1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::Legalize method. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/CodeGen/ISDOpcodes.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/RuntimeLibcalls.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/SelectionDAGNodes.h" 28 #include "llvm/CodeGen/TargetFrameLowering.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/CodeGen/ValueTypes.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstdint> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "legalizedag" 57 58 namespace { 59 60 /// Keeps track of state when getting the sign of a floating-point value as an 61 /// integer. 62 struct FloatSignAsInt { 63 EVT FloatVT; 64 SDValue Chain; 65 SDValue FloatPtr; 66 SDValue IntPtr; 67 MachinePointerInfo IntPointerInfo; 68 MachinePointerInfo FloatPointerInfo; 69 SDValue IntValue; 70 APInt SignMask; 71 uint8_t SignBit; 72 }; 73 74 //===----------------------------------------------------------------------===// 75 /// This takes an arbitrary SelectionDAG as input and 76 /// hacks on it until the target machine can handle it. This involves 77 /// eliminating value sizes the machine cannot handle (promoting small sizes to 78 /// large sizes or splitting up large values into small values) as well as 79 /// eliminating operations the machine cannot handle. 80 /// 81 /// This code also does a small amount of optimization and recognition of idioms 82 /// as part of its processing. For example, if a target does not support a 83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 84 /// will attempt merge setcc and brc instructions into brcc's. 85 class SelectionDAGLegalize { 86 const TargetMachine &TM; 87 const TargetLowering &TLI; 88 SelectionDAG &DAG; 89 90 /// The set of nodes which have already been legalized. We hold a 91 /// reference to it in order to update as necessary on node deletion. 92 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 93 94 /// A set of all the nodes updated during legalization. 95 SmallSetVector<SDNode *, 16> *UpdatedNodes; 96 97 EVT getSetCCResultType(EVT VT) const { 98 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 99 } 100 101 // Libcall insertion helpers. 102 103 public: 104 SelectionDAGLegalize(SelectionDAG &DAG, 105 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 106 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 107 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 108 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 109 110 /// Legalizes the given operation. 111 void LegalizeOp(SDNode *Node); 112 113 private: 114 SDValue OptimizeFloatStore(StoreSDNode *ST); 115 116 void LegalizeLoadOps(SDNode *Node); 117 void LegalizeStoreOps(SDNode *Node); 118 119 /// Some targets cannot handle a variable 120 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 121 /// is necessary to spill the vector being inserted into to memory, perform 122 /// the insert there, and then read the result back. 123 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 124 const SDLoc &dl); 125 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 126 const SDLoc &dl); 127 128 /// Return a vector shuffle operation which 129 /// performs the same shuffe in terms of order or result bytes, but on a type 130 /// whose vector element type is narrower than the original shuffle type. 131 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 132 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 133 SDValue N1, SDValue N2, 134 ArrayRef<int> Mask) const; 135 136 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 137 bool &NeedInvert, const SDLoc &dl, SDValue &Chain, 138 bool IsSignaling = false); 139 140 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 141 142 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 143 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 144 RTLIB::Libcall Call_F128, 145 RTLIB::Libcall Call_PPCF128, 146 SmallVectorImpl<SDValue> &Results); 147 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 148 RTLIB::Libcall Call_I8, 149 RTLIB::Libcall Call_I16, 150 RTLIB::Libcall Call_I32, 151 RTLIB::Libcall Call_I64, 152 RTLIB::Libcall Call_I128); 153 void ExpandArgFPLibCall(SDNode *Node, 154 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, 155 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, 156 RTLIB::Libcall Call_PPCF128, 157 SmallVectorImpl<SDValue> &Results); 158 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 159 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 160 161 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 162 const SDLoc &dl); 163 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 164 const SDLoc &dl, SDValue ChainIn); 165 SDValue ExpandBUILD_VECTOR(SDNode *Node); 166 SDValue ExpandSPLAT_VECTOR(SDNode *Node); 167 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 168 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 169 SmallVectorImpl<SDValue> &Results); 170 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 171 SDValue Value) const; 172 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 173 SDValue NewIntValue) const; 174 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 175 SDValue ExpandFABS(SDNode *Node) const; 176 SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain); 177 void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl, 178 SmallVectorImpl<SDValue> &Results); 179 void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 180 SmallVectorImpl<SDValue> &Results); 181 182 SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl); 183 SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl); 184 185 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 186 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 187 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 188 189 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 190 SDValue ExpandConstant(ConstantSDNode *CP); 191 192 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 193 bool ExpandNode(SDNode *Node); 194 void ConvertNodeToLibcall(SDNode *Node); 195 void PromoteNode(SDNode *Node); 196 197 public: 198 // Node replacement helpers 199 200 void ReplacedNode(SDNode *N) { 201 LegalizedNodes.erase(N); 202 if (UpdatedNodes) 203 UpdatedNodes->insert(N); 204 } 205 206 void ReplaceNode(SDNode *Old, SDNode *New) { 207 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 208 dbgs() << " with: "; New->dump(&DAG)); 209 210 assert(Old->getNumValues() == New->getNumValues() && 211 "Replacing one node with another that produces a different number " 212 "of values!"); 213 DAG.ReplaceAllUsesWith(Old, New); 214 if (UpdatedNodes) 215 UpdatedNodes->insert(New); 216 ReplacedNode(Old); 217 } 218 219 void ReplaceNode(SDValue Old, SDValue New) { 220 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 221 dbgs() << " with: "; New->dump(&DAG)); 222 223 DAG.ReplaceAllUsesWith(Old, New); 224 if (UpdatedNodes) 225 UpdatedNodes->insert(New.getNode()); 226 ReplacedNode(Old.getNode()); 227 } 228 229 void ReplaceNode(SDNode *Old, const SDValue *New) { 230 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 231 232 DAG.ReplaceAllUsesWith(Old, New); 233 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 234 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); 235 New[i]->dump(&DAG)); 236 if (UpdatedNodes) 237 UpdatedNodes->insert(New[i].getNode()); 238 } 239 ReplacedNode(Old); 240 } 241 242 void ReplaceNodeWithValue(SDValue Old, SDValue New) { 243 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 244 dbgs() << " with: "; New->dump(&DAG)); 245 246 DAG.ReplaceAllUsesOfValueWith(Old, New); 247 if (UpdatedNodes) 248 UpdatedNodes->insert(New.getNode()); 249 ReplacedNode(Old.getNode()); 250 } 251 }; 252 253 } // end anonymous namespace 254 255 /// Return a vector shuffle operation which 256 /// performs the same shuffle in terms of order or result bytes, but on a type 257 /// whose vector element type is narrower than the original shuffle type. 258 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 259 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 260 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 261 ArrayRef<int> Mask) const { 262 unsigned NumMaskElts = VT.getVectorNumElements(); 263 unsigned NumDestElts = NVT.getVectorNumElements(); 264 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 265 266 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 267 268 if (NumEltsGrowth == 1) 269 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 270 271 SmallVector<int, 8> NewMask; 272 for (unsigned i = 0; i != NumMaskElts; ++i) { 273 int Idx = Mask[i]; 274 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 275 if (Idx < 0) 276 NewMask.push_back(-1); 277 else 278 NewMask.push_back(Idx * NumEltsGrowth + j); 279 } 280 } 281 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 282 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 283 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 284 } 285 286 /// Expands the ConstantFP node to an integer constant or 287 /// a load from the constant pool. 288 SDValue 289 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 290 bool Extend = false; 291 SDLoc dl(CFP); 292 293 // If a FP immediate is precise when represented as a float and if the 294 // target can do an extending load from float to double, we put it into 295 // the constant pool as a float, even if it's is statically typed as a 296 // double. This shrinks FP constants and canonicalizes them for targets where 297 // an FP extending load is the same cost as a normal load (such as on the x87 298 // fp stack or PPC FP unit). 299 EVT VT = CFP->getValueType(0); 300 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 301 if (!UseCP) { 302 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 303 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 304 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 305 } 306 307 APFloat APF = CFP->getValueAPF(); 308 EVT OrigVT = VT; 309 EVT SVT = VT; 310 311 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 312 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 313 if (!APF.isSignaling()) { 314 while (SVT != MVT::f32 && SVT != MVT::f16) { 315 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 316 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 317 // Only do this if the target has a native EXTLOAD instruction from 318 // smaller type. 319 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 320 TLI.ShouldShrinkFPConstant(OrigVT)) { 321 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 322 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 323 VT = SVT; 324 Extend = true; 325 } 326 } 327 } 328 329 SDValue CPIdx = 330 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 331 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 332 if (Extend) { 333 SDValue Result = DAG.getExtLoad( 334 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 335 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 336 Alignment); 337 return Result; 338 } 339 SDValue Result = DAG.getLoad( 340 OrigVT, dl, DAG.getEntryNode(), CPIdx, 341 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 342 return Result; 343 } 344 345 /// Expands the Constant node to a load from the constant pool. 346 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 347 SDLoc dl(CP); 348 EVT VT = CP->getValueType(0); 349 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 350 TLI.getPointerTy(DAG.getDataLayout())); 351 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 352 SDValue Result = DAG.getLoad( 353 VT, dl, DAG.getEntryNode(), CPIdx, 354 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 355 return Result; 356 } 357 358 /// Some target cannot handle a variable insertion index for the 359 /// INSERT_VECTOR_ELT instruction. In this case, it 360 /// is necessary to spill the vector being inserted into to memory, perform 361 /// the insert there, and then read the result back. 362 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 363 SDValue Val, 364 SDValue Idx, 365 const SDLoc &dl) { 366 SDValue Tmp1 = Vec; 367 SDValue Tmp2 = Val; 368 SDValue Tmp3 = Idx; 369 370 // If the target doesn't support this, we have to spill the input vector 371 // to a temporary stack slot, update the element, then reload it. This is 372 // badness. We could also load the value into a vector register (either 373 // with a "move to register" or "extload into register" instruction, then 374 // permute it into place, if the idx is a constant and if the idx is 375 // supported by the target. 376 EVT VT = Tmp1.getValueType(); 377 EVT EltVT = VT.getVectorElementType(); 378 SDValue StackPtr = DAG.CreateStackTemporary(VT); 379 380 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 381 382 // Store the vector. 383 SDValue Ch = DAG.getStore( 384 DAG.getEntryNode(), dl, Tmp1, StackPtr, 385 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 386 387 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 388 389 // Store the scalar value. 390 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT); 391 // Load the updated vector. 392 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 393 DAG.getMachineFunction(), SPFI)); 394 } 395 396 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 397 SDValue Idx, 398 const SDLoc &dl) { 399 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 400 // SCALAR_TO_VECTOR requires that the type of the value being inserted 401 // match the element type of the vector being created, except for 402 // integers in which case the inserted value can be over width. 403 EVT EltVT = Vec.getValueType().getVectorElementType(); 404 if (Val.getValueType() == EltVT || 405 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 406 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 407 Vec.getValueType(), Val); 408 409 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 410 // We generate a shuffle of InVec and ScVec, so the shuffle mask 411 // should be 0,1,2,3,4,5... with the appropriate element replaced with 412 // elt 0 of the RHS. 413 SmallVector<int, 8> ShufOps; 414 for (unsigned i = 0; i != NumElts; ++i) 415 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 416 417 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 418 } 419 } 420 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 421 } 422 423 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 424 if (!ISD::isNormalStore(ST)) 425 return SDValue(); 426 427 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); 428 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 429 // FIXME: We shouldn't do this for TargetConstantFP's. 430 // FIXME: move this to the DAG Combiner! Note that we can't regress due 431 // to phase ordering between legalized code and the dag combiner. This 432 // probably means that we need to integrate dag combiner and legalizer 433 // together. 434 // We generally can't do this one for long doubles. 435 SDValue Chain = ST->getChain(); 436 SDValue Ptr = ST->getBasePtr(); 437 unsigned Alignment = ST->getAlignment(); 438 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 439 AAMDNodes AAInfo = ST->getAAInfo(); 440 SDLoc dl(ST); 441 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 442 if (CFP->getValueType(0) == MVT::f32 && 443 TLI.isTypeLegal(MVT::i32)) { 444 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 445 bitcastToAPInt().zextOrTrunc(32), 446 SDLoc(CFP), MVT::i32); 447 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), Alignment, 448 MMOFlags, AAInfo); 449 } 450 451 if (CFP->getValueType(0) == MVT::f64) { 452 // If this target supports 64-bit registers, do a single 64-bit store. 453 if (TLI.isTypeLegal(MVT::i64)) { 454 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 455 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 456 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 457 Alignment, MMOFlags, AAInfo); 458 } 459 460 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 461 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 462 // stores. If the target supports neither 32- nor 64-bits, this 463 // xform is certainly not worth it. 464 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 465 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 466 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 467 if (DAG.getDataLayout().isBigEndian()) 468 std::swap(Lo, Hi); 469 470 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), Alignment, 471 MMOFlags, AAInfo); 472 Ptr = DAG.getMemBasePlusOffset(Ptr, 4, dl); 473 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 474 ST->getPointerInfo().getWithOffset(4), 475 MinAlign(Alignment, 4U), MMOFlags, AAInfo); 476 477 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 478 } 479 } 480 } 481 return SDValue(nullptr, 0); 482 } 483 484 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 485 StoreSDNode *ST = cast<StoreSDNode>(Node); 486 SDValue Chain = ST->getChain(); 487 SDValue Ptr = ST->getBasePtr(); 488 SDLoc dl(Node); 489 490 unsigned Alignment = ST->getAlignment(); 491 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 492 AAMDNodes AAInfo = ST->getAAInfo(); 493 494 if (!ST->isTruncatingStore()) { 495 LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); 496 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 497 ReplaceNode(ST, OptStore); 498 return; 499 } 500 501 SDValue Value = ST->getValue(); 502 MVT VT = Value.getSimpleValueType(); 503 switch (TLI.getOperationAction(ISD::STORE, VT)) { 504 default: llvm_unreachable("This action is not supported yet!"); 505 case TargetLowering::Legal: { 506 // If this is an unaligned store and the target doesn't support it, 507 // expand it. 508 EVT MemVT = ST->getMemoryVT(); 509 const DataLayout &DL = DAG.getDataLayout(); 510 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 511 *ST->getMemOperand())) { 512 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 513 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 514 ReplaceNode(SDValue(ST, 0), Result); 515 } else 516 LLVM_DEBUG(dbgs() << "Legal store\n"); 517 break; 518 } 519 case TargetLowering::Custom: { 520 LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); 521 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 522 if (Res && Res != SDValue(Node, 0)) 523 ReplaceNode(SDValue(Node, 0), Res); 524 return; 525 } 526 case TargetLowering::Promote: { 527 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 528 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 529 "Can only promote stores to same size type"); 530 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 531 SDValue Result = 532 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 533 Alignment, MMOFlags, AAInfo); 534 ReplaceNode(SDValue(Node, 0), Result); 535 break; 536 } 537 } 538 return; 539 } 540 541 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); 542 SDValue Value = ST->getValue(); 543 EVT StVT = ST->getMemoryVT(); 544 unsigned StWidth = StVT.getSizeInBits(); 545 auto &DL = DAG.getDataLayout(); 546 547 if (StWidth != StVT.getStoreSizeInBits()) { 548 // Promote to a byte-sized store with upper bits zero if not 549 // storing an integral number of bytes. For example, promote 550 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 551 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), 552 StVT.getStoreSizeInBits()); 553 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 554 SDValue Result = 555 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 556 Alignment, MMOFlags, AAInfo); 557 ReplaceNode(SDValue(Node, 0), Result); 558 } else if (StWidth & (StWidth - 1)) { 559 // If not storing a power-of-2 number of bits, expand as two stores. 560 assert(!StVT.isVector() && "Unsupported truncstore!"); 561 unsigned LogStWidth = Log2_32(StWidth); 562 assert(LogStWidth < 32); 563 unsigned RoundWidth = 1 << LogStWidth; 564 assert(RoundWidth < StWidth); 565 unsigned ExtraWidth = StWidth - RoundWidth; 566 assert(ExtraWidth < RoundWidth); 567 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 568 "Store size not an integral number of bytes!"); 569 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 570 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 571 SDValue Lo, Hi; 572 unsigned IncrementSize; 573 574 if (DL.isLittleEndian()) { 575 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 576 // Store the bottom RoundWidth bits. 577 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 578 RoundVT, Alignment, MMOFlags, AAInfo); 579 580 // Store the remaining ExtraWidth bits. 581 IncrementSize = RoundWidth / 8; 582 Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl); 583 Hi = DAG.getNode( 584 ISD::SRL, dl, Value.getValueType(), Value, 585 DAG.getConstant(RoundWidth, dl, 586 TLI.getShiftAmountTy(Value.getValueType(), DL))); 587 Hi = DAG.getTruncStore( 588 Chain, dl, Hi, Ptr, 589 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, 590 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); 591 } else { 592 // Big endian - avoid unaligned stores. 593 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 594 // Store the top RoundWidth bits. 595 Hi = DAG.getNode( 596 ISD::SRL, dl, Value.getValueType(), Value, 597 DAG.getConstant(ExtraWidth, dl, 598 TLI.getShiftAmountTy(Value.getValueType(), DL))); 599 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), 600 RoundVT, Alignment, MMOFlags, AAInfo); 601 602 // Store the remaining ExtraWidth bits. 603 IncrementSize = RoundWidth / 8; 604 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 605 DAG.getConstant(IncrementSize, dl, 606 Ptr.getValueType())); 607 Lo = DAG.getTruncStore( 608 Chain, dl, Value, Ptr, 609 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, 610 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); 611 } 612 613 // The order of the stores doesn't matter. 