1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::Legalize method. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/CodeGen/ISDOpcodes.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineMemOperand.h" 24 #include "llvm/CodeGen/RuntimeLibcalls.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/SelectionDAGNodes.h" 27 #include "llvm/CodeGen/TargetFrameLowering.h" 28 #include "llvm/CodeGen/TargetLowering.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/Compiler.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/MachineValueType.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetOptions.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <cstdint> 50 #include <tuple> 51 #include <utility> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "legalizedag" 56 57 namespace { 58 59 /// Keeps track of state when getting the sign of a floating-point value as an 60 /// integer. 61 struct FloatSignAsInt { 62 EVT FloatVT; 63 SDValue Chain; 64 SDValue FloatPtr; 65 SDValue IntPtr; 66 MachinePointerInfo IntPointerInfo; 67 MachinePointerInfo FloatPointerInfo; 68 SDValue IntValue; 69 APInt SignMask; 70 uint8_t SignBit; 71 }; 72 73 //===----------------------------------------------------------------------===// 74 /// This takes an arbitrary SelectionDAG as input and 75 /// hacks on it until the target machine can handle it. This involves 76 /// eliminating value sizes the machine cannot handle (promoting small sizes to 77 /// large sizes or splitting up large values into small values) as well as 78 /// eliminating operations the machine cannot handle. 79 /// 80 /// This code also does a small amount of optimization and recognition of idioms 81 /// as part of its processing. For example, if a target does not support a 82 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 83 /// will attempt merge setcc and brc instructions into brcc's. 84 class SelectionDAGLegalize { 85 const TargetMachine &TM; 86 const TargetLowering &TLI; 87 SelectionDAG &DAG; 88 89 /// The set of nodes which have already been legalized. We hold a 90 /// reference to it in order to update as necessary on node deletion. 91 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 92 93 /// A set of all the nodes updated during legalization. 94 SmallSetVector<SDNode *, 16> *UpdatedNodes; 95 96 EVT getSetCCResultType(EVT VT) const { 97 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 98 } 99 100 // Libcall insertion helpers. 101 102 public: 103 SelectionDAGLegalize(SelectionDAG &DAG, 104 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 105 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 106 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 107 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 108 109 /// Legalizes the given operation. 110 void LegalizeOp(SDNode *Node); 111 112 private: 113 SDValue OptimizeFloatStore(StoreSDNode *ST); 114 115 void LegalizeLoadOps(SDNode *Node); 116 void LegalizeStoreOps(SDNode *Node); 117 118 /// Some targets cannot handle a variable 119 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 120 /// is necessary to spill the vector being inserted into to memory, perform 121 /// the insert there, and then read the result back. 122 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 123 const SDLoc &dl); 124 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 125 const SDLoc &dl); 126 127 /// Return a vector shuffle operation which 128 /// performs the same shuffe in terms of order or result bytes, but on a type 129 /// whose vector element type is narrower than the original shuffle type. 130 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 131 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 132 SDValue N1, SDValue N2, 133 ArrayRef<int> Mask) const; 134 135 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 136 bool &NeedInvert, const SDLoc &dl); 137 138 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 139 140 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC, 141 SDNode *Node, bool isSigned); 142 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 143 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 144 RTLIB::Libcall Call_F128, 145 RTLIB::Libcall Call_PPCF128); 146 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 147 RTLIB::Libcall Call_I8, 148 RTLIB::Libcall Call_I16, 149 RTLIB::Libcall Call_I32, 150 RTLIB::Libcall Call_I64, 151 RTLIB::Libcall Call_I128); 152 SDValue ExpandArgFPLibCall(SDNode *Node, 153 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, 154 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, 155 RTLIB::Libcall Call_PPCF128); 156 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 157 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 158 159 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 160 const SDLoc &dl); 161 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 162 const SDLoc &dl, SDValue ChainIn); 163 SDValue ExpandBUILD_VECTOR(SDNode *Node); 164 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 165 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 166 SmallVectorImpl<SDValue> &Results); 167 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 168 SDValue Value) const; 169 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 170 SDValue NewIntValue) const; 171 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 172 SDValue ExpandFABS(SDNode *Node) const; 173 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0, EVT DestVT, 174 const SDLoc &dl); 175 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, 176 const SDLoc &dl); 177 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, 178 const SDLoc &dl); 179 180 SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl); 181 SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl); 182 183 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 184 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 185 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 186 187 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 188 SDValue ExpandConstant(ConstantSDNode *CP); 189 190 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 191 bool ExpandNode(SDNode *Node); 192 void ConvertNodeToLibcall(SDNode *Node); 193 void PromoteNode(SDNode *Node); 194 195 public: 196 // Node replacement helpers 197 198 void ReplacedNode(SDNode *N) { 199 LegalizedNodes.erase(N); 200 if (UpdatedNodes) 201 UpdatedNodes->insert(N); 202 } 203 204 void ReplaceNode(SDNode *Old, SDNode *New) { 205 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 206 dbgs() << " with: "; New->dump(&DAG)); 207 208 assert(Old->getNumValues() == New->getNumValues() && 209 "Replacing one node with another that produces a different number " 210 "of values!"); 211 DAG.ReplaceAllUsesWith(Old, New); 212 if (UpdatedNodes) 213 UpdatedNodes->insert(New); 214 ReplacedNode(Old); 215 } 216 217 void ReplaceNode(SDValue Old, SDValue New) { 218 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 219 dbgs() << " with: "; New->dump(&DAG)); 220 221 DAG.ReplaceAllUsesWith(Old, New); 222 if (UpdatedNodes) 223 UpdatedNodes->insert(New.getNode()); 224 ReplacedNode(Old.getNode()); 225 } 226 227 void ReplaceNode(SDNode *Old, const SDValue *New) { 228 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 229 230 DAG.ReplaceAllUsesWith(Old, New); 231 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 232 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); 233 New[i]->dump(&DAG)); 234 if (UpdatedNodes) 235 UpdatedNodes->insert(New[i].getNode()); 236 } 237 ReplacedNode(Old); 238 } 239 240 void ReplaceNodeWithValue(SDValue Old, SDValue New) { 241 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 242 dbgs() << " with: "; New->dump(&DAG)); 243 244 DAG.ReplaceAllUsesOfValueWith(Old, New); 245 if (UpdatedNodes) 246 UpdatedNodes->insert(New.getNode()); 247 ReplacedNode(Old.getNode()); 248 } 249 }; 250 251 } // end anonymous namespace 252 253 /// Return a vector shuffle operation which 254 /// performs the same shuffle in terms of order or result bytes, but on a type 255 /// whose vector element type is narrower than the original shuffle type. 256 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 257 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 258 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 259 ArrayRef<int> Mask) const { 260 unsigned NumMaskElts = VT.getVectorNumElements(); 261 unsigned NumDestElts = NVT.getVectorNumElements(); 262 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 263 264 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 265 266 if (NumEltsGrowth == 1) 267 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 268 269 SmallVector<int, 8> NewMask; 270 for (unsigned i = 0; i != NumMaskElts; ++i) { 271 int Idx = Mask[i]; 272 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 273 if (Idx < 0) 274 NewMask.push_back(-1); 275 else 276 NewMask.push_back(Idx * NumEltsGrowth + j); 277 } 278 } 279 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 280 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 281 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 282 } 283 284 /// Expands the ConstantFP node to an integer constant or 285 /// a load from the constant pool. 286 SDValue 287 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 288 bool Extend = false; 289 SDLoc dl(CFP); 290 291 // If a FP immediate is precise when represented as a float and if the 292 // target can do an extending load from float to double, we put it into 293 // the constant pool as a float, even if it's is statically typed as a 294 // double. This shrinks FP constants and canonicalizes them for targets where 295 // an FP extending load is the same cost as a normal load (such as on the x87 296 // fp stack or PPC FP unit). 297 EVT VT = CFP->getValueType(0); 298 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 299 if (!UseCP) { 300 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 301 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 302 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 303 } 304 305 APFloat APF = CFP->getValueAPF(); 306 EVT OrigVT = VT; 307 EVT SVT = VT; 308 309 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 310 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 311 if (!APF.isSignaling()) { 312 while (SVT != MVT::f32 && SVT != MVT::f16) { 313 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 314 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 315 // Only do this if the target has a native EXTLOAD instruction from 316 // smaller type. 317 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 318 TLI.ShouldShrinkFPConstant(OrigVT)) { 319 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 320 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 321 VT = SVT; 322 Extend = true; 323 } 324 } 325 } 326 327 SDValue CPIdx = 328 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 329 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 330 if (Extend) { 331 SDValue Result = DAG.getExtLoad( 332 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 333 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 334 Alignment); 335 return Result; 336 } 337 SDValue Result = DAG.getLoad( 338 OrigVT, dl, DAG.getEntryNode(), CPIdx, 339 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 340 return Result; 341 } 342 343 /// Expands the Constant node to a load from the constant pool. 344 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 345 SDLoc dl(CP); 346 EVT VT = CP->getValueType(0); 347 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 348 TLI.getPointerTy(DAG.getDataLayout())); 349 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 350 SDValue Result = DAG.getLoad( 351 VT, dl, DAG.getEntryNode(), CPIdx, 352 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 353 return Result; 354 } 355 356 /// Some target cannot handle a variable insertion index for the 357 /// INSERT_VECTOR_ELT instruction. In this case, it 358 /// is necessary to spill the vector being inserted into to memory, perform 359 /// the insert there, and then read the result back. 360 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 361 SDValue Val, 362 SDValue Idx, 363 const SDLoc &dl) { 364 SDValue Tmp1 = Vec; 365 SDValue Tmp2 = Val; 366 SDValue Tmp3 = Idx; 367 368 // If the target doesn't support this, we have to spill the input vector 369 // to a temporary stack slot, update the element, then reload it. This is 370 // badness. We could also load the value into a vector register (either 371 // with a "move to register" or "extload into register" instruction, then 372 // permute it into place, if the idx is a constant and if the idx is 373 // supported by the target. 374 EVT VT = Tmp1.getValueType(); 375 EVT EltVT = VT.getVectorElementType(); 376 SDValue StackPtr = DAG.CreateStackTemporary(VT); 377 378 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 379 380 // Store the vector. 381 SDValue Ch = DAG.getStore( 382 DAG.getEntryNode(), dl, Tmp1, StackPtr, 383 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 384 385 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 386 387 // Store the scalar value. 388 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT); 389 // Load the updated vector. 390 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 391 DAG.getMachineFunction(), SPFI)); 392 } 393 394 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 395 SDValue Idx, 396 const SDLoc &dl) { 397 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 398 // SCALAR_TO_VECTOR requires that the type of the value being inserted 399 // match the element type of the vector being created, except for 400 // integers in which case the inserted value can be over width. 401 EVT EltVT = Vec.getValueType().getVectorElementType(); 402 if (Val.getValueType() == EltVT || 403 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 404 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 405 Vec.getValueType(), Val); 406 407 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 408 // We generate a shuffle of InVec and ScVec, so the shuffle mask 409 // should be 0,1,2,3,4,5... with the appropriate element replaced with 410 // elt 0 of the RHS. 411 SmallVector<int, 8> ShufOps; 412 for (unsigned i = 0; i != NumElts; ++i) 413 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 414 415 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 416 } 417 } 418 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 419 } 420 421 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 422 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); 423 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 424 // FIXME: We shouldn't do this for TargetConstantFP's. 425 // FIXME: move this to the DAG Combiner! Note that we can't regress due 426 // to phase ordering between legalized code and the dag combiner. This 427 // probably means that we need to integrate dag combiner and legalizer 428 // together. 429 // We generally can't do this one for long doubles. 430 SDValue Chain = ST->getChain(); 431 SDValue Ptr = ST->getBasePtr(); 432 unsigned Alignment = ST->getAlignment(); 433 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 434 AAMDNodes AAInfo = ST->getAAInfo(); 435 SDLoc dl(ST); 436 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 437 if (CFP->getValueType(0) == MVT::f32 && 438 TLI.isTypeLegal(MVT::i32)) { 439 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 440 bitcastToAPInt().zextOrTrunc(32), 441 SDLoc(CFP), MVT::i32); 442 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), Alignment, 443 MMOFlags, AAInfo); 444 } 445 446 if (CFP->getValueType(0) == MVT::f64) { 447 // If this target supports 64-bit registers, do a single 64-bit store. 448 if (TLI.isTypeLegal(MVT::i64)) { 449 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 450 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 451 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 452 Alignment, MMOFlags, AAInfo); 453 } 454 455 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 456 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 457 // stores. If the target supports neither 32- nor 64-bits, this 458 // xform is certainly not worth it. 459 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 460 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 461 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 462 if (DAG.getDataLayout().isBigEndian()) 463 std::swap(Lo, Hi); 464 465 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), Alignment, 466 MMOFlags, AAInfo); 467 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 468 DAG.getConstant(4, dl, Ptr.getValueType())); 469 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 470 ST->getPointerInfo().getWithOffset(4), 471 MinAlign(Alignment, 4U), MMOFlags, AAInfo); 472 473 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 474 } 475 } 476 } 477 return SDValue(nullptr, 0); 478 } 479 480 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 481 StoreSDNode *ST = cast<StoreSDNode>(Node); 482 SDValue Chain = ST->getChain(); 483 SDValue Ptr = ST->getBasePtr(); 484 SDLoc dl(Node); 485 486 unsigned Alignment = ST->getAlignment(); 487 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 488 AAMDNodes AAInfo = ST->getAAInfo(); 489 490 if (!ST->isTruncatingStore()) { 491 LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); 492 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 493 ReplaceNode(ST, OptStore); 494 return; 495 } 496 497 SDValue Value = ST->getValue(); 498 MVT VT = Value.getSimpleValueType(); 499 switch (TLI.getOperationAction(ISD::STORE, VT)) { 500 default: llvm_unreachable("This action is not supported yet!"); 501 case TargetLowering::Legal: { 502 // If this is an unaligned store and the target doesn't support it, 503 // expand it. 504 EVT MemVT = ST->getMemoryVT(); 505 const DataLayout &DL = DAG.getDataLayout(); 506 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, 507 *ST->getMemOperand())) { 508 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 509 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 510 ReplaceNode(SDValue(ST, 0), Result); 511 } else 512 LLVM_DEBUG(dbgs() << "Legal store\n"); 513 break; 514 } 515 case TargetLowering::Custom: { 516 LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); 517 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 518 if (Res && Res != SDValue(Node, 0)) 519 ReplaceNode(SDValue(Node, 0), Res); 520 return; 521 } 522 case TargetLowering::Promote: { 523 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 524 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 525 "Can only promote stores to same size type"); 526 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 527 SDValue Result = 528 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 529 Alignment, MMOFlags, AAInfo); 530 ReplaceNode(SDValue(Node, 0), Result); 531 break; 532 } 533 } 534 return; 535 } 536 537 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); 538 SDValue Value = ST->getValue(); 539 EVT StVT = ST->getMemoryVT(); 540 unsigned StWidth = StVT.getSizeInBits(); 541 auto &DL = DAG.getDataLayout(); 542 543 if (StWidth != StVT.getStoreSizeInBits()) { 544 // Promote to a byte-sized store with upper bits zero if not 545 // storing an integral number of bytes. For example, promote 546 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 547 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), 548 StVT.getStoreSizeInBits()); 549 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 550 SDValue Result = 551 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 552 Alignment, MMOFlags, AAInfo); 553 ReplaceNode(SDValue(Node, 0), Result); 554 } else if (StWidth & (StWidth - 1)) { 555 // If not storing a power-of-2 number of bits, expand as two stores. 556 assert(!StVT.isVector() && "Unsupported truncstore!"); 557 unsigned LogStWidth = Log2_32(StWidth); 558 assert(LogStWidth < 32); 559 unsigned RoundWidth = 1 << LogStWidth; 560 assert(RoundWidth < StWidth); 561 unsigned ExtraWidth = StWidth - RoundWidth; 562 assert(ExtraWidth < RoundWidth); 563 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 564 "Store size not an integral number of bytes!"); 565 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 566 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 567 SDValue Lo, Hi; 568 unsigned IncrementSize; 569 570 if (DL.isLittleEndian()) { 571 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 572 // Store the bottom RoundWidth bits. 573 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 574 RoundVT, Alignment, MMOFlags, AAInfo); 575 576 // Store the remaining ExtraWidth bits. 577 IncrementSize = RoundWidth / 8; 578 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 579 DAG.getConstant(IncrementSize, dl, 580 Ptr.getValueType())); 581 Hi = DAG.getNode( 582 ISD::SRL, dl, Value.getValueType(), Value, 583 DAG.getConstant(RoundWidth, dl, 584 TLI.getShiftAmountTy(Value.getValueType(), DL))); 585 Hi = DAG.getTruncStore( 586 Chain, dl, Hi, Ptr, 587 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, 588 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); 589 } else { 590 // Big endian - avoid unaligned stores. 