1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::Legalize method. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/CodeGen/ISDOpcodes.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/RuntimeLibcalls.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/SelectionDAGNodes.h" 28 #include "llvm/CodeGen/TargetFrameLowering.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/CodeGen/ValueTypes.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstdint> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "legalizedag" 57 58 namespace { 59 60 /// Keeps track of state when getting the sign of a floating-point value as an 61 /// integer. 62 struct FloatSignAsInt { 63 EVT FloatVT; 64 SDValue Chain; 65 SDValue FloatPtr; 66 SDValue IntPtr; 67 MachinePointerInfo IntPointerInfo; 68 MachinePointerInfo FloatPointerInfo; 69 SDValue IntValue; 70 APInt SignMask; 71 uint8_t SignBit; 72 }; 73 74 //===----------------------------------------------------------------------===// 75 /// This takes an arbitrary SelectionDAG as input and 76 /// hacks on it until the target machine can handle it. This involves 77 /// eliminating value sizes the machine cannot handle (promoting small sizes to 78 /// large sizes or splitting up large values into small values) as well as 79 /// eliminating operations the machine cannot handle. 80 /// 81 /// This code also does a small amount of optimization and recognition of idioms 82 /// as part of its processing. For example, if a target does not support a 83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 84 /// will attempt merge setcc and brc instructions into brcc's. 85 class SelectionDAGLegalize { 86 const TargetMachine &TM; 87 const TargetLowering &TLI; 88 SelectionDAG &DAG; 89 90 /// The set of nodes which have already been legalized. We hold a 91 /// reference to it in order to update as necessary on node deletion. 92 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 93 94 /// A set of all the nodes updated during legalization. 95 SmallSetVector<SDNode *, 16> *UpdatedNodes; 96 97 EVT getSetCCResultType(EVT VT) const { 98 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 99 } 100 101 // Libcall insertion helpers. 102 103 public: 104 SelectionDAGLegalize(SelectionDAG &DAG, 105 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 106 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 107 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 108 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 109 110 /// Legalizes the given operation. 111 void LegalizeOp(SDNode *Node); 112 113 private: 114 SDValue OptimizeFloatStore(StoreSDNode *ST); 115 116 void LegalizeLoadOps(SDNode *Node); 117 void LegalizeStoreOps(SDNode *Node); 118 119 /// Some targets cannot handle a variable 120 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 121 /// is necessary to spill the vector being inserted into to memory, perform 122 /// the insert there, and then read the result back. 123 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 124 const SDLoc &dl); 125 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 126 const SDLoc &dl); 127 128 /// Return a vector shuffle operation which 129 /// performs the same shuffe in terms of order or result bytes, but on a type 130 /// whose vector element type is narrower than the original shuffle type. 131 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 132 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 133 SDValue N1, SDValue N2, 134 ArrayRef<int> Mask) const; 135 136 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 137 138 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall LC, 139 SmallVectorImpl<SDValue> &Results); 140 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 141 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 142 RTLIB::Libcall Call_F128, 143 RTLIB::Libcall Call_PPCF128, 144 SmallVectorImpl<SDValue> &Results); 145 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 146 RTLIB::Libcall Call_I8, 147 RTLIB::Libcall Call_I16, 148 RTLIB::Libcall Call_I32, 149 RTLIB::Libcall Call_I64, 150 RTLIB::Libcall Call_I128); 151 void ExpandArgFPLibCall(SDNode *Node, 152 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, 153 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, 154 RTLIB::Libcall Call_PPCF128, 155 SmallVectorImpl<SDValue> &Results); 156 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 157 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 158 159 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 160 const SDLoc &dl); 161 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 162 const SDLoc &dl, SDValue ChainIn); 163 SDValue ExpandBUILD_VECTOR(SDNode *Node); 164 SDValue ExpandSPLAT_VECTOR(SDNode *Node); 165 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 166 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 167 SmallVectorImpl<SDValue> &Results); 168 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 169 SDValue Value) const; 170 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 171 SDValue NewIntValue) const; 172 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 173 SDValue ExpandFABS(SDNode *Node) const; 174 SDValue ExpandFNEG(SDNode *Node) const; 175 SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain); 176 void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl, 177 SmallVectorImpl<SDValue> &Results); 178 void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 179 SmallVectorImpl<SDValue> &Results); 180 SDValue PromoteLegalFP_TO_INT_SAT(SDNode *Node, const SDLoc &dl); 181 182 SDValue ExpandPARITY(SDValue Op, const SDLoc &dl); 183 184 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 185 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 186 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 187 188 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 189 SDValue ExpandConstant(ConstantSDNode *CP); 190 191 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 192 bool ExpandNode(SDNode *Node); 193 void ConvertNodeToLibcall(SDNode *Node); 194 void PromoteNode(SDNode *Node); 195 196 public: 197 // Node replacement helpers 198 199 void ReplacedNode(SDNode *N) { 200 LegalizedNodes.erase(N); 201 if (UpdatedNodes) 202 UpdatedNodes->insert(N); 203 } 204 205 void ReplaceNode(SDNode *Old, SDNode *New) { 206 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 207 dbgs() << " with: "; New->dump(&DAG)); 208 209 assert(Old->getNumValues() == New->getNumValues() && 210 "Replacing one node with another that produces a different number " 211 "of values!"); 212 DAG.ReplaceAllUsesWith(Old, New); 213 if (UpdatedNodes) 214 UpdatedNodes->insert(New); 215 ReplacedNode(Old); 216 } 217 218 void ReplaceNode(SDValue Old, SDValue New) { 219 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 220 dbgs() << " with: "; New->dump(&DAG)); 221 222 DAG.ReplaceAllUsesWith(Old, New); 223 if (UpdatedNodes) 224 UpdatedNodes->insert(New.getNode()); 225 ReplacedNode(Old.getNode()); 226 } 227 228 void ReplaceNode(SDNode *Old, const SDValue *New) { 229 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 230 231 DAG.ReplaceAllUsesWith(Old, New); 232 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 233 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); 234 New[i]->dump(&DAG)); 235 if (UpdatedNodes) 236 UpdatedNodes->insert(New[i].getNode()); 237 } 238 ReplacedNode(Old); 239 } 240 241 void ReplaceNodeWithValue(SDValue Old, SDValue New) { 242 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 243 dbgs() << " with: "; New->dump(&DAG)); 244 245 DAG.ReplaceAllUsesOfValueWith(Old, New); 246 if (UpdatedNodes) 247 UpdatedNodes->insert(New.getNode()); 248 ReplacedNode(Old.getNode()); 249 } 250 }; 251 252 } // end anonymous namespace 253 254 /// Return a vector shuffle operation which 255 /// performs the same shuffle in terms of order or result bytes, but on a type 256 /// whose vector element type is narrower than the original shuffle type. 257 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 258 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 259 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 260 ArrayRef<int> Mask) const { 261 unsigned NumMaskElts = VT.getVectorNumElements(); 262 unsigned NumDestElts = NVT.getVectorNumElements(); 263 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 264 265 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 266 267 if (NumEltsGrowth == 1) 268 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 269 270 SmallVector<int, 8> NewMask; 271 for (unsigned i = 0; i != NumMaskElts; ++i) { 272 int Idx = Mask[i]; 273 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 274 if (Idx < 0) 275 NewMask.push_back(-1); 276 else 277 NewMask.push_back(Idx * NumEltsGrowth + j); 278 } 279 } 280 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 281 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 282 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 283 } 284 285 /// Expands the ConstantFP node to an integer constant or 286 /// a load from the constant pool. 287 SDValue 288 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 289 bool Extend = false; 290 SDLoc dl(CFP); 291 292 // If a FP immediate is precise when represented as a float and if the 293 // target can do an extending load from float to double, we put it into 294 // the constant pool as a float, even if it's is statically typed as a 295 // double. This shrinks FP constants and canonicalizes them for targets where 296 // an FP extending load is the same cost as a normal load (such as on the x87 297 // fp stack or PPC FP unit). 298 EVT VT = CFP->getValueType(0); 299 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 300 if (!UseCP) { 301 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 302 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 303 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 304 } 305 306 APFloat APF = CFP->getValueAPF(); 307 EVT OrigVT = VT; 308 EVT SVT = VT; 309 310 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 311 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 312 if (!APF.isSignaling()) { 313 while (SVT != MVT::f32 && SVT != MVT::f16) { 314 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 315 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 316 // Only do this if the target has a native EXTLOAD instruction from 317 // smaller type. 318 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 319 TLI.ShouldShrinkFPConstant(OrigVT)) { 320 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 321 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 322 VT = SVT; 323 Extend = true; 324 } 325 } 326 } 327 328 SDValue CPIdx = 329 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 330 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 331 if (Extend) { 332 SDValue Result = DAG.getExtLoad( 333 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 334 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 335 Alignment); 336 return Result; 337 } 338 SDValue Result = DAG.getLoad( 339 OrigVT, dl, DAG.getEntryNode(), CPIdx, 340 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 341 return Result; 342 } 343 344 /// Expands the Constant node to a load from the constant pool. 345 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 346 SDLoc dl(CP); 347 EVT VT = CP->getValueType(0); 348 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 349 TLI.getPointerTy(DAG.getDataLayout())); 350 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 351 SDValue Result = DAG.getLoad( 352 VT, dl, DAG.getEntryNode(), CPIdx, 353 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 354 return Result; 355 } 356 357 /// Some target cannot handle a variable insertion index for the 358 /// INSERT_VECTOR_ELT instruction. In this case, it 359 /// is necessary to spill the vector being inserted into to memory, perform 360 /// the insert there, and then read the result back. 361 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 362 SDValue Val, 363 SDValue Idx, 364 const SDLoc &dl) { 365 SDValue Tmp1 = Vec; 366 SDValue Tmp2 = Val; 367 SDValue Tmp3 = Idx; 368 369 // If the target doesn't support this, we have to spill the input vector 370 // to a temporary stack slot, update the element, then reload it. This is 371 // badness. We could also load the value into a vector register (either 372 // with a "move to register" or "extload into register" instruction, then 373 // permute it into place, if the idx is a constant and if the idx is 374 // supported by the target. 375 EVT VT = Tmp1.getValueType(); 376 EVT EltVT = VT.getVectorElementType(); 377 SDValue StackPtr = DAG.CreateStackTemporary(VT); 378 379 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 380 381 // Store the vector. 382 SDValue Ch = DAG.getStore( 383 DAG.getEntryNode(), dl, Tmp1, StackPtr, 384 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 385 386 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 387 388 // Store the scalar value. 389 Ch = DAG.getTruncStore( 390 Ch, dl, Tmp2, StackPtr2, 391 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT); 392 // Load the updated vector. 393 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 394 DAG.getMachineFunction(), SPFI)); 395 } 396 397 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 398 SDValue Idx, 399 const SDLoc &dl) { 400 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 401 // SCALAR_TO_VECTOR requires that the type of the value being inserted 402 // match the element type of the vector being created, except for 403 // integers in which case the inserted value can be over width. 404 EVT EltVT = Vec.getValueType().getVectorElementType(); 405 if (Val.getValueType() == EltVT || 406 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 407 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 408 Vec.getValueType(), Val); 409 410 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 411 // We generate a shuffle of InVec and ScVec, so the shuffle mask 412 // should be 0,1,2,3,4,5... with the appropriate element replaced with 413 // elt 0 of the RHS. 414 SmallVector<int, 8> ShufOps; 415 for (unsigned i = 0; i != NumElts; ++i) 416 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 417 418 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 419 } 420 } 421 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 422 } 423 424 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 425 if (!ISD::isNormalStore(ST)) 426 return SDValue(); 427 428 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); 429 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 430 // FIXME: move this to the DAG Combiner! Note that we can't regress due 431 // to phase ordering between legalized code and the dag combiner. This 432 // probably means that we need to integrate dag combiner and legalizer 433 // together. 434 // We generally can't do this one for long doubles. 435 SDValue Chain = ST->getChain(); 436 SDValue Ptr = ST->getBasePtr(); 437 SDValue Value = ST->getValue(); 438 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 439 AAMDNodes AAInfo = ST->getAAInfo(); 440 SDLoc dl(ST); 441 442 // Don't optimise TargetConstantFP 443 if (Value.getOpcode() == ISD::TargetConstantFP) 444 return SDValue(); 445 446 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) { 447 if (CFP->getValueType(0) == MVT::f32 && 448 TLI.isTypeLegal(MVT::i32)) { 449 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 450 bitcastToAPInt().zextOrTrunc(32), 451 SDLoc(CFP), MVT::i32); 452 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 453 ST->getOriginalAlign(), MMOFlags, AAInfo); 454 } 455 456 if (CFP->getValueType(0) == MVT::f64) { 457 // If this target supports 64-bit registers, do a single 64-bit store. 458 if (TLI.isTypeLegal(MVT::i64)) { 459 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 460 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 461 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 462 ST->getOriginalAlign(), MMOFlags, AAInfo); 463 } 464 465 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 466 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 467 // stores. If the target supports neither 32- nor 64-bits, this 468 // xform is certainly not worth it. 469 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 470 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 471 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 472 if (DAG.getDataLayout().isBigEndian()) 473 std::swap(Lo, Hi); 474 475 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), 476 ST->getOriginalAlign(), MMOFlags, AAInfo); 477 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), dl); 478 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 479 ST->getPointerInfo().getWithOffset(4), 480 ST->getOriginalAlign(), MMOFlags, AAInfo); 481 482 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 483 } 484 } 485 } 486 return SDValue(); 487 } 488 489 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 490 StoreSDNode *ST = cast<StoreSDNode>(Node); 491 SDValue Chain = ST->getChain(); 492 SDValue Ptr = ST->getBasePtr(); 493 SDLoc dl(Node); 494 495 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 496 AAMDNodes AAInfo = ST->getAAInfo(); 497 498 if (!ST->isTruncatingStore()) { 499 LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); 500 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 501 ReplaceNode(ST, OptStore); 502 return; 503 } 504 505 SDValue Value = ST->getValue(); 506 MVT VT = Value.getSimpleValueType(); 507 switch (TLI.getOperationAction(ISD::STORE, VT)) { 508 default: llvm_unreachable("This action is not supported yet!"); 509 case TargetLowering::Legal: { 510 // If this is an unaligned store and the target doesn't support it, 511 // expand it. 512 EVT MemVT = ST->getMemoryVT(); 513 const DataLayout &DL = DAG.getDataLayout(); 514 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 515 *ST->getMemOperand())) { 516 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 517 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 518 ReplaceNode(SDValue(ST, 0), Result); 519 } else 520 LLVM_DEBUG(dbgs() << "Legal store\n"); 521 break; 522 } 523 case TargetLowering::Custom: { 524 LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); 525 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 526 if (Res && Res != SDValue(Node, 0)) 527 ReplaceNode(SDValue(Node, 0), Res); 528 return; 529 } 530 case TargetLowering::Promote: { 531 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 532 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 533 "Can only promote stores to same size type"); 534 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 535 SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 536 ST->getOriginalAlign(), MMOFlags, AAInfo); 537 ReplaceNode(SDValue(Node, 0), Result); 538 break; 539 } 540 } 541 return; 542 } 543 544 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); 545 SDValue Value = ST->getValue(); 546 EVT StVT = ST->getMemoryVT(); 547 TypeSize StWidth = StVT.getSizeInBits(); 548 TypeSize StSize = StVT.getStoreSizeInBits(); 549 auto &DL = DAG.getDataLayout(); 550 551 if (StWidth != StSize) { 552 // Promote to a byte-sized store with upper bits zero if not 553 // storing an integral number of bytes. For example, promote 554 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 555 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StSize.getFixedSize()); 556 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 557 SDValue Result = 558 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 559 ST->getOriginalAlign(), MMOFlags, AAInfo); 560 ReplaceNode(SDValue(Node, 0), Result); 561 } else if (!StVT.isVector() && !isPowerOf2_64(StWidth.getFixedSize())) { 562 // If not storing a power-of-2 number of bits, expand as two stores. 563 assert(!StVT.isVector() && "Unsupported truncstore!"); 564 unsigned StWidthBits = StWidth.getFixedSize(); 565 unsigned LogStWidth = Log2_32(StWidthBits); 566 assert(LogStWidth < 32); 567 unsigned RoundWidth = 1 << LogStWidth; 568 assert(RoundWidth < StWidthBits); 569 unsigned ExtraWidth = StWidthBits - RoundWidth; 570 assert(ExtraWidth < RoundWidth); 571 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 572 "Store size not an integral number of bytes!"); 573 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 574 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 575 SDValue Lo, Hi; 576 unsigned IncrementSize; 577 578 if (DL.isLittleEndian()) { 579 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 580 // Store the bottom RoundWidth bits. 581 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 582 RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 583 584 // Store the remaining ExtraWidth bits. 585 IncrementSize = RoundWidth / 8; 586 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 587 Hi = DAG.getNode( 588 ISD::SRL, dl, Value.getValueType(), Value, 589 DAG.getConstant(RoundWidth, dl, 590 TLI.getShiftAmountTy(Value.getValueType(), DL))); 591 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, 592 ST->getPointerInfo().getWithOffset(IncrementSize), 593 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 594 } else { 595 // Big endian - avoid unaligned stores. 596 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 597 // Store the top RoundWidth bits. 598 Hi = DAG.getNode( 599 ISD::SRL, dl, Value.getValueType(), Value, 600 DAG.getConstant(ExtraWidth, dl, 601 TLI.getShiftAmountTy(Value.getValueType(), DL))); 602 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT, 603 ST->getOriginalAlign(), MMOFlags, AAInfo); 604 605 // Store the remaining ExtraWidth bits. 606 IncrementSize = RoundWidth / 8; 607 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 608 DAG.getConstant(IncrementSize, dl, 609 Ptr.getValueType())); 610 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, 611 ST->getPointerInfo().getWithOffset(IncrementSize), 612 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 613 } 614 615 // The order of the stores doesn't matter. 616 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 617 ReplaceNode(SDValue(Node, 0), Result); 618 } else { 619 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 620 default: llvm_unreachable("This action is not supported yet!"); 621 case TargetLowering::Legal: { 622 EVT MemVT = ST->getMemoryVT(); 623 // If this is an unaligned store and the target doesn't support it, 624 // expand it. 625 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 626 *ST->getMemOperand())) { 627 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 628 ReplaceNode(SDValue(ST, 0), Result); 629 } 630 break; 631 } 632 case TargetLowering::Custom: { 633 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 634 if (Res && Res != SDValue(Node, 0)) 635 ReplaceNode(SDValue(Node, 0), Res); 636 return; 637 } 638 case TargetLowering::Expand: 639 assert(!StVT.isVector() && 640 "Vector Stores are handled in LegalizeVectorOps"); 641 642 SDValue Result; 643 644 // TRUNCSTORE:i16 i32 -> STORE i16 645 if (TLI.isTypeLegal(StVT)) { 646 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 647 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 648 ST->getOriginalAlign(), MMOFlags, AAInfo); 649 } else { 650 // The in-memory type isn't legal. Truncate to the type it would promote 651 // to, and then do a truncstore. 