SVT = VT; 312 313 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 314 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 315 if (!APF.isSignaling()) { 316 while (SVT != MVT::f32 && SVT != MVT::f16) { 317 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 318 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 319 // Only do this if the target has a native EXTLOAD instruction from 320 // smaller type. 321 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 322 TLI.ShouldShrinkFPConstant(OrigVT)) { 323 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 324 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 325 VT = SVT; 326 Extend = true; 327 } 328 } 329 } 330 331 SDValue CPIdx = 332 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 333 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 334 if (Extend) { 335 SDValue Result = DAG.getExtLoad( 336 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 337 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 338 Alignment); 339 return Result; 340 } 341 SDValue Result = DAG.getLoad( 342 OrigVT, dl, DAG.getEntryNode(), CPIdx, 343 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 344 return Result; 345 } 346 347 /// Expands the Constant node to a load from the constant pool. 348 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 349 SDLoc dl(CP); 350 EVT VT = CP->getValueType(0); 351 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 352 TLI.getPointerTy(DAG.getDataLayout())); 353 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 354 SDValue Result = DAG.getLoad( 355 VT, dl, DAG.getEntryNode(), CPIdx, 356 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 357 return Result; 358 } 359 360 /// Some target cannot handle a variable insertion index for the 361 /// INSERT_VECTOR_ELT instruction. In this case, it 362 /// is necessary to spill the vector being inserted into to memory, perform 363 /// the insert there, and then read the result back. 364 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 365 SDValue Val, 366 SDValue Idx, 367 const SDLoc &dl) { 368 SDValue Tmp1 = Vec; 369 SDValue Tmp2 = Val; 370 SDValue Tmp3 = Idx; 371 372 // If the target doesn't support this, we have to spill the input vector 373 // to a temporary stack slot, update the element, then reload it. This is 374 // badness. We could also load the value into a vector register (either 375 // with a "move to register" or "extload into register" instruction, then 376 // permute it into place, if the idx is a constant and if the idx is 377 // supported by the target. 378 EVT VT = Tmp1.getValueType(); 379 EVT EltVT = VT.getVectorElementType(); 380 SDValue StackPtr = DAG.CreateStackTemporary(VT); 381 382 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 383 384 // Store the vector. 385 SDValue Ch = DAG.getStore( 386 DAG.getEntryNode(), dl, Tmp1, StackPtr, 387 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 388 389 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 390 391 // Store the scalar value. 392 Ch = DAG.getTruncStore( 393 Ch, dl, Tmp2, StackPtr2, 394 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT); 395 // Load the updated vector. 396 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 397 DAG.getMachineFunction(), SPFI)); 398 } 399 400 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 401 SDValue Idx, 402 const SDLoc &dl) { 403 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 404 // SCALAR_TO_VECTOR requires that the type of the value being inserted 405 // match the element type of the vector being created, except for 406 // integers in which case the inserted value can be over width. 407 EVT EltVT = Vec.getValueType().getVectorElementType(); 408 if (Val.getValueType() == EltVT || 409 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 410 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 411 Vec.getValueType(), Val); 412 413 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 414 // We generate a shuffle of InVec and ScVec, so the shuffle mask 415 // should be 0,1,2,3,4,5... with the appropriate element replaced with 416 // elt 0 of the RHS. 417 SmallVector<int, 8> ShufOps; 418 for (unsigned i = 0; i != NumElts; ++i) 419 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 420 421 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 422 } 423 } 424 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 425 } 426 427 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 428 if (!ISD::isNormalStore(ST)) 429 return SDValue(); 430 431 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); 432 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 433 // FIXME: We shouldn't do this for TargetConstantFP's. 434 // FIXME: move this to the DAG Combiner! Note that we can't regress due 435 // to phase ordering between legalized code and the dag combiner. This 436 // probably means that we need to integrate dag combiner and legalizer 437 // together. 438 // We generally can't do this one for long doubles. 439 SDValue Chain = ST->getChain(); 440 SDValue Ptr = ST->getBasePtr(); 441 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 442 AAMDNodes AAInfo = ST->getAAInfo(); 443 SDLoc dl(ST); 444 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 445 if (CFP->getValueType(0) == MVT::f32 && 446 TLI.isTypeLegal(MVT::i32)) { 447 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 448 bitcastToAPInt().zextOrTrunc(32), 449 SDLoc(CFP), MVT::i32); 450 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 451 ST->getOriginalAlign(), MMOFlags, AAInfo); 452 } 453 454 if (CFP->getValueType(0) == MVT::f64) { 455 // If this target supports 64-bit registers, do a single 64-bit store. 456 if (TLI.isTypeLegal(MVT::i64)) { 457 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 458 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 459 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 460 ST->getOriginalAlign(), MMOFlags, AAInfo); 461 } 462 463 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 464 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 465 // stores. If the target supports neither 32- nor 64-bits, this 466 // xform is certainly not worth it. 467 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 468 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 469 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 470 if (DAG.getDataLayout().isBigEndian()) 471 std::swap(Lo, Hi); 472 473 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), 474 ST->getOriginalAlign(), MMOFlags, AAInfo); 475 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), dl); 476 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 477 ST->getPointerInfo().getWithOffset(4), 478 ST->getOriginalAlign(), MMOFlags, AAInfo); 479 480 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 481 } 482 } 483 } 484 return SDValue(nullptr, 0); 485 } 486 487 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 488 StoreSDNode *ST = cast<StoreSDNode>(Node); 489 SDValue Chain = ST->getChain(); 490 SDValue Ptr = ST->getBasePtr(); 491 SDLoc dl(Node); 492 493 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 494 AAMDNodes AAInfo = ST->getAAInfo(); 495 496 if (!ST->isTruncatingStore()) { 497 LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); 498 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 499 ReplaceNode(ST, OptStore); 500 return; 501 } 502 503 SDValue Value = ST->getValue(); 504 MVT VT = Value.getSimpleValueType(); 505 switch (TLI.getOperationAction(ISD::STORE, VT)) { 506 default: llvm_unreachable("This action is not supported yet!"); 507 case TargetLowering::Legal: { 508 // If this is an unaligned store and the target doesn't support it, 509 // expand it. 510 EVT MemVT = ST->getMemoryVT(); 511 const DataLayout &DL = DAG.getDataLayout(); 512 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 513 *ST->getMemOperand())) { 514 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 515 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 516 ReplaceNode(SDValue(ST, 0), Result); 517 } else 518 LLVM_DEBUG(dbgs() << "Legal store\n"); 519 break; 520 } 521 case TargetLowering::Custom: { 522 LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); 523 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 524 if (Res && Res != SDValue(Node, 0)) 525 ReplaceNode(SDValue(Node, 0), Res); 526 return; 527 } 528 case TargetLowering::Promote: { 529 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 530 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 531 "Can only promote stores to same size type"); 532 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 533 SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 534 ST->getOriginalAlign(), MMOFlags, AAInfo); 535 ReplaceNode(SDValue(Node, 0), Result); 536 break; 537 } 538 } 539 return; 540 } 541 542 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); 543 SDValue Value = ST->getValue(); 544 EVT StVT = ST->getMemoryVT(); 545 TypeSize StWidth = StVT.getSizeInBits(); 546 TypeSize StSize = StVT.getStoreSizeInBits(); 547 auto &DL = DAG.getDataLayout(); 548 549 if (StWidth != StSize) { 550 // Promote to a byte-sized store with upper bits zero if not 551 // storing an integral number of bytes. For example, promote 552 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 553 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StSize.getFixedSize()); 554 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 555 SDValue Result = 556 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 557 ST->getOriginalAlign(), MMOFlags, AAInfo); 558 ReplaceNode(SDValue(Node, 0), Result); 559 } else if (!StVT.isVector() && !isPowerOf2_64(StWidth.getFixedSize())) { 560 // If not storing a power-of-2 number of bits, expand as two stores. 561 assert(!StVT.isVector() && "Unsupported truncstore!"); 562 unsigned StWidthBits = StWidth.getFixedSize(); 563 unsigned LogStWidth = Log2_32(StWidthBits); 564 assert(LogStWidth < 32); 565 unsigned RoundWidth = 1 << LogStWidth; 566 assert(RoundWidth < StWidthBits); 567 unsigned ExtraWidth = StWidthBits - RoundWidth; 568 assert(ExtraWidth < RoundWidth); 569 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 570 "Store size not an integral number of bytes!"); 571 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 572 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 573 SDValue Lo, Hi; 574 unsigned IncrementSize; 575 576 if (DL.isLittleEndian()) { 577 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 578 // Store the bottom RoundWidth bits. 579 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 580 RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 581 582 // Store the remaining ExtraWidth bits. 583 IncrementSize = RoundWidth / 8; 584 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 585 Hi = DAG.getNode( 586 ISD::SRL, dl, Value.getValueType(), Value, 587 DAG.getConstant(RoundWidth, dl, 588 TLI.getShiftAmountTy(Value.getValueType(), DL))); 589 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, 590 ST->getPointerInfo().getWithOffset(IncrementSize), 591 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 592 } else { 593 // Big endian - avoid unaligned stores. 594 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 595 // Store the top RoundWidth bits. 596 Hi = DAG.getNode( 597 ISD::SRL, dl, Value.getValueType(), Value, 598 DAG.getConstant(ExtraWidth, dl, 599 TLI.getShiftAmountTy(Value.getValueType(), DL))); 600 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT, 601 ST->getOriginalAlign(), MMOFlags, AAInfo); 602 603 // Store the remaining ExtraWidth bits. 604 IncrementSize = RoundWidth / 8; 605 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 606 DAG.getConstant(IncrementSize, dl, 607 Ptr.getValueType())); 608 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, 609 ST->getPointerInfo().getWithOffset(IncrementSize), 610 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 611 } 612 613 // The order of the stores doesn't matter. 614 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 615 ReplaceNode(SDValue(Node, 0), Result); 616 } else { 617 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 618 default: llvm_unreachable("This action is not supported yet!"); 619 case TargetLowering::Legal: { 620 EVT MemVT = ST->getMemoryVT(); 621 // If this is an unaligned store and the target doesn't support it, 622 // expand it. 623 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 624 *ST->getMemOperand())) { 625 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 626 ReplaceNode(SDValue(ST, 0), Result); 627 } 628 break; 629 } 630 case TargetLowering::Custom: { 631 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 632 if (Res && Res != SDValue(Node, 0)) 633 ReplaceNode(SDValue(Node, 0), Res); 634 return; 635 } 636 case TargetLowering::Expand: 637 assert(!StVT.isVector() && 638 "Vector Stores are handled in LegalizeVectorOps"); 639 640 SDValue Result; 641 642 // TRUNCSTORE:i16 i32 -> STORE i16 643 if (TLI.isTypeLegal(StVT)) { 644 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 645 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 646 ST->getOriginalAlign(), MMOFlags, AAInfo); 647 } else { 648 // The in-memory type isn't legal. Truncate to the type it would promote 649 // to, and then do a truncstore. 650 Value = DAG.getNode(ISD::TRUNCATE, dl, 651 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 652 Value); 653 Result = 654 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT, 655 ST->getOriginalAlign(), MMOFlags, AAInfo); 656 } 657 658 ReplaceNode(SDValue(Node, 0), Result); 659 break; 660 } 661 } 662 } 663 664 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 665 LoadSDNode *LD = cast<LoadSDNode>(Node); 666 SDValue Chain = LD->getChain(); // The chain. 667 SDValue Ptr = LD->getBasePtr(); // The base pointer. 668 SDValue Value; // The value returned by the load op. 669 SDLoc dl(Node); 670 671 ISD::LoadExtType ExtType = LD->getExtensionType(); 672 if (ExtType == ISD::NON_EXTLOAD) { 673 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 674 MVT VT = Node->getSimpleValueType(0); 675 SDValue RVal = SDValue(Node, 0); 676 SDValue RChain = SDValue(Node, 1); 677 678 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 679 default: llvm_unreachable("This action is not supported yet!"); 680 case TargetLowering::Legal: { 681 EVT MemVT = LD->getMemoryVT(); 682 const DataLayout &DL = DAG.getDataLayout(); 683 // If this is an unaligned load and the target doesn't support it, 684 // expand it. 685 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 686 *LD->getMemOperand())) { 687 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 688 } 689 break; 690 } 691 case TargetLowering::Custom: 692 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 693 RVal = Res; 694 RChain = Res.getValue(1); 695 } 696 break; 697 698 case TargetLowering::Promote: { 699 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 700 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 701 "Can only promote loads to same size type"); 702 703 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 704 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 705 RChain = Res.getValue(1); 706 break; 707 } 708 } 709 if (RChain.getNode() != Node) { 710 assert(RVal.getNode() != Node && "Load must be completely replaced"); 711 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 712 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 713 if (UpdatedNodes) { 714 UpdatedNodes->insert(RVal.getNode()); 715 UpdatedNodes->insert(RChain.getNode()); 716 } 717 ReplacedNode(Node); 718 } 719 return; 720 } 721 722 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); 723 EVT SrcVT = LD->getMemoryVT(); 724 TypeSize SrcWidth = SrcVT.getSizeInBits(); 725 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 726 AAMDNodes AAInfo = LD->getAAInfo(); 727 728 if (SrcWidth != SrcVT.getStoreSizeInBits() && 729 // Some targets pretend to have an i1 loading operation, and actually 730 // load an i8. This trick is correct for ZEXTLOAD because the top 7 731 // bits are guaranteed to be zero; it helps the optimizers understand 732 // that these bits are zero. It is also useful for EXTLOAD, since it 733 // tells the optimizers that those bits are undefined. It would be 734 // nice to have an effective generic way of getting these benefits... 735 // Until such a way is found, don't insist on promoting i1 here. 736 (SrcVT != MVT::i1 || 737 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 738 TargetLowering::Promote)) { 739 // Promote to a byte-sized load if not loading an integral number of 740 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 741 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 742 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 743 SDValue Ch; 744 745 // The extra bits are guaranteed to be zero, since we stored them that 746 // way. A zext load from NVT thus automatically gives zext from SrcVT. 747 748 ISD::LoadExtType NewExtType = 749 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 750 751 SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 752 Chain, Ptr, LD->getPointerInfo(), NVT, 753 LD->getOriginalAlign(), MMOFlags, AAInfo); 754 755 Ch = Result.getValue(1); // The chain. 756 757 if (ExtType == ISD::SEXTLOAD) 758 // Having the top bits zero doesn't help when sign extending. 759 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 760 Result.getValueType(), 761 Result, DAG.getValueType(SrcVT)); 762 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 763 // All the top bits are guaranteed to be zero - inform the optimizers. 764 Result = DAG.getNode(ISD::AssertZext, dl, 765 Result.getValueType(), Result, 766 DAG.getValueType(SrcVT)); 767 768 Value = Result; 769 Chain = Ch; 770 } else if (!isPowerOf2_64(SrcWidth.getKnownMinSize())) { 771 // If not loading a power-of-2 number of bits, expand as two loads. 772 assert(!SrcVT.isVector() && "Unsupported extload!"); 773 unsigned SrcWidthBits = SrcWidth.getFixedSize(); 774 unsigned LogSrcWidth = Log2_32(SrcWidthBits); 775 assert(LogSrcWidth < 32); 776 unsigned RoundWidth = 1 << LogSrcWidth; 777 assert(RoundWidth < SrcWidthBits); 778 unsigned ExtraWidth = SrcWidthBits - RoundWidth; 779 assert(ExtraWidth < RoundWidth); 780 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 781 "Load size not an integral number of bytes!"); 782 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 783 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 784 SDValue Lo, Hi, Ch; 785 unsigned IncrementSize; 786 auto &DL = DAG.getDataLayout(); 787 788 if (DL.isLittleEndian()) { 789 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 790 // Load the bottom RoundWidth bits. 791 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 792 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 793 MMOFlags, AAInfo); 794 795 // Load the remaining ExtraWidth bits. 796 IncrementSize = RoundWidth / 8; 797 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 798 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 799 LD->getPointerInfo().getWithOffset(IncrementSize), 800 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 801 802 // Build a factor node to remember that this load is independent of 803 // the other one. 804 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 805 Hi.getValue(1)); 806 807 // Move the top bits to the right place. 808 Hi = DAG.getNode( 809 ISD::SHL, dl, Hi.getValueType(), Hi, 810 DAG.getConstant(RoundWidth, dl, 811 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 812 813 // Join the hi and lo parts. 814 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 815 } else { 816 // Big endian - avoid unaligned loads. 817 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 818 // Load the top RoundWidth bits. 819 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 820 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 821 MMOFlags, AAInfo); 822 823 // Load the remaining ExtraWidth bits. 824 IncrementSize = RoundWidth / 8; 825 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 826 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 827 LD->getPointerInfo().getWithOffset(IncrementSize), 828 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 829 830 // Build a factor node to remember that this load is independent of 831 // the other one. 832 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 833 Hi.getValue(1)); 834 835 // Move the top bits to the right place. 836 Hi = DAG.getNode( 837 ISD::SHL, dl, Hi.getValueType(), Hi, 838 DAG.getConstant(ExtraWidth, dl, 839 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 840 841 // Join the hi and lo parts. 842 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 843 } 844 845 Chain = Ch; 846 } else { 847 bool isCustom = false; 848 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 849 SrcVT.getSimpleVT())) { 850 default: llvm_unreachable("This action is not supported yet!"); 851 case TargetLowering::Custom: 852 isCustom = true; 853 LLVM_FALLTHROUGH; 854 case TargetLowering::Legal: 855 Value = SDValue(Node, 0); 856 Chain = SDValue(Node, 1); 857 858 if (isCustom) { 859 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 860 Value = Res; 861 Chain = Res.getValue(1); 862 } 863 } else { 864 // If this is an unaligned load and the target doesn't support it, 865 // expand it. 866 EVT MemVT = LD->getMemoryVT(); 867 const DataLayout &DL = DAG.getDataLayout(); 868 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, 869 *LD->getMemOperand())) { 870 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 871 } 872 } 873 break; 874 875 case TargetLowering::Expand: { 876 EVT DestVT = Node->getValueType(0); 877 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 878 // If the source type is not legal, see if there is a legal extload to 879 // an intermediate type that we can then extend further. 