591 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 592 // Store the top RoundWidth bits. 593 Hi = DAG.getNode( 594 ISD::SRL, dl, Value.getValueType(), Value, 595 DAG.getConstant(ExtraWidth, dl, 596 TLI.getShiftAmountTy(Value.getValueType(), DL))); 597 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), 598 RoundVT, Alignment, MMOFlags, AAInfo); 599 600 // Store the remaining ExtraWidth bits. 601 IncrementSize = RoundWidth / 8; 602 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 603 DAG.getConstant(IncrementSize, dl, 604 Ptr.getValueType())); 605 Lo = DAG.getTruncStore( 606 Chain, dl, Value, Ptr, 607 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, 608 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); 609 } 610 611 // The order of the stores doesn't matter. 612 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 613 ReplaceNode(SDValue(Node, 0), Result); 614 } else { 615 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 616 default: llvm_unreachable("This action is not supported yet!"); 617 case TargetLowering::Legal: { 618 EVT MemVT = ST->getMemoryVT(); 619 // If this is an unaligned store and the target doesn't support it, 620 // expand it. 621 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, 622 *ST->getMemOperand())) { 623 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 624 ReplaceNode(SDValue(ST, 0), Result); 625 } 626 break; 627 } 628 case TargetLowering::Custom: { 629 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 630 if (Res && Res != SDValue(Node, 0)) 631 ReplaceNode(SDValue(Node, 0), Res); 632 return; 633 } 634 case TargetLowering::Expand: 635 assert(!StVT.isVector() && 636 "Vector Stores are handled in LegalizeVectorOps"); 637 638 SDValue Result; 639 640 // TRUNCSTORE:i16 i32 -> STORE i16 641 if (TLI.isTypeLegal(StVT)) { 642 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 643 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 644 Alignment, MMOFlags, AAInfo); 645 } else { 646 // The in-memory type isn't legal. Truncate to the type it would promote 647 // to, and then do a truncstore. 648 Value = DAG.getNode(ISD::TRUNCATE, dl, 649 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 650 Value); 651 Result = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 652 StVT, Alignment, MMOFlags, AAInfo); 653 } 654 655 ReplaceNode(SDValue(Node, 0), Result); 656 break; 657 } 658 } 659 } 660 661 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 662 LoadSDNode *LD = cast<LoadSDNode>(Node); 663 SDValue Chain = LD->getChain(); // The chain. 664 SDValue Ptr = LD->getBasePtr(); // The base pointer. 665 SDValue Value; // The value returned by the load op. 666 SDLoc dl(Node); 667 668 ISD::LoadExtType ExtType = LD->getExtensionType(); 669 if (ExtType == ISD::NON_EXTLOAD) { 670 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 671 MVT VT = Node->getSimpleValueType(0); 672 SDValue RVal = SDValue(Node, 0); 673 SDValue RChain = SDValue(Node, 1); 674 675 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 676 default: llvm_unreachable("This action is not supported yet!"); 677 case TargetLowering::Legal: { 678 EVT MemVT = LD->getMemoryVT(); 679 const DataLayout &DL = DAG.getDataLayout(); 680 // If this is an unaligned load and the target doesn't support it, 681 // expand it. 682 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, 683 *LD->getMemOperand())) { 684 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 685 } 686 break; 687 } 688 case TargetLowering::Custom: 689 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 690 RVal = Res; 691 RChain = Res.getValue(1); 692 } 693 break; 694 695 case TargetLowering::Promote: { 696 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 697 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 698 "Can only promote loads to same size type"); 699 700 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 701 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 702 RChain = Res.getValue(1); 703 break; 704 } 705 } 706 if (RChain.getNode() != Node) { 707 assert(RVal.getNode() != Node && "Load must be completely replaced"); 708 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 709 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 710 if (UpdatedNodes) { 711 UpdatedNodes->insert(RVal.getNode()); 712 UpdatedNodes->insert(RChain.getNode()); 713 } 714 ReplacedNode(Node); 715 } 716 return; 717 } 718 719 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); 720 EVT SrcVT = LD->getMemoryVT(); 721 unsigned SrcWidth = SrcVT.getSizeInBits(); 722 unsigned Alignment = LD->getAlignment(); 723 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 724 AAMDNodes AAInfo = LD->getAAInfo(); 725 726 if (SrcWidth != SrcVT.getStoreSizeInBits() && 727 // Some targets pretend to have an i1 loading operation, and actually 728 // load an i8. This trick is correct for ZEXTLOAD because the top 7 729 // bits are guaranteed to be zero; it helps the optimizers understand 730 // that these bits are zero. It is also useful for EXTLOAD, since it 731 // tells the optimizers that those bits are undefined. It would be 732 // nice to have an effective generic way of getting these benefits... 733 // Until such a way is found, don't insist on promoting i1 here. 734 (SrcVT != MVT::i1 || 735 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 736 TargetLowering::Promote)) { 737 // Promote to a byte-sized load if not loading an integral number of 738 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 739 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 740 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 741 SDValue Ch; 742 743 // The extra bits are guaranteed to be zero, since we stored them that 744 // way. A zext load from NVT thus automatically gives zext from SrcVT. 745 746 ISD::LoadExtType NewExtType = 747 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 748 749 SDValue Result = 750 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), Chain, Ptr, 751 LD->getPointerInfo(), NVT, Alignment, MMOFlags, AAInfo); 752 753 Ch = Result.getValue(1); // The chain. 754 755 if (ExtType == ISD::SEXTLOAD) 756 // Having the top bits zero doesn't help when sign extending. 757 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 758 Result.getValueType(), 759 Result, DAG.getValueType(SrcVT)); 760 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 761 // All the top bits are guaranteed to be zero - inform the optimizers. 762 Result = DAG.getNode(ISD::AssertZext, dl, 763 Result.getValueType(), Result, 764 DAG.getValueType(SrcVT)); 765 766 Value = Result; 767 Chain = Ch; 768 } else if (SrcWidth & (SrcWidth - 1)) { 769 // If not loading a power-of-2 number of bits, expand as two loads. 770 assert(!SrcVT.isVector() && "Unsupported extload!"); 771 unsigned LogSrcWidth = Log2_32(SrcWidth); 772 assert(LogSrcWidth < 32); 773 unsigned RoundWidth = 1 << LogSrcWidth; 774 assert(RoundWidth < SrcWidth); 775 unsigned ExtraWidth = SrcWidth - RoundWidth; 776 assert(ExtraWidth < RoundWidth); 777 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 778 "Load size not an integral number of bytes!"); 779 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 780 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 781 SDValue Lo, Hi, Ch; 782 unsigned IncrementSize; 783 auto &DL = DAG.getDataLayout(); 784 785 if (DL.isLittleEndian()) { 786 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 787 // Load the bottom RoundWidth bits. 788 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 789 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, 790 AAInfo); 791 792 // Load the remaining ExtraWidth bits. 793 IncrementSize = RoundWidth / 8; 794 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 795 DAG.getConstant(IncrementSize, dl, 796 Ptr.getValueType())); 797 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 798 LD->getPointerInfo().getWithOffset(IncrementSize), 799 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, 800 AAInfo); 801 802 // Build a factor node to remember that this load is independent of 803 // the other one. 804 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 805 Hi.getValue(1)); 806 807 // Move the top bits to the right place. 808 Hi = DAG.getNode( 809 ISD::SHL, dl, Hi.getValueType(), Hi, 810 DAG.getConstant(RoundWidth, dl, 811 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 812 813 // Join the hi and lo parts. 814 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 815 } else { 816 // Big endian - avoid unaligned loads. 817 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 818 // Load the top RoundWidth bits. 819 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 820 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, 821 AAInfo); 822 823 // Load the remaining ExtraWidth bits. 824 IncrementSize = RoundWidth / 8; 825 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 826 DAG.getConstant(IncrementSize, dl, 827 Ptr.getValueType())); 828 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 829 LD->getPointerInfo().getWithOffset(IncrementSize), 830 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, 831 AAInfo); 832 833 // Build a factor node to remember that this load is independent of 834 // the other one. 835 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 836 Hi.getValue(1)); 837 838 // Move the top bits to the right place. 839 Hi = DAG.getNode( 840 ISD::SHL, dl, Hi.getValueType(), Hi, 841 DAG.getConstant(ExtraWidth, dl, 842 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 843 844 // Join the hi and lo parts. 845 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 846 } 847 848 Chain = Ch; 849 } else { 850 bool isCustom = false; 851 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 852 SrcVT.getSimpleVT())) { 853 default: llvm_unreachable("This action is not supported yet!"); 854 case TargetLowering::Custom: 855 isCustom = true; 856 LLVM_FALLTHROUGH; 857 case TargetLowering::Legal: 858 Value = SDValue(Node, 0); 859 Chain = SDValue(Node, 1); 860 861 if (isCustom) { 862 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 863 Value = Res; 864 Chain = Res.getValue(1); 865 } 866 } else { 867 // If this is an unaligned load and the target doesn't support it, 868 // expand it. 869 EVT MemVT = LD->getMemoryVT(); 870 const DataLayout &DL = DAG.getDataLayout(); 871 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, 872 *LD->getMemOperand())) { 873 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 874 } 875 } 876 break; 877 878 case TargetLowering::Expand: { 879 EVT DestVT = Node->getValueType(0); 880 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 881 // If the source type is not legal, see if there is a legal extload to 882 // an intermediate type that we can then extend further. 883 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 884 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 885 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 886 // If we are loading a legal type, this is a non-extload followed by a 887 // full extend. 888 ISD::LoadExtType MidExtType = 889 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 890 891 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 892 SrcVT, LD->getMemOperand()); 893 unsigned ExtendOp = 894 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 895 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 896 Chain = Load.getValue(1); 897 break; 898 } 899 900 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 901 // normal undefined upper bits behavior to allow using an in-reg extend 902 // with the illegal FP type, so load as an integer and do the 903 // from-integer conversion. 904 if (SrcVT.getScalarType() == MVT::f16) { 905 EVT ISrcVT = SrcVT.changeTypeToInteger(); 906 EVT IDestVT = DestVT.changeTypeToInteger(); 907 EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 908 909 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain, 910 Ptr, ISrcVT, LD->getMemOperand()); 911 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 912 Chain = Result.getValue(1); 913 break; 914 } 915 } 916 917 assert(!SrcVT.isVector() && 918 "Vector Loads are handled in LegalizeVectorOps"); 919 920 // FIXME: This does not work for vectors on most targets. Sign- 921 // and zero-extend operations are currently folded into extending 922 // loads, whether they are legal or not, and then we end up here 923 // without any support for legalizing them. 924 assert(ExtType != ISD::EXTLOAD && 925 "EXTLOAD should always be supported!"); 926 // Turn the unsupported load into an EXTLOAD followed by an 927 // explicit zero/sign extend inreg. 928 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 929 Node->getValueType(0), 930 Chain, Ptr, SrcVT, 931 LD->getMemOperand()); 932 SDValue ValRes; 933 if (ExtType == ISD::SEXTLOAD) 934 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 935 Result.getValueType(), 936 Result, DAG.getValueType(SrcVT)); 937 else 938 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); 939 Value = ValRes; 940 Chain = Result.getValue(1); 941 break; 942 } 943 } 944 } 945 946 // Since loads produce two values, make sure to remember that we legalized 947 // both of them. 948 if (Chain.getNode() != Node) { 949 assert(Value.getNode() != Node && "Load must be completely replaced"); 950 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 951 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 952 if (UpdatedNodes) { 953 UpdatedNodes->insert(Value.getNode()); 954 UpdatedNodes->insert(Chain.getNode()); 955 } 956 ReplacedNode(Node); 957 } 958 } 959 960 /// Return a legal replacement for the given operation, with all legal operands. 961 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 962 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 963 964 // Allow illegal target nodes and illegal registers. 965 if (Node->getOpcode() == ISD::TargetConstant || 966 Node->getOpcode() == ISD::Register) 967 return; 968 969 #ifndef NDEBUG 970 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 971 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 972 TargetLowering::TypeLegal && 973 "Unexpected illegal type!"); 974 975 for (const SDValue &Op : Node->op_values()) 976 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 977 TargetLowering::TypeLegal || 978 Op.getOpcode() == ISD::TargetConstant || 979 Op.getOpcode() == ISD::Register) && 980 "Unexpected illegal type!"); 981 #endif 982 983 // Figure out the correct action; the way to query this varies by opcode 984 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 985 bool SimpleFinishLegalizing = true; 986 switch (Node->getOpcode()) { 987 case ISD::INTRINSIC_W_CHAIN: 988 case ISD::INTRINSIC_WO_CHAIN: 989 case ISD::INTRINSIC_VOID: 990 case ISD::STACKSAVE: 991 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 992 break; 993 case ISD::GET_DYNAMIC_AREA_OFFSET: 994 Action = TLI.getOperationAction(Node->getOpcode(), 995 Node->getValueType(0)); 996 break; 997 case ISD::VAARG: 998 Action = TLI.getOperationAction(Node->getOpcode(), 999 Node->getValueType(0)); 1000 if (Action != TargetLowering::Promote) 1001 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 1002 break; 1003 case ISD::FP_TO_FP16: 1004 case ISD::SINT_TO_FP: 1005 case ISD::UINT_TO_FP: 1006 case ISD::EXTRACT_VECTOR_ELT: 1007 case ISD::LROUND: 1008 case ISD::LLROUND: 1009 case ISD::LRINT: 1010 case ISD::LLRINT: 1011 Action = TLI.getOperationAction(Node->getOpcode(), 1012 Node->getOperand(0).getValueType()); 1013 break; 1014 case ISD::SIGN_EXTEND_INREG: { 1015 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1016 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1017 break; 1018 } 1019 case ISD::ATOMIC_STORE: 1020 Action = TLI.getOperationAction(Node->getOpcode(), 1021 Node->getOperand(2).getValueType()); 1022 break; 1023 case ISD::SELECT_CC: 1024 case ISD::SETCC: 1025 case ISD::BR_CC: { 1026 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 1027 Node->getOpcode() == ISD::SETCC ? 2 : 1; 1028 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; 1029 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1030 ISD::CondCode CCCode = 1031 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1032 Action = TLI.getCondCodeAction(CCCode, OpVT); 1033 if (Action == TargetLowering::Legal) { 1034 if (Node->getOpcode() == ISD::SELECT_CC) 1035 Action = TLI.getOperationAction(Node->getOpcode(), 1036 Node->getValueType(0)); 1037 else 1038 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1039 } 1040 break; 1041 } 1042 case ISD::LOAD: 1043 case ISD::STORE: 1044 // FIXME: Model these properly. LOAD and STORE are complicated, and 1045 // STORE expects the unlegalized operand in some cases. 1046 SimpleFinishLegalizing = false; 1047 break; 1048 case ISD::CALLSEQ_START: 1049 case ISD::CALLSEQ_END: 1050 // FIXME: This shouldn't be necessary. These nodes have special properties 1051 // dealing with the recursive nature of legalization. Removing this 1052 // special case should be done as part of making LegalizeDAG non-recursive. 1053 SimpleFinishLegalizing = false; 1054 break; 1055 case ISD::EXTRACT_ELEMENT: 1056 case ISD::FLT_ROUNDS_: 1057 case ISD::MERGE_VALUES: 1058 case ISD::EH_RETURN: 1059 case ISD::FRAME_TO_ARGS_OFFSET: 1060 case ISD::EH_DWARF_CFA: 1061 case ISD::EH_SJLJ_SETJMP: 1062 case ISD::EH_SJLJ_LONGJMP: 1063 case ISD::EH_SJLJ_SETUP_DISPATCH: 1064 // These operations lie about being legal: when they claim to be legal, 1065 // they should actually be expanded. 1066 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1067 if (Action == TargetLowering::Legal) 1068 Action = TargetLowering::Expand; 1069 break; 1070 case ISD::INIT_TRAMPOLINE: 1071 case ISD::ADJUST_TRAMPOLINE: 1072 case ISD::FRAMEADDR: 1073 case ISD::RETURNADDR: 1074 case ISD::ADDROFRETURNADDR: 1075 case ISD::SPONENTRY: 1076 // These operations lie about being legal: when they claim to be legal, 1077 // they should actually be custom-lowered. 1078 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1079 if (Action == TargetLowering::Legal) 1080 Action = TargetLowering::Custom; 1081 break; 1082 case ISD::READCYCLECOUNTER: 1083 // READCYCLECOUNTER returns an i64, even if type legalization might have 1084 // expanded that to several smaller types. 1085 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1086 break; 1087 case ISD::READ_REGISTER: 1088 case ISD::WRITE_REGISTER: 1089 // Named register is legal in the DAG, but blocked by register name 1090 // selection if not implemented by target (to chose the correct register) 1091 // They'll be converted to Copy(To/From)Reg. 1092 Action = TargetLowering::Legal; 1093 break; 1094 case ISD::DEBUGTRAP: 1095 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1096 if (Action == TargetLowering::Expand) { 1097 // replace ISD::DEBUGTRAP with ISD::TRAP 1098 SDValue NewVal; 1099 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1100 Node->getOperand(0)); 1101 ReplaceNode(Node, NewVal.getNode()); 1102 LegalizeOp(NewVal.getNode()); 1103 return; 1104 } 1105 break; 1106 case ISD::SADDSAT: 1107 case ISD::UADDSAT: 1108 case ISD::SSUBSAT: 1109 case ISD::USUBSAT: { 1110 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1111 break; 1112 } 1113 case ISD::SMULFIX: 1114 case ISD::SMULFIXSAT: 1115 case ISD::UMULFIX: 1116 case ISD::UMULFIXSAT: { 1117 unsigned Scale = Node->getConstantOperandVal(2); 1118 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 1119 Node->getValueType(0), Scale); 1120 break; 1121 } 1122 case ISD::MSCATTER: 1123 Action = TLI.getOperationAction(Node->getOpcode(), 1124 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 1125 break; 1126 case ISD::MSTORE: 1127 Action = TLI.getOperationAction(Node->getOpcode(), 1128 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 1129 break; 1130 case ISD::VECREDUCE_FADD: 1131 case ISD::VECREDUCE_FMUL: 1132 case ISD::VECREDUCE_ADD: 1133 case ISD::VECREDUCE_MUL: 1134 case ISD::VECREDUCE_AND: 1135 case ISD::VECREDUCE_OR: 1136 case ISD::VECREDUCE_XOR: 1137 case ISD::VECREDUCE_SMAX: 1138 case ISD::VECREDUCE_SMIN: 1139 case ISD::VECREDUCE_UMAX: 1140 case ISD::VECREDUCE_UMIN: 1141 case ISD::VECREDUCE_FMAX: 1142 case ISD::VECREDUCE_FMIN: 1143 Action = TLI.getOperationAction( 1144 Node->getOpcode(), Node->getOperand(0).getValueType()); 1145 break; 1146 default: 1147 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1148 Action = TargetLowering::Legal; 1149 } else { 1150 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1151 } 1152 break; 1153 } 1154 1155 if (SimpleFinishLegalizing) { 1156 SDNode *NewNode = Node; 1157 switch (Node->getOpcode()) { 1158 default: break; 1159 case ISD::SHL: 1160 case ISD::SRL: 1161 case ISD::SRA: 1162 case ISD::ROTL: 1163 case ISD::ROTR: { 1164 // Legalizing shifts/rotates requires adjusting the shift amount 1165 // to the appropriate width. 