652 Value = DAG.getNode(ISD::TRUNCATE, dl, 653 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 654 Value); 655 Result = 656 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT, 657 ST->getOriginalAlign(), MMOFlags, AAInfo); 658 } 659 660 ReplaceNode(SDValue(Node, 0), Result); 661 break; 662 } 663 } 664 } 665 666 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 667 LoadSDNode *LD = cast<LoadSDNode>(Node); 668 SDValue Chain = LD->getChain(); // The chain. 669 SDValue Ptr = LD->getBasePtr(); // The base pointer. 670 SDValue Value; // The value returned by the load op. 671 SDLoc dl(Node); 672 673 ISD::LoadExtType ExtType = LD->getExtensionType(); 674 if (ExtType == ISD::NON_EXTLOAD) { 675 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 676 MVT VT = Node->getSimpleValueType(0); 677 SDValue RVal = SDValue(Node, 0); 678 SDValue RChain = SDValue(Node, 1); 679 680 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 681 default: llvm_unreachable("This action is not supported yet!"); 682 case TargetLowering::Legal: { 683 EVT MemVT = LD->getMemoryVT(); 684 const DataLayout &DL = DAG.getDataLayout(); 685 // If this is an unaligned load and the target doesn't support it, 686 // expand it. 687 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 688 *LD->getMemOperand())) { 689 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 690 } 691 break; 692 } 693 case TargetLowering::Custom: 694 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 695 RVal = Res; 696 RChain = Res.getValue(1); 697 } 698 break; 699 700 case TargetLowering::Promote: { 701 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 702 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 703 "Can only promote loads to same size type"); 704 705 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 706 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 707 RChain = Res.getValue(1); 708 break; 709 } 710 } 711 if (RChain.getNode() != Node) { 712 assert(RVal.getNode() != Node && "Load must be completely replaced"); 713 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 714 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 715 if (UpdatedNodes) { 716 UpdatedNodes->insert(RVal.getNode()); 717 UpdatedNodes->insert(RChain.getNode()); 718 } 719 ReplacedNode(Node); 720 } 721 return; 722 } 723 724 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); 725 EVT SrcVT = LD->getMemoryVT(); 726 TypeSize SrcWidth = SrcVT.getSizeInBits(); 727 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 728 AAMDNodes AAInfo = LD->getAAInfo(); 729 730 if (SrcWidth != SrcVT.getStoreSizeInBits() && 731 // Some targets pretend to have an i1 loading operation, and actually 732 // load an i8. This trick is correct for ZEXTLOAD because the top 7 733 // bits are guaranteed to be zero; it helps the optimizers understand 734 // that these bits are zero. It is also useful for EXTLOAD, since it 735 // tells the optimizers that those bits are undefined. It would be 736 // nice to have an effective generic way of getting these benefits... 737 // Until such a way is found, don't insist on promoting i1 here. 738 (SrcVT != MVT::i1 || 739 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 740 TargetLowering::Promote)) { 741 // Promote to a byte-sized load if not loading an integral number of 742 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 743 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 744 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 745 SDValue Ch; 746 747 // The extra bits are guaranteed to be zero, since we stored them that 748 // way. A zext load from NVT thus automatically gives zext from SrcVT. 749 750 ISD::LoadExtType NewExtType = 751 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 752 753 SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 754 Chain, Ptr, LD->getPointerInfo(), NVT, 755 LD->getOriginalAlign(), MMOFlags, AAInfo); 756 757 Ch = Result.getValue(1); // The chain. 758 759 if (ExtType == ISD::SEXTLOAD) 760 // Having the top bits zero doesn't help when sign extending. 761 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 762 Result.getValueType(), 763 Result, DAG.getValueType(SrcVT)); 764 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 765 // All the top bits are guaranteed to be zero - inform the optimizers. 766 Result = DAG.getNode(ISD::AssertZext, dl, 767 Result.getValueType(), Result, 768 DAG.getValueType(SrcVT)); 769 770 Value = Result; 771 Chain = Ch; 772 } else if (!isPowerOf2_64(SrcWidth.getKnownMinSize())) { 773 // If not loading a power-of-2 number of bits, expand as two loads. 774 assert(!SrcVT.isVector() && "Unsupported extload!"); 775 unsigned SrcWidthBits = SrcWidth.getFixedSize(); 776 unsigned LogSrcWidth = Log2_32(SrcWidthBits); 777 assert(LogSrcWidth < 32); 778 unsigned RoundWidth = 1 << LogSrcWidth; 779 assert(RoundWidth < SrcWidthBits); 780 unsigned ExtraWidth = SrcWidthBits - RoundWidth; 781 assert(ExtraWidth < RoundWidth); 782 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 783 "Load size not an integral number of bytes!"); 784 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 785 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 786 SDValue Lo, Hi, Ch; 787 unsigned IncrementSize; 788 auto &DL = DAG.getDataLayout(); 789 790 if (DL.isLittleEndian()) { 791 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 792 // Load the bottom RoundWidth bits. 793 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 794 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 795 MMOFlags, AAInfo); 796 797 // Load the remaining ExtraWidth bits. 798 IncrementSize = RoundWidth / 8; 799 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 800 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 801 LD->getPointerInfo().getWithOffset(IncrementSize), 802 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 803 804 // Build a factor node to remember that this load is independent of 805 // the other one. 806 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 807 Hi.getValue(1)); 808 809 // Move the top bits to the right place. 810 Hi = DAG.getNode( 811 ISD::SHL, dl, Hi.getValueType(), Hi, 812 DAG.getConstant(RoundWidth, dl, 813 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 814 815 // Join the hi and lo parts. 816 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 817 } else { 818 // Big endian - avoid unaligned loads. 819 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 820 // Load the top RoundWidth bits. 821 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 822 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 823 MMOFlags, AAInfo); 824 825 // Load the remaining ExtraWidth bits. 826 IncrementSize = RoundWidth / 8; 827 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 828 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 829 LD->getPointerInfo().getWithOffset(IncrementSize), 830 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 831 832 // Build a factor node to remember that this load is independent of 833 // the other one. 834 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 835 Hi.getValue(1)); 836 837 // Move the top bits to the right place. 838 Hi = DAG.getNode( 839 ISD::SHL, dl, Hi.getValueType(), Hi, 840 DAG.getConstant(ExtraWidth, dl, 841 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 842 843 // Join the hi and lo parts. 844 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 845 } 846 847 Chain = Ch; 848 } else { 849 bool isCustom = false; 850 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 851 SrcVT.getSimpleVT())) { 852 default: llvm_unreachable("This action is not supported yet!"); 853 case TargetLowering::Custom: 854 isCustom = true; 855 LLVM_FALLTHROUGH; 856 case TargetLowering::Legal: 857 Value = SDValue(Node, 0); 858 Chain = SDValue(Node, 1); 859 860 if (isCustom) { 861 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 862 Value = Res; 863 Chain = Res.getValue(1); 864 } 865 } else { 866 // If this is an unaligned load and the target doesn't support it, 867 // expand it. 868 EVT MemVT = LD->getMemoryVT(); 869 const DataLayout &DL = DAG.getDataLayout(); 870 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, 871 *LD->getMemOperand())) { 872 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 873 } 874 } 875 break; 876 877 case TargetLowering::Expand: { 878 EVT DestVT = Node->getValueType(0); 879 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 880 // If the source type is not legal, see if there is a legal extload to 881 // an intermediate type that we can then extend further. 882 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 883 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 884 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 885 // If we are loading a legal type, this is a non-extload followed by a 886 // full extend. 887 ISD::LoadExtType MidExtType = 888 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 889 890 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 891 SrcVT, LD->getMemOperand()); 892 unsigned ExtendOp = 893 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 894 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 895 Chain = Load.getValue(1); 896 break; 897 } 898 899 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 900 // normal undefined upper bits behavior to allow using an in-reg extend 901 // with the illegal FP type, so load as an integer and do the 902 // from-integer conversion. 903 if (SrcVT.getScalarType() == MVT::f16) { 904 EVT ISrcVT = SrcVT.changeTypeToInteger(); 905 EVT IDestVT = DestVT.changeTypeToInteger(); 906 EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 907 908 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain, 909 Ptr, ISrcVT, LD->getMemOperand()); 910 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 911 Chain = Result.getValue(1); 912 break; 913 } 914 } 915 916 assert(!SrcVT.isVector() && 917 "Vector Loads are handled in LegalizeVectorOps"); 918 919 // FIXME: This does not work for vectors on most targets. Sign- 920 // and zero-extend operations are currently folded into extending 921 // loads, whether they are legal or not, and then we end up here 922 // without any support for legalizing them. 923 assert(ExtType != ISD::EXTLOAD && 924 "EXTLOAD should always be supported!"); 925 // Turn the unsupported load into an EXTLOAD followed by an 926 // explicit zero/sign extend inreg. 927 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 928 Node->getValueType(0), 929 Chain, Ptr, SrcVT, 930 LD->getMemOperand()); 931 SDValue ValRes; 932 if (ExtType == ISD::SEXTLOAD) 933 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 934 Result.getValueType(), 935 Result, DAG.getValueType(SrcVT)); 936 else 937 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT); 938 Value = ValRes; 939 Chain = Result.getValue(1); 940 break; 941 } 942 } 943 } 944 945 // Since loads produce two values, make sure to remember that we legalized 946 // both of them. 947 if (Chain.getNode() != Node) { 948 assert(Value.getNode() != Node && "Load must be completely replaced"); 949 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 950 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 951 if (UpdatedNodes) { 952 UpdatedNodes->insert(Value.getNode()); 953 UpdatedNodes->insert(Chain.getNode()); 954 } 955 ReplacedNode(Node); 956 } 957 } 958 959 /// Return a legal replacement for the given operation, with all legal operands. 960 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 961 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 962 963 // Allow illegal target nodes and illegal registers. 964 if (Node->getOpcode() == ISD::TargetConstant || 965 Node->getOpcode() == ISD::Register) 966 return; 967 968 #ifndef NDEBUG 969 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 970 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 971 TargetLowering::TypeLegal && 972 "Unexpected illegal type!"); 973 974 for (const SDValue &Op : Node->op_values()) 975 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 976 TargetLowering::TypeLegal || 977 Op.getOpcode() == ISD::TargetConstant || 978 Op.getOpcode() == ISD::Register) && 979 "Unexpected illegal type!"); 980 #endif 981 982 // Figure out the correct action; the way to query this varies by opcode 983 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 984 bool SimpleFinishLegalizing = true; 985 switch (Node->getOpcode()) { 986 case ISD::INTRINSIC_W_CHAIN: 987 case ISD::INTRINSIC_WO_CHAIN: 988 case ISD::INTRINSIC_VOID: 989 case ISD::STACKSAVE: 990 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 991 break; 992 case ISD::GET_DYNAMIC_AREA_OFFSET: 993 Action = TLI.getOperationAction(Node->getOpcode(), 994 Node->getValueType(0)); 995 break; 996 case ISD::VAARG: 997 Action = TLI.getOperationAction(Node->getOpcode(), 998 Node->getValueType(0)); 999 if (Action != TargetLowering::Promote) 1000 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 1001 break; 1002 case ISD::FP_TO_FP16: 1003 case ISD::SINT_TO_FP: 1004 case ISD::UINT_TO_FP: 1005 case ISD::EXTRACT_VECTOR_ELT: 1006 case ISD::LROUND: 1007 case ISD::LLROUND: 1008 case ISD::LRINT: 1009 case ISD::LLRINT: 1010 Action = TLI.getOperationAction(Node->getOpcode(), 1011 Node->getOperand(0).getValueType()); 1012 break; 1013 case ISD::STRICT_FP_TO_FP16: 1014 case ISD::STRICT_SINT_TO_FP: 1015 case ISD::STRICT_UINT_TO_FP: 1016 case ISD::STRICT_LRINT: 1017 case ISD::STRICT_LLRINT: 1018 case ISD::STRICT_LROUND: 1019 case ISD::STRICT_LLROUND: 1020 // These pseudo-ops are the same as the other STRICT_ ops except 1021 // they are registered with setOperationAction() using the input type 1022 // instead of the output type. 1023 Action = TLI.getOperationAction(Node->getOpcode(), 1024 Node->getOperand(1).getValueType()); 1025 break; 1026 case ISD::SIGN_EXTEND_INREG: { 1027 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1028 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1029 break; 1030 } 1031 case ISD::ATOMIC_STORE: 1032 Action = TLI.getOperationAction(Node->getOpcode(), 1033 Node->getOperand(2).getValueType()); 1034 break; 1035 case ISD::SELECT_CC: 1036 case ISD::STRICT_FSETCC: 1037 case ISD::STRICT_FSETCCS: 1038 case ISD::SETCC: 1039 case ISD::BR_CC: { 1040 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 1041 Node->getOpcode() == ISD::STRICT_FSETCC ? 3 : 1042 Node->getOpcode() == ISD::STRICT_FSETCCS ? 3 : 1043 Node->getOpcode() == ISD::SETCC ? 2 : 1; 1044 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 1045 Node->getOpcode() == ISD::STRICT_FSETCC ? 1 : 1046 Node->getOpcode() == ISD::STRICT_FSETCCS ? 1 : 0; 1047 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1048 ISD::CondCode CCCode = 1049 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1050 Action = TLI.getCondCodeAction(CCCode, OpVT); 1051 if (Action == TargetLowering::Legal) { 1052 if (Node->getOpcode() == ISD::SELECT_CC) 1053 Action = TLI.getOperationAction(Node->getOpcode(), 1054 Node->getValueType(0)); 1055 else 1056 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1057 } 1058 break; 1059 } 1060 case ISD::LOAD: 1061 case ISD::STORE: 1062 // FIXME: Model these properly. LOAD and STORE are complicated, and 1063 // STORE expects the unlegalized operand in some cases. 1064 SimpleFinishLegalizing = false; 1065 break; 1066 case ISD::CALLSEQ_START: 1067 case ISD::CALLSEQ_END: 1068 // FIXME: This shouldn't be necessary. These nodes have special properties 1069 // dealing with the recursive nature of legalization. Removing this 1070 // special case should be done as part of making LegalizeDAG non-recursive. 1071 SimpleFinishLegalizing = false; 1072 break; 1073 case ISD::EXTRACT_ELEMENT: 1074 case ISD::FLT_ROUNDS_: 1075 case ISD::MERGE_VALUES: 1076 case ISD::EH_RETURN: 1077 case ISD::FRAME_TO_ARGS_OFFSET: 1078 case ISD::EH_DWARF_CFA: 1079 case ISD::EH_SJLJ_SETJMP: 1080 case ISD::EH_SJLJ_LONGJMP: 1081 case ISD::EH_SJLJ_SETUP_DISPATCH: 1082 // These operations lie about being legal: when they claim to be legal, 1083 // they should actually be expanded. 1084 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1085 if (Action == TargetLowering::Legal) 1086 Action = TargetLowering::Expand; 1087 break; 1088 case ISD::INIT_TRAMPOLINE: 1089 case ISD::ADJUST_TRAMPOLINE: 1090 case ISD::FRAMEADDR: 1091 case ISD::RETURNADDR: 1092 case ISD::ADDROFRETURNADDR: 1093 case ISD::SPONENTRY: 1094 // These operations lie about being legal: when they claim to be legal, 1095 // they should actually be custom-lowered. 1096 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1097 if (Action == TargetLowering::Legal) 1098 Action = TargetLowering::Custom; 1099 break; 1100 case ISD::READCYCLECOUNTER: 1101 // READCYCLECOUNTER returns an i64, even if type legalization might have 1102 // expanded that to several smaller types. 1103 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1104 break; 1105 case ISD::READ_REGISTER: 1106 case ISD::WRITE_REGISTER: 1107 // Named register is legal in the DAG, but blocked by register name 1108 // selection if not implemented by target (to chose the correct register) 1109 // They'll be converted to Copy(To/From)Reg. 1110 Action = TargetLowering::Legal; 1111 break; 1112 case ISD::UBSANTRAP: 1113 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1114 if (Action == TargetLowering::Expand) { 1115 // replace ISD::UBSANTRAP with ISD::TRAP 1116 SDValue NewVal; 1117 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1118 Node->getOperand(0)); 1119 ReplaceNode(Node, NewVal.getNode()); 1120 LegalizeOp(NewVal.getNode()); 1121 return; 1122 } 1123 break; 1124 case ISD::DEBUGTRAP: 1125 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1126 if (Action == TargetLowering::Expand) { 1127 // replace ISD::DEBUGTRAP with ISD::TRAP 1128 SDValue NewVal; 1129 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1130 Node->getOperand(0)); 1131 ReplaceNode(Node, NewVal.getNode()); 1132 LegalizeOp(NewVal.getNode()); 1133 return; 1134 } 1135 break; 1136 case ISD::SADDSAT: 1137 case ISD::UADDSAT: 1138 case ISD::SSUBSAT: 1139 case ISD::USUBSAT: 1140 case ISD::SSHLSAT: 1141 case ISD::USHLSAT: 1142 case ISD::FP_TO_SINT_SAT: 1143 case ISD::FP_TO_UINT_SAT: 1144 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1145 break; 1146 case ISD::SMULFIX: 1147 case ISD::SMULFIXSAT: 1148 case ISD::UMULFIX: 1149 case ISD::UMULFIXSAT: 1150 case ISD::SDIVFIX: 1151 case ISD::SDIVFIXSAT: 1152 case ISD::UDIVFIX: 1153 case ISD::UDIVFIXSAT: { 1154 unsigned Scale = Node->getConstantOperandVal(2); 1155 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 1156 Node->getValueType(0), Scale); 1157 break; 1158 } 1159 case ISD::MSCATTER: 1160 Action = TLI.getOperationAction(Node->getOpcode(), 1161 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 1162 break; 1163 case ISD::MSTORE: 1164 Action = TLI.getOperationAction(Node->getOpcode(), 1165 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 1166 break; 1167 case ISD::VECREDUCE_FADD: 1168 case ISD::VECREDUCE_FMUL: 1169 case ISD::VECREDUCE_ADD: 1170 case ISD::VECREDUCE_MUL: 1171 case ISD::VECREDUCE_AND: 1172 case ISD::VECREDUCE_OR: 1173 case ISD::VECREDUCE_XOR: 1174 case ISD::VECREDUCE_SMAX: 1175 case ISD::VECREDUCE_SMIN: 1176 case ISD::VECREDUCE_UMAX: 1177 case ISD::VECREDUCE_UMIN: 1178 case ISD::VECREDUCE_FMAX: 1179 case ISD::VECREDUCE_FMIN: 1180 Action = TLI.getOperationAction( 1181 Node->getOpcode(), Node->getOperand(0).getValueType()); 1182 break; 1183 case ISD::VECREDUCE_SEQ_FADD: 1184 Action = TLI.getOperationAction( 1185 Node->getOpcode(), Node->getOperand(1).getValueType()); 1186 break; 1187 default: 1188 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1189 Action = TargetLowering::Legal; 1190 } else { 1191 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1192 } 1193 break; 1194 } 1195 1196 if (SimpleFinishLegalizing) { 1197 SDNode *NewNode = Node; 1198 switch (Node->getOpcode()) { 1199 default: break; 1200 case ISD::SHL: 1201 case ISD::SRL: 1202 case ISD::SRA: 1203 case ISD::ROTL: 1204 case ISD::ROTR: { 1205 // Legalizing shifts/rotates requires adjusting the shift amount 1206 // to the appropriate width. 1207 SDValue Op0 = Node->getOperand(0); 1208 SDValue Op1 = Node->getOperand(1); 1209 if (!Op1.getValueType().isVector()) { 1210 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1211 // The getShiftAmountOperand() may create a new operand node or 1212 // return the existing one. If new operand is created we need 1213 // to update the parent node. 1214 // Do not try to legalize SAO here! It will be automatically legalized 1215 // in the next round. 1216 if (SAO != Op1) 1217 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1218 } 1219 } 1220 break; 1221 case ISD::FSHL: 1222 case ISD::FSHR: 1223 case ISD::SRL_PARTS: 1224 case ISD::SRA_PARTS: 1225 case ISD::SHL_PARTS: { 1226 // Legalizing shifts/rotates requires adjusting the shift amount 1227 // to the appropriate width. 1228 SDValue Op0 = Node->getOperand(0); 1229 SDValue Op1 = Node->getOperand(1); 1230 SDValue Op2 = Node->getOperand(2); 1231 if (!Op2.getValueType().isVector()) { 1232 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1233 // The getShiftAmountOperand() may create a new operand node or 1234 // return the existing one. If new operand is created we need 1235 // to update the parent node. 1236 if (SAO != Op2) 1237 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1238 } 1239 break; 1240 } 1241 } 1242 1243 if (NewNode != Node) { 1244 ReplaceNode(Node, NewNode); 1245 Node = NewNode; 1246 } 1247 switch (Action) { 1248 case TargetLowering::Legal: 1249 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 1250 return; 1251 case TargetLowering::Custom: 1252 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 1253 // FIXME: The handling for custom lowering with multiple results is 1254 // a complete mess. 1255 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1256 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1257 return; 1258 1259 if (Node->getNumValues() == 1) { 1260 // Verify the new types match the original. Glue is waived because 1261 // ISD::ADDC can be legalized by replacing Glue with an integer type. 1262 assert((Res.getValueType() == Node->getValueType(0) || 1263 Node->getValueType(0) == MVT::Glue) && 1264 "Type mismatch for custom legalized operation"); 1265 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1266 // We can just directly replace this node with the lowered value. 