880 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 881 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 882 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 883 // If we are loading a legal type, this is a non-extload followed by a 884 // full extend. 885 ISD::LoadExtType MidExtType = 886 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 887 888 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 889 SrcVT, LD->getMemOperand()); 890 unsigned ExtendOp = 891 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 892 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 893 Chain = Load.getValue(1); 894 break; 895 } 896 897 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 898 // normal undefined upper bits behavior to allow using an in-reg extend 899 // with the illegal FP type, so load as an integer and do the 900 // from-integer conversion. 901 if (SrcVT.getScalarType() == MVT::f16) { 902 EVT ISrcVT = SrcVT.changeTypeToInteger(); 903 EVT IDestVT = DestVT.changeTypeToInteger(); 904 EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 905 906 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain, 907 Ptr, ISrcVT, LD->getMemOperand()); 908 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 909 Chain = Result.getValue(1); 910 break; 911 } 912 } 913 914 assert(!SrcVT.isVector() && 915 "Vector Loads are handled in LegalizeVectorOps"); 916 917 // FIXME: This does not work for vectors on most targets. Sign- 918 // and zero-extend operations are currently folded into extending 919 // loads, whether they are legal or not, and then we end up here 920 // without any support for legalizing them. 921 assert(ExtType != ISD::EXTLOAD && 922 "EXTLOAD should always be supported!"); 923 // Turn the unsupported load into an EXTLOAD followed by an 924 // explicit zero/sign extend inreg. 925 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 926 Node->getValueType(0), 927 Chain, Ptr, SrcVT, 928 LD->getMemOperand()); 929 SDValue ValRes; 930 if (ExtType == ISD::SEXTLOAD) 931 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 932 Result.getValueType(), 933 Result, DAG.getValueType(SrcVT)); 934 else 935 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT); 936 Value = ValRes; 937 Chain = Result.getValue(1); 938 break; 939 } 940 } 941 } 942 943 // Since loads produce two values, make sure to remember that we legalized 944 // both of them. 945 if (Chain.getNode() != Node) { 946 assert(Value.getNode() != Node && "Load must be completely replaced"); 947 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 948 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 949 if (UpdatedNodes) { 950 UpdatedNodes->insert(Value.getNode()); 951 UpdatedNodes->insert(Chain.getNode()); 952 } 953 ReplacedNode(Node); 954 } 955 } 956 957 /// Return a legal replacement for the given operation, with all legal operands. 958 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 959 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 960 961 // Allow illegal target nodes and illegal registers. 962 if (Node->getOpcode() == ISD::TargetConstant || 963 Node->getOpcode() == ISD::Register) 964 return; 965 966 #ifndef NDEBUG 967 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 968 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 969 TargetLowering::TypeLegal && 970 "Unexpected illegal type!"); 971 972 for (const SDValue &Op : Node->op_values()) 973 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 974 TargetLowering::TypeLegal || 975 Op.getOpcode() == ISD::TargetConstant || 976 Op.getOpcode() == ISD::Register) && 977 "Unexpected illegal type!"); 978 #endif 979 980 // Figure out the correct action; the way to query this varies by opcode 981 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 982 bool SimpleFinishLegalizing = true; 983 switch (Node->getOpcode()) { 984 case ISD::INTRINSIC_W_CHAIN: 985 case ISD::INTRINSIC_WO_CHAIN: 986 case ISD::INTRINSIC_VOID: 987 case ISD::STACKSAVE: 988 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 989 break; 990 case ISD::GET_DYNAMIC_AREA_OFFSET: 991 Action = TLI.getOperationAction(Node->getOpcode(), 992 Node->getValueType(0)); 993 break; 994 case ISD::VAARG: 995 Action = TLI.getOperationAction(Node->getOpcode(), 996 Node->getValueType(0)); 997 if (Action != TargetLowering::Promote) 998 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 999 break; 1000 case ISD::FP_TO_FP16: 1001 case ISD::SINT_TO_FP: 1002 case ISD::UINT_TO_FP: 1003 case ISD::EXTRACT_VECTOR_ELT: 1004 case ISD::LROUND: 1005 case ISD::LLROUND: 1006 case ISD::LRINT: 1007 case ISD::LLRINT: 1008 Action = TLI.getOperationAction(Node->getOpcode(), 1009 Node->getOperand(0).getValueType()); 1010 break; 1011 case ISD::STRICT_FP_TO_FP16: 1012 case ISD::STRICT_SINT_TO_FP: 1013 case ISD::STRICT_UINT_TO_FP: 1014 case ISD::STRICT_LRINT: 1015 case ISD::STRICT_LLRINT: 1016 case ISD::STRICT_LROUND: 1017 case ISD::STRICT_LLROUND: 1018 // These pseudo-ops are the same as the other STRICT_ ops except 1019 // they are registered with setOperationAction() using the input type 1020 // instead of the output type. 1021 Action = TLI.getOperationAction(Node->getOpcode(), 1022 Node->getOperand(1).getValueType()); 1023 break; 1024 case ISD::SIGN_EXTEND_INREG: { 1025 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1026 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1027 break; 1028 } 1029 case ISD::ATOMIC_STORE: 1030 Action = TLI.getOperationAction(Node->getOpcode(), 1031 Node->getOperand(2).getValueType()); 1032 break; 1033 case ISD::SELECT_CC: 1034 case ISD::STRICT_FSETCC: 1035 case ISD::STRICT_FSETCCS: 1036 case ISD::SETCC: 1037 case ISD::BR_CC: { 1038 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 1039 Node->getOpcode() == ISD::STRICT_FSETCC ? 3 : 1040 Node->getOpcode() == ISD::STRICT_FSETCCS ? 3 : 1041 Node->getOpcode() == ISD::SETCC ? 2 : 1; 1042 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 1043 Node->getOpcode() == ISD::STRICT_FSETCC ? 1 : 1044 Node->getOpcode() == ISD::STRICT_FSETCCS ? 1 : 0; 1045 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1046 ISD::CondCode CCCode = 1047 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1048 Action = TLI.getCondCodeAction(CCCode, OpVT); 1049 if (Action == TargetLowering::Legal) { 1050 if (Node->getOpcode() == ISD::SELECT_CC) 1051 Action = TLI.getOperationAction(Node->getOpcode(), 1052 Node->getValueType(0)); 1053 else 1054 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1055 } 1056 break; 1057 } 1058 case ISD::LOAD: 1059 case ISD::STORE: 1060 // FIXME: Model these properly. LOAD and STORE are complicated, and 1061 // STORE expects the unlegalized operand in some cases. 1062 SimpleFinishLegalizing = false; 1063 break; 1064 case ISD::CALLSEQ_START: 1065 case ISD::CALLSEQ_END: 1066 // FIXME: This shouldn't be necessary. These nodes have special properties 1067 // dealing with the recursive nature of legalization. Removing this 1068 // special case should be done as part of making LegalizeDAG non-recursive. 1069 SimpleFinishLegalizing = false; 1070 break; 1071 case ISD::EXTRACT_ELEMENT: 1072 case ISD::FLT_ROUNDS_: 1073 case ISD::MERGE_VALUES: 1074 case ISD::EH_RETURN: 1075 case ISD::FRAME_TO_ARGS_OFFSET: 1076 case ISD::EH_DWARF_CFA: 1077 case ISD::EH_SJLJ_SETJMP: 1078 case ISD::EH_SJLJ_LONGJMP: 1079 case ISD::EH_SJLJ_SETUP_DISPATCH: 1080 // These operations lie about being legal: when they claim to be legal, 1081 // they should actually be expanded. 1082 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1083 if (Action == TargetLowering::Legal) 1084 Action = TargetLowering::Expand; 1085 break; 1086 case ISD::INIT_TRAMPOLINE: 1087 case ISD::ADJUST_TRAMPOLINE: 1088 case ISD::FRAMEADDR: 1089 case ISD::RETURNADDR: 1090 case ISD::ADDROFRETURNADDR: 1091 case ISD::SPONENTRY: 1092 // These operations lie about being legal: when they claim to be legal, 1093 // they should actually be custom-lowered. 1094 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1095 if (Action == TargetLowering::Legal) 1096 Action = TargetLowering::Custom; 1097 break; 1098 case ISD::READCYCLECOUNTER: 1099 // READCYCLECOUNTER returns an i64, even if type legalization might have 1100 // expanded that to several smaller types. 1101 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1102 break; 1103 case ISD::READ_REGISTER: 1104 case ISD::WRITE_REGISTER: 1105 // Named register is legal in the DAG, but blocked by register name 1106 // selection if not implemented by target (to chose the correct register) 1107 // They'll be converted to Copy(To/From)Reg. 1108 Action = TargetLowering::Legal; 1109 break; 1110 case ISD::DEBUGTRAP: 1111 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1112 if (Action == TargetLowering::Expand) { 1113 // replace ISD::DEBUGTRAP with ISD::TRAP 1114 SDValue NewVal; 1115 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1116 Node->getOperand(0)); 1117 ReplaceNode(Node, NewVal.getNode()); 1118 LegalizeOp(NewVal.getNode()); 1119 return; 1120 } 1121 break; 1122 case ISD::SADDSAT: 1123 case ISD::UADDSAT: 1124 case ISD::SSUBSAT: 1125 case ISD::USUBSAT: 1126 case ISD::SSHLSAT: 1127 case ISD::USHLSAT: { 1128 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1129 break; 1130 } 1131 case ISD::SMULFIX: 1132 case ISD::SMULFIXSAT: 1133 case ISD::UMULFIX: 1134 case ISD::UMULFIXSAT: 1135 case ISD::SDIVFIX: 1136 case ISD::SDIVFIXSAT: 1137 case ISD::UDIVFIX: 1138 case ISD::UDIVFIXSAT: { 1139 unsigned Scale = Node->getConstantOperandVal(2); 1140 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 1141 Node->getValueType(0), Scale); 1142 break; 1143 } 1144 case ISD::MSCATTER: 1145 Action = TLI.getOperationAction(Node->getOpcode(), 1146 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 1147 break; 1148 case ISD::MSTORE: 1149 Action = TLI.getOperationAction(Node->getOpcode(), 1150 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 1151 break; 1152 case ISD::VECREDUCE_FADD: 1153 case ISD::VECREDUCE_FMUL: 1154 case ISD::VECREDUCE_ADD: 1155 case ISD::VECREDUCE_MUL: 1156 case ISD::VECREDUCE_AND: 1157 case ISD::VECREDUCE_OR: 1158 case ISD::VECREDUCE_XOR: 1159 case ISD::VECREDUCE_SMAX: 1160 case ISD::VECREDUCE_SMIN: 1161 case ISD::VECREDUCE_UMAX: 1162 case ISD::VECREDUCE_UMIN: 1163 case ISD::VECREDUCE_FMAX: 1164 case ISD::VECREDUCE_FMIN: 1165 Action = TLI.getOperationAction( 1166 Node->getOpcode(), Node->getOperand(0).getValueType()); 1167 break; 1168 default: 1169 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1170 Action = TargetLowering::Legal; 1171 } else { 1172 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1173 } 1174 break; 1175 } 1176 1177 if (SimpleFinishLegalizing) { 1178 SDNode *NewNode = Node; 1179 switch (Node->getOpcode()) { 1180 default: break; 1181 case ISD::SHL: 1182 case ISD::SRL: 1183 case ISD::SRA: 1184 case ISD::ROTL: 1185 case ISD::ROTR: { 1186 // Legalizing shifts/rotates requires adjusting the shift amount 1187 // to the appropriate width. 1188 SDValue Op0 = Node->getOperand(0); 1189 SDValue Op1 = Node->getOperand(1); 1190 if (!Op1.getValueType().isVector()) { 1191 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1192 // The getShiftAmountOperand() may create a new operand node or 1193 // return the existing one. If new operand is created we need 1194 // to update the parent node. 1195 // Do not try to legalize SAO here! It will be automatically legalized 1196 // in the next round. 1197 if (SAO != Op1) 1198 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1199 } 1200 } 1201 break; 1202 case ISD::FSHL: 1203 case ISD::FSHR: 1204 case ISD::SRL_PARTS: 1205 case ISD::SRA_PARTS: 1206 case ISD::SHL_PARTS: { 1207 // Legalizing shifts/rotates requires adjusting the shift amount 1208 // to the appropriate width. 1209 SDValue Op0 = Node->getOperand(0); 1210 SDValue Op1 = Node->getOperand(1); 1211 SDValue Op2 = Node->getOperand(2); 1212 if (!Op2.getValueType().isVector()) { 1213 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1214 // The getShiftAmountOperand() may create a new operand node or 1215 // return the existing one. If new operand is created we need 1216 // to update the parent node. 1217 if (SAO != Op2) 1218 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1219 } 1220 break; 1221 } 1222 } 1223 1224 if (NewNode != Node) { 1225 ReplaceNode(Node, NewNode); 1226 Node = NewNode; 1227 } 1228 switch (Action) { 1229 case TargetLowering::Legal: 1230 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 1231 return; 1232 case TargetLowering::Custom: 1233 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 1234 // FIXME: The handling for custom lowering with multiple results is 1235 // a complete mess. 1236 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1237 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1238 return; 1239 1240 if (Node->getNumValues() == 1) { 1241 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1242 // We can just directly replace this node with the lowered value. 1243 ReplaceNode(SDValue(Node, 0), Res); 1244 return; 1245 } 1246 1247 SmallVector<SDValue, 8> ResultVals; 1248 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1249 ResultVals.push_back(Res.getValue(i)); 1250 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1251 ReplaceNode(Node, ResultVals.data()); 1252 return; 1253 } 1254 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 1255 LLVM_FALLTHROUGH; 1256 case TargetLowering::Expand: 1257 if (ExpandNode(Node)) 1258 return; 1259 LLVM_FALLTHROUGH; 1260 case TargetLowering::LibCall: 1261 ConvertNodeToLibcall(Node); 1262 return; 1263 case TargetLowering::Promote: 1264 PromoteNode(Node); 1265 return; 1266 } 1267 } 1268 1269 switch (Node->getOpcode()) { 1270 default: 1271 #ifndef NDEBUG 1272 dbgs() << "NODE: "; 1273 Node->dump( &DAG); 1274 dbgs() << "\n"; 1275 #endif 1276 llvm_unreachable("Do not know how to legalize this operator!"); 1277 1278 case ISD::CALLSEQ_START: 1279 case ISD::CALLSEQ_END: 1280 break; 1281 case ISD::LOAD: 1282 return LegalizeLoadOps(Node); 1283 case ISD::STORE: 1284 return LegalizeStoreOps(Node); 1285 } 1286 } 1287 1288 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1289 SDValue Vec = Op.getOperand(0); 1290 SDValue Idx = Op.getOperand(1); 1291 SDLoc dl(Op); 1292 1293 // Before we generate a new store to a temporary stack slot, see if there is 1294 // already one that we can use. There often is because when we scalarize 1295 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1296 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1297 // the vector. If all are expanded here, we don't want one store per vector 1298 // element. 1299 1300 // Caches for hasPredecessorHelper 1301 SmallPtrSet<const SDNode *, 32> Visited; 1302 SmallVector<const SDNode *, 16> Worklist; 1303 Visited.insert(Op.getNode()); 1304 Worklist.push_back(Idx.getNode()); 1305 SDValue StackPtr, Ch; 1306 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), 1307 UE = Vec.getNode()->use_end(); UI != UE; ++UI) { 1308 SDNode *User = *UI; 1309 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1310 if (ST->isIndexed() || ST->isTruncatingStore() || 1311 ST->getValue() != Vec) 1312 continue; 1313 1314 // Make sure that nothing else could have stored into the destination of 1315 // this store. 1316 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1317 continue; 1318 1319 // If the index is dependent on the store we will introduce a cycle when 1320 // creating the load (the load uses the index, and by replacing the chain 1321 // we will make the index dependent on the load). Also, the store might be 1322 // dependent on the extractelement and introduce a cycle when creating 1323 // the load. 1324 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1325 ST->hasPredecessor(Op.getNode())) 1326 continue; 1327 1328 StackPtr = ST->getBasePtr(); 1329 Ch = SDValue(ST, 0); 1330 break; 1331 } 1332 } 1333 1334 EVT VecVT = Vec.getValueType(); 1335 1336 if (!Ch.getNode()) { 1337 // Store the value to a temporary stack slot, then LOAD the returned part. 1338 StackPtr = DAG.CreateStackTemporary(VecVT); 1339 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1340 MachinePointerInfo()); 1341 } 1342 1343 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1344 1345 SDValue NewLoad; 1346 1347 if (Op.getValueType().isVector()) 1348 NewLoad = 1349 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); 1350 else 1351 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1352 MachinePointerInfo(), 1353 VecVT.getVectorElementType()); 1354 1355 // Replace the chain going out of the store, by the one out of the load. 1356 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1357 1358 // We introduced a cycle though, so update the loads operands, making sure 1359 // to use the original store's chain as an incoming chain. 1360 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1361 NewLoad->op_end()); 1362 NewLoadOperands[0] = Ch; 1363 NewLoad = 1364 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1365 return NewLoad; 1366 } 1367 1368 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1369 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1370 1371 SDValue Vec = Op.getOperand(0); 1372 SDValue Part = Op.getOperand(1); 1373 SDValue Idx = Op.getOperand(2); 1374 SDLoc dl(Op); 1375 1376 // Store the value to a temporary stack slot, then LOAD the returned part. 1377 EVT VecVT = Vec.getValueType(); 1378 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1379 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1380 MachinePointerInfo PtrInfo = 1381 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1382 1383 // First store the whole vector. 1384 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1385 1386 // Then store the inserted part. 1387 SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1388 1389 // Store the subvector. 1390 Ch = DAG.getStore( 1391 Ch, dl, Part, SubStackPtr, 1392 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1393 1394 // Finally, load the updated vector. 1395 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1396 } 1397 1398 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1399 assert((Node->getOpcode() == ISD::BUILD_VECTOR || 1400 Node->getOpcode() == ISD::CONCAT_VECTORS) && 1401 "Unexpected opcode!"); 1402 1403 // We can't handle this case efficiently. Allocate a sufficiently 1404 // aligned object on the stack, store each operand into it, then load 1405 // the result as a vector. 1406 // Create the stack frame object. 1407 EVT VT = Node->getValueType(0); 1408 EVT MemVT = isa<BuildVectorSDNode>(Node) ? VT.getVectorElementType() 1409 : Node->getOperand(0).getValueType(); 1410 SDLoc dl(Node); 1411 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1412 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1413 MachinePointerInfo PtrInfo = 1414 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1415 1416 // Emit a store of each element to the stack slot. 1417 SmallVector<SDValue, 8> Stores; 1418 unsigned TypeByteSize = MemVT.getSizeInBits() / 8; 1419 assert(TypeByteSize > 0 && "Vector element type too small for stack store!"); 1420 1421 // If the destination vector element type of a BUILD_VECTOR is narrower than 1422 // the source element type, only store the bits necessary. 1423 bool Truncate = isa<BuildVectorSDNode>(Node) && 1424 MemVT.bitsLT(Node->getOperand(0).getValueType()); 1425 1426 // Store (in the right endianness) the elements to memory. 1427 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1428 // Ignore undef elements. 1429 if (Node->getOperand(i).isUndef()) continue; 1430 1431 unsigned Offset = TypeByteSize*i; 1432 1433 SDValue Idx = DAG.getMemBasePlusOffset(FIPtr, TypeSize::Fixed(Offset), dl); 1434 1435 if (Truncate) 1436 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1437 Node->getOperand(i), Idx, 1438 PtrInfo.getWithOffset(Offset), MemVT)); 1439 else 1440 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1441 Idx, PtrInfo.getWithOffset(Offset))); 1442 } 1443 1444 SDValue StoreChain; 1445 if (!Stores.empty()) // Not all undef elements? 1446 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1447 else 1448 StoreChain = DAG.getEntryNode(); 1449 1450 // Result is a load from the stack slot. 1451 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1452 } 1453 1454 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1455 /// containing the sign bit if the target has no integer value capable of 1456 /// holding all bits of the floating-point value. 1457 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1458 const SDLoc &DL, 1459 SDValue Value) const { 1460 EVT FloatVT = Value.getValueType(); 1461 unsigned NumBits = FloatVT.getScalarSizeInBits(); 1462 State.FloatVT = FloatVT; 1463 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1464 // Convert to an integer of the same size. 1465 if (TLI.isTypeLegal(IVT)) { 1466 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1467 State.SignMask = APInt::getSignMask(NumBits); 1468 State.SignBit = NumBits - 1; 1469 return; 1470 } 1471 1472 auto &DataLayout = DAG.getDataLayout(); 1473 // Store the float to memory, then load the sign part out as an integer. 