1166 SDValue Op0 = Node->getOperand(0); 1167 SDValue Op1 = Node->getOperand(1); 1168 if (!Op1.getValueType().isVector()) { 1169 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1170 // The getShiftAmountOperand() may create a new operand node or 1171 // return the existing one. If new operand is created we need 1172 // to update the parent node. 1173 // Do not try to legalize SAO here! It will be automatically legalized 1174 // in the next round. 1175 if (SAO != Op1) 1176 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1177 } 1178 } 1179 break; 1180 case ISD::FSHL: 1181 case ISD::FSHR: 1182 case ISD::SRL_PARTS: 1183 case ISD::SRA_PARTS: 1184 case ISD::SHL_PARTS: { 1185 // Legalizing shifts/rotates requires adjusting the shift amount 1186 // to the appropriate width. 1187 SDValue Op0 = Node->getOperand(0); 1188 SDValue Op1 = Node->getOperand(1); 1189 SDValue Op2 = Node->getOperand(2); 1190 if (!Op2.getValueType().isVector()) { 1191 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1192 // The getShiftAmountOperand() may create a new operand node or 1193 // return the existing one. If new operand is created we need 1194 // to update the parent node. 1195 if (SAO != Op2) 1196 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1197 } 1198 break; 1199 } 1200 } 1201 1202 if (NewNode != Node) { 1203 ReplaceNode(Node, NewNode); 1204 Node = NewNode; 1205 } 1206 switch (Action) { 1207 case TargetLowering::Legal: 1208 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 1209 return; 1210 case TargetLowering::Custom: 1211 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 1212 // FIXME: The handling for custom lowering with multiple results is 1213 // a complete mess. 1214 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1215 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1216 return; 1217 1218 if (Node->getNumValues() == 1) { 1219 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1220 // We can just directly replace this node with the lowered value. 1221 ReplaceNode(SDValue(Node, 0), Res); 1222 return; 1223 } 1224 1225 SmallVector<SDValue, 8> ResultVals; 1226 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1227 ResultVals.push_back(Res.getValue(i)); 1228 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1229 ReplaceNode(Node, ResultVals.data()); 1230 return; 1231 } 1232 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 1233 LLVM_FALLTHROUGH; 1234 case TargetLowering::Expand: 1235 if (ExpandNode(Node)) 1236 return; 1237 LLVM_FALLTHROUGH; 1238 case TargetLowering::LibCall: 1239 ConvertNodeToLibcall(Node); 1240 return; 1241 case TargetLowering::Promote: 1242 PromoteNode(Node); 1243 return; 1244 } 1245 } 1246 1247 switch (Node->getOpcode()) { 1248 default: 1249 #ifndef NDEBUG 1250 dbgs() << "NODE: "; 1251 Node->dump( &DAG); 1252 dbgs() << "\n"; 1253 #endif 1254 llvm_unreachable("Do not know how to legalize this operator!"); 1255 1256 case ISD::CALLSEQ_START: 1257 case ISD::CALLSEQ_END: 1258 break; 1259 case ISD::LOAD: 1260 return LegalizeLoadOps(Node); 1261 case ISD::STORE: 1262 return LegalizeStoreOps(Node); 1263 } 1264 } 1265 1266 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1267 SDValue Vec = Op.getOperand(0); 1268 SDValue Idx = Op.getOperand(1); 1269 SDLoc dl(Op); 1270 1271 // Before we generate a new store to a temporary stack slot, see if there is 1272 // already one that we can use. There often is because when we scalarize 1273 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1274 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1275 // the vector. If all are expanded here, we don't want one store per vector 1276 // element. 1277 1278 // Caches for hasPredecessorHelper 1279 SmallPtrSet<const SDNode *, 32> Visited; 1280 SmallVector<const SDNode *, 16> Worklist; 1281 Visited.insert(Op.getNode()); 1282 Worklist.push_back(Idx.getNode()); 1283 SDValue StackPtr, Ch; 1284 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), 1285 UE = Vec.getNode()->use_end(); UI != UE; ++UI) { 1286 SDNode *User = *UI; 1287 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1288 if (ST->isIndexed() || ST->isTruncatingStore() || 1289 ST->getValue() != Vec) 1290 continue; 1291 1292 // Make sure that nothing else could have stored into the destination of 1293 // this store. 1294 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1295 continue; 1296 1297 // If the index is dependent on the store we will introduce a cycle when 1298 // creating the load (the load uses the index, and by replacing the chain 1299 // we will make the index dependent on the load). Also, the store might be 1300 // dependent on the extractelement and introduce a cycle when creating 1301 // the load. 1302 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1303 ST->hasPredecessor(Op.getNode())) 1304 continue; 1305 1306 StackPtr = ST->getBasePtr(); 1307 Ch = SDValue(ST, 0); 1308 break; 1309 } 1310 } 1311 1312 EVT VecVT = Vec.getValueType(); 1313 1314 if (!Ch.getNode()) { 1315 // Store the value to a temporary stack slot, then LOAD the returned part. 1316 StackPtr = DAG.CreateStackTemporary(VecVT); 1317 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1318 MachinePointerInfo()); 1319 } 1320 1321 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1322 1323 SDValue NewLoad; 1324 1325 if (Op.getValueType().isVector()) 1326 NewLoad = 1327 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); 1328 else 1329 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1330 MachinePointerInfo(), 1331 VecVT.getVectorElementType()); 1332 1333 // Replace the chain going out of the store, by the one out of the load. 1334 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1335 1336 // We introduced a cycle though, so update the loads operands, making sure 1337 // to use the original store's chain as an incoming chain. 1338 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1339 NewLoad->op_end()); 1340 NewLoadOperands[0] = Ch; 1341 NewLoad = 1342 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1343 return NewLoad; 1344 } 1345 1346 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1347 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1348 1349 SDValue Vec = Op.getOperand(0); 1350 SDValue Part = Op.getOperand(1); 1351 SDValue Idx = Op.getOperand(2); 1352 SDLoc dl(Op); 1353 1354 // Store the value to a temporary stack slot, then LOAD the returned part. 1355 EVT VecVT = Vec.getValueType(); 1356 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1357 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1358 MachinePointerInfo PtrInfo = 1359 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1360 1361 // First store the whole vector. 1362 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1363 1364 // Then store the inserted part. 1365 SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1366 1367 // Store the subvector. 1368 Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, MachinePointerInfo()); 1369 1370 // Finally, load the updated vector. 1371 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1372 } 1373 1374 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1375 // We can't handle this case efficiently. Allocate a sufficiently 1376 // aligned object on the stack, store each element into it, then load 1377 // the result as a vector. 1378 // Create the stack frame object. 1379 EVT VT = Node->getValueType(0); 1380 EVT EltVT = VT.getVectorElementType(); 1381 SDLoc dl(Node); 1382 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1383 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1384 MachinePointerInfo PtrInfo = 1385 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1386 1387 // Emit a store of each element to the stack slot. 1388 SmallVector<SDValue, 8> Stores; 1389 unsigned TypeByteSize = EltVT.getSizeInBits() / 8; 1390 assert(TypeByteSize > 0 && "Vector element type too small for stack store!"); 1391 // Store (in the right endianness) the elements to memory. 1392 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1393 // Ignore undef elements. 1394 if (Node->getOperand(i).isUndef()) continue; 1395 1396 unsigned Offset = TypeByteSize*i; 1397 1398 SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType()); 1399 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); 1400 1401 // If the destination vector element type is narrower than the source 1402 // element type, only store the bits necessary. 1403 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { 1404 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1405 Node->getOperand(i), Idx, 1406 PtrInfo.getWithOffset(Offset), EltVT)); 1407 } else 1408 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1409 Idx, PtrInfo.getWithOffset(Offset))); 1410 } 1411 1412 SDValue StoreChain; 1413 if (!Stores.empty()) // Not all undef elements? 1414 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1415 else 1416 StoreChain = DAG.getEntryNode(); 1417 1418 // Result is a load from the stack slot. 1419 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1420 } 1421 1422 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1423 /// containing the sign bit if the target has no integer value capable of 1424 /// holding all bits of the floating-point value. 1425 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1426 const SDLoc &DL, 1427 SDValue Value) const { 1428 EVT FloatVT = Value.getValueType(); 1429 unsigned NumBits = FloatVT.getSizeInBits(); 1430 State.FloatVT = FloatVT; 1431 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1432 // Convert to an integer of the same size. 1433 if (TLI.isTypeLegal(IVT)) { 1434 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1435 State.SignMask = APInt::getSignMask(NumBits); 1436 State.SignBit = NumBits - 1; 1437 return; 1438 } 1439 1440 auto &DataLayout = DAG.getDataLayout(); 1441 // Store the float to memory, then load the sign part out as an integer. 1442 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1443 // First create a temporary that is aligned for both the load and store. 1444 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1445 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1446 // Then store the float to it. 1447 State.FloatPtr = StackPtr; 1448 MachineFunction &MF = DAG.getMachineFunction(); 1449 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1450 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1451 State.FloatPointerInfo); 1452 1453 SDValue IntPtr; 1454 if (DataLayout.isBigEndian()) { 1455 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1456 // Load out a legal integer with the same sign bit as the float. 1457 IntPtr = StackPtr; 1458 State.IntPointerInfo = State.FloatPointerInfo; 1459 } else { 1460 // Advance the pointer so that the loaded byte will contain the sign bit. 1461 unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1; 1462 IntPtr = DAG.getNode(ISD::ADD, DL, StackPtr.getValueType(), StackPtr, 1463 DAG.getConstant(ByteOffset, DL, StackPtr.getValueType())); 1464 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1465 ByteOffset); 1466 } 1467 1468 State.IntPtr = IntPtr; 1469 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1470 State.IntPointerInfo, MVT::i8); 1471 State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7); 1472 State.SignBit = 7; 1473 } 1474 1475 /// Replace the integer value produced by getSignAsIntValue() with a new value 1476 /// and cast the result back to a floating-point type. 1477 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1478 const SDLoc &DL, 1479 SDValue NewIntValue) const { 1480 if (!State.Chain) 1481 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1482 1483 // Override the part containing the sign bit in the value stored on the stack. 1484 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1485 State.IntPointerInfo, MVT::i8); 1486 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1487 State.FloatPointerInfo); 1488 } 1489 1490 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1491 SDLoc DL(Node); 1492 SDValue Mag = Node->getOperand(0); 1493 SDValue Sign = Node->getOperand(1); 1494 1495 // Get sign bit into an integer value. 1496 FloatSignAsInt SignAsInt; 1497 getSignAsIntValue(SignAsInt, DL, Sign); 1498 1499 EVT IntVT = SignAsInt.IntValue.getValueType(); 1500 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1501 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1502 SignMask); 1503 1504 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1505 EVT FloatVT = Mag.getValueType(); 1506 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1507 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1508 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1509 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1510 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1511 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1512 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1513 } 1514 1515 // Transform Mag value to integer, and clear the sign bit. 1516 FloatSignAsInt MagAsInt; 1517 getSignAsIntValue(MagAsInt, DL, Mag); 1518 EVT MagVT = MagAsInt.IntValue.getValueType(); 1519 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1520 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1521 ClearSignMask); 1522 1523 // Get the signbit at the right position for MagAsInt. 1524 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1525 EVT ShiftVT = IntVT; 1526 if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) { 1527 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1528 ShiftVT = MagVT; 1529 } 1530 if (ShiftAmount > 0) { 1531 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); 1532 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); 1533 } else if (ShiftAmount < 0) { 1534 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); 1535 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); 1536 } 1537 if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) { 1538 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1539 } 1540 1541 // Store the part with the modified sign and convert back to float. 1542 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1543 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1544 } 1545 1546 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1547 SDLoc DL(Node); 1548 SDValue Value = Node->getOperand(0); 1549 1550 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1551 EVT FloatVT = Value.getValueType(); 1552 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1553 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1554 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1555 } 1556 1557 // Transform value to integer, clear the sign bit and transform back. 1558 FloatSignAsInt ValueAsInt; 1559 getSignAsIntValue(ValueAsInt, DL, Value); 1560 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1561 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1562 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1563 ClearSignMask); 1564 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1565 } 1566 1567 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1568 SmallVectorImpl<SDValue> &Results) { 1569 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1570 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1571 " not tell us which reg is the stack pointer!"); 1572 SDLoc dl(Node); 1573 EVT VT = Node->getValueType(0); 1574 SDValue Tmp1 = SDValue(Node, 0); 1575 SDValue Tmp2 = SDValue(Node, 1); 1576 SDValue Tmp3 = Node->getOperand(2); 1577 SDValue Chain = Tmp1.getOperand(0); 1578 1579 // Chain the dynamic stack allocation so that it doesn't modify the stack 1580 // pointer when other instructions are using the stack. 1581 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1582 1583 SDValue Size = Tmp2.getOperand(1); 1584 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1585 Chain = SP.getValue(1); 1586 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1587 unsigned StackAlign = 1588 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 1589 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 1590 if (Align > StackAlign) 1591 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1592 DAG.getConstant(-(uint64_t)Align, dl, VT)); 1593 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1594 1595 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1596 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1597 1598 Results.push_back(Tmp1); 1599 Results.push_back(Tmp2); 1600 } 1601 1602 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current 1603 /// target. 1604 /// 1605 /// If the SETCC has been legalized using AND / OR, then the legalized node 1606 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert 1607 /// will be set to false. 1608 /// 1609 /// If the SETCC has been legalized by using getSetCCSwappedOperands(), 1610 /// then the values of LHS and RHS will be swapped, CC will be set to the 1611 /// new condition, and NeedInvert will be set to false. 1612 /// 1613 /// If the SETCC has been legalized using the inverse condcode, then LHS and 1614 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert 1615 /// will be set to true. The caller must invert the result of the SETCC with 1616 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect 1617 /// of a true/false result. 1618 /// 1619 /// \returns true if the SetCC has been legalized, false if it hasn't. 1620 bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, SDValue &LHS, 1621 SDValue &RHS, SDValue &CC, 1622 bool &NeedInvert, 1623 const SDLoc &dl) { 1624 MVT OpVT = LHS.getSimpleValueType(); 1625 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1626 NeedInvert = false; 1627 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1628 default: llvm_unreachable("Unknown condition code action!"); 1629 case TargetLowering::Legal: 1630 // Nothing to do. 1631 break; 1632 case TargetLowering::Expand: { 1633 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 1634 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1635 std::swap(LHS, RHS); 1636 CC = DAG.getCondCode(InvCC); 1637 return true; 1638 } 1639 // Swapping operands didn't work. Try inverting the condition. 1640 bool NeedSwap = false; 1641 InvCC = getSetCCInverse(CCCode, OpVT.isInteger()); 1642 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1643 // If inverting the condition is not enough, try swapping operands 1644 // on top of it. 1645 InvCC = ISD::getSetCCSwappedOperands(InvCC); 1646 NeedSwap = true; 1647 } 1648 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1649 CC = DAG.getCondCode(InvCC); 1650 NeedInvert = true; 1651 if (NeedSwap) 1652 std::swap(LHS, RHS); 1653 return true; 1654 } 1655 1656 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1657 unsigned Opc = 0; 1658 switch (CCCode) { 1659 default: llvm_unreachable("Don't know how to expand this condition!"); 1660 case ISD::SETO: 1661 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) 1662 && "If SETO is expanded, SETOEQ must be legal!"); 1663 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; 1664 case ISD::SETUO: 1665 assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT) 1666 && "If SETUO is expanded, SETUNE must be legal!"); 1667 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break; 1668 case ISD::SETOEQ: 1669 case ISD::SETOGT: 1670 case ISD::SETOGE: 1671 case ISD::SETOLT: 1672 case ISD::SETOLE: 1673 case ISD::SETONE: 1674 case ISD::SETUEQ: 1675 case ISD::SETUNE: 1676 case ISD::SETUGT: 1677 case ISD::SETUGE: 1678 case ISD::SETULT: 1679 case ISD::SETULE: 1680 // If we are floating point, assign and break, otherwise fall through. 1681 if (!OpVT.isInteger()) { 1682 // We can use the 4th bit to tell if we are the unordered 1683 // or ordered version of the opcode. 1684 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 1685 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 1686 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 1687 break; 1688 } 1689 // Fallthrough if we are unsigned integer. 1690 LLVM_FALLTHROUGH; 1691 case ISD::SETLE: 1692 case ISD::SETGT: 1693 case ISD::SETGE: 1694 case ISD::SETLT: 1695 case ISD::SETNE: 1696 case ISD::SETEQ: 1697 // If all combinations of inverting the condition and swapping operands 1698 // didn't work then we have no means to expand the condition. 1699 llvm_unreachable("Don't know how to expand this condition!"); 1700 } 1701 1702 SDValue SetCC1, SetCC2; 1703 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 1704 // If we aren't the ordered or unorder operation, 1705 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 1706 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); 1707 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); 1708 } else { 1709 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 1710 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1); 1711 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2); 1712 } 1713 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1714 RHS = SDValue(); 1715 CC = SDValue(); 1716 return true; 1717 } 1718 } 1719 return false; 1720 } 1721 1722 /// Emit a store/load combination to the stack. This stores 1723 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1724 /// a load from the stack slot to DestVT, extending it if needed. 