1267 ReplaceNode(SDValue(Node, 0), Res); 1268 return; 1269 } 1270 1271 SmallVector<SDValue, 8> ResultVals; 1272 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 1273 // Verify the new types match the original. Glue is waived because 1274 // ISD::ADDC can be legalized by replacing Glue with an integer type. 1275 assert((Res->getValueType(i) == Node->getValueType(i) || 1276 Node->getValueType(i) == MVT::Glue) && 1277 "Type mismatch for custom legalized operation"); 1278 ResultVals.push_back(Res.getValue(i)); 1279 } 1280 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1281 ReplaceNode(Node, ResultVals.data()); 1282 return; 1283 } 1284 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 1285 LLVM_FALLTHROUGH; 1286 case TargetLowering::Expand: 1287 if (ExpandNode(Node)) 1288 return; 1289 LLVM_FALLTHROUGH; 1290 case TargetLowering::LibCall: 1291 ConvertNodeToLibcall(Node); 1292 return; 1293 case TargetLowering::Promote: 1294 PromoteNode(Node); 1295 return; 1296 } 1297 } 1298 1299 switch (Node->getOpcode()) { 1300 default: 1301 #ifndef NDEBUG 1302 dbgs() << "NODE: "; 1303 Node->dump( &DAG); 1304 dbgs() << "\n"; 1305 #endif 1306 llvm_unreachable("Do not know how to legalize this operator!"); 1307 1308 case ISD::CALLSEQ_START: 1309 case ISD::CALLSEQ_END: 1310 break; 1311 case ISD::LOAD: 1312 return LegalizeLoadOps(Node); 1313 case ISD::STORE: 1314 return LegalizeStoreOps(Node); 1315 } 1316 } 1317 1318 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1319 SDValue Vec = Op.getOperand(0); 1320 SDValue Idx = Op.getOperand(1); 1321 SDLoc dl(Op); 1322 1323 // Before we generate a new store to a temporary stack slot, see if there is 1324 // already one that we can use. There often is because when we scalarize 1325 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1326 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1327 // the vector. If all are expanded here, we don't want one store per vector 1328 // element. 1329 1330 // Caches for hasPredecessorHelper 1331 SmallPtrSet<const SDNode *, 32> Visited; 1332 SmallVector<const SDNode *, 16> Worklist; 1333 Visited.insert(Op.getNode()); 1334 Worklist.push_back(Idx.getNode()); 1335 SDValue StackPtr, Ch; 1336 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), 1337 UE = Vec.getNode()->use_end(); UI != UE; ++UI) { 1338 SDNode *User = *UI; 1339 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1340 if (ST->isIndexed() || ST->isTruncatingStore() || 1341 ST->getValue() != Vec) 1342 continue; 1343 1344 // Make sure that nothing else could have stored into the destination of 1345 // this store. 1346 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1347 continue; 1348 1349 // If the index is dependent on the store we will introduce a cycle when 1350 // creating the load (the load uses the index, and by replacing the chain 1351 // we will make the index dependent on the load). Also, the store might be 1352 // dependent on the extractelement and introduce a cycle when creating 1353 // the load. 1354 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1355 ST->hasPredecessor(Op.getNode())) 1356 continue; 1357 1358 StackPtr = ST->getBasePtr(); 1359 Ch = SDValue(ST, 0); 1360 break; 1361 } 1362 } 1363 1364 EVT VecVT = Vec.getValueType(); 1365 1366 if (!Ch.getNode()) { 1367 // Store the value to a temporary stack slot, then LOAD the returned part. 1368 StackPtr = DAG.CreateStackTemporary(VecVT); 1369 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1370 MachinePointerInfo()); 1371 } 1372 1373 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1374 1375 SDValue NewLoad; 1376 1377 if (Op.getValueType().isVector()) 1378 NewLoad = 1379 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); 1380 else 1381 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1382 MachinePointerInfo(), 1383 VecVT.getVectorElementType()); 1384 1385 // Replace the chain going out of the store, by the one out of the load. 1386 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1387 1388 // We introduced a cycle though, so update the loads operands, making sure 1389 // to use the original store's chain as an incoming chain. 1390 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1391 NewLoad->op_end()); 1392 NewLoadOperands[0] = Ch; 1393 NewLoad = 1394 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1395 return NewLoad; 1396 } 1397 1398 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1399 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1400 1401 SDValue Vec = Op.getOperand(0); 1402 SDValue Part = Op.getOperand(1); 1403 SDValue Idx = Op.getOperand(2); 1404 SDLoc dl(Op); 1405 1406 // Store the value to a temporary stack slot, then LOAD the returned part. 1407 EVT VecVT = Vec.getValueType(); 1408 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1409 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1410 MachinePointerInfo PtrInfo = 1411 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1412 1413 // First store the whole vector. 1414 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1415 1416 // Then store the inserted part. 1417 SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1418 1419 // Store the subvector. 1420 Ch = DAG.getStore( 1421 Ch, dl, Part, SubStackPtr, 1422 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1423 1424 // Finally, load the updated vector. 1425 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1426 } 1427 1428 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1429 assert((Node->getOpcode() == ISD::BUILD_VECTOR || 1430 Node->getOpcode() == ISD::CONCAT_VECTORS) && 1431 "Unexpected opcode!"); 1432 1433 // We can't handle this case efficiently. Allocate a sufficiently 1434 // aligned object on the stack, store each operand into it, then load 1435 // the result as a vector. 1436 // Create the stack frame object. 1437 EVT VT = Node->getValueType(0); 1438 EVT MemVT = isa<BuildVectorSDNode>(Node) ? VT.getVectorElementType() 1439 : Node->getOperand(0).getValueType(); 1440 SDLoc dl(Node); 1441 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1442 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1443 MachinePointerInfo PtrInfo = 1444 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1445 1446 // Emit a store of each element to the stack slot. 1447 SmallVector<SDValue, 8> Stores; 1448 unsigned TypeByteSize = MemVT.getSizeInBits() / 8; 1449 assert(TypeByteSize > 0 && "Vector element type too small for stack store!"); 1450 1451 // If the destination vector element type of a BUILD_VECTOR is narrower than 1452 // the source element type, only store the bits necessary. 1453 bool Truncate = isa<BuildVectorSDNode>(Node) && 1454 MemVT.bitsLT(Node->getOperand(0).getValueType()); 1455 1456 // Store (in the right endianness) the elements to memory. 1457 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1458 // Ignore undef elements. 1459 if (Node->getOperand(i).isUndef()) continue; 1460 1461 unsigned Offset = TypeByteSize*i; 1462 1463 SDValue Idx = DAG.getMemBasePlusOffset(FIPtr, TypeSize::Fixed(Offset), dl); 1464 1465 if (Truncate) 1466 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1467 Node->getOperand(i), Idx, 1468 PtrInfo.getWithOffset(Offset), MemVT)); 1469 else 1470 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1471 Idx, PtrInfo.getWithOffset(Offset))); 1472 } 1473 1474 SDValue StoreChain; 1475 if (!Stores.empty()) // Not all undef elements? 1476 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1477 else 1478 StoreChain = DAG.getEntryNode(); 1479 1480 // Result is a load from the stack slot. 1481 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1482 } 1483 1484 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1485 /// containing the sign bit if the target has no integer value capable of 1486 /// holding all bits of the floating-point value. 1487 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1488 const SDLoc &DL, 1489 SDValue Value) const { 1490 EVT FloatVT = Value.getValueType(); 1491 unsigned NumBits = FloatVT.getScalarSizeInBits(); 1492 State.FloatVT = FloatVT; 1493 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1494 // Convert to an integer of the same size. 1495 if (TLI.isTypeLegal(IVT)) { 1496 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1497 State.SignMask = APInt::getSignMask(NumBits); 1498 State.SignBit = NumBits - 1; 1499 return; 1500 } 1501 1502 auto &DataLayout = DAG.getDataLayout(); 1503 // Store the float to memory, then load the sign part out as an integer. 1504 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1505 // First create a temporary that is aligned for both the load and store. 1506 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1507 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1508 // Then store the float to it. 1509 State.FloatPtr = StackPtr; 1510 MachineFunction &MF = DAG.getMachineFunction(); 1511 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1512 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1513 State.FloatPointerInfo); 1514 1515 SDValue IntPtr; 1516 if (DataLayout.isBigEndian()) { 1517 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1518 // Load out a legal integer with the same sign bit as the float. 1519 IntPtr = StackPtr; 1520 State.IntPointerInfo = State.FloatPointerInfo; 1521 } else { 1522 // Advance the pointer so that the loaded byte will contain the sign bit. 1523 unsigned ByteOffset = (NumBits / 8) - 1; 1524 IntPtr = 1525 DAG.getMemBasePlusOffset(StackPtr, TypeSize::Fixed(ByteOffset), DL); 1526 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1527 ByteOffset); 1528 } 1529 1530 State.IntPtr = IntPtr; 1531 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1532 State.IntPointerInfo, MVT::i8); 1533 State.SignMask = APInt::getOneBitSet(LoadTy.getScalarSizeInBits(), 7); 1534 State.SignBit = 7; 1535 } 1536 1537 /// Replace the integer value produced by getSignAsIntValue() with a new value 1538 /// and cast the result back to a floating-point type. 1539 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1540 const SDLoc &DL, 1541 SDValue NewIntValue) const { 1542 if (!State.Chain) 1543 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1544 1545 // Override the part containing the sign bit in the value stored on the stack. 1546 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1547 State.IntPointerInfo, MVT::i8); 1548 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1549 State.FloatPointerInfo); 1550 } 1551 1552 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1553 SDLoc DL(Node); 1554 SDValue Mag = Node->getOperand(0); 1555 SDValue Sign = Node->getOperand(1); 1556 1557 // Get sign bit into an integer value. 1558 FloatSignAsInt SignAsInt; 1559 getSignAsIntValue(SignAsInt, DL, Sign); 1560 1561 EVT IntVT = SignAsInt.IntValue.getValueType(); 1562 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1563 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1564 SignMask); 1565 1566 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1567 EVT FloatVT = Mag.getValueType(); 1568 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1569 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1570 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1571 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1572 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1573 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1574 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1575 } 1576 1577 // Transform Mag value to integer, and clear the sign bit. 1578 FloatSignAsInt MagAsInt; 1579 getSignAsIntValue(MagAsInt, DL, Mag); 1580 EVT MagVT = MagAsInt.IntValue.getValueType(); 1581 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1582 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1583 ClearSignMask); 1584 1585 // Get the signbit at the right position for MagAsInt. 1586 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1587 EVT ShiftVT = IntVT; 1588 if (SignBit.getScalarValueSizeInBits() < 1589 ClearedSign.getScalarValueSizeInBits()) { 1590 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1591 ShiftVT = MagVT; 1592 } 1593 if (ShiftAmount > 0) { 1594 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); 1595 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); 1596 } else if (ShiftAmount < 0) { 1597 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); 1598 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); 1599 } 1600 if (SignBit.getScalarValueSizeInBits() > 1601 ClearedSign.getScalarValueSizeInBits()) { 1602 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1603 } 1604 1605 // Store the part with the modified sign and convert back to float. 1606 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1607 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1608 } 1609 1610 SDValue SelectionDAGLegalize::ExpandFNEG(SDNode *Node) const { 1611 // Get the sign bit as an integer. 1612 SDLoc DL(Node); 1613 FloatSignAsInt SignAsInt; 1614 getSignAsIntValue(SignAsInt, DL, Node->getOperand(0)); 1615 EVT IntVT = SignAsInt.IntValue.getValueType(); 1616 1617 // Flip the sign. 1618 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1619 SDValue SignFlip = 1620 DAG.getNode(ISD::XOR, DL, IntVT, SignAsInt.IntValue, SignMask); 1621 1622 // Convert back to float. 1623 return modifySignAsInt(SignAsInt, DL, SignFlip); 1624 } 1625 1626 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1627 SDLoc DL(Node); 1628 SDValue Value = Node->getOperand(0); 1629 1630 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1631 EVT FloatVT = Value.getValueType(); 1632 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1633 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1634 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1635 } 1636 1637 // Transform value to integer, clear the sign bit and transform back. 1638 FloatSignAsInt ValueAsInt; 1639 getSignAsIntValue(ValueAsInt, DL, Value); 1640 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1641 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1642 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1643 ClearSignMask); 1644 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1645 } 1646 1647 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1648 SmallVectorImpl<SDValue> &Results) { 1649 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1650 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1651 " not tell us which reg is the stack pointer!"); 1652 SDLoc dl(Node); 1653 EVT VT = Node->getValueType(0); 1654 SDValue Tmp1 = SDValue(Node, 0); 1655 SDValue Tmp2 = SDValue(Node, 1); 1656 SDValue Tmp3 = Node->getOperand(2); 1657 SDValue Chain = Tmp1.getOperand(0); 1658 1659 // Chain the dynamic stack allocation so that it doesn't modify the stack 1660 // pointer when other instructions are using the stack. 1661 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1662 1663 SDValue Size = Tmp2.getOperand(1); 1664 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1665 Chain = SP.getValue(1); 1666 Align Alignment = cast<ConstantSDNode>(Tmp3)->getAlignValue(); 1667 const TargetFrameLowering *TFL = DAG.getSubtarget().getFrameLowering(); 1668 unsigned Opc = 1669 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 1670 ISD::ADD : ISD::SUB; 1671 1672 Align StackAlign = TFL->getStackAlign(); 1673 Tmp1 = DAG.getNode(Opc, dl, VT, SP, Size); // Value 1674 if (Alignment > StackAlign) 1675 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1676 DAG.getConstant(-Alignment.value(), dl, VT)); 1677 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1678 1679 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1680 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1681 1682 Results.push_back(Tmp1); 1683 Results.push_back(Tmp2); 1684 } 1685 1686 /// Emit a store/load combination to the stack. This stores 1687 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1688 /// a load from the stack slot to DestVT, extending it if needed. 1689 /// The resultant code need not be legal. 1690 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1691 EVT DestVT, const SDLoc &dl) { 1692 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode()); 1693 } 1694 1695 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1696 EVT DestVT, const SDLoc &dl, 1697 SDValue Chain) { 1698 unsigned SrcSize = SrcOp.getValueSizeInBits(); 1699 unsigned SlotSize = SlotVT.getSizeInBits(); 1700 unsigned DestSize = DestVT.getSizeInBits(); 1701 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1702 Align DestAlign = DAG.getDataLayout().getPrefTypeAlign(DestType); 1703 1704 // Don't convert with stack if the load/store is expensive. 1705 if ((SrcSize > SlotSize && 1706 !TLI.isTruncStoreLegalOrCustom(SrcOp.getValueType(), SlotVT)) || 1707 (SlotSize < DestSize && 1708 !TLI.isLoadExtLegalOrCustom(ISD::EXTLOAD, DestVT, SlotVT))) 1709 return SDValue(); 1710 1711 // Create the stack frame object. 1712 Align SrcAlign = DAG.getDataLayout().getPrefTypeAlign( 1713 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1714 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT.getStoreSize(), SrcAlign); 1715 1716 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1717 int SPFI = StackPtrFI->getIndex(); 1718 MachinePointerInfo PtrInfo = 1719 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1720 1721 // Emit a store to the stack slot. Use a truncstore if the input value is 1722 // later than DestVT. 1723 SDValue Store; 1724 1725 if (SrcSize > SlotSize) 1726 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo, 1727 SlotVT, SrcAlign); 1728 else { 1729 assert(SrcSize == SlotSize && "Invalid store"); 1730 Store = 1731 DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1732 } 1733 1734 // Result is a load from the stack slot. 1735 if (SlotSize == DestSize) 1736 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1737 1738 assert(SlotSize < DestSize && "Unknown extension!"); 1739 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1740 DestAlign); 1741 } 1742 1743 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1744 SDLoc dl(Node); 1745 // Create a vector sized/aligned stack slot, store the value to element #0, 1746 // then load the whole vector back out. 1747 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1748 1749 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1750 int SPFI = StackPtrFI->getIndex(); 1751 1752 SDValue Ch = DAG.getTruncStore( 1753 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1754 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1755 Node->getValueType(0).getVectorElementType()); 1756 return DAG.getLoad( 1757 Node->getValueType(0), dl, Ch, StackPtr, 1758 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1759 } 1760 1761 static bool 1762 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1763 const TargetLowering &TLI, SDValue &Res) { 1764 unsigned NumElems = Node->getNumOperands(); 1765 SDLoc dl(Node); 1766 EVT VT = Node->getValueType(0); 1767 1768 // Try to group the scalars into pairs, shuffle the pairs together, then 1769 // shuffle the pairs of pairs together, etc. until the vector has 1770 // been built. This will work only if all of the necessary shuffle masks 1771 // are legal. 1772 1773 // We do this in two phases; first to check the legality of the shuffles, 1774 // and next, assuming that all shuffles are legal, to create the new nodes. 1775 for (int Phase = 0; Phase < 2; ++Phase) { 1776 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1777 NewIntermedVals; 1778 for (unsigned i = 0; i < NumElems; ++i) { 1779 SDValue V = Node->getOperand(i); 1780 if (V.isUndef()) 1781 continue; 1782 1783 SDValue Vec; 1784 if (Phase) 1785 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1786 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1787 } 1788 1789 while (IntermedVals.size() > 2) { 1790 NewIntermedVals.clear(); 1791 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1792 // This vector and the next vector are shuffled together (simply to 1793 // append the one to the other). 1794 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1795 1796 SmallVector<int, 16> FinalIndices; 1797 FinalIndices.reserve(IntermedVals[i].second.size() + 1798 IntermedVals[i+1].second.size()); 1799 1800 int k = 0; 1801 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1802 ++j, ++k) { 1803 ShuffleVec[k] = j; 1804 FinalIndices.push_back(IntermedVals[i].second[j]); 1805 } 1806 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1807 ++j, ++k) { 1808 ShuffleVec[k] = NumElems + j; 1809 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1810 } 1811 1812 SDValue Shuffle; 1813 if (Phase) 1814 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1815 IntermedVals[i+1].first, 1816 ShuffleVec); 1817 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1818 return false; 1819 NewIntermedVals.push_back( 1820 std::make_pair(Shuffle, std::move(FinalIndices))); 1821 } 1822 1823 // If we had an odd number of defined values, then append the last 1824 // element to the array of new vectors. 