614 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 615 ReplaceNode(SDValue(Node, 0), Result); 616 } else { 617 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 618 default: llvm_unreachable("This action is not supported yet!"); 619 case TargetLowering::Legal: { 620 EVT MemVT = ST->getMemoryVT(); 621 // If this is an unaligned store and the target doesn't support it, 622 // expand it. 623 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 624 *ST->getMemOperand())) { 625 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 626 ReplaceNode(SDValue(ST, 0), Result); 627 } 628 break; 629 } 630 case TargetLowering::Custom: { 631 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 632 if (Res && Res != SDValue(Node, 0)) 633 ReplaceNode(SDValue(Node, 0), Res); 634 return; 635 } 636 case TargetLowering::Expand: 637 assert(!StVT.isVector() && 638 "Vector Stores are handled in LegalizeVectorOps"); 639 640 SDValue Result; 641 642 // TRUNCSTORE:i16 i32 -> STORE i16 643 if (TLI.isTypeLegal(StVT)) { 644 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 645 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 646 Alignment, MMOFlags, AAInfo); 647 } else { 648 // The in-memory type isn't legal. Truncate to the type it would promote 649 // to, and then do a truncstore. 650 Value = DAG.getNode(ISD::TRUNCATE, dl, 651 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 652 Value); 653 Result = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 654 StVT, Alignment, MMOFlags, AAInfo); 655 } 656 657 ReplaceNode(SDValue(Node, 0), Result); 658 break; 659 } 660 } 661 } 662 663 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 664 LoadSDNode *LD = cast<LoadSDNode>(Node); 665 SDValue Chain = LD->getChain(); // The chain. 666 SDValue Ptr = LD->getBasePtr(); // The base pointer. 667 SDValue Value; // The value returned by the load op. 668 SDLoc dl(Node); 669 670 ISD::LoadExtType ExtType = LD->getExtensionType(); 671 if (ExtType == ISD::NON_EXTLOAD) { 672 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 673 MVT VT = Node->getSimpleValueType(0); 674 SDValue RVal = SDValue(Node, 0); 675 SDValue RChain = SDValue(Node, 1); 676 677 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 678 default: llvm_unreachable("This action is not supported yet!"); 679 case TargetLowering::Legal: { 680 EVT MemVT = LD->getMemoryVT(); 681 const DataLayout &DL = DAG.getDataLayout(); 682 // If this is an unaligned load and the target doesn't support it, 683 // expand it. 684 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 685 *LD->getMemOperand())) { 686 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 687 } 688 break; 689 } 690 case TargetLowering::Custom: 691 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 692 RVal = Res; 693 RChain = Res.getValue(1); 694 } 695 break; 696 697 case TargetLowering::Promote: { 698 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 699 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 700 "Can only promote loads to same size type"); 701 702 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 703 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 704 RChain = Res.getValue(1); 705 break; 706 } 707 } 708 if (RChain.getNode() != Node) { 709 assert(RVal.getNode() != Node && "Load must be completely replaced"); 710 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 711 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 712 if (UpdatedNodes) { 713 UpdatedNodes->insert(RVal.getNode()); 714 UpdatedNodes->insert(RChain.getNode()); 715 } 716 ReplacedNode(Node); 717 } 718 return; 719 } 720 721 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); 722 EVT SrcVT = LD->getMemoryVT(); 723 unsigned SrcWidth = SrcVT.getSizeInBits(); 724 unsigned Alignment = LD->getAlignment(); 725 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 726 AAMDNodes AAInfo = LD->getAAInfo(); 727 728 if (SrcWidth != SrcVT.getStoreSizeInBits() && 729 // Some targets pretend to have an i1 loading operation, and actually 730 // load an i8. This trick is correct for ZEXTLOAD because the top 7 731 // bits are guaranteed to be zero; it helps the optimizers understand 732 // that these bits are zero. It is also useful for EXTLOAD, since it 733 // tells the optimizers that those bits are undefined. It would be 734 // nice to have an effective generic way of getting these benefits... 735 // Until such a way is found, don't insist on promoting i1 here. 736 (SrcVT != MVT::i1 || 737 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 738 TargetLowering::Promote)) { 739 // Promote to a byte-sized load if not loading an integral number of 740 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 741 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 742 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 743 SDValue Ch; 744 745 // The extra bits are guaranteed to be zero, since we stored them that 746 // way. A zext load from NVT thus automatically gives zext from SrcVT. 747 748 ISD::LoadExtType NewExtType = 749 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 750 751 SDValue Result = 752 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), Chain, Ptr, 753 LD->getPointerInfo(), NVT, Alignment, MMOFlags, AAInfo); 754 755 Ch = Result.getValue(1); // The chain. 756 757 if (ExtType == ISD::SEXTLOAD) 758 // Having the top bits zero doesn't help when sign extending. 759 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 760 Result.getValueType(), 761 Result, DAG.getValueType(SrcVT)); 762 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 763 // All the top bits are guaranteed to be zero - inform the optimizers. 764 Result = DAG.getNode(ISD::AssertZext, dl, 765 Result.getValueType(), Result, 766 DAG.getValueType(SrcVT)); 767 768 Value = Result; 769 Chain = Ch; 770 } else if (SrcWidth & (SrcWidth - 1)) { 771 // If not loading a power-of-2 number of bits, expand as two loads. 772 assert(!SrcVT.isVector() && "Unsupported extload!"); 773 unsigned LogSrcWidth = Log2_32(SrcWidth); 774 assert(LogSrcWidth < 32); 775 unsigned RoundWidth = 1 << LogSrcWidth; 776 assert(RoundWidth < SrcWidth); 777 unsigned ExtraWidth = SrcWidth - RoundWidth; 778 assert(ExtraWidth < RoundWidth); 779 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 780 "Load size not an integral number of bytes!"); 781 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 782 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 783 SDValue Lo, Hi, Ch; 784 unsigned IncrementSize; 785 auto &DL = DAG.getDataLayout(); 786 787 if (DL.isLittleEndian()) { 788 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 789 // Load the bottom RoundWidth bits. 790 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 791 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, 792 AAInfo); 793 794 // Load the remaining ExtraWidth bits. 795 IncrementSize = RoundWidth / 8; 796 Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl); 797 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 798 LD->getPointerInfo().getWithOffset(IncrementSize), 799 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, 800 AAInfo); 801 802 // Build a factor node to remember that this load is independent of 803 // the other one. 804 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 805 Hi.getValue(1)); 806 807 // Move the top bits to the right place. 808 Hi = DAG.getNode( 809 ISD::SHL, dl, Hi.getValueType(), Hi, 810 DAG.getConstant(RoundWidth, dl, 811 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 812 813 // Join the hi and lo parts. 814 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 815 } else { 816 // Big endian - avoid unaligned loads. 817 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 818 // Load the top RoundWidth bits. 819 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 820 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, 821 AAInfo); 822 823 // Load the remaining ExtraWidth bits. 824 IncrementSize = RoundWidth / 8; 825 Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl); 826 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 827 LD->getPointerInfo().getWithOffset(IncrementSize), 828 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, 829 AAInfo); 830 831 // Build a factor node to remember that this load is independent of 832 // the other one. 833 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 834 Hi.getValue(1)); 835 836 // Move the top bits to the right place. 837 Hi = DAG.getNode( 838 ISD::SHL, dl, Hi.getValueType(), Hi, 839 DAG.getConstant(ExtraWidth, dl, 840 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 841 842 // Join the hi and lo parts. 843 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 844 } 845 846 Chain = Ch; 847 } else { 848 bool isCustom = false; 849 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 850 SrcVT.getSimpleVT())) { 851 default: llvm_unreachable("This action is not supported yet!"); 852 case TargetLowering::Custom: 853 isCustom = true; 854 LLVM_FALLTHROUGH; 855 case TargetLowering::Legal: 856 Value = SDValue(Node, 0); 857 Chain = SDValue(Node, 1); 858 859 if (isCustom) { 860 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 861 Value = Res; 862 Chain = Res.getValue(1); 863 } 864 } else { 865 // If this is an unaligned load and the target doesn't support it, 866 // expand it. 867 EVT MemVT = LD->getMemoryVT(); 868 const DataLayout &DL = DAG.getDataLayout(); 869 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, 870 *LD->getMemOperand())) { 871 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 872 } 873 } 874 break; 875 876 case TargetLowering::Expand: { 877 EVT DestVT = Node->getValueType(0); 878 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 879 // If the source type is not legal, see if there is a legal extload to 880 // an intermediate type that we can then extend further. 881 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 882 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 883 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 884 // If we are loading a legal type, this is a non-extload followed by a 885 // full extend. 886 ISD::LoadExtType MidExtType = 887 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 888 889 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 890 SrcVT, LD->getMemOperand()); 891 unsigned ExtendOp = 892 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 893 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 894 Chain = Load.getValue(1); 895 break; 896 } 897 898 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 899 // normal undefined upper bits behavior to allow using an in-reg extend 900 // with the illegal FP type, so load as an integer and do the 901 // from-integer conversion. 902 if (SrcVT.getScalarType() == MVT::f16) { 903 EVT ISrcVT = SrcVT.changeTypeToInteger(); 904 EVT IDestVT = DestVT.changeTypeToInteger(); 905 EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 906 907 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain, 908 Ptr, ISrcVT, LD->getMemOperand()); 909 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 910 Chain = Result.getValue(1); 911 break; 912 } 913 } 914 915 assert(!SrcVT.isVector() && 916 "Vector Loads are handled in LegalizeVectorOps"); 917 918 // FIXME: This does not work for vectors on most targets. Sign- 919 // and zero-extend operations are currently folded into extending 920 // loads, whether they are legal or not, and then we end up here 921 // without any support for legalizing them. 922 assert(ExtType != ISD::EXTLOAD && 923 "EXTLOAD should always be supported!"); 924 // Turn the unsupported load into an EXTLOAD followed by an 925 // explicit zero/sign extend inreg. 926 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 927 Node->getValueType(0), 928 Chain, Ptr, SrcVT, 929 LD->getMemOperand()); 930 SDValue ValRes; 931 if (ExtType == ISD::SEXTLOAD) 932 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 933 Result.getValueType(), 934 Result, DAG.getValueType(SrcVT)); 935 else 936 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); 937 Value = ValRes; 938 Chain = Result.getValue(1); 939 break; 940 } 941 } 942 } 943 944 // Since loads produce two values, make sure to remember that we legalized 945 // both of them. 946 if (Chain.getNode() != Node) { 947 assert(Value.getNode() != Node && "Load must be completely replaced"); 948 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 949 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 950 if (UpdatedNodes) { 951 UpdatedNodes->insert(Value.getNode()); 952 UpdatedNodes->insert(Chain.getNode()); 953 } 954 ReplacedNode(Node); 955 } 956 } 957 958 /// Return a legal replacement for the given operation, with all legal operands. 959 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 960 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 961 962 // Allow illegal target nodes and illegal registers. 963 if (Node->getOpcode() == ISD::TargetConstant || 964 Node->getOpcode() == ISD::Register) 965 return; 966 967 #ifndef NDEBUG 968 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 969 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 970 TargetLowering::TypeLegal && 971 "Unexpected illegal type!"); 972 973 for (const SDValue &Op : Node->op_values()) 974 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 975 TargetLowering::TypeLegal || 976 Op.getOpcode() == ISD::TargetConstant || 977 Op.getOpcode() == ISD::Register) && 978 "Unexpected illegal type!"); 979 #endif 980 981 // Figure out the correct action; the way to query this varies by opcode 982 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 983 bool SimpleFinishLegalizing = true; 984 switch (Node->getOpcode()) { 985 case ISD::INTRINSIC_W_CHAIN: 986 case ISD::INTRINSIC_WO_CHAIN: 987 case ISD::INTRINSIC_VOID: 988 case ISD::STACKSAVE: 989 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 990 break; 991 case ISD::GET_DYNAMIC_AREA_OFFSET: 992 Action = TLI.getOperationAction(Node->getOpcode(), 993 Node->getValueType(0)); 994 break; 995 case ISD::VAARG: 996 Action = TLI.getOperationAction(Node->getOpcode(), 997 Node->getValueType(0)); 998 if (Action != TargetLowering::Promote) 999 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 1000 break; 1001 case ISD::FP_TO_FP16: 1002 case ISD::SINT_TO_FP: 1003 case ISD::UINT_TO_FP: 1004 case ISD::EXTRACT_VECTOR_ELT: 1005 case ISD::LROUND: 1006 case ISD::LLROUND: 1007 case ISD::LRINT: 1008 case ISD::LLRINT: 1009 Action = TLI.getOperationAction(Node->getOpcode(), 1010 Node->getOperand(0).getValueType()); 1011 break; 1012 case ISD::STRICT_SINT_TO_FP: 1013 case ISD::STRICT_UINT_TO_FP: 1014 case ISD::STRICT_LRINT: 1015 case ISD::STRICT_LLRINT: 1016 case ISD::STRICT_LROUND: 1017 case ISD::STRICT_LLROUND: 1018 // These pseudo-ops are the same as the other STRICT_ ops except 1019 // they are registered with setOperationAction() using the input type 1020 // instead of the output type. 1021 Action = TLI.getOperationAction(Node->getOpcode(), 1022 Node->getOperand(1).getValueType()); 1023 break; 1024 case ISD::SIGN_EXTEND_INREG: { 1025 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1026 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1027 break; 1028 } 1029 case ISD::ATOMIC_STORE: 1030 Action = TLI.getOperationAction(Node->getOpcode(), 1031 Node->getOperand(2).getValueType()); 1032 break; 1033 case ISD::SELECT_CC: 1034 case ISD::STRICT_FSETCC: 1035 case ISD::STRICT_FSETCCS: 1036 case ISD::SETCC: 1037 case ISD::BR_CC: { 1038 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 1039 Node->getOpcode() == ISD::STRICT_FSETCC ? 3 : 1040 Node->getOpcode() == ISD::STRICT_FSETCCS ? 3 : 1041 Node->getOpcode() == ISD::SETCC ? 2 : 1; 1042 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 1043 Node->getOpcode() == ISD::STRICT_FSETCC ? 1 : 1044 Node->getOpcode() == ISD::STRICT_FSETCCS ? 1 : 0; 1045 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1046 ISD::CondCode CCCode = 1047 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1048 Action = TLI.getCondCodeAction(CCCode, OpVT); 1049 if (Action == TargetLowering::Legal) { 1050 if (Node->getOpcode() == ISD::SELECT_CC) 1051 Action = TLI.getOperationAction(Node->getOpcode(), 1052 Node->getValueType(0)); 1053 else 1054 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1055 } 1056 break; 1057 } 1058 case ISD::LOAD: 1059 case ISD::STORE: 1060 // FIXME: Model these properly. LOAD and STORE are complicated, and 1061 // STORE expects the unlegalized operand in some cases. 1062 SimpleFinishLegalizing = false; 1063 break; 1064 case ISD::CALLSEQ_START: 1065 case ISD::CALLSEQ_END: 1066 // FIXME: This shouldn't be necessary. These nodes have special properties 1067 // dealing with the recursive nature of legalization. Removing this 1068 // special case should be done as part of making LegalizeDAG non-recursive. 1069 SimpleFinishLegalizing = false; 1070 break; 1071 case ISD::EXTRACT_ELEMENT: 1072 case ISD::FLT_ROUNDS_: 1073 case ISD::MERGE_VALUES: 1074 case ISD::EH_RETURN: 1075 case ISD::FRAME_TO_ARGS_OFFSET: 1076 case ISD::EH_DWARF_CFA: 1077 case ISD::EH_SJLJ_SETJMP: 1078 case ISD::EH_SJLJ_LONGJMP: 1079 case ISD::EH_SJLJ_SETUP_DISPATCH: 1080 // These operations lie about being legal: when they claim to be legal, 1081 // they should actually be expanded. 1082 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1083 if (Action == TargetLowering::Legal) 1084 Action = TargetLowering::Expand; 1085 break; 1086 case ISD::INIT_TRAMPOLINE: 1087 case ISD::ADJUST_TRAMPOLINE: 1088 case ISD::FRAMEADDR: 1089 case ISD::RETURNADDR: 1090 case ISD::ADDROFRETURNADDR: 1091 case ISD::SPONENTRY: 1092 // These operations lie about being legal: when they claim to be legal, 1093 // they should actually be custom-lowered. 1094 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1095 if (Action == TargetLowering::Legal) 1096 Action = TargetLowering::Custom; 1097 break; 1098 case ISD::READCYCLECOUNTER: 1099 // READCYCLECOUNTER returns an i64, even if type legalization might have 1100 // expanded that to several smaller types. 1101 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1102 break; 1103 case ISD::READ_REGISTER: 1104 case ISD::WRITE_REGISTER: 1105 // Named register is legal in the DAG, but blocked by register name 1106 // selection if not implemented by target (to chose the correct register) 1107 // They'll be converted to Copy(To/From)Reg. 1108 Action = TargetLowering::Legal; 1109 break; 1110 case ISD::DEBUGTRAP: 1111 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1112 if (Action == TargetLowering::Expand) { 1113 // replace ISD::DEBUGTRAP with ISD::TRAP 1114 SDValue NewVal; 1115 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1116 Node->getOperand(0)); 1117 ReplaceNode(Node, NewVal.getNode()); 1118 LegalizeOp(NewVal.getNode()); 1119 return; 1120 } 1121 break; 1122 case ISD::SADDSAT: 1123 case ISD::UADDSAT: 1124 case ISD::SSUBSAT: 1125 case ISD::USUBSAT: { 1126 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1127 break; 1128 } 1129 case ISD::SMULFIX: 1130 case ISD::SMULFIXSAT: 1131 case ISD::UMULFIX: 1132 case ISD::UMULFIXSAT: 1133 case ISD::SDIVFIX: 1134 case ISD::UDIVFIX: { 1135 unsigned Scale = Node->getConstantOperandVal(2); 1136 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 1137 Node->getValueType(0), Scale); 1138 break; 1139 } 1140 case ISD::MSCATTER: 1141 Action = TLI.getOperationAction(Node->getOpcode(), 1142 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 1143 break; 1144 case ISD::MSTORE: 1145 Action = TLI.getOperationAction(Node->getOpcode(), 1146 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 1147 break; 1148 case ISD::VECREDUCE_FADD: 1149 case ISD::VECREDUCE_FMUL: 1150 case ISD::VECREDUCE_ADD: 1151 case ISD::VECREDUCE_MUL: 1152 case ISD::VECREDUCE_AND: 1153 case ISD::VECREDUCE_OR: 1154 case ISD::VECREDUCE_XOR: 1155 case ISD::VECREDUCE_SMAX: 1156 case ISD::VECREDUCE_SMIN: 1157 case ISD::VECREDUCE_UMAX: 1158 case ISD::VECREDUCE_UMIN: 1159 case ISD::VECREDUCE_FMAX: 1160 case ISD::VECREDUCE_FMIN: 1161 Action = TLI.getOperationAction( 1162 Node->getOpcode(), Node->getOperand(0).getValueType()); 1163 break; 1164 default: 1165 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1166 Action = TargetLowering::Legal; 1167 } else { 1168 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1169 } 1170 break; 1171 } 1172 1173 if (SimpleFinishLegalizing) { 1174 SDNode *NewNode = Node; 1175 switch (Node->getOpcode()) { 1176 default: break; 1177 case ISD::SHL: 1178 case ISD::SRL: 1179 case ISD::SRA: 1180 case ISD::ROTL: 1181 case ISD::ROTR: { 1182 // Legalizing shifts/rotates requires adjusting the shift amount 1183 // to the appropriate width. 1184 SDValue Op0 = Node->getOperand(0); 1185 SDValue Op1 = Node->getOperand(1); 1186 if (!Op1.getValueType().isVector()) { 1187 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1188 // The getShiftAmountOperand() may create a new operand node or 1189 // return the existing one. If new operand is created we need 1190 // to update the parent node. 1191 // Do not try to legalize SAO here! It will be automatically legalized 1192 // in the next round. 1193 if (SAO != Op1) 1194 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1195 } 1196 } 1197 break; 1198 case ISD::FSHL: 1199 case ISD::FSHR: 1200 case ISD::SRL_PARTS: 1201 case ISD::SRA_PARTS: 1202 case ISD::SHL_PARTS: { 1203 // Legalizing shifts/rotates requires adjusting the shift amount 1204 // to the appropriate width. 1205 SDValue Op0 = Node->getOperand(0); 1206 SDValue Op1 = Node->getOperand(1); 1207 SDValue Op2 = Node->getOperand(2); 1208 if (!Op2.getValueType().isVector()) { 1209 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1210 // The getShiftAmountOperand() may create a new operand node or 1211 // return the existing one. If new operand is created we need 1212 // to update the parent node. 1213 if (SAO != Op2) 1214 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1215 } 1216 break; 1217 } 1218 } 1219 1220 if (NewNode != Node) { 1221 ReplaceNode(Node, NewNode); 1222 Node = NewNode; 1223 } 1224 switch (Action) { 1225 case TargetLowering::Legal: 1226 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 1227 return; 1228 case TargetLowering::Custom: 1229 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 1230 // FIXME: The handling for custom lowering with multiple results is 1231 // a complete mess. 1232 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1233 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1234 return; 1235 1236 if (Node->getNumValues() == 1) { 1237 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1238 // We can just directly replace this node with the lowered value. 