1725 /// The resultant code need not be legal. 1726 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1727 EVT DestVT, const SDLoc &dl) { 1728 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode()); 1729 } 1730 1731 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1732 EVT DestVT, const SDLoc &dl, 1733 SDValue Chain) { 1734 // Create the stack frame object. 1735 unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment( 1736 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1737 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 1738 1739 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1740 int SPFI = StackPtrFI->getIndex(); 1741 MachinePointerInfo PtrInfo = 1742 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1743 1744 unsigned SrcSize = SrcOp.getValueSizeInBits(); 1745 unsigned SlotSize = SlotVT.getSizeInBits(); 1746 unsigned DestSize = DestVT.getSizeInBits(); 1747 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1748 unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType); 1749 1750 // Emit a store to the stack slot. Use a truncstore if the input value is 1751 // later than DestVT. 1752 SDValue Store; 1753 1754 if (SrcSize > SlotSize) 1755 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo, 1756 SlotVT, SrcAlign); 1757 else { 1758 assert(SrcSize == SlotSize && "Invalid store"); 1759 Store = 1760 DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1761 } 1762 1763 // Result is a load from the stack slot. 1764 if (SlotSize == DestSize) 1765 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1766 1767 assert(SlotSize < DestSize && "Unknown extension!"); 1768 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1769 DestAlign); 1770 } 1771 1772 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1773 SDLoc dl(Node); 1774 // Create a vector sized/aligned stack slot, store the value to element #0, 1775 // then load the whole vector back out. 1776 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1777 1778 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1779 int SPFI = StackPtrFI->getIndex(); 1780 1781 SDValue Ch = DAG.getTruncStore( 1782 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1783 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1784 Node->getValueType(0).getVectorElementType()); 1785 return DAG.getLoad( 1786 Node->getValueType(0), dl, Ch, StackPtr, 1787 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1788 } 1789 1790 static bool 1791 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1792 const TargetLowering &TLI, SDValue &Res) { 1793 unsigned NumElems = Node->getNumOperands(); 1794 SDLoc dl(Node); 1795 EVT VT = Node->getValueType(0); 1796 1797 // Try to group the scalars into pairs, shuffle the pairs together, then 1798 // shuffle the pairs of pairs together, etc. until the vector has 1799 // been built. This will work only if all of the necessary shuffle masks 1800 // are legal. 1801 1802 // We do this in two phases; first to check the legality of the shuffles, 1803 // and next, assuming that all shuffles are legal, to create the new nodes. 1804 for (int Phase = 0; Phase < 2; ++Phase) { 1805 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1806 NewIntermedVals; 1807 for (unsigned i = 0; i < NumElems; ++i) { 1808 SDValue V = Node->getOperand(i); 1809 if (V.isUndef()) 1810 continue; 1811 1812 SDValue Vec; 1813 if (Phase) 1814 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1815 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1816 } 1817 1818 while (IntermedVals.size() > 2) { 1819 NewIntermedVals.clear(); 1820 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1821 // This vector and the next vector are shuffled together (simply to 1822 // append the one to the other). 1823 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1824 1825 SmallVector<int, 16> FinalIndices; 1826 FinalIndices.reserve(IntermedVals[i].second.size() + 1827 IntermedVals[i+1].second.size()); 1828 1829 int k = 0; 1830 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1831 ++j, ++k) { 1832 ShuffleVec[k] = j; 1833 FinalIndices.push_back(IntermedVals[i].second[j]); 1834 } 1835 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1836 ++j, ++k) { 1837 ShuffleVec[k] = NumElems + j; 1838 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1839 } 1840 1841 SDValue Shuffle; 1842 if (Phase) 1843 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1844 IntermedVals[i+1].first, 1845 ShuffleVec); 1846 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1847 return false; 1848 NewIntermedVals.push_back( 1849 std::make_pair(Shuffle, std::move(FinalIndices))); 1850 } 1851 1852 // If we had an odd number of defined values, then append the last 1853 // element to the array of new vectors. 1854 if ((IntermedVals.size() & 1) != 0) 1855 NewIntermedVals.push_back(IntermedVals.back()); 1856 1857 IntermedVals.swap(NewIntermedVals); 1858 } 1859 1860 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1861 "Invalid number of intermediate vectors"); 1862 SDValue Vec1 = IntermedVals[0].first; 1863 SDValue Vec2; 1864 if (IntermedVals.size() > 1) 1865 Vec2 = IntermedVals[1].first; 1866 else if (Phase) 1867 Vec2 = DAG.getUNDEF(VT); 1868 1869 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1870 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1871 ShuffleVec[IntermedVals[0].second[i]] = i; 1872 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1873 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1874 1875 if (Phase) 1876 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1877 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1878 return false; 1879 } 1880 1881 return true; 1882 } 1883 1884 /// Expand a BUILD_VECTOR node on targets that don't 1885 /// support the operation, but do support the resultant vector type. 1886 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1887 unsigned NumElems = Node->getNumOperands(); 1888 SDValue Value1, Value2; 1889 SDLoc dl(Node); 1890 EVT VT = Node->getValueType(0); 1891 EVT OpVT = Node->getOperand(0).getValueType(); 1892 EVT EltVT = VT.getVectorElementType(); 1893 1894 // If the only non-undef value is the low element, turn this into a 1895 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1896 bool isOnlyLowElement = true; 1897 bool MoreThanTwoValues = false; 1898 bool isConstant = true; 1899 for (unsigned i = 0; i < NumElems; ++i) { 1900 SDValue V = Node->getOperand(i); 1901 if (V.isUndef()) 1902 continue; 1903 if (i > 0) 1904 isOnlyLowElement = false; 1905 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1906 isConstant = false; 1907 1908 if (!Value1.getNode()) { 1909 Value1 = V; 1910 } else if (!Value2.getNode()) { 1911 if (V != Value1) 1912 Value2 = V; 1913 } else if (V != Value1 && V != Value2) { 1914 MoreThanTwoValues = true; 1915 } 1916 } 1917 1918 if (!Value1.getNode()) 1919 return DAG.getUNDEF(VT); 1920 1921 if (isOnlyLowElement) 1922 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1923 1924 // If all elements are constants, create a load from the constant pool. 1925 if (isConstant) { 1926 SmallVector<Constant*, 16> CV; 1927 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1928 if (ConstantFPSDNode *V = 1929 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1930 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1931 } else if (ConstantSDNode *V = 1932 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1933 if (OpVT==EltVT) 1934 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1935 else { 1936 // If OpVT and EltVT don't match, EltVT is not legal and the 1937 // element values have been promoted/truncated earlier. Undo this; 1938 // we don't want a v16i8 to become a v16i32 for example. 1939 const ConstantInt *CI = V->getConstantIntValue(); 1940 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1941 CI->getZExtValue())); 1942 } 1943 } else { 1944 assert(Node->getOperand(i).isUndef()); 1945 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1946 CV.push_back(UndefValue::get(OpNTy)); 1947 } 1948 } 1949 Constant *CP = ConstantVector::get(CV); 1950 SDValue CPIdx = 1951 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 1952 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 1953 return DAG.getLoad( 1954 VT, dl, DAG.getEntryNode(), CPIdx, 1955 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 1956 Alignment); 1957 } 1958 1959 SmallSet<SDValue, 16> DefinedValues; 1960 for (unsigned i = 0; i < NumElems; ++i) { 1961 if (Node->getOperand(i).isUndef()) 1962 continue; 1963 DefinedValues.insert(Node->getOperand(i)); 1964 } 1965 1966 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 1967 if (!MoreThanTwoValues) { 1968 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1969 for (unsigned i = 0; i < NumElems; ++i) { 1970 SDValue V = Node->getOperand(i); 1971 if (V.isUndef()) 1972 continue; 1973 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1974 } 1975 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1976 // Get the splatted value into the low element of a vector register. 1977 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1978 SDValue Vec2; 1979 if (Value2.getNode()) 1980 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 1981 else 1982 Vec2 = DAG.getUNDEF(VT); 1983 1984 // Return shuffle(LowValVec, undef, <0,0,0,0>) 1985 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1986 } 1987 } else { 1988 SDValue Res; 1989 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 1990 return Res; 1991 } 1992 } 1993 1994 // Otherwise, we can't handle this case efficiently. 1995 return ExpandVectorBuildThroughStack(Node); 1996 } 1997 1998 // Expand a node into a call to a libcall. If the result value 1999 // does not fit into a register, return the lo part and set the hi part to the 2000 // by-reg argument. If it does fit into a single register, return the result 2001 // and leave the Hi part unset. 2002 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2003 bool isSigned) { 2004 TargetLowering::ArgListTy Args; 2005 TargetLowering::ArgListEntry Entry; 2006 for (const SDValue &Op : Node->op_values()) { 2007 EVT ArgVT = Op.getValueType(); 2008 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2009 Entry.Node = Op; 2010 Entry.Ty = ArgTy; 2011 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2012 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2013 Args.push_back(Entry); 2014 } 2015 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2016 TLI.getPointerTy(DAG.getDataLayout())); 2017 2018 EVT RetVT = Node->getValueType(0); 2019 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2020 2021 // By default, the input chain to this libcall is the entry node of the 2022 // function. If the libcall is going to be emitted as a tail call then 2023 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2024 // node which is being folded has a non-entry input chain. 2025 SDValue InChain = DAG.getEntryNode(); 2026 2027 // isTailCall may be true since the callee does not reference caller stack 2028 // frame. Check if it's in the right position and that the return types match. 2029 SDValue TCChain = InChain; 2030 const Function &F = DAG.getMachineFunction().getFunction(); 2031 bool isTailCall = 2032 TLI.isInTailCallPosition(DAG, Node, TCChain) && 2033 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 2034 if (isTailCall) 2035 InChain = TCChain; 2036 2037 TargetLowering::CallLoweringInfo CLI(DAG); 2038 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2039 CLI.setDebugLoc(SDLoc(Node)) 2040 .setChain(InChain) 2041 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2042 std::move(Args)) 2043 .setTailCall(isTailCall) 2044 .setSExtResult(signExtend) 2045 .setZExtResult(!signExtend) 2046 .setIsPostTypeLegalization(true); 2047 2048 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2049 2050 if (!CallInfo.second.getNode()) { 2051 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG)); 2052 // It's a tailcall, return the chain (which is the DAG root). 2053 return DAG.getRoot(); 2054 } 2055 2056 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG)); 2057 return CallInfo.first; 2058 } 2059 2060 // Expand a node into a call to a libcall. Similar to 2061 // ExpandLibCall except that the first operand is the in-chain. 2062 std::pair<SDValue, SDValue> 2063 SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC, 2064 SDNode *Node, 2065 bool isSigned) { 2066 SDValue InChain = Node->getOperand(0); 2067 2068 TargetLowering::ArgListTy Args; 2069 TargetLowering::ArgListEntry Entry; 2070 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { 2071 EVT ArgVT = Node->getOperand(i).getValueType(); 2072 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2073 Entry.Node = Node->getOperand(i); 2074 Entry.Ty = ArgTy; 2075 Entry.IsSExt = isSigned; 2076 Entry.IsZExt = !isSigned; 2077 Args.push_back(Entry); 2078 } 2079 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2080 TLI.getPointerTy(DAG.getDataLayout())); 2081 2082 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 2083 2084 TargetLowering::CallLoweringInfo CLI(DAG); 2085 CLI.setDebugLoc(SDLoc(Node)) 2086 .setChain(InChain) 2087 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2088 std::move(Args)) 2089 .setSExtResult(isSigned) 2090 .setZExtResult(!isSigned); 2091 2092 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2093 2094 return CallInfo; 2095 } 2096 2097 SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2098 RTLIB::Libcall Call_F32, 2099 RTLIB::Libcall Call_F64, 2100 RTLIB::Libcall Call_F80, 2101 RTLIB::Libcall Call_F128, 2102 RTLIB::Libcall Call_PPCF128) { 2103 if (Node->isStrictFPOpcode()) 2104 Node = DAG.mutateStrictFPToFP(Node); 2105 2106 RTLIB::Libcall LC; 2107 switch (Node->getSimpleValueType(0).SimpleTy) { 2108 default: llvm_unreachable("Unexpected request for libcall!"); 2109 case MVT::f32: LC = Call_F32; break; 2110 case MVT::f64: LC = Call_F64; break; 2111 case MVT::f80: LC = Call_F80; break; 2112 case MVT::f128: LC = Call_F128; break; 2113 case MVT::ppcf128: LC = Call_PPCF128; break; 2114 } 2115 return ExpandLibCall(LC, Node, false); 2116 } 2117 2118 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2119 RTLIB::Libcall Call_I8, 2120 RTLIB::Libcall Call_I16, 2121 RTLIB::Libcall Call_I32, 2122 RTLIB::Libcall Call_I64, 2123 RTLIB::Libcall Call_I128) { 2124 RTLIB::Libcall LC; 2125 switch (Node->getSimpleValueType(0).SimpleTy) { 2126 default: llvm_unreachable("Unexpected request for libcall!"); 2127 case MVT::i8: LC = Call_I8; break; 2128 case MVT::i16: LC = Call_I16; break; 2129 case MVT::i32: LC = Call_I32; break; 2130 case MVT::i64: LC = Call_I64; break; 2131 case MVT::i128: LC = Call_I128; break; 2132 } 2133 return ExpandLibCall(LC, Node, isSigned); 2134 } 2135 2136 /// Expand the node to a libcall based on first argument type (for instance 2137 /// lround and its variant). 2138 SDValue SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node, 2139 RTLIB::Libcall Call_F32, 2140 RTLIB::Libcall Call_F64, 2141 RTLIB::Libcall Call_F80, 2142 RTLIB::Libcall Call_F128, 2143 RTLIB::Libcall Call_PPCF128) { 2144 RTLIB::Libcall LC; 2145 switch (Node->getOperand(0).getValueType().getSimpleVT().SimpleTy) { 2146 default: llvm_unreachable("Unexpected request for libcall!"); 2147 case MVT::f32: LC = Call_F32; break; 2148 case MVT::f64: LC = Call_F64; break; 2149 case MVT::f80: LC = Call_F80; break; 2150 case MVT::f128: LC = Call_F128; break; 2151 case MVT::ppcf128: LC = Call_PPCF128; break; 2152 } 2153 2154 return ExpandLibCall(LC, Node, false); 2155 } 2156 2157 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2158 void 2159 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2160 SmallVectorImpl<SDValue> &Results) { 2161 unsigned Opcode = Node->getOpcode(); 2162 bool isSigned = Opcode == ISD::SDIVREM; 2163 2164 RTLIB::Libcall LC; 2165 switch (Node->getSimpleValueType(0).SimpleTy) { 2166 default: llvm_unreachable("Unexpected request for libcall!"); 2167 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2168 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2169 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2170 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2171 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2172 } 2173 2174 // The input chain to this libcall is the entry node of the function. 2175 // Legalizing the call will automatically add the previous call to the 2176 // dependence. 2177 SDValue InChain = DAG.getEntryNode(); 2178 2179 EVT RetVT = Node->getValueType(0); 2180 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2181 2182 TargetLowering::ArgListTy Args; 2183 TargetLowering::ArgListEntry Entry; 2184 for (const SDValue &Op : Node->op_values()) { 2185 EVT ArgVT = Op.getValueType(); 2186 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2187 Entry.Node = Op; 2188 Entry.Ty = ArgTy; 2189 Entry.IsSExt = isSigned; 2190 Entry.IsZExt = !isSigned; 2191 Args.push_back(Entry); 2192 } 2193 2194 // Also pass the return address of the remainder. 2195 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2196 Entry.Node = FIPtr; 2197 Entry.Ty = RetTy->getPointerTo(); 2198 Entry.IsSExt = isSigned; 2199 Entry.IsZExt = !isSigned; 2200 Args.push_back(Entry); 2201 2202 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2203 TLI.getPointerTy(DAG.getDataLayout())); 2204 2205 SDLoc dl(Node); 2206 TargetLowering::CallLoweringInfo CLI(DAG); 2207 CLI.setDebugLoc(dl) 2208 .setChain(InChain) 2209 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2210 std::move(Args)) 2211 .setSExtResult(isSigned) 2212 .setZExtResult(!isSigned); 2213 2214 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2215 2216 // Remainder is loaded back from the stack frame. 2217 SDValue Rem = 2218 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2219 Results.push_back(CallInfo.first); 2220 Results.push_back(Rem); 2221 } 2222 2223 /// Return true if sincos libcall is available. 2224 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2225 RTLIB::Libcall LC; 2226 switch (Node->getSimpleValueType(0).SimpleTy) { 2227 default: llvm_unreachable("Unexpected request for libcall!"); 2228 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2229 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2230 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2231 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2232 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2233 } 2234 return TLI.getLibcallName(LC) != nullptr; 2235 } 2236 2237 /// Only issue sincos libcall if both sin and cos are needed. 2238 static bool useSinCos(SDNode *Node) { 2239 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2240 ? ISD::FCOS : ISD::FSIN; 2241 2242 SDValue Op0 = Node->getOperand(0); 2243 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2244 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2245 SDNode *User = *UI; 2246 if (User == Node) 2247 continue; 2248 // The other user might have been turned into sincos already. 2249 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2250 return true; 2251 } 2252 return false; 2253 } 2254 2255 /// Issue libcalls to sincos to compute sin / cos pairs. 2256 void 2257 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2258 SmallVectorImpl<SDValue> &Results) { 2259 RTLIB::Libcall LC; 2260 switch (Node->getSimpleValueType(0).SimpleTy) { 2261 default: llvm_unreachable("Unexpected request for libcall!"); 2262 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2263 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2264 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2265 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2266 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2267 } 2268 2269 // The input chain to this libcall is the entry node of the function. 2270 // Legalizing the call will automatically add the previous call to the 2271 // dependence. 2272 SDValue InChain = DAG.getEntryNode(); 2273 2274 EVT RetVT = Node->getValueType(0); 2275 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2276 2277 TargetLowering::ArgListTy Args; 2278 TargetLowering::ArgListEntry Entry; 2279 2280 // Pass the argument. 