1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::Legalize method. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/CodeGen/ISDOpcodes.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/RuntimeLibcalls.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/SelectionDAGNodes.h" 28 #include "llvm/CodeGen/TargetFrameLowering.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/CodeGen/ValueTypes.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstdint> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "legalizedag" 57 58 namespace { 59 60 /// Keeps track of state when getting the sign of a floating-point value as an 61 /// integer. 62 struct FloatSignAsInt { 63 EVT FloatVT; 64 SDValue Chain; 65 SDValue FloatPtr; 66 SDValue IntPtr; 67 MachinePointerInfo IntPointerInfo; 68 MachinePointerInfo FloatPointerInfo; 69 SDValue IntValue; 70 APInt SignMask; 71 uint8_t SignBit; 72 }; 73 74 //===----------------------------------------------------------------------===// 75 /// This takes an arbitrary SelectionDAG as input and 76 /// hacks on it until the target machine can handle it. This involves 77 /// eliminating value sizes the machine cannot handle (promoting small sizes to 78 /// large sizes or splitting up large values into small values) as well as 79 /// eliminating operations the machine cannot handle. 80 /// 81 /// This code also does a small amount of optimization and recognition of idioms 82 /// as part of its processing. For example, if a target does not support a 83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 84 /// will attempt merge setcc and brc instructions into brcc's. 85 class SelectionDAGLegalize { 86 const TargetMachine &TM; 87 const TargetLowering &TLI; 88 SelectionDAG &DAG; 89 90 /// The set of nodes which have already been legalized. We hold a 91 /// reference to it in order to update as necessary on node deletion. 92 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 93 94 /// A set of all the nodes updated during legalization. 95 SmallSetVector<SDNode *, 16> *UpdatedNodes; 96 97 EVT getSetCCResultType(EVT VT) const { 98 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 99 } 100 101 // Libcall insertion helpers. 102 103 public: 104 SelectionDAGLegalize(SelectionDAG &DAG, 105 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 106 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 107 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 108 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 109 110 /// Legalizes the given operation. 111 void LegalizeOp(SDNode *Node); 112 113 private: 114 SDValue OptimizeFloatStore(StoreSDNode *ST); 115 116 void LegalizeLoadOps(SDNode *Node); 117 void LegalizeStoreOps(SDNode *Node); 118 119 /// Some targets cannot handle a variable 120 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 121 /// is necessary to spill the vector being inserted into to memory, perform 122 /// the insert there, and then read the result back. 123 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 124 const SDLoc &dl); 125 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 126 const SDLoc &dl); 127 128 /// Return a vector shuffle operation which 129 /// performs the same shuffe in terms of order or result bytes, but on a type 130 /// whose vector element type is narrower than the original shuffle type. 131 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 132 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 133 SDValue N1, SDValue N2, 134 ArrayRef<int> Mask) const; 135 136 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 137 bool &NeedInvert, const SDLoc &dl, SDValue &Chain, 138 bool IsSignaling = false); 139 140 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 141 142 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 143 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 144 RTLIB::Libcall Call_F128, 145 RTLIB::Libcall Call_PPCF128, 146 SmallVectorImpl<SDValue> &Results); 147 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 148 RTLIB::Libcall Call_I8, 149 RTLIB::Libcall Call_I16, 150 RTLIB::Libcall Call_I32, 151 RTLIB::Libcall Call_I64, 152 RTLIB::Libcall Call_I128); 153 void ExpandArgFPLibCall(SDNode *Node, 154 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, 155 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, 156 RTLIB::Libcall Call_PPCF128, 157 SmallVectorImpl<SDValue> &Results); 158 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 159 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 160 161 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 162 const SDLoc &dl); 163 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 164 const SDLoc &dl, SDValue ChainIn); 165 SDValue ExpandBUILD_VECTOR(SDNode *Node); 166 SDValue ExpandSPLAT_VECTOR(SDNode *Node); 167 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 168 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 