1474 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1475 // First create a temporary that is aligned for both the load and store. 1476 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1477 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1478 // Then store the float to it. 1479 State.FloatPtr = StackPtr; 1480 MachineFunction &MF = DAG.getMachineFunction(); 1481 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1482 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1483 State.FloatPointerInfo); 1484 1485 SDValue IntPtr; 1486 if (DataLayout.isBigEndian()) { 1487 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1488 // Load out a legal integer with the same sign bit as the float. 1489 IntPtr = StackPtr; 1490 State.IntPointerInfo = State.FloatPointerInfo; 1491 } else { 1492 // Advance the pointer so that the loaded byte will contain the sign bit. 1493 unsigned ByteOffset = (NumBits / 8) - 1; 1494 IntPtr = 1495 DAG.getMemBasePlusOffset(StackPtr, TypeSize::Fixed(ByteOffset), DL); 1496 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1497 ByteOffset); 1498 } 1499 1500 State.IntPtr = IntPtr; 1501 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1502 State.IntPointerInfo, MVT::i8); 1503 State.SignMask = APInt::getOneBitSet(LoadTy.getScalarSizeInBits(), 7); 1504 State.SignBit = 7; 1505 } 1506 1507 /// Replace the integer value produced by getSignAsIntValue() with a new value 1508 /// and cast the result back to a floating-point type. 1509 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1510 const SDLoc &DL, 1511 SDValue NewIntValue) const { 1512 if (!State.Chain) 1513 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1514 1515 // Override the part containing the sign bit in the value stored on the stack. 1516 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1517 State.IntPointerInfo, MVT::i8); 1518 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1519 State.FloatPointerInfo); 1520 } 1521 1522 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1523 SDLoc DL(Node); 1524 SDValue Mag = Node->getOperand(0); 1525 SDValue Sign = Node->getOperand(1); 1526 1527 // Get sign bit into an integer value. 1528 FloatSignAsInt SignAsInt; 1529 getSignAsIntValue(SignAsInt, DL, Sign); 1530 1531 EVT IntVT = SignAsInt.IntValue.getValueType(); 1532 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1533 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1534 SignMask); 1535 1536 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1537 EVT FloatVT = Mag.getValueType(); 1538 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1539 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1540 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1541 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1542 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1543 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1544 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1545 } 1546 1547 // Transform Mag value to integer, and clear the sign bit. 1548 FloatSignAsInt MagAsInt; 1549 getSignAsIntValue(MagAsInt, DL, Mag); 1550 EVT MagVT = MagAsInt.IntValue.getValueType(); 1551 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1552 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1553 ClearSignMask); 1554 1555 // Get the signbit at the right position for MagAsInt. 1556 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1557 EVT ShiftVT = IntVT; 1558 if (SignBit.getScalarValueSizeInBits() < 1559 ClearedSign.getScalarValueSizeInBits()) { 1560 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1561 ShiftVT = MagVT; 1562 } 1563 if (ShiftAmount > 0) { 1564 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); 1565 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); 1566 } else if (ShiftAmount < 0) { 1567 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); 1568 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); 1569 } 1570 if (SignBit.getScalarValueSizeInBits() > 1571 ClearedSign.getScalarValueSizeInBits()) { 1572 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1573 } 1574 1575 // Store the part with the modified sign and convert back to float. 1576 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1577 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1578 } 1579 1580 SDValue SelectionDAGLegalize::ExpandFNEG(SDNode *Node) const { 1581 // Get the sign bit as an integer. 1582 SDLoc DL(Node); 1583 FloatSignAsInt SignAsInt; 1584 getSignAsIntValue(SignAsInt, DL, Node->getOperand(0)); 1585 EVT IntVT = SignAsInt.IntValue.getValueType(); 1586 1587 // Flip the sign. 1588 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1589 SDValue SignFlip = 1590 DAG.getNode(ISD::XOR, DL, IntVT, SignAsInt.IntValue, SignMask); 1591 1592 // Convert back to float. 1593 return modifySignAsInt(SignAsInt, DL, SignFlip); 1594 } 1595 1596 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1597 SDLoc DL(Node); 1598 SDValue Value = Node->getOperand(0); 1599 1600 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1601 EVT FloatVT = Value.getValueType(); 1602 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1603 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1604 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1605 } 1606 1607 // Transform value to integer, clear the sign bit and transform back. 1608 FloatSignAsInt ValueAsInt; 1609 getSignAsIntValue(ValueAsInt, DL, Value); 1610 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1611 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1612 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1613 ClearSignMask); 1614 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1615 } 1616 1617 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1618 SmallVectorImpl<SDValue> &Results) { 1619 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1620 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1621 " not tell us which reg is the stack pointer!"); 1622 SDLoc dl(Node); 1623 EVT VT = Node->getValueType(0); 1624 SDValue Tmp1 = SDValue(Node, 0); 1625 SDValue Tmp2 = SDValue(Node, 1); 1626 SDValue Tmp3 = Node->getOperand(2); 1627 SDValue Chain = Tmp1.getOperand(0); 1628 1629 // Chain the dynamic stack allocation so that it doesn't modify the stack 1630 // pointer when other instructions are using the stack. 1631 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1632 1633 SDValue Size = Tmp2.getOperand(1); 1634 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1635 Chain = SP.getValue(1); 1636 Align Alignment = cast<ConstantSDNode>(Tmp3)->getAlignValue(); 1637 const TargetFrameLowering *TFL = DAG.getSubtarget().getFrameLowering(); 1638 unsigned Opc = 1639 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 1640 ISD::ADD : ISD::SUB; 1641 1642 Align StackAlign = TFL->getStackAlign(); 1643 Tmp1 = DAG.getNode(Opc, dl, VT, SP, Size); // Value 1644 if (Alignment > StackAlign) 1645 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1646 DAG.getConstant(-Alignment.value(), dl, VT)); 1647 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1648 1649 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1650 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1651 1652 Results.push_back(Tmp1); 1653 Results.push_back(Tmp2); 1654 } 1655 1656 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current 1657 /// target. 1658 /// 1659 /// If the SETCC has been legalized using AND / OR, then the legalized node 1660 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert 1661 /// will be set to false. 1662 /// 1663 /// If the SETCC has been legalized by using getSetCCSwappedOperands(), 1664 /// then the values of LHS and RHS will be swapped, CC will be set to the 1665 /// new condition, and NeedInvert will be set to false. 1666 /// 1667 /// If the SETCC has been legalized using the inverse condcode, then LHS and 1668 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert 1669 /// will be set to true. The caller must invert the result of the SETCC with 1670 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect 1671 /// of a true/false result. 1672 /// 1673 /// \returns true if the SetCC has been legalized, false if it hasn't. 1674 bool SelectionDAGLegalize::LegalizeSetCCCondCode( 1675 EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, bool &NeedInvert, 1676 const SDLoc &dl, SDValue &Chain, bool IsSignaling) { 1677 MVT OpVT = LHS.getSimpleValueType(); 1678 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1679 NeedInvert = false; 1680 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1681 default: llvm_unreachable("Unknown condition code action!"); 1682 case TargetLowering::Legal: 1683 // Nothing to do. 1684 break; 1685 case TargetLowering::Expand: { 1686 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 1687 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1688 std::swap(LHS, RHS); 1689 CC = DAG.getCondCode(InvCC); 1690 return true; 1691 } 1692 // Swapping operands didn't work. Try inverting the condition. 1693 bool NeedSwap = false; 1694 InvCC = getSetCCInverse(CCCode, OpVT); 1695 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1696 // If inverting the condition is not enough, try swapping operands 1697 // on top of it. 1698 InvCC = ISD::getSetCCSwappedOperands(InvCC); 1699 NeedSwap = true; 1700 } 1701 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1702 CC = DAG.getCondCode(InvCC); 1703 NeedInvert = true; 1704 if (NeedSwap) 1705 std::swap(LHS, RHS); 1706 return true; 1707 } 1708 1709 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1710 unsigned Opc = 0; 1711 switch (CCCode) { 1712 default: llvm_unreachable("Don't know how to expand this condition!"); 1713 case ISD::SETO: 1714 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) 1715 && "If SETO is expanded, SETOEQ must be legal!"); 1716 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; 1717 case ISD::SETUO: 1718 assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT) 1719 && "If SETUO is expanded, SETUNE must be legal!"); 1720 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break; 1721 case ISD::SETOEQ: 1722 case ISD::SETOGT: 1723 case ISD::SETOGE: 1724 case ISD::SETOLT: 1725 case ISD::SETOLE: 1726 case ISD::SETONE: 1727 case ISD::SETUEQ: 1728 case ISD::SETUNE: 1729 case ISD::SETUGT: 1730 case ISD::SETUGE: 1731 case ISD::SETULT: 1732 case ISD::SETULE: 1733 // If we are floating point, assign and break, otherwise fall through. 1734 if (!OpVT.isInteger()) { 1735 // We can use the 4th bit to tell if we are the unordered 1736 // or ordered version of the opcode. 1737 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 1738 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 1739 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 1740 break; 1741 } 1742 // Fallthrough if we are unsigned integer. 1743 LLVM_FALLTHROUGH; 1744 case ISD::SETLE: 1745 case ISD::SETGT: 1746 case ISD::SETGE: 1747 case ISD::SETLT: 1748 case ISD::SETNE: 1749 case ISD::SETEQ: 1750 // If all combinations of inverting the condition and swapping operands 1751 // didn't work then we have no means to expand the condition. 1752 llvm_unreachable("Don't know how to expand this condition!"); 1753 } 1754 1755 SDValue SetCC1, SetCC2; 1756 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 1757 // If we aren't the ordered or unorder operation, 1758 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 1759 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, 1760 IsSignaling); 1761 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, 1762 IsSignaling); 1763 } else { 1764 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 1765 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, 1766 IsSignaling); 1767 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, 1768 IsSignaling); 1769 } 1770 if (Chain) 1771 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 1772 SetCC2.getValue(1)); 1773 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1774 RHS = SDValue(); 1775 CC = SDValue(); 1776 return true; 1777 } 1778 } 1779 return false; 1780 } 1781 1782 /// Emit a store/load combination to the stack. This stores 1783 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1784 /// a load from the stack slot to DestVT, extending it if needed. 1785 /// The resultant code need not be legal. 1786 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1787 EVT DestVT, const SDLoc &dl) { 1788 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode()); 1789 } 1790 1791 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1792 EVT DestVT, const SDLoc &dl, 1793 SDValue Chain) { 1794 // Create the stack frame object. 1795 Align SrcAlign = DAG.getDataLayout().getPrefTypeAlign( 1796 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1797 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT.getStoreSize(), SrcAlign); 1798 1799 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1800 int SPFI = StackPtrFI->getIndex(); 1801 MachinePointerInfo PtrInfo = 1802 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1803 1804 unsigned SrcSize = SrcOp.getValueSizeInBits(); 1805 unsigned SlotSize = SlotVT.getSizeInBits(); 1806 unsigned DestSize = DestVT.getSizeInBits(); 1807 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1808 Align DestAlign = DAG.getDataLayout().getPrefTypeAlign(DestType); 1809 1810 // Emit a store to the stack slot. Use a truncstore if the input value is 1811 // later than DestVT. 1812 SDValue Store; 1813 1814 if (SrcSize > SlotSize) 1815 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo, 1816 SlotVT, SrcAlign); 1817 else { 1818 assert(SrcSize == SlotSize && "Invalid store"); 1819 Store = 1820 DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1821 } 1822 1823 // Result is a load from the stack slot. 1824 if (SlotSize == DestSize) 1825 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1826 1827 assert(SlotSize < DestSize && "Unknown extension!"); 1828 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1829 DestAlign); 1830 } 1831 1832 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1833 SDLoc dl(Node); 1834 // Create a vector sized/aligned stack slot, store the value to element #0, 1835 // then load the whole vector back out. 1836 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1837 1838 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1839 int SPFI = StackPtrFI->getIndex(); 1840 1841 SDValue Ch = DAG.getTruncStore( 1842 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1843 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1844 Node->getValueType(0).getVectorElementType()); 1845 return DAG.getLoad( 1846 Node->getValueType(0), dl, Ch, StackPtr, 1847 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1848 } 1849 1850 static bool 1851 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1852 const TargetLowering &TLI, SDValue &Res) { 1853 unsigned NumElems = Node->getNumOperands(); 1854 SDLoc dl(Node); 1855 EVT VT = Node->getValueType(0); 1856 1857 // Try to group the scalars into pairs, shuffle the pairs together, then 1858 // shuffle the pairs of pairs together, etc. until the vector has 1859 // been built. This will work only if all of the necessary shuffle masks 1860 // are legal. 1861 1862 // We do this in two phases; first to check the legality of the shuffles, 1863 // and next, assuming that all shuffles are legal, to create the new nodes. 1864 for (int Phase = 0; Phase < 2; ++Phase) { 1865 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1866 NewIntermedVals; 1867 for (unsigned i = 0; i < NumElems; ++i) { 1868 SDValue V = Node->getOperand(i); 1869 if (V.isUndef()) 1870 continue; 1871 1872 SDValue Vec; 1873 if (Phase) 1874 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1875 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1876 } 1877 1878 while (IntermedVals.size() > 2) { 1879 NewIntermedVals.clear(); 1880 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1881 // This vector and the next vector are shuffled together (simply to 1882 // append the one to the other). 1883 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1884 1885 SmallVector<int, 16> FinalIndices; 1886 FinalIndices.reserve(IntermedVals[i].second.size() + 1887 IntermedVals[i+1].second.size()); 1888 1889 int k = 0; 1890 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1891 ++j, ++k) { 1892 ShuffleVec[k] = j; 1893 FinalIndices.push_back(IntermedVals[i].second[j]); 1894 } 1895 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1896 ++j, ++k) { 1897 ShuffleVec[k] = NumElems + j; 1898 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1899 } 1900 1901 SDValue Shuffle; 1902 if (Phase) 1903 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1904 IntermedVals[i+1].first, 1905 ShuffleVec); 1906 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1907 return false; 1908 NewIntermedVals.push_back( 1909 std::make_pair(Shuffle, std::move(FinalIndices))); 1910 } 1911 1912 // If we had an odd number of defined values, then append the last 1913 // element to the array of new vectors. 1914 if ((IntermedVals.size() & 1) != 0) 1915 NewIntermedVals.push_back(IntermedVals.back()); 1916 1917 IntermedVals.swap(NewIntermedVals); 1918 } 1919 1920 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1921 "Invalid number of intermediate vectors"); 1922 SDValue Vec1 = IntermedVals[0].first; 1923 SDValue Vec2; 1924 if (IntermedVals.size() > 1) 1925 Vec2 = IntermedVals[1].first; 1926 else if (Phase) 1927 Vec2 = DAG.getUNDEF(VT); 1928 1929 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1930 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1931 ShuffleVec[IntermedVals[0].second[i]] = i; 1932 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1933 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1934 1935 if (Phase) 1936 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1937 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1938 return false; 1939 } 1940 1941 return true; 1942 } 1943 1944 /// Expand a BUILD_VECTOR node on targets that don't 1945 /// support the operation, but do support the resultant vector type. 1946 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1947 unsigned NumElems = Node->getNumOperands(); 1948 SDValue Value1, Value2; 1949 SDLoc dl(Node); 1950 EVT VT = Node->getValueType(0); 1951 EVT OpVT = Node->getOperand(0).getValueType(); 1952 EVT EltVT = VT.getVectorElementType(); 1953 1954 // If the only non-undef value is the low element, turn this into a 1955 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1956 bool isOnlyLowElement = true; 1957 bool MoreThanTwoValues = false; 1958 bool isConstant = true; 1959 for (unsigned i = 0; i < NumElems; ++i) { 1960 SDValue V = Node->getOperand(i); 1961 if (V.isUndef()) 1962 continue; 1963 if (i > 0) 1964 isOnlyLowElement = false; 1965 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1966 isConstant = false; 1967 1968 if (!Value1.getNode()) { 1969 Value1 = V; 1970 } else if (!Value2.getNode()) { 1971 if (V != Value1) 1972 Value2 = V; 1973 } else if (V != Value1 && V != Value2) { 1974 MoreThanTwoValues = true; 1975 } 1976 } 1977 1978 if (!Value1.getNode()) 1979 return DAG.getUNDEF(VT); 1980 1981 if (isOnlyLowElement) 1982 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1983 1984 // If all elements are constants, create a load from the constant pool. 1985 if (isConstant) { 1986 SmallVector<Constant*, 16> CV; 1987 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1988 if (ConstantFPSDNode *V = 1989 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1990 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1991 } else if (ConstantSDNode *V = 1992 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1993 if (OpVT==EltVT) 1994 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1995 else { 1996 // If OpVT and EltVT don't match, EltVT is not legal and the 1997 // element values have been promoted/truncated earlier. Undo this; 1998 // we don't want a v16i8 to become a v16i32 for example. 1999 const ConstantInt *CI = V->getConstantIntValue(); 2000 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 2001 CI->getZExtValue())); 2002 } 2003 } else { 2004 assert(Node->getOperand(i).isUndef()); 2005 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 2006 CV.push_back(UndefValue::get(OpNTy)); 2007 } 2008 } 2009 Constant *CP = ConstantVector::get(CV); 2010 SDValue CPIdx = 2011 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 2012 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 2013 return DAG.getLoad( 2014 VT, dl, DAG.getEntryNode(), CPIdx, 2015 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2016 Alignment); 2017 } 2018 2019 SmallSet<SDValue, 16> DefinedValues; 2020 for (unsigned i = 0; i < NumElems; ++i) { 2021 if (Node->getOperand(i).isUndef()) 2022 continue; 2023 DefinedValues.insert(Node->getOperand(i)); 2024 } 2025 2026 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 2027 if (!MoreThanTwoValues) { 2028 SmallVector<int, 8> ShuffleVec(NumElems, -1); 2029 for (unsigned i = 0; i < NumElems; ++i) { 2030 SDValue V = Node->getOperand(i); 2031 if (V.isUndef()) 2032 continue; 2033 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 2034 } 2035 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 2036 // Get the splatted value into the low element of a vector register. 