2281 Entry.Node = Node->getOperand(0); 2282 Entry.Ty = RetTy; 2283 Entry.IsSExt = false; 2284 Entry.IsZExt = false; 2285 Args.push_back(Entry); 2286 2287 // Pass the return address of sin. 2288 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2289 Entry.Node = SinPtr; 2290 Entry.Ty = RetTy->getPointerTo(); 2291 Entry.IsSExt = false; 2292 Entry.IsZExt = false; 2293 Args.push_back(Entry); 2294 2295 // Also pass the return address of the cos. 2296 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2297 Entry.Node = CosPtr; 2298 Entry.Ty = RetTy->getPointerTo(); 2299 Entry.IsSExt = false; 2300 Entry.IsZExt = false; 2301 Args.push_back(Entry); 2302 2303 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2304 TLI.getPointerTy(DAG.getDataLayout())); 2305 2306 SDLoc dl(Node); 2307 TargetLowering::CallLoweringInfo CLI(DAG); 2308 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2309 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2310 std::move(Args)); 2311 2312 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2313 2314 Results.push_back( 2315 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2316 Results.push_back( 2317 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2318 } 2319 2320 /// This function is responsible for legalizing a 2321 /// INT_TO_FP operation of the specified operand when the target requests that 2322 /// we expand it. At this point, we know that the result and operand types are 2323 /// legal for the target. 2324 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0, 2325 EVT DestVT, 2326 const SDLoc &dl) { 2327 EVT SrcVT = Op0.getValueType(); 2328 2329 // TODO: Should any fast-math-flags be set for the created nodes? 2330 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2331 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { 2332 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2333 "expansion\n"); 2334 2335 // Get the stack frame index of a 8 byte buffer. 2336 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2337 2338 // word offset constant for Hi/Lo address computation 2339 SDValue WordOff = DAG.getConstant(sizeof(int), dl, 2340 StackSlot.getValueType()); 2341 // set up Hi and Lo (into buffer) address based on endian 2342 SDValue Hi = StackSlot; 2343 SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(), 2344 StackSlot, WordOff); 2345 if (DAG.getDataLayout().isLittleEndian()) 2346 std::swap(Hi, Lo); 2347 2348 // if signed map to unsigned space 2349 SDValue Op0Mapped; 2350 if (isSigned) { 2351 // constant used to invert sign bit (signed to unsigned mapping) 2352 SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32); 2353 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); 2354 } else { 2355 Op0Mapped = Op0; 2356 } 2357 // store the lo of the constructed double - based on integer input 2358 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo, 2359 MachinePointerInfo()); 2360 // initial hi portion of constructed double 2361 SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2362 // store the hi of the constructed double - biased exponent 2363 SDValue Store2 = 2364 DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo()); 2365 // load the constructed double 2366 SDValue Load = 2367 DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo()); 2368 // FP constant to bias correct the final result 2369 SDValue Bias = DAG.getConstantFP(isSigned ? 2370 BitsToDouble(0x4330000080000000ULL) : 2371 BitsToDouble(0x4330000000000000ULL), 2372 dl, MVT::f64); 2373 // subtract the bias 2374 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2375 // final result 2376 SDValue Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); 2377 return Result; 2378 } 2379 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2380 // Code below here assumes !isSigned without checking again. 2381 2382 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2383 2384 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, 2385 DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2386 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2387 Four = DAG.getIntPtrConstant(4, dl); 2388 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2389 SignSet, Four, Zero); 2390 2391 // If the sign bit of the integer is set, the large number will be treated 2392 // as a negative number. To counteract this, the dynamic code adds an 2393 // offset depending on the data type. 2394 uint64_t FF; 2395 switch (SrcVT.getSimpleVT().SimpleTy) { 2396 default: llvm_unreachable("Unsupported integer type!"); 2397 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2398 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2399 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2400 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2401 } 2402 if (DAG.getDataLayout().isLittleEndian()) 2403 FF <<= 32; 2404 Constant *FudgeFactor = ConstantInt::get( 2405 Type::getInt64Ty(*DAG.getContext()), FF); 2406 2407 SDValue CPIdx = 2408 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2409 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2410 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2411 Alignment = std::min(Alignment, 4u); 2412 SDValue FudgeInReg; 2413 if (DestVT == MVT::f32) 2414 FudgeInReg = DAG.getLoad( 2415 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2416 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2417 Alignment); 2418 else { 2419 SDValue Load = DAG.getExtLoad( 2420 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2421 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2422 Alignment); 2423 HandleSDNode Handle(Load); 2424 LegalizeOp(Load.getNode()); 2425 FudgeInReg = Handle.getValue(); 2426 } 2427 2428 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2429 } 2430 2431 /// This function is responsible for legalizing a 2432 /// *INT_TO_FP operation of the specified operand when the target requests that 2433 /// we promote it. At this point, we know that the result and operand types are 2434 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2435 /// operation that takes a larger input. 2436 SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, 2437 bool isSigned, 2438 const SDLoc &dl) { 2439 // First step, figure out the appropriate *INT_TO_FP operation to use. 2440 EVT NewInTy = LegalOp.getValueType(); 2441 2442 unsigned OpToUse = 0; 2443 2444 // Scan for the appropriate larger type to use. 2445 while (true) { 2446 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2447 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2448 2449 // If the target supports SINT_TO_FP of this type, use it. 2450 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { 2451 OpToUse = ISD::SINT_TO_FP; 2452 break; 2453 } 2454 if (isSigned) continue; 2455 2456 // If the target supports UINT_TO_FP of this type, use it. 2457 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { 2458 OpToUse = ISD::UINT_TO_FP; 2459 break; 2460 } 2461 2462 // Otherwise, try a larger type. 2463 } 2464 2465 // Okay, we found the operation and type to use. Zero extend our input to the 2466 // desired type then run the operation on it. 2467 return DAG.getNode(OpToUse, dl, DestVT, 2468 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2469 dl, NewInTy, LegalOp)); 2470 } 2471 2472 /// This function is responsible for legalizing a 2473 /// FP_TO_*INT operation of the specified operand when the target requests that 2474 /// we promote it. At this point, we know that the result and operand types are 2475 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2476 /// operation that returns a larger result. 2477 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, 2478 bool isSigned, 2479 const SDLoc &dl) { 2480 // First step, figure out the appropriate FP_TO*INT operation to use. 2481 EVT NewOutTy = DestVT; 2482 2483 unsigned OpToUse = 0; 2484 2485 // Scan for the appropriate larger type to use. 2486 while (true) { 2487 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2488 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2489 2490 // A larger signed type can hold all unsigned values of the requested type, 2491 // so using FP_TO_SINT is valid 2492 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { 2493 OpToUse = ISD::FP_TO_SINT; 2494 break; 2495 } 2496 2497 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2498 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { 2499 OpToUse = ISD::FP_TO_UINT; 2500 break; 2501 } 2502 2503 // Otherwise, try a larger type. 2504 } 2505 2506 // Okay, we found the operation and type to use. 2507 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2508 2509 // Truncate the result of the extended FP_TO_*INT operation to the desired 2510 // size. 2511 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2512 } 2513 2514 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts. 2515 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) { 2516 EVT VT = Op.getValueType(); 2517 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2518 unsigned Sz = VT.getScalarSizeInBits(); 2519 2520 SDValue Tmp, Tmp2, Tmp3; 2521 2522 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 2523 // and finally the i1 pairs. 2524 // TODO: We can easily support i4/i2 legal types if any target ever does. 2525 if (Sz >= 8 && isPowerOf2_32(Sz)) { 2526 // Create the masks - repeating the pattern every byte. 2527 APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0)); 2528 APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC)); 2529 APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA)); 2530 APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 2531 APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33)); 2532 APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55)); 2533 2534 // BSWAP if the type is wider than a single byte. 2535 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 2536 2537 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) 2538 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); 2539 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); 2540 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT)); 2541 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 2542 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2543 2544 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) 2545 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); 2546 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); 2547 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT)); 2548 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 2549 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2550 2551 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) 2552 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); 2553 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); 2554 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT)); 2555 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 2556 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2557 return Tmp; 2558 } 2559 2560 Tmp = DAG.getConstant(0, dl, VT); 2561 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 2562 if (I < J) 2563 Tmp2 = 2564 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 2565 else 2566 Tmp2 = 2567 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 2568 2569 APInt Shift(Sz, 1); 2570 Shift <<= J; 2571 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 2572 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 2573 } 2574 2575 return Tmp; 2576 } 2577 2578 /// Open code the operations for BSWAP of the specified operation. 2579 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) { 2580 EVT VT = Op.getValueType(); 2581 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2582 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2583 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 2584 default: llvm_unreachable("Unhandled Expand type in BSWAP!"); 2585 case MVT::i16: 2586 // Use a rotate by 8. This can be further expanded if necessary. 2587 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2588 case MVT::i32: 2589 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2590 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2591 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2592 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2593 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2594 DAG.getConstant(0xFF0000, dl, VT)); 2595 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 2596 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2597 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2598 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2599 case MVT::i64: 2600 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2601 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2602 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2603 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2604 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2605 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2606 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2607 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2608 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 2609 DAG.getConstant(255ULL<<48, dl, VT)); 2610 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 2611 DAG.getConstant(255ULL<<40, dl, VT)); 2612 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 2613 DAG.getConstant(255ULL<<32, dl, VT)); 2614 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 2615 DAG.getConstant(255ULL<<24, dl, VT)); 2616 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2617 DAG.getConstant(255ULL<<16, dl, VT)); 2618 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 2619 DAG.getConstant(255ULL<<8 , dl, VT)); 2620 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2621 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2622 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2623 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2624 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2625 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2626 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2627 } 2628 } 2629 2630 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2631 LLVM_DEBUG(dbgs() << "Trying to expand node\n"); 2632 SmallVector<SDValue, 8> Results; 2633 SDLoc dl(Node); 2634 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2635 bool NeedInvert; 2636 switch (Node->getOpcode()) { 2637 case ISD::ABS: 2638 if (TLI.expandABS(Node, Tmp1, DAG)) 2639 Results.push_back(Tmp1); 2640 break; 2641 case ISD::CTPOP: 2642 if (TLI.expandCTPOP(Node, Tmp1, DAG)) 2643 Results.push_back(Tmp1); 2644 break; 2645 case ISD::CTLZ: 2646 case ISD::CTLZ_ZERO_UNDEF: 2647 if (TLI.expandCTLZ(Node, Tmp1, DAG)) 2648 Results.push_back(Tmp1); 2649 break; 2650 case ISD::CTTZ: 2651 case ISD::CTTZ_ZERO_UNDEF: 2652 if (TLI.expandCTTZ(Node, Tmp1, DAG)) 2653 Results.push_back(Tmp1); 2654 break; 2655 case ISD::BITREVERSE: 2656 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl)); 2657 break; 2658 case ISD::BSWAP: 2659 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2660 break; 2661 case ISD::FRAMEADDR: 2662 case ISD::RETURNADDR: 2663 case ISD::FRAME_TO_ARGS_OFFSET: 2664 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2665 break; 2666 case ISD::EH_DWARF_CFA: { 2667 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 2668 TLI.getPointerTy(DAG.getDataLayout())); 2669 SDValue Offset = DAG.getNode(ISD::ADD, dl, 2670 CfaArg.getValueType(), 2671 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 2672 CfaArg.getValueType()), 2673 CfaArg); 2674 SDValue FA = DAG.getNode( 2675 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 2676 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2677 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 2678 FA, Offset)); 2679 break; 2680 } 2681 case ISD::FLT_ROUNDS_: 2682 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2683 break; 2684 case ISD::EH_RETURN: 2685 case ISD::EH_LABEL: 2686 case ISD::PREFETCH: 2687 case ISD::VAEND: 2688 case ISD::EH_SJLJ_LONGJMP: 2689 // If the target didn't expand these, there's nothing to do, so just 2690 // preserve the chain and be done. 2691 Results.push_back(Node->getOperand(0)); 2692 break; 2693 case ISD::READCYCLECOUNTER: 2694 // If the target didn't expand this, just return 'zero' and preserve the 2695 // chain. 2696 Results.append(Node->getNumValues() - 1, 2697 DAG.getConstant(0, dl, Node->getValueType(0))); 2698 Results.push_back(Node->getOperand(0)); 2699 break; 2700 case ISD::EH_SJLJ_SETJMP: 2701 // If the target didn't expand this, just return 'zero' and preserve the 2702 // chain. 2703 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2704 Results.push_back(Node->getOperand(0)); 2705 break; 2706 case ISD::ATOMIC_LOAD: { 2707 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2708 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2709 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2710 SDValue Swap = DAG.getAtomicCmpSwap( 2711 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2712 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2713 cast<AtomicSDNode>(Node)->getMemOperand()); 2714 Results.push_back(Swap.getValue(0)); 2715 Results.push_back(Swap.getValue(1)); 2716 break; 2717 } 2718 case ISD::ATOMIC_STORE: { 2719 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2720 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2721 cast<AtomicSDNode>(Node)->getMemoryVT(), 2722 Node->getOperand(0), 2723 Node->getOperand(1), Node->getOperand(2), 2724 cast<AtomicSDNode>(Node)->getMemOperand()); 2725 Results.push_back(Swap.getValue(1)); 2726 break; 2727 } 2728 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 2729 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 2730 // splits out the success value as a comparison. Expanding the resulting 2731 // ATOMIC_CMP_SWAP will produce a libcall. 2732 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2733 SDValue Res = DAG.getAtomicCmpSwap( 2734 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2735 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 2736 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 2737 2738 SDValue ExtRes = Res; 2739 SDValue LHS = Res; 2740 SDValue RHS = Node->getOperand(1); 2741 2742 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 2743 EVT OuterType = Node->getValueType(0); 2744 switch (TLI.getExtendForAtomicOps()) { 2745 case ISD::SIGN_EXTEND: 2746 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 2747 DAG.getValueType(AtomicType)); 2748 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 2749 Node->getOperand(2), DAG.getValueType(AtomicType)); 2750 ExtRes = LHS; 2751 break; 2752 case ISD::ZERO_EXTEND: 2753 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 2754 DAG.getValueType(AtomicType)); 2755 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2756 ExtRes = LHS; 2757 break; 2758 case ISD::ANY_EXTEND: 2759 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 2760 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2761 break; 2762 default: 2763 llvm_unreachable("Invalid atomic op extension"); 2764 } 2765 2766 SDValue Success = 2767 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 2768 2769 Results.push_back(ExtRes.getValue(0)); 2770 Results.push_back(Success); 2771 Results.push_back(Res.getValue(1)); 2772 break; 2773 } 2774 case ISD::DYNAMIC_STACKALLOC: 2775 ExpandDYNAMIC_STACKALLOC(Node, Results); 2776 break; 2777 case ISD::MERGE_VALUES: 2778 for (unsigned i = 0; i < Node->getNumValues(); i++) 2779 Results.push_back(Node->getOperand(i)); 2780 break; 2781 case ISD::UNDEF: { 2782 EVT VT = Node->getValueType(0); 2783 if (VT.isInteger()) 2784 Results.push_back(DAG.getConstant(0, dl, VT)); 2785 else { 2786 assert(VT.isFloatingPoint() && "Unknown value type!"); 2787 Results.push_back(DAG.getConstantFP(0, dl, VT)); 2788 } 2789 break; 2790 } 2791 case ISD::STRICT_FP_ROUND: 2792 // This expansion does not honor the "strict" properties anyway, 2793 // so prefer falling back to the non-strict operation if legal. 2794 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2795 Node->getValueType(0)) 2796 == TargetLowering::Legal) 2797 break; 2798 Tmp1 = EmitStackConvert(Node->getOperand(1), 2799 Node->getValueType(0), 2800 Node->getValueType(0), dl, Node->getOperand(0)); 2801 ReplaceNode(Node, Tmp1.getNode()); 2802 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n"); 2803 return true; 2804 case ISD::FP_ROUND: 2805 case ISD::BITCAST: 2806 Tmp1 = EmitStackConvert(Node->getOperand(0), 2807 Node->getValueType(0), 2808 Node->getValueType(0), dl); 2809 Results.push_back(Tmp1); 2810 break; 2811 case ISD::STRICT_FP_EXTEND: 2812 // This expansion does not honor the "strict" properties anyway, 2813 // so prefer falling back to the non-strict operation if legal. 2814 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2815 Node->getValueType(0)) 2816 == TargetLowering::Legal) 2817 break; 2818 Tmp1 = EmitStackConvert(Node->getOperand(1), 2819 Node->getOperand(1).getValueType(), 2820 Node->getValueType(0), dl, Node->getOperand(0)); 2821 ReplaceNode(Node, Tmp1.getNode()); 2822 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n"); 2823 return true; 2824 case ISD::FP_EXTEND: 2825 Tmp1 = EmitStackConvert(Node->getOperand(0), 2826 Node->getOperand(0).getValueType(), 2827 Node->getValueType(0), dl); 2828 Results.push_back(Tmp1); 2829 break; 2830 case ISD::SIGN_EXTEND_INREG: { 2831 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2832 EVT VT = Node->getValueType(0); 2833 2834 // An in-register sign-extend of a boolean is a negation: 2835 // 'true' (1) sign-extended is -1. 