1825 if ((IntermedVals.size() & 1) != 0) 1826 NewIntermedVals.push_back(IntermedVals.back()); 1827 1828 IntermedVals.swap(NewIntermedVals); 1829 } 1830 1831 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1832 "Invalid number of intermediate vectors"); 1833 SDValue Vec1 = IntermedVals[0].first; 1834 SDValue Vec2; 1835 if (IntermedVals.size() > 1) 1836 Vec2 = IntermedVals[1].first; 1837 else if (Phase) 1838 Vec2 = DAG.getUNDEF(VT); 1839 1840 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1841 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1842 ShuffleVec[IntermedVals[0].second[i]] = i; 1843 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1844 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1845 1846 if (Phase) 1847 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1848 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1849 return false; 1850 } 1851 1852 return true; 1853 } 1854 1855 /// Expand a BUILD_VECTOR node on targets that don't 1856 /// support the operation, but do support the resultant vector type. 1857 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1858 unsigned NumElems = Node->getNumOperands(); 1859 SDValue Value1, Value2; 1860 SDLoc dl(Node); 1861 EVT VT = Node->getValueType(0); 1862 EVT OpVT = Node->getOperand(0).getValueType(); 1863 EVT EltVT = VT.getVectorElementType(); 1864 1865 // If the only non-undef value is the low element, turn this into a 1866 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1867 bool isOnlyLowElement = true; 1868 bool MoreThanTwoValues = false; 1869 bool isConstant = true; 1870 for (unsigned i = 0; i < NumElems; ++i) { 1871 SDValue V = Node->getOperand(i); 1872 if (V.isUndef()) 1873 continue; 1874 if (i > 0) 1875 isOnlyLowElement = false; 1876 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1877 isConstant = false; 1878 1879 if (!Value1.getNode()) { 1880 Value1 = V; 1881 } else if (!Value2.getNode()) { 1882 if (V != Value1) 1883 Value2 = V; 1884 } else if (V != Value1 && V != Value2) { 1885 MoreThanTwoValues = true; 1886 } 1887 } 1888 1889 if (!Value1.getNode()) 1890 return DAG.getUNDEF(VT); 1891 1892 if (isOnlyLowElement) 1893 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1894 1895 // If all elements are constants, create a load from the constant pool. 1896 if (isConstant) { 1897 SmallVector<Constant*, 16> CV; 1898 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1899 if (ConstantFPSDNode *V = 1900 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1901 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1902 } else if (ConstantSDNode *V = 1903 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1904 if (OpVT==EltVT) 1905 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1906 else { 1907 // If OpVT and EltVT don't match, EltVT is not legal and the 1908 // element values have been promoted/truncated earlier. Undo this; 1909 // we don't want a v16i8 to become a v16i32 for example. 1910 const ConstantInt *CI = V->getConstantIntValue(); 1911 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1912 CI->getZExtValue())); 1913 } 1914 } else { 1915 assert(Node->getOperand(i).isUndef()); 1916 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1917 CV.push_back(UndefValue::get(OpNTy)); 1918 } 1919 } 1920 Constant *CP = ConstantVector::get(CV); 1921 SDValue CPIdx = 1922 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 1923 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 1924 return DAG.getLoad( 1925 VT, dl, DAG.getEntryNode(), CPIdx, 1926 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 1927 Alignment); 1928 } 1929 1930 SmallSet<SDValue, 16> DefinedValues; 1931 for (unsigned i = 0; i < NumElems; ++i) { 1932 if (Node->getOperand(i).isUndef()) 1933 continue; 1934 DefinedValues.insert(Node->getOperand(i)); 1935 } 1936 1937 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 1938 if (!MoreThanTwoValues) { 1939 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1940 for (unsigned i = 0; i < NumElems; ++i) { 1941 SDValue V = Node->getOperand(i); 1942 if (V.isUndef()) 1943 continue; 1944 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1945 } 1946 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1947 // Get the splatted value into the low element of a vector register. 1948 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1949 SDValue Vec2; 1950 if (Value2.getNode()) 1951 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 1952 else 1953 Vec2 = DAG.getUNDEF(VT); 1954 1955 // Return shuffle(LowValVec, undef, <0,0,0,0>) 1956 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1957 } 1958 } else { 1959 SDValue Res; 1960 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 1961 return Res; 1962 } 1963 } 1964 1965 // Otherwise, we can't handle this case efficiently. 1966 return ExpandVectorBuildThroughStack(Node); 1967 } 1968 1969 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) { 1970 SDLoc DL(Node); 1971 EVT VT = Node->getValueType(0); 1972 SDValue SplatVal = Node->getOperand(0); 1973 1974 return DAG.getSplatBuildVector(VT, DL, SplatVal); 1975 } 1976 1977 // Expand a node into a call to a libcall. If the result value 1978 // does not fit into a register, return the lo part and set the hi part to the 1979 // by-reg argument. If it does fit into a single register, return the result 1980 // and leave the Hi part unset. 1981 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 1982 bool isSigned) { 1983 TargetLowering::ArgListTy Args; 1984 TargetLowering::ArgListEntry Entry; 1985 for (const SDValue &Op : Node->op_values()) { 1986 EVT ArgVT = Op.getValueType(); 1987 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 1988 Entry.Node = Op; 1989 Entry.Ty = ArgTy; 1990 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 1991 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 1992 Args.push_back(Entry); 1993 } 1994 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1995 TLI.getPointerTy(DAG.getDataLayout())); 1996 1997 EVT RetVT = Node->getValueType(0); 1998 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 1999 2000 // By default, the input chain to this libcall is the entry node of the 2001 // function. If the libcall is going to be emitted as a tail call then 2002 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2003 // node which is being folded has a non-entry input chain. 2004 SDValue InChain = DAG.getEntryNode(); 2005 2006 // isTailCall may be true since the callee does not reference caller stack 2007 // frame. Check if it's in the right position and that the return types match. 2008 SDValue TCChain = InChain; 2009 const Function &F = DAG.getMachineFunction().getFunction(); 2010 bool isTailCall = 2011 TLI.isInTailCallPosition(DAG, Node, TCChain) && 2012 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 2013 if (isTailCall) 2014 InChain = TCChain; 2015 2016 TargetLowering::CallLoweringInfo CLI(DAG); 2017 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2018 CLI.setDebugLoc(SDLoc(Node)) 2019 .setChain(InChain) 2020 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2021 std::move(Args)) 2022 .setTailCall(isTailCall) 2023 .setSExtResult(signExtend) 2024 .setZExtResult(!signExtend) 2025 .setIsPostTypeLegalization(true); 2026 2027 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2028 2029 if (!CallInfo.second.getNode()) { 2030 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG)); 2031 // It's a tailcall, return the chain (which is the DAG root). 2032 return DAG.getRoot(); 2033 } 2034 2035 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG)); 2036 return CallInfo.first; 2037 } 2038 2039 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2040 RTLIB::Libcall LC, 2041 SmallVectorImpl<SDValue> &Results) { 2042 if (LC == RTLIB::UNKNOWN_LIBCALL) 2043 llvm_unreachable("Can't create an unknown libcall!"); 2044 2045 if (Node->isStrictFPOpcode()) { 2046 EVT RetVT = Node->getValueType(0); 2047 SmallVector<SDValue, 4> Ops(drop_begin(Node->ops())); 2048 TargetLowering::MakeLibCallOptions CallOptions; 2049 // FIXME: This doesn't support tail calls. 2050 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2051 Ops, CallOptions, 2052 SDLoc(Node), 2053 Node->getOperand(0)); 2054 Results.push_back(Tmp.first); 2055 Results.push_back(Tmp.second); 2056 } else { 2057 SDValue Tmp = ExpandLibCall(LC, Node, false); 2058 Results.push_back(Tmp); 2059 } 2060 } 2061 2062 /// Expand the node to a libcall based on the result type. 2063 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2064 RTLIB::Libcall Call_F32, 2065 RTLIB::Libcall Call_F64, 2066 RTLIB::Libcall Call_F80, 2067 RTLIB::Libcall Call_F128, 2068 RTLIB::Libcall Call_PPCF128, 2069 SmallVectorImpl<SDValue> &Results) { 2070 RTLIB::Libcall LC = RTLIB::getFPLibCall(Node->getSimpleValueType(0), 2071 Call_F32, Call_F64, Call_F80, 2072 Call_F128, Call_PPCF128); 2073 ExpandFPLibCall(Node, LC, Results); 2074 } 2075 2076 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2077 RTLIB::Libcall Call_I8, 2078 RTLIB::Libcall Call_I16, 2079 RTLIB::Libcall Call_I32, 2080 RTLIB::Libcall Call_I64, 2081 RTLIB::Libcall Call_I128) { 2082 RTLIB::Libcall LC; 2083 switch (Node->getSimpleValueType(0).SimpleTy) { 2084 default: llvm_unreachable("Unexpected request for libcall!"); 2085 case MVT::i8: LC = Call_I8; break; 2086 case MVT::i16: LC = Call_I16; break; 2087 case MVT::i32: LC = Call_I32; break; 2088 case MVT::i64: LC = Call_I64; break; 2089 case MVT::i128: LC = Call_I128; break; 2090 } 2091 return ExpandLibCall(LC, Node, isSigned); 2092 } 2093 2094 /// Expand the node to a libcall based on first argument type (for instance 2095 /// lround and its variant). 2096 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node, 2097 RTLIB::Libcall Call_F32, 2098 RTLIB::Libcall Call_F64, 2099 RTLIB::Libcall Call_F80, 2100 RTLIB::Libcall Call_F128, 2101 RTLIB::Libcall Call_PPCF128, 2102 SmallVectorImpl<SDValue> &Results) { 2103 EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType(); 2104 RTLIB::Libcall LC = RTLIB::getFPLibCall(InVT.getSimpleVT(), 2105 Call_F32, Call_F64, Call_F80, 2106 Call_F128, Call_PPCF128); 2107 ExpandFPLibCall(Node, LC, Results); 2108 } 2109 2110 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2111 void 2112 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2113 SmallVectorImpl<SDValue> &Results) { 2114 unsigned Opcode = Node->getOpcode(); 2115 bool isSigned = Opcode == ISD::SDIVREM; 2116 2117 RTLIB::Libcall LC; 2118 switch (Node->getSimpleValueType(0).SimpleTy) { 2119 default: llvm_unreachable("Unexpected request for libcall!"); 2120 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2121 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2122 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2123 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2124 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2125 } 2126 2127 // The input chain to this libcall is the entry node of the function. 2128 // Legalizing the call will automatically add the previous call to the 2129 // dependence. 2130 SDValue InChain = DAG.getEntryNode(); 2131 2132 EVT RetVT = Node->getValueType(0); 2133 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2134 2135 TargetLowering::ArgListTy Args; 2136 TargetLowering::ArgListEntry Entry; 2137 for (const SDValue &Op : Node->op_values()) { 2138 EVT ArgVT = Op.getValueType(); 2139 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2140 Entry.Node = Op; 2141 Entry.Ty = ArgTy; 2142 Entry.IsSExt = isSigned; 2143 Entry.IsZExt = !isSigned; 2144 Args.push_back(Entry); 2145 } 2146 2147 // Also pass the return address of the remainder. 2148 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2149 Entry.Node = FIPtr; 2150 Entry.Ty = RetTy->getPointerTo(); 2151 Entry.IsSExt = isSigned; 2152 Entry.IsZExt = !isSigned; 2153 Args.push_back(Entry); 2154 2155 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2156 TLI.getPointerTy(DAG.getDataLayout())); 2157 2158 SDLoc dl(Node); 2159 TargetLowering::CallLoweringInfo CLI(DAG); 2160 CLI.setDebugLoc(dl) 2161 .setChain(InChain) 2162 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2163 std::move(Args)) 2164 .setSExtResult(isSigned) 2165 .setZExtResult(!isSigned); 2166 2167 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2168 2169 // Remainder is loaded back from the stack frame. 2170 SDValue Rem = 2171 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2172 Results.push_back(CallInfo.first); 2173 Results.push_back(Rem); 2174 } 2175 2176 /// Return true if sincos libcall is available. 2177 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2178 RTLIB::Libcall LC; 2179 switch (Node->getSimpleValueType(0).SimpleTy) { 2180 default: llvm_unreachable("Unexpected request for libcall!"); 2181 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2182 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2183 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2184 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2185 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2186 } 2187 return TLI.getLibcallName(LC) != nullptr; 2188 } 2189 2190 /// Only issue sincos libcall if both sin and cos are needed. 2191 static bool useSinCos(SDNode *Node) { 2192 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2193 ? ISD::FCOS : ISD::FSIN; 2194 2195 SDValue Op0 = Node->getOperand(0); 2196 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2197 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2198 SDNode *User = *UI; 2199 if (User == Node) 2200 continue; 2201 // The other user might have been turned into sincos already. 2202 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2203 return true; 2204 } 2205 return false; 2206 } 2207 2208 /// Issue libcalls to sincos to compute sin / cos pairs. 2209 void 2210 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2211 SmallVectorImpl<SDValue> &Results) { 2212 RTLIB::Libcall LC; 2213 switch (Node->getSimpleValueType(0).SimpleTy) { 2214 default: llvm_unreachable("Unexpected request for libcall!"); 2215 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2216 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2217 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2218 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2219 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2220 } 2221 2222 // The input chain to this libcall is the entry node of the function. 2223 // Legalizing the call will automatically add the previous call to the 2224 // dependence. 2225 SDValue InChain = DAG.getEntryNode(); 2226 2227 EVT RetVT = Node->getValueType(0); 2228 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2229 2230 TargetLowering::ArgListTy Args; 2231 TargetLowering::ArgListEntry Entry; 2232 2233 // Pass the argument. 2234 Entry.Node = Node->getOperand(0); 2235 Entry.Ty = RetTy; 2236 Entry.IsSExt = false; 2237 Entry.IsZExt = false; 2238 Args.push_back(Entry); 2239 2240 // Pass the return address of sin. 2241 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2242 Entry.Node = SinPtr; 2243 Entry.Ty = RetTy->getPointerTo(); 2244 Entry.IsSExt = false; 2245 Entry.IsZExt = false; 2246 Args.push_back(Entry); 2247 2248 // Also pass the return address of the cos. 2249 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2250 Entry.Node = CosPtr; 2251 Entry.Ty = RetTy->getPointerTo(); 2252 Entry.IsSExt = false; 2253 Entry.IsZExt = false; 2254 Args.push_back(Entry); 2255 2256 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2257 TLI.getPointerTy(DAG.getDataLayout())); 2258 2259 SDLoc dl(Node); 2260 TargetLowering::CallLoweringInfo CLI(DAG); 2261 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2262 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2263 std::move(Args)); 2264 2265 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2266 2267 Results.push_back( 2268 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2269 Results.push_back( 2270 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2271 } 2272 2273 /// This function is responsible for legalizing a 2274 /// INT_TO_FP operation of the specified operand when the target requests that 2275 /// we expand it. At this point, we know that the result and operand types are 2276 /// legal for the target. 2277 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node, 2278 SDValue &Chain) { 2279 bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 2280 Node->getOpcode() == ISD::SINT_TO_FP); 2281 EVT DestVT = Node->getValueType(0); 2282 SDLoc dl(Node); 2283 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 2284 SDValue Op0 = Node->getOperand(OpNo); 2285 EVT SrcVT = Op0.getValueType(); 2286 2287 // TODO: Should any fast-math-flags be set for the created nodes? 2288 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2289 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64) && 2290 (DestVT.bitsLE(MVT::f64) || 2291 TLI.isOperationLegal(Node->isStrictFPOpcode() ? ISD::STRICT_FP_EXTEND 2292 : ISD::FP_EXTEND, 2293 DestVT))) { 2294 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2295 "expansion\n"); 2296 2297 // Get the stack frame index of a 8 byte buffer. 2298 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2299 2300 SDValue Lo = Op0; 2301 // if signed map to unsigned space 2302 if (isSigned) { 2303 // Invert sign bit (signed to unsigned mapping). 2304 Lo = DAG.getNode(ISD::XOR, dl, MVT::i32, Lo, 2305 DAG.getConstant(0x80000000u, dl, MVT::i32)); 2306 } 2307 // Initial hi portion of constructed double. 2308 SDValue Hi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2309 2310 // If this a big endian target, swap the lo and high data. 2311 if (DAG.getDataLayout().isBigEndian()) 2312 std::swap(Lo, Hi); 2313 2314 SDValue MemChain = DAG.getEntryNode(); 2315 2316 // Store the lo of the constructed double. 2317 SDValue Store1 = DAG.getStore(MemChain, dl, Lo, StackSlot, 2318 MachinePointerInfo()); 2319 // Store the hi of the constructed double. 2320 SDValue HiPtr = DAG.getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), dl); 2321 SDValue Store2 = 2322 DAG.getStore(MemChain, dl, Hi, HiPtr, MachinePointerInfo()); 2323 MemChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 2324 2325 // load the constructed double 2326 SDValue Load = 2327 DAG.getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo()); 2328 // FP constant to bias correct the final result 2329 SDValue Bias = DAG.getConstantFP(isSigned ? 2330 BitsToDouble(0x4330000080000000ULL) : 2331 BitsToDouble(0x4330000000000000ULL), 2332 dl, MVT::f64); 2333 // Subtract the bias and get the final result. 2334 SDValue Sub; 2335 SDValue Result; 2336 if (Node->isStrictFPOpcode()) { 2337 Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other}, 2338 {Node->getOperand(0), Load, Bias}); 2339 Chain = Sub.getValue(1); 2340 if (DestVT != Sub.getValueType()) { 2341 std::pair<SDValue, SDValue> ResultPair; 2342 ResultPair = 2343 DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT); 2344 Result = ResultPair.first; 2345 Chain = ResultPair.second; 2346 } 2347 else 2348 Result = Sub; 2349 } else { 2350 Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2351 Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); 2352 } 2353 return Result; 2354 } 2355 2356 if (isSigned) 2357 return SDValue(); 2358 2359 // TODO: Generalize this for use with other types. 2360 if (((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) || 2361 (SrcVT == MVT::i64 && DestVT == MVT::f64)) { 2362 LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32/f64\n"); 2363 // For unsigned conversions, convert them to signed conversions using the 2364 // algorithm from the x86_64 __floatundisf in compiler_rt. That method 2365 // should be valid for i32->f32 as well. 2366 2367 // More generally this transform should be valid if there are 3 more bits 2368 // in the integer type than the significand. Rounding uses the first bit 2369 // after the width of the significand and the OR of all bits after that. So 2370 // we need to be able to OR the shifted out bit into one of the bits that 2371 // participate in the OR. 2372 2373 // TODO: This really should be implemented using a branch rather than a 2374 // select. We happen to get lucky and machinesink does the right 2375 // thing most of the time. This would be a good candidate for a 2376 // pseudo-op, or, even better, for whole-function isel. 2377 EVT SetCCVT = getSetCCResultType(SrcVT); 2378 2379 SDValue SignBitTest = DAG.getSetCC( 2380 dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2381 2382 EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout()); 2383 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 2384 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst); 2385 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 2386 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst); 2387 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 2388 2389 SDValue Slow, Fast; 2390 if (Node->isStrictFPOpcode()) { 2391 // In strict mode, we must avoid spurious exceptions, and therefore 2392 // must make sure to only emit a single STRICT_SINT_TO_FP. 2393 SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0); 2394 Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2395 { Node->getOperand(0), InCvt }); 2396 Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2397 { Fast.getValue(1), Fast, Fast }); 2398 Chain = Slow.getValue(1); 2399 // The STRICT_SINT_TO_FP inherits the exception mode from the 2400 // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can 2401 // never raise any exception. 2402 SDNodeFlags Flags; 2403 Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept()); 2404 Fast->setFlags(Flags); 2405 Flags.setNoFPExcept(true); 2406 Slow->setFlags(Flags); 2407 } else { 2408 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or); 2409 Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt); 2410 Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2411 } 2412 2413 return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast); 2414 } 2415 2416 // Don't expand it if there isn't cheap fadd. 2417 if (!TLI.isOperationLegalOrCustom( 2418 Node->isStrictFPOpcode() ? ISD::STRICT_FADD : ISD::FADD, DestVT)) 2419 return SDValue(); 2420 2421 // The following optimization is valid only if every value in SrcVT (when 2422 // treated as signed) is representable in DestVT. Check that the mantissa 2423 // size of DestVT is >= than the number of bits in SrcVT -1. 2424 assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >= 2425 SrcVT.getSizeInBits() - 1 && 2426 "Cannot perform lossless SINT_TO_FP!"); 2427 2428 SDValue Tmp1; 2429 if (Node->isStrictFPOpcode()) { 2430 Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2431 { Node->getOperand(0), Op0 }); 2432 } else 2433 Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2434 2435 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, 2436 DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2437 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2438 Four = DAG.getIntPtrConstant(4, dl); 2439 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2440 SignSet, Four, Zero); 2441 2442 // If the sign bit of the integer is set, the large number will be treated 2443 // as a negative number. To counteract this, the dynamic code adds an 2444 // offset depending on the data type. 2445 uint64_t FF; 2446 switch (SrcVT.getSimpleVT().SimpleTy) { 2447 default: 2448 return SDValue(); 2449 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2450 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2451 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2452 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2453 } 2454 if (DAG.getDataLayout().isLittleEndian()) 2455 FF <<= 32; 2456 Constant *FudgeFactor = ConstantInt::get( 2457 Type::getInt64Ty(*DAG.getContext()), FF); 2458 2459 SDValue CPIdx = 2460 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2461 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 2462 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2463 Alignment = commonAlignment(Alignment, 4); 2464 SDValue FudgeInReg; 2465 if (DestVT == MVT::f32) 2466 FudgeInReg = DAG.getLoad( 2467 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2468 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2469 Alignment); 2470 else { 2471 SDValue Load = DAG.getExtLoad( 2472 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2473 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2474 Alignment); 2475 HandleSDNode Handle(Load); 2476 LegalizeOp(Load.getNode()); 2477 FudgeInReg = Handle.getValue(); 2478 } 2479 2480 if (Node->isStrictFPOpcode()) { 2481 SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2482 { Tmp1.getValue(1), Tmp1, FudgeInReg }); 2483 Chain = Result.getValue(1); 2484 return Result; 2485 } 2486 2487 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2488 } 2489 2490 /// This function is responsible for legalizing a 2491 /// *INT_TO_FP operation of the specified operand when the target requests that 2492 /// we promote it. At this point, we know that the result and operand types are 2493 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2494 /// operation that takes a larger input. 