2037 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 2038 SDValue Vec2; 2039 if (Value2.getNode()) 2040 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 2041 else 2042 Vec2 = DAG.getUNDEF(VT); 2043 2044 // Return shuffle(LowValVec, undef, <0,0,0,0>) 2045 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 2046 } 2047 } else { 2048 SDValue Res; 2049 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 2050 return Res; 2051 } 2052 } 2053 2054 // Otherwise, we can't handle this case efficiently. 2055 return ExpandVectorBuildThroughStack(Node); 2056 } 2057 2058 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) { 2059 SDLoc DL(Node); 2060 EVT VT = Node->getValueType(0); 2061 SDValue SplatVal = Node->getOperand(0); 2062 2063 return DAG.getSplatBuildVector(VT, DL, SplatVal); 2064 } 2065 2066 // Expand a node into a call to a libcall. If the result value 2067 // does not fit into a register, return the lo part and set the hi part to the 2068 // by-reg argument. If it does fit into a single register, return the result 2069 // and leave the Hi part unset. 2070 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2071 bool isSigned) { 2072 TargetLowering::ArgListTy Args; 2073 TargetLowering::ArgListEntry Entry; 2074 for (const SDValue &Op : Node->op_values()) { 2075 EVT ArgVT = Op.getValueType(); 2076 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2077 Entry.Node = Op; 2078 Entry.Ty = ArgTy; 2079 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2080 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2081 Args.push_back(Entry); 2082 } 2083 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2084 TLI.getPointerTy(DAG.getDataLayout())); 2085 2086 EVT RetVT = Node->getValueType(0); 2087 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2088 2089 // By default, the input chain to this libcall is the entry node of the 2090 // function. If the libcall is going to be emitted as a tail call then 2091 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2092 // node which is being folded has a non-entry input chain. 2093 SDValue InChain = DAG.getEntryNode(); 2094 2095 // isTailCall may be true since the callee does not reference caller stack 2096 // frame. Check if it's in the right position and that the return types match. 2097 SDValue TCChain = InChain; 2098 const Function &F = DAG.getMachineFunction().getFunction(); 2099 bool isTailCall = 2100 TLI.isInTailCallPosition(DAG, Node, TCChain) && 2101 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 2102 if (isTailCall) 2103 InChain = TCChain; 2104 2105 TargetLowering::CallLoweringInfo CLI(DAG); 2106 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2107 CLI.setDebugLoc(SDLoc(Node)) 2108 .setChain(InChain) 2109 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2110 std::move(Args)) 2111 .setTailCall(isTailCall) 2112 .setSExtResult(signExtend) 2113 .setZExtResult(!signExtend) 2114 .setIsPostTypeLegalization(true); 2115 2116 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2117 2118 if (!CallInfo.second.getNode()) { 2119 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG)); 2120 // It's a tailcall, return the chain (which is the DAG root). 2121 return DAG.getRoot(); 2122 } 2123 2124 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG)); 2125 return CallInfo.first; 2126 } 2127 2128 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2129 RTLIB::Libcall Call_F32, 2130 RTLIB::Libcall Call_F64, 2131 RTLIB::Libcall Call_F80, 2132 RTLIB::Libcall Call_F128, 2133 RTLIB::Libcall Call_PPCF128, 2134 SmallVectorImpl<SDValue> &Results) { 2135 RTLIB::Libcall LC; 2136 switch (Node->getSimpleValueType(0).SimpleTy) { 2137 default: llvm_unreachable("Unexpected request for libcall!"); 2138 case MVT::f32: LC = Call_F32; break; 2139 case MVT::f64: LC = Call_F64; break; 2140 case MVT::f80: LC = Call_F80; break; 2141 case MVT::f128: LC = Call_F128; break; 2142 case MVT::ppcf128: LC = Call_PPCF128; break; 2143 } 2144 2145 if (Node->isStrictFPOpcode()) { 2146 EVT RetVT = Node->getValueType(0); 2147 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); 2148 TargetLowering::MakeLibCallOptions CallOptions; 2149 // FIXME: This doesn't support tail calls. 2150 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2151 Ops, CallOptions, 2152 SDLoc(Node), 2153 Node->getOperand(0)); 2154 Results.push_back(Tmp.first); 2155 Results.push_back(Tmp.second); 2156 } else { 2157 SDValue Tmp = ExpandLibCall(LC, Node, false); 2158 Results.push_back(Tmp); 2159 } 2160 } 2161 2162 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2163 RTLIB::Libcall Call_I8, 2164 RTLIB::Libcall Call_I16, 2165 RTLIB::Libcall Call_I32, 2166 RTLIB::Libcall Call_I64, 2167 RTLIB::Libcall Call_I128) { 2168 RTLIB::Libcall LC; 2169 switch (Node->getSimpleValueType(0).SimpleTy) { 2170 default: llvm_unreachable("Unexpected request for libcall!"); 2171 case MVT::i8: LC = Call_I8; break; 2172 case MVT::i16: LC = Call_I16; break; 2173 case MVT::i32: LC = Call_I32; break; 2174 case MVT::i64: LC = Call_I64; break; 2175 case MVT::i128: LC = Call_I128; break; 2176 } 2177 return ExpandLibCall(LC, Node, isSigned); 2178 } 2179 2180 /// Expand the node to a libcall based on first argument type (for instance 2181 /// lround and its variant). 2182 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node, 2183 RTLIB::Libcall Call_F32, 2184 RTLIB::Libcall Call_F64, 2185 RTLIB::Libcall Call_F80, 2186 RTLIB::Libcall Call_F128, 2187 RTLIB::Libcall Call_PPCF128, 2188 SmallVectorImpl<SDValue> &Results) { 2189 EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType(); 2190 2191 RTLIB::Libcall LC; 2192 switch (InVT.getSimpleVT().SimpleTy) { 2193 default: llvm_unreachable("Unexpected request for libcall!"); 2194 case MVT::f32: LC = Call_F32; break; 2195 case MVT::f64: LC = Call_F64; break; 2196 case MVT::f80: LC = Call_F80; break; 2197 case MVT::f128: LC = Call_F128; break; 2198 case MVT::ppcf128: LC = Call_PPCF128; break; 2199 } 2200 2201 if (Node->isStrictFPOpcode()) { 2202 EVT RetVT = Node->getValueType(0); 2203 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); 2204 TargetLowering::MakeLibCallOptions CallOptions; 2205 // FIXME: This doesn't support tail calls. 2206 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2207 Ops, CallOptions, 2208 SDLoc(Node), 2209 Node->getOperand(0)); 2210 Results.push_back(Tmp.first); 2211 Results.push_back(Tmp.second); 2212 } else { 2213 SDValue Tmp = ExpandLibCall(LC, Node, false); 2214 Results.push_back(Tmp); 2215 } 2216 } 2217 2218 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2219 void 2220 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2221 SmallVectorImpl<SDValue> &Results) { 2222 unsigned Opcode = Node->getOpcode(); 2223 bool isSigned = Opcode == ISD::SDIVREM; 2224 2225 RTLIB::Libcall LC; 2226 switch (Node->getSimpleValueType(0).SimpleTy) { 2227 default: llvm_unreachable("Unexpected request for libcall!"); 2228 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2229 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2230 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2231 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2232 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2233 } 2234 2235 // The input chain to this libcall is the entry node of the function. 2236 // Legalizing the call will automatically add the previous call to the 2237 // dependence. 2238 SDValue InChain = DAG.getEntryNode(); 2239 2240 EVT RetVT = Node->getValueType(0); 2241 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2242 2243 TargetLowering::ArgListTy Args; 2244 TargetLowering::ArgListEntry Entry; 2245 for (const SDValue &Op : Node->op_values()) { 2246 EVT ArgVT = Op.getValueType(); 2247 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2248 Entry.Node = Op; 2249 Entry.Ty = ArgTy; 2250 Entry.IsSExt = isSigned; 2251 Entry.IsZExt = !isSigned; 2252 Args.push_back(Entry); 2253 } 2254 2255 // Also pass the return address of the remainder. 2256 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2257 Entry.Node = FIPtr; 2258 Entry.Ty = RetTy->getPointerTo(); 2259 Entry.IsSExt = isSigned; 2260 Entry.IsZExt = !isSigned; 2261 Args.push_back(Entry); 2262 2263 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2264 TLI.getPointerTy(DAG.getDataLayout())); 2265 2266 SDLoc dl(Node); 2267 TargetLowering::CallLoweringInfo CLI(DAG); 2268 CLI.setDebugLoc(dl) 2269 .setChain(InChain) 2270 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2271 std::move(Args)) 2272 .setSExtResult(isSigned) 2273 .setZExtResult(!isSigned); 2274 2275 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2276 2277 // Remainder is loaded back from the stack frame. 2278 SDValue Rem = 2279 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2280 Results.push_back(CallInfo.first); 2281 Results.push_back(Rem); 2282 } 2283 2284 /// Return true if sincos libcall is available. 2285 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2286 RTLIB::Libcall LC; 2287 switch (Node->getSimpleValueType(0).SimpleTy) { 2288 default: llvm_unreachable("Unexpected request for libcall!"); 2289 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2290 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2291 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2292 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2293 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2294 } 2295 return TLI.getLibcallName(LC) != nullptr; 2296 } 2297 2298 /// Only issue sincos libcall if both sin and cos are needed. 2299 static bool useSinCos(SDNode *Node) { 2300 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2301 ? ISD::FCOS : ISD::FSIN; 2302 2303 SDValue Op0 = Node->getOperand(0); 2304 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2305 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2306 SDNode *User = *UI; 2307 if (User == Node) 2308 continue; 2309 // The other user might have been turned into sincos already. 2310 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2311 return true; 2312 } 2313 return false; 2314 } 2315 2316 /// Issue libcalls to sincos to compute sin / cos pairs. 2317 void 2318 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2319 SmallVectorImpl<SDValue> &Results) { 2320 RTLIB::Libcall LC; 2321 switch (Node->getSimpleValueType(0).SimpleTy) { 2322 default: llvm_unreachable("Unexpected request for libcall!"); 2323 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2324 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2325 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2326 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2327 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2328 } 2329 2330 // The input chain to this libcall is the entry node of the function. 2331 // Legalizing the call will automatically add the previous call to the 2332 // dependence. 2333 SDValue InChain = DAG.getEntryNode(); 2334 2335 EVT RetVT = Node->getValueType(0); 2336 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2337 2338 TargetLowering::ArgListTy Args; 2339 TargetLowering::ArgListEntry Entry; 2340 2341 // Pass the argument. 2342 Entry.Node = Node->getOperand(0); 2343 Entry.Ty = RetTy; 2344 Entry.IsSExt = false; 2345 Entry.IsZExt = false; 2346 Args.push_back(Entry); 2347 2348 // Pass the return address of sin. 2349 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2350 Entry.Node = SinPtr; 2351 Entry.Ty = RetTy->getPointerTo(); 2352 Entry.IsSExt = false; 2353 Entry.IsZExt = false; 2354 Args.push_back(Entry); 2355 2356 // Also pass the return address of the cos. 2357 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2358 Entry.Node = CosPtr; 2359 Entry.Ty = RetTy->getPointerTo(); 2360 Entry.IsSExt = false; 2361 Entry.IsZExt = false; 2362 Args.push_back(Entry); 2363 2364 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2365 TLI.getPointerTy(DAG.getDataLayout())); 2366 2367 SDLoc dl(Node); 2368 TargetLowering::CallLoweringInfo CLI(DAG); 2369 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2370 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2371 std::move(Args)); 2372 2373 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2374 2375 Results.push_back( 2376 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2377 Results.push_back( 2378 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2379 } 2380 2381 /// This function is responsible for legalizing a 2382 /// INT_TO_FP operation of the specified operand when the target requests that 2383 /// we expand it. At this point, we know that the result and operand types are 2384 /// legal for the target. 2385 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node, 2386 SDValue &Chain) { 2387 bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 2388 Node->getOpcode() == ISD::SINT_TO_FP); 2389 EVT DestVT = Node->getValueType(0); 2390 SDLoc dl(Node); 2391 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 2392 SDValue Op0 = Node->getOperand(OpNo); 2393 EVT SrcVT = Op0.getValueType(); 2394 2395 // TODO: Should any fast-math-flags be set for the created nodes? 2396 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2397 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { 2398 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2399 "expansion\n"); 2400 2401 // Get the stack frame index of a 8 byte buffer. 2402 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2403 2404 SDValue Lo = Op0; 2405 // if signed map to unsigned space 2406 if (isSigned) { 2407 // Invert sign bit (signed to unsigned mapping). 2408 Lo = DAG.getNode(ISD::XOR, dl, MVT::i32, Lo, 2409 DAG.getConstant(0x80000000u, dl, MVT::i32)); 2410 } 2411 // Initial hi portion of constructed double. 2412 SDValue Hi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2413 2414 // If this a big endian target, swap the lo and high data. 2415 if (DAG.getDataLayout().isBigEndian()) 2416 std::swap(Lo, Hi); 2417 2418 SDValue MemChain = DAG.getEntryNode(); 2419 2420 // Store the lo of the constructed double. 2421 SDValue Store1 = DAG.getStore(MemChain, dl, Lo, StackSlot, 2422 MachinePointerInfo()); 2423 // Store the hi of the constructed double. 2424 SDValue HiPtr = DAG.getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), dl); 2425 SDValue Store2 = 2426 DAG.getStore(MemChain, dl, Hi, HiPtr, MachinePointerInfo()); 2427 MemChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 2428 2429 // load the constructed double 2430 SDValue Load = 2431 DAG.getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo()); 2432 // FP constant to bias correct the final result 2433 SDValue Bias = DAG.getConstantFP(isSigned ? 2434 BitsToDouble(0x4330000080000000ULL) : 2435 BitsToDouble(0x4330000000000000ULL), 2436 dl, MVT::f64); 2437 // Subtract the bias and get the final result. 2438 SDValue Sub; 2439 SDValue Result; 2440 if (Node->isStrictFPOpcode()) { 2441 Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other}, 2442 {Node->getOperand(0), Load, Bias}); 2443 Chain = Sub.getValue(1); 2444 if (DestVT != Sub.getValueType()) { 2445 std::pair<SDValue, SDValue> ResultPair; 2446 ResultPair = 2447 DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT); 2448 Result = ResultPair.first; 2449 Chain = ResultPair.second; 2450 } 2451 else 2452 Result = Sub; 2453 } else { 2454 Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2455 Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); 2456 } 2457 return Result; 2458 } 2459 // Code below here assumes !isSigned without checking again. 2460 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2461 2462 // TODO: Generalize this for use with other types. 2463 if ((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) { 2464 LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32\n"); 2465 // For unsigned conversions, convert them to signed conversions using the 2466 // algorithm from the x86_64 __floatundisf in compiler_rt. That method 2467 // should be valid for i32->f32 as well. 2468 2469 // TODO: This really should be implemented using a branch rather than a 2470 // select. We happen to get lucky and machinesink does the right 2471 // thing most of the time. This would be a good candidate for a 2472 // pseudo-op, or, even better, for whole-function isel. 2473 EVT SetCCVT = getSetCCResultType(SrcVT); 2474 2475 SDValue SignBitTest = DAG.getSetCC( 2476 dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2477 2478 EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout()); 2479 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 2480 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst); 2481 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 2482 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst); 2483 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 2484 2485 SDValue Slow, Fast; 2486 if (Node->isStrictFPOpcode()) { 2487 // In strict mode, we must avoid spurious exceptions, and therefore 2488 // must make sure to only emit a single STRICT_SINT_TO_FP. 2489 SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0); 2490 Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2491 { Node->getOperand(0), InCvt }); 2492 Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2493 { Fast.getValue(1), Fast, Fast }); 2494 Chain = Slow.getValue(1); 2495 // The STRICT_SINT_TO_FP inherits the exception mode from the 2496 // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can 2497 // never raise any exception. 2498 SDNodeFlags Flags; 2499 Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept()); 2500 Fast->setFlags(Flags); 2501 Flags.setNoFPExcept(true); 2502 Slow->setFlags(Flags); 2503 } else { 2504 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or); 2505 Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt); 2506 Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2507 } 2508 2509 return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast); 2510 } 2511 2512 // The following optimization is valid only if every value in SrcVT (when 2513 // treated as signed) is representable in DestVT. Check that the mantissa 2514 // size of DestVT is >= than the number of bits in SrcVT -1. 2515 assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >= 2516 SrcVT.getSizeInBits() - 1 && 2517 "Cannot perform lossless SINT_TO_FP!"); 2518 2519 SDValue Tmp1; 2520 if (Node->isStrictFPOpcode()) { 2521 Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2522 { Node->getOperand(0), Op0 }); 2523 } else 2524 Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2525 2526 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, 2527 DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2528 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2529 Four = DAG.getIntPtrConstant(4, dl); 2530 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2531 SignSet, Four, Zero); 2532 2533 // If the sign bit of the integer is set, the large number will be treated 2534 // as a negative number. To counteract this, the dynamic code adds an 2535 // offset depending on the data type. 2536 uint64_t FF; 2537 switch (SrcVT.getSimpleVT().SimpleTy) { 2538 default: llvm_unreachable("Unsupported integer type!"); 2539 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2540 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2541 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2542 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2543 } 2544 if (DAG.getDataLayout().isLittleEndian()) 2545 FF <<= 32; 2546 Constant *FudgeFactor = ConstantInt::get( 2547 Type::getInt64Ty(*DAG.getContext()), FF); 2548 2549 SDValue CPIdx = 2550 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2551 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 2552 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2553 Alignment = commonAlignment(Alignment, 4); 2554 SDValue FudgeInReg; 2555 if (DestVT == MVT::f32) 2556 FudgeInReg = DAG.getLoad( 2557 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2558 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2559 Alignment); 2560 else { 2561 SDValue Load = DAG.getExtLoad( 2562 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2563 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2564 Alignment); 2565 HandleSDNode Handle(Load); 2566 LegalizeOp(Load.getNode()); 2567 FudgeInReg = Handle.getValue(); 2568 } 2569 2570 if (Node->isStrictFPOpcode()) { 2571 SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2572 { Tmp1.getValue(1), Tmp1, FudgeInReg }); 2573 Chain = Result.getValue(1); 2574 return Result; 2575 } 2576 2577 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2578 } 2579 2580 /// This function is responsible for legalizing a 2581 /// *INT_TO_FP operation of the specified operand when the target requests that 2582 /// we promote it. At this point, we know that the result and operand types are 2583 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2584 /// operation that takes a larger input. 