169 SmallVectorImpl<SDValue> &Results); 170 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 171 SDValue Value) const; 172 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 173 SDValue NewIntValue) const; 174 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 175 SDValue ExpandFABS(SDNode *Node) const; 176 SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain); 177 void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl, 178 SmallVectorImpl<SDValue> &Results); 179 void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 180 SmallVectorImpl<SDValue> &Results); 181 182 SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl); 183 SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl); 184 185 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 186 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 187 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 188 189 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 190 SDValue ExpandConstant(ConstantSDNode *CP); 191 192 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 193 bool ExpandNode(SDNode *Node); 194 void ConvertNodeToLibcall(SDNode *Node); 195 void PromoteNode(SDNode *Node); 196 197 public: 198 // Node replacement helpers 199 200 void ReplacedNode(SDNode *N) { 201 LegalizedNodes.erase(N); 202 if (UpdatedNodes) 203 UpdatedNodes->insert(N); 204 } 205 206 void ReplaceNode(SDNode *Old, SDNode *New) { 207 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 208 dbgs() << " with: "; New->dump(&DAG)); 209 210 assert(Old->getNumValues() == New->getNumValues() && 211 "Replacing one node with another that produces a different number " 212 "of values!"); 213 DAG.ReplaceAllUsesWith(Old, New); 214 if (UpdatedNodes) 215 UpdatedNodes->insert(New); 216 ReplacedNode(Old); 217 } 218 219 void ReplaceNode(SDValue Old, SDValue New) { 220 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 221 dbgs() << " with: "; New->dump(&DAG)); 222 223 DAG.ReplaceAllUsesWith(Old, New); 224 if (UpdatedNodes) 225 UpdatedNodes->insert(New.getNode()); 226 ReplacedNode(Old.getNode()); 227 } 228 229 void ReplaceNode(SDNode *Old, const SDValue *New) { 230 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 231 232 DAG.ReplaceAllUsesWith(Old, New); 233 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 234 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); 235 New[i]->dump(&DAG)); 236 if (UpdatedNodes) 237 UpdatedNodes->insert(New[i].getNode()); 238 } 239 ReplacedNode(Old); 240 } 241 242 void ReplaceNodeWithValue(SDValue Old, SDValue New) { 243 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 244 dbgs() << " with: "; New->dump(&DAG)); 245 246 DAG.ReplaceAllUsesOfValueWith(Old, New); 247 if (UpdatedNodes) 248 UpdatedNodes->insert(New.getNode()); 249 ReplacedNode(Old.getNode()); 250 } 251 }; 252 253 } // end anonymous namespace 254 255 /// Return a vector shuffle operation which 256 /// performs the same shuffle in terms of order or result bytes, but on a type 257 /// whose vector element type is narrower than the original shuffle type. 258 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 259 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 260 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 261 ArrayRef<int> Mask) const { 262 unsigned NumMaskElts = VT.getVectorNumElements(); 263 unsigned NumDestElts = NVT.getVectorNumElements(); 264 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 265 266 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 267 268 if (NumEltsGrowth == 1) 269 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 270 271 SmallVector<int, 8> NewMask; 272 for (unsigned i = 0; i != NumMaskElts; ++i) { 273 int Idx = Mask[i]; 274 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 275 if (Idx < 0) 276 NewMask.push_back(-1); 277 else 278 NewMask.push_back(Idx * NumEltsGrowth + j); 279 } 280 } 281 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 282 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 283 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 284 } 285 286 /// Expands the ConstantFP node to an integer constant or 287 /// a load from the constant pool. 288 SDValue 289 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 290 bool Extend = false; 291 SDLoc dl(CFP); 292 293 // If a FP immediate is precise when represented as a float and if the 294 // target can do an extending load from float to double, we put it into 295 // the constant pool as a float, even if it's is statically typed as a 296 // double. This shrinks FP constants and canonicalizes them for targets where 297 // an FP extending load is the same cost as a normal load (such as on the x87 298 // fp stack or PPC FP unit). 