1239 ReplaceNode(SDValue(Node, 0), Res); 1240 return; 1241 } 1242 1243 SmallVector<SDValue, 8> ResultVals; 1244 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1245 ResultVals.push_back(Res.getValue(i)); 1246 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1247 ReplaceNode(Node, ResultVals.data()); 1248 return; 1249 } 1250 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 1251 LLVM_FALLTHROUGH; 1252 case TargetLowering::Expand: 1253 if (ExpandNode(Node)) 1254 return; 1255 LLVM_FALLTHROUGH; 1256 case TargetLowering::LibCall: 1257 ConvertNodeToLibcall(Node); 1258 return; 1259 case TargetLowering::Promote: 1260 PromoteNode(Node); 1261 return; 1262 } 1263 } 1264 1265 switch (Node->getOpcode()) { 1266 default: 1267 #ifndef NDEBUG 1268 dbgs() << "NODE: "; 1269 Node->dump( &DAG); 1270 dbgs() << "\n"; 1271 #endif 1272 llvm_unreachable("Do not know how to legalize this operator!"); 1273 1274 case ISD::CALLSEQ_START: 1275 case ISD::CALLSEQ_END: 1276 break; 1277 case ISD::LOAD: 1278 return LegalizeLoadOps(Node); 1279 case ISD::STORE: 1280 return LegalizeStoreOps(Node); 1281 } 1282 } 1283 1284 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1285 SDValue Vec = Op.getOperand(0); 1286 SDValue Idx = Op.getOperand(1); 1287 SDLoc dl(Op); 1288 1289 // Before we generate a new store to a temporary stack slot, see if there is 1290 // already one that we can use. There often is because when we scalarize 1291 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1292 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1293 // the vector. If all are expanded here, we don't want one store per vector 1294 // element. 1295 1296 // Caches for hasPredecessorHelper 1297 SmallPtrSet<const SDNode *, 32> Visited; 1298 SmallVector<const SDNode *, 16> Worklist; 1299 Visited.insert(Op.getNode()); 1300 Worklist.push_back(Idx.getNode()); 1301 SDValue StackPtr, Ch; 1302 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), 1303 UE = Vec.getNode()->use_end(); UI != UE; ++UI) { 1304 SDNode *User = *UI; 1305 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1306 if (ST->isIndexed() || ST->isTruncatingStore() || 1307 ST->getValue() != Vec) 1308 continue; 1309 1310 // Make sure that nothing else could have stored into the destination of 1311 // this store. 1312 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1313 continue; 1314 1315 // If the index is dependent on the store we will introduce a cycle when 1316 // creating the load (the load uses the index, and by replacing the chain 1317 // we will make the index dependent on the load). Also, the store might be 1318 // dependent on the extractelement and introduce a cycle when creating 1319 // the load. 1320 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1321 ST->hasPredecessor(Op.getNode())) 1322 continue; 1323 1324 StackPtr = ST->getBasePtr(); 1325 Ch = SDValue(ST, 0); 1326 break; 1327 } 1328 } 1329 1330 EVT VecVT = Vec.getValueType(); 1331 1332 if (!Ch.getNode()) { 1333 // Store the value to a temporary stack slot, then LOAD the returned part. 1334 StackPtr = DAG.CreateStackTemporary(VecVT); 1335 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1336 MachinePointerInfo()); 1337 } 1338 1339 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1340 1341 SDValue NewLoad; 1342 1343 if (Op.getValueType().isVector()) 1344 NewLoad = 1345 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); 1346 else 1347 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1348 MachinePointerInfo(), 1349 VecVT.getVectorElementType()); 1350 1351 // Replace the chain going out of the store, by the one out of the load. 1352 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1353 1354 // We introduced a cycle though, so update the loads operands, making sure 1355 // to use the original store's chain as an incoming chain. 1356 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1357 NewLoad->op_end()); 1358 NewLoadOperands[0] = Ch; 1359 NewLoad = 1360 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1361 return NewLoad; 1362 } 1363 1364 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1365 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1366 1367 SDValue Vec = Op.getOperand(0); 1368 SDValue Part = Op.getOperand(1); 1369 SDValue Idx = Op.getOperand(2); 1370 SDLoc dl(Op); 1371 1372 // Store the value to a temporary stack slot, then LOAD the returned part. 1373 EVT VecVT = Vec.getValueType(); 1374 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1375 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1376 MachinePointerInfo PtrInfo = 1377 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1378 1379 // First store the whole vector. 1380 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1381 1382 // Then store the inserted part. 1383 SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1384 1385 // Store the subvector. 1386 Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, MachinePointerInfo()); 1387 1388 // Finally, load the updated vector. 1389 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1390 } 1391 1392 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1393 // We can't handle this case efficiently. Allocate a sufficiently 1394 // aligned object on the stack, store each element into it, then load 1395 // the result as a vector. 1396 // Create the stack frame object. 1397 EVT VT = Node->getValueType(0); 1398 EVT EltVT = VT.getVectorElementType(); 1399 SDLoc dl(Node); 1400 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1401 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1402 MachinePointerInfo PtrInfo = 1403 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1404 1405 // Emit a store of each element to the stack slot. 1406 SmallVector<SDValue, 8> Stores; 1407 unsigned TypeByteSize = EltVT.getSizeInBits() / 8; 1408 assert(TypeByteSize > 0 && "Vector element type too small for stack store!"); 1409 // Store (in the right endianness) the elements to memory. 1410 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1411 // Ignore undef elements. 1412 if (Node->getOperand(i).isUndef()) continue; 1413 1414 unsigned Offset = TypeByteSize*i; 1415 1416 SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType()); 1417 Idx = DAG.getMemBasePlusOffset(FIPtr, Idx, dl); 1418 1419 // If the destination vector element type is narrower than the source 1420 // element type, only store the bits necessary. 1421 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { 1422 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1423 Node->getOperand(i), Idx, 1424 PtrInfo.getWithOffset(Offset), EltVT)); 1425 } else 1426 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1427 Idx, PtrInfo.getWithOffset(Offset))); 1428 } 1429 1430 SDValue StoreChain; 1431 if (!Stores.empty()) // Not all undef elements? 1432 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1433 else 1434 StoreChain = DAG.getEntryNode(); 1435 1436 // Result is a load from the stack slot. 1437 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1438 } 1439 1440 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1441 /// containing the sign bit if the target has no integer value capable of 1442 /// holding all bits of the floating-point value. 1443 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1444 const SDLoc &DL, 1445 SDValue Value) const { 1446 EVT FloatVT = Value.getValueType(); 1447 unsigned NumBits = FloatVT.getSizeInBits(); 1448 State.FloatVT = FloatVT; 1449 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1450 // Convert to an integer of the same size. 1451 if (TLI.isTypeLegal(IVT)) { 1452 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1453 State.SignMask = APInt::getSignMask(NumBits); 1454 State.SignBit = NumBits - 1; 1455 return; 1456 } 1457 1458 auto &DataLayout = DAG.getDataLayout(); 1459 // Store the float to memory, then load the sign part out as an integer. 1460 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1461 // First create a temporary that is aligned for both the load and store. 1462 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1463 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1464 // Then store the float to it. 1465 State.FloatPtr = StackPtr; 1466 MachineFunction &MF = DAG.getMachineFunction(); 1467 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1468 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1469 State.FloatPointerInfo); 1470 1471 SDValue IntPtr; 1472 if (DataLayout.isBigEndian()) { 1473 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1474 // Load out a legal integer with the same sign bit as the float. 1475 IntPtr = StackPtr; 1476 State.IntPointerInfo = State.FloatPointerInfo; 1477 } else { 1478 // Advance the pointer so that the loaded byte will contain the sign bit. 1479 unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1; 1480 IntPtr = DAG.getMemBasePlusOffset(StackPtr, ByteOffset, DL); 1481 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1482 ByteOffset); 1483 } 1484 1485 State.IntPtr = IntPtr; 1486 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1487 State.IntPointerInfo, MVT::i8); 1488 State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7); 1489 State.SignBit = 7; 1490 } 1491 1492 /// Replace the integer value produced by getSignAsIntValue() with a new value 1493 /// and cast the result back to a floating-point type. 1494 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1495 const SDLoc &DL, 1496 SDValue NewIntValue) const { 1497 if (!State.Chain) 1498 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1499 1500 // Override the part containing the sign bit in the value stored on the stack. 1501 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1502 State.IntPointerInfo, MVT::i8); 1503 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1504 State.FloatPointerInfo); 1505 } 1506 1507 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1508 SDLoc DL(Node); 1509 SDValue Mag = Node->getOperand(0); 1510 SDValue Sign = Node->getOperand(1); 1511 1512 // Get sign bit into an integer value. 1513 FloatSignAsInt SignAsInt; 1514 getSignAsIntValue(SignAsInt, DL, Sign); 1515 1516 EVT IntVT = SignAsInt.IntValue.getValueType(); 1517 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1518 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1519 SignMask); 1520 1521 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1522 EVT FloatVT = Mag.getValueType(); 1523 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1524 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1525 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1526 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1527 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1528 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1529 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1530 } 1531 1532 // Transform Mag value to integer, and clear the sign bit. 1533 FloatSignAsInt MagAsInt; 1534 getSignAsIntValue(MagAsInt, DL, Mag); 1535 EVT MagVT = MagAsInt.IntValue.getValueType(); 1536 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1537 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1538 ClearSignMask); 1539 1540 // Get the signbit at the right position for MagAsInt. 1541 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1542 EVT ShiftVT = IntVT; 1543 if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) { 1544 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1545 ShiftVT = MagVT; 1546 } 1547 if (ShiftAmount > 0) { 1548 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); 1549 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); 1550 } else if (ShiftAmount < 0) { 1551 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); 1552 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); 1553 } 1554 if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) { 1555 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1556 } 1557 1558 // Store the part with the modified sign and convert back to float. 1559 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1560 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1561 } 1562 1563 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1564 SDLoc DL(Node); 1565 SDValue Value = Node->getOperand(0); 1566 1567 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1568 EVT FloatVT = Value.getValueType(); 1569 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1570 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1571 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1572 } 1573 1574 // Transform value to integer, clear the sign bit and transform back. 1575 FloatSignAsInt ValueAsInt; 1576 getSignAsIntValue(ValueAsInt, DL, Value); 1577 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1578 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1579 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1580 ClearSignMask); 1581 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1582 } 1583 1584 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1585 SmallVectorImpl<SDValue> &Results) { 1586 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1587 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1588 " not tell us which reg is the stack pointer!"); 1589 SDLoc dl(Node); 1590 EVT VT = Node->getValueType(0); 1591 SDValue Tmp1 = SDValue(Node, 0); 1592 SDValue Tmp2 = SDValue(Node, 1); 1593 SDValue Tmp3 = Node->getOperand(2); 1594 SDValue Chain = Tmp1.getOperand(0); 1595 1596 // Chain the dynamic stack allocation so that it doesn't modify the stack 1597 // pointer when other instructions are using the stack. 1598 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1599 1600 SDValue Size = Tmp2.getOperand(1); 1601 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1602 Chain = SP.getValue(1); 1603 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1604 unsigned StackAlign = 1605 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 1606 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 1607 if (Align > StackAlign) 1608 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1609 DAG.getConstant(-(uint64_t)Align, dl, VT)); 1610 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1611 1612 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1613 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1614 1615 Results.push_back(Tmp1); 1616 Results.push_back(Tmp2); 1617 } 1618 1619 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current 1620 /// target. 1621 /// 1622 /// If the SETCC has been legalized using AND / OR, then the legalized node 1623 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert 1624 /// will be set to false. 1625 /// 1626 /// If the SETCC has been legalized by using getSetCCSwappedOperands(), 1627 /// then the values of LHS and RHS will be swapped, CC will be set to the 1628 /// new condition, and NeedInvert will be set to false. 1629 /// 1630 /// If the SETCC has been legalized using the inverse condcode, then LHS and 1631 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert 1632 /// will be set to true. The caller must invert the result of the SETCC with 1633 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect 1634 /// of a true/false result. 1635 /// 1636 /// \returns true if the SetCC has been legalized, false if it hasn't. 1637 bool SelectionDAGLegalize::LegalizeSetCCCondCode( 1638 EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, bool &NeedInvert, 1639 const SDLoc &dl, SDValue &Chain, bool IsSignaling) { 1640 MVT OpVT = LHS.getSimpleValueType(); 1641 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1642 NeedInvert = false; 1643 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1644 default: llvm_unreachable("Unknown condition code action!"); 1645 case TargetLowering::Legal: 1646 // Nothing to do. 1647 break; 1648 case TargetLowering::Expand: { 1649 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 1650 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1651 std::swap(LHS, RHS); 1652 CC = DAG.getCondCode(InvCC); 1653 return true; 1654 } 1655 // Swapping operands didn't work. Try inverting the condition. 1656 bool NeedSwap = false; 1657 InvCC = getSetCCInverse(CCCode, OpVT); 1658 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1659 // If inverting the condition is not enough, try swapping operands 1660 // on top of it. 1661 InvCC = ISD::getSetCCSwappedOperands(InvCC); 1662 NeedSwap = true; 1663 } 1664 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1665 CC = DAG.getCondCode(InvCC); 1666 NeedInvert = true; 1667 if (NeedSwap) 1668 std::swap(LHS, RHS); 1669 return true; 1670 } 1671 1672 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1673 unsigned Opc = 0; 1674 switch (CCCode) { 1675 default: llvm_unreachable("Don't know how to expand this condition!"); 1676 case ISD::SETO: 1677 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) 1678 && "If SETO is expanded, SETOEQ must be legal!"); 1679 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; 1680 case ISD::SETUO: 1681 assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT) 1682 && "If SETUO is expanded, SETUNE must be legal!"); 1683 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break; 1684 case ISD::SETOEQ: 1685 case ISD::SETOGT: 1686 case ISD::SETOGE: 1687 case ISD::SETOLT: 1688 case ISD::SETOLE: 1689 case ISD::SETONE: 1690 case ISD::SETUEQ: 1691 case ISD::SETUNE: 1692 case ISD::SETUGT: 1693 case ISD::SETUGE: 1694 case ISD::SETULT: 1695 case ISD::SETULE: 1696 // If we are floating point, assign and break, otherwise fall through. 1697 if (!OpVT.isInteger()) { 1698 // We can use the 4th bit to tell if we are the unordered 1699 // or ordered version of the opcode. 1700 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 1701 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 1702 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 1703 break; 1704 } 1705 // Fallthrough if we are unsigned integer. 1706 LLVM_FALLTHROUGH; 1707 case ISD::SETLE: 1708 case ISD::SETGT: 1709 case ISD::SETGE: 1710 case ISD::SETLT: 1711 case ISD::SETNE: 1712 case ISD::SETEQ: 1713 // If all combinations of inverting the condition and swapping operands 1714 // didn't work then we have no means to expand the condition. 1715 llvm_unreachable("Don't know how to expand this condition!"); 1716 } 1717 1718 SDValue SetCC1, SetCC2; 1719 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 1720 // If we aren't the ordered or unorder operation, 1721 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 1722 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 1723 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 1724 } else { 1725 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 1726 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 1727 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 1728 } 1729 if (Chain) 1730 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 1731 SetCC2.getValue(1)); 1732 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1733 RHS = SDValue(); 1734 CC = SDValue(); 1735 return true; 1736 } 1737 } 1738 return false; 1739 } 1740 1741 /// Emit a store/load combination to the stack. This stores 1742 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1743 /// a load from the stack slot to DestVT, extending it if needed. 1744 /// The resultant code need not be legal. 1745 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1746 EVT DestVT, const SDLoc &dl) { 1747 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode()); 1748 } 1749 1750 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1751 EVT DestVT, const SDLoc &dl, 1752 SDValue Chain) { 1753 // Create the stack frame object. 1754 unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment( 1755 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1756 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 1757 1758 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1759 int SPFI = StackPtrFI->getIndex(); 1760 MachinePointerInfo PtrInfo = 1761 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1762 1763 unsigned SrcSize = SrcOp.getValueSizeInBits(); 1764 unsigned SlotSize = SlotVT.getSizeInBits(); 1765 unsigned DestSize = DestVT.getSizeInBits(); 1766 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1767 unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType); 1768 1769 // Emit a store to the stack slot. Use a truncstore if the input value is 1770 // later than DestVT. 1771 SDValue Store; 1772 1773 if (SrcSize > SlotSize) 1774 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo, 1775 SlotVT, SrcAlign); 1776 else { 1777 assert(SrcSize == SlotSize && "Invalid store"); 1778 Store = 1779 DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1780 } 1781 1782 // Result is a load from the stack slot. 1783 if (SlotSize == DestSize) 1784 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1785 1786 assert(SlotSize < DestSize && "Unknown extension!"); 1787 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1788 DestAlign); 1789 } 1790 1791 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1792 SDLoc dl(Node); 1793 // Create a vector sized/aligned stack slot, store the value to element #0, 1794 // then load the whole vector back out. 1795 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1796 1797 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1798 int SPFI = StackPtrFI->getIndex(); 1799 1800 SDValue Ch = DAG.getTruncStore( 1801 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1802 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1803 Node->getValueType(0).getVectorElementType()); 1804 return DAG.getLoad( 1805 Node->getValueType(0), dl, Ch, StackPtr, 1806 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1807 } 1808 1809 static bool 1810 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1811 const TargetLowering &TLI, SDValue &Res) { 1812 unsigned NumElems = Node->getNumOperands(); 1813 SDLoc dl(Node); 1814 EVT VT = Node->getValueType(0); 1815 1816 // Try to group the scalars into pairs, shuffle the pairs together, then 1817 // shuffle the pairs of pairs together, etc. until the vector has 1818 // been built. This will work only if all of the necessary shuffle masks 1819 // are legal. 1820 1821 // We do this in two phases; first to check the legality of the shuffles, 1822 // and next, assuming that all shuffles are legal, to create the new nodes. 