2585 void SelectionDAGLegalize::PromoteLegalINT_TO_FP( 2586 SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) { 2587 bool IsStrict = N->isStrictFPOpcode(); 2588 bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP || 2589 N->getOpcode() == ISD::STRICT_SINT_TO_FP; 2590 EVT DestVT = N->getValueType(0); 2591 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2592 unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP; 2593 unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP; 2594 2595 // First step, figure out the appropriate *INT_TO_FP operation to use. 2596 EVT NewInTy = LegalOp.getValueType(); 2597 2598 unsigned OpToUse = 0; 2599 2600 // Scan for the appropriate larger type to use. 2601 while (true) { 2602 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2603 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2604 2605 // If the target supports SINT_TO_FP of this type, use it. 2606 if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) { 2607 OpToUse = SIntOp; 2608 break; 2609 } 2610 if (IsSigned) 2611 continue; 2612 2613 // If the target supports UINT_TO_FP of this type, use it. 2614 if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) { 2615 OpToUse = UIntOp; 2616 break; 2617 } 2618 2619 // Otherwise, try a larger type. 2620 } 2621 2622 // Okay, we found the operation and type to use. Zero extend our input to the 2623 // desired type then run the operation on it. 2624 if (IsStrict) { 2625 SDValue Res = 2626 DAG.getNode(OpToUse, dl, {DestVT, MVT::Other}, 2627 {N->getOperand(0), 2628 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2629 dl, NewInTy, LegalOp)}); 2630 Results.push_back(Res); 2631 Results.push_back(Res.getValue(1)); 2632 return; 2633 } 2634 2635 Results.push_back( 2636 DAG.getNode(OpToUse, dl, DestVT, 2637 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2638 dl, NewInTy, LegalOp))); 2639 } 2640 2641 /// This function is responsible for legalizing a 2642 /// FP_TO_*INT operation of the specified operand when the target requests that 2643 /// we promote it. At this point, we know that the result and operand types are 2644 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2645 /// operation that returns a larger result. 2646 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 2647 SmallVectorImpl<SDValue> &Results) { 2648 bool IsStrict = N->isStrictFPOpcode(); 2649 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 2650 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 2651 EVT DestVT = N->getValueType(0); 2652 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2653 // First step, figure out the appropriate FP_TO*INT operation to use. 2654 EVT NewOutTy = DestVT; 2655 2656 unsigned OpToUse = 0; 2657 2658 // Scan for the appropriate larger type to use. 2659 while (true) { 2660 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2661 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2662 2663 // A larger signed type can hold all unsigned values of the requested type, 2664 // so using FP_TO_SINT is valid 2665 OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT; 2666 if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2667 break; 2668 2669 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2670 OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT; 2671 if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2672 break; 2673 2674 // Otherwise, try a larger type. 2675 } 2676 2677 // Okay, we found the operation and type to use. 2678 SDValue Operation; 2679 if (IsStrict) { 2680 SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other); 2681 Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp); 2682 } else 2683 Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2684 2685 // Truncate the result of the extended FP_TO_*INT operation to the desired 2686 // size. 2687 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2688 Results.push_back(Trunc); 2689 if (IsStrict) 2690 Results.push_back(Operation.getValue(1)); 2691 } 2692 2693 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts. 2694 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) { 2695 EVT VT = Op.getValueType(); 2696 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2697 unsigned Sz = VT.getScalarSizeInBits(); 2698 2699 SDValue Tmp, Tmp2, Tmp3; 2700 2701 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 2702 // and finally the i1 pairs. 2703 // TODO: We can easily support i4/i2 legal types if any target ever does. 2704 if (Sz >= 8 && isPowerOf2_32(Sz)) { 2705 // Create the masks - repeating the pattern every byte. 2706 APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0)); 2707 APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC)); 2708 APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA)); 2709 APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 2710 APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33)); 2711 APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55)); 2712 2713 // BSWAP if the type is wider than a single byte. 2714 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 2715 2716 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) 2717 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); 2718 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); 2719 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT)); 2720 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 2721 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2722 2723 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) 2724 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); 2725 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); 2726 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT)); 2727 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 2728 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2729 2730 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) 2731 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); 2732 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); 2733 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT)); 2734 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 2735 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2736 return Tmp; 2737 } 2738 2739 Tmp = DAG.getConstant(0, dl, VT); 2740 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 2741 if (I < J) 2742 Tmp2 = 2743 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 2744 else 2745 Tmp2 = 2746 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 2747 2748 APInt Shift(Sz, 1); 2749 Shift <<= J; 2750 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 2751 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 2752 } 2753 2754 return Tmp; 2755 } 2756 2757 /// Open code the operations for BSWAP of the specified operation. 2758 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) { 2759 EVT VT = Op.getValueType(); 2760 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2761 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2762 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 2763 default: llvm_unreachable("Unhandled Expand type in BSWAP!"); 2764 case MVT::i16: 2765 // Use a rotate by 8. This can be further expanded if necessary. 2766 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2767 case MVT::i32: 2768 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2769 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2770 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2771 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2772 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2773 DAG.getConstant(0xFF0000, dl, VT)); 2774 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 2775 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2776 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2777 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2778 case MVT::i64: 2779 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2780 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2781 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2782 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2783 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2784 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2785 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2786 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2787 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 2788 DAG.getConstant(255ULL<<48, dl, VT)); 2789 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 2790 DAG.getConstant(255ULL<<40, dl, VT)); 2791 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 2792 DAG.getConstant(255ULL<<32, dl, VT)); 2793 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 2794 DAG.getConstant(255ULL<<24, dl, VT)); 2795 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2796 DAG.getConstant(255ULL<<16, dl, VT)); 2797 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 2798 DAG.getConstant(255ULL<<8 , dl, VT)); 2799 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2800 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2801 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2802 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2803 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2804 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2805 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2806 } 2807 } 2808 2809 /// Open code the operations for PARITY of the specified operation. 2810 SDValue SelectionDAGLegalize::ExpandPARITY(SDValue Op, const SDLoc &dl) { 2811 EVT VT = Op.getValueType(); 2812 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2813 unsigned Sz = VT.getScalarSizeInBits(); 2814 2815 // If CTPOP is legal, use it. Otherwise use shifts and xor. 2816 SDValue Result; 2817 if (TLI.isOperationLegal(ISD::CTPOP, VT)) { 2818 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 2819 } else { 2820 Result = Op; 2821 for (unsigned i = Log2_32_Ceil(Sz); i != 0;) { 2822 SDValue Shift = DAG.getNode(ISD::SRL, dl, VT, Result, 2823 DAG.getConstant(1ULL << (--i), dl, ShVT)); 2824 Result = DAG.getNode(ISD::XOR, dl, VT, Result, Shift); 2825 } 2826 } 2827 2828 return DAG.getNode(ISD::AND, dl, VT, Result, DAG.getConstant(1, dl, VT)); 2829 } 2830 2831 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2832 LLVM_DEBUG(dbgs() << "Trying to expand node\n"); 2833 SmallVector<SDValue, 8> Results; 2834 SDLoc dl(Node); 2835 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2836 bool NeedInvert; 2837 switch (Node->getOpcode()) { 2838 case ISD::ABS: 2839 if (TLI.expandABS(Node, Tmp1, DAG)) 2840 Results.push_back(Tmp1); 2841 break; 2842 case ISD::CTPOP: 2843 if (TLI.expandCTPOP(Node, Tmp1, DAG)) 2844 Results.push_back(Tmp1); 2845 break; 2846 case ISD::CTLZ: 2847 case ISD::CTLZ_ZERO_UNDEF: 2848 if (TLI.expandCTLZ(Node, Tmp1, DAG)) 2849 Results.push_back(Tmp1); 2850 break; 2851 case ISD::CTTZ: 2852 case ISD::CTTZ_ZERO_UNDEF: 2853 if (TLI.expandCTTZ(Node, Tmp1, DAG)) 2854 Results.push_back(Tmp1); 2855 break; 2856 case ISD::BITREVERSE: 2857 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl)); 2858 break; 2859 case ISD::BSWAP: 2860 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2861 break; 2862 case ISD::PARITY: 2863 Results.push_back(ExpandPARITY(Node->getOperand(0), dl)); 2864 break; 2865 case ISD::FRAMEADDR: 2866 case ISD::RETURNADDR: 2867 case ISD::FRAME_TO_ARGS_OFFSET: 2868 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2869 break; 2870 case ISD::EH_DWARF_CFA: { 2871 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 2872 TLI.getPointerTy(DAG.getDataLayout())); 2873 SDValue Offset = DAG.getNode(ISD::ADD, dl, 2874 CfaArg.getValueType(), 2875 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 2876 CfaArg.getValueType()), 2877 CfaArg); 2878 SDValue FA = DAG.getNode( 2879 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 2880 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2881 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 2882 FA, Offset)); 2883 break; 2884 } 2885 case ISD::FLT_ROUNDS_: 2886 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2887 Results.push_back(Node->getOperand(0)); 2888 break; 2889 case ISD::EH_RETURN: 2890 case ISD::EH_LABEL: 2891 case ISD::PREFETCH: 2892 case ISD::VAEND: 2893 case ISD::EH_SJLJ_LONGJMP: 2894 // If the target didn't expand these, there's nothing to do, so just 2895 // preserve the chain and be done. 2896 Results.push_back(Node->getOperand(0)); 2897 break; 2898 case ISD::READCYCLECOUNTER: 2899 // If the target didn't expand this, just return 'zero' and preserve the 2900 // chain. 2901 Results.append(Node->getNumValues() - 1, 2902 DAG.getConstant(0, dl, Node->getValueType(0))); 2903 Results.push_back(Node->getOperand(0)); 2904 break; 2905 case ISD::EH_SJLJ_SETJMP: 2906 // If the target didn't expand this, just return 'zero' and preserve the 2907 // chain. 2908 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2909 Results.push_back(Node->getOperand(0)); 2910 break; 2911 case ISD::ATOMIC_LOAD: { 2912 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2913 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2914 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2915 SDValue Swap = DAG.getAtomicCmpSwap( 2916 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2917 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2918 cast<AtomicSDNode>(Node)->getMemOperand()); 2919 Results.push_back(Swap.getValue(0)); 2920 Results.push_back(Swap.getValue(1)); 2921 break; 2922 } 2923 case ISD::ATOMIC_STORE: { 2924 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2925 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2926 cast<AtomicSDNode>(Node)->getMemoryVT(), 2927 Node->getOperand(0), 2928 Node->getOperand(1), Node->getOperand(2), 2929 cast<AtomicSDNode>(Node)->getMemOperand()); 2930 Results.push_back(Swap.getValue(1)); 2931 break; 2932 } 2933 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 2934 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 2935 // splits out the success value as a comparison. Expanding the resulting 2936 // ATOMIC_CMP_SWAP will produce a libcall. 2937 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2938 SDValue Res = DAG.getAtomicCmpSwap( 2939 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2940 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 2941 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 2942 2943 SDValue ExtRes = Res; 2944 SDValue LHS = Res; 2945 SDValue RHS = Node->getOperand(1); 2946 2947 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 2948 EVT OuterType = Node->getValueType(0); 2949 switch (TLI.getExtendForAtomicOps()) { 2950 case ISD::SIGN_EXTEND: 2951 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 2952 DAG.getValueType(AtomicType)); 2953 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 2954 Node->getOperand(2), DAG.getValueType(AtomicType)); 2955 ExtRes = LHS; 2956 break; 2957 case ISD::ZERO_EXTEND: 2958 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 2959 DAG.getValueType(AtomicType)); 2960 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2961 ExtRes = LHS; 2962 break; 2963 case ISD::ANY_EXTEND: 2964 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 2965 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2966 break; 2967 default: 2968 llvm_unreachable("Invalid atomic op extension"); 2969 } 2970 2971 SDValue Success = 2972 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 2973 2974 Results.push_back(ExtRes.getValue(0)); 2975 Results.push_back(Success); 2976 Results.push_back(Res.getValue(1)); 2977 break; 2978 } 2979 case ISD::DYNAMIC_STACKALLOC: 2980 ExpandDYNAMIC_STACKALLOC(Node, Results); 2981 break; 2982 case ISD::MERGE_VALUES: 2983 for (unsigned i = 0; i < Node->getNumValues(); i++) 2984 Results.push_back(Node->getOperand(i)); 2985 break; 2986 case ISD::UNDEF: { 2987 EVT VT = Node->getValueType(0); 2988 if (VT.isInteger()) 2989 Results.push_back(DAG.getConstant(0, dl, VT)); 2990 else { 2991 assert(VT.isFloatingPoint() && "Unknown value type!"); 2992 Results.push_back(DAG.getConstantFP(0, dl, VT)); 2993 } 2994 break; 2995 } 2996 case ISD::STRICT_FP_ROUND: 2997 // When strict mode is enforced we can't do expansion because it 2998 // does not honor the "strict" properties. Only libcall is allowed. 2999 if (TLI.isStrictFPEnabled()) 3000 break; 3001 // We might as well mutate to FP_ROUND when FP_ROUND operation is legal 3002 // since this operation is more efficient than stack operation. 3003 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3004 Node->getValueType(0)) 3005 == TargetLowering::Legal) 3006 break; 3007 // We fall back to use stack operation when the FP_ROUND operation 3008 // isn't available. 3009 Tmp1 = EmitStackConvert(Node->getOperand(1), 3010 Node->getValueType(0), 3011 Node->getValueType(0), dl, Node->getOperand(0)); 3012 ReplaceNode(Node, Tmp1.getNode()); 3013 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n"); 3014 return true; 3015 case ISD::FP_ROUND: 3016 case ISD::BITCAST: 3017 Tmp1 = EmitStackConvert(Node->getOperand(0), 3018 Node->getValueType(0), 3019 Node->getValueType(0), dl); 3020 Results.push_back(Tmp1); 3021 break; 3022 case ISD::STRICT_FP_EXTEND: 3023 // When strict mode is enforced we can't do expansion because it 3024 // does not honor the "strict" properties. Only libcall is allowed. 3025 if (TLI.isStrictFPEnabled()) 3026 break; 3027 // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal 3028 // since this operation is more efficient than stack operation. 3029 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3030 Node->getValueType(0)) 3031 == TargetLowering::Legal) 3032 break; 3033 // We fall back to use stack operation when the FP_EXTEND operation 3034 // isn't available. 3035 Tmp1 = EmitStackConvert(Node->getOperand(1), 3036 Node->getOperand(1).getValueType(), 3037 Node->getValueType(0), dl, Node->getOperand(0)); 3038 ReplaceNode(Node, Tmp1.getNode()); 3039 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n"); 3040 return true; 3041 case ISD::FP_EXTEND: 3042 Tmp1 = EmitStackConvert(Node->getOperand(0), 3043 Node->getOperand(0).getValueType(), 3044 Node->getValueType(0), dl); 3045 Results.push_back(Tmp1); 3046 break; 3047 case ISD::SIGN_EXTEND_INREG: { 3048 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 3049 EVT VT = Node->getValueType(0); 3050 3051 // An in-register sign-extend of a boolean is a negation: 3052 // 'true' (1) sign-extended is -1. 3053 // 'false' (0) sign-extended is 0. 3054 // However, we must mask the high bits of the source operand because the 3055 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 3056 3057 // TODO: Do this for vectors too? 3058 if (ExtraVT.getSizeInBits() == 1) { 3059 SDValue One = DAG.getConstant(1, dl, VT); 3060 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 3061 SDValue Zero = DAG.getConstant(0, dl, VT); 3062 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 3063 Results.push_back(Neg); 3064 break; 3065 } 3066 3067 // NOTE: we could fall back on load/store here too for targets without 3068 // SRA. However, it is doubtful that any exist. 3069 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 3070 unsigned BitsDiff = VT.getScalarSizeInBits() - 3071 ExtraVT.getScalarSizeInBits(); 3072 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 3073 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 3074 Node->getOperand(0), ShiftCst); 3075 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 3076 Results.push_back(Tmp1); 3077 break; 3078 } 3079 case ISD::UINT_TO_FP: 3080 case ISD::STRICT_UINT_TO_FP: 3081 if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) { 3082 Results.push_back(Tmp1); 3083 if (Node->isStrictFPOpcode()) 3084 Results.push_back(Tmp2); 3085 break; 3086 } 3087 LLVM_FALLTHROUGH; 3088 case ISD::SINT_TO_FP: 3089 case ISD::STRICT_SINT_TO_FP: 3090 Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2); 3091 Results.push_back(Tmp1); 3092 if (Node->isStrictFPOpcode()) 3093 Results.push_back(Tmp2); 3094 break; 3095 case ISD::FP_TO_SINT: 3096 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 3097 Results.push_back(Tmp1); 3098 break; 3099 case ISD::STRICT_FP_TO_SINT: 3100 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) { 3101 ReplaceNode(Node, Tmp1.getNode()); 3102 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n"); 3103 return true; 3104 } 3105 break; 3106 case ISD::FP_TO_UINT: 3107 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) 3108 Results.push_back(Tmp1); 3109 break; 3110 case ISD::STRICT_FP_TO_UINT: 3111 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) { 3112 // Relink the chain. 3113 DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2); 3114 // Replace the new UINT result. 3115 ReplaceNodeWithValue(SDValue(Node, 0), Tmp1); 3116 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n"); 3117 return true; 3118 } 3119 break; 3120 case ISD::VAARG: 3121 Results.push_back(DAG.expandVAArg(Node)); 3122 Results.push_back(Results[0].getValue(1)); 3123 break; 3124 case ISD::VACOPY: 3125 Results.push_back(DAG.expandVACopy(Node)); 3126 break; 3127 case ISD::EXTRACT_VECTOR_ELT: 3128 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 3129 // This must be an access of the only element. Return it. 3130 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 3131 Node->getOperand(0)); 3132 else 3133 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 3134 Results.push_back(Tmp1); 3135 break; 3136 case ISD::EXTRACT_SUBVECTOR: 3137 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 3138 break; 3139 case ISD::INSERT_SUBVECTOR: 3140 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 3141 break; 3142 case ISD::CONCAT_VECTORS: 3143 Results.push_back(ExpandVectorBuildThroughStack(Node)); 3144 break; 3145 case ISD::SCALAR_TO_VECTOR: 3146 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3147 break; 3148 case ISD::INSERT_VECTOR_ELT: 3149 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3150 Node->getOperand(1), 3151 Node->getOperand(2), dl)); 3152 break; 3153 case ISD::VECTOR_SHUFFLE: { 3154 SmallVector<int, 32> NewMask; 3155 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3156 3157 EVT VT = Node->getValueType(0); 3158 EVT EltVT = VT.getVectorElementType(); 3159 SDValue Op0 = Node->getOperand(0); 3160 SDValue Op1 = Node->getOperand(1); 3161 if (!TLI.isTypeLegal(EltVT)) { 3162 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3163 3164 // BUILD_VECTOR operands are allowed to be wider than the element type. 3165 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 3166 // it. 3167 if (NewEltVT.bitsLT(EltVT)) { 3168 // Convert shuffle node. 3169 // If original node was v4i64 and the new EltVT is i32, 3170 // cast operands to v8i32 and re-build the mask. 3171 3172 // Calculate new VT, the size of the new VT should be equal to original. 