2495 void SelectionDAGLegalize::PromoteLegalINT_TO_FP( 2496 SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) { 2497 bool IsStrict = N->isStrictFPOpcode(); 2498 bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP || 2499 N->getOpcode() == ISD::STRICT_SINT_TO_FP; 2500 EVT DestVT = N->getValueType(0); 2501 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2502 unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP; 2503 unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP; 2504 2505 // First step, figure out the appropriate *INT_TO_FP operation to use. 2506 EVT NewInTy = LegalOp.getValueType(); 2507 2508 unsigned OpToUse = 0; 2509 2510 // Scan for the appropriate larger type to use. 2511 while (true) { 2512 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2513 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2514 2515 // If the target supports SINT_TO_FP of this type, use it. 2516 if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) { 2517 OpToUse = SIntOp; 2518 break; 2519 } 2520 if (IsSigned) 2521 continue; 2522 2523 // If the target supports UINT_TO_FP of this type, use it. 2524 if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) { 2525 OpToUse = UIntOp; 2526 break; 2527 } 2528 2529 // Otherwise, try a larger type. 2530 } 2531 2532 // Okay, we found the operation and type to use. Zero extend our input to the 2533 // desired type then run the operation on it. 2534 if (IsStrict) { 2535 SDValue Res = 2536 DAG.getNode(OpToUse, dl, {DestVT, MVT::Other}, 2537 {N->getOperand(0), 2538 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2539 dl, NewInTy, LegalOp)}); 2540 Results.push_back(Res); 2541 Results.push_back(Res.getValue(1)); 2542 return; 2543 } 2544 2545 Results.push_back( 2546 DAG.getNode(OpToUse, dl, DestVT, 2547 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2548 dl, NewInTy, LegalOp))); 2549 } 2550 2551 /// This function is responsible for legalizing a 2552 /// FP_TO_*INT operation of the specified operand when the target requests that 2553 /// we promote it. At this point, we know that the result and operand types are 2554 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2555 /// operation that returns a larger result. 2556 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 2557 SmallVectorImpl<SDValue> &Results) { 2558 bool IsStrict = N->isStrictFPOpcode(); 2559 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 2560 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 2561 EVT DestVT = N->getValueType(0); 2562 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2563 // First step, figure out the appropriate FP_TO*INT operation to use. 2564 EVT NewOutTy = DestVT; 2565 2566 unsigned OpToUse = 0; 2567 2568 // Scan for the appropriate larger type to use. 2569 while (true) { 2570 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2571 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2572 2573 // A larger signed type can hold all unsigned values of the requested type, 2574 // so using FP_TO_SINT is valid 2575 OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT; 2576 if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2577 break; 2578 2579 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2580 OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT; 2581 if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2582 break; 2583 2584 // Otherwise, try a larger type. 2585 } 2586 2587 // Okay, we found the operation and type to use. 2588 SDValue Operation; 2589 if (IsStrict) { 2590 SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other); 2591 Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp); 2592 } else 2593 Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2594 2595 // Truncate the result of the extended FP_TO_*INT operation to the desired 2596 // size. 2597 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2598 Results.push_back(Trunc); 2599 if (IsStrict) 2600 Results.push_back(Operation.getValue(1)); 2601 } 2602 2603 /// Promote FP_TO_*INT_SAT operation to a larger result type. At this point 2604 /// the result and operand types are legal and there must be a legal 2605 /// FP_TO_*INT_SAT operation for a larger result type. 2606 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT_SAT(SDNode *Node, 2607 const SDLoc &dl) { 2608 unsigned Opcode = Node->getOpcode(); 2609 2610 // Scan for the appropriate larger type to use. 2611 EVT NewOutTy = Node->getValueType(0); 2612 while (true) { 2613 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy + 1); 2614 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2615 2616 if (TLI.isOperationLegalOrCustom(Opcode, NewOutTy)) 2617 break; 2618 } 2619 2620 // Saturation width is determined by second operand, so we don't have to 2621 // perform any fixup and can directly truncate the result. 2622 SDValue Result = DAG.getNode(Opcode, dl, NewOutTy, Node->getOperand(0), 2623 Node->getOperand(1)); 2624 return DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Result); 2625 } 2626 2627 /// Open code the operations for PARITY of the specified operation. 2628 SDValue SelectionDAGLegalize::ExpandPARITY(SDValue Op, const SDLoc &dl) { 2629 EVT VT = Op.getValueType(); 2630 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2631 unsigned Sz = VT.getScalarSizeInBits(); 2632 2633 // If CTPOP is legal, use it. Otherwise use shifts and xor. 2634 SDValue Result; 2635 if (TLI.isOperationLegal(ISD::CTPOP, VT)) { 2636 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 2637 } else { 2638 Result = Op; 2639 for (unsigned i = Log2_32_Ceil(Sz); i != 0;) { 2640 SDValue Shift = DAG.getNode(ISD::SRL, dl, VT, Result, 2641 DAG.getConstant(1ULL << (--i), dl, ShVT)); 2642 Result = DAG.getNode(ISD::XOR, dl, VT, Result, Shift); 2643 } 2644 } 2645 2646 return DAG.getNode(ISD::AND, dl, VT, Result, DAG.getConstant(1, dl, VT)); 2647 } 2648 2649 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2650 LLVM_DEBUG(dbgs() << "Trying to expand node\n"); 2651 SmallVector<SDValue, 8> Results; 2652 SDLoc dl(Node); 2653 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2654 bool NeedInvert; 2655 switch (Node->getOpcode()) { 2656 case ISD::ABS: 2657 if (TLI.expandABS(Node, Tmp1, DAG)) 2658 Results.push_back(Tmp1); 2659 break; 2660 case ISD::CTPOP: 2661 if (TLI.expandCTPOP(Node, Tmp1, DAG)) 2662 Results.push_back(Tmp1); 2663 break; 2664 case ISD::CTLZ: 2665 case ISD::CTLZ_ZERO_UNDEF: 2666 if (TLI.expandCTLZ(Node, Tmp1, DAG)) 2667 Results.push_back(Tmp1); 2668 break; 2669 case ISD::CTTZ: 2670 case ISD::CTTZ_ZERO_UNDEF: 2671 if (TLI.expandCTTZ(Node, Tmp1, DAG)) 2672 Results.push_back(Tmp1); 2673 break; 2674 case ISD::BITREVERSE: 2675 if ((Tmp1 = TLI.expandBITREVERSE(Node, DAG))) 2676 Results.push_back(Tmp1); 2677 break; 2678 case ISD::BSWAP: 2679 if ((Tmp1 = TLI.expandBSWAP(Node, DAG))) 2680 Results.push_back(Tmp1); 2681 break; 2682 case ISD::PARITY: 2683 Results.push_back(ExpandPARITY(Node->getOperand(0), dl)); 2684 break; 2685 case ISD::FRAMEADDR: 2686 case ISD::RETURNADDR: 2687 case ISD::FRAME_TO_ARGS_OFFSET: 2688 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2689 break; 2690 case ISD::EH_DWARF_CFA: { 2691 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 2692 TLI.getPointerTy(DAG.getDataLayout())); 2693 SDValue Offset = DAG.getNode(ISD::ADD, dl, 2694 CfaArg.getValueType(), 2695 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 2696 CfaArg.getValueType()), 2697 CfaArg); 2698 SDValue FA = DAG.getNode( 2699 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 2700 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2701 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 2702 FA, Offset)); 2703 break; 2704 } 2705 case ISD::FLT_ROUNDS_: 2706 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2707 Results.push_back(Node->getOperand(0)); 2708 break; 2709 case ISD::EH_RETURN: 2710 case ISD::EH_LABEL: 2711 case ISD::PREFETCH: 2712 case ISD::VAEND: 2713 case ISD::EH_SJLJ_LONGJMP: 2714 // If the target didn't expand these, there's nothing to do, so just 2715 // preserve the chain and be done. 2716 Results.push_back(Node->getOperand(0)); 2717 break; 2718 case ISD::READCYCLECOUNTER: 2719 // If the target didn't expand this, just return 'zero' and preserve the 2720 // chain. 2721 Results.append(Node->getNumValues() - 1, 2722 DAG.getConstant(0, dl, Node->getValueType(0))); 2723 Results.push_back(Node->getOperand(0)); 2724 break; 2725 case ISD::EH_SJLJ_SETJMP: 2726 // If the target didn't expand this, just return 'zero' and preserve the 2727 // chain. 2728 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2729 Results.push_back(Node->getOperand(0)); 2730 break; 2731 case ISD::ATOMIC_LOAD: { 2732 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2733 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2734 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2735 SDValue Swap = DAG.getAtomicCmpSwap( 2736 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2737 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2738 cast<AtomicSDNode>(Node)->getMemOperand()); 2739 Results.push_back(Swap.getValue(0)); 2740 Results.push_back(Swap.getValue(1)); 2741 break; 2742 } 2743 case ISD::ATOMIC_STORE: { 2744 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2745 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2746 cast<AtomicSDNode>(Node)->getMemoryVT(), 2747 Node->getOperand(0), 2748 Node->getOperand(1), Node->getOperand(2), 2749 cast<AtomicSDNode>(Node)->getMemOperand()); 2750 Results.push_back(Swap.getValue(1)); 2751 break; 2752 } 2753 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 2754 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 2755 // splits out the success value as a comparison. Expanding the resulting 2756 // ATOMIC_CMP_SWAP will produce a libcall. 2757 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2758 SDValue Res = DAG.getAtomicCmpSwap( 2759 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2760 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 2761 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 2762 2763 SDValue ExtRes = Res; 2764 SDValue LHS = Res; 2765 SDValue RHS = Node->getOperand(1); 2766 2767 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 2768 EVT OuterType = Node->getValueType(0); 2769 switch (TLI.getExtendForAtomicOps()) { 2770 case ISD::SIGN_EXTEND: 2771 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 2772 DAG.getValueType(AtomicType)); 2773 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 2774 Node->getOperand(2), DAG.getValueType(AtomicType)); 2775 ExtRes = LHS; 2776 break; 2777 case ISD::ZERO_EXTEND: 2778 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 2779 DAG.getValueType(AtomicType)); 2780 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2781 ExtRes = LHS; 2782 break; 2783 case ISD::ANY_EXTEND: 2784 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 2785 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2786 break; 2787 default: 2788 llvm_unreachable("Invalid atomic op extension"); 2789 } 2790 2791 SDValue Success = 2792 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 2793 2794 Results.push_back(ExtRes.getValue(0)); 2795 Results.push_back(Success); 2796 Results.push_back(Res.getValue(1)); 2797 break; 2798 } 2799 case ISD::DYNAMIC_STACKALLOC: 2800 ExpandDYNAMIC_STACKALLOC(Node, Results); 2801 break; 2802 case ISD::MERGE_VALUES: 2803 for (unsigned i = 0; i < Node->getNumValues(); i++) 2804 Results.push_back(Node->getOperand(i)); 2805 break; 2806 case ISD::UNDEF: { 2807 EVT VT = Node->getValueType(0); 2808 if (VT.isInteger()) 2809 Results.push_back(DAG.getConstant(0, dl, VT)); 2810 else { 2811 assert(VT.isFloatingPoint() && "Unknown value type!"); 2812 Results.push_back(DAG.getConstantFP(0, dl, VT)); 2813 } 2814 break; 2815 } 2816 case ISD::STRICT_FP_ROUND: 2817 // When strict mode is enforced we can't do expansion because it 2818 // does not honor the "strict" properties. Only libcall is allowed. 2819 if (TLI.isStrictFPEnabled()) 2820 break; 2821 // We might as well mutate to FP_ROUND when FP_ROUND operation is legal 2822 // since this operation is more efficient than stack operation. 2823 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2824 Node->getValueType(0)) 2825 == TargetLowering::Legal) 2826 break; 2827 // We fall back to use stack operation when the FP_ROUND operation 2828 // isn't available. 2829 if ((Tmp1 = EmitStackConvert(Node->getOperand(1), Node->getValueType(0), 2830 Node->getValueType(0), dl, 2831 Node->getOperand(0)))) { 2832 ReplaceNode(Node, Tmp1.getNode()); 2833 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n"); 2834 return true; 2835 } 2836 break; 2837 case ISD::FP_ROUND: 2838 case ISD::BITCAST: 2839 if ((Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 2840 Node->getValueType(0), dl))) 2841 Results.push_back(Tmp1); 2842 break; 2843 case ISD::STRICT_FP_EXTEND: 2844 // When strict mode is enforced we can't do expansion because it 2845 // does not honor the "strict" properties. Only libcall is allowed. 2846 if (TLI.isStrictFPEnabled()) 2847 break; 2848 // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal 2849 // since this operation is more efficient than stack operation. 2850 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2851 Node->getValueType(0)) 2852 == TargetLowering::Legal) 2853 break; 2854 // We fall back to use stack operation when the FP_EXTEND operation 2855 // isn't available. 2856 if ((Tmp1 = EmitStackConvert( 2857 Node->getOperand(1), Node->getOperand(1).getValueType(), 2858 Node->getValueType(0), dl, Node->getOperand(0)))) { 2859 ReplaceNode(Node, Tmp1.getNode()); 2860 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n"); 2861 return true; 2862 } 2863 break; 2864 case ISD::FP_EXTEND: 2865 if ((Tmp1 = EmitStackConvert(Node->getOperand(0), 2866 Node->getOperand(0).getValueType(), 2867 Node->getValueType(0), dl))) 2868 Results.push_back(Tmp1); 2869 break; 2870 case ISD::SIGN_EXTEND_INREG: { 2871 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2872 EVT VT = Node->getValueType(0); 2873 2874 // An in-register sign-extend of a boolean is a negation: 2875 // 'true' (1) sign-extended is -1. 2876 // 'false' (0) sign-extended is 0. 2877 // However, we must mask the high bits of the source operand because the 2878 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 2879 2880 // TODO: Do this for vectors too? 2881 if (ExtraVT.getSizeInBits() == 1) { 2882 SDValue One = DAG.getConstant(1, dl, VT); 2883 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 2884 SDValue Zero = DAG.getConstant(0, dl, VT); 2885 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 2886 Results.push_back(Neg); 2887 break; 2888 } 2889 2890 // NOTE: we could fall back on load/store here too for targets without 2891 // SRA. However, it is doubtful that any exist. 2892 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2893 unsigned BitsDiff = VT.getScalarSizeInBits() - 2894 ExtraVT.getScalarSizeInBits(); 2895 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 2896 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 2897 Node->getOperand(0), ShiftCst); 2898 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 2899 Results.push_back(Tmp1); 2900 break; 2901 } 2902 case ISD::UINT_TO_FP: 2903 case ISD::STRICT_UINT_TO_FP: 2904 if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) { 2905 Results.push_back(Tmp1); 2906 if (Node->isStrictFPOpcode()) 2907 Results.push_back(Tmp2); 2908 break; 2909 } 2910 LLVM_FALLTHROUGH; 2911 case ISD::SINT_TO_FP: 2912 case ISD::STRICT_SINT_TO_FP: 2913 if ((Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2))) { 2914 Results.push_back(Tmp1); 2915 if (Node->isStrictFPOpcode()) 2916 Results.push_back(Tmp2); 2917 } 2918 break; 2919 case ISD::FP_TO_SINT: 2920 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 2921 Results.push_back(Tmp1); 2922 break; 2923 case ISD::STRICT_FP_TO_SINT: 2924 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) { 2925 ReplaceNode(Node, Tmp1.getNode()); 2926 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n"); 2927 return true; 2928 } 2929 break; 2930 case ISD::FP_TO_UINT: 2931 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) 2932 Results.push_back(Tmp1); 2933 break; 2934 case ISD::STRICT_FP_TO_UINT: 2935 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) { 2936 // Relink the chain. 2937 DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2); 2938 // Replace the new UINT result. 2939 ReplaceNodeWithValue(SDValue(Node, 0), Tmp1); 2940 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n"); 2941 return true; 2942 } 2943 break; 2944 case ISD::FP_TO_SINT_SAT: 2945 case ISD::FP_TO_UINT_SAT: 2946 Results.push_back(TLI.expandFP_TO_INT_SAT(Node, DAG)); 2947 break; 2948 case ISD::VAARG: 2949 Results.push_back(DAG.expandVAArg(Node)); 2950 Results.push_back(Results[0].getValue(1)); 2951 break; 2952 case ISD::VACOPY: 2953 Results.push_back(DAG.expandVACopy(Node)); 2954 break; 2955 case ISD::EXTRACT_VECTOR_ELT: 2956 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 2957 // This must be an access of the only element. Return it. 2958 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 2959 Node->getOperand(0)); 2960 else 2961 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 2962 Results.push_back(Tmp1); 2963 break; 2964 case ISD::EXTRACT_SUBVECTOR: 2965 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 2966 break; 2967 case ISD::INSERT_SUBVECTOR: 2968 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 2969 break; 2970 case ISD::CONCAT_VECTORS: 2971 Results.push_back(ExpandVectorBuildThroughStack(Node)); 2972 break; 2973 case ISD::SCALAR_TO_VECTOR: 2974 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 2975 break; 2976 case ISD::INSERT_VECTOR_ELT: 2977 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 2978 Node->getOperand(1), 2979 Node->getOperand(2), dl)); 2980 break; 2981 case ISD::VECTOR_SHUFFLE: { 2982 SmallVector<int, 32> NewMask; 2983 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 2984 2985 EVT VT = Node->getValueType(0); 2986 EVT EltVT = VT.getVectorElementType(); 2987 SDValue Op0 = Node->getOperand(0); 2988 SDValue Op1 = Node->getOperand(1); 2989 if (!TLI.isTypeLegal(EltVT)) { 2990 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 2991 2992 // BUILD_VECTOR operands are allowed to be wider than the element type. 2993 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 2994 // it. 2995 if (NewEltVT.bitsLT(EltVT)) { 2996 // Convert shuffle node. 2997 // If original node was v4i64 and the new EltVT is i32, 2998 // cast operands to v8i32 and re-build the mask. 2999 3000 // Calculate new VT, the size of the new VT should be equal to original. 3001 EVT NewVT = 3002 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3003 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 3004 assert(NewVT.bitsEq(VT)); 3005 3006 // cast operands to new VT 3007 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3008 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3009 3010 // Convert the shuffle mask 3011 unsigned int factor = 3012 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3013 3014 // EltVT gets smaller 3015 assert(factor > 0); 3016 3017 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3018 if (Mask[i] < 0) { 3019 for (unsigned fi = 0; fi < factor; ++fi) 3020 NewMask.push_back(Mask[i]); 3021 } 3022 else { 3023 for (unsigned fi = 0; fi < factor; ++fi) 3024 NewMask.push_back(Mask[i]*factor+fi); 3025 } 3026 } 3027 Mask = NewMask; 3028 VT = NewVT; 3029 } 3030 EltVT = NewEltVT; 3031 } 3032 unsigned NumElems = VT.getVectorNumElements(); 3033 SmallVector<SDValue, 16> Ops; 3034 for (unsigned i = 0; i != NumElems; ++i) { 3035 if (Mask[i] < 0) { 3036 Ops.push_back(DAG.getUNDEF(EltVT)); 3037 continue; 3038 } 3039 unsigned Idx = Mask[i]; 3040 if (Idx < NumElems) 3041 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3042 DAG.getVectorIdxConstant(Idx, dl))); 3043 else 3044 Ops.push_back( 3045 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3046 DAG.getVectorIdxConstant(Idx - NumElems, dl))); 3047 } 3048 3049 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 3050 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3051 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3052 Results.push_back(Tmp1); 3053 break; 3054 } 3055 case ISD::VECTOR_SPLICE: { 3056 Results.push_back(TLI.expandVectorSplice(Node, DAG)); 3057 break; 3058 } 3059 case ISD::EXTRACT_ELEMENT: { 3060 EVT OpTy = Node->getOperand(0).getValueType(); 3061 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3062 // 1 -> Hi 3063 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3064 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3065 TLI.getShiftAmountTy( 3066 Node->getOperand(0).getValueType(), 3067 DAG.getDataLayout()))); 3068 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3069 } else { 3070 // 0 -> Lo 3071 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3072 Node->getOperand(0)); 3073 } 3074 Results.push_back(Tmp1); 3075 break; 3076 } 3077 case ISD::STACKSAVE: 3078 // Expand to CopyFromReg if the target set 3079 // StackPointerRegisterToSaveRestore. 3080 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { 3081 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3082 Node->getValueType(0))); 3083 Results.push_back(Results[0].getValue(1)); 3084 } else { 3085 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3086 Results.push_back(Node->getOperand(0)); 3087 } 3088 break; 3089 case ISD::STACKRESTORE: 3090 // Expand to CopyToReg if the target set 3091 // StackPointerRegisterToSaveRestore. 