1823 for (int Phase = 0; Phase < 2; ++Phase) { 1824 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1825 NewIntermedVals; 1826 for (unsigned i = 0; i < NumElems; ++i) { 1827 SDValue V = Node->getOperand(i); 1828 if (V.isUndef()) 1829 continue; 1830 1831 SDValue Vec; 1832 if (Phase) 1833 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1834 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1835 } 1836 1837 while (IntermedVals.size() > 2) { 1838 NewIntermedVals.clear(); 1839 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1840 // This vector and the next vector are shuffled together (simply to 1841 // append the one to the other). 1842 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1843 1844 SmallVector<int, 16> FinalIndices; 1845 FinalIndices.reserve(IntermedVals[i].second.size() + 1846 IntermedVals[i+1].second.size()); 1847 1848 int k = 0; 1849 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1850 ++j, ++k) { 1851 ShuffleVec[k] = j; 1852 FinalIndices.push_back(IntermedVals[i].second[j]); 1853 } 1854 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1855 ++j, ++k) { 1856 ShuffleVec[k] = NumElems + j; 1857 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1858 } 1859 1860 SDValue Shuffle; 1861 if (Phase) 1862 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1863 IntermedVals[i+1].first, 1864 ShuffleVec); 1865 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1866 return false; 1867 NewIntermedVals.push_back( 1868 std::make_pair(Shuffle, std::move(FinalIndices))); 1869 } 1870 1871 // If we had an odd number of defined values, then append the last 1872 // element to the array of new vectors. 1873 if ((IntermedVals.size() & 1) != 0) 1874 NewIntermedVals.push_back(IntermedVals.back()); 1875 1876 IntermedVals.swap(NewIntermedVals); 1877 } 1878 1879 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1880 "Invalid number of intermediate vectors"); 1881 SDValue Vec1 = IntermedVals[0].first; 1882 SDValue Vec2; 1883 if (IntermedVals.size() > 1) 1884 Vec2 = IntermedVals[1].first; 1885 else if (Phase) 1886 Vec2 = DAG.getUNDEF(VT); 1887 1888 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1889 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1890 ShuffleVec[IntermedVals[0].second[i]] = i; 1891 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1892 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1893 1894 if (Phase) 1895 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1896 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1897 return false; 1898 } 1899 1900 return true; 1901 } 1902 1903 /// Expand a BUILD_VECTOR node on targets that don't 1904 /// support the operation, but do support the resultant vector type. 1905 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1906 unsigned NumElems = Node->getNumOperands(); 1907 SDValue Value1, Value2; 1908 SDLoc dl(Node); 1909 EVT VT = Node->getValueType(0); 1910 EVT OpVT = Node->getOperand(0).getValueType(); 1911 EVT EltVT = VT.getVectorElementType(); 1912 1913 // If the only non-undef value is the low element, turn this into a 1914 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1915 bool isOnlyLowElement = true; 1916 bool MoreThanTwoValues = false; 1917 bool isConstant = true; 1918 for (unsigned i = 0; i < NumElems; ++i) { 1919 SDValue V = Node->getOperand(i); 1920 if (V.isUndef()) 1921 continue; 1922 if (i > 0) 1923 isOnlyLowElement = false; 1924 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1925 isConstant = false; 1926 1927 if (!Value1.getNode()) { 1928 Value1 = V; 1929 } else if (!Value2.getNode()) { 1930 if (V != Value1) 1931 Value2 = V; 1932 } else if (V != Value1 && V != Value2) { 1933 MoreThanTwoValues = true; 1934 } 1935 } 1936 1937 if (!Value1.getNode()) 1938 return DAG.getUNDEF(VT); 1939 1940 if (isOnlyLowElement) 1941 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1942 1943 // If all elements are constants, create a load from the constant pool. 1944 if (isConstant) { 1945 SmallVector<Constant*, 16> CV; 1946 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1947 if (ConstantFPSDNode *V = 1948 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1949 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1950 } else if (ConstantSDNode *V = 1951 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1952 if (OpVT==EltVT) 1953 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1954 else { 1955 // If OpVT and EltVT don't match, EltVT is not legal and the 1956 // element values have been promoted/truncated earlier. Undo this; 1957 // we don't want a v16i8 to become a v16i32 for example. 1958 const ConstantInt *CI = V->getConstantIntValue(); 1959 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1960 CI->getZExtValue())); 1961 } 1962 } else { 1963 assert(Node->getOperand(i).isUndef()); 1964 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1965 CV.push_back(UndefValue::get(OpNTy)); 1966 } 1967 } 1968 Constant *CP = ConstantVector::get(CV); 1969 SDValue CPIdx = 1970 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 1971 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 1972 return DAG.getLoad( 1973 VT, dl, DAG.getEntryNode(), CPIdx, 1974 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 1975 Alignment); 1976 } 1977 1978 SmallSet<SDValue, 16> DefinedValues; 1979 for (unsigned i = 0; i < NumElems; ++i) { 1980 if (Node->getOperand(i).isUndef()) 1981 continue; 1982 DefinedValues.insert(Node->getOperand(i)); 1983 } 1984 1985 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 1986 if (!MoreThanTwoValues) { 1987 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1988 for (unsigned i = 0; i < NumElems; ++i) { 1989 SDValue V = Node->getOperand(i); 1990 if (V.isUndef()) 1991 continue; 1992 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1993 } 1994 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1995 // Get the splatted value into the low element of a vector register. 1996 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1997 SDValue Vec2; 1998 if (Value2.getNode()) 1999 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 2000 else 2001 Vec2 = DAG.getUNDEF(VT); 2002 2003 // Return shuffle(LowValVec, undef, <0,0,0,0>) 2004 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 2005 } 2006 } else { 2007 SDValue Res; 2008 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 2009 return Res; 2010 } 2011 } 2012 2013 // Otherwise, we can't handle this case efficiently. 2014 return ExpandVectorBuildThroughStack(Node); 2015 } 2016 2017 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) { 2018 SDLoc DL(Node); 2019 EVT VT = Node->getValueType(0); 2020 SDValue SplatVal = Node->getOperand(0); 2021 2022 return DAG.getSplatBuildVector(VT, DL, SplatVal); 2023 } 2024 2025 // Expand a node into a call to a libcall. If the result value 2026 // does not fit into a register, return the lo part and set the hi part to the 2027 // by-reg argument. If it does fit into a single register, return the result 2028 // and leave the Hi part unset. 2029 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2030 bool isSigned) { 2031 TargetLowering::ArgListTy Args; 2032 TargetLowering::ArgListEntry Entry; 2033 for (const SDValue &Op : Node->op_values()) { 2034 EVT ArgVT = Op.getValueType(); 2035 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2036 Entry.Node = Op; 2037 Entry.Ty = ArgTy; 2038 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2039 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2040 Args.push_back(Entry); 2041 } 2042 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2043 TLI.getPointerTy(DAG.getDataLayout())); 2044 2045 EVT RetVT = Node->getValueType(0); 2046 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2047 2048 // By default, the input chain to this libcall is the entry node of the 2049 // function. If the libcall is going to be emitted as a tail call then 2050 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2051 // node which is being folded has a non-entry input chain. 2052 SDValue InChain = DAG.getEntryNode(); 2053 2054 // isTailCall may be true since the callee does not reference caller stack 2055 // frame. Check if it's in the right position and that the return types match. 2056 SDValue TCChain = InChain; 2057 const Function &F = DAG.getMachineFunction().getFunction(); 2058 bool isTailCall = 2059 TLI.isInTailCallPosition(DAG, Node, TCChain) && 2060 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 2061 if (isTailCall) 2062 InChain = TCChain; 2063 2064 TargetLowering::CallLoweringInfo CLI(DAG); 2065 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2066 CLI.setDebugLoc(SDLoc(Node)) 2067 .setChain(InChain) 2068 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2069 std::move(Args)) 2070 .setTailCall(isTailCall) 2071 .setSExtResult(signExtend) 2072 .setZExtResult(!signExtend) 2073 .setIsPostTypeLegalization(true); 2074 2075 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2076 2077 if (!CallInfo.second.getNode()) { 2078 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG)); 2079 // It's a tailcall, return the chain (which is the DAG root). 2080 return DAG.getRoot(); 2081 } 2082 2083 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG)); 2084 return CallInfo.first; 2085 } 2086 2087 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2088 RTLIB::Libcall Call_F32, 2089 RTLIB::Libcall Call_F64, 2090 RTLIB::Libcall Call_F80, 2091 RTLIB::Libcall Call_F128, 2092 RTLIB::Libcall Call_PPCF128, 2093 SmallVectorImpl<SDValue> &Results) { 2094 RTLIB::Libcall LC; 2095 switch (Node->getSimpleValueType(0).SimpleTy) { 2096 default: llvm_unreachable("Unexpected request for libcall!"); 2097 case MVT::f32: LC = Call_F32; break; 2098 case MVT::f64: LC = Call_F64; break; 2099 case MVT::f80: LC = Call_F80; break; 2100 case MVT::f128: LC = Call_F128; break; 2101 case MVT::ppcf128: LC = Call_PPCF128; break; 2102 } 2103 2104 if (Node->isStrictFPOpcode()) { 2105 EVT RetVT = Node->getValueType(0); 2106 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); 2107 TargetLowering::MakeLibCallOptions CallOptions; 2108 // FIXME: This doesn't support tail calls. 2109 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2110 Ops, CallOptions, 2111 SDLoc(Node), 2112 Node->getOperand(0)); 2113 Results.push_back(Tmp.first); 2114 Results.push_back(Tmp.second); 2115 } else { 2116 SDValue Tmp = ExpandLibCall(LC, Node, false); 2117 Results.push_back(Tmp); 2118 } 2119 } 2120 2121 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2122 RTLIB::Libcall Call_I8, 2123 RTLIB::Libcall Call_I16, 2124 RTLIB::Libcall Call_I32, 2125 RTLIB::Libcall Call_I64, 2126 RTLIB::Libcall Call_I128) { 2127 RTLIB::Libcall LC; 2128 switch (Node->getSimpleValueType(0).SimpleTy) { 2129 default: llvm_unreachable("Unexpected request for libcall!"); 2130 case MVT::i8: LC = Call_I8; break; 2131 case MVT::i16: LC = Call_I16; break; 2132 case MVT::i32: LC = Call_I32; break; 2133 case MVT::i64: LC = Call_I64; break; 2134 case MVT::i128: LC = Call_I128; break; 2135 } 2136 return ExpandLibCall(LC, Node, isSigned); 2137 } 2138 2139 /// Expand the node to a libcall based on first argument type (for instance 2140 /// lround and its variant). 2141 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node, 2142 RTLIB::Libcall Call_F32, 2143 RTLIB::Libcall Call_F64, 2144 RTLIB::Libcall Call_F80, 2145 RTLIB::Libcall Call_F128, 2146 RTLIB::Libcall Call_PPCF128, 2147 SmallVectorImpl<SDValue> &Results) { 2148 EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType(); 2149 2150 RTLIB::Libcall LC; 2151 switch (InVT.getSimpleVT().SimpleTy) { 2152 default: llvm_unreachable("Unexpected request for libcall!"); 2153 case MVT::f32: LC = Call_F32; break; 2154 case MVT::f64: LC = Call_F64; break; 2155 case MVT::f80: LC = Call_F80; break; 2156 case MVT::f128: LC = Call_F128; break; 2157 case MVT::ppcf128: LC = Call_PPCF128; break; 2158 } 2159 2160 if (Node->isStrictFPOpcode()) { 2161 EVT RetVT = Node->getValueType(0); 2162 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); 2163 TargetLowering::MakeLibCallOptions CallOptions; 2164 // FIXME: This doesn't support tail calls. 2165 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2166 Ops, CallOptions, 2167 SDLoc(Node), 2168 Node->getOperand(0)); 2169 Results.push_back(Tmp.first); 2170 Results.push_back(Tmp.second); 2171 } else { 2172 SDValue Tmp = ExpandLibCall(LC, Node, false); 2173 Results.push_back(Tmp); 2174 } 2175 } 2176 2177 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2178 void 2179 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2180 SmallVectorImpl<SDValue> &Results) { 2181 unsigned Opcode = Node->getOpcode(); 2182 bool isSigned = Opcode == ISD::SDIVREM; 2183 2184 RTLIB::Libcall LC; 2185 switch (Node->getSimpleValueType(0).SimpleTy) { 2186 default: llvm_unreachable("Unexpected request for libcall!"); 2187 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2188 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2189 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2190 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2191 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2192 } 2193 2194 // The input chain to this libcall is the entry node of the function. 2195 // Legalizing the call will automatically add the previous call to the 2196 // dependence. 2197 SDValue InChain = DAG.getEntryNode(); 2198 2199 EVT RetVT = Node->getValueType(0); 2200 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2201 2202 TargetLowering::ArgListTy Args; 2203 TargetLowering::ArgListEntry Entry; 2204 for (const SDValue &Op : Node->op_values()) { 2205 EVT ArgVT = Op.getValueType(); 2206 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2207 Entry.Node = Op; 2208 Entry.Ty = ArgTy; 2209 Entry.IsSExt = isSigned; 2210 Entry.IsZExt = !isSigned; 2211 Args.push_back(Entry); 2212 } 2213 2214 // Also pass the return address of the remainder. 2215 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2216 Entry.Node = FIPtr; 2217 Entry.Ty = RetTy->getPointerTo(); 2218 Entry.IsSExt = isSigned; 2219 Entry.IsZExt = !isSigned; 2220 Args.push_back(Entry); 2221 2222 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2223 TLI.getPointerTy(DAG.getDataLayout())); 2224 2225 SDLoc dl(Node); 2226 TargetLowering::CallLoweringInfo CLI(DAG); 2227 CLI.setDebugLoc(dl) 2228 .setChain(InChain) 2229 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2230 std::move(Args)) 2231 .setSExtResult(isSigned) 2232 .setZExtResult(!isSigned); 2233 2234 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2235 2236 // Remainder is loaded back from the stack frame. 2237 SDValue Rem = 2238 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2239 Results.push_back(CallInfo.first); 2240 Results.push_back(Rem); 2241 } 2242 2243 /// Return true if sincos libcall is available. 2244 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2245 RTLIB::Libcall LC; 2246 switch (Node->getSimpleValueType(0).SimpleTy) { 2247 default: llvm_unreachable("Unexpected request for libcall!"); 2248 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2249 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2250 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2251 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2252 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2253 } 2254 return TLI.getLibcallName(LC) != nullptr; 2255 } 2256 2257 /// Only issue sincos libcall if both sin and cos are needed. 2258 static bool useSinCos(SDNode *Node) { 2259 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2260 ? ISD::FCOS : ISD::FSIN; 2261 2262 SDValue Op0 = Node->getOperand(0); 2263 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2264 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2265 SDNode *User = *UI; 2266 if (User == Node) 2267 continue; 2268 // The other user might have been turned into sincos already. 2269 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2270 return true; 2271 } 2272 return false; 2273 } 2274 2275 /// Issue libcalls to sincos to compute sin / cos pairs. 2276 void 2277 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2278 SmallVectorImpl<SDValue> &Results) { 2279 RTLIB::Libcall LC; 2280 switch (Node->getSimpleValueType(0).SimpleTy) { 2281 default: llvm_unreachable("Unexpected request for libcall!"); 2282 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2283 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2284 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2285 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2286 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2287 } 2288 2289 // The input chain to this libcall is the entry node of the function. 2290 // Legalizing the call will automatically add the previous call to the 2291 // dependence. 2292 SDValue InChain = DAG.getEntryNode(); 2293 2294 EVT RetVT = Node->getValueType(0); 2295 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2296 2297 TargetLowering::ArgListTy Args; 2298 TargetLowering::ArgListEntry Entry; 2299 2300 // Pass the argument. 2301 Entry.Node = Node->getOperand(0); 2302 Entry.Ty = RetTy; 2303 Entry.IsSExt = false; 2304 Entry.IsZExt = false; 2305 Args.push_back(Entry); 2306 2307 // Pass the return address of sin. 2308 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2309 Entry.Node = SinPtr; 2310 Entry.Ty = RetTy->getPointerTo(); 2311 Entry.IsSExt = false; 2312 Entry.IsZExt = false; 2313 Args.push_back(Entry); 2314 2315 // Also pass the return address of the cos. 2316 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2317 Entry.Node = CosPtr; 2318 Entry.Ty = RetTy->getPointerTo(); 2319 Entry.IsSExt = false; 2320 Entry.IsZExt = false; 2321 Args.push_back(Entry); 2322 2323 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2324 TLI.getPointerTy(DAG.getDataLayout())); 2325 2326 SDLoc dl(Node); 2327 TargetLowering::CallLoweringInfo CLI(DAG); 2328 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2329 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2330 std::move(Args)); 2331 2332 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2333 2334 Results.push_back( 2335 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2336 Results.push_back( 2337 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2338 } 2339 2340 /// This function is responsible for legalizing a 2341 /// INT_TO_FP operation of the specified operand when the target requests that 2342 /// we expand it. At this point, we know that the result and operand types are 2343 /// legal for the target. 2344 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node, 2345 SDValue &Chain) { 2346 bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 2347 Node->getOpcode() == ISD::SINT_TO_FP); 2348 EVT DestVT = Node->getValueType(0); 2349 SDLoc dl(Node); 2350 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 2351 SDValue Op0 = Node->getOperand(OpNo); 2352 EVT SrcVT = Op0.getValueType(); 2353 2354 // TODO: Should any fast-math-flags be set for the created nodes? 2355 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2356 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { 2357 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2358 "expansion\n"); 2359 2360 // Get the stack frame index of a 8 byte buffer. 2361 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2362 2363 // word offset constant for Hi/Lo address computation 2364 SDValue WordOff = DAG.getConstant(sizeof(int), dl, 2365 StackSlot.getValueType()); 2366 // set up Hi and Lo (into buffer) address based on endian 2367 SDValue Hi = StackSlot; 2368 SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(), 2369 StackSlot, WordOff); 2370 if (DAG.getDataLayout().isLittleEndian()) 2371 std::swap(Hi, Lo); 2372 2373 // if signed map to unsigned space 2374 SDValue Op0Mapped; 2375 if (isSigned) { 2376 // constant used to invert sign bit (signed to unsigned mapping) 2377 SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32); 2378 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); 2379 } else { 2380 Op0Mapped = Op0; 2381 } 2382 // store the lo of the constructed double - based on integer input 2383 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo, 2384 MachinePointerInfo()); 2385 // initial hi portion of constructed double 2386 SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2387 // store the hi of the constructed double - biased exponent 2388 SDValue Store2 = 2389 DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo()); 2390 // load the constructed double 2391 SDValue Load = 2392 DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo()); 2393 // FP constant to bias correct the final result 2394 SDValue Bias = DAG.getConstantFP(isSigned ? 2395 BitsToDouble(0x4330000080000000ULL) : 2396 BitsToDouble(0x4330000000000000ULL), 2397 dl, MVT::f64); 2398 // Subtract the bias and get the final result. 2399 SDValue Sub; 2400 SDValue Result; 2401 if (Node->isStrictFPOpcode()) { 2402 Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other}, 2403 {Node->getOperand(0), Load, Bias}); 2404 Chain = Sub.getValue(1); 2405 if (DestVT != Sub.getValueType()) { 2406 std::pair<SDValue, SDValue> ResultPair; 2407 ResultPair = 2408 DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT); 2409 Result = ResultPair.first; 2410 Chain = ResultPair.second; 2411 } 2412 else 2413 Result = Sub; 2414 } else { 2415 Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2416 Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); 2417 } 2418 return Result; 2419 } 2420 // Code below here assumes !isSigned without checking again. 2421 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2422 2423 // TODO: Generalize this for use with other types. 