3173 EVT NewVT = 3174 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3175 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 3176 assert(NewVT.bitsEq(VT)); 3177 3178 // cast operands to new VT 3179 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3180 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3181 3182 // Convert the shuffle mask 3183 unsigned int factor = 3184 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3185 3186 // EltVT gets smaller 3187 assert(factor > 0); 3188 3189 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3190 if (Mask[i] < 0) { 3191 for (unsigned fi = 0; fi < factor; ++fi) 3192 NewMask.push_back(Mask[i]); 3193 } 3194 else { 3195 for (unsigned fi = 0; fi < factor; ++fi) 3196 NewMask.push_back(Mask[i]*factor+fi); 3197 } 3198 } 3199 Mask = NewMask; 3200 VT = NewVT; 3201 } 3202 EltVT = NewEltVT; 3203 } 3204 unsigned NumElems = VT.getVectorNumElements(); 3205 SmallVector<SDValue, 16> Ops; 3206 for (unsigned i = 0; i != NumElems; ++i) { 3207 if (Mask[i] < 0) { 3208 Ops.push_back(DAG.getUNDEF(EltVT)); 3209 continue; 3210 } 3211 unsigned Idx = Mask[i]; 3212 if (Idx < NumElems) 3213 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3214 DAG.getVectorIdxConstant(Idx, dl))); 3215 else 3216 Ops.push_back( 3217 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3218 DAG.getVectorIdxConstant(Idx - NumElems, dl))); 3219 } 3220 3221 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 3222 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3223 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3224 Results.push_back(Tmp1); 3225 break; 3226 } 3227 case ISD::EXTRACT_ELEMENT: { 3228 EVT OpTy = Node->getOperand(0).getValueType(); 3229 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3230 // 1 -> Hi 3231 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3232 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3233 TLI.getShiftAmountTy( 3234 Node->getOperand(0).getValueType(), 3235 DAG.getDataLayout()))); 3236 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3237 } else { 3238 // 0 -> Lo 3239 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3240 Node->getOperand(0)); 3241 } 3242 Results.push_back(Tmp1); 3243 break; 3244 } 3245 case ISD::STACKSAVE: 3246 // Expand to CopyFromReg if the target set 3247 // StackPointerRegisterToSaveRestore. 3248 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3249 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3250 Node->getValueType(0))); 3251 Results.push_back(Results[0].getValue(1)); 3252 } else { 3253 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3254 Results.push_back(Node->getOperand(0)); 3255 } 3256 break; 3257 case ISD::STACKRESTORE: 3258 // Expand to CopyToReg if the target set 3259 // StackPointerRegisterToSaveRestore. 3260 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3261 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3262 Node->getOperand(1))); 3263 } else { 3264 Results.push_back(Node->getOperand(0)); 3265 } 3266 break; 3267 case ISD::GET_DYNAMIC_AREA_OFFSET: 3268 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3269 Results.push_back(Results[0].getValue(0)); 3270 break; 3271 case ISD::FCOPYSIGN: 3272 Results.push_back(ExpandFCOPYSIGN(Node)); 3273 break; 3274 case ISD::FNEG: 3275 Results.push_back(ExpandFNEG(Node)); 3276 break; 3277 case ISD::FABS: 3278 Results.push_back(ExpandFABS(Node)); 3279 break; 3280 case ISD::SMIN: 3281 case ISD::SMAX: 3282 case ISD::UMIN: 3283 case ISD::UMAX: { 3284 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3285 ISD::CondCode Pred; 3286 switch (Node->getOpcode()) { 3287 default: llvm_unreachable("How did we get here?"); 3288 case ISD::SMAX: Pred = ISD::SETGT; break; 3289 case ISD::SMIN: Pred = ISD::SETLT; break; 3290 case ISD::UMAX: Pred = ISD::SETUGT; break; 3291 case ISD::UMIN: Pred = ISD::SETULT; break; 3292 } 3293 Tmp1 = Node->getOperand(0); 3294 Tmp2 = Node->getOperand(1); 3295 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3296 Results.push_back(Tmp1); 3297 break; 3298 } 3299 case ISD::FMINNUM: 3300 case ISD::FMAXNUM: { 3301 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) 3302 Results.push_back(Expanded); 3303 break; 3304 } 3305 case ISD::FSIN: 3306 case ISD::FCOS: { 3307 EVT VT = Node->getValueType(0); 3308 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3309 // fcos which share the same operand and both are used. 3310 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3311 isSinCosLibcallAvailable(Node, TLI)) 3312 && useSinCos(Node)) { 3313 SDVTList VTs = DAG.getVTList(VT, VT); 3314 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3315 if (Node->getOpcode() == ISD::FCOS) 3316 Tmp1 = Tmp1.getValue(1); 3317 Results.push_back(Tmp1); 3318 } 3319 break; 3320 } 3321 case ISD::FMAD: 3322 llvm_unreachable("Illegal fmad should never be formed"); 3323 3324 case ISD::FP16_TO_FP: 3325 if (Node->getValueType(0) != MVT::f32) { 3326 // We can extend to types bigger than f32 in two steps without changing 3327 // the result. Since "f16 -> f32" is much more commonly available, give 3328 // CodeGen the option of emitting that before resorting to a libcall. 3329 SDValue Res = 3330 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3331 Results.push_back( 3332 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3333 } 3334 break; 3335 case ISD::STRICT_FP16_TO_FP: 3336 if (Node->getValueType(0) != MVT::f32) { 3337 // We can extend to types bigger than f32 in two steps without changing 3338 // the result. Since "f16 -> f32" is much more commonly available, give 3339 // CodeGen the option of emitting that before resorting to a libcall. 3340 SDValue Res = 3341 DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other}, 3342 {Node->getOperand(0), Node->getOperand(1)}); 3343 Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 3344 {Node->getValueType(0), MVT::Other}, 3345 {Res.getValue(1), Res}); 3346 Results.push_back(Res); 3347 Results.push_back(Res.getValue(1)); 3348 } 3349 break; 3350 case ISD::FP_TO_FP16: 3351 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3352 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3353 SDValue Op = Node->getOperand(0); 3354 MVT SVT = Op.getSimpleValueType(); 3355 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3356 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3357 // Under fastmath, we can expand this node into a fround followed by 3358 // a float-half conversion. 3359 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3360 DAG.getIntPtrConstant(0, dl)); 3361 Results.push_back( 3362 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3363 } 3364 } 3365 break; 3366 case ISD::ConstantFP: { 3367 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3368 // Check to see if this FP immediate is already legal. 3369 // If this is a legal constant, turn it into a TargetConstantFP node. 3370 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0), 3371 DAG.shouldOptForSize())) 3372 Results.push_back(ExpandConstantFP(CFP, true)); 3373 break; 3374 } 3375 case ISD::Constant: { 3376 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3377 Results.push_back(ExpandConstant(CP)); 3378 break; 3379 } 3380 case ISD::FSUB: { 3381 EVT VT = Node->getValueType(0); 3382 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3383 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3384 const SDNodeFlags Flags = Node->getFlags(); 3385 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3386 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3387 Results.push_back(Tmp1); 3388 } 3389 break; 3390 } 3391 case ISD::SUB: { 3392 EVT VT = Node->getValueType(0); 3393 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3394 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3395 "Don't know how to expand this subtraction!"); 3396 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3397 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, 3398 VT)); 3399 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3400 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3401 break; 3402 } 3403 case ISD::UREM: 3404 case ISD::SREM: 3405 if (TLI.expandREM(Node, Tmp1, DAG)) 3406 Results.push_back(Tmp1); 3407 break; 3408 case ISD::UDIV: 3409 case ISD::SDIV: { 3410 bool isSigned = Node->getOpcode() == ISD::SDIV; 3411 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3412 EVT VT = Node->getValueType(0); 3413 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3414 SDVTList VTs = DAG.getVTList(VT, VT); 3415 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3416 Node->getOperand(1)); 3417 Results.push_back(Tmp1); 3418 } 3419 break; 3420 } 3421 case ISD::MULHU: 3422 case ISD::MULHS: { 3423 unsigned ExpandOpcode = 3424 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3425 EVT VT = Node->getValueType(0); 3426 SDVTList VTs = DAG.getVTList(VT, VT); 3427 3428 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3429 Node->getOperand(1)); 3430 Results.push_back(Tmp1.getValue(1)); 3431 break; 3432 } 3433 case ISD::UMUL_LOHI: 3434 case ISD::SMUL_LOHI: { 3435 SDValue LHS = Node->getOperand(0); 3436 SDValue RHS = Node->getOperand(1); 3437 MVT VT = LHS.getSimpleValueType(); 3438 unsigned MULHOpcode = 3439 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3440 3441 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3442 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3443 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3444 break; 3445 } 3446 3447 SmallVector<SDValue, 4> Halves; 3448 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3449 assert(TLI.isTypeLegal(HalfType)); 3450 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, dl, LHS, RHS, Halves, 3451 HalfType, DAG, 3452 TargetLowering::MulExpansionKind::Always)) { 3453 for (unsigned i = 0; i < 2; ++i) { 3454 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3455 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3456 SDValue Shift = DAG.getConstant( 3457 HalfType.getScalarSizeInBits(), dl, 3458 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3459 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3460 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3461 } 3462 break; 3463 } 3464 break; 3465 } 3466 case ISD::MUL: { 3467 EVT VT = Node->getValueType(0); 3468 SDVTList VTs = DAG.getVTList(VT, VT); 3469 // See if multiply or divide can be lowered using two-result operations. 3470 // We just need the low half of the multiply; try both the signed 3471 // and unsigned forms. If the target supports both SMUL_LOHI and 3472 // UMUL_LOHI, form a preference by checking which forms of plain 3473 // MULH it supports. 3474 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3475 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3476 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3477 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3478 unsigned OpToUse = 0; 3479 if (HasSMUL_LOHI && !HasMULHS) { 3480 OpToUse = ISD::SMUL_LOHI; 3481 } else if (HasUMUL_LOHI && !HasMULHU) { 3482 OpToUse = ISD::UMUL_LOHI; 3483 } else if (HasSMUL_LOHI) { 3484 OpToUse = ISD::SMUL_LOHI; 3485 } else if (HasUMUL_LOHI) { 3486 OpToUse = ISD::UMUL_LOHI; 3487 } 3488 if (OpToUse) { 3489 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3490 Node->getOperand(1))); 3491 break; 3492 } 3493 3494 SDValue Lo, Hi; 3495 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3496 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3497 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3498 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3499 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3500 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3501 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3502 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3503 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3504 SDValue Shift = 3505 DAG.getConstant(HalfType.getSizeInBits(), dl, 3506 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3507 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3508 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3509 } 3510 break; 3511 } 3512 case ISD::FSHL: 3513 case ISD::FSHR: 3514 if (TLI.expandFunnelShift(Node, Tmp1, DAG)) 3515 Results.push_back(Tmp1); 3516 break; 3517 case ISD::ROTL: 3518 case ISD::ROTR: 3519 if (TLI.expandROT(Node, Tmp1, DAG)) 3520 Results.push_back(Tmp1); 3521 break; 3522 case ISD::SADDSAT: 3523 case ISD::UADDSAT: 3524 case ISD::SSUBSAT: 3525 case ISD::USUBSAT: 3526 Results.push_back(TLI.expandAddSubSat(Node, DAG)); 3527 break; 3528 case ISD::SSHLSAT: 3529 case ISD::USHLSAT: 3530 Results.push_back(TLI.expandShlSat(Node, DAG)); 3531 break; 3532 case ISD::SMULFIX: 3533 case ISD::SMULFIXSAT: 3534 case ISD::UMULFIX: 3535 case ISD::UMULFIXSAT: 3536 Results.push_back(TLI.expandFixedPointMul(Node, DAG)); 3537 break; 3538 case ISD::SDIVFIX: 3539 case ISD::SDIVFIXSAT: 3540 case ISD::UDIVFIX: 3541 case ISD::UDIVFIXSAT: 3542 if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node), 3543 Node->getOperand(0), 3544 Node->getOperand(1), 3545 Node->getConstantOperandVal(2), 3546 DAG)) { 3547 Results.push_back(V); 3548 break; 3549 } 3550 // FIXME: We might want to retry here with a wider type if we fail, if that 3551 // type is legal. 3552 // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is 3553 // <= 128 (which is the case for all of the default Embedded-C types), 3554 // we will only get here with types and scales that we could always expand 3555 // if we were allowed to generate libcalls to division functions of illegal 3556 // type. But we cannot do that. 3557 llvm_unreachable("Cannot expand DIVFIX!"); 3558 case ISD::ADDCARRY: 3559 case ISD::SUBCARRY: { 3560 SDValue LHS = Node->getOperand(0); 3561 SDValue RHS = Node->getOperand(1); 3562 SDValue Carry = Node->getOperand(2); 3563 3564 bool IsAdd = Node->getOpcode() == ISD::ADDCARRY; 3565 3566 // Initial add of the 2 operands. 3567 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB; 3568 EVT VT = LHS.getValueType(); 3569 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS); 3570 3571 // Initial check for overflow. 3572 EVT CarryType = Node->getValueType(1); 3573 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3574 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 3575 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3576 3577 // Add of the sum and the carry. 3578 SDValue One = DAG.getConstant(1, dl, VT); 3579 SDValue CarryExt = 3580 DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One); 3581 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt); 3582 3583 // Second check for overflow. If we are adding, we can only overflow if the 3584 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0. 3585 // If we are subtracting, we can only overflow if the initial sum is 0 and 3586 // the carry is set, resulting in a new sum of all 1s. 3587 SDValue Zero = DAG.getConstant(0, dl, VT); 3588 SDValue Overflow2 = 3589 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ) 3590 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ); 3591 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2, 3592 DAG.getZExtOrTrunc(Carry, dl, SetCCType)); 3593 3594 SDValue ResultCarry = 3595 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2); 3596 3597 Results.push_back(Sum2); 3598 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT)); 3599 break; 3600 } 3601 case ISD::SADDO: 3602 case ISD::SSUBO: { 3603 SDValue Result, Overflow; 3604 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 3605 Results.push_back(Result); 3606 Results.push_back(Overflow); 3607 break; 3608 } 3609 case ISD::UADDO: 3610 case ISD::USUBO: { 3611 SDValue Result, Overflow; 3612 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 3613 Results.push_back(Result); 3614 Results.push_back(Overflow); 3615 break; 3616 } 3617 case ISD::UMULO: 3618 case ISD::SMULO: { 3619 SDValue Result, Overflow; 3620 if (TLI.expandMULO(Node, Result, Overflow, DAG)) { 3621 Results.push_back(Result); 3622 Results.push_back(Overflow); 3623 } 3624 break; 3625 } 3626 case ISD::BUILD_PAIR: { 3627 EVT PairTy = Node->getValueType(0); 3628 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3629 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3630 Tmp2 = DAG.getNode( 3631 ISD::SHL, dl, PairTy, Tmp2, 3632 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3633 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3634 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3635 break; 3636 } 3637 case ISD::SELECT: 3638 Tmp1 = Node->getOperand(0); 3639 Tmp2 = Node->getOperand(1); 3640 Tmp3 = Node->getOperand(2); 3641 if (Tmp1.getOpcode() == ISD::SETCC) { 3642 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3643 Tmp2, Tmp3, 3644 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3645 } else { 3646 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3647 DAG.getConstant(0, dl, Tmp1.getValueType()), 3648 Tmp2, Tmp3, ISD::SETNE); 3649 } 3650 Tmp1->setFlags(Node->getFlags()); 3651 Results.push_back(Tmp1); 3652 break; 3653 case ISD::BR_JT: { 3654 SDValue Chain = Node->getOperand(0); 3655 SDValue Table = Node->getOperand(1); 3656 SDValue Index = Node->getOperand(2); 3657 3658 const DataLayout &TD = DAG.getDataLayout(); 3659 EVT PTy = TLI.getPointerTy(TD); 3660 3661 unsigned EntrySize = 3662 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3663 3664 // For power-of-two jumptable entry sizes convert multiplication to a shift. 3665 // This transformation needs to be done here since otherwise the MIPS 3666 // backend will end up emitting a three instruction multiply sequence 3667 // instead of a single shift and MSP430 will call a runtime function. 3668 if (llvm::isPowerOf2_32(EntrySize)) 3669 Index = DAG.getNode( 3670 ISD::SHL, dl, Index.getValueType(), Index, 3671 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); 3672 else 3673 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3674 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3675 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3676 Index, Table); 3677 3678 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3679 SDValue LD = DAG.getExtLoad( 3680 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3681 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3682 Addr = LD; 3683 if (TLI.isJumpTableRelative()) { 3684 // For PIC, the sequence is: 3685 // BRIND(load(Jumptable + index) + RelocBase) 3686 // RelocBase can be JumpTable, GOT or some sort of global base. 3687 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3688 TLI.getPICJumpTableRelocBase(Table, DAG)); 3689 } 3690 3691 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); 3692 Results.push_back(Tmp1); 3693 break; 3694 } 3695 case ISD::BRCOND: 3696 // Expand brcond's setcc into its constituent parts and create a BR_CC 3697 // Node. 3698 Tmp1 = Node->getOperand(0); 3699 Tmp2 = Node->getOperand(1); 3700 if (Tmp2.getOpcode() == ISD::SETCC) { 3701 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3702 Tmp1, Tmp2.getOperand(2), 3703 Tmp2.getOperand(0), Tmp2.getOperand(1), 3704 Node->getOperand(2)); 3705 } else { 3706 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 3707 if (Tmp2.isUndef() || 3708 (Tmp2.getOpcode() == ISD::AND && 3709 isa<ConstantSDNode>(Tmp2.getOperand(1)) && 3710 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) 3711 Tmp3 = Tmp2; 3712 else 3713 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3714 DAG.getConstant(1, dl, Tmp2.getValueType())); 3715 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3716 DAG.getCondCode(ISD::SETNE), Tmp3, 3717 DAG.getConstant(0, dl, Tmp3.getValueType()), 3718 Node->getOperand(2)); 3719 } 3720 Results.push_back(Tmp1); 3721 break; 3722 case ISD::SETCC: 3723 case ISD::STRICT_FSETCC: 3724 case ISD::STRICT_FSETCCS: { 3725 bool IsStrict = Node->getOpcode() != ISD::SETCC; 3726 bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS; 3727 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 3728 unsigned Offset = IsStrict ? 1 : 0; 3729 Tmp1 = Node->getOperand(0 + Offset); 3730 Tmp2 = Node->getOperand(1 + Offset); 3731 Tmp3 = Node->getOperand(2 + Offset); 3732 bool Legalized = 3733 LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, 3734 NeedInvert, dl, Chain, IsSignaling); 3735 3736 if (Legalized) { 3737 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3738 // condition code, create a new SETCC node. 3739 if (Tmp3.getNode()) 3740 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3741 Tmp1, Tmp2, Tmp3, Node->getFlags()); 3742 3743 // If we expanded the SETCC by inverting the condition code, then wrap 3744 // the existing SETCC in a NOT to restore the intended condition. 