3092 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { 3093 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3094 Node->getOperand(1))); 3095 } else { 3096 Results.push_back(Node->getOperand(0)); 3097 } 3098 break; 3099 case ISD::GET_DYNAMIC_AREA_OFFSET: 3100 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3101 Results.push_back(Results[0].getValue(0)); 3102 break; 3103 case ISD::FCOPYSIGN: 3104 Results.push_back(ExpandFCOPYSIGN(Node)); 3105 break; 3106 case ISD::FNEG: 3107 Results.push_back(ExpandFNEG(Node)); 3108 break; 3109 case ISD::FABS: 3110 Results.push_back(ExpandFABS(Node)); 3111 break; 3112 case ISD::SMIN: 3113 case ISD::SMAX: 3114 case ISD::UMIN: 3115 case ISD::UMAX: { 3116 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3117 ISD::CondCode Pred; 3118 switch (Node->getOpcode()) { 3119 default: llvm_unreachable("How did we get here?"); 3120 case ISD::SMAX: Pred = ISD::SETGT; break; 3121 case ISD::SMIN: Pred = ISD::SETLT; break; 3122 case ISD::UMAX: Pred = ISD::SETUGT; break; 3123 case ISD::UMIN: Pred = ISD::SETULT; break; 3124 } 3125 Tmp1 = Node->getOperand(0); 3126 Tmp2 = Node->getOperand(1); 3127 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3128 Results.push_back(Tmp1); 3129 break; 3130 } 3131 case ISD::FMINNUM: 3132 case ISD::FMAXNUM: { 3133 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) 3134 Results.push_back(Expanded); 3135 break; 3136 } 3137 case ISD::FSIN: 3138 case ISD::FCOS: { 3139 EVT VT = Node->getValueType(0); 3140 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3141 // fcos which share the same operand and both are used. 3142 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3143 isSinCosLibcallAvailable(Node, TLI)) 3144 && useSinCos(Node)) { 3145 SDVTList VTs = DAG.getVTList(VT, VT); 3146 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3147 if (Node->getOpcode() == ISD::FCOS) 3148 Tmp1 = Tmp1.getValue(1); 3149 Results.push_back(Tmp1); 3150 } 3151 break; 3152 } 3153 case ISD::FMAD: 3154 llvm_unreachable("Illegal fmad should never be formed"); 3155 3156 case ISD::FP16_TO_FP: 3157 if (Node->getValueType(0) != MVT::f32) { 3158 // We can extend to types bigger than f32 in two steps without changing 3159 // the result. Since "f16 -> f32" is much more commonly available, give 3160 // CodeGen the option of emitting that before resorting to a libcall. 3161 SDValue Res = 3162 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3163 Results.push_back( 3164 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3165 } 3166 break; 3167 case ISD::STRICT_FP16_TO_FP: 3168 if (Node->getValueType(0) != MVT::f32) { 3169 // We can extend to types bigger than f32 in two steps without changing 3170 // the result. Since "f16 -> f32" is much more commonly available, give 3171 // CodeGen the option of emitting that before resorting to a libcall. 3172 SDValue Res = 3173 DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other}, 3174 {Node->getOperand(0), Node->getOperand(1)}); 3175 Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 3176 {Node->getValueType(0), MVT::Other}, 3177 {Res.getValue(1), Res}); 3178 Results.push_back(Res); 3179 Results.push_back(Res.getValue(1)); 3180 } 3181 break; 3182 case ISD::FP_TO_FP16: 3183 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3184 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3185 SDValue Op = Node->getOperand(0); 3186 MVT SVT = Op.getSimpleValueType(); 3187 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3188 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3189 // Under fastmath, we can expand this node into a fround followed by 3190 // a float-half conversion. 3191 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3192 DAG.getIntPtrConstant(0, dl)); 3193 Results.push_back( 3194 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3195 } 3196 } 3197 break; 3198 case ISD::ConstantFP: { 3199 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3200 // Check to see if this FP immediate is already legal. 3201 // If this is a legal constant, turn it into a TargetConstantFP node. 3202 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0), 3203 DAG.shouldOptForSize())) 3204 Results.push_back(ExpandConstantFP(CFP, true)); 3205 break; 3206 } 3207 case ISD::Constant: { 3208 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3209 Results.push_back(ExpandConstant(CP)); 3210 break; 3211 } 3212 case ISD::FSUB: { 3213 EVT VT = Node->getValueType(0); 3214 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3215 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3216 const SDNodeFlags Flags = Node->getFlags(); 3217 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3218 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3219 Results.push_back(Tmp1); 3220 } 3221 break; 3222 } 3223 case ISD::SUB: { 3224 EVT VT = Node->getValueType(0); 3225 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3226 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3227 "Don't know how to expand this subtraction!"); 3228 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3229 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, 3230 VT)); 3231 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3232 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3233 break; 3234 } 3235 case ISD::UREM: 3236 case ISD::SREM: 3237 if (TLI.expandREM(Node, Tmp1, DAG)) 3238 Results.push_back(Tmp1); 3239 break; 3240 case ISD::UDIV: 3241 case ISD::SDIV: { 3242 bool isSigned = Node->getOpcode() == ISD::SDIV; 3243 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3244 EVT VT = Node->getValueType(0); 3245 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3246 SDVTList VTs = DAG.getVTList(VT, VT); 3247 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3248 Node->getOperand(1)); 3249 Results.push_back(Tmp1); 3250 } 3251 break; 3252 } 3253 case ISD::MULHU: 3254 case ISD::MULHS: { 3255 unsigned ExpandOpcode = 3256 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3257 EVT VT = Node->getValueType(0); 3258 SDVTList VTs = DAG.getVTList(VT, VT); 3259 3260 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3261 Node->getOperand(1)); 3262 Results.push_back(Tmp1.getValue(1)); 3263 break; 3264 } 3265 case ISD::UMUL_LOHI: 3266 case ISD::SMUL_LOHI: { 3267 SDValue LHS = Node->getOperand(0); 3268 SDValue RHS = Node->getOperand(1); 3269 MVT VT = LHS.getSimpleValueType(); 3270 unsigned MULHOpcode = 3271 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3272 3273 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3274 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3275 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3276 break; 3277 } 3278 3279 SmallVector<SDValue, 4> Halves; 3280 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3281 assert(TLI.isTypeLegal(HalfType)); 3282 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, dl, LHS, RHS, Halves, 3283 HalfType, DAG, 3284 TargetLowering::MulExpansionKind::Always)) { 3285 for (unsigned i = 0; i < 2; ++i) { 3286 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3287 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3288 SDValue Shift = DAG.getConstant( 3289 HalfType.getScalarSizeInBits(), dl, 3290 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3291 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3292 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3293 } 3294 break; 3295 } 3296 break; 3297 } 3298 case ISD::MUL: { 3299 EVT VT = Node->getValueType(0); 3300 SDVTList VTs = DAG.getVTList(VT, VT); 3301 // See if multiply or divide can be lowered using two-result operations. 3302 // We just need the low half of the multiply; try both the signed 3303 // and unsigned forms. If the target supports both SMUL_LOHI and 3304 // UMUL_LOHI, form a preference by checking which forms of plain 3305 // MULH it supports. 3306 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3307 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3308 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3309 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3310 unsigned OpToUse = 0; 3311 if (HasSMUL_LOHI && !HasMULHS) { 3312 OpToUse = ISD::SMUL_LOHI; 3313 } else if (HasUMUL_LOHI && !HasMULHU) { 3314 OpToUse = ISD::UMUL_LOHI; 3315 } else if (HasSMUL_LOHI) { 3316 OpToUse = ISD::SMUL_LOHI; 3317 } else if (HasUMUL_LOHI) { 3318 OpToUse = ISD::UMUL_LOHI; 3319 } 3320 if (OpToUse) { 3321 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3322 Node->getOperand(1))); 3323 break; 3324 } 3325 3326 SDValue Lo, Hi; 3327 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3328 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3329 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3330 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3331 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3332 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3333 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3334 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3335 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3336 SDValue Shift = 3337 DAG.getConstant(HalfType.getSizeInBits(), dl, 3338 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3339 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3340 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3341 } 3342 break; 3343 } 3344 case ISD::FSHL: 3345 case ISD::FSHR: 3346 if (TLI.expandFunnelShift(Node, Tmp1, DAG)) 3347 Results.push_back(Tmp1); 3348 break; 3349 case ISD::ROTL: 3350 case ISD::ROTR: 3351 if (TLI.expandROT(Node, true /*AllowVectorOps*/, Tmp1, DAG)) 3352 Results.push_back(Tmp1); 3353 break; 3354 case ISD::SADDSAT: 3355 case ISD::UADDSAT: 3356 case ISD::SSUBSAT: 3357 case ISD::USUBSAT: 3358 Results.push_back(TLI.expandAddSubSat(Node, DAG)); 3359 break; 3360 case ISD::SSHLSAT: 3361 case ISD::USHLSAT: 3362 Results.push_back(TLI.expandShlSat(Node, DAG)); 3363 break; 3364 case ISD::SMULFIX: 3365 case ISD::SMULFIXSAT: 3366 case ISD::UMULFIX: 3367 case ISD::UMULFIXSAT: 3368 Results.push_back(TLI.expandFixedPointMul(Node, DAG)); 3369 break; 3370 case ISD::SDIVFIX: 3371 case ISD::SDIVFIXSAT: 3372 case ISD::UDIVFIX: 3373 case ISD::UDIVFIXSAT: 3374 if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node), 3375 Node->getOperand(0), 3376 Node->getOperand(1), 3377 Node->getConstantOperandVal(2), 3378 DAG)) { 3379 Results.push_back(V); 3380 break; 3381 } 3382 // FIXME: We might want to retry here with a wider type if we fail, if that 3383 // type is legal. 3384 // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is 3385 // <= 128 (which is the case for all of the default Embedded-C types), 3386 // we will only get here with types and scales that we could always expand 3387 // if we were allowed to generate libcalls to division functions of illegal 3388 // type. But we cannot do that. 3389 llvm_unreachable("Cannot expand DIVFIX!"); 3390 case ISD::ADDCARRY: 3391 case ISD::SUBCARRY: { 3392 SDValue LHS = Node->getOperand(0); 3393 SDValue RHS = Node->getOperand(1); 3394 SDValue Carry = Node->getOperand(2); 3395 3396 bool IsAdd = Node->getOpcode() == ISD::ADDCARRY; 3397 3398 // Initial add of the 2 operands. 3399 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB; 3400 EVT VT = LHS.getValueType(); 3401 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS); 3402 3403 // Initial check for overflow. 3404 EVT CarryType = Node->getValueType(1); 3405 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3406 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 3407 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3408 3409 // Add of the sum and the carry. 3410 SDValue One = DAG.getConstant(1, dl, VT); 3411 SDValue CarryExt = 3412 DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One); 3413 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt); 3414 3415 // Second check for overflow. If we are adding, we can only overflow if the 3416 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0. 3417 // If we are subtracting, we can only overflow if the initial sum is 0 and 3418 // the carry is set, resulting in a new sum of all 1s. 3419 SDValue Zero = DAG.getConstant(0, dl, VT); 3420 SDValue Overflow2 = 3421 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ) 3422 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ); 3423 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2, 3424 DAG.getZExtOrTrunc(Carry, dl, SetCCType)); 3425 3426 SDValue ResultCarry = 3427 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2); 3428 3429 Results.push_back(Sum2); 3430 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT)); 3431 break; 3432 } 3433 case ISD::SADDO: 3434 case ISD::SSUBO: { 3435 SDValue Result, Overflow; 3436 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 3437 Results.push_back(Result); 3438 Results.push_back(Overflow); 3439 break; 3440 } 3441 case ISD::UADDO: 3442 case ISD::USUBO: { 3443 SDValue Result, Overflow; 3444 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 3445 Results.push_back(Result); 3446 Results.push_back(Overflow); 3447 break; 3448 } 3449 case ISD::UMULO: 3450 case ISD::SMULO: { 3451 SDValue Result, Overflow; 3452 if (TLI.expandMULO(Node, Result, Overflow, DAG)) { 3453 Results.push_back(Result); 3454 Results.push_back(Overflow); 3455 } 3456 break; 3457 } 3458 case ISD::BUILD_PAIR: { 3459 EVT PairTy = Node->getValueType(0); 3460 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3461 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3462 Tmp2 = DAG.getNode( 3463 ISD::SHL, dl, PairTy, Tmp2, 3464 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3465 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3466 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3467 break; 3468 } 3469 case ISD::SELECT: 3470 Tmp1 = Node->getOperand(0); 3471 Tmp2 = Node->getOperand(1); 3472 Tmp3 = Node->getOperand(2); 3473 if (Tmp1.getOpcode() == ISD::SETCC) { 3474 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3475 Tmp2, Tmp3, 3476 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3477 } else { 3478 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3479 DAG.getConstant(0, dl, Tmp1.getValueType()), 3480 Tmp2, Tmp3, ISD::SETNE); 3481 } 3482 Tmp1->setFlags(Node->getFlags()); 3483 Results.push_back(Tmp1); 3484 break; 3485 case ISD::BR_JT: { 3486 SDValue Chain = Node->getOperand(0); 3487 SDValue Table = Node->getOperand(1); 3488 SDValue Index = Node->getOperand(2); 3489 3490 const DataLayout &TD = DAG.getDataLayout(); 3491 EVT PTy = TLI.getPointerTy(TD); 3492 3493 unsigned EntrySize = 3494 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3495 3496 // For power-of-two jumptable entry sizes convert multiplication to a shift. 3497 // This transformation needs to be done here since otherwise the MIPS 3498 // backend will end up emitting a three instruction multiply sequence 3499 // instead of a single shift and MSP430 will call a runtime function. 3500 if (llvm::isPowerOf2_32(EntrySize)) 3501 Index = DAG.getNode( 3502 ISD::SHL, dl, Index.getValueType(), Index, 3503 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); 3504 else 3505 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3506 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3507 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3508 Index, Table); 3509 3510 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3511 SDValue LD = DAG.getExtLoad( 3512 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3513 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3514 Addr = LD; 3515 if (TLI.isJumpTableRelative()) { 3516 // For PIC, the sequence is: 3517 // BRIND(load(Jumptable + index) + RelocBase) 3518 // RelocBase can be JumpTable, GOT or some sort of global base. 3519 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3520 TLI.getPICJumpTableRelocBase(Table, DAG)); 3521 } 3522 3523 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); 3524 Results.push_back(Tmp1); 3525 break; 3526 } 3527 case ISD::BRCOND: 3528 // Expand brcond's setcc into its constituent parts and create a BR_CC 3529 // Node. 3530 Tmp1 = Node->getOperand(0); 3531 Tmp2 = Node->getOperand(1); 3532 if (Tmp2.getOpcode() == ISD::SETCC) { 3533 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3534 Tmp1, Tmp2.getOperand(2), 3535 Tmp2.getOperand(0), Tmp2.getOperand(1), 3536 Node->getOperand(2)); 3537 } else { 3538 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 3539 if (Tmp2.isUndef() || 3540 (Tmp2.getOpcode() == ISD::AND && 3541 isa<ConstantSDNode>(Tmp2.getOperand(1)) && 3542 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) 3543 Tmp3 = Tmp2; 3544 else 3545 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3546 DAG.getConstant(1, dl, Tmp2.getValueType())); 3547 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3548 DAG.getCondCode(ISD::SETNE), Tmp3, 3549 DAG.getConstant(0, dl, Tmp3.getValueType()), 3550 Node->getOperand(2)); 3551 } 3552 Results.push_back(Tmp1); 3553 break; 3554 case ISD::SETCC: 3555 case ISD::STRICT_FSETCC: 3556 case ISD::STRICT_FSETCCS: { 3557 bool IsStrict = Node->getOpcode() != ISD::SETCC; 3558 bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS; 3559 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 3560 unsigned Offset = IsStrict ? 1 : 0; 3561 Tmp1 = Node->getOperand(0 + Offset); 3562 Tmp2 = Node->getOperand(1 + Offset); 3563 Tmp3 = Node->getOperand(2 + Offset); 3564 bool Legalized = 3565 TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), Tmp1, Tmp2, Tmp3, 3566 NeedInvert, dl, Chain, IsSignaling); 3567 3568 if (Legalized) { 3569 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3570 // condition code, create a new SETCC node. 3571 if (Tmp3.getNode()) 3572 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3573 Tmp1, Tmp2, Tmp3, Node->getFlags()); 3574 3575 // If we expanded the SETCC by inverting the condition code, then wrap 3576 // the existing SETCC in a NOT to restore the intended condition. 3577 if (NeedInvert) 3578 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3579 3580 Results.push_back(Tmp1); 3581 if (IsStrict) 3582 Results.push_back(Chain); 3583 3584 break; 3585 } 3586 3587 // FIXME: It seems Legalized is false iff CCCode is Legal. I don't 3588 // understand if this code is useful for strict nodes. 3589 assert(!IsStrict && "Don't know how to expand for strict nodes."); 3590 3591 // Otherwise, SETCC for the given comparison type must be completely 3592 // illegal; expand it into a SELECT_CC. 3593 EVT VT = Node->getValueType(0); 3594 int TrueValue; 3595 switch (TLI.getBooleanContents(Tmp1.getValueType())) { 3596 case TargetLowering::ZeroOrOneBooleanContent: 3597 case TargetLowering::UndefinedBooleanContent: 3598 TrueValue = 1; 3599 break; 3600 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3601 TrueValue = -1; 3602 break; 3603 } 3604 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3605 DAG.getConstant(TrueValue, dl, VT), 3606 DAG.getConstant(0, dl, VT), 3607 Tmp3); 3608 Tmp1->setFlags(Node->getFlags()); 3609 Results.push_back(Tmp1); 3610 break; 3611 } 3612 case ISD::SELECT_CC: { 3613 // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS 3614 Tmp1 = Node->getOperand(0); // LHS 3615 Tmp2 = Node->getOperand(1); // RHS 3616 Tmp3 = Node->getOperand(2); // True 3617 Tmp4 = Node->getOperand(3); // False 3618 EVT VT = Node->getValueType(0); 3619 SDValue Chain; 3620 SDValue CC = Node->getOperand(4); 3621 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3622 3623 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 3624 // If the condition code is legal, then we need to expand this 3625 // node using SETCC and SELECT. 3626 EVT CmpVT = Tmp1.getValueType(); 3627 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3628 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3629 "expanded."); 3630 EVT CCVT = getSetCCResultType(CmpVT); 3631 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags()); 3632 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3633 break; 3634 } 3635 3636 // SELECT_CC is legal, so the condition code must not be. 3637 bool Legalized = false; 3638 // Try to legalize by inverting the condition. This is for targets that 3639 // might support an ordered version of a condition, but not the unordered 3640 // version (or vice versa). 3641 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType()); 3642 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 3643 // Use the new condition code and swap true and false 3644 Legalized = true; 3645 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3646 Tmp1->setFlags(Node->getFlags()); 3647 } else { 3648 // If The inverse is not legal, then try to swap the arguments using 3649 // the inverse condition code. 3650 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3651 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 3652 // The swapped inverse condition is legal, so swap true and false, 3653 // lhs and rhs. 3654 Legalized = true; 3655 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3656 Tmp1->setFlags(Node->getFlags()); 3657 } 3658 } 3659 3660 if (!Legalized) { 3661 Legalized = TLI.LegalizeSetCCCondCode( 3662 DAG, getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, 3663 NeedInvert, dl, Chain); 3664 3665 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3666 3667 // If we expanded the SETCC by inverting the condition code, then swap 3668 // the True/False operands to match. 