2424 if (SrcVT == MVT::i64 && DestVT == MVT::f32) { 2425 LLVM_DEBUG(dbgs() << "Converting unsigned i64 to f32\n"); 2426 // For unsigned conversions, convert them to signed conversions using the 2427 // algorithm from the x86_64 __floatundidf in compiler_rt. 2428 2429 // TODO: This really should be implemented using a branch rather than a 2430 // select. We happen to get lucky and machinesink does the right 2431 // thing most of the time. This would be a good candidate for a 2432 // pseudo-op, or, even better, for whole-function isel. 2433 EVT SetCCVT = getSetCCResultType(SrcVT); 2434 2435 SDValue SignBitTest = DAG.getSetCC( 2436 dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2437 2438 EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout()); 2439 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 2440 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst); 2441 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 2442 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst); 2443 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 2444 2445 SDValue Slow, Fast; 2446 if (Node->isStrictFPOpcode()) { 2447 // In strict mode, we must avoid spurious exceptions, and therefore 2448 // must make sure to only emit a single STRICT_SINT_TO_FP. 2449 SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0); 2450 Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2451 { Node->getOperand(0), InCvt }); 2452 Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2453 { Fast.getValue(1), Fast, Fast }); 2454 Chain = Slow.getValue(1); 2455 // The STRICT_SINT_TO_FP inherits the exception mode from the 2456 // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can 2457 // never raise any exception. 2458 SDNodeFlags Flags; 2459 Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept()); 2460 Fast->setFlags(Flags); 2461 Flags.setNoFPExcept(true); 2462 Slow->setFlags(Flags); 2463 } else { 2464 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or); 2465 Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt); 2466 Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2467 } 2468 2469 return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast); 2470 } 2471 2472 // FIXME: This can produce slightly incorrect results. See details in 2473 // FIXME: https://reviews.llvm.org/D69275 2474 SDValue Tmp1; 2475 if (Node->isStrictFPOpcode()) { 2476 Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2477 { Node->getOperand(0), Op0 }); 2478 } else 2479 Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2480 2481 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, 2482 DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2483 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2484 Four = DAG.getIntPtrConstant(4, dl); 2485 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2486 SignSet, Four, Zero); 2487 2488 // If the sign bit of the integer is set, the large number will be treated 2489 // as a negative number. To counteract this, the dynamic code adds an 2490 // offset depending on the data type. 2491 uint64_t FF; 2492 switch (SrcVT.getSimpleVT().SimpleTy) { 2493 default: llvm_unreachable("Unsupported integer type!"); 2494 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2495 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2496 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2497 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2498 } 2499 if (DAG.getDataLayout().isLittleEndian()) 2500 FF <<= 32; 2501 Constant *FudgeFactor = ConstantInt::get( 2502 Type::getInt64Ty(*DAG.getContext()), FF); 2503 2504 SDValue CPIdx = 2505 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2506 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2507 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2508 Alignment = std::min(Alignment, 4u); 2509 SDValue FudgeInReg; 2510 if (DestVT == MVT::f32) 2511 FudgeInReg = DAG.getLoad( 2512 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2513 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2514 Alignment); 2515 else { 2516 SDValue Load = DAG.getExtLoad( 2517 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2518 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2519 Alignment); 2520 HandleSDNode Handle(Load); 2521 LegalizeOp(Load.getNode()); 2522 FudgeInReg = Handle.getValue(); 2523 } 2524 2525 if (Node->isStrictFPOpcode()) { 2526 SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2527 { Tmp1.getValue(1), Tmp1, FudgeInReg }); 2528 Chain = Result.getValue(1); 2529 return Result; 2530 } 2531 2532 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2533 } 2534 2535 /// This function is responsible for legalizing a 2536 /// *INT_TO_FP operation of the specified operand when the target requests that 2537 /// we promote it. At this point, we know that the result and operand types are 2538 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2539 /// operation that takes a larger input. 2540 void SelectionDAGLegalize::PromoteLegalINT_TO_FP( 2541 SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) { 2542 bool IsStrict = N->isStrictFPOpcode(); 2543 bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP || 2544 N->getOpcode() == ISD::STRICT_SINT_TO_FP; 2545 EVT DestVT = N->getValueType(0); 2546 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2547 unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP; 2548 unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP; 2549 2550 // First step, figure out the appropriate *INT_TO_FP operation to use. 2551 EVT NewInTy = LegalOp.getValueType(); 2552 2553 unsigned OpToUse = 0; 2554 2555 // Scan for the appropriate larger type to use. 2556 while (true) { 2557 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2558 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2559 2560 // If the target supports SINT_TO_FP of this type, use it. 2561 if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) { 2562 OpToUse = SIntOp; 2563 break; 2564 } 2565 if (IsSigned) 2566 continue; 2567 2568 // If the target supports UINT_TO_FP of this type, use it. 2569 if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) { 2570 OpToUse = UIntOp; 2571 break; 2572 } 2573 2574 // Otherwise, try a larger type. 2575 } 2576 2577 // Okay, we found the operation and type to use. Zero extend our input to the 2578 // desired type then run the operation on it. 2579 if (IsStrict) { 2580 SDValue Res = 2581 DAG.getNode(OpToUse, dl, {DestVT, MVT::Other}, 2582 {N->getOperand(0), 2583 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2584 dl, NewInTy, LegalOp)}); 2585 Results.push_back(Res); 2586 Results.push_back(Res.getValue(1)); 2587 return; 2588 } 2589 2590 Results.push_back( 2591 DAG.getNode(OpToUse, dl, DestVT, 2592 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2593 dl, NewInTy, LegalOp))); 2594 } 2595 2596 /// This function is responsible for legalizing a 2597 /// FP_TO_*INT operation of the specified operand when the target requests that 2598 /// we promote it. At this point, we know that the result and operand types are 2599 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2600 /// operation that returns a larger result. 2601 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 2602 SmallVectorImpl<SDValue> &Results) { 2603 bool IsStrict = N->isStrictFPOpcode(); 2604 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 2605 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 2606 EVT DestVT = N->getValueType(0); 2607 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2608 // First step, figure out the appropriate FP_TO*INT operation to use. 2609 EVT NewOutTy = DestVT; 2610 2611 unsigned OpToUse = 0; 2612 2613 // Scan for the appropriate larger type to use. 2614 while (true) { 2615 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2616 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2617 2618 // A larger signed type can hold all unsigned values of the requested type, 2619 // so using FP_TO_SINT is valid 2620 OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT; 2621 if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2622 break; 2623 2624 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2625 OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT; 2626 if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2627 break; 2628 2629 // Otherwise, try a larger type. 2630 } 2631 2632 // Okay, we found the operation and type to use. 2633 SDValue Operation; 2634 if (IsStrict) { 2635 SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other); 2636 Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp); 2637 } else 2638 Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2639 2640 // Truncate the result of the extended FP_TO_*INT operation to the desired 2641 // size. 2642 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2643 Results.push_back(Trunc); 2644 if (IsStrict) 2645 Results.push_back(Operation.getValue(1)); 2646 } 2647 2648 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts. 2649 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) { 2650 EVT VT = Op.getValueType(); 2651 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2652 unsigned Sz = VT.getScalarSizeInBits(); 2653 2654 SDValue Tmp, Tmp2, Tmp3; 2655 2656 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 2657 // and finally the i1 pairs. 2658 // TODO: We can easily support i4/i2 legal types if any target ever does. 2659 if (Sz >= 8 && isPowerOf2_32(Sz)) { 2660 // Create the masks - repeating the pattern every byte. 2661 APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0)); 2662 APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC)); 2663 APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA)); 2664 APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 2665 APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33)); 2666 APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55)); 2667 2668 // BSWAP if the type is wider than a single byte. 2669 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 2670 2671 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) 2672 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); 2673 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); 2674 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT)); 2675 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 2676 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2677 2678 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) 2679 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); 2680 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); 2681 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT)); 2682 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 2683 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2684 2685 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) 2686 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); 2687 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); 2688 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT)); 2689 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 2690 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2691 return Tmp; 2692 } 2693 2694 Tmp = DAG.getConstant(0, dl, VT); 2695 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 2696 if (I < J) 2697 Tmp2 = 2698 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 2699 else 2700 Tmp2 = 2701 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 2702 2703 APInt Shift(Sz, 1); 2704 Shift <<= J; 2705 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 2706 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 2707 } 2708 2709 return Tmp; 2710 } 2711 2712 /// Open code the operations for BSWAP of the specified operation. 2713 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) { 2714 EVT VT = Op.getValueType(); 2715 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2716 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2717 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 2718 default: llvm_unreachable("Unhandled Expand type in BSWAP!"); 2719 case MVT::i16: 2720 // Use a rotate by 8. This can be further expanded if necessary. 2721 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2722 case MVT::i32: 2723 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2724 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2725 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2726 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2727 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2728 DAG.getConstant(0xFF0000, dl, VT)); 2729 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 2730 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2731 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2732 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2733 case MVT::i64: 2734 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2735 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2736 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2737 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2738 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2739 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2740 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2741 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2742 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 2743 DAG.getConstant(255ULL<<48, dl, VT)); 2744 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 2745 DAG.getConstant(255ULL<<40, dl, VT)); 2746 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 2747 DAG.getConstant(255ULL<<32, dl, VT)); 2748 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 2749 DAG.getConstant(255ULL<<24, dl, VT)); 2750 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2751 DAG.getConstant(255ULL<<16, dl, VT)); 2752 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 2753 DAG.getConstant(255ULL<<8 , dl, VT)); 2754 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2755 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2756 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2757 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2758 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2759 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2760 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2761 } 2762 } 2763 2764 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2765 LLVM_DEBUG(dbgs() << "Trying to expand node\n"); 2766 SmallVector<SDValue, 8> Results; 2767 SDLoc dl(Node); 2768 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2769 bool NeedInvert; 2770 switch (Node->getOpcode()) { 2771 case ISD::ABS: 2772 if (TLI.expandABS(Node, Tmp1, DAG)) 2773 Results.push_back(Tmp1); 2774 break; 2775 case ISD::CTPOP: 2776 if (TLI.expandCTPOP(Node, Tmp1, DAG)) 2777 Results.push_back(Tmp1); 2778 break; 2779 case ISD::CTLZ: 2780 case ISD::CTLZ_ZERO_UNDEF: 2781 if (TLI.expandCTLZ(Node, Tmp1, DAG)) 2782 Results.push_back(Tmp1); 2783 break; 2784 case ISD::CTTZ: 2785 case ISD::CTTZ_ZERO_UNDEF: 2786 if (TLI.expandCTTZ(Node, Tmp1, DAG)) 2787 Results.push_back(Tmp1); 2788 break; 2789 case ISD::BITREVERSE: 2790 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl)); 2791 break; 2792 case ISD::BSWAP: 2793 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2794 break; 2795 case ISD::FRAMEADDR: 2796 case ISD::RETURNADDR: 2797 case ISD::FRAME_TO_ARGS_OFFSET: 2798 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2799 break; 2800 case ISD::EH_DWARF_CFA: { 2801 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 2802 TLI.getPointerTy(DAG.getDataLayout())); 2803 SDValue Offset = DAG.getNode(ISD::ADD, dl, 2804 CfaArg.getValueType(), 2805 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 2806 CfaArg.getValueType()), 2807 CfaArg); 2808 SDValue FA = DAG.getNode( 2809 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 2810 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2811 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 2812 FA, Offset)); 2813 break; 2814 } 2815 case ISD::FLT_ROUNDS_: 2816 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2817 break; 2818 case ISD::EH_RETURN: 2819 case ISD::EH_LABEL: 2820 case ISD::PREFETCH: 2821 case ISD::VAEND: 2822 case ISD::EH_SJLJ_LONGJMP: 2823 // If the target didn't expand these, there's nothing to do, so just 2824 // preserve the chain and be done. 2825 Results.push_back(Node->getOperand(0)); 2826 break; 2827 case ISD::READCYCLECOUNTER: 2828 // If the target didn't expand this, just return 'zero' and preserve the 2829 // chain. 2830 Results.append(Node->getNumValues() - 1, 2831 DAG.getConstant(0, dl, Node->getValueType(0))); 2832 Results.push_back(Node->getOperand(0)); 2833 break; 2834 case ISD::EH_SJLJ_SETJMP: 2835 // If the target didn't expand this, just return 'zero' and preserve the 2836 // chain. 2837 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2838 Results.push_back(Node->getOperand(0)); 2839 break; 2840 case ISD::ATOMIC_LOAD: { 2841 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2842 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2843 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2844 SDValue Swap = DAG.getAtomicCmpSwap( 2845 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2846 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2847 cast<AtomicSDNode>(Node)->getMemOperand()); 2848 Results.push_back(Swap.getValue(0)); 2849 Results.push_back(Swap.getValue(1)); 2850 break; 2851 } 2852 case ISD::ATOMIC_STORE: { 2853 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2854 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2855 cast<AtomicSDNode>(Node)->getMemoryVT(), 2856 Node->getOperand(0), 2857 Node->getOperand(1), Node->getOperand(2), 2858 cast<AtomicSDNode>(Node)->getMemOperand()); 2859 Results.push_back(Swap.getValue(1)); 2860 break; 2861 } 2862 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 2863 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 2864 // splits out the success value as a comparison. Expanding the resulting 2865 // ATOMIC_CMP_SWAP will produce a libcall. 2866 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2867 SDValue Res = DAG.getAtomicCmpSwap( 2868 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2869 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 2870 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 2871 2872 SDValue ExtRes = Res; 2873 SDValue LHS = Res; 2874 SDValue RHS = Node->getOperand(1); 2875 2876 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 2877 EVT OuterType = Node->getValueType(0); 2878 switch (TLI.getExtendForAtomicOps()) { 2879 case ISD::SIGN_EXTEND: 2880 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 2881 DAG.getValueType(AtomicType)); 2882 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 2883 Node->getOperand(2), DAG.getValueType(AtomicType)); 2884 ExtRes = LHS; 2885 break; 2886 case ISD::ZERO_EXTEND: 2887 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 2888 DAG.getValueType(AtomicType)); 2889 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2890 ExtRes = LHS; 2891 break; 2892 case ISD::ANY_EXTEND: 2893 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 2894 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2895 break; 2896 default: 2897 llvm_unreachable("Invalid atomic op extension"); 2898 } 2899 2900 SDValue Success = 2901 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 2902 2903 Results.push_back(ExtRes.getValue(0)); 2904 Results.push_back(Success); 2905 Results.push_back(Res.getValue(1)); 2906 break; 2907 } 2908 case ISD::DYNAMIC_STACKALLOC: 2909 ExpandDYNAMIC_STACKALLOC(Node, Results); 2910 break; 2911 case ISD::MERGE_VALUES: 2912 for (unsigned i = 0; i < Node->getNumValues(); i++) 2913 Results.push_back(Node->getOperand(i)); 2914 break; 2915 case ISD::UNDEF: { 2916 EVT VT = Node->getValueType(0); 2917 if (VT.isInteger()) 2918 Results.push_back(DAG.getConstant(0, dl, VT)); 2919 else { 2920 assert(VT.isFloatingPoint() && "Unknown value type!"); 2921 Results.push_back(DAG.getConstantFP(0, dl, VT)); 2922 } 2923 break; 2924 } 2925 case ISD::STRICT_FP_ROUND: 2926 // When strict mode is enforced we can't do expansion because it 2927 // does not honor the "strict" properties. Only libcall is allowed. 2928 if (TLI.isStrictFPEnabled()) 2929 break; 2930 // We might as well mutate to FP_ROUND when FP_ROUND operation is legal 2931 // since this operation is more efficient than stack operation. 2932 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2933 Node->getValueType(0)) 2934 == TargetLowering::Legal) 2935 break; 2936 // We fall back to use stack operation when the FP_ROUND operation 2937 // isn't available. 2938 Tmp1 = EmitStackConvert(Node->getOperand(1), 2939 Node->getValueType(0), 2940 Node->getValueType(0), dl, Node->getOperand(0)); 2941 ReplaceNode(Node, Tmp1.getNode()); 2942 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n"); 2943 return true; 2944 case ISD::FP_ROUND: 2945 case ISD::BITCAST: 2946 Tmp1 = EmitStackConvert(Node->getOperand(0), 2947 Node->getValueType(0), 2948 Node->getValueType(0), dl); 2949 Results.push_back(Tmp1); 2950 break; 2951 case ISD::STRICT_FP_EXTEND: 2952 // When strict mode is enforced we can't do expansion because it 2953 // does not honor the "strict" properties. Only libcall is allowed. 2954 if (TLI.isStrictFPEnabled()) 2955 break; 2956 // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal 2957 // since this operation is more efficient than stack operation. 2958 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2959 Node->getValueType(0)) 2960 == TargetLowering::Legal) 2961 break; 2962 // We fall back to use stack operation when the FP_EXTEND operation 2963 // isn't available. 2964 Tmp1 = EmitStackConvert(Node->getOperand(1), 2965 Node->getOperand(1).getValueType(), 2966 Node->getValueType(0), dl, Node->getOperand(0)); 2967 ReplaceNode(Node, Tmp1.getNode()); 2968 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n"); 2969 return true; 2970 case ISD::FP_EXTEND: 2971 Tmp1 = EmitStackConvert(Node->getOperand(0), 2972 Node->getOperand(0).getValueType(), 2973 Node->getValueType(0), dl); 2974 Results.push_back(Tmp1); 2975 break; 2976 case ISD::SIGN_EXTEND_INREG: { 2977 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2978 EVT VT = Node->getValueType(0); 2979 2980 // An in-register sign-extend of a boolean is a negation: 2981 // 'true' (1) sign-extended is -1. 2982 // 'false' (0) sign-extended is 0. 2983 // However, we must mask the high bits of the source operand because the 2984 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 2985 2986 // TODO: Do this for vectors too? 2987 if (ExtraVT.getSizeInBits() == 1) { 2988 SDValue One = DAG.getConstant(1, dl, VT); 2989 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 2990 SDValue Zero = DAG.getConstant(0, dl, VT); 2991 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 2992 Results.push_back(Neg); 2993 break; 2994 } 2995 2996 // NOTE: we could fall back on load/store here too for targets without 2997 // SRA. However, it is doubtful that any exist. 