2836 // 'false' (0) sign-extended is 0. 2837 // However, we must mask the high bits of the source operand because the 2838 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 2839 2840 // TODO: Do this for vectors too? 2841 if (ExtraVT.getSizeInBits() == 1) { 2842 SDValue One = DAG.getConstant(1, dl, VT); 2843 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 2844 SDValue Zero = DAG.getConstant(0, dl, VT); 2845 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 2846 Results.push_back(Neg); 2847 break; 2848 } 2849 2850 // NOTE: we could fall back on load/store here too for targets without 2851 // SRA. However, it is doubtful that any exist. 2852 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2853 unsigned BitsDiff = VT.getScalarSizeInBits() - 2854 ExtraVT.getScalarSizeInBits(); 2855 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 2856 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 2857 Node->getOperand(0), ShiftCst); 2858 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 2859 Results.push_back(Tmp1); 2860 break; 2861 } 2862 case ISD::UINT_TO_FP: 2863 if (TLI.expandUINT_TO_FP(Node, Tmp1, DAG)) { 2864 Results.push_back(Tmp1); 2865 break; 2866 } 2867 LLVM_FALLTHROUGH; 2868 case ISD::SINT_TO_FP: 2869 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, 2870 Node->getOperand(0), Node->getValueType(0), dl); 2871 Results.push_back(Tmp1); 2872 break; 2873 case ISD::FP_TO_SINT: 2874 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 2875 Results.push_back(Tmp1); 2876 break; 2877 case ISD::STRICT_FP_TO_SINT: 2878 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) { 2879 ReplaceNode(Node, Tmp1.getNode()); 2880 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n"); 2881 return true; 2882 } 2883 break; 2884 case ISD::FP_TO_UINT: 2885 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) 2886 Results.push_back(Tmp1); 2887 break; 2888 case ISD::STRICT_FP_TO_UINT: 2889 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) { 2890 // Relink the chain. 2891 DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2); 2892 // Replace the new UINT result. 2893 ReplaceNodeWithValue(SDValue(Node, 0), Tmp1); 2894 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n"); 2895 return true; 2896 } 2897 break; 2898 case ISD::LROUND: 2899 Results.push_back(ExpandArgFPLibCall(Node, RTLIB::LROUND_F32, 2900 RTLIB::LROUND_F64, RTLIB::LROUND_F80, 2901 RTLIB::LROUND_F128, 2902 RTLIB::LROUND_PPCF128)); 2903 break; 2904 case ISD::LLROUND: 2905 Results.push_back(ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32, 2906 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, 2907 RTLIB::LLROUND_F128, 2908 RTLIB::LLROUND_PPCF128)); 2909 break; 2910 case ISD::LRINT: 2911 Results.push_back(ExpandArgFPLibCall(Node, RTLIB::LRINT_F32, 2912 RTLIB::LRINT_F64, RTLIB::LRINT_F80, 2913 RTLIB::LRINT_F128, 2914 RTLIB::LRINT_PPCF128)); 2915 break; 2916 case ISD::LLRINT: 2917 Results.push_back(ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32, 2918 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80, 2919 RTLIB::LLRINT_F128, 2920 RTLIB::LLRINT_PPCF128)); 2921 break; 2922 case ISD::VAARG: 2923 Results.push_back(DAG.expandVAArg(Node)); 2924 Results.push_back(Results[0].getValue(1)); 2925 break; 2926 case ISD::VACOPY: 2927 Results.push_back(DAG.expandVACopy(Node)); 2928 break; 2929 case ISD::EXTRACT_VECTOR_ELT: 2930 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 2931 // This must be an access of the only element. Return it. 2932 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 2933 Node->getOperand(0)); 2934 else 2935 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 2936 Results.push_back(Tmp1); 2937 break; 2938 case ISD::EXTRACT_SUBVECTOR: 2939 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 2940 break; 2941 case ISD::INSERT_SUBVECTOR: 2942 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 2943 break; 2944 case ISD::CONCAT_VECTORS: 2945 Results.push_back(ExpandVectorBuildThroughStack(Node)); 2946 break; 2947 case ISD::SCALAR_TO_VECTOR: 2948 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 2949 break; 2950 case ISD::INSERT_VECTOR_ELT: 2951 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 2952 Node->getOperand(1), 2953 Node->getOperand(2), dl)); 2954 break; 2955 case ISD::VECTOR_SHUFFLE: { 2956 SmallVector<int, 32> NewMask; 2957 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 2958 2959 EVT VT = Node->getValueType(0); 2960 EVT EltVT = VT.getVectorElementType(); 2961 SDValue Op0 = Node->getOperand(0); 2962 SDValue Op1 = Node->getOperand(1); 2963 if (!TLI.isTypeLegal(EltVT)) { 2964 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 2965 2966 // BUILD_VECTOR operands are allowed to be wider than the element type. 2967 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 2968 // it. 2969 if (NewEltVT.bitsLT(EltVT)) { 2970 // Convert shuffle node. 2971 // If original node was v4i64 and the new EltVT is i32, 2972 // cast operands to v8i32 and re-build the mask. 2973 2974 // Calculate new VT, the size of the new VT should be equal to original. 2975 EVT NewVT = 2976 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 2977 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 2978 assert(NewVT.bitsEq(VT)); 2979 2980 // cast operands to new VT 2981 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 2982 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 2983 2984 // Convert the shuffle mask 2985 unsigned int factor = 2986 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 2987 2988 // EltVT gets smaller 2989 assert(factor > 0); 2990 2991 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 2992 if (Mask[i] < 0) { 2993 for (unsigned fi = 0; fi < factor; ++fi) 2994 NewMask.push_back(Mask[i]); 2995 } 2996 else { 2997 for (unsigned fi = 0; fi < factor; ++fi) 2998 NewMask.push_back(Mask[i]*factor+fi); 2999 } 3000 } 3001 Mask = NewMask; 3002 VT = NewVT; 3003 } 3004 EltVT = NewEltVT; 3005 } 3006 unsigned NumElems = VT.getVectorNumElements(); 3007 SmallVector<SDValue, 16> Ops; 3008 for (unsigned i = 0; i != NumElems; ++i) { 3009 if (Mask[i] < 0) { 3010 Ops.push_back(DAG.getUNDEF(EltVT)); 3011 continue; 3012 } 3013 unsigned Idx = Mask[i]; 3014 if (Idx < NumElems) 3015 Ops.push_back(DAG.getNode( 3016 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3017 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())))); 3018 else 3019 Ops.push_back(DAG.getNode( 3020 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3021 DAG.getConstant(Idx - NumElems, dl, 3022 TLI.getVectorIdxTy(DAG.getDataLayout())))); 3023 } 3024 3025 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 3026 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3027 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3028 Results.push_back(Tmp1); 3029 break; 3030 } 3031 case ISD::EXTRACT_ELEMENT: { 3032 EVT OpTy = Node->getOperand(0).getValueType(); 3033 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3034 // 1 -> Hi 3035 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3036 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3037 TLI.getShiftAmountTy( 3038 Node->getOperand(0).getValueType(), 3039 DAG.getDataLayout()))); 3040 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3041 } else { 3042 // 0 -> Lo 3043 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3044 Node->getOperand(0)); 3045 } 3046 Results.push_back(Tmp1); 3047 break; 3048 } 3049 case ISD::STACKSAVE: 3050 // Expand to CopyFromReg if the target set 3051 // StackPointerRegisterToSaveRestore. 3052 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3053 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3054 Node->getValueType(0))); 3055 Results.push_back(Results[0].getValue(1)); 3056 } else { 3057 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3058 Results.push_back(Node->getOperand(0)); 3059 } 3060 break; 3061 case ISD::STACKRESTORE: 3062 // Expand to CopyToReg if the target set 3063 // StackPointerRegisterToSaveRestore. 3064 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3065 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3066 Node->getOperand(1))); 3067 } else { 3068 Results.push_back(Node->getOperand(0)); 3069 } 3070 break; 3071 case ISD::GET_DYNAMIC_AREA_OFFSET: 3072 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3073 Results.push_back(Results[0].getValue(0)); 3074 break; 3075 case ISD::FCOPYSIGN: 3076 Results.push_back(ExpandFCOPYSIGN(Node)); 3077 break; 3078 case ISD::FNEG: 3079 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3080 Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0)); 3081 // TODO: If FNEG has fast-math-flags, propagate them to the FSUB. 3082 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, 3083 Node->getOperand(0)); 3084 Results.push_back(Tmp1); 3085 break; 3086 case ISD::FABS: 3087 Results.push_back(ExpandFABS(Node)); 3088 break; 3089 case ISD::SMIN: 3090 case ISD::SMAX: 3091 case ISD::UMIN: 3092 case ISD::UMAX: { 3093 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3094 ISD::CondCode Pred; 3095 switch (Node->getOpcode()) { 3096 default: llvm_unreachable("How did we get here?"); 3097 case ISD::SMAX: Pred = ISD::SETGT; break; 3098 case ISD::SMIN: Pred = ISD::SETLT; break; 3099 case ISD::UMAX: Pred = ISD::SETUGT; break; 3100 case ISD::UMIN: Pred = ISD::SETULT; break; 3101 } 3102 Tmp1 = Node->getOperand(0); 3103 Tmp2 = Node->getOperand(1); 3104 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3105 Results.push_back(Tmp1); 3106 break; 3107 } 3108 case ISD::FMINNUM: 3109 case ISD::FMAXNUM: { 3110 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) 3111 Results.push_back(Expanded); 3112 break; 3113 } 3114 case ISD::FSIN: 3115 case ISD::FCOS: { 3116 EVT VT = Node->getValueType(0); 3117 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3118 // fcos which share the same operand and both are used. 3119 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3120 isSinCosLibcallAvailable(Node, TLI)) 3121 && useSinCos(Node)) { 3122 SDVTList VTs = DAG.getVTList(VT, VT); 3123 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3124 if (Node->getOpcode() == ISD::FCOS) 3125 Tmp1 = Tmp1.getValue(1); 3126 Results.push_back(Tmp1); 3127 } 3128 break; 3129 } 3130 case ISD::FMAD: 3131 llvm_unreachable("Illegal fmad should never be formed"); 3132 3133 case ISD::FP16_TO_FP: 3134 if (Node->getValueType(0) != MVT::f32) { 3135 // We can extend to types bigger than f32 in two steps without changing 3136 // the result. Since "f16 -> f32" is much more commonly available, give 3137 // CodeGen the option of emitting that before resorting to a libcall. 3138 SDValue Res = 3139 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3140 Results.push_back( 3141 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3142 } 3143 break; 3144 case ISD::FP_TO_FP16: 3145 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3146 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3147 SDValue Op = Node->getOperand(0); 3148 MVT SVT = Op.getSimpleValueType(); 3149 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3150 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3151 // Under fastmath, we can expand this node into a fround followed by 3152 // a float-half conversion. 3153 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3154 DAG.getIntPtrConstant(0, dl)); 3155 Results.push_back( 3156 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3157 } 3158 } 3159 break; 3160 case ISD::ConstantFP: { 3161 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3162 // Check to see if this FP immediate is already legal. 3163 // If this is a legal constant, turn it into a TargetConstantFP node. 3164 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0), 3165 DAG.getMachineFunction().getFunction().hasOptSize())) 3166 Results.push_back(ExpandConstantFP(CFP, true)); 3167 break; 3168 } 3169 case ISD::Constant: { 3170 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3171 Results.push_back(ExpandConstant(CP)); 3172 break; 3173 } 3174 case ISD::FSUB: { 3175 EVT VT = Node->getValueType(0); 3176 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3177 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3178 const SDNodeFlags Flags = Node->getFlags(); 3179 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3180 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3181 Results.push_back(Tmp1); 3182 } 3183 break; 3184 } 3185 case ISD::SUB: { 3186 EVT VT = Node->getValueType(0); 3187 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3188 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3189 "Don't know how to expand this subtraction!"); 3190 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3191 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, 3192 VT)); 3193 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3194 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3195 break; 3196 } 3197 case ISD::UREM: 3198 case ISD::SREM: { 3199 EVT VT = Node->getValueType(0); 3200 bool isSigned = Node->getOpcode() == ISD::SREM; 3201 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 3202 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3203 Tmp2 = Node->getOperand(0); 3204 Tmp3 = Node->getOperand(1); 3205 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3206 SDVTList VTs = DAG.getVTList(VT, VT); 3207 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); 3208 Results.push_back(Tmp1); 3209 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { 3210 // X % Y -> X-X/Y*Y 3211 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); 3212 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); 3213 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); 3214 Results.push_back(Tmp1); 3215 } 3216 break; 3217 } 3218 case ISD::UDIV: 3219 case ISD::SDIV: { 3220 bool isSigned = Node->getOpcode() == ISD::SDIV; 3221 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3222 EVT VT = Node->getValueType(0); 3223 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3224 SDVTList VTs = DAG.getVTList(VT, VT); 3225 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3226 Node->getOperand(1)); 3227 Results.push_back(Tmp1); 3228 } 3229 break; 3230 } 3231 case ISD::MULHU: 3232 case ISD::MULHS: { 3233 unsigned ExpandOpcode = 3234 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3235 EVT VT = Node->getValueType(0); 3236 SDVTList VTs = DAG.getVTList(VT, VT); 3237 3238 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3239 Node->getOperand(1)); 3240 Results.push_back(Tmp1.getValue(1)); 3241 break; 3242 } 3243 case ISD::UMUL_LOHI: 3244 case ISD::SMUL_LOHI: { 3245 SDValue LHS = Node->getOperand(0); 3246 SDValue RHS = Node->getOperand(1); 3247 MVT VT = LHS.getSimpleValueType(); 3248 unsigned MULHOpcode = 3249 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3250 3251 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3252 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3253 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3254 break; 3255 } 3256 3257 SmallVector<SDValue, 4> Halves; 3258 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3259 assert(TLI.isTypeLegal(HalfType)); 3260 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves, 3261 HalfType, DAG, 3262 TargetLowering::MulExpansionKind::Always)) { 3263 for (unsigned i = 0; i < 2; ++i) { 3264 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3265 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3266 SDValue Shift = DAG.getConstant( 3267 HalfType.getScalarSizeInBits(), dl, 3268 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3269 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3270 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3271 } 3272 break; 3273 } 3274 break; 3275 } 3276 case ISD::MUL: { 3277 EVT VT = Node->getValueType(0); 3278 SDVTList VTs = DAG.getVTList(VT, VT); 3279 // See if multiply or divide can be lowered using two-result operations. 3280 // We just need the low half of the multiply; try both the signed 3281 // and unsigned forms. If the target supports both SMUL_LOHI and 3282 // UMUL_LOHI, form a preference by checking which forms of plain 3283 // MULH it supports. 3284 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3285 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3286 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3287 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3288 unsigned OpToUse = 0; 3289 if (HasSMUL_LOHI && !HasMULHS) { 3290 OpToUse = ISD::SMUL_LOHI; 3291 } else if (HasUMUL_LOHI && !HasMULHU) { 3292 OpToUse = ISD::UMUL_LOHI; 3293 } else if (HasSMUL_LOHI) { 3294 OpToUse = ISD::SMUL_LOHI; 3295 } else if (HasUMUL_LOHI) { 3296 OpToUse = ISD::UMUL_LOHI; 3297 } 3298 if (OpToUse) { 3299 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3300 Node->getOperand(1))); 3301 break; 3302 } 3303 3304 SDValue Lo, Hi; 3305 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3306 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3307 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3308 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3309 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3310 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3311 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3312 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3313 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3314 SDValue Shift = 3315 DAG.getConstant(HalfType.getSizeInBits(), dl, 3316 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3317 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3318 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3319 } 3320 break; 3321 } 3322 case ISD::FSHL: 3323 case ISD::FSHR: 3324 if (TLI.expandFunnelShift(Node, Tmp1, DAG)) 3325 Results.push_back(Tmp1); 3326 break; 3327 case ISD::ROTL: 3328 case ISD::ROTR: 3329 if (TLI.expandROT(Node, Tmp1, DAG)) 3330 Results.push_back(Tmp1); 3331 break; 3332 case ISD::SADDSAT: 3333 case ISD::UADDSAT: 3334 case ISD::SSUBSAT: 3335 case ISD::USUBSAT: 3336 Results.push_back(TLI.expandAddSubSat(Node, DAG)); 3337 break; 3338 case ISD::SMULFIX: 3339 case ISD::SMULFIXSAT: 3340 case ISD::UMULFIX: 3341 case ISD::UMULFIXSAT: 3342 Results.push_back(TLI.expandFixedPointMul(Node, DAG)); 3343 break; 3344 case ISD::ADDCARRY: 3345 case ISD::SUBCARRY: { 3346 SDValue LHS = Node->getOperand(0); 3347 SDValue RHS = Node->getOperand(1); 3348 SDValue Carry = Node->getOperand(2); 3349 3350 bool IsAdd = Node->getOpcode() == ISD::ADDCARRY; 3351 3352 // Initial add of the 2 operands. 3353 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB; 3354 EVT VT = LHS.getValueType(); 3355 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS); 3356 3357 // Initial check for overflow. 3358 EVT CarryType = Node->getValueType(1); 3359 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3360 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 3361 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3362 3363 // Add of the sum and the carry. 3364 SDValue CarryExt = 3365 DAG.getZeroExtendInReg(DAG.getZExtOrTrunc(Carry, dl, VT), dl, MVT::i1); 3366 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt); 3367 3368 // Second check for overflow. If we are adding, we can only overflow if the 3369 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0. 