3745 if (NeedInvert) 3746 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3747 3748 Results.push_back(Tmp1); 3749 if (IsStrict) 3750 Results.push_back(Chain); 3751 3752 break; 3753 } 3754 3755 // FIXME: It seems Legalized is false iff CCCode is Legal. I don't 3756 // understand if this code is useful for strict nodes. 3757 assert(!IsStrict && "Don't know how to expand for strict nodes."); 3758 3759 // Otherwise, SETCC for the given comparison type must be completely 3760 // illegal; expand it into a SELECT_CC. 3761 EVT VT = Node->getValueType(0); 3762 int TrueValue; 3763 switch (TLI.getBooleanContents(Tmp1.getValueType())) { 3764 case TargetLowering::ZeroOrOneBooleanContent: 3765 case TargetLowering::UndefinedBooleanContent: 3766 TrueValue = 1; 3767 break; 3768 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3769 TrueValue = -1; 3770 break; 3771 } 3772 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3773 DAG.getConstant(TrueValue, dl, VT), 3774 DAG.getConstant(0, dl, VT), 3775 Tmp3); 3776 Tmp1->setFlags(Node->getFlags()); 3777 Results.push_back(Tmp1); 3778 break; 3779 } 3780 case ISD::SELECT_CC: { 3781 // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS 3782 Tmp1 = Node->getOperand(0); // LHS 3783 Tmp2 = Node->getOperand(1); // RHS 3784 Tmp3 = Node->getOperand(2); // True 3785 Tmp4 = Node->getOperand(3); // False 3786 EVT VT = Node->getValueType(0); 3787 SDValue Chain; 3788 SDValue CC = Node->getOperand(4); 3789 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3790 3791 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 3792 // If the condition code is legal, then we need to expand this 3793 // node using SETCC and SELECT. 3794 EVT CmpVT = Tmp1.getValueType(); 3795 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3796 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3797 "expanded."); 3798 EVT CCVT = getSetCCResultType(CmpVT); 3799 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags()); 3800 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3801 break; 3802 } 3803 3804 // SELECT_CC is legal, so the condition code must not be. 3805 bool Legalized = false; 3806 // Try to legalize by inverting the condition. This is for targets that 3807 // might support an ordered version of a condition, but not the unordered 3808 // version (or vice versa). 3809 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType()); 3810 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 3811 // Use the new condition code and swap true and false 3812 Legalized = true; 3813 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3814 Tmp1->setFlags(Node->getFlags()); 3815 } else { 3816 // If The inverse is not legal, then try to swap the arguments using 3817 // the inverse condition code. 3818 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3819 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 3820 // The swapped inverse condition is legal, so swap true and false, 3821 // lhs and rhs. 3822 Legalized = true; 3823 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3824 Tmp1->setFlags(Node->getFlags()); 3825 } 3826 } 3827 3828 if (!Legalized) { 3829 Legalized = LegalizeSetCCCondCode(getSetCCResultType(Tmp1.getValueType()), 3830 Tmp1, Tmp2, CC, NeedInvert, dl, Chain); 3831 3832 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3833 3834 // If we expanded the SETCC by inverting the condition code, then swap 3835 // the True/False operands to match. 3836 if (NeedInvert) 3837 std::swap(Tmp3, Tmp4); 3838 3839 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3840 // condition code, create a new SELECT_CC node. 3841 if (CC.getNode()) { 3842 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3843 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3844 } else { 3845 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3846 CC = DAG.getCondCode(ISD::SETNE); 3847 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3848 Tmp2, Tmp3, Tmp4, CC); 3849 } 3850 Tmp1->setFlags(Node->getFlags()); 3851 } 3852 Results.push_back(Tmp1); 3853 break; 3854 } 3855 case ISD::BR_CC: { 3856 // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS 3857 SDValue Chain; 3858 Tmp1 = Node->getOperand(0); // Chain 3859 Tmp2 = Node->getOperand(2); // LHS 3860 Tmp3 = Node->getOperand(3); // RHS 3861 Tmp4 = Node->getOperand(1); // CC 3862 3863 bool Legalized = 3864 LegalizeSetCCCondCode(getSetCCResultType(Tmp2.getValueType()), Tmp2, 3865 Tmp3, Tmp4, NeedInvert, dl, Chain); 3866 (void)Legalized; 3867 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3868 3869 assert(!NeedInvert && "Don't know how to invert BR_CC!"); 3870 3871 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3872 // node. 3873 if (Tmp4.getNode()) { 3874 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3875 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3876 } else { 3877 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3878 Tmp4 = DAG.getCondCode(ISD::SETNE); 3879 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3880 Tmp2, Tmp3, Node->getOperand(4)); 3881 } 3882 Results.push_back(Tmp1); 3883 break; 3884 } 3885 case ISD::BUILD_VECTOR: 3886 Results.push_back(ExpandBUILD_VECTOR(Node)); 3887 break; 3888 case ISD::SPLAT_VECTOR: 3889 Results.push_back(ExpandSPLAT_VECTOR(Node)); 3890 break; 3891 case ISD::SRA: 3892 case ISD::SRL: 3893 case ISD::SHL: { 3894 // Scalarize vector SRA/SRL/SHL. 3895 EVT VT = Node->getValueType(0); 3896 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3897 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3898 unsigned NumElem = VT.getVectorNumElements(); 3899 3900 SmallVector<SDValue, 8> Scalars; 3901 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3902 SDValue Ex = 3903 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3904 Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl)); 3905 SDValue Sh = 3906 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3907 Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl)); 3908 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3909 VT.getScalarType(), Ex, Sh)); 3910 } 3911 3912 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 3913 Results.push_back(Result); 3914 break; 3915 } 3916 case ISD::VECREDUCE_FADD: 3917 case ISD::VECREDUCE_FMUL: 3918 case ISD::VECREDUCE_ADD: 3919 case ISD::VECREDUCE_MUL: 3920 case ISD::VECREDUCE_AND: 3921 case ISD::VECREDUCE_OR: 3922 case ISD::VECREDUCE_XOR: 3923 case ISD::VECREDUCE_SMAX: 3924 case ISD::VECREDUCE_SMIN: 3925 case ISD::VECREDUCE_UMAX: 3926 case ISD::VECREDUCE_UMIN: 3927 case ISD::VECREDUCE_FMAX: 3928 case ISD::VECREDUCE_FMIN: 3929 Results.push_back(TLI.expandVecReduce(Node, DAG)); 3930 break; 3931 case ISD::GLOBAL_OFFSET_TABLE: 3932 case ISD::GlobalAddress: 3933 case ISD::GlobalTLSAddress: 3934 case ISD::ExternalSymbol: 3935 case ISD::ConstantPool: 3936 case ISD::JumpTable: 3937 case ISD::INTRINSIC_W_CHAIN: 3938 case ISD::INTRINSIC_WO_CHAIN: 3939 case ISD::INTRINSIC_VOID: 3940 // FIXME: Custom lowering for these operations shouldn't return null! 3941 // Return true so that we don't call ConvertNodeToLibcall which also won't 3942 // do anything. 3943 return true; 3944 } 3945 3946 if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) { 3947 // FIXME: We were asked to expand a strict floating-point operation, 3948 // but there is currently no expansion implemented that would preserve 3949 // the "strict" properties. For now, we just fall back to the non-strict 3950 // version if that is legal on the target. The actual mutation of the 3951 // operation will happen in SelectionDAGISel::DoInstructionSelection. 3952 switch (Node->getOpcode()) { 3953 default: 3954 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3955 Node->getValueType(0)) 3956 == TargetLowering::Legal) 3957 return true; 3958 break; 3959 case ISD::STRICT_FSUB: { 3960 if (TLI.getStrictFPOperationAction( 3961 ISD::STRICT_FSUB, Node->getValueType(0)) == TargetLowering::Legal) 3962 return true; 3963 if (TLI.getStrictFPOperationAction( 3964 ISD::STRICT_FADD, Node->getValueType(0)) != TargetLowering::Legal) 3965 break; 3966 3967 EVT VT = Node->getValueType(0); 3968 const SDNodeFlags Flags = Node->getFlags(); 3969 SDValue Neg = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(2), Flags); 3970 SDValue Fadd = DAG.getNode(ISD::STRICT_FADD, dl, Node->getVTList(), 3971 {Node->getOperand(0), Node->getOperand(1), Neg}, 3972 Flags); 3973 3974 Results.push_back(Fadd); 3975 Results.push_back(Fadd.getValue(1)); 3976 break; 3977 } 3978 case ISD::STRICT_LRINT: 3979 case ISD::STRICT_LLRINT: 3980 case ISD::STRICT_LROUND: 3981 case ISD::STRICT_LLROUND: 3982 // These are registered by the operand type instead of the value 3983 // type. Reflect that here. 3984 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3985 Node->getOperand(1).getValueType()) 3986 == TargetLowering::Legal) 3987 return true; 3988 break; 3989 } 3990 } 3991 3992 // Replace the original node with the legalized result. 3993 if (Results.empty()) { 3994 LLVM_DEBUG(dbgs() << "Cannot expand node\n"); 3995 return false; 3996 } 3997 3998 LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); 3999 ReplaceNode(Node, Results.data()); 4000 return true; 4001 } 4002 4003 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 4004 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); 4005 SmallVector<SDValue, 8> Results; 4006 SDLoc dl(Node); 4007 // FIXME: Check flags on the node to see if we can use a finite call. 4008 unsigned Opc = Node->getOpcode(); 4009 switch (Opc) { 4010 case ISD::ATOMIC_FENCE: { 4011 // If the target didn't lower this, lower it to '__sync_synchronize()' call 4012 // FIXME: handle "fence singlethread" more efficiently. 4013 TargetLowering::ArgListTy Args; 4014 4015 TargetLowering::CallLoweringInfo CLI(DAG); 4016 CLI.setDebugLoc(dl) 4017 .setChain(Node->getOperand(0)) 4018 .setLibCallee( 4019 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 4020 DAG.getExternalSymbol("__sync_synchronize", 4021 TLI.getPointerTy(DAG.getDataLayout())), 4022 std::move(Args)); 4023 4024 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 4025 4026 Results.push_back(CallResult.second); 4027 break; 4028 } 4029 // By default, atomic intrinsics are marked Legal and lowered. Targets 4030 // which don't support them directly, however, may want libcalls, in which 4031 // case they mark them Expand, and we get here. 4032 case ISD::ATOMIC_SWAP: 4033 case ISD::ATOMIC_LOAD_ADD: 4034 case ISD::ATOMIC_LOAD_SUB: 4035 case ISD::ATOMIC_LOAD_AND: 4036 case ISD::ATOMIC_LOAD_CLR: 4037 case ISD::ATOMIC_LOAD_OR: 4038 case ISD::ATOMIC_LOAD_XOR: 4039 case ISD::ATOMIC_LOAD_NAND: 4040 case ISD::ATOMIC_LOAD_MIN: 4041 case ISD::ATOMIC_LOAD_MAX: 4042 case ISD::ATOMIC_LOAD_UMIN: 4043 case ISD::ATOMIC_LOAD_UMAX: 4044 case ISD::ATOMIC_CMP_SWAP: { 4045 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 4046 RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT); 4047 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!"); 4048 4049 EVT RetVT = Node->getValueType(0); 4050 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); 4051 TargetLowering::MakeLibCallOptions CallOptions; 4052 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 4053 Ops, CallOptions, 4054 SDLoc(Node), 4055 Node->getOperand(0)); 4056 Results.push_back(Tmp.first); 4057 Results.push_back(Tmp.second); 4058 break; 4059 } 4060 case ISD::TRAP: { 4061 // If this operation is not supported, lower it to 'abort()' call 4062 TargetLowering::ArgListTy Args; 4063 TargetLowering::CallLoweringInfo CLI(DAG); 4064 CLI.setDebugLoc(dl) 4065 .setChain(Node->getOperand(0)) 4066 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 4067 DAG.getExternalSymbol( 4068 "abort", TLI.getPointerTy(DAG.getDataLayout())), 4069 std::move(Args)); 4070 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 4071 4072 Results.push_back(CallResult.second); 4073 break; 4074 } 4075 case ISD::FMINNUM: 4076 case ISD::STRICT_FMINNUM: 4077 ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 4078 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 4079 RTLIB::FMIN_PPCF128, Results); 4080 break; 4081 case ISD::FMAXNUM: 4082 case ISD::STRICT_FMAXNUM: 4083 ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 4084 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 4085 RTLIB::FMAX_PPCF128, Results); 4086 break; 4087 case ISD::FSQRT: 4088 case ISD::STRICT_FSQRT: 4089 ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 4090 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 4091 RTLIB::SQRT_PPCF128, Results); 4092 break; 4093 case ISD::FCBRT: 4094 ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, 4095 RTLIB::CBRT_F80, RTLIB::CBRT_F128, 4096 RTLIB::CBRT_PPCF128, Results); 4097 break; 4098 case ISD::FSIN: 4099 case ISD::STRICT_FSIN: 4100 ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 4101 RTLIB::SIN_F80, RTLIB::SIN_F128, 4102 RTLIB::SIN_PPCF128, Results); 4103 break; 4104 case ISD::FCOS: 4105 case ISD::STRICT_FCOS: 4106 ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 4107 RTLIB::COS_F80, RTLIB::COS_F128, 4108 RTLIB::COS_PPCF128, Results); 4109 break; 4110 case ISD::FSINCOS: 4111 // Expand into sincos libcall. 4112 ExpandSinCosLibCall(Node, Results); 4113 break; 4114 case ISD::FLOG: 4115 case ISD::STRICT_FLOG: 4116 ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80, 4117 RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results); 4118 break; 4119 case ISD::FLOG2: 4120 case ISD::STRICT_FLOG2: 4121 ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80, 4122 RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results); 4123 break; 4124 case ISD::FLOG10: 4125 case ISD::STRICT_FLOG10: 4126 ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80, 4127 RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results); 4128 break; 4129 case ISD::FEXP: 4130 case ISD::STRICT_FEXP: 4131 ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80, 4132 RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results); 4133 break; 4134 case ISD::FEXP2: 4135 case ISD::STRICT_FEXP2: 4136 ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80, 4137 RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results); 4138 break; 4139 case ISD::FTRUNC: 4140 case ISD::STRICT_FTRUNC: 4141 ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 4142 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 4143 RTLIB::TRUNC_PPCF128, Results); 4144 break; 4145 case ISD::FFLOOR: 4146 case ISD::STRICT_FFLOOR: 4147 ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 4148 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 4149 RTLIB::FLOOR_PPCF128, Results); 4150 break; 4151 case ISD::FCEIL: 4152 case ISD::STRICT_FCEIL: 4153 ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 4154 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 4155 RTLIB::CEIL_PPCF128, Results); 4156 break; 4157 case ISD::FRINT: 4158 case ISD::STRICT_FRINT: 4159 ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 4160 RTLIB::RINT_F80, RTLIB::RINT_F128, 4161 RTLIB::RINT_PPCF128, Results); 4162 break; 4163 case ISD::FNEARBYINT: 4164 case ISD::STRICT_FNEARBYINT: 4165 ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 4166 RTLIB::NEARBYINT_F64, 4167 RTLIB::NEARBYINT_F80, 4168 RTLIB::NEARBYINT_F128, 4169 RTLIB::NEARBYINT_PPCF128, Results); 4170 break; 4171 case ISD::FROUND: 4172 case ISD::STRICT_FROUND: 4173 ExpandFPLibCall(Node, RTLIB::ROUND_F32, 4174 RTLIB::ROUND_F64, 4175 RTLIB::ROUND_F80, 4176 RTLIB::ROUND_F128, 4177 RTLIB::ROUND_PPCF128, Results); 4178 break; 4179 case ISD::FROUNDEVEN: 4180 case ISD::STRICT_FROUNDEVEN: 4181 ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32, 4182 RTLIB::ROUNDEVEN_F64, 4183 RTLIB::ROUNDEVEN_F80, 4184 RTLIB::ROUNDEVEN_F128, 4185 RTLIB::ROUNDEVEN_PPCF128, Results); 4186 break; 4187 case ISD::FPOWI: 4188 case ISD::STRICT_FPOWI: { 4189 RTLIB::Libcall LC; 4190 switch (Node->getSimpleValueType(0).SimpleTy) { 4191 default: llvm_unreachable("Unexpected request for libcall!"); 4192 case MVT::f32: LC = RTLIB::POWI_F32; break; 4193 case MVT::f64: LC = RTLIB::POWI_F64; break; 4194 case MVT::f80: LC = RTLIB::POWI_F80; break; 4195 case MVT::f128: LC = RTLIB::POWI_F128; break; 4196 case MVT::ppcf128: LC = RTLIB::POWI_PPCF128; break; 4197 } 4198 if (!TLI.getLibcallName(LC)) { 4199 // Some targets don't have a powi libcall; use pow instead. 4200 SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), 4201 Node->getValueType(0), 4202 Node->getOperand(1)); 4203 Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node), 4204 Node->getValueType(0), Node->getOperand(0), 4205 Exponent)); 4206 break; 4207 } 4208 ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 4209 RTLIB::POWI_F80, RTLIB::POWI_F128, 4210 RTLIB::POWI_PPCF128, Results); 4211 break; 4212 } 4213 case ISD::FPOW: 4214 case ISD::STRICT_FPOW: 4215 ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 4216 RTLIB::POW_F128, RTLIB::POW_PPCF128, Results); 4217 break; 4218 case ISD::LROUND: 4219 case ISD::STRICT_LROUND: 4220 ExpandArgFPLibCall(Node, RTLIB::LROUND_F32, 4221 RTLIB::LROUND_F64, RTLIB::LROUND_F80, 4222 RTLIB::LROUND_F128, 4223 RTLIB::LROUND_PPCF128, Results); 4224 break; 4225 case ISD::LLROUND: 4226 case ISD::STRICT_LLROUND: 4227 ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32, 4228 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, 4229 RTLIB::LLROUND_F128, 4230 RTLIB::LLROUND_PPCF128, Results); 4231 break; 4232 case ISD::LRINT: 4233 case ISD::STRICT_LRINT: 4234 ExpandArgFPLibCall(Node, RTLIB::LRINT_F32, 4235 RTLIB::LRINT_F64, RTLIB::LRINT_F80, 4236 RTLIB::LRINT_F128, 4237 RTLIB::LRINT_PPCF128, Results); 4238 break; 4239 case ISD::LLRINT: 4240 case ISD::STRICT_LLRINT: 4241 ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32, 4242 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80, 4243 RTLIB::LLRINT_F128, 4244 RTLIB::LLRINT_PPCF128, Results); 4245 break; 4246 case ISD::FDIV: 4247 case ISD::STRICT_FDIV: 4248 ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 4249 RTLIB::DIV_F80, RTLIB::DIV_F128, 4250 RTLIB::DIV_PPCF128, Results); 4251 break; 4252 case ISD::FREM: 4253 case ISD::STRICT_FREM: 4254 ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 4255 RTLIB::REM_F80, RTLIB::REM_F128, 4256 RTLIB::REM_PPCF128, Results); 4257 break; 4258 case ISD::FMA: 4259 case ISD::STRICT_FMA: 4260 ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 4261 RTLIB::FMA_F80, RTLIB::FMA_F128, 4262 RTLIB::FMA_PPCF128, Results); 4263 break; 4264 case ISD::FADD: 4265 case ISD::STRICT_FADD: 4266 ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 4267 RTLIB::ADD_F80, RTLIB::ADD_F128, 4268 RTLIB::ADD_PPCF128, Results); 4269 break; 4270 case ISD::FMUL: 4271 case ISD::STRICT_FMUL: 4272 ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 4273 RTLIB::MUL_F80, RTLIB::MUL_F128, 4274 RTLIB::MUL_PPCF128, Results); 4275 break; 4276 case ISD::FP16_TO_FP: 4277 if (Node->getValueType(0) == MVT::f32) { 4278 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 4279 } 4280 break; 4281 case ISD::STRICT_FP16_TO_FP: { 4282 if (Node->getValueType(0) == MVT::f32) { 4283 TargetLowering::MakeLibCallOptions CallOptions; 4284 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall( 4285 DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions, 4286 SDLoc(Node), Node->getOperand(0)); 4287 Results.push_back(Tmp.first); 4288 Results.push_back(Tmp.second); 4289 } 4290 break; 4291 } 4292 case ISD::FP_TO_FP16: { 4293 RTLIB::Libcall LC = 4294 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 4295 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 4296 Results.push_back(ExpandLibCall(LC, Node, false)); 4297 break; 4298 } 4299 case ISD::STRICT_FP_TO_FP16: { 4300 RTLIB::Libcall LC = 4301 RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16); 4302 assert(LC != RTLIB::UNKNOWN_LIBCALL && 4303 "Unable to expand strict_fp_to_fp16"); 4304 TargetLowering::MakeLibCallOptions CallOptions; 4305 std::pair<SDValue, SDValue> Tmp = 4306 TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1), 4307 CallOptions, SDLoc(Node), Node->getOperand(0)); 4308 Results.push_back(Tmp.first); 4309 Results.push_back(Tmp.second); 4310 break; 4311 } 4312 case ISD::FSUB: 4313 case ISD::STRICT_FSUB: 4314 ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4315 RTLIB::SUB_F80, RTLIB::SUB_F128, 4316 RTLIB::SUB_PPCF128, Results); 4317 break; 4318 case ISD::SREM: 4319 Results.push_back(ExpandIntLibCall(Node, true, 4320 RTLIB::SREM_I8, 4321 RTLIB::SREM_I16, RTLIB::SREM_I32, 4322 RTLIB::SREM_I64, RTLIB::SREM_I128)); 4323 break; 4324 case ISD::UREM: 4325 Results.push_back(ExpandIntLibCall(Node, false, 4326 RTLIB::UREM_I8, 4327 RTLIB::UREM_I16, RTLIB::UREM_I32, 4328 RTLIB::UREM_I64, RTLIB::UREM_I128)); 4329 break; 4330 case ISD::SDIV: 4331 Results.push_back(ExpandIntLibCall(Node, true, 4332 RTLIB::SDIV_I8, 4333 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4334 RTLIB::SDIV_I64, RTLIB::SDIV_I128)); 4335 break; 4336 case ISD::UDIV: 4337 Results.push_back(ExpandIntLibCall(Node, false, 4338 RTLIB::UDIV_I8, 4339 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4340 RTLIB::UDIV_I64, RTLIB::UDIV_I128)); 4341 break; 4342 case ISD::SDIVREM: 4343 case ISD::UDIVREM: 4344 // Expand into divrem libcall 4345 ExpandDivRemLibCall(Node, Results); 4346 break; 4347 case ISD::MUL: 4348 Results.push_back(ExpandIntLibCall(Node, false, 4349 RTLIB::MUL_I8, 4350 RTLIB::MUL_I16, RTLIB::MUL_I32, 4351 RTLIB::MUL_I64, RTLIB::MUL_I128)); 4352 break; 4353 case ISD::CTLZ_ZERO_UNDEF: 4354 switch (Node->getSimpleValueType(0).SimpleTy) { 4355 default: 4356 llvm_unreachable("LibCall explicitly requested, but not available"); 4357 case MVT::i32: 4358 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false)); 4359 break; 4360 case MVT::i64: 4361 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false)); 4362 break; 4363 case MVT::i128: 4364 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false)); 4365 break; 4366 } 4367 break; 4368 } 4369 4370 // Replace the original node with the legalized result. 