2998 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2999 unsigned BitsDiff = VT.getScalarSizeInBits() - 3000 ExtraVT.getScalarSizeInBits(); 3001 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 3002 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 3003 Node->getOperand(0), ShiftCst); 3004 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 3005 Results.push_back(Tmp1); 3006 break; 3007 } 3008 case ISD::UINT_TO_FP: 3009 case ISD::STRICT_UINT_TO_FP: 3010 if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) { 3011 Results.push_back(Tmp1); 3012 if (Node->isStrictFPOpcode()) 3013 Results.push_back(Tmp2); 3014 break; 3015 } 3016 LLVM_FALLTHROUGH; 3017 case ISD::SINT_TO_FP: 3018 case ISD::STRICT_SINT_TO_FP: 3019 Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2); 3020 Results.push_back(Tmp1); 3021 if (Node->isStrictFPOpcode()) 3022 Results.push_back(Tmp2); 3023 break; 3024 case ISD::FP_TO_SINT: 3025 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 3026 Results.push_back(Tmp1); 3027 break; 3028 case ISD::STRICT_FP_TO_SINT: 3029 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) { 3030 ReplaceNode(Node, Tmp1.getNode()); 3031 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n"); 3032 return true; 3033 } 3034 break; 3035 case ISD::FP_TO_UINT: 3036 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) 3037 Results.push_back(Tmp1); 3038 break; 3039 case ISD::STRICT_FP_TO_UINT: 3040 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) { 3041 // Relink the chain. 3042 DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2); 3043 // Replace the new UINT result. 3044 ReplaceNodeWithValue(SDValue(Node, 0), Tmp1); 3045 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n"); 3046 return true; 3047 } 3048 break; 3049 case ISD::VAARG: 3050 Results.push_back(DAG.expandVAArg(Node)); 3051 Results.push_back(Results[0].getValue(1)); 3052 break; 3053 case ISD::VACOPY: 3054 Results.push_back(DAG.expandVACopy(Node)); 3055 break; 3056 case ISD::EXTRACT_VECTOR_ELT: 3057 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 3058 // This must be an access of the only element. Return it. 3059 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 3060 Node->getOperand(0)); 3061 else 3062 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 3063 Results.push_back(Tmp1); 3064 break; 3065 case ISD::EXTRACT_SUBVECTOR: 3066 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 3067 break; 3068 case ISD::INSERT_SUBVECTOR: 3069 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 3070 break; 3071 case ISD::CONCAT_VECTORS: 3072 Results.push_back(ExpandVectorBuildThroughStack(Node)); 3073 break; 3074 case ISD::SCALAR_TO_VECTOR: 3075 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3076 break; 3077 case ISD::INSERT_VECTOR_ELT: 3078 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3079 Node->getOperand(1), 3080 Node->getOperand(2), dl)); 3081 break; 3082 case ISD::VECTOR_SHUFFLE: { 3083 SmallVector<int, 32> NewMask; 3084 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3085 3086 EVT VT = Node->getValueType(0); 3087 EVT EltVT = VT.getVectorElementType(); 3088 SDValue Op0 = Node->getOperand(0); 3089 SDValue Op1 = Node->getOperand(1); 3090 if (!TLI.isTypeLegal(EltVT)) { 3091 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3092 3093 // BUILD_VECTOR operands are allowed to be wider than the element type. 3094 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 3095 // it. 3096 if (NewEltVT.bitsLT(EltVT)) { 3097 // Convert shuffle node. 3098 // If original node was v4i64 and the new EltVT is i32, 3099 // cast operands to v8i32 and re-build the mask. 3100 3101 // Calculate new VT, the size of the new VT should be equal to original. 3102 EVT NewVT = 3103 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3104 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 3105 assert(NewVT.bitsEq(VT)); 3106 3107 // cast operands to new VT 3108 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3109 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3110 3111 // Convert the shuffle mask 3112 unsigned int factor = 3113 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3114 3115 // EltVT gets smaller 3116 assert(factor > 0); 3117 3118 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3119 if (Mask[i] < 0) { 3120 for (unsigned fi = 0; fi < factor; ++fi) 3121 NewMask.push_back(Mask[i]); 3122 } 3123 else { 3124 for (unsigned fi = 0; fi < factor; ++fi) 3125 NewMask.push_back(Mask[i]*factor+fi); 3126 } 3127 } 3128 Mask = NewMask; 3129 VT = NewVT; 3130 } 3131 EltVT = NewEltVT; 3132 } 3133 unsigned NumElems = VT.getVectorNumElements(); 3134 SmallVector<SDValue, 16> Ops; 3135 for (unsigned i = 0; i != NumElems; ++i) { 3136 if (Mask[i] < 0) { 3137 Ops.push_back(DAG.getUNDEF(EltVT)); 3138 continue; 3139 } 3140 unsigned Idx = Mask[i]; 3141 if (Idx < NumElems) 3142 Ops.push_back(DAG.getNode( 3143 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3144 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())))); 3145 else 3146 Ops.push_back(DAG.getNode( 3147 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3148 DAG.getConstant(Idx - NumElems, dl, 3149 TLI.getVectorIdxTy(DAG.getDataLayout())))); 3150 } 3151 3152 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 3153 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3154 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3155 Results.push_back(Tmp1); 3156 break; 3157 } 3158 case ISD::EXTRACT_ELEMENT: { 3159 EVT OpTy = Node->getOperand(0).getValueType(); 3160 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3161 // 1 -> Hi 3162 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3163 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3164 TLI.getShiftAmountTy( 3165 Node->getOperand(0).getValueType(), 3166 DAG.getDataLayout()))); 3167 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3168 } else { 3169 // 0 -> Lo 3170 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3171 Node->getOperand(0)); 3172 } 3173 Results.push_back(Tmp1); 3174 break; 3175 } 3176 case ISD::STACKSAVE: 3177 // Expand to CopyFromReg if the target set 3178 // StackPointerRegisterToSaveRestore. 3179 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3180 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3181 Node->getValueType(0))); 3182 Results.push_back(Results[0].getValue(1)); 3183 } else { 3184 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3185 Results.push_back(Node->getOperand(0)); 3186 } 3187 break; 3188 case ISD::STACKRESTORE: 3189 // Expand to CopyToReg if the target set 3190 // StackPointerRegisterToSaveRestore. 3191 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3192 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3193 Node->getOperand(1))); 3194 } else { 3195 Results.push_back(Node->getOperand(0)); 3196 } 3197 break; 3198 case ISD::GET_DYNAMIC_AREA_OFFSET: 3199 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3200 Results.push_back(Results[0].getValue(0)); 3201 break; 3202 case ISD::FCOPYSIGN: 3203 Results.push_back(ExpandFCOPYSIGN(Node)); 3204 break; 3205 case ISD::FNEG: 3206 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3207 Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0)); 3208 // TODO: If FNEG has fast-math-flags, propagate them to the FSUB. 3209 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, 3210 Node->getOperand(0)); 3211 Results.push_back(Tmp1); 3212 break; 3213 case ISD::FABS: 3214 Results.push_back(ExpandFABS(Node)); 3215 break; 3216 case ISD::SMIN: 3217 case ISD::SMAX: 3218 case ISD::UMIN: 3219 case ISD::UMAX: { 3220 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3221 ISD::CondCode Pred; 3222 switch (Node->getOpcode()) { 3223 default: llvm_unreachable("How did we get here?"); 3224 case ISD::SMAX: Pred = ISD::SETGT; break; 3225 case ISD::SMIN: Pred = ISD::SETLT; break; 3226 case ISD::UMAX: Pred = ISD::SETUGT; break; 3227 case ISD::UMIN: Pred = ISD::SETULT; break; 3228 } 3229 Tmp1 = Node->getOperand(0); 3230 Tmp2 = Node->getOperand(1); 3231 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3232 Results.push_back(Tmp1); 3233 break; 3234 } 3235 case ISD::FMINNUM: 3236 case ISD::FMAXNUM: { 3237 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) 3238 Results.push_back(Expanded); 3239 break; 3240 } 3241 case ISD::FSIN: 3242 case ISD::FCOS: { 3243 EVT VT = Node->getValueType(0); 3244 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3245 // fcos which share the same operand and both are used. 3246 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3247 isSinCosLibcallAvailable(Node, TLI)) 3248 && useSinCos(Node)) { 3249 SDVTList VTs = DAG.getVTList(VT, VT); 3250 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3251 if (Node->getOpcode() == ISD::FCOS) 3252 Tmp1 = Tmp1.getValue(1); 3253 Results.push_back(Tmp1); 3254 } 3255 break; 3256 } 3257 case ISD::FMAD: 3258 llvm_unreachable("Illegal fmad should never be formed"); 3259 3260 case ISD::FP16_TO_FP: 3261 if (Node->getValueType(0) != MVT::f32) { 3262 // We can extend to types bigger than f32 in two steps without changing 3263 // the result. Since "f16 -> f32" is much more commonly available, give 3264 // CodeGen the option of emitting that before resorting to a libcall. 3265 SDValue Res = 3266 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3267 Results.push_back( 3268 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3269 } 3270 break; 3271 case ISD::FP_TO_FP16: 3272 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3273 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3274 SDValue Op = Node->getOperand(0); 3275 MVT SVT = Op.getSimpleValueType(); 3276 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3277 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3278 // Under fastmath, we can expand this node into a fround followed by 3279 // a float-half conversion. 3280 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3281 DAG.getIntPtrConstant(0, dl)); 3282 Results.push_back( 3283 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3284 } 3285 } 3286 break; 3287 case ISD::ConstantFP: { 3288 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3289 // Check to see if this FP immediate is already legal. 3290 // If this is a legal constant, turn it into a TargetConstantFP node. 3291 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0), 3292 DAG.getMachineFunction().getFunction().hasOptSize())) 3293 Results.push_back(ExpandConstantFP(CFP, true)); 3294 break; 3295 } 3296 case ISD::Constant: { 3297 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3298 Results.push_back(ExpandConstant(CP)); 3299 break; 3300 } 3301 case ISD::FSUB: { 3302 EVT VT = Node->getValueType(0); 3303 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3304 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3305 const SDNodeFlags Flags = Node->getFlags(); 3306 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3307 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3308 Results.push_back(Tmp1); 3309 } 3310 break; 3311 } 3312 case ISD::SUB: { 3313 EVT VT = Node->getValueType(0); 3314 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3315 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3316 "Don't know how to expand this subtraction!"); 3317 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3318 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, 3319 VT)); 3320 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3321 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3322 break; 3323 } 3324 case ISD::UREM: 3325 case ISD::SREM: { 3326 EVT VT = Node->getValueType(0); 3327 bool isSigned = Node->getOpcode() == ISD::SREM; 3328 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 3329 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3330 Tmp2 = Node->getOperand(0); 3331 Tmp3 = Node->getOperand(1); 3332 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3333 SDVTList VTs = DAG.getVTList(VT, VT); 3334 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); 3335 Results.push_back(Tmp1); 3336 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { 3337 // X % Y -> X-X/Y*Y 3338 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); 3339 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); 3340 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); 3341 Results.push_back(Tmp1); 3342 } 3343 break; 3344 } 3345 case ISD::UDIV: 3346 case ISD::SDIV: { 3347 bool isSigned = Node->getOpcode() == ISD::SDIV; 3348 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3349 EVT VT = Node->getValueType(0); 3350 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3351 SDVTList VTs = DAG.getVTList(VT, VT); 3352 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3353 Node->getOperand(1)); 3354 Results.push_back(Tmp1); 3355 } 3356 break; 3357 } 3358 case ISD::MULHU: 3359 case ISD::MULHS: { 3360 unsigned ExpandOpcode = 3361 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3362 EVT VT = Node->getValueType(0); 3363 SDVTList VTs = DAG.getVTList(VT, VT); 3364 3365 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3366 Node->getOperand(1)); 3367 Results.push_back(Tmp1.getValue(1)); 3368 break; 3369 } 3370 case ISD::UMUL_LOHI: 3371 case ISD::SMUL_LOHI: { 3372 SDValue LHS = Node->getOperand(0); 3373 SDValue RHS = Node->getOperand(1); 3374 MVT VT = LHS.getSimpleValueType(); 3375 unsigned MULHOpcode = 3376 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3377 3378 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3379 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3380 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3381 break; 3382 } 3383 3384 SmallVector<SDValue, 4> Halves; 3385 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3386 assert(TLI.isTypeLegal(HalfType)); 3387 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves, 3388 HalfType, DAG, 3389 TargetLowering::MulExpansionKind::Always)) { 3390 for (unsigned i = 0; i < 2; ++i) { 3391 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3392 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3393 SDValue Shift = DAG.getConstant( 3394 HalfType.getScalarSizeInBits(), dl, 3395 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3396 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3397 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3398 } 3399 break; 3400 } 3401 break; 3402 } 3403 case ISD::MUL: { 3404 EVT VT = Node->getValueType(0); 3405 SDVTList VTs = DAG.getVTList(VT, VT); 3406 // See if multiply or divide can be lowered using two-result operations. 3407 // We just need the low half of the multiply; try both the signed 3408 // and unsigned forms. If the target supports both SMUL_LOHI and 3409 // UMUL_LOHI, form a preference by checking which forms of plain 3410 // MULH it supports. 3411 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3412 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3413 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3414 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3415 unsigned OpToUse = 0; 3416 if (HasSMUL_LOHI && !HasMULHS) { 3417 OpToUse = ISD::SMUL_LOHI; 3418 } else if (HasUMUL_LOHI && !HasMULHU) { 3419 OpToUse = ISD::UMUL_LOHI; 3420 } else if (HasSMUL_LOHI) { 3421 OpToUse = ISD::SMUL_LOHI; 3422 } else if (HasUMUL_LOHI) { 3423 OpToUse = ISD::UMUL_LOHI; 3424 } 3425 if (OpToUse) { 3426 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3427 Node->getOperand(1))); 3428 break; 3429 } 3430 3431 SDValue Lo, Hi; 3432 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3433 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3434 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3435 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3436 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3437 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3438 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3439 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3440 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3441 SDValue Shift = 3442 DAG.getConstant(HalfType.getSizeInBits(), dl, 3443 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3444 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3445 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3446 } 3447 break; 3448 } 3449 case ISD::FSHL: 3450 case ISD::FSHR: 3451 if (TLI.expandFunnelShift(Node, Tmp1, DAG)) 3452 Results.push_back(Tmp1); 3453 break; 3454 case ISD::ROTL: 3455 case ISD::ROTR: 3456 if (TLI.expandROT(Node, Tmp1, DAG)) 3457 Results.push_back(Tmp1); 3458 break; 3459 case ISD::SADDSAT: 3460 case ISD::UADDSAT: 3461 case ISD::SSUBSAT: 3462 case ISD::USUBSAT: 3463 Results.push_back(TLI.expandAddSubSat(Node, DAG)); 3464 break; 3465 case ISD::SMULFIX: 3466 case ISD::SMULFIXSAT: 3467 case ISD::UMULFIX: 3468 case ISD::UMULFIXSAT: 3469 Results.push_back(TLI.expandFixedPointMul(Node, DAG)); 3470 break; 3471 case ISD::SDIVFIX: 3472 case ISD::UDIVFIX: 3473 if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node), 3474 Node->getOperand(0), 3475 Node->getOperand(1), 3476 Node->getConstantOperandVal(2), 3477 DAG)) { 3478 Results.push_back(V); 3479 break; 3480 } 3481 // FIXME: We might want to retry here with a wider type if we fail, if that 3482 // type is legal. 3483 // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is 3484 // <= 128 (which is the case for all of the default Embedded-C types), 3485 // we will only get here with types and scales that we could always expand 3486 // if we were allowed to generate libcalls to division functions of illegal 3487 // type. But we cannot do that. 3488 llvm_unreachable("Cannot expand DIVFIX!"); 3489 case ISD::ADDCARRY: 3490 case ISD::SUBCARRY: { 3491 SDValue LHS = Node->getOperand(0); 3492 SDValue RHS = Node->getOperand(1); 3493 SDValue Carry = Node->getOperand(2); 3494 3495 bool IsAdd = Node->getOpcode() == ISD::ADDCARRY; 3496 3497 // Initial add of the 2 operands. 3498 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB; 3499 EVT VT = LHS.getValueType(); 3500 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS); 3501 3502 // Initial check for overflow. 3503 EVT CarryType = Node->getValueType(1); 3504 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3505 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 3506 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3507 3508 // Add of the sum and the carry. 3509 SDValue CarryExt = 3510 DAG.getZeroExtendInReg(DAG.getZExtOrTrunc(Carry, dl, VT), dl, MVT::i1); 3511 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt); 3512 3513 // Second check for overflow. If we are adding, we can only overflow if the 3514 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0. 3515 // If we are subtracting, we can only overflow if the initial sum is 0 and 3516 // the carry is set, resulting in a new sum of all 1s. 3517 SDValue Zero = DAG.getConstant(0, dl, VT); 3518 SDValue Overflow2 = 3519 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ) 3520 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ); 3521 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2, 3522 DAG.getZExtOrTrunc(Carry, dl, SetCCType)); 3523 3524 SDValue ResultCarry = 3525 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2); 3526 3527 Results.push_back(Sum2); 3528 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT)); 3529 break; 3530 } 3531 case ISD::SADDO: 3532 case ISD::SSUBO: { 3533 SDValue Result, Overflow; 3534 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 3535 Results.push_back(Result); 3536 Results.push_back(Overflow); 3537 break; 3538 } 3539 case ISD::UADDO: 3540 case ISD::USUBO: { 3541 SDValue Result, Overflow; 3542 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 3543 Results.push_back(Result); 3544 Results.push_back(Overflow); 3545 break; 3546 } 3547 case ISD::UMULO: 3548 case ISD::SMULO: { 3549 SDValue Result, Overflow; 3550 if (TLI.expandMULO(Node, Result, Overflow, DAG)) { 3551 Results.push_back(Result); 3552 Results.push_back(Overflow); 3553 } 3554 break; 3555 } 3556 case ISD::BUILD_PAIR: { 3557 EVT PairTy = Node->getValueType(0); 3558 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3559 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3560 Tmp2 = DAG.getNode( 3561 ISD::SHL, dl, PairTy, Tmp2, 3562 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3563 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3564 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3565 break; 3566 } 3567 case ISD::SELECT: 3568 Tmp1 = Node->getOperand(0); 3569 Tmp2 = Node->getOperand(1); 3570 Tmp3 = Node->getOperand(2); 3571 if (Tmp1.getOpcode() == ISD::SETCC) { 3572 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3573 Tmp2, Tmp3, 3574 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3575 } else { 3576 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3577 DAG.getConstant(0, dl, Tmp1.getValueType()), 3578 Tmp2, Tmp3, ISD::SETNE); 3579 } 3580 Tmp1->setFlags(Node->getFlags()); 3581 Results.push_back(Tmp1); 3582 break; 3583 case ISD::BR_JT: { 3584 SDValue Chain = Node->getOperand(0); 3585 SDValue Table = Node->getOperand(1); 3586 SDValue Index = Node->getOperand(2); 3587 3588 const DataLayout &TD = DAG.getDataLayout(); 3589 EVT PTy = TLI.getPointerTy(TD); 3590 3591 unsigned EntrySize = 3592 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3593 3594 // For power-of-two jumptable entry sizes convert multiplication to a shift. 3595 // This transformation needs to be done here since otherwise the MIPS 3596 // backend will end up emitting a three instruction multiply sequence 3597 // instead of a single shift and MSP430 will call a runtime function. 