3669 if (NeedInvert) 3670 std::swap(Tmp3, Tmp4); 3671 3672 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3673 // condition code, create a new SELECT_CC node. 3674 if (CC.getNode()) { 3675 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3676 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3677 } else { 3678 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3679 CC = DAG.getCondCode(ISD::SETNE); 3680 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3681 Tmp2, Tmp3, Tmp4, CC); 3682 } 3683 Tmp1->setFlags(Node->getFlags()); 3684 } 3685 Results.push_back(Tmp1); 3686 break; 3687 } 3688 case ISD::BR_CC: { 3689 // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS 3690 SDValue Chain; 3691 Tmp1 = Node->getOperand(0); // Chain 3692 Tmp2 = Node->getOperand(2); // LHS 3693 Tmp3 = Node->getOperand(3); // RHS 3694 Tmp4 = Node->getOperand(1); // CC 3695 3696 bool Legalized = 3697 TLI.LegalizeSetCCCondCode(DAG, getSetCCResultType(Tmp2.getValueType()), 3698 Tmp2, Tmp3, Tmp4, NeedInvert, dl, Chain); 3699 (void)Legalized; 3700 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3701 3702 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3703 // node. 3704 if (Tmp4.getNode()) { 3705 assert(!NeedInvert && "Don't know how to invert BR_CC!"); 3706 3707 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3708 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3709 } else { 3710 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3711 Tmp4 = DAG.getCondCode(NeedInvert ? ISD::SETEQ : ISD::SETNE); 3712 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3713 Tmp2, Tmp3, Node->getOperand(4)); 3714 } 3715 Results.push_back(Tmp1); 3716 break; 3717 } 3718 case ISD::BUILD_VECTOR: 3719 Results.push_back(ExpandBUILD_VECTOR(Node)); 3720 break; 3721 case ISD::SPLAT_VECTOR: 3722 Results.push_back(ExpandSPLAT_VECTOR(Node)); 3723 break; 3724 case ISD::SRA: 3725 case ISD::SRL: 3726 case ISD::SHL: { 3727 // Scalarize vector SRA/SRL/SHL. 3728 EVT VT = Node->getValueType(0); 3729 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3730 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3731 unsigned NumElem = VT.getVectorNumElements(); 3732 3733 SmallVector<SDValue, 8> Scalars; 3734 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3735 SDValue Ex = 3736 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3737 Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl)); 3738 SDValue Sh = 3739 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3740 Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl)); 3741 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3742 VT.getScalarType(), Ex, Sh)); 3743 } 3744 3745 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 3746 Results.push_back(Result); 3747 break; 3748 } 3749 case ISD::VECREDUCE_FADD: 3750 case ISD::VECREDUCE_FMUL: 3751 case ISD::VECREDUCE_ADD: 3752 case ISD::VECREDUCE_MUL: 3753 case ISD::VECREDUCE_AND: 3754 case ISD::VECREDUCE_OR: 3755 case ISD::VECREDUCE_XOR: 3756 case ISD::VECREDUCE_SMAX: 3757 case ISD::VECREDUCE_SMIN: 3758 case ISD::VECREDUCE_UMAX: 3759 case ISD::VECREDUCE_UMIN: 3760 case ISD::VECREDUCE_FMAX: 3761 case ISD::VECREDUCE_FMIN: 3762 Results.push_back(TLI.expandVecReduce(Node, DAG)); 3763 break; 3764 case ISD::GLOBAL_OFFSET_TABLE: 3765 case ISD::GlobalAddress: 3766 case ISD::GlobalTLSAddress: 3767 case ISD::ExternalSymbol: 3768 case ISD::ConstantPool: 3769 case ISD::JumpTable: 3770 case ISD::INTRINSIC_W_CHAIN: 3771 case ISD::INTRINSIC_WO_CHAIN: 3772 case ISD::INTRINSIC_VOID: 3773 // FIXME: Custom lowering for these operations shouldn't return null! 3774 // Return true so that we don't call ConvertNodeToLibcall which also won't 3775 // do anything. 3776 return true; 3777 } 3778 3779 if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) { 3780 // FIXME: We were asked to expand a strict floating-point operation, 3781 // but there is currently no expansion implemented that would preserve 3782 // the "strict" properties. For now, we just fall back to the non-strict 3783 // version if that is legal on the target. The actual mutation of the 3784 // operation will happen in SelectionDAGISel::DoInstructionSelection. 3785 switch (Node->getOpcode()) { 3786 default: 3787 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3788 Node->getValueType(0)) 3789 == TargetLowering::Legal) 3790 return true; 3791 break; 3792 case ISD::STRICT_FSUB: { 3793 if (TLI.getStrictFPOperationAction( 3794 ISD::STRICT_FSUB, Node->getValueType(0)) == TargetLowering::Legal) 3795 return true; 3796 if (TLI.getStrictFPOperationAction( 3797 ISD::STRICT_FADD, Node->getValueType(0)) != TargetLowering::Legal) 3798 break; 3799 3800 EVT VT = Node->getValueType(0); 3801 const SDNodeFlags Flags = Node->getFlags(); 3802 SDValue Neg = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(2), Flags); 3803 SDValue Fadd = DAG.getNode(ISD::STRICT_FADD, dl, Node->getVTList(), 3804 {Node->getOperand(0), Node->getOperand(1), Neg}, 3805 Flags); 3806 3807 Results.push_back(Fadd); 3808 Results.push_back(Fadd.getValue(1)); 3809 break; 3810 } 3811 case ISD::STRICT_SINT_TO_FP: 3812 case ISD::STRICT_UINT_TO_FP: 3813 case ISD::STRICT_LRINT: 3814 case ISD::STRICT_LLRINT: 3815 case ISD::STRICT_LROUND: 3816 case ISD::STRICT_LLROUND: 3817 // These are registered by the operand type instead of the value 3818 // type. Reflect that here. 3819 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3820 Node->getOperand(1).getValueType()) 3821 == TargetLowering::Legal) 3822 return true; 3823 break; 3824 } 3825 } 3826 3827 // Replace the original node with the legalized result. 3828 if (Results.empty()) { 3829 LLVM_DEBUG(dbgs() << "Cannot expand node\n"); 3830 return false; 3831 } 3832 3833 LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); 3834 ReplaceNode(Node, Results.data()); 3835 return true; 3836 } 3837 3838 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 3839 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); 3840 SmallVector<SDValue, 8> Results; 3841 SDLoc dl(Node); 3842 // FIXME: Check flags on the node to see if we can use a finite call. 3843 unsigned Opc = Node->getOpcode(); 3844 switch (Opc) { 3845 case ISD::ATOMIC_FENCE: { 3846 // If the target didn't lower this, lower it to '__sync_synchronize()' call 3847 // FIXME: handle "fence singlethread" more efficiently. 3848 TargetLowering::ArgListTy Args; 3849 3850 TargetLowering::CallLoweringInfo CLI(DAG); 3851 CLI.setDebugLoc(dl) 3852 .setChain(Node->getOperand(0)) 3853 .setLibCallee( 3854 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3855 DAG.getExternalSymbol("__sync_synchronize", 3856 TLI.getPointerTy(DAG.getDataLayout())), 3857 std::move(Args)); 3858 3859 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3860 3861 Results.push_back(CallResult.second); 3862 break; 3863 } 3864 // By default, atomic intrinsics are marked Legal and lowered. Targets 3865 // which don't support them directly, however, may want libcalls, in which 3866 // case they mark them Expand, and we get here. 3867 case ISD::ATOMIC_SWAP: 3868 case ISD::ATOMIC_LOAD_ADD: 3869 case ISD::ATOMIC_LOAD_SUB: 3870 case ISD::ATOMIC_LOAD_AND: 3871 case ISD::ATOMIC_LOAD_CLR: 3872 case ISD::ATOMIC_LOAD_OR: 3873 case ISD::ATOMIC_LOAD_XOR: 3874 case ISD::ATOMIC_LOAD_NAND: 3875 case ISD::ATOMIC_LOAD_MIN: 3876 case ISD::ATOMIC_LOAD_MAX: 3877 case ISD::ATOMIC_LOAD_UMIN: 3878 case ISD::ATOMIC_LOAD_UMAX: 3879 case ISD::ATOMIC_CMP_SWAP: { 3880 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 3881 AtomicOrdering Order = cast<AtomicSDNode>(Node)->getMergedOrdering(); 3882 RTLIB::Libcall LC = RTLIB::getOUTLINE_ATOMIC(Opc, Order, VT); 3883 EVT RetVT = Node->getValueType(0); 3884 TargetLowering::MakeLibCallOptions CallOptions; 3885 SmallVector<SDValue, 4> Ops; 3886 if (TLI.getLibcallName(LC)) { 3887 // If outline atomic available, prepare its arguments and expand. 3888 Ops.append(Node->op_begin() + 2, Node->op_end()); 3889 Ops.push_back(Node->getOperand(1)); 3890 3891 } else { 3892 LC = RTLIB::getSYNC(Opc, VT); 3893 assert(LC != RTLIB::UNKNOWN_LIBCALL && 3894 "Unexpected atomic op or value type!"); 3895 // Arguments for expansion to sync libcall 3896 Ops.append(Node->op_begin() + 1, Node->op_end()); 3897 } 3898 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 3899 Ops, CallOptions, 3900 SDLoc(Node), 3901 Node->getOperand(0)); 3902 Results.push_back(Tmp.first); 3903 Results.push_back(Tmp.second); 3904 break; 3905 } 3906 case ISD::TRAP: { 3907 // If this operation is not supported, lower it to 'abort()' call 3908 TargetLowering::ArgListTy Args; 3909 TargetLowering::CallLoweringInfo CLI(DAG); 3910 CLI.setDebugLoc(dl) 3911 .setChain(Node->getOperand(0)) 3912 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3913 DAG.getExternalSymbol( 3914 "abort", TLI.getPointerTy(DAG.getDataLayout())), 3915 std::move(Args)); 3916 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3917 3918 Results.push_back(CallResult.second); 3919 break; 3920 } 3921 case ISD::FMINNUM: 3922 case ISD::STRICT_FMINNUM: 3923 ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 3924 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 3925 RTLIB::FMIN_PPCF128, Results); 3926 break; 3927 case ISD::FMAXNUM: 3928 case ISD::STRICT_FMAXNUM: 3929 ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 3930 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 3931 RTLIB::FMAX_PPCF128, Results); 3932 break; 3933 case ISD::FSQRT: 3934 case ISD::STRICT_FSQRT: 3935 ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3936 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 3937 RTLIB::SQRT_PPCF128, Results); 3938 break; 3939 case ISD::FCBRT: 3940 ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, 3941 RTLIB::CBRT_F80, RTLIB::CBRT_F128, 3942 RTLIB::CBRT_PPCF128, Results); 3943 break; 3944 case ISD::FSIN: 3945 case ISD::STRICT_FSIN: 3946 ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 3947 RTLIB::SIN_F80, RTLIB::SIN_F128, 3948 RTLIB::SIN_PPCF128, Results); 3949 break; 3950 case ISD::FCOS: 3951 case ISD::STRICT_FCOS: 3952 ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 3953 RTLIB::COS_F80, RTLIB::COS_F128, 3954 RTLIB::COS_PPCF128, Results); 3955 break; 3956 case ISD::FSINCOS: 3957 // Expand into sincos libcall. 3958 ExpandSinCosLibCall(Node, Results); 3959 break; 3960 case ISD::FLOG: 3961 case ISD::STRICT_FLOG: 3962 ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80, 3963 RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results); 3964 break; 3965 case ISD::FLOG2: 3966 case ISD::STRICT_FLOG2: 3967 ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80, 3968 RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results); 3969 break; 3970 case ISD::FLOG10: 3971 case ISD::STRICT_FLOG10: 3972 ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80, 3973 RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results); 3974 break; 3975 case ISD::FEXP: 3976 case ISD::STRICT_FEXP: 3977 ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80, 3978 RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results); 3979 break; 3980 case ISD::FEXP2: 3981 case ISD::STRICT_FEXP2: 3982 ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80, 3983 RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results); 3984 break; 3985 case ISD::FTRUNC: 3986 case ISD::STRICT_FTRUNC: 3987 ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 3988 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 3989 RTLIB::TRUNC_PPCF128, Results); 3990 break; 3991 case ISD::FFLOOR: 3992 case ISD::STRICT_FFLOOR: 3993 ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 3994 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 3995 RTLIB::FLOOR_PPCF128, Results); 3996 break; 3997 case ISD::FCEIL: 3998 case ISD::STRICT_FCEIL: 3999 ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 4000 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 4001 RTLIB::CEIL_PPCF128, Results); 4002 break; 4003 case ISD::FRINT: 4004 case ISD::STRICT_FRINT: 4005 ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 4006 RTLIB::RINT_F80, RTLIB::RINT_F128, 4007 RTLIB::RINT_PPCF128, Results); 4008 break; 4009 case ISD::FNEARBYINT: 4010 case ISD::STRICT_FNEARBYINT: 4011 ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 4012 RTLIB::NEARBYINT_F64, 4013 RTLIB::NEARBYINT_F80, 4014 RTLIB::NEARBYINT_F128, 4015 RTLIB::NEARBYINT_PPCF128, Results); 4016 break; 4017 case ISD::FROUND: 4018 case ISD::STRICT_FROUND: 4019 ExpandFPLibCall(Node, RTLIB::ROUND_F32, 4020 RTLIB::ROUND_F64, 4021 RTLIB::ROUND_F80, 4022 RTLIB::ROUND_F128, 4023 RTLIB::ROUND_PPCF128, Results); 4024 break; 4025 case ISD::FROUNDEVEN: 4026 case ISD::STRICT_FROUNDEVEN: 4027 ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32, 4028 RTLIB::ROUNDEVEN_F64, 4029 RTLIB::ROUNDEVEN_F80, 4030 RTLIB::ROUNDEVEN_F128, 4031 RTLIB::ROUNDEVEN_PPCF128, Results); 4032 break; 4033 case ISD::FPOWI: 4034 case ISD::STRICT_FPOWI: { 4035 RTLIB::Libcall LC = RTLIB::getPOWI(Node->getSimpleValueType(0)); 4036 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fpowi."); 4037 if (!TLI.getLibcallName(LC)) { 4038 // Some targets don't have a powi libcall; use pow instead. 4039 SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), 4040 Node->getValueType(0), 4041 Node->getOperand(1)); 4042 Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node), 4043 Node->getValueType(0), Node->getOperand(0), 4044 Exponent)); 4045 break; 4046 } 4047 ExpandFPLibCall(Node, LC, Results); 4048 break; 4049 } 4050 case ISD::FPOW: 4051 case ISD::STRICT_FPOW: 4052 ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 4053 RTLIB::POW_F128, RTLIB::POW_PPCF128, Results); 4054 break; 4055 case ISD::LROUND: 4056 case ISD::STRICT_LROUND: 4057 ExpandArgFPLibCall(Node, RTLIB::LROUND_F32, 4058 RTLIB::LROUND_F64, RTLIB::LROUND_F80, 4059 RTLIB::LROUND_F128, 4060 RTLIB::LROUND_PPCF128, Results); 4061 break; 4062 case ISD::LLROUND: 4063 case ISD::STRICT_LLROUND: 4064 ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32, 4065 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, 4066 RTLIB::LLROUND_F128, 4067 RTLIB::LLROUND_PPCF128, Results); 4068 break; 4069 case ISD::LRINT: 4070 case ISD::STRICT_LRINT: 4071 ExpandArgFPLibCall(Node, RTLIB::LRINT_F32, 4072 RTLIB::LRINT_F64, RTLIB::LRINT_F80, 4073 RTLIB::LRINT_F128, 4074 RTLIB::LRINT_PPCF128, Results); 4075 break; 4076 case ISD::LLRINT: 4077 case ISD::STRICT_LLRINT: 4078 ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32, 4079 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80, 4080 RTLIB::LLRINT_F128, 4081 RTLIB::LLRINT_PPCF128, Results); 4082 break; 4083 case ISD::FDIV: 4084 case ISD::STRICT_FDIV: 4085 ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 4086 RTLIB::DIV_F80, RTLIB::DIV_F128, 4087 RTLIB::DIV_PPCF128, Results); 4088 break; 4089 case ISD::FREM: 4090 case ISD::STRICT_FREM: 4091 ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 4092 RTLIB::REM_F80, RTLIB::REM_F128, 4093 RTLIB::REM_PPCF128, Results); 4094 break; 4095 case ISD::FMA: 4096 case ISD::STRICT_FMA: 4097 ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 4098 RTLIB::FMA_F80, RTLIB::FMA_F128, 4099 RTLIB::FMA_PPCF128, Results); 4100 break; 4101 case ISD::FADD: 4102 case ISD::STRICT_FADD: 4103 ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 4104 RTLIB::ADD_F80, RTLIB::ADD_F128, 4105 RTLIB::ADD_PPCF128, Results); 4106 break; 4107 case ISD::FMUL: 4108 case ISD::STRICT_FMUL: 4109 ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 4110 RTLIB::MUL_F80, RTLIB::MUL_F128, 4111 RTLIB::MUL_PPCF128, Results); 4112 break; 4113 case ISD::FP16_TO_FP: 4114 if (Node->getValueType(0) == MVT::f32) { 4115 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 4116 } 4117 break; 4118 case ISD::STRICT_FP16_TO_FP: { 4119 if (Node->getValueType(0) == MVT::f32) { 4120 TargetLowering::MakeLibCallOptions CallOptions; 4121 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall( 4122 DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions, 4123 SDLoc(Node), Node->getOperand(0)); 4124 Results.push_back(Tmp.first); 4125 Results.push_back(Tmp.second); 4126 } 4127 break; 4128 } 4129 case ISD::FP_TO_FP16: { 4130 RTLIB::Libcall LC = 4131 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 4132 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 4133 Results.push_back(ExpandLibCall(LC, Node, false)); 4134 break; 4135 } 4136 case ISD::STRICT_SINT_TO_FP: 4137 case ISD::STRICT_UINT_TO_FP: 4138 case ISD::SINT_TO_FP: 4139 case ISD::UINT_TO_FP: { 4140 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP 4141 bool IsStrict = Node->isStrictFPOpcode(); 4142 bool Signed = Node->getOpcode() == ISD::SINT_TO_FP || 4143 Node->getOpcode() == ISD::STRICT_SINT_TO_FP; 4144 EVT SVT = Node->getOperand(IsStrict ? 1 : 0).getValueType(); 4145 EVT RVT = Node->getValueType(0); 4146 EVT NVT = EVT(); 4147 SDLoc dl(Node); 4148 4149 // Even if the input is legal, no libcall may exactly match, eg. we don't 4150 // have i1 -> fp conversions. So, it needs to be promoted to a larger type, 4151 // eg: i13 -> fp. Then, look for an appropriate libcall. 4152 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 4153 for (unsigned t = MVT::FIRST_INTEGER_VALUETYPE; 4154 t <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; 4155 ++t) { 4156 NVT = (MVT::SimpleValueType)t; 4157 // The source needs to big enough to hold the operand. 4158 if (NVT.bitsGE(SVT)) 4159 LC = Signed ? RTLIB::getSINTTOFP(NVT, RVT) 4160 : RTLIB::getUINTTOFP(NVT, RVT); 4161 } 4162 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4163 4164 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4165 // Sign/zero extend the argument if the libcall takes a larger type. 4166 SDValue Op = DAG.getNode(Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl, 4167 NVT, Node->getOperand(IsStrict ? 1 : 0)); 4168 TargetLowering::MakeLibCallOptions CallOptions; 4169 CallOptions.setSExt(Signed); 4170 std::pair<SDValue, SDValue> Tmp = 4171 TLI.makeLibCall(DAG, LC, RVT, Op, CallOptions, dl, Chain); 4172 Results.push_back(Tmp.first); 4173 if (IsStrict) 4174 Results.push_back(Tmp.second); 4175 break; 4176 } 4177 case ISD::FP_TO_SINT: 4178 case ISD::FP_TO_UINT: 4179 case ISD::STRICT_FP_TO_SINT: 4180 case ISD::STRICT_FP_TO_UINT: { 4181 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatOp_FP_TO_XINT. 4182 bool IsStrict = Node->isStrictFPOpcode(); 4183 bool Signed = Node->getOpcode() == ISD::FP_TO_SINT || 4184 Node->getOpcode() == ISD::STRICT_FP_TO_SINT; 4185 4186 SDValue Op = Node->getOperand(IsStrict ? 1 : 0); 4187 EVT SVT = Op.getValueType(); 4188 EVT RVT = Node->getValueType(0); 4189 EVT NVT = EVT(); 4190 SDLoc dl(Node); 4191 4192 // Even if the result is legal, no libcall may exactly match, eg. we don't 4193 // have fp -> i1 conversions. So, it needs to be promoted to a larger type, 4194 // eg: fp -> i32. Then, look for an appropriate libcall. 4195 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 4196 for (unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE; 4197 IntVT <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; 4198 ++IntVT) { 4199 NVT = (MVT::SimpleValueType)IntVT; 4200 // The type needs to big enough to hold the result. 4201 if (NVT.bitsGE(RVT)) 4202 LC = Signed ? RTLIB::getFPTOSINT(SVT, NVT) 4203 : RTLIB::getFPTOUINT(SVT, NVT); 4204 } 4205 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4206 4207 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4208 TargetLowering::MakeLibCallOptions CallOptions; 4209 std::pair<SDValue, SDValue> Tmp = 4210 TLI.makeLibCall(DAG, LC, NVT, Op, CallOptions, dl, Chain); 4211 4212 // Truncate the result if the libcall returns a larger type. 4213 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, RVT, Tmp.first)); 4214 if (IsStrict) 4215 Results.push_back(Tmp.second); 4216 break; 4217 } 4218 4219 case ISD::FP_ROUND: 4220 case ISD::STRICT_FP_ROUND: { 4221 // X = FP_ROUND(Y, TRUNC) 4222 // TRUNC is a flag, which is always an integer that is zero or one. 4223 // If TRUNC is 0, this is a normal rounding, if it is 1, this FP_ROUND 4224 // is known to not change the value of Y. 4225 // We can only expand it into libcall if the TRUNC is 0. 4226 bool IsStrict = Node->isStrictFPOpcode(); 4227 SDValue Op = Node->getOperand(IsStrict ? 1 : 0); 4228 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4229 EVT VT = Node->getValueType(0); 4230 assert(cast<ConstantSDNode>(Node->getOperand(IsStrict ? 2 : 1)) 4231 ->isNullValue() && 4232 "Unable to expand as libcall if it is not normal rounding"); 4233 4234 RTLIB::Libcall LC = RTLIB::getFPROUND(Op.getValueType(), VT); 4235 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4236 4237 TargetLowering::MakeLibCallOptions CallOptions; 4238 std::pair<SDValue, SDValue> Tmp = 4239 TLI.makeLibCall(DAG, LC, VT, Op, CallOptions, SDLoc(Node), Chain); 4240 Results.push_back(Tmp.first); 4241 if (IsStrict) 4242 Results.push_back(Tmp.second); 4243 break; 4244 } 4245 case ISD::FP_EXTEND: { 4246 Results.push_back( 4247 ExpandLibCall(RTLIB::getFPEXT(Node->getOperand(0).getValueType(), 4248 Node->getValueType(0)), 4249 Node, false)); 4250 break; 4251 } 4252 case ISD::STRICT_FP_EXTEND: 4253 case ISD::STRICT_FP_TO_FP16: { 4254 RTLIB::Libcall LC = 4255 Node->getOpcode() == ISD::STRICT_FP_TO_FP16 4256 ? RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16) 4257 : RTLIB::getFPEXT(Node->getOperand(1).getValueType(), 4258 Node->getValueType(0)); 4259 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4260 4261 TargetLowering::MakeLibCallOptions CallOptions; 4262 std::pair<SDValue, SDValue> Tmp = 4263 TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1), 4264 CallOptions, SDLoc(Node), Node->getOperand(0)); 4265 Results.push_back(Tmp.first); 4266 Results.push_back(Tmp.second); 4267 break; 4268 } 4269 case ISD::FSUB: 4270 case ISD::STRICT_FSUB: 4271 ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4272 RTLIB::SUB_F80, RTLIB::SUB_F128, 4273 RTLIB::SUB_PPCF128, Results); 4274 break; 4275 case ISD::SREM: 4276 Results.push_back(ExpandIntLibCall(Node, true, 4277 RTLIB::SREM_I8, 4278 RTLIB::SREM_I16, RTLIB::SREM_I32, 4279 RTLIB::SREM_I64, RTLIB::SREM_I128)); 4280 break; 4281 case ISD::UREM: 4282 Results.push_back(ExpandIntLibCall(Node, false, 4283 RTLIB::UREM_I8, 4284 RTLIB::UREM_I16, RTLIB::UREM_I32, 4285 RTLIB::UREM_I64, RTLIB::UREM_I128)); 4286 break; 4287 case ISD::SDIV: 4288 Results.push_back(ExpandIntLibCall(Node, true, 4289 RTLIB::SDIV_I8, 4290 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4291 RTLIB::SDIV_I64, RTLIB::SDIV_I128)); 4292 break; 4293 case ISD::UDIV: 4294 Results.push_back(ExpandIntLibCall(Node, false, 4295 RTLIB::UDIV_I8, 4296 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4297 RTLIB::UDIV_I64, RTLIB::UDIV_I128)); 4298 break; 4299 case ISD::SDIVREM: 4300 case ISD::UDIVREM: 4301 // Expand into divrem libcall 4302 ExpandDivRemLibCall(Node, Results); 4303 break; 4304 case ISD::MUL: 4305 Results.push_back(ExpandIntLibCall(Node, false, 4306 RTLIB::MUL_I8, 4307 RTLIB::MUL_I16, RTLIB::MUL_I32, 4308 RTLIB::MUL_I64, RTLIB::MUL_I128)); 4309 break; 4310 case ISD::CTLZ_ZERO_UNDEF: 4311 switch (Node->getSimpleValueType(0).SimpleTy) { 4312 default: 4313 llvm_unreachable("LibCall explicitly requested, but not available"); 4314 case MVT::i32: 4315 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false)); 4316 break; 4317 case MVT::i64: 4318 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false)); 4319 break; 4320 case MVT::i128: 4321 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false)); 4322 break; 4323 } 4324 break; 4325 } 4326 4327 // Replace the original node with the legalized result. 4328 if (!Results.empty()) { 4329 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); 4330 ReplaceNode(Node, Results.data()); 4331 } else 4332 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); 4333 } 4334 4335 // Determine the vector type to use in place of an original scalar element when 4336 // promoting equally sized vectors. 