4371 if (!Results.empty()) { 4372 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); 4373 ReplaceNode(Node, Results.data()); 4374 } else 4375 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); 4376 } 4377 4378 // Determine the vector type to use in place of an original scalar element when 4379 // promoting equally sized vectors. 4380 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4381 MVT EltVT, MVT NewEltVT) { 4382 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4383 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4384 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4385 return MidVT; 4386 } 4387 4388 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4389 LLVM_DEBUG(dbgs() << "Trying to promote node\n"); 4390 SmallVector<SDValue, 8> Results; 4391 MVT OVT = Node->getSimpleValueType(0); 4392 if (Node->getOpcode() == ISD::UINT_TO_FP || 4393 Node->getOpcode() == ISD::SINT_TO_FP || 4394 Node->getOpcode() == ISD::SETCC || 4395 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4396 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4397 OVT = Node->getOperand(0).getSimpleValueType(); 4398 } 4399 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP || 4400 Node->getOpcode() == ISD::STRICT_SINT_TO_FP) 4401 OVT = Node->getOperand(1).getSimpleValueType(); 4402 if (Node->getOpcode() == ISD::BR_CC) 4403 OVT = Node->getOperand(2).getSimpleValueType(); 4404 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4405 SDLoc dl(Node); 4406 SDValue Tmp1, Tmp2, Tmp3; 4407 switch (Node->getOpcode()) { 4408 case ISD::CTTZ: 4409 case ISD::CTTZ_ZERO_UNDEF: 4410 case ISD::CTLZ: 4411 case ISD::CTLZ_ZERO_UNDEF: 4412 case ISD::CTPOP: 4413 // Zero extend the argument unless its cttz, then use any_extend. 4414 if (Node->getOpcode() == ISD::CTTZ || 4415 Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 4416 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 4417 else 4418 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4419 4420 if (Node->getOpcode() == ISD::CTTZ) { 4421 // The count is the same in the promoted type except if the original 4422 // value was zero. This can be handled by setting the bit just off 4423 // the top of the original type. 4424 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4425 OVT.getSizeInBits()); 4426 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4427 DAG.getConstant(TopBit, dl, NVT)); 4428 } 4429 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4430 // already the correct result. 4431 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4432 if (Node->getOpcode() == ISD::CTLZ || 4433 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4434 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4435 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4436 DAG.getConstant(NVT.getSizeInBits() - 4437 OVT.getSizeInBits(), dl, NVT)); 4438 } 4439 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4440 break; 4441 case ISD::BITREVERSE: 4442 case ISD::BSWAP: { 4443 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4444 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4445 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4446 Tmp1 = DAG.getNode( 4447 ISD::SRL, dl, NVT, Tmp1, 4448 DAG.getConstant(DiffBits, dl, 4449 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4450 4451 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4452 break; 4453 } 4454 case ISD::FP_TO_UINT: 4455 case ISD::STRICT_FP_TO_UINT: 4456 case ISD::FP_TO_SINT: 4457 case ISD::STRICT_FP_TO_SINT: 4458 PromoteLegalFP_TO_INT(Node, dl, Results); 4459 break; 4460 case ISD::UINT_TO_FP: 4461 case ISD::STRICT_UINT_TO_FP: 4462 case ISD::SINT_TO_FP: 4463 case ISD::STRICT_SINT_TO_FP: 4464 PromoteLegalINT_TO_FP(Node, dl, Results); 4465 break; 4466 case ISD::VAARG: { 4467 SDValue Chain = Node->getOperand(0); // Get the chain. 4468 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4469 4470 unsigned TruncOp; 4471 if (OVT.isVector()) { 4472 TruncOp = ISD::BITCAST; 4473 } else { 4474 assert(OVT.isInteger() 4475 && "VAARG promotion is supported only for vectors or integer types"); 4476 TruncOp = ISD::TRUNCATE; 4477 } 4478 4479 // Perform the larger operation, then convert back 4480 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4481 Node->getConstantOperandVal(3)); 4482 Chain = Tmp1.getValue(1); 4483 4484 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4485 4486 // Modified the chain result - switch anything that used the old chain to 4487 // use the new one. 4488 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4489 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4490 if (UpdatedNodes) { 4491 UpdatedNodes->insert(Tmp2.getNode()); 4492 UpdatedNodes->insert(Chain.getNode()); 4493 } 4494 ReplacedNode(Node); 4495 break; 4496 } 4497 case ISD::MUL: 4498 case ISD::SDIV: 4499 case ISD::SREM: 4500 case ISD::UDIV: 4501 case ISD::UREM: 4502 case ISD::AND: 4503 case ISD::OR: 4504 case ISD::XOR: { 4505 unsigned ExtOp, TruncOp; 4506 if (OVT.isVector()) { 4507 ExtOp = ISD::BITCAST; 4508 TruncOp = ISD::BITCAST; 4509 } else { 4510 assert(OVT.isInteger() && "Cannot promote logic operation"); 4511 4512 switch (Node->getOpcode()) { 4513 default: 4514 ExtOp = ISD::ANY_EXTEND; 4515 break; 4516 case ISD::SDIV: 4517 case ISD::SREM: 4518 ExtOp = ISD::SIGN_EXTEND; 4519 break; 4520 case ISD::UDIV: 4521 case ISD::UREM: 4522 ExtOp = ISD::ZERO_EXTEND; 4523 break; 4524 } 4525 TruncOp = ISD::TRUNCATE; 4526 } 4527 // Promote each of the values to the new type. 4528 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4529 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4530 // Perform the larger operation, then convert back 4531 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4532 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4533 break; 4534 } 4535 case ISD::UMUL_LOHI: 4536 case ISD::SMUL_LOHI: { 4537 // Promote to a multiply in a wider integer type. 4538 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 4539 : ISD::SIGN_EXTEND; 4540 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4541 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4542 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 4543 4544 auto &DL = DAG.getDataLayout(); 4545 unsigned OriginalSize = OVT.getScalarSizeInBits(); 4546 Tmp2 = DAG.getNode( 4547 ISD::SRL, dl, NVT, Tmp1, 4548 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 4549 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4550 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 4551 break; 4552 } 4553 case ISD::SELECT: { 4554 unsigned ExtOp, TruncOp; 4555 if (Node->getValueType(0).isVector() || 4556 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4557 ExtOp = ISD::BITCAST; 4558 TruncOp = ISD::BITCAST; 4559 } else if (Node->getValueType(0).isInteger()) { 4560 ExtOp = ISD::ANY_EXTEND; 4561 TruncOp = ISD::TRUNCATE; 4562 } else { 4563 ExtOp = ISD::FP_EXTEND; 4564 TruncOp = ISD::FP_ROUND; 4565 } 4566 Tmp1 = Node->getOperand(0); 4567 // Promote each of the values to the new type. 4568 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4569 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4570 // Perform the larger operation, then round down. 4571 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4572 Tmp1->setFlags(Node->getFlags()); 4573 if (TruncOp != ISD::FP_ROUND) 4574 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4575 else 4576 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4577 DAG.getIntPtrConstant(0, dl)); 4578 Results.push_back(Tmp1); 4579 break; 4580 } 4581 case ISD::VECTOR_SHUFFLE: { 4582 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4583 4584 // Cast the two input vectors. 4585 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4586 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4587 4588 // Convert the shuffle mask to the right # elements. 4589 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4590 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4591 Results.push_back(Tmp1); 4592 break; 4593 } 4594 case ISD::SETCC: { 4595 unsigned ExtOp = ISD::FP_EXTEND; 4596 if (NVT.isInteger()) { 4597 ISD::CondCode CCCode = 4598 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4599 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4600 } 4601 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4602 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4603 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, 4604 Tmp2, Node->getOperand(2), Node->getFlags())); 4605 break; 4606 } 4607 case ISD::BR_CC: { 4608 unsigned ExtOp = ISD::FP_EXTEND; 4609 if (NVT.isInteger()) { 4610 ISD::CondCode CCCode = 4611 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4612 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4613 } 4614 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4615 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4616 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4617 Node->getOperand(0), Node->getOperand(1), 4618 Tmp1, Tmp2, Node->getOperand(4))); 4619 break; 4620 } 4621 case ISD::FADD: 4622 case ISD::FSUB: 4623 case ISD::FMUL: 4624 case ISD::FDIV: 4625 case ISD::FREM: 4626 case ISD::FMINNUM: 4627 case ISD::FMAXNUM: 4628 case ISD::FPOW: 4629 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4630 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4631 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4632 Node->getFlags()); 4633 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4634 Tmp3, DAG.getIntPtrConstant(0, dl))); 4635 break; 4636 case ISD::STRICT_FREM: 4637 case ISD::STRICT_FPOW: 4638 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4639 {Node->getOperand(0), Node->getOperand(1)}); 4640 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4641 {Node->getOperand(0), Node->getOperand(2)}); 4642 Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 4643 Tmp2.getValue(1)); 4644 Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4645 {Tmp3, Tmp1, Tmp2}); 4646 Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4647 {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)}); 4648 Results.push_back(Tmp1); 4649 Results.push_back(Tmp1.getValue(1)); 4650 break; 4651 case ISD::FMA: 4652 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4653 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4654 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4655 Results.push_back( 4656 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4657 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4658 DAG.getIntPtrConstant(0, dl))); 4659 break; 4660 case ISD::FCOPYSIGN: 4661 case ISD::FPOWI: { 4662 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4663 Tmp2 = Node->getOperand(1); 4664 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4665 4666 // fcopysign doesn't change anything but the sign bit, so 4667 // (fp_round (fcopysign (fpext a), b)) 4668 // is as precise as 4669 // (fp_round (fpext a)) 4670 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4671 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4672 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4673 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4674 break; 4675 } 4676 case ISD::FFLOOR: 4677 case ISD::FCEIL: 4678 case ISD::FRINT: 4679 case ISD::FNEARBYINT: 4680 case ISD::FROUND: 4681 case ISD::FROUNDEVEN: 4682 case ISD::FTRUNC: 4683 case ISD::FNEG: 4684 case ISD::FSQRT: 4685 case ISD::FSIN: 4686 case ISD::FCOS: 4687 case ISD::FLOG: 4688 case ISD::FLOG2: 4689 case ISD::FLOG10: 4690 case ISD::FABS: 4691 case ISD::FEXP: 4692 case ISD::FEXP2: 4693 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4694 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4695 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4696 Tmp2, DAG.getIntPtrConstant(0, dl))); 4697 break; 4698 case ISD::STRICT_FFLOOR: 4699 case ISD::STRICT_FCEIL: 4700 case ISD::STRICT_FSIN: 4701 case ISD::STRICT_FCOS: 4702 case ISD::STRICT_FLOG: 4703 case ISD::STRICT_FLOG10: 4704 case ISD::STRICT_FEXP: 4705 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4706 {Node->getOperand(0), Node->getOperand(1)}); 4707 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4708 {Tmp1.getValue(1), Tmp1}); 4709 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4710 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 4711 Results.push_back(Tmp3); 4712 Results.push_back(Tmp3.getValue(1)); 4713 break; 4714 case ISD::BUILD_VECTOR: { 4715 MVT EltVT = OVT.getVectorElementType(); 4716 MVT NewEltVT = NVT.getVectorElementType(); 4717 4718 // Handle bitcasts to a different vector type with the same total bit size 4719 // 4720 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4721 // => 4722 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4723 4724 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4725 "Invalid promote type for build_vector"); 4726 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4727 4728 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4729 4730 SmallVector<SDValue, 8> NewOps; 4731 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4732 SDValue Op = Node->getOperand(I); 4733 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4734 } 4735 4736 SDLoc SL(Node); 4737 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4738 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4739 Results.push_back(CvtVec); 4740 break; 4741 } 4742 case ISD::EXTRACT_VECTOR_ELT: { 4743 MVT EltVT = OVT.getVectorElementType(); 4744 MVT NewEltVT = NVT.getVectorElementType(); 4745 4746 // Handle bitcasts to a different vector type with the same total bit size. 4747 // 4748 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4749 // => 4750 // v4i32:castx = bitcast x:v2i64 4751 // 4752 // i64 = bitcast 4753 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4754 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4755 // 4756 4757 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4758 "Invalid promote type for extract_vector_elt"); 4759 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4760 4761 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4762 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4763 4764 SDValue Idx = Node->getOperand(1); 4765 EVT IdxVT = Idx.getValueType(); 4766 SDLoc SL(Node); 4767 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4768 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4769 4770 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4771 4772 SmallVector<SDValue, 8> NewOps; 4773 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4774 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4775 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4776 4777 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4778 CastVec, TmpIdx); 4779 NewOps.push_back(Elt); 4780 } 4781 4782 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 4783 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4784 break; 4785 } 4786 case ISD::INSERT_VECTOR_ELT: { 4787 MVT EltVT = OVT.getVectorElementType(); 4788 MVT NewEltVT = NVT.getVectorElementType(); 4789 4790 // Handle bitcasts to a different vector type with the same total bit size 4791 // 4792 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4793 // => 4794 // v4i32:castx = bitcast x:v2i64 4795 // v2i32:casty = bitcast y:i64 4796 // 4797 // v2i64 = bitcast 4798 // (v4i32 insert_vector_elt 4799 // (v4i32 insert_vector_elt v4i32:castx, 4800 // (extract_vector_elt casty, 0), 2 * z), 4801 // (extract_vector_elt casty, 1), (2 * z + 1)) 4802 4803 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4804 "Invalid promote type for insert_vector_elt"); 4805 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4806 4807 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4808 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4809 4810 SDValue Val = Node->getOperand(1); 4811 SDValue Idx = Node->getOperand(2); 4812 EVT IdxVT = Idx.getValueType(); 4813 SDLoc SL(Node); 4814 4815 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 4816 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4817 4818 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4819 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4820 4821 SDValue NewVec = CastVec; 4822 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4823 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4824 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4825 4826 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4827 CastVal, IdxOffset); 4828 4829 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 4830 NewVec, Elt, InEltIdx); 4831 } 4832 4833 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 4834 break; 4835 } 4836 case ISD::SCALAR_TO_VECTOR: { 4837 MVT EltVT = OVT.getVectorElementType(); 4838 MVT NewEltVT = NVT.getVectorElementType(); 4839 4840 // Handle bitcasts to different vector type with the same total bit size. 4841 // 4842 // e.g. v2i64 = scalar_to_vector x:i64 4843 // => 4844 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 4845 // 4846 4847 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4848 SDValue Val = Node->getOperand(0); 4849 SDLoc SL(Node); 4850 4851 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4852 SDValue Undef = DAG.getUNDEF(MidVT); 4853 4854 SmallVector<SDValue, 8> NewElts; 4855 NewElts.push_back(CastVal); 4856 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 4857 NewElts.push_back(Undef); 4858 4859 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 4860 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4861 Results.push_back(CvtVec); 4862 break; 4863 } 4864 case ISD::ATOMIC_SWAP: { 4865 AtomicSDNode *AM = cast<AtomicSDNode>(Node); 4866 SDLoc SL(Node); 4867 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal()); 4868 assert(NVT.getSizeInBits() == OVT.getSizeInBits() && 4869 "unexpected promotion type"); 4870 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && 4871 "unexpected atomic_swap with illegal type"); 4872 4873 SDValue NewAtomic 4874 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT, 4875 DAG.getVTList(NVT, MVT::Other), 4876 { AM->getChain(), AM->getBasePtr(), CastVal }, 4877 AM->getMemOperand()); 4878 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); 4879 Results.push_back(NewAtomic.getValue(1)); 4880 break; 4881 } 4882 } 4883 4884 // Replace the original node with the legalized result. 4885 if (!Results.empty()) { 4886 LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); 4887 ReplaceNode(Node, Results.data()); 4888 } else 4889 LLVM_DEBUG(dbgs() << "Could not promote node\n"); 4890 } 4891 4892 /// This is the entry point for the file. 4893 void SelectionDAG::Legalize() { 4894 AssignTopologicalOrder(); 4895 4896 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4897 // Use a delete listener to remove nodes which were deleted during 4898 // legalization from LegalizeNodes. This is needed to handle the situation 4899 // where a new node is allocated by the object pool to the same address of a 4900 // previously deleted node. 4901 DAGNodeDeletedListener DeleteListener( 4902 *this, 4903 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 4904 4905 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 4906 4907 // Visit all the nodes. We start in topological order, so that we see 4908 // nodes with their original operands intact. Legalization can produce 4909 // new nodes which may themselves need to be legalized. Iterate until all 4910 // nodes have been legalized. 4911 while (true) { 4912 bool AnyLegalized = false; 4913 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 4914 --NI; 4915 4916 SDNode *N = &*NI; 4917 if (N->use_empty() && N != getRoot().getNode()) { 4918 ++NI; 4919 DeleteNode(N); 4920 continue; 4921 } 4922 4923 if (LegalizedNodes.insert(N).second) { 4924 AnyLegalized = true; 4925 Legalizer.LegalizeOp(N); 4926 4927 if (N->use_empty() && N != getRoot().getNode()) { 4928 ++NI; 4929 DeleteNode(N); 4930 } 4931 } 4932 } 4933 if (!AnyLegalized) 4934 break; 4935 4936 } 4937 4938 // Remove dead nodes now. 4939 RemoveDeadNodes(); 4940 } 4941 4942 bool SelectionDAG::LegalizeOp(SDNode *N, 4943 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 4944 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4945 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 4946 4947 // Directly insert the node in question, and legalize it. This will recurse 4948 // as needed through operands. 4949 LegalizedNodes.insert(N); 4950 Legalizer.LegalizeOp(N); 4951 4952 return LegalizedNodes.count(N); 4953 } 4954