3370 // If we are subtracting, we can only overflow if the initial sum is 0 and 3371 // the carry is set, resulting in a new sum of all 1s. 3372 SDValue Zero = DAG.getConstant(0, dl, VT); 3373 SDValue Overflow2 = 3374 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ) 3375 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ); 3376 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2, 3377 DAG.getZExtOrTrunc(Carry, dl, SetCCType)); 3378 3379 SDValue ResultCarry = 3380 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2); 3381 3382 Results.push_back(Sum2); 3383 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT)); 3384 break; 3385 } 3386 case ISD::SADDO: 3387 case ISD::SSUBO: { 3388 SDValue Result, Overflow; 3389 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 3390 Results.push_back(Result); 3391 Results.push_back(Overflow); 3392 break; 3393 } 3394 case ISD::UADDO: 3395 case ISD::USUBO: { 3396 SDValue Result, Overflow; 3397 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 3398 Results.push_back(Result); 3399 Results.push_back(Overflow); 3400 break; 3401 } 3402 case ISD::UMULO: 3403 case ISD::SMULO: { 3404 SDValue Result, Overflow; 3405 if (TLI.expandMULO(Node, Result, Overflow, DAG)) { 3406 Results.push_back(Result); 3407 Results.push_back(Overflow); 3408 } 3409 break; 3410 } 3411 case ISD::BUILD_PAIR: { 3412 EVT PairTy = Node->getValueType(0); 3413 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3414 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3415 Tmp2 = DAG.getNode( 3416 ISD::SHL, dl, PairTy, Tmp2, 3417 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3418 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3419 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3420 break; 3421 } 3422 case ISD::SELECT: 3423 Tmp1 = Node->getOperand(0); 3424 Tmp2 = Node->getOperand(1); 3425 Tmp3 = Node->getOperand(2); 3426 if (Tmp1.getOpcode() == ISD::SETCC) { 3427 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3428 Tmp2, Tmp3, 3429 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3430 } else { 3431 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3432 DAG.getConstant(0, dl, Tmp1.getValueType()), 3433 Tmp2, Tmp3, ISD::SETNE); 3434 } 3435 Tmp1->setFlags(Node->getFlags()); 3436 Results.push_back(Tmp1); 3437 break; 3438 case ISD::BR_JT: { 3439 SDValue Chain = Node->getOperand(0); 3440 SDValue Table = Node->getOperand(1); 3441 SDValue Index = Node->getOperand(2); 3442 3443 const DataLayout &TD = DAG.getDataLayout(); 3444 EVT PTy = TLI.getPointerTy(TD); 3445 3446 unsigned EntrySize = 3447 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3448 3449 // For power-of-two jumptable entry sizes convert multiplication to a shift. 3450 // This transformation needs to be done here since otherwise the MIPS 3451 // backend will end up emitting a three instruction multiply sequence 3452 // instead of a single shift and MSP430 will call a runtime function. 3453 if (llvm::isPowerOf2_32(EntrySize)) 3454 Index = DAG.getNode( 3455 ISD::SHL, dl, Index.getValueType(), Index, 3456 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); 3457 else 3458 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3459 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3460 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3461 Index, Table); 3462 3463 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3464 SDValue LD = DAG.getExtLoad( 3465 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3466 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3467 Addr = LD; 3468 if (TLI.isJumpTableRelative()) { 3469 // For PIC, the sequence is: 3470 // BRIND(load(Jumptable + index) + RelocBase) 3471 // RelocBase can be JumpTable, GOT or some sort of global base. 3472 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3473 TLI.getPICJumpTableRelocBase(Table, DAG)); 3474 } 3475 3476 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); 3477 Results.push_back(Tmp1); 3478 break; 3479 } 3480 case ISD::BRCOND: 3481 // Expand brcond's setcc into its constituent parts and create a BR_CC 3482 // Node. 3483 Tmp1 = Node->getOperand(0); 3484 Tmp2 = Node->getOperand(1); 3485 if (Tmp2.getOpcode() == ISD::SETCC) { 3486 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3487 Tmp1, Tmp2.getOperand(2), 3488 Tmp2.getOperand(0), Tmp2.getOperand(1), 3489 Node->getOperand(2)); 3490 } else { 3491 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 3492 if (Tmp2.isUndef() || 3493 (Tmp2.getOpcode() == ISD::AND && 3494 isa<ConstantSDNode>(Tmp2.getOperand(1)) && 3495 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) 3496 Tmp3 = Tmp2; 3497 else 3498 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3499 DAG.getConstant(1, dl, Tmp2.getValueType())); 3500 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3501 DAG.getCondCode(ISD::SETNE), Tmp3, 3502 DAG.getConstant(0, dl, Tmp3.getValueType()), 3503 Node->getOperand(2)); 3504 } 3505 Results.push_back(Tmp1); 3506 break; 3507 case ISD::SETCC: { 3508 Tmp1 = Node->getOperand(0); 3509 Tmp2 = Node->getOperand(1); 3510 Tmp3 = Node->getOperand(2); 3511 bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, 3512 Tmp3, NeedInvert, dl); 3513 3514 if (Legalized) { 3515 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3516 // condition code, create a new SETCC node. 3517 if (Tmp3.getNode()) 3518 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3519 Tmp1, Tmp2, Tmp3, Node->getFlags()); 3520 3521 // If we expanded the SETCC by inverting the condition code, then wrap 3522 // the existing SETCC in a NOT to restore the intended condition. 3523 if (NeedInvert) 3524 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3525 3526 Results.push_back(Tmp1); 3527 break; 3528 } 3529 3530 // Otherwise, SETCC for the given comparison type must be completely 3531 // illegal; expand it into a SELECT_CC. 3532 EVT VT = Node->getValueType(0); 3533 int TrueValue; 3534 switch (TLI.getBooleanContents(Tmp1.getValueType())) { 3535 case TargetLowering::ZeroOrOneBooleanContent: 3536 case TargetLowering::UndefinedBooleanContent: 3537 TrueValue = 1; 3538 break; 3539 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3540 TrueValue = -1; 3541 break; 3542 } 3543 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3544 DAG.getConstant(TrueValue, dl, VT), 3545 DAG.getConstant(0, dl, VT), 3546 Tmp3); 3547 Tmp1->setFlags(Node->getFlags()); 3548 Results.push_back(Tmp1); 3549 break; 3550 } 3551 case ISD::SELECT_CC: { 3552 Tmp1 = Node->getOperand(0); // LHS 3553 Tmp2 = Node->getOperand(1); // RHS 3554 Tmp3 = Node->getOperand(2); // True 3555 Tmp4 = Node->getOperand(3); // False 3556 EVT VT = Node->getValueType(0); 3557 SDValue CC = Node->getOperand(4); 3558 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3559 3560 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 3561 // If the condition code is legal, then we need to expand this 3562 // node using SETCC and SELECT. 3563 EVT CmpVT = Tmp1.getValueType(); 3564 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3565 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3566 "expanded."); 3567 EVT CCVT = getSetCCResultType(CmpVT); 3568 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags()); 3569 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3570 break; 3571 } 3572 3573 // SELECT_CC is legal, so the condition code must not be. 3574 bool Legalized = false; 3575 // Try to legalize by inverting the condition. This is for targets that 3576 // might support an ordered version of a condition, but not the unordered 3577 // version (or vice versa). 3578 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, 3579 Tmp1.getValueType().isInteger()); 3580 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 3581 // Use the new condition code and swap true and false 3582 Legalized = true; 3583 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3584 Tmp1->setFlags(Node->getFlags()); 3585 } else { 3586 // If The inverse is not legal, then try to swap the arguments using 3587 // the inverse condition code. 3588 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3589 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 3590 // The swapped inverse condition is legal, so swap true and false, 3591 // lhs and rhs. 3592 Legalized = true; 3593 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3594 Tmp1->setFlags(Node->getFlags()); 3595 } 3596 } 3597 3598 if (!Legalized) { 3599 Legalized = LegalizeSetCCCondCode( 3600 getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert, 3601 dl); 3602 3603 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3604 3605 // If we expanded the SETCC by inverting the condition code, then swap 3606 // the True/False operands to match. 3607 if (NeedInvert) 3608 std::swap(Tmp3, Tmp4); 3609 3610 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3611 // condition code, create a new SELECT_CC node. 3612 if (CC.getNode()) { 3613 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3614 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3615 } else { 3616 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3617 CC = DAG.getCondCode(ISD::SETNE); 3618 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3619 Tmp2, Tmp3, Tmp4, CC); 3620 } 3621 Tmp1->setFlags(Node->getFlags()); 3622 } 3623 Results.push_back(Tmp1); 3624 break; 3625 } 3626 case ISD::BR_CC: { 3627 Tmp1 = Node->getOperand(0); // Chain 3628 Tmp2 = Node->getOperand(2); // LHS 3629 Tmp3 = Node->getOperand(3); // RHS 3630 Tmp4 = Node->getOperand(1); // CC 3631 3632 bool Legalized = LegalizeSetCCCondCode(getSetCCResultType( 3633 Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl); 3634 (void)Legalized; 3635 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3636 3637 assert(!NeedInvert && "Don't know how to invert BR_CC!"); 3638 3639 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3640 // node. 3641 if (Tmp4.getNode()) { 3642 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3643 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3644 } else { 3645 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3646 Tmp4 = DAG.getCondCode(ISD::SETNE); 3647 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3648 Tmp2, Tmp3, Node->getOperand(4)); 3649 } 3650 Results.push_back(Tmp1); 3651 break; 3652 } 3653 case ISD::BUILD_VECTOR: 3654 Results.push_back(ExpandBUILD_VECTOR(Node)); 3655 break; 3656 case ISD::SRA: 3657 case ISD::SRL: 3658 case ISD::SHL: { 3659 // Scalarize vector SRA/SRL/SHL. 3660 EVT VT = Node->getValueType(0); 3661 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3662 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3663 unsigned NumElem = VT.getVectorNumElements(); 3664 3665 SmallVector<SDValue, 8> Scalars; 3666 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3667 SDValue Ex = DAG.getNode( 3668 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0), 3669 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3670 SDValue Sh = DAG.getNode( 3671 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1), 3672 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3673 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3674 VT.getScalarType(), Ex, Sh)); 3675 } 3676 3677 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 3678 ReplaceNode(SDValue(Node, 0), Result); 3679 break; 3680 } 3681 case ISD::VECREDUCE_FADD: 3682 case ISD::VECREDUCE_FMUL: 3683 case ISD::VECREDUCE_ADD: 3684 case ISD::VECREDUCE_MUL: 3685 case ISD::VECREDUCE_AND: 3686 case ISD::VECREDUCE_OR: 3687 case ISD::VECREDUCE_XOR: 3688 case ISD::VECREDUCE_SMAX: 3689 case ISD::VECREDUCE_SMIN: 3690 case ISD::VECREDUCE_UMAX: 3691 case ISD::VECREDUCE_UMIN: 3692 case ISD::VECREDUCE_FMAX: 3693 case ISD::VECREDUCE_FMIN: 3694 Results.push_back(TLI.expandVecReduce(Node, DAG)); 3695 break; 3696 case ISD::GLOBAL_OFFSET_TABLE: 3697 case ISD::GlobalAddress: 3698 case ISD::GlobalTLSAddress: 3699 case ISD::ExternalSymbol: 3700 case ISD::ConstantPool: 3701 case ISD::JumpTable: 3702 case ISD::INTRINSIC_W_CHAIN: 3703 case ISD::INTRINSIC_WO_CHAIN: 3704 case ISD::INTRINSIC_VOID: 3705 // FIXME: Custom lowering for these operations shouldn't return null! 3706 break; 3707 } 3708 3709 if (Results.empty() && Node->isStrictFPOpcode()) { 3710 // FIXME: We were asked to expand a strict floating-point operation, 3711 // but there is currently no expansion implemented that would preserve 3712 // the "strict" properties. For now, we just fall back to the non-strict 3713 // version if that is legal on the target. The actual mutation of the 3714 // operation will happen in SelectionDAGISel::DoInstructionSelection. 3715 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3716 Node->getValueType(0)) 3717 == TargetLowering::Legal) 3718 return true; 3719 } 3720 3721 // Replace the original node with the legalized result. 3722 if (Results.empty()) { 3723 LLVM_DEBUG(dbgs() << "Cannot expand node\n"); 3724 return false; 3725 } 3726 3727 LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); 3728 ReplaceNode(Node, Results.data()); 3729 return true; 3730 } 3731 3732 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 3733 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); 3734 SmallVector<SDValue, 8> Results; 3735 SDLoc dl(Node); 3736 // FIXME: Check flags on the node to see if we can use a finite call. 3737 bool CanUseFiniteLibCall = TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath; 3738 unsigned Opc = Node->getOpcode(); 3739 switch (Opc) { 3740 case ISD::ATOMIC_FENCE: { 3741 // If the target didn't lower this, lower it to '__sync_synchronize()' call 3742 // FIXME: handle "fence singlethread" more efficiently. 3743 TargetLowering::ArgListTy Args; 3744 3745 TargetLowering::CallLoweringInfo CLI(DAG); 3746 CLI.setDebugLoc(dl) 3747 .setChain(Node->getOperand(0)) 3748 .setLibCallee( 3749 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3750 DAG.getExternalSymbol("__sync_synchronize", 3751 TLI.getPointerTy(DAG.getDataLayout())), 3752 std::move(Args)); 3753 3754 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3755 3756 Results.push_back(CallResult.second); 3757 break; 3758 } 3759 // By default, atomic intrinsics are marked Legal and lowered. Targets 3760 // which don't support them directly, however, may want libcalls, in which 3761 // case they mark them Expand, and we get here. 3762 case ISD::ATOMIC_SWAP: 3763 case ISD::ATOMIC_LOAD_ADD: 3764 case ISD::ATOMIC_LOAD_SUB: 3765 case ISD::ATOMIC_LOAD_AND: 3766 case ISD::ATOMIC_LOAD_CLR: 3767 case ISD::ATOMIC_LOAD_OR: 3768 case ISD::ATOMIC_LOAD_XOR: 3769 case ISD::ATOMIC_LOAD_NAND: 3770 case ISD::ATOMIC_LOAD_MIN: 3771 case ISD::ATOMIC_LOAD_MAX: 3772 case ISD::ATOMIC_LOAD_UMIN: 3773 case ISD::ATOMIC_LOAD_UMAX: 3774 case ISD::ATOMIC_CMP_SWAP: { 3775 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 3776 RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT); 3777 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!"); 3778 3779 std::pair<SDValue, SDValue> Tmp = ExpandChainLibCall(LC, Node, false); 3780 Results.push_back(Tmp.first); 3781 Results.push_back(Tmp.second); 3782 break; 3783 } 3784 case ISD::TRAP: { 3785 // If this operation is not supported, lower it to 'abort()' call 3786 TargetLowering::ArgListTy Args; 3787 TargetLowering::CallLoweringInfo CLI(DAG); 3788 CLI.setDebugLoc(dl) 3789 .setChain(Node->getOperand(0)) 3790 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3791 DAG.getExternalSymbol( 3792 "abort", TLI.getPointerTy(DAG.getDataLayout())), 3793 std::move(Args)); 3794 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3795 3796 Results.push_back(CallResult.second); 3797 break; 3798 } 3799 case ISD::FMINNUM: 3800 case ISD::STRICT_FMINNUM: 3801 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 3802 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 3803 RTLIB::FMIN_PPCF128)); 3804 break; 3805 case ISD::FMAXNUM: 3806 case ISD::STRICT_FMAXNUM: 3807 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 3808 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 3809 RTLIB::FMAX_PPCF128)); 3810 break; 3811 case ISD::FSQRT: 3812 case ISD::STRICT_FSQRT: 3813 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3814 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 3815 RTLIB::SQRT_PPCF128)); 3816 break; 3817 case ISD::FCBRT: 3818 Results.push_back(ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, 3819 RTLIB::CBRT_F80, RTLIB::CBRT_F128, 3820 RTLIB::CBRT_PPCF128)); 3821 break; 3822 case ISD::FSIN: 3823 case ISD::STRICT_FSIN: 3824 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 3825 RTLIB::SIN_F80, RTLIB::SIN_F128, 3826 RTLIB::SIN_PPCF128)); 3827 break; 3828 case ISD::FCOS: 3829 case ISD::STRICT_FCOS: 3830 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 3831 RTLIB::COS_F80, RTLIB::COS_F128, 3832 RTLIB::COS_PPCF128)); 3833 break; 3834 case ISD::FSINCOS: 3835 // Expand into sincos libcall. 3836 ExpandSinCosLibCall(Node, Results); 3837 break; 3838 case ISD::FLOG: 3839 case ISD::STRICT_FLOG: 3840 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log_finite)) 3841 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_FINITE_F32, 3842 RTLIB::LOG_FINITE_F64, 3843 RTLIB::LOG_FINITE_F80, 3844 RTLIB::LOG_FINITE_F128, 3845 RTLIB::LOG_FINITE_PPCF128)); 3846 else 3847 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, 3848 RTLIB::LOG_F80, RTLIB::LOG_F128, 3849 RTLIB::LOG_PPCF128)); 3850 break; 3851 case ISD::FLOG2: 3852 case ISD::STRICT_FLOG2: 3853 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log2_finite)) 3854 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_FINITE_F32, 3855 RTLIB::LOG2_FINITE_F64, 3856 RTLIB::LOG2_FINITE_F80, 3857 RTLIB::LOG2_FINITE_F128, 3858 RTLIB::LOG2_FINITE_PPCF128)); 3859 else 3860 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 3861 RTLIB::LOG2_F80, RTLIB::LOG2_F128, 3862 RTLIB::LOG2_PPCF128)); 3863 break; 3864 case ISD::FLOG10: 3865 case ISD::STRICT_FLOG10: 3866 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log10_finite)) 3867 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_FINITE_F32, 3868 RTLIB::LOG10_FINITE_F64, 3869 RTLIB::LOG10_FINITE_F80, 3870 RTLIB::LOG10_FINITE_F128, 3871 RTLIB::LOG10_FINITE_PPCF128)); 3872 else 3873 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 3874 RTLIB::LOG10_F80, RTLIB::LOG10_F128, 3875 RTLIB::LOG10_PPCF128)); 3876 break; 3877 case ISD::FEXP: 3878 case ISD::STRICT_FEXP: 3879 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp_finite)) 3880 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_FINITE_F32, 3881 RTLIB::EXP_FINITE_F64, 3882 RTLIB::EXP_FINITE_F80, 3883 RTLIB::EXP_FINITE_F128, 3884 RTLIB::EXP_FINITE_PPCF128)); 3885 else 3886 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, 3887 RTLIB::EXP_F80, RTLIB::EXP_F128, 3888 RTLIB::EXP_PPCF128)); 3889 break; 3890 case ISD::FEXP2: 3891 case ISD::STRICT_FEXP2: 3892 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp2_finite)) 3893 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_FINITE_F32, 3894 RTLIB::EXP2_FINITE_F64, 3895 RTLIB::EXP2_FINITE_F80, 3896 RTLIB::EXP2_FINITE_F128, 3897 RTLIB::EXP2_FINITE_PPCF128)); 3898 else 3899 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 3900 RTLIB::EXP2_F80, RTLIB::EXP2_F128, 3901 RTLIB::EXP2_PPCF128)); 3902 break; 3903 case ISD::FTRUNC: 3904 case ISD::STRICT_FTRUNC: 3905 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 3906 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 3907 RTLIB::TRUNC_PPCF128)); 3908 break; 3909 case ISD::FFLOOR: 3910 case ISD::STRICT_FFLOOR: 3911 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 3912 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 3913 RTLIB::FLOOR_PPCF128)); 3914 break; 3915 case ISD::FCEIL: 3916 case ISD::STRICT_FCEIL: 3917 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 3918 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 3919 RTLIB::CEIL_PPCF128)); 3920 break; 3921 case ISD::FRINT: 3922 case ISD::STRICT_FRINT: 3923 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 3924 RTLIB::RINT_F80, RTLIB::RINT_F128, 3925 RTLIB::RINT_PPCF128)); 3926 break; 3927 case ISD::FNEARBYINT: 3928 case ISD::STRICT_FNEARBYINT: 3929 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 3930 RTLIB::NEARBYINT_F64, 3931 RTLIB::NEARBYINT_F80, 3932 RTLIB::NEARBYINT_F128, 3933 RTLIB::NEARBYINT_PPCF128)); 3934 break; 3935 case ISD::FROUND: 3936 case ISD::STRICT_FROUND: 3937 Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32, 3938 RTLIB::ROUND_F64, 3939 RTLIB::ROUND_F80, 3940 RTLIB::ROUND_F128, 3941 RTLIB::ROUND_PPCF128)); 3942 break; 3943 case ISD::FPOWI: 3944 case ISD::STRICT_FPOWI: 3945 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 3946 RTLIB::POWI_F80, RTLIB::POWI_F128, 3947 RTLIB::POWI_PPCF128)); 3948 break; 3949 case ISD::FPOW: 3950 case ISD::STRICT_FPOW: 3951 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_pow_finite)) 3952 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_FINITE_F32, 3953 RTLIB::POW_FINITE_F64, 3954 RTLIB::POW_FINITE_F80, 3955 RTLIB::POW_FINITE_F128, 3956 RTLIB::POW_FINITE_PPCF128)); 3957 else 3958 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, 3959 RTLIB::POW_F80, RTLIB::POW_F128, 3960 RTLIB::POW_PPCF128)); 3961 break; 3962 case ISD::FDIV: 3963 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 3964 RTLIB::DIV_F80, RTLIB::DIV_F128, 3965 RTLIB::DIV_PPCF128)); 3966 break; 3967 case ISD::FREM: 3968 case ISD::STRICT_FREM: 3969 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 3970 RTLIB::REM_F80, RTLIB::REM_F128, 3971 RTLIB::REM_PPCF128)); 3972 break; 3973 case ISD::FMA: 3974 case ISD::STRICT_FMA: 3975 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 3976 RTLIB::FMA_F80, RTLIB::FMA_F128, 3977 RTLIB::FMA_PPCF128)); 3978 break; 3979 case ISD::FADD: 3980 Results.push_back(ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 3981 RTLIB::ADD_F80, RTLIB::ADD_F128, 3982 RTLIB::ADD_PPCF128)); 3983 break; 3984 case ISD::FMUL: 3985 Results.push_back(ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 3986 RTLIB::MUL_F80, RTLIB::MUL_F128, 3987 RTLIB::MUL_PPCF128)); 3988 break; 3989 case ISD::FP16_TO_FP: 3990 if (Node->getValueType(0) == MVT::f32) { 3991 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 3992 } 3993 break; 3994 case ISD::FP_TO_FP16: { 3995 RTLIB::Libcall LC = 3996 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 3997 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 3998 Results.push_back(ExpandLibCall(LC, Node, false)); 3999 break; 4000 } 4001 case ISD::FSUB: 4002 Results.push_back(ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4003 RTLIB::SUB_F80, RTLIB::SUB_F128, 4004 RTLIB::SUB_PPCF128)); 4005 break; 4006 case ISD::SREM: 4007 Results.push_back(ExpandIntLibCall(Node, true, 4008 RTLIB::SREM_I8, 4009 RTLIB::SREM_I16, RTLIB::SREM_I32, 4010 RTLIB::SREM_I64, RTLIB::SREM_I128)); 4011 break; 4012 case ISD::UREM: 4013 Results.push_back(ExpandIntLibCall(Node, false, 4014 RTLIB::UREM_I8, 4015 RTLIB::UREM_I16, RTLIB::UREM_I32, 4016 RTLIB::UREM_I64, RTLIB::UREM_I128)); 4017 break; 4018 case ISD::SDIV: 4019 Results.push_back(ExpandIntLibCall(Node, true, 4020 RTLIB::SDIV_I8, 4021 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4022 RTLIB::SDIV_I64, RTLIB::SDIV_I128)); 4023 break; 4024 case ISD::UDIV: 4025 Results.push_back(ExpandIntLibCall(Node, false, 4026 RTLIB::UDIV_I8, 4027 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4028 RTLIB::UDIV_I64, RTLIB::UDIV_I128)); 4029 break; 4030 case ISD::SDIVREM: 4031 case ISD::UDIVREM: 4032 // Expand into divrem libcall 4033 ExpandDivRemLibCall(Node, Results); 4034 break; 4035 case ISD::MUL: 4036 Results.push_back(ExpandIntLibCall(Node, false, 4037 RTLIB::MUL_I8, 4038 RTLIB::MUL_I16, RTLIB::MUL_I32, 4039 RTLIB::MUL_I64, RTLIB::MUL_I128)); 4040 break; 4041 case ISD::CTLZ_ZERO_UNDEF: 4042 switch (Node->getSimpleValueType(0).SimpleTy) { 4043 default: 4044 llvm_unreachable("LibCall explicitly requested, but not available"); 4045 case MVT::i32: 4046 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false)); 4047 break; 4048 case MVT::i64: 4049 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false)); 4050 break; 4051 case MVT::i128: 4052 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false)); 4053 break; 4054 } 4055 break; 4056 } 4057 4058 // Replace the original node with the legalized result. 