4337 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4338 MVT EltVT, MVT NewEltVT) { 4339 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4340 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4341 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4342 return MidVT; 4343 } 4344 4345 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4346 LLVM_DEBUG(dbgs() << "Trying to promote node\n"); 4347 SmallVector<SDValue, 8> Results; 4348 MVT OVT = Node->getSimpleValueType(0); 4349 if (Node->getOpcode() == ISD::UINT_TO_FP || 4350 Node->getOpcode() == ISD::SINT_TO_FP || 4351 Node->getOpcode() == ISD::SETCC || 4352 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4353 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4354 OVT = Node->getOperand(0).getSimpleValueType(); 4355 } 4356 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP || 4357 Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 4358 Node->getOpcode() == ISD::STRICT_FSETCC || 4359 Node->getOpcode() == ISD::STRICT_FSETCCS) 4360 OVT = Node->getOperand(1).getSimpleValueType(); 4361 if (Node->getOpcode() == ISD::BR_CC || 4362 Node->getOpcode() == ISD::SELECT_CC) 4363 OVT = Node->getOperand(2).getSimpleValueType(); 4364 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4365 SDLoc dl(Node); 4366 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 4367 switch (Node->getOpcode()) { 4368 case ISD::CTTZ: 4369 case ISD::CTTZ_ZERO_UNDEF: 4370 case ISD::CTLZ: 4371 case ISD::CTLZ_ZERO_UNDEF: 4372 case ISD::CTPOP: 4373 // Zero extend the argument unless its cttz, then use any_extend. 4374 if (Node->getOpcode() == ISD::CTTZ || 4375 Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 4376 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 4377 else 4378 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4379 4380 if (Node->getOpcode() == ISD::CTTZ) { 4381 // The count is the same in the promoted type except if the original 4382 // value was zero. This can be handled by setting the bit just off 4383 // the top of the original type. 4384 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4385 OVT.getSizeInBits()); 4386 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4387 DAG.getConstant(TopBit, dl, NVT)); 4388 } 4389 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4390 // already the correct result. 4391 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4392 if (Node->getOpcode() == ISD::CTLZ || 4393 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4394 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4395 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4396 DAG.getConstant(NVT.getSizeInBits() - 4397 OVT.getSizeInBits(), dl, NVT)); 4398 } 4399 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4400 break; 4401 case ISD::BITREVERSE: 4402 case ISD::BSWAP: { 4403 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4404 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4405 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4406 Tmp1 = DAG.getNode( 4407 ISD::SRL, dl, NVT, Tmp1, 4408 DAG.getConstant(DiffBits, dl, 4409 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4410 4411 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4412 break; 4413 } 4414 case ISD::FP_TO_UINT: 4415 case ISD::STRICT_FP_TO_UINT: 4416 case ISD::FP_TO_SINT: 4417 case ISD::STRICT_FP_TO_SINT: 4418 PromoteLegalFP_TO_INT(Node, dl, Results); 4419 break; 4420 case ISD::FP_TO_UINT_SAT: 4421 case ISD::FP_TO_SINT_SAT: 4422 Results.push_back(PromoteLegalFP_TO_INT_SAT(Node, dl)); 4423 break; 4424 case ISD::UINT_TO_FP: 4425 case ISD::STRICT_UINT_TO_FP: 4426 case ISD::SINT_TO_FP: 4427 case ISD::STRICT_SINT_TO_FP: 4428 PromoteLegalINT_TO_FP(Node, dl, Results); 4429 break; 4430 case ISD::VAARG: { 4431 SDValue Chain = Node->getOperand(0); // Get the chain. 4432 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4433 4434 unsigned TruncOp; 4435 if (OVT.isVector()) { 4436 TruncOp = ISD::BITCAST; 4437 } else { 4438 assert(OVT.isInteger() 4439 && "VAARG promotion is supported only for vectors or integer types"); 4440 TruncOp = ISD::TRUNCATE; 4441 } 4442 4443 // Perform the larger operation, then convert back 4444 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4445 Node->getConstantOperandVal(3)); 4446 Chain = Tmp1.getValue(1); 4447 4448 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4449 4450 // Modified the chain result - switch anything that used the old chain to 4451 // use the new one. 4452 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4453 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4454 if (UpdatedNodes) { 4455 UpdatedNodes->insert(Tmp2.getNode()); 4456 UpdatedNodes->insert(Chain.getNode()); 4457 } 4458 ReplacedNode(Node); 4459 break; 4460 } 4461 case ISD::MUL: 4462 case ISD::SDIV: 4463 case ISD::SREM: 4464 case ISD::UDIV: 4465 case ISD::UREM: 4466 case ISD::AND: 4467 case ISD::OR: 4468 case ISD::XOR: { 4469 unsigned ExtOp, TruncOp; 4470 if (OVT.isVector()) { 4471 ExtOp = ISD::BITCAST; 4472 TruncOp = ISD::BITCAST; 4473 } else { 4474 assert(OVT.isInteger() && "Cannot promote logic operation"); 4475 4476 switch (Node->getOpcode()) { 4477 default: 4478 ExtOp = ISD::ANY_EXTEND; 4479 break; 4480 case ISD::SDIV: 4481 case ISD::SREM: 4482 ExtOp = ISD::SIGN_EXTEND; 4483 break; 4484 case ISD::UDIV: 4485 case ISD::UREM: 4486 ExtOp = ISD::ZERO_EXTEND; 4487 break; 4488 } 4489 TruncOp = ISD::TRUNCATE; 4490 } 4491 // Promote each of the values to the new type. 4492 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4493 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4494 // Perform the larger operation, then convert back 4495 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4496 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4497 break; 4498 } 4499 case ISD::UMUL_LOHI: 4500 case ISD::SMUL_LOHI: { 4501 // Promote to a multiply in a wider integer type. 4502 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 4503 : ISD::SIGN_EXTEND; 4504 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4505 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4506 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 4507 4508 auto &DL = DAG.getDataLayout(); 4509 unsigned OriginalSize = OVT.getScalarSizeInBits(); 4510 Tmp2 = DAG.getNode( 4511 ISD::SRL, dl, NVT, Tmp1, 4512 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 4513 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4514 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 4515 break; 4516 } 4517 case ISD::SELECT: { 4518 unsigned ExtOp, TruncOp; 4519 if (Node->getValueType(0).isVector() || 4520 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4521 ExtOp = ISD::BITCAST; 4522 TruncOp = ISD::BITCAST; 4523 } else if (Node->getValueType(0).isInteger()) { 4524 ExtOp = ISD::ANY_EXTEND; 4525 TruncOp = ISD::TRUNCATE; 4526 } else { 4527 ExtOp = ISD::FP_EXTEND; 4528 TruncOp = ISD::FP_ROUND; 4529 } 4530 Tmp1 = Node->getOperand(0); 4531 // Promote each of the values to the new type. 4532 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4533 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4534 // Perform the larger operation, then round down. 4535 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4536 Tmp1->setFlags(Node->getFlags()); 4537 if (TruncOp != ISD::FP_ROUND) 4538 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4539 else 4540 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4541 DAG.getIntPtrConstant(0, dl)); 4542 Results.push_back(Tmp1); 4543 break; 4544 } 4545 case ISD::VECTOR_SHUFFLE: { 4546 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4547 4548 // Cast the two input vectors. 4549 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4550 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4551 4552 // Convert the shuffle mask to the right # elements. 4553 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4554 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4555 Results.push_back(Tmp1); 4556 break; 4557 } 4558 case ISD::VECTOR_SPLICE: { 4559 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 4560 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(1)); 4561 Tmp3 = DAG.getNode(ISD::VECTOR_SPLICE, dl, NVT, Tmp1, Tmp2, 4562 Node->getOperand(2)); 4563 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp3)); 4564 break; 4565 } 4566 case ISD::SELECT_CC: { 4567 SDValue Cond = Node->getOperand(4); 4568 ISD::CondCode CCCode = cast<CondCodeSDNode>(Cond)->get(); 4569 // Type of the comparison operands. 4570 MVT CVT = Node->getSimpleValueType(0); 4571 assert(CVT == OVT && "not handled"); 4572 4573 unsigned ExtOp = ISD::FP_EXTEND; 4574 if (NVT.isInteger()) { 4575 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4576 } 4577 4578 // Promote the comparison operands, if needed. 4579 if (TLI.isCondCodeLegal(CCCode, CVT)) { 4580 Tmp1 = Node->getOperand(0); 4581 Tmp2 = Node->getOperand(1); 4582 } else { 4583 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4584 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4585 } 4586 // Cast the true/false operands. 4587 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4588 Tmp4 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4589 4590 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, NVT, {Tmp1, Tmp2, Tmp3, Tmp4, Cond}, 4591 Node->getFlags()); 4592 4593 // Cast the result back to the original type. 4594 if (ExtOp != ISD::FP_EXTEND) 4595 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1); 4596 else 4597 Tmp1 = DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp1, 4598 DAG.getIntPtrConstant(0, dl)); 4599 4600 Results.push_back(Tmp1); 4601 break; 4602 } 4603 case ISD::SETCC: 4604 case ISD::STRICT_FSETCC: 4605 case ISD::STRICT_FSETCCS: { 4606 unsigned ExtOp = ISD::FP_EXTEND; 4607 if (NVT.isInteger()) { 4608 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4609 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4610 } 4611 if (Node->isStrictFPOpcode()) { 4612 SDValue InChain = Node->getOperand(0); 4613 std::tie(Tmp1, std::ignore) = 4614 DAG.getStrictFPExtendOrRound(Node->getOperand(1), InChain, dl, NVT); 4615 std::tie(Tmp2, std::ignore) = 4616 DAG.getStrictFPExtendOrRound(Node->getOperand(2), InChain, dl, NVT); 4617 SmallVector<SDValue, 2> TmpChains = {Tmp1.getValue(1), Tmp2.getValue(1)}; 4618 SDValue OutChain = DAG.getTokenFactor(dl, TmpChains); 4619 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 4620 Results.push_back(DAG.getNode(Node->getOpcode(), dl, VTs, 4621 {OutChain, Tmp1, Tmp2, Node->getOperand(3)}, 4622 Node->getFlags())); 4623 Results.push_back(Results.back().getValue(1)); 4624 break; 4625 } 4626 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4627 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4628 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, 4629 Tmp2, Node->getOperand(2), Node->getFlags())); 4630 break; 4631 } 4632 case ISD::BR_CC: { 4633 unsigned ExtOp = ISD::FP_EXTEND; 4634 if (NVT.isInteger()) { 4635 ISD::CondCode CCCode = 4636 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4637 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4638 } 4639 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4640 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4641 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4642 Node->getOperand(0), Node->getOperand(1), 4643 Tmp1, Tmp2, Node->getOperand(4))); 4644 break; 4645 } 4646 case ISD::FADD: 4647 case ISD::FSUB: 4648 case ISD::FMUL: 4649 case ISD::FDIV: 4650 case ISD::FREM: 4651 case ISD::FMINNUM: 4652 case ISD::FMAXNUM: 4653 case ISD::FPOW: 4654 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4655 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4656 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4657 Node->getFlags()); 4658 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4659 Tmp3, DAG.getIntPtrConstant(0, dl))); 4660 break; 4661 case ISD::STRICT_FREM: 4662 case ISD::STRICT_FPOW: 4663 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4664 {Node->getOperand(0), Node->getOperand(1)}); 4665 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4666 {Node->getOperand(0), Node->getOperand(2)}); 4667 Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 4668 Tmp2.getValue(1)); 4669 Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4670 {Tmp3, Tmp1, Tmp2}); 4671 Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4672 {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)}); 4673 Results.push_back(Tmp1); 4674 Results.push_back(Tmp1.getValue(1)); 4675 break; 4676 case ISD::FMA: 4677 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4678 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4679 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4680 Results.push_back( 4681 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4682 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4683 DAG.getIntPtrConstant(0, dl))); 4684 break; 4685 case ISD::FCOPYSIGN: 4686 case ISD::FPOWI: { 4687 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4688 Tmp2 = Node->getOperand(1); 4689 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4690 4691 // fcopysign doesn't change anything but the sign bit, so 4692 // (fp_round (fcopysign (fpext a), b)) 4693 // is as precise as 4694 // (fp_round (fpext a)) 4695 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4696 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4697 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4698 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4699 break; 4700 } 4701 case ISD::FFLOOR: 4702 case ISD::FCEIL: 4703 case ISD::FRINT: 4704 case ISD::FNEARBYINT: 4705 case ISD::FROUND: 4706 case ISD::FROUNDEVEN: 4707 case ISD::FTRUNC: 4708 case ISD::FNEG: 4709 case ISD::FSQRT: 4710 case ISD::FSIN: 4711 case ISD::FCOS: 4712 case ISD::FLOG: 4713 case ISD::FLOG2: 4714 case ISD::FLOG10: 4715 case ISD::FABS: 4716 case ISD::FEXP: 4717 case ISD::FEXP2: 4718 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4719 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4720 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4721 Tmp2, DAG.getIntPtrConstant(0, dl))); 4722 break; 4723 case ISD::STRICT_FFLOOR: 4724 case ISD::STRICT_FCEIL: 4725 case ISD::STRICT_FSIN: 4726 case ISD::STRICT_FCOS: 4727 case ISD::STRICT_FLOG: 4728 case ISD::STRICT_FLOG10: 4729 case ISD::STRICT_FEXP: 4730 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4731 {Node->getOperand(0), Node->getOperand(1)}); 4732 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4733 {Tmp1.getValue(1), Tmp1}); 4734 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4735 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 4736 Results.push_back(Tmp3); 4737 Results.push_back(Tmp3.getValue(1)); 4738 break; 4739 case ISD::BUILD_VECTOR: { 4740 MVT EltVT = OVT.getVectorElementType(); 4741 MVT NewEltVT = NVT.getVectorElementType(); 4742 4743 // Handle bitcasts to a different vector type with the same total bit size 4744 // 4745 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4746 // => 4747 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4748 4749 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4750 "Invalid promote type for build_vector"); 4751 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4752 4753 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4754 4755 SmallVector<SDValue, 8> NewOps; 4756 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4757 SDValue Op = Node->getOperand(I); 4758 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4759 } 4760 4761 SDLoc SL(Node); 4762 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4763 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4764 Results.push_back(CvtVec); 4765 break; 4766 } 4767 case ISD::EXTRACT_VECTOR_ELT: { 4768 MVT EltVT = OVT.getVectorElementType(); 4769 MVT NewEltVT = NVT.getVectorElementType(); 4770 4771 // Handle bitcasts to a different vector type with the same total bit size. 4772 // 4773 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4774 // => 4775 // v4i32:castx = bitcast x:v2i64 4776 // 4777 // i64 = bitcast 4778 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4779 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4780 // 4781 4782 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4783 "Invalid promote type for extract_vector_elt"); 4784 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4785 4786 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4787 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4788 4789 SDValue Idx = Node->getOperand(1); 4790 EVT IdxVT = Idx.getValueType(); 4791 SDLoc SL(Node); 4792 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4793 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4794 4795 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4796 4797 SmallVector<SDValue, 8> NewOps; 4798 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4799 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4800 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4801 4802 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4803 CastVec, TmpIdx); 4804 NewOps.push_back(Elt); 4805 } 4806 4807 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 4808 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4809 break; 4810 } 4811 case ISD::INSERT_VECTOR_ELT: { 4812 MVT EltVT = OVT.getVectorElementType(); 4813 MVT NewEltVT = NVT.getVectorElementType(); 4814 4815 // Handle bitcasts to a different vector type with the same total bit size 4816 // 4817 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4818 // => 4819 // v4i32:castx = bitcast x:v2i64 4820 // v2i32:casty = bitcast y:i64 4821 // 4822 // v2i64 = bitcast 4823 // (v4i32 insert_vector_elt 4824 // (v4i32 insert_vector_elt v4i32:castx, 4825 // (extract_vector_elt casty, 0), 2 * z), 4826 // (extract_vector_elt casty, 1), (2 * z + 1)) 4827 4828 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4829 "Invalid promote type for insert_vector_elt"); 4830 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4831 4832 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4833 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4834 4835 SDValue Val = Node->getOperand(1); 4836 SDValue Idx = Node->getOperand(2); 4837 EVT IdxVT = Idx.getValueType(); 4838 SDLoc SL(Node); 4839 4840 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 4841 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4842 4843 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4844 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4845 4846 SDValue NewVec = CastVec; 4847 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4848 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4849 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4850 4851 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4852 CastVal, IdxOffset); 4853 4854 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 4855 NewVec, Elt, InEltIdx); 4856 } 4857 4858 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 4859 break; 4860 } 4861 case ISD::SCALAR_TO_VECTOR: { 4862 MVT EltVT = OVT.getVectorElementType(); 4863 MVT NewEltVT = NVT.getVectorElementType(); 4864 4865 // Handle bitcasts to different vector type with the same total bit size. 4866 // 4867 // e.g. v2i64 = scalar_to_vector x:i64 4868 // => 4869 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 4870 // 4871 4872 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4873 SDValue Val = Node->getOperand(0); 4874 SDLoc SL(Node); 4875 4876 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4877 SDValue Undef = DAG.getUNDEF(MidVT); 4878 4879 SmallVector<SDValue, 8> NewElts; 4880 NewElts.push_back(CastVal); 4881 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 4882 NewElts.push_back(Undef); 4883 4884 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 4885 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4886 Results.push_back(CvtVec); 4887 break; 4888 } 4889 case ISD::ATOMIC_SWAP: { 4890 AtomicSDNode *AM = cast<AtomicSDNode>(Node); 4891 SDLoc SL(Node); 4892 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal()); 4893 assert(NVT.getSizeInBits() == OVT.getSizeInBits() && 4894 "unexpected promotion type"); 4895 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && 4896 "unexpected atomic_swap with illegal type"); 4897 4898 SDValue NewAtomic 4899 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT, 4900 DAG.getVTList(NVT, MVT::Other), 4901 { AM->getChain(), AM->getBasePtr(), CastVal }, 4902 AM->getMemOperand()); 4903 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); 4904 Results.push_back(NewAtomic.getValue(1)); 4905 break; 4906 } 4907 } 4908 4909 // Replace the original node with the legalized result. 4910 if (!Results.empty()) { 4911 LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); 4912 ReplaceNode(Node, Results.data()); 4913 } else 4914 LLVM_DEBUG(dbgs() << "Could not promote node\n"); 4915 } 4916 4917 /// This is the entry point for the file. 4918 void SelectionDAG::Legalize() { 4919 AssignTopologicalOrder(); 4920 4921 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4922 // Use a delete listener to remove nodes which were deleted during 4923 // legalization from LegalizeNodes. This is needed to handle the situation 4924 // where a new node is allocated by the object pool to the same address of a 4925 // previously deleted node. 4926 DAGNodeDeletedListener DeleteListener( 4927 *this, 4928 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 4929 4930 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 4931 4932 // Visit all the nodes. We start in topological order, so that we see 4933 // nodes with their original operands intact. Legalization can produce 4934 // new nodes which may themselves need to be legalized. Iterate until all 4935 // nodes have been legalized. 4936 while (true) { 4937 bool AnyLegalized = false; 4938 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 4939 --NI; 4940 4941 SDNode *N = &*NI; 4942 if (N->use_empty() && N != getRoot().getNode()) { 4943 ++NI; 4944 DeleteNode(N); 4945 continue; 4946 } 4947 4948 if (LegalizedNodes.insert(N).second) { 4949 AnyLegalized = true; 4950 Legalizer.LegalizeOp(N); 4951 4952 if (N->use_empty() && N != getRoot().getNode()) { 4953 ++NI; 4954 DeleteNode(N); 4955 } 4956 } 4957 } 4958 if (!AnyLegalized) 4959 break; 4960 4961 } 4962 4963 // Remove dead nodes now. 4964 RemoveDeadNodes(); 4965 } 4966 4967 bool SelectionDAG::LegalizeOp(SDNode *N, 4968 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 4969 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4970 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 4971 4972 // Directly insert the node in question, and legalize it. This will recurse 4973 // as needed through operands. 4974 LegalizedNodes.insert(N); 4975 Legalizer.LegalizeOp(N); 4976 4977 return LegalizedNodes.count(N); 4978 } 4979