3598 if (llvm::isPowerOf2_32(EntrySize)) 3599 Index = DAG.getNode( 3600 ISD::SHL, dl, Index.getValueType(), Index, 3601 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); 3602 else 3603 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3604 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3605 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3606 Index, Table); 3607 3608 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3609 SDValue LD = DAG.getExtLoad( 3610 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3611 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3612 Addr = LD; 3613 if (TLI.isJumpTableRelative()) { 3614 // For PIC, the sequence is: 3615 // BRIND(load(Jumptable + index) + RelocBase) 3616 // RelocBase can be JumpTable, GOT or some sort of global base. 3617 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3618 TLI.getPICJumpTableRelocBase(Table, DAG)); 3619 } 3620 3621 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); 3622 Results.push_back(Tmp1); 3623 break; 3624 } 3625 case ISD::BRCOND: 3626 // Expand brcond's setcc into its constituent parts and create a BR_CC 3627 // Node. 3628 Tmp1 = Node->getOperand(0); 3629 Tmp2 = Node->getOperand(1); 3630 if (Tmp2.getOpcode() == ISD::SETCC) { 3631 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3632 Tmp1, Tmp2.getOperand(2), 3633 Tmp2.getOperand(0), Tmp2.getOperand(1), 3634 Node->getOperand(2)); 3635 } else { 3636 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 3637 if (Tmp2.isUndef() || 3638 (Tmp2.getOpcode() == ISD::AND && 3639 isa<ConstantSDNode>(Tmp2.getOperand(1)) && 3640 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) 3641 Tmp3 = Tmp2; 3642 else 3643 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3644 DAG.getConstant(1, dl, Tmp2.getValueType())); 3645 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3646 DAG.getCondCode(ISD::SETNE), Tmp3, 3647 DAG.getConstant(0, dl, Tmp3.getValueType()), 3648 Node->getOperand(2)); 3649 } 3650 Results.push_back(Tmp1); 3651 break; 3652 case ISD::SETCC: 3653 case ISD::STRICT_FSETCC: 3654 case ISD::STRICT_FSETCCS: { 3655 bool IsStrict = Node->getOpcode() != ISD::SETCC; 3656 bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS; 3657 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 3658 unsigned Offset = IsStrict ? 1 : 0; 3659 Tmp1 = Node->getOperand(0 + Offset); 3660 Tmp2 = Node->getOperand(1 + Offset); 3661 Tmp3 = Node->getOperand(2 + Offset); 3662 bool Legalized = 3663 LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, 3664 NeedInvert, dl, Chain, IsSignaling); 3665 3666 if (Legalized) { 3667 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3668 // condition code, create a new SETCC node. 3669 if (Tmp3.getNode()) 3670 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3671 Tmp1, Tmp2, Tmp3, Node->getFlags()); 3672 3673 // If we expanded the SETCC by inverting the condition code, then wrap 3674 // the existing SETCC in a NOT to restore the intended condition. 3675 if (NeedInvert) 3676 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3677 3678 Results.push_back(Tmp1); 3679 if (IsStrict) 3680 Results.push_back(Chain); 3681 3682 break; 3683 } 3684 3685 // FIXME: It seems Legalized is false iff CCCode is Legal. I don't 3686 // understand if this code is useful for strict nodes. 3687 assert(!IsStrict && "Don't know how to expand for strict nodes."); 3688 3689 // Otherwise, SETCC for the given comparison type must be completely 3690 // illegal; expand it into a SELECT_CC. 3691 EVT VT = Node->getValueType(0); 3692 int TrueValue; 3693 switch (TLI.getBooleanContents(Tmp1.getValueType())) { 3694 case TargetLowering::ZeroOrOneBooleanContent: 3695 case TargetLowering::UndefinedBooleanContent: 3696 TrueValue = 1; 3697 break; 3698 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3699 TrueValue = -1; 3700 break; 3701 } 3702 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3703 DAG.getConstant(TrueValue, dl, VT), 3704 DAG.getConstant(0, dl, VT), 3705 Tmp3); 3706 Tmp1->setFlags(Node->getFlags()); 3707 Results.push_back(Tmp1); 3708 break; 3709 } 3710 case ISD::SELECT_CC: { 3711 // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS 3712 Tmp1 = Node->getOperand(0); // LHS 3713 Tmp2 = Node->getOperand(1); // RHS 3714 Tmp3 = Node->getOperand(2); // True 3715 Tmp4 = Node->getOperand(3); // False 3716 EVT VT = Node->getValueType(0); 3717 SDValue Chain; 3718 SDValue CC = Node->getOperand(4); 3719 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3720 3721 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 3722 // If the condition code is legal, then we need to expand this 3723 // node using SETCC and SELECT. 3724 EVT CmpVT = Tmp1.getValueType(); 3725 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3726 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3727 "expanded."); 3728 EVT CCVT = getSetCCResultType(CmpVT); 3729 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags()); 3730 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3731 break; 3732 } 3733 3734 // SELECT_CC is legal, so the condition code must not be. 3735 bool Legalized = false; 3736 // Try to legalize by inverting the condition. This is for targets that 3737 // might support an ordered version of a condition, but not the unordered 3738 // version (or vice versa). 3739 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType()); 3740 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 3741 // Use the new condition code and swap true and false 3742 Legalized = true; 3743 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3744 Tmp1->setFlags(Node->getFlags()); 3745 } else { 3746 // If The inverse is not legal, then try to swap the arguments using 3747 // the inverse condition code. 3748 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3749 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 3750 // The swapped inverse condition is legal, so swap true and false, 3751 // lhs and rhs. 3752 Legalized = true; 3753 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3754 Tmp1->setFlags(Node->getFlags()); 3755 } 3756 } 3757 3758 if (!Legalized) { 3759 Legalized = LegalizeSetCCCondCode(getSetCCResultType(Tmp1.getValueType()), 3760 Tmp1, Tmp2, CC, NeedInvert, dl, Chain); 3761 3762 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3763 3764 // If we expanded the SETCC by inverting the condition code, then swap 3765 // the True/False operands to match. 3766 if (NeedInvert) 3767 std::swap(Tmp3, Tmp4); 3768 3769 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3770 // condition code, create a new SELECT_CC node. 3771 if (CC.getNode()) { 3772 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3773 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3774 } else { 3775 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3776 CC = DAG.getCondCode(ISD::SETNE); 3777 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3778 Tmp2, Tmp3, Tmp4, CC); 3779 } 3780 Tmp1->setFlags(Node->getFlags()); 3781 } 3782 Results.push_back(Tmp1); 3783 break; 3784 } 3785 case ISD::BR_CC: { 3786 // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS 3787 SDValue Chain; 3788 Tmp1 = Node->getOperand(0); // Chain 3789 Tmp2 = Node->getOperand(2); // LHS 3790 Tmp3 = Node->getOperand(3); // RHS 3791 Tmp4 = Node->getOperand(1); // CC 3792 3793 bool Legalized = 3794 LegalizeSetCCCondCode(getSetCCResultType(Tmp2.getValueType()), Tmp2, 3795 Tmp3, Tmp4, NeedInvert, dl, Chain); 3796 (void)Legalized; 3797 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3798 3799 assert(!NeedInvert && "Don't know how to invert BR_CC!"); 3800 3801 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3802 // node. 3803 if (Tmp4.getNode()) { 3804 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3805 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3806 } else { 3807 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3808 Tmp4 = DAG.getCondCode(ISD::SETNE); 3809 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3810 Tmp2, Tmp3, Node->getOperand(4)); 3811 } 3812 Results.push_back(Tmp1); 3813 break; 3814 } 3815 case ISD::BUILD_VECTOR: 3816 Results.push_back(ExpandBUILD_VECTOR(Node)); 3817 break; 3818 case ISD::SPLAT_VECTOR: 3819 Results.push_back(ExpandSPLAT_VECTOR(Node)); 3820 break; 3821 case ISD::SRA: 3822 case ISD::SRL: 3823 case ISD::SHL: { 3824 // Scalarize vector SRA/SRL/SHL. 3825 EVT VT = Node->getValueType(0); 3826 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3827 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3828 unsigned NumElem = VT.getVectorNumElements(); 3829 3830 SmallVector<SDValue, 8> Scalars; 3831 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3832 SDValue Ex = DAG.getNode( 3833 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0), 3834 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3835 SDValue Sh = DAG.getNode( 3836 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1), 3837 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3838 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3839 VT.getScalarType(), Ex, Sh)); 3840 } 3841 3842 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 3843 Results.push_back(Result); 3844 break; 3845 } 3846 case ISD::VECREDUCE_FADD: 3847 case ISD::VECREDUCE_FMUL: 3848 case ISD::VECREDUCE_ADD: 3849 case ISD::VECREDUCE_MUL: 3850 case ISD::VECREDUCE_AND: 3851 case ISD::VECREDUCE_OR: 3852 case ISD::VECREDUCE_XOR: 3853 case ISD::VECREDUCE_SMAX: 3854 case ISD::VECREDUCE_SMIN: 3855 case ISD::VECREDUCE_UMAX: 3856 case ISD::VECREDUCE_UMIN: 3857 case ISD::VECREDUCE_FMAX: 3858 case ISD::VECREDUCE_FMIN: 3859 Results.push_back(TLI.expandVecReduce(Node, DAG)); 3860 break; 3861 case ISD::GLOBAL_OFFSET_TABLE: 3862 case ISD::GlobalAddress: 3863 case ISD::GlobalTLSAddress: 3864 case ISD::ExternalSymbol: 3865 case ISD::ConstantPool: 3866 case ISD::JumpTable: 3867 case ISD::INTRINSIC_W_CHAIN: 3868 case ISD::INTRINSIC_WO_CHAIN: 3869 case ISD::INTRINSIC_VOID: 3870 // FIXME: Custom lowering for these operations shouldn't return null! 3871 // Return true so that we don't call ConvertNodeToLibcall which also won't 3872 // do anything. 3873 return true; 3874 } 3875 3876 if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) { 3877 // FIXME: We were asked to expand a strict floating-point operation, 3878 // but there is currently no expansion implemented that would preserve 3879 // the "strict" properties. For now, we just fall back to the non-strict 3880 // version if that is legal on the target. The actual mutation of the 3881 // operation will happen in SelectionDAGISel::DoInstructionSelection. 3882 switch (Node->getOpcode()) { 3883 default: 3884 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3885 Node->getValueType(0)) 3886 == TargetLowering::Legal) 3887 return true; 3888 break; 3889 case ISD::STRICT_LRINT: 3890 case ISD::STRICT_LLRINT: 3891 case ISD::STRICT_LROUND: 3892 case ISD::STRICT_LLROUND: 3893 // These are registered by the operand type instead of the value 3894 // type. Reflect that here. 3895 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3896 Node->getOperand(1).getValueType()) 3897 == TargetLowering::Legal) 3898 return true; 3899 break; 3900 } 3901 } 3902 3903 // Replace the original node with the legalized result. 3904 if (Results.empty()) { 3905 LLVM_DEBUG(dbgs() << "Cannot expand node\n"); 3906 return false; 3907 } 3908 3909 LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); 3910 ReplaceNode(Node, Results.data()); 3911 return true; 3912 } 3913 3914 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 3915 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); 3916 SmallVector<SDValue, 8> Results; 3917 SDLoc dl(Node); 3918 // FIXME: Check flags on the node to see if we can use a finite call. 3919 bool CanUseFiniteLibCall = TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath; 3920 unsigned Opc = Node->getOpcode(); 3921 switch (Opc) { 3922 case ISD::ATOMIC_FENCE: { 3923 // If the target didn't lower this, lower it to '__sync_synchronize()' call 3924 // FIXME: handle "fence singlethread" more efficiently. 3925 TargetLowering::ArgListTy Args; 3926 3927 TargetLowering::CallLoweringInfo CLI(DAG); 3928 CLI.setDebugLoc(dl) 3929 .setChain(Node->getOperand(0)) 3930 .setLibCallee( 3931 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3932 DAG.getExternalSymbol("__sync_synchronize", 3933 TLI.getPointerTy(DAG.getDataLayout())), 3934 std::move(Args)); 3935 3936 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3937 3938 Results.push_back(CallResult.second); 3939 break; 3940 } 3941 // By default, atomic intrinsics are marked Legal and lowered. Targets 3942 // which don't support them directly, however, may want libcalls, in which 3943 // case they mark them Expand, and we get here. 3944 case ISD::ATOMIC_SWAP: 3945 case ISD::ATOMIC_LOAD_ADD: 3946 case ISD::ATOMIC_LOAD_SUB: 3947 case ISD::ATOMIC_LOAD_AND: 3948 case ISD::ATOMIC_LOAD_CLR: 3949 case ISD::ATOMIC_LOAD_OR: 3950 case ISD::ATOMIC_LOAD_XOR: 3951 case ISD::ATOMIC_LOAD_NAND: 3952 case ISD::ATOMIC_LOAD_MIN: 3953 case ISD::ATOMIC_LOAD_MAX: 3954 case ISD::ATOMIC_LOAD_UMIN: 3955 case ISD::ATOMIC_LOAD_UMAX: 3956 case ISD::ATOMIC_CMP_SWAP: { 3957 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 3958 RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT); 3959 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!"); 3960 3961 EVT RetVT = Node->getValueType(0); 3962 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); 3963 TargetLowering::MakeLibCallOptions CallOptions; 3964 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 3965 Ops, CallOptions, 3966 SDLoc(Node), 3967 Node->getOperand(0)); 3968 Results.push_back(Tmp.first); 3969 Results.push_back(Tmp.second); 3970 break; 3971 } 3972 case ISD::TRAP: { 3973 // If this operation is not supported, lower it to 'abort()' call 3974 TargetLowering::ArgListTy Args; 3975 TargetLowering::CallLoweringInfo CLI(DAG); 3976 CLI.setDebugLoc(dl) 3977 .setChain(Node->getOperand(0)) 3978 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3979 DAG.getExternalSymbol( 3980 "abort", TLI.getPointerTy(DAG.getDataLayout())), 3981 std::move(Args)); 3982 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3983 3984 Results.push_back(CallResult.second); 3985 break; 3986 } 3987 case ISD::FMINNUM: 3988 case ISD::STRICT_FMINNUM: 3989 ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 3990 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 3991 RTLIB::FMIN_PPCF128, Results); 3992 break; 3993 case ISD::FMAXNUM: 3994 case ISD::STRICT_FMAXNUM: 3995 ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 3996 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 3997 RTLIB::FMAX_PPCF128, Results); 3998 break; 3999 case ISD::FSQRT: 4000 case ISD::STRICT_FSQRT: 4001 ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 4002 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 4003 RTLIB::SQRT_PPCF128, Results); 4004 break; 4005 case ISD::FCBRT: 4006 ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, 4007 RTLIB::CBRT_F80, RTLIB::CBRT_F128, 4008 RTLIB::CBRT_PPCF128, Results); 4009 break; 4010 case ISD::FSIN: 4011 case ISD::STRICT_FSIN: 4012 ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 4013 RTLIB::SIN_F80, RTLIB::SIN_F128, 4014 RTLIB::SIN_PPCF128, Results); 4015 break; 4016 case ISD::FCOS: 4017 case ISD::STRICT_FCOS: 4018 ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 4019 RTLIB::COS_F80, RTLIB::COS_F128, 4020 RTLIB::COS_PPCF128, Results); 4021 break; 4022 case ISD::FSINCOS: 4023 // Expand into sincos libcall. 4024 ExpandSinCosLibCall(Node, Results); 4025 break; 4026 case ISD::FLOG: 4027 case ISD::STRICT_FLOG: 4028 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log_finite)) 4029 ExpandFPLibCall(Node, RTLIB::LOG_FINITE_F32, 4030 RTLIB::LOG_FINITE_F64, 4031 RTLIB::LOG_FINITE_F80, 4032 RTLIB::LOG_FINITE_F128, 4033 RTLIB::LOG_FINITE_PPCF128, Results); 4034 else 4035 ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, 4036 RTLIB::LOG_F80, RTLIB::LOG_F128, 4037 RTLIB::LOG_PPCF128, Results); 4038 break; 4039 case ISD::FLOG2: 4040 case ISD::STRICT_FLOG2: 4041 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log2_finite)) 4042 ExpandFPLibCall(Node, RTLIB::LOG2_FINITE_F32, 4043 RTLIB::LOG2_FINITE_F64, 4044 RTLIB::LOG2_FINITE_F80, 4045 RTLIB::LOG2_FINITE_F128, 4046 RTLIB::LOG2_FINITE_PPCF128, Results); 4047 else 4048 ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 4049 RTLIB::LOG2_F80, RTLIB::LOG2_F128, 4050 RTLIB::LOG2_PPCF128, Results); 4051 break; 4052 case ISD::FLOG10: 4053 case ISD::STRICT_FLOG10: 4054 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log10_finite)) 4055 ExpandFPLibCall(Node, RTLIB::LOG10_FINITE_F32, 4056 RTLIB::LOG10_FINITE_F64, 4057 RTLIB::LOG10_FINITE_F80, 4058 RTLIB::LOG10_FINITE_F128, 4059 RTLIB::LOG10_FINITE_PPCF128, Results); 4060 else 4061 ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 4062 RTLIB::LOG10_F80, RTLIB::LOG10_F128, 4063 RTLIB::LOG10_PPCF128, Results); 4064 break; 4065 case ISD::FEXP: 4066 case ISD::STRICT_FEXP: 4067 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp_finite)) 4068 ExpandFPLibCall(Node, RTLIB::EXP_FINITE_F32, 4069 RTLIB::EXP_FINITE_F64, 4070 RTLIB::EXP_FINITE_F80, 4071 RTLIB::EXP_FINITE_F128, 4072 RTLIB::EXP_FINITE_PPCF128, Results); 4073 else 4074 ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, 4075 RTLIB::EXP_F80, RTLIB::EXP_F128, 4076 RTLIB::EXP_PPCF128, Results); 4077 break; 4078 case ISD::FEXP2: 4079 case ISD::STRICT_FEXP2: 4080 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp2_finite)) 4081 ExpandFPLibCall(Node, RTLIB::EXP2_FINITE_F32, 4082 RTLIB::EXP2_FINITE_F64, 4083 RTLIB::EXP2_FINITE_F80, 4084 RTLIB::EXP2_FINITE_F128, 4085 RTLIB::EXP2_FINITE_PPCF128, Results); 4086 else 4087 ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 4088 RTLIB::EXP2_F80, RTLIB::EXP2_F128, 4089 RTLIB::EXP2_PPCF128, Results); 4090 break; 4091 case ISD::FTRUNC: 4092 case ISD::STRICT_FTRUNC: 4093 ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 4094 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 4095 RTLIB::TRUNC_PPCF128, Results); 4096 break; 4097 case ISD::FFLOOR: 4098 case ISD::STRICT_FFLOOR: 4099 ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 4100 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 4101 RTLIB::FLOOR_PPCF128, Results); 4102 break; 4103 case ISD::FCEIL: 4104 case ISD::STRICT_FCEIL: 4105 ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 4106 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 4107 RTLIB::CEIL_PPCF128, Results); 4108 break; 4109 case ISD::FRINT: 4110 case ISD::STRICT_FRINT: 4111 ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 4112 RTLIB::RINT_F80, RTLIB::RINT_F128, 4113 RTLIB::RINT_PPCF128, Results); 4114 break; 4115 case ISD::FNEARBYINT: 4116 case ISD::STRICT_FNEARBYINT: 4117 ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 4118 RTLIB::NEARBYINT_F64, 4119 RTLIB::NEARBYINT_F80, 4120 RTLIB::NEARBYINT_F128, 4121 RTLIB::NEARBYINT_PPCF128, Results); 4122 break; 4123 case ISD::FROUND: 4124 case ISD::STRICT_FROUND: 4125 ExpandFPLibCall(Node, RTLIB::ROUND_F32, 4126 RTLIB::ROUND_F64, 4127 RTLIB::ROUND_F80, 4128 RTLIB::ROUND_F128, 4129 RTLIB::ROUND_PPCF128, Results); 4130 break; 4131 case ISD::FPOWI: 4132 case ISD::STRICT_FPOWI: { 4133 RTLIB::Libcall LC; 4134 switch (Node->getSimpleValueType(0).SimpleTy) { 4135 default: llvm_unreachable("Unexpected request for libcall!"); 4136 case MVT::f32: LC = RTLIB::POWI_F32; break; 4137 case MVT::f64: LC = RTLIB::POWI_F64; break; 4138 case MVT::f80: LC = RTLIB::POWI_F80; break; 4139 case MVT::f128: LC = RTLIB::POWI_F128; break; 4140 case MVT::ppcf128: LC = RTLIB::POWI_PPCF128; break; 4141 } 4142 if (!TLI.getLibcallName(LC)) { 4143 // Some targets don't have a powi libcall; use pow instead. 4144 SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), 4145 Node->getValueType(0), 4146 Node->getOperand(1)); 4147 Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node), 4148 Node->getValueType(0), Node->getOperand(0), 4149 Exponent)); 4150 break; 4151 } 4152 ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 4153 RTLIB::POWI_F80, RTLIB::POWI_F128, 4154 RTLIB::POWI_PPCF128, Results); 4155 break; 4156 } 4157 case ISD::FPOW: 4158 case ISD::STRICT_FPOW: 4159 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_pow_finite)) 4160 ExpandFPLibCall(Node, RTLIB::POW_FINITE_F32, 4161 RTLIB::POW_FINITE_F64, 4162 RTLIB::POW_FINITE_F80, 4163 RTLIB::POW_FINITE_F128, 4164 RTLIB::POW_FINITE_PPCF128, Results); 4165 else 4166 ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, 4167 RTLIB::POW_F80, RTLIB::POW_F128, 4168 RTLIB::POW_PPCF128, Results); 4169 break; 4170 case ISD::LROUND: 4171 case ISD::STRICT_LROUND: 4172 ExpandArgFPLibCall(Node, RTLIB::LROUND_F32, 4173 RTLIB::LROUND_F64, RTLIB::LROUND_F80, 4174 RTLIB::LROUND_F128, 4175 RTLIB::LROUND_PPCF128, Results); 4176 break; 4177 case ISD::LLROUND: 4178 case ISD::STRICT_LLROUND: 4179 ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32, 4180 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, 4181 RTLIB::LLROUND_F128, 4182 RTLIB::LLROUND_PPCF128, Results); 4183 break; 4184 case ISD::LRINT: 4185 case ISD::STRICT_LRINT: 4186 ExpandArgFPLibCall(Node, RTLIB::LRINT_F32, 4187 RTLIB::LRINT_F64, RTLIB::LRINT_F80, 4188 RTLIB::LRINT_F128, 4189 RTLIB::LRINT_PPCF128, Results); 4190 break; 4191 case ISD::LLRINT: 4192 case ISD::STRICT_LLRINT: 4193 ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32, 4194 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80, 4195 RTLIB::LLRINT_F128, 4196 RTLIB::LLRINT_PPCF128, Results); 4197 break; 4198 case ISD::FDIV: 4199 case ISD::STRICT_FDIV: 4200 ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 4201 RTLIB::DIV_F80, RTLIB::DIV_F128, 4202 RTLIB::DIV_PPCF128, Results); 4203 break; 4204 case ISD::FREM: 4205 case ISD::STRICT_FREM: 4206 ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 4207 RTLIB::REM_F80, RTLIB::REM_F128, 4208 RTLIB::REM_PPCF128, Results); 4209 break; 4210 case ISD::FMA: 4211 case ISD::STRICT_FMA: 4212 ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 4213 RTLIB::FMA_F80, RTLIB::FMA_F128, 4214 RTLIB::FMA_PPCF128, Results); 4215 break; 4216 case ISD::FADD: 4217 case ISD::STRICT_FADD: 4218 ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 4219 RTLIB::ADD_F80, RTLIB::ADD_F128, 4220 RTLIB::ADD_PPCF128, Results); 4221 break; 4222 case ISD::FMUL: 4223 case ISD::STRICT_FMUL: 4224 ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 4225 RTLIB::MUL_F80, RTLIB::MUL_F128, 4226 RTLIB::MUL_PPCF128, Results); 4227 break; 4228 case ISD::FP16_TO_FP: 4229 if (Node->getValueType(0) == MVT::f32) { 4230 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 4231 } 4232 break; 4233 case ISD::FP_TO_FP16: { 4234 RTLIB::Libcall LC = 4235 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 4236 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 4237 Results.push_back(ExpandLibCall(LC, Node, false)); 4238 break; 4239 } 4240 case ISD::FSUB: 4241 case ISD::STRICT_FSUB: 4242 ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4243 RTLIB::SUB_F80, RTLIB::SUB_F128, 4244 RTLIB::SUB_PPCF128, Results); 4245 break; 4246 case ISD::SREM: 4247 Results.push_back(ExpandIntLibCall(Node, true, 4248 RTLIB::SREM_I8, 4249 RTLIB::SREM_I16, RTLIB::SREM_I32, 4250 RTLIB::SREM_I64, RTLIB::SREM_I128)); 4251 break; 4252 case ISD::UREM: 4253 Results.push_back(ExpandIntLibCall(Node, false, 4254 RTLIB::UREM_I8, 4255 RTLIB::UREM_I16, RTLIB::UREM_I32, 4256 RTLIB::UREM_I64, RTLIB::UREM_I128)); 4257 break; 4258 case ISD::SDIV: 4259 Results.push_back(ExpandIntLibCall(Node, true, 4260 RTLIB::SDIV_I8, 4261 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4262 RTLIB::SDIV_I64, RTLIB::SDIV_I128)); 4263 break; 4264 case ISD::UDIV: 4265 Results.push_back(ExpandIntLibCall(Node, false, 4266 RTLIB::UDIV_I8, 4267 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4268 RTLIB::UDIV_I64, RTLIB::UDIV_I128)); 4269 break; 4270 case ISD::SDIVREM: 4271 case ISD::UDIVREM: 4272 // Expand into divrem libcall 4273 ExpandDivRemLibCall(Node, Results); 4274 break; 4275 case ISD::MUL: 4276 Results.push_back(ExpandIntLibCall(Node, false, 4277 RTLIB::MUL_I8, 4278 RTLIB::MUL_I16, RTLIB::MUL_I32, 4279 RTLIB::MUL_I64, RTLIB::MUL_I128)); 4280 break; 4281 case ISD::CTLZ_ZERO_UNDEF: 4282 switch (Node->getSimpleValueType(0).SimpleTy) { 4283 default: 4284 llvm_unreachable("LibCall explicitly requested, but not available"); 4285 case MVT::i32: 4286 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false)); 4287 break; 4288 case MVT::i64: 4289 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false)); 4290 break; 4291 case MVT::i128: 4292 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false)); 4293 break; 4294 } 4295 break; 4296 } 4297 4298 // Replace the original node with the legalized result. 