4059 if (!Results.empty()) { 4060 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); 4061 ReplaceNode(Node, Results.data()); 4062 } else 4063 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); 4064 } 4065 4066 // Determine the vector type to use in place of an original scalar element when 4067 // promoting equally sized vectors. 4068 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4069 MVT EltVT, MVT NewEltVT) { 4070 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4071 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4072 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4073 return MidVT; 4074 } 4075 4076 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4077 LLVM_DEBUG(dbgs() << "Trying to promote node\n"); 4078 SmallVector<SDValue, 8> Results; 4079 MVT OVT = Node->getSimpleValueType(0); 4080 if (Node->getOpcode() == ISD::UINT_TO_FP || 4081 Node->getOpcode() == ISD::SINT_TO_FP || 4082 Node->getOpcode() == ISD::SETCC || 4083 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4084 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4085 OVT = Node->getOperand(0).getSimpleValueType(); 4086 } 4087 if (Node->getOpcode() == ISD::BR_CC) 4088 OVT = Node->getOperand(2).getSimpleValueType(); 4089 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4090 SDLoc dl(Node); 4091 SDValue Tmp1, Tmp2, Tmp3; 4092 switch (Node->getOpcode()) { 4093 case ISD::CTTZ: 4094 case ISD::CTTZ_ZERO_UNDEF: 4095 case ISD::CTLZ: 4096 case ISD::CTLZ_ZERO_UNDEF: 4097 case ISD::CTPOP: 4098 // Zero extend the argument. 4099 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4100 if (Node->getOpcode() == ISD::CTTZ) { 4101 // The count is the same in the promoted type except if the original 4102 // value was zero. This can be handled by setting the bit just off 4103 // the top of the original type. 4104 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4105 OVT.getSizeInBits()); 4106 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4107 DAG.getConstant(TopBit, dl, NVT)); 4108 } 4109 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4110 // already the correct result. 4111 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4112 if (Node->getOpcode() == ISD::CTLZ || 4113 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4114 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4115 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4116 DAG.getConstant(NVT.getSizeInBits() - 4117 OVT.getSizeInBits(), dl, NVT)); 4118 } 4119 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4120 break; 4121 case ISD::BITREVERSE: 4122 case ISD::BSWAP: { 4123 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4124 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4125 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4126 Tmp1 = DAG.getNode( 4127 ISD::SRL, dl, NVT, Tmp1, 4128 DAG.getConstant(DiffBits, dl, 4129 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4130 4131 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4132 break; 4133 } 4134 case ISD::FP_TO_UINT: 4135 case ISD::FP_TO_SINT: 4136 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), 4137 Node->getOpcode() == ISD::FP_TO_SINT, dl); 4138 Results.push_back(Tmp1); 4139 break; 4140 case ISD::UINT_TO_FP: 4141 case ISD::SINT_TO_FP: 4142 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), 4143 Node->getOpcode() == ISD::SINT_TO_FP, dl); 4144 Results.push_back(Tmp1); 4145 break; 4146 case ISD::VAARG: { 4147 SDValue Chain = Node->getOperand(0); // Get the chain. 4148 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4149 4150 unsigned TruncOp; 4151 if (OVT.isVector()) { 4152 TruncOp = ISD::BITCAST; 4153 } else { 4154 assert(OVT.isInteger() 4155 && "VAARG promotion is supported only for vectors or integer types"); 4156 TruncOp = ISD::TRUNCATE; 4157 } 4158 4159 // Perform the larger operation, then convert back 4160 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4161 Node->getConstantOperandVal(3)); 4162 Chain = Tmp1.getValue(1); 4163 4164 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4165 4166 // Modified the chain result - switch anything that used the old chain to 4167 // use the new one. 4168 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4169 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4170 if (UpdatedNodes) { 4171 UpdatedNodes->insert(Tmp2.getNode()); 4172 UpdatedNodes->insert(Chain.getNode()); 4173 } 4174 ReplacedNode(Node); 4175 break; 4176 } 4177 case ISD::MUL: 4178 case ISD::SDIV: 4179 case ISD::SREM: 4180 case ISD::UDIV: 4181 case ISD::UREM: 4182 case ISD::AND: 4183 case ISD::OR: 4184 case ISD::XOR: { 4185 unsigned ExtOp, TruncOp; 4186 if (OVT.isVector()) { 4187 ExtOp = ISD::BITCAST; 4188 TruncOp = ISD::BITCAST; 4189 } else { 4190 assert(OVT.isInteger() && "Cannot promote logic operation"); 4191 4192 switch (Node->getOpcode()) { 4193 default: 4194 ExtOp = ISD::ANY_EXTEND; 4195 break; 4196 case ISD::SDIV: 4197 case ISD::SREM: 4198 ExtOp = ISD::SIGN_EXTEND; 4199 break; 4200 case ISD::UDIV: 4201 case ISD::UREM: 4202 ExtOp = ISD::ZERO_EXTEND; 4203 break; 4204 } 4205 TruncOp = ISD::TRUNCATE; 4206 } 4207 // Promote each of the values to the new type. 4208 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4209 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4210 // Perform the larger operation, then convert back 4211 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4212 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4213 break; 4214 } 4215 case ISD::UMUL_LOHI: 4216 case ISD::SMUL_LOHI: { 4217 // Promote to a multiply in a wider integer type. 4218 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 4219 : ISD::SIGN_EXTEND; 4220 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4221 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4222 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 4223 4224 auto &DL = DAG.getDataLayout(); 4225 unsigned OriginalSize = OVT.getScalarSizeInBits(); 4226 Tmp2 = DAG.getNode( 4227 ISD::SRL, dl, NVT, Tmp1, 4228 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 4229 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4230 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 4231 break; 4232 } 4233 case ISD::SELECT: { 4234 unsigned ExtOp, TruncOp; 4235 if (Node->getValueType(0).isVector() || 4236 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4237 ExtOp = ISD::BITCAST; 4238 TruncOp = ISD::BITCAST; 4239 } else if (Node->getValueType(0).isInteger()) { 4240 ExtOp = ISD::ANY_EXTEND; 4241 TruncOp = ISD::TRUNCATE; 4242 } else { 4243 ExtOp = ISD::FP_EXTEND; 4244 TruncOp = ISD::FP_ROUND; 4245 } 4246 Tmp1 = Node->getOperand(0); 4247 // Promote each of the values to the new type. 4248 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4249 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4250 // Perform the larger operation, then round down. 4251 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4252 Tmp1->setFlags(Node->getFlags()); 4253 if (TruncOp != ISD::FP_ROUND) 4254 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4255 else 4256 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4257 DAG.getIntPtrConstant(0, dl)); 4258 Results.push_back(Tmp1); 4259 break; 4260 } 4261 case ISD::VECTOR_SHUFFLE: { 4262 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4263 4264 // Cast the two input vectors. 4265 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4266 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4267 4268 // Convert the shuffle mask to the right # elements. 4269 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4270 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4271 Results.push_back(Tmp1); 4272 break; 4273 } 4274 case ISD::SETCC: { 4275 unsigned ExtOp = ISD::FP_EXTEND; 4276 if (NVT.isInteger()) { 4277 ISD::CondCode CCCode = 4278 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4279 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4280 } 4281 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4282 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4283 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, 4284 Tmp2, Node->getOperand(2), Node->getFlags())); 4285 break; 4286 } 4287 case ISD::BR_CC: { 4288 unsigned ExtOp = ISD::FP_EXTEND; 4289 if (NVT.isInteger()) { 4290 ISD::CondCode CCCode = 4291 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4292 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4293 } 4294 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4295 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4296 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4297 Node->getOperand(0), Node->getOperand(1), 4298 Tmp1, Tmp2, Node->getOperand(4))); 4299 break; 4300 } 4301 case ISD::FADD: 4302 case ISD::FSUB: 4303 case ISD::FMUL: 4304 case ISD::FDIV: 4305 case ISD::FREM: 4306 case ISD::FMINNUM: 4307 case ISD::FMAXNUM: 4308 case ISD::FPOW: 4309 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4310 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4311 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4312 Node->getFlags()); 4313 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4314 Tmp3, DAG.getIntPtrConstant(0, dl))); 4315 break; 4316 case ISD::FMA: 4317 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4318 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4319 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4320 Results.push_back( 4321 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4322 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4323 DAG.getIntPtrConstant(0, dl))); 4324 break; 4325 case ISD::FCOPYSIGN: 4326 case ISD::FPOWI: { 4327 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4328 Tmp2 = Node->getOperand(1); 4329 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4330 4331 // fcopysign doesn't change anything but the sign bit, so 4332 // (fp_round (fcopysign (fpext a), b)) 4333 // is as precise as 4334 // (fp_round (fpext a)) 4335 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4336 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4337 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4338 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4339 break; 4340 } 4341 case ISD::FFLOOR: 4342 case ISD::FCEIL: 4343 case ISD::FRINT: 4344 case ISD::FNEARBYINT: 4345 case ISD::FROUND: 4346 case ISD::FTRUNC: 4347 case ISD::FNEG: 4348 case ISD::FSQRT: 4349 case ISD::FSIN: 4350 case ISD::FCOS: 4351 case ISD::FLOG: 4352 case ISD::FLOG2: 4353 case ISD::FLOG10: 4354 case ISD::FABS: 4355 case ISD::FEXP: 4356 case ISD::FEXP2: 4357 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4358 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4359 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4360 Tmp2, DAG.getIntPtrConstant(0, dl))); 4361 break; 4362 case ISD::BUILD_VECTOR: { 4363 MVT EltVT = OVT.getVectorElementType(); 4364 MVT NewEltVT = NVT.getVectorElementType(); 4365 4366 // Handle bitcasts to a different vector type with the same total bit size 4367 // 4368 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4369 // => 4370 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4371 4372 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4373 "Invalid promote type for build_vector"); 4374 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4375 4376 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4377 4378 SmallVector<SDValue, 8> NewOps; 4379 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4380 SDValue Op = Node->getOperand(I); 4381 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4382 } 4383 4384 SDLoc SL(Node); 4385 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4386 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4387 Results.push_back(CvtVec); 4388 break; 4389 } 4390 case ISD::EXTRACT_VECTOR_ELT: { 4391 MVT EltVT = OVT.getVectorElementType(); 4392 MVT NewEltVT = NVT.getVectorElementType(); 4393 4394 // Handle bitcasts to a different vector type with the same total bit size. 4395 // 4396 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4397 // => 4398 // v4i32:castx = bitcast x:v2i64 4399 // 4400 // i64 = bitcast 4401 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4402 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4403 // 4404 4405 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4406 "Invalid promote type for extract_vector_elt"); 4407 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4408 4409 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4410 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4411 4412 SDValue Idx = Node->getOperand(1); 4413 EVT IdxVT = Idx.getValueType(); 4414 SDLoc SL(Node); 4415 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4416 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4417 4418 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4419 4420 SmallVector<SDValue, 8> NewOps; 4421 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4422 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4423 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4424 4425 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4426 CastVec, TmpIdx); 4427 NewOps.push_back(Elt); 4428 } 4429 4430 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 4431 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4432 break; 4433 } 4434 case ISD::INSERT_VECTOR_ELT: { 4435 MVT EltVT = OVT.getVectorElementType(); 4436 MVT NewEltVT = NVT.getVectorElementType(); 4437 4438 // Handle bitcasts to a different vector type with the same total bit size 4439 // 4440 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4441 // => 4442 // v4i32:castx = bitcast x:v2i64 4443 // v2i32:casty = bitcast y:i64 4444 // 4445 // v2i64 = bitcast 4446 // (v4i32 insert_vector_elt 4447 // (v4i32 insert_vector_elt v4i32:castx, 4448 // (extract_vector_elt casty, 0), 2 * z), 4449 // (extract_vector_elt casty, 1), (2 * z + 1)) 4450 4451 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4452 "Invalid promote type for insert_vector_elt"); 4453 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4454 4455 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4456 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4457 4458 SDValue Val = Node->getOperand(1); 4459 SDValue Idx = Node->getOperand(2); 4460 EVT IdxVT = Idx.getValueType(); 4461 SDLoc SL(Node); 4462 4463 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 4464 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4465 4466 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4467 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4468 4469 SDValue NewVec = CastVec; 4470 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4471 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4472 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4473 4474 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4475 CastVal, IdxOffset); 4476 4477 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 4478 NewVec, Elt, InEltIdx); 4479 } 4480 4481 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 4482 break; 4483 } 4484 case ISD::SCALAR_TO_VECTOR: { 4485 MVT EltVT = OVT.getVectorElementType(); 4486 MVT NewEltVT = NVT.getVectorElementType(); 4487 4488 // Handle bitcasts to different vector type with the same total bit size. 4489 // 4490 // e.g. v2i64 = scalar_to_vector x:i64 4491 // => 4492 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 4493 // 4494 4495 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4496 SDValue Val = Node->getOperand(0); 4497 SDLoc SL(Node); 4498 4499 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4500 SDValue Undef = DAG.getUNDEF(MidVT); 4501 4502 SmallVector<SDValue, 8> NewElts; 4503 NewElts.push_back(CastVal); 4504 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 4505 NewElts.push_back(Undef); 4506 4507 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 4508 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4509 Results.push_back(CvtVec); 4510 break; 4511 } 4512 case ISD::ATOMIC_SWAP: { 4513 AtomicSDNode *AM = cast<AtomicSDNode>(Node); 4514 SDLoc SL(Node); 4515 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal()); 4516 assert(NVT.getSizeInBits() == OVT.getSizeInBits() && 4517 "unexpected promotion type"); 4518 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && 4519 "unexpected atomic_swap with illegal type"); 4520 4521 SDValue NewAtomic 4522 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT, 4523 DAG.getVTList(NVT, MVT::Other), 4524 { AM->getChain(), AM->getBasePtr(), CastVal }, 4525 AM->getMemOperand()); 4526 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); 4527 Results.push_back(NewAtomic.getValue(1)); 4528 break; 4529 } 4530 } 4531 4532 // Replace the original node with the legalized result. 4533 if (!Results.empty()) { 4534 LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); 4535 ReplaceNode(Node, Results.data()); 4536 } else 4537 LLVM_DEBUG(dbgs() << "Could not promote node\n"); 4538 } 4539 4540 /// This is the entry point for the file. 4541 void SelectionDAG::Legalize() { 4542 AssignTopologicalOrder(); 4543 4544 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4545 // Use a delete listener to remove nodes which were deleted during 4546 // legalization from LegalizeNodes. This is needed to handle the situation 4547 // where a new node is allocated by the object pool to the same address of a 4548 // previously deleted node. 4549 DAGNodeDeletedListener DeleteListener( 4550 *this, 4551 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 4552 4553 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 4554 4555 // Visit all the nodes. We start in topological order, so that we see 4556 // nodes with their original operands intact. Legalization can produce 4557 // new nodes which may themselves need to be legalized. Iterate until all 4558 // nodes have been legalized. 4559 while (true) { 4560 bool AnyLegalized = false; 4561 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 4562 --NI; 4563 4564 SDNode *N = &*NI; 4565 if (N->use_empty() && N != getRoot().getNode()) { 4566 ++NI; 4567 DeleteNode(N); 4568 continue; 4569 } 4570 4571 if (LegalizedNodes.insert(N).second) { 4572 AnyLegalized = true; 4573 Legalizer.LegalizeOp(N); 4574 4575 if (N->use_empty() && N != getRoot().getNode()) { 4576 ++NI; 4577 DeleteNode(N); 4578 } 4579 } 4580 } 4581 if (!AnyLegalized) 4582 break; 4583 4584 } 4585 4586 // Remove dead nodes now. 4587 RemoveDeadNodes(); 4588 } 4589 4590 bool SelectionDAG::LegalizeOp(SDNode *N, 4591 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 4592 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4593 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 4594 4595 // Directly insert the node in question, and legalize it. This will recurse 4596 // as needed through operands. 4597 LegalizedNodes.insert(N); 4598 Legalizer.LegalizeOp(N); 4599 4600 return LegalizedNodes.count(N); 4601 } 4602