4299 if (!Results.empty()) { 4300 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); 4301 ReplaceNode(Node, Results.data()); 4302 } else 4303 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); 4304 } 4305 4306 // Determine the vector type to use in place of an original scalar element when 4307 // promoting equally sized vectors. 4308 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4309 MVT EltVT, MVT NewEltVT) { 4310 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4311 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4312 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4313 return MidVT; 4314 } 4315 4316 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4317 LLVM_DEBUG(dbgs() << "Trying to promote node\n"); 4318 SmallVector<SDValue, 8> Results; 4319 MVT OVT = Node->getSimpleValueType(0); 4320 if (Node->getOpcode() == ISD::UINT_TO_FP || 4321 Node->getOpcode() == ISD::SINT_TO_FP || 4322 Node->getOpcode() == ISD::SETCC || 4323 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4324 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4325 OVT = Node->getOperand(0).getSimpleValueType(); 4326 } 4327 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP || 4328 Node->getOpcode() == ISD::STRICT_SINT_TO_FP) 4329 OVT = Node->getOperand(1).getSimpleValueType(); 4330 if (Node->getOpcode() == ISD::BR_CC) 4331 OVT = Node->getOperand(2).getSimpleValueType(); 4332 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4333 SDLoc dl(Node); 4334 SDValue Tmp1, Tmp2, Tmp3; 4335 switch (Node->getOpcode()) { 4336 case ISD::CTTZ: 4337 case ISD::CTTZ_ZERO_UNDEF: 4338 case ISD::CTLZ: 4339 case ISD::CTLZ_ZERO_UNDEF: 4340 case ISD::CTPOP: 4341 // Zero extend the argument. 4342 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4343 if (Node->getOpcode() == ISD::CTTZ) { 4344 // The count is the same in the promoted type except if the original 4345 // value was zero. This can be handled by setting the bit just off 4346 // the top of the original type. 4347 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4348 OVT.getSizeInBits()); 4349 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4350 DAG.getConstant(TopBit, dl, NVT)); 4351 } 4352 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4353 // already the correct result. 4354 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4355 if (Node->getOpcode() == ISD::CTLZ || 4356 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4357 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4358 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4359 DAG.getConstant(NVT.getSizeInBits() - 4360 OVT.getSizeInBits(), dl, NVT)); 4361 } 4362 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4363 break; 4364 case ISD::BITREVERSE: 4365 case ISD::BSWAP: { 4366 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4367 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4368 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4369 Tmp1 = DAG.getNode( 4370 ISD::SRL, dl, NVT, Tmp1, 4371 DAG.getConstant(DiffBits, dl, 4372 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4373 4374 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4375 break; 4376 } 4377 case ISD::FP_TO_UINT: 4378 case ISD::STRICT_FP_TO_UINT: 4379 case ISD::FP_TO_SINT: 4380 case ISD::STRICT_FP_TO_SINT: 4381 PromoteLegalFP_TO_INT(Node, dl, Results); 4382 break; 4383 case ISD::UINT_TO_FP: 4384 case ISD::STRICT_UINT_TO_FP: 4385 case ISD::SINT_TO_FP: 4386 case ISD::STRICT_SINT_TO_FP: 4387 PromoteLegalINT_TO_FP(Node, dl, Results); 4388 break; 4389 case ISD::VAARG: { 4390 SDValue Chain = Node->getOperand(0); // Get the chain. 4391 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4392 4393 unsigned TruncOp; 4394 if (OVT.isVector()) { 4395 TruncOp = ISD::BITCAST; 4396 } else { 4397 assert(OVT.isInteger() 4398 && "VAARG promotion is supported only for vectors or integer types"); 4399 TruncOp = ISD::TRUNCATE; 4400 } 4401 4402 // Perform the larger operation, then convert back 4403 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4404 Node->getConstantOperandVal(3)); 4405 Chain = Tmp1.getValue(1); 4406 4407 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4408 4409 // Modified the chain result - switch anything that used the old chain to 4410 // use the new one. 4411 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4412 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4413 if (UpdatedNodes) { 4414 UpdatedNodes->insert(Tmp2.getNode()); 4415 UpdatedNodes->insert(Chain.getNode()); 4416 } 4417 ReplacedNode(Node); 4418 break; 4419 } 4420 case ISD::MUL: 4421 case ISD::SDIV: 4422 case ISD::SREM: 4423 case ISD::UDIV: 4424 case ISD::UREM: 4425 case ISD::AND: 4426 case ISD::OR: 4427 case ISD::XOR: { 4428 unsigned ExtOp, TruncOp; 4429 if (OVT.isVector()) { 4430 ExtOp = ISD::BITCAST; 4431 TruncOp = ISD::BITCAST; 4432 } else { 4433 assert(OVT.isInteger() && "Cannot promote logic operation"); 4434 4435 switch (Node->getOpcode()) { 4436 default: 4437 ExtOp = ISD::ANY_EXTEND; 4438 break; 4439 case ISD::SDIV: 4440 case ISD::SREM: 4441 ExtOp = ISD::SIGN_EXTEND; 4442 break; 4443 case ISD::UDIV: 4444 case ISD::UREM: 4445 ExtOp = ISD::ZERO_EXTEND; 4446 break; 4447 } 4448 TruncOp = ISD::TRUNCATE; 4449 } 4450 // Promote each of the values to the new type. 4451 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4452 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4453 // Perform the larger operation, then convert back 4454 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4455 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4456 break; 4457 } 4458 case ISD::UMUL_LOHI: 4459 case ISD::SMUL_LOHI: { 4460 // Promote to a multiply in a wider integer type. 4461 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 4462 : ISD::SIGN_EXTEND; 4463 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4464 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4465 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 4466 4467 auto &DL = DAG.getDataLayout(); 4468 unsigned OriginalSize = OVT.getScalarSizeInBits(); 4469 Tmp2 = DAG.getNode( 4470 ISD::SRL, dl, NVT, Tmp1, 4471 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 4472 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4473 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 4474 break; 4475 } 4476 case ISD::SELECT: { 4477 unsigned ExtOp, TruncOp; 4478 if (Node->getValueType(0).isVector() || 4479 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4480 ExtOp = ISD::BITCAST; 4481 TruncOp = ISD::BITCAST; 4482 } else if (Node->getValueType(0).isInteger()) { 4483 ExtOp = ISD::ANY_EXTEND; 4484 TruncOp = ISD::TRUNCATE; 4485 } else { 4486 ExtOp = ISD::FP_EXTEND; 4487 TruncOp = ISD::FP_ROUND; 4488 } 4489 Tmp1 = Node->getOperand(0); 4490 // Promote each of the values to the new type. 4491 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4492 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4493 // Perform the larger operation, then round down. 4494 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4495 Tmp1->setFlags(Node->getFlags()); 4496 if (TruncOp != ISD::FP_ROUND) 4497 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4498 else 4499 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4500 DAG.getIntPtrConstant(0, dl)); 4501 Results.push_back(Tmp1); 4502 break; 4503 } 4504 case ISD::VECTOR_SHUFFLE: { 4505 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4506 4507 // Cast the two input vectors. 4508 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4509 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4510 4511 // Convert the shuffle mask to the right # elements. 4512 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4513 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4514 Results.push_back(Tmp1); 4515 break; 4516 } 4517 case ISD::SETCC: { 4518 unsigned ExtOp = ISD::FP_EXTEND; 4519 if (NVT.isInteger()) { 4520 ISD::CondCode CCCode = 4521 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4522 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4523 } 4524 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4525 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4526 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, 4527 Tmp2, Node->getOperand(2), Node->getFlags())); 4528 break; 4529 } 4530 case ISD::BR_CC: { 4531 unsigned ExtOp = ISD::FP_EXTEND; 4532 if (NVT.isInteger()) { 4533 ISD::CondCode CCCode = 4534 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4535 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4536 } 4537 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4538 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4539 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4540 Node->getOperand(0), Node->getOperand(1), 4541 Tmp1, Tmp2, Node->getOperand(4))); 4542 break; 4543 } 4544 case ISD::FADD: 4545 case ISD::FSUB: 4546 case ISD::FMUL: 4547 case ISD::FDIV: 4548 case ISD::FREM: 4549 case ISD::FMINNUM: 4550 case ISD::FMAXNUM: 4551 case ISD::FPOW: 4552 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4553 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4554 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4555 Node->getFlags()); 4556 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4557 Tmp3, DAG.getIntPtrConstant(0, dl))); 4558 break; 4559 case ISD::STRICT_FREM: 4560 case ISD::STRICT_FPOW: 4561 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4562 {Node->getOperand(0), Node->getOperand(1)}); 4563 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4564 {Node->getOperand(0), Node->getOperand(2)}); 4565 Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 4566 Tmp2.getValue(1)); 4567 Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4568 {Tmp3, Tmp1, Tmp2}); 4569 Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4570 {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)}); 4571 Results.push_back(Tmp1); 4572 Results.push_back(Tmp1.getValue(1)); 4573 break; 4574 case ISD::FMA: 4575 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4576 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4577 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4578 Results.push_back( 4579 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4580 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4581 DAG.getIntPtrConstant(0, dl))); 4582 break; 4583 case ISD::FCOPYSIGN: 4584 case ISD::FPOWI: { 4585 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4586 Tmp2 = Node->getOperand(1); 4587 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4588 4589 // fcopysign doesn't change anything but the sign bit, so 4590 // (fp_round (fcopysign (fpext a), b)) 4591 // is as precise as 4592 // (fp_round (fpext a)) 4593 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4594 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4595 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4596 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4597 break; 4598 } 4599 case ISD::FFLOOR: 4600 case ISD::FCEIL: 4601 case ISD::FRINT: 4602 case ISD::FNEARBYINT: 4603 case ISD::FROUND: 4604 case ISD::FTRUNC: 4605 case ISD::FNEG: 4606 case ISD::FSQRT: 4607 case ISD::FSIN: 4608 case ISD::FCOS: 4609 case ISD::FLOG: 4610 case ISD::FLOG2: 4611 case ISD::FLOG10: 4612 case ISD::FABS: 4613 case ISD::FEXP: 4614 case ISD::FEXP2: 4615 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4616 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4617 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4618 Tmp2, DAG.getIntPtrConstant(0, dl))); 4619 break; 4620 case ISD::STRICT_FFLOOR: 4621 case ISD::STRICT_FCEIL: 4622 case ISD::STRICT_FSIN: 4623 case ISD::STRICT_FCOS: 4624 case ISD::STRICT_FLOG: 4625 case ISD::STRICT_FLOG10: 4626 case ISD::STRICT_FEXP: 4627 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4628 {Node->getOperand(0), Node->getOperand(1)}); 4629 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4630 {Tmp1.getValue(1), Tmp1}); 4631 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4632 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 4633 Results.push_back(Tmp3); 4634 Results.push_back(Tmp3.getValue(1)); 4635 break; 4636 case ISD::BUILD_VECTOR: { 4637 MVT EltVT = OVT.getVectorElementType(); 4638 MVT NewEltVT = NVT.getVectorElementType(); 4639 4640 // Handle bitcasts to a different vector type with the same total bit size 4641 // 4642 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4643 // => 4644 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4645 4646 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4647 "Invalid promote type for build_vector"); 4648 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4649 4650 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4651 4652 SmallVector<SDValue, 8> NewOps; 4653 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4654 SDValue Op = Node->getOperand(I); 4655 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4656 } 4657 4658 SDLoc SL(Node); 4659 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4660 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4661 Results.push_back(CvtVec); 4662 break; 4663 } 4664 case ISD::EXTRACT_VECTOR_ELT: { 4665 MVT EltVT = OVT.getVectorElementType(); 4666 MVT NewEltVT = NVT.getVectorElementType(); 4667 4668 // Handle bitcasts to a different vector type with the same total bit size. 4669 // 4670 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4671 // => 4672 // v4i32:castx = bitcast x:v2i64 4673 // 4674 // i64 = bitcast 4675 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4676 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4677 // 4678 4679 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4680 "Invalid promote type for extract_vector_elt"); 4681 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4682 4683 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4684 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4685 4686 SDValue Idx = Node->getOperand(1); 4687 EVT IdxVT = Idx.getValueType(); 4688 SDLoc SL(Node); 4689 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4690 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4691 4692 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4693 4694 SmallVector<SDValue, 8> NewOps; 4695 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4696 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4697 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4698 4699 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4700 CastVec, TmpIdx); 4701 NewOps.push_back(Elt); 4702 } 4703 4704 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 4705 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4706 break; 4707 } 4708 case ISD::INSERT_VECTOR_ELT: { 4709 MVT EltVT = OVT.getVectorElementType(); 4710 MVT NewEltVT = NVT.getVectorElementType(); 4711 4712 // Handle bitcasts to a different vector type with the same total bit size 4713 // 4714 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4715 // => 4716 // v4i32:castx = bitcast x:v2i64 4717 // v2i32:casty = bitcast y:i64 4718 // 4719 // v2i64 = bitcast 4720 // (v4i32 insert_vector_elt 4721 // (v4i32 insert_vector_elt v4i32:castx, 4722 // (extract_vector_elt casty, 0), 2 * z), 4723 // (extract_vector_elt casty, 1), (2 * z + 1)) 4724 4725 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4726 "Invalid promote type for insert_vector_elt"); 4727 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4728 4729 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4730 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4731 4732 SDValue Val = Node->getOperand(1); 4733 SDValue Idx = Node->getOperand(2); 4734 EVT IdxVT = Idx.getValueType(); 4735 SDLoc SL(Node); 4736 4737 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 4738 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4739 4740 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4741 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4742 4743 SDValue NewVec = CastVec; 4744 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4745 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4746 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4747 4748 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4749 CastVal, IdxOffset); 4750 4751 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 4752 NewVec, Elt, InEltIdx); 4753 } 4754 4755 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 4756 break; 4757 } 4758 case ISD::SCALAR_TO_VECTOR: { 4759 MVT EltVT = OVT.getVectorElementType(); 4760 MVT NewEltVT = NVT.getVectorElementType(); 4761 4762 // Handle bitcasts to different vector type with the same total bit size. 4763 // 4764 // e.g. v2i64 = scalar_to_vector x:i64 4765 // => 4766 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 4767 // 4768 4769 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4770 SDValue Val = Node->getOperand(0); 4771 SDLoc SL(Node); 4772 4773 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4774 SDValue Undef = DAG.getUNDEF(MidVT); 4775 4776 SmallVector<SDValue, 8> NewElts; 4777 NewElts.push_back(CastVal); 4778 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 4779 NewElts.push_back(Undef); 4780 4781 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 4782 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4783 Results.push_back(CvtVec); 4784 break; 4785 } 4786 case ISD::ATOMIC_SWAP: { 4787 AtomicSDNode *AM = cast<AtomicSDNode>(Node); 4788 SDLoc SL(Node); 4789 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal()); 4790 assert(NVT.getSizeInBits() == OVT.getSizeInBits() && 4791 "unexpected promotion type"); 4792 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && 4793 "unexpected atomic_swap with illegal type"); 4794 4795 SDValue NewAtomic 4796 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT, 4797 DAG.getVTList(NVT, MVT::Other), 4798 { AM->getChain(), AM->getBasePtr(), CastVal }, 4799 AM->getMemOperand()); 4800 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); 4801 Results.push_back(NewAtomic.getValue(1)); 4802 break; 4803 } 4804 } 4805 4806 // Replace the original node with the legalized result. 4807 if (!Results.empty()) { 4808 LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); 4809 ReplaceNode(Node, Results.data()); 4810 } else 4811 LLVM_DEBUG(dbgs() << "Could not promote node\n"); 4812 } 4813 4814 /// This is the entry point for the file. 4815 void SelectionDAG::Legalize() { 4816 AssignTopologicalOrder(); 4817 4818 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4819 // Use a delete listener to remove nodes which were deleted during 4820 // legalization from LegalizeNodes. This is needed to handle the situation 4821 // where a new node is allocated by the object pool to the same address of a 4822 // previously deleted node. 4823 DAGNodeDeletedListener DeleteListener( 4824 *this, 4825 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 4826 4827 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 4828 4829 // Visit all the nodes. We start in topological order, so that we see 4830 // nodes with their original operands intact. Legalization can produce 4831 // new nodes which may themselves need to be legalized. Iterate until all 4832 // nodes have been legalized. 4833 while (true) { 4834 bool AnyLegalized = false; 4835 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 4836 --NI; 4837 4838 SDNode *N = &*NI; 4839 if (N->use_empty() && N != getRoot().getNode()) { 4840 ++NI; 4841 DeleteNode(N); 4842 continue; 4843 } 4844 4845 if (LegalizedNodes.insert(N).second) { 4846 AnyLegalized = true; 4847 Legalizer.LegalizeOp(N); 4848 4849 if (N->use_empty() && N != getRoot().getNode()) { 4850 ++NI; 4851 DeleteNode(N); 4852 } 4853 } 4854 } 4855 if (!AnyLegalized) 4856 break; 4857 4858 } 4859 4860 // Remove dead nodes now. 4861 RemoveDeadNodes(); 4862 } 4863 4864 bool SelectionDAG::LegalizeOp(SDNode *N, 4865 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 4866 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4867 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 4868 4869 // Directly insert the node in question, and legalize it. This will recurse 4870 // as needed through operands. 4871 LegalizedNodes.insert(N); 4872 Legalizer.LegalizeOp(N); 4873 4874 return LegalizedNodes.count(N); 4875 } 4876