299 EVT VT = CFP->getValueType(0); 300 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 301 if (!UseCP) { 302 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 303 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 304 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 305 } 306 307 APFloat APF = CFP->getValueAPF(); 308 EVT OrigVT = VT; 309 EVT SVT = VT; 310 311 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 312 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 313 if (!APF.isSignaling()) { 314 while (SVT != MVT::f32 && SVT != MVT::f16) { 315 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 316 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 317 // Only do this if the target has a native EXTLOAD instruction from 318 // smaller type. 319 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 320 TLI.ShouldShrinkFPConstant(OrigVT)) { 321 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 322 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 323 VT = SVT; 324 Extend = true; 325 } 326 } 327 } 328 329 SDValue CPIdx = 330 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 331 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 332 if (Extend) { 333 SDValue Result = DAG.getExtLoad( 334 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 335 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 336 Alignment); 337 return Result; 338 } 339 SDValue Result = DAG.getLoad( 340 OrigVT, dl, DAG.getEntryNode(), CPIdx, 341 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 342 return Result; 343 } 344 345 /// Expands the Constant node to a load from the constant pool. 346 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 347 SDLoc dl(CP); 348 EVT VT = CP->getValueType(0); 349 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 350 TLI.getPointerTy(DAG.getDataLayout())); 351 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 352 SDValue Result = DAG.getLoad( 353 VT, dl, DAG.getEntryNode(), CPIdx, 354 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 355 return Result; 356 } 357 358 /// Some target cannot handle a variable insertion index for the 359 /// INSERT_VECTOR_ELT instruction. In this case, it 360 /// is necessary to spill the vector being inserted into to memory, perform 361 /// the insert there, and then read the result back. 362 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 363 SDValue Val, 364 SDValue Idx, 365 const SDLoc &dl) { 366 SDValue Tmp1 = Vec; 367 SDValue Tmp2 = Val; 368 SDValue Tmp3 = Idx; 369 370 // If the target doesn't support this, we have to spill the input vector 371 // to a temporary stack slot, update the element, then reload it. This is 372 // badness. We could also load the value into a vector register (either 373 // with a "move to register" or "extload into register" instruction, then 374 // permute it into place, if the idx is a constant and if the idx is 375 // supported by the target. 376 EVT VT = Tmp1.getValueType(); 377 EVT EltVT = VT.getVectorElementType(); 378 SDValue StackPtr = DAG.CreateStackTemporary(VT); 379 380 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 381 382 // Store the vector. 383 SDValue Ch = DAG.getStore( 384 DAG.getEntryNode(), dl, Tmp1, StackPtr, 385 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 386 387 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 388 389 // Store the scalar value. 390 Ch = DAG.getTruncStore( 391 Ch, dl, Tmp2, StackPtr2, 392 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT); 393 // Load the updated vector. 394 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 395 DAG.getMachineFunction(), SPFI)); 396 } 397 398 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 399 SDValue Idx, 400 const SDLoc &dl) { 401 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 402 // SCALAR_TO_VECTOR requires that the type of the value being inserted 403 // match the element type of the vector being created, except for 404 // integers in which case the inserted value can be over width. 405 EVT EltVT = Vec.getValueType().getVectorElementType(); 406 if (Val.getValueType() == EltVT || 407 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 408 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 409 Vec.getValueType(), Val); 410 411 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 412 // We generate a shuffle of InVec and ScVec, so the shuffle mask 413 // should be 0,1,2,3,4,5... with the appropriate element replaced with 414 // elt 0 of the RHS. 415 SmallVector<int, 8> ShufOps; 416 for (unsigned i = 0; i != NumElts; ++i) 417 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 418 419 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 420 } 421 } 422 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 423 } 424 425 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 426 if (!ISD::isNormalStore(ST)) 427 return SDValue(); 428 429 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); 430 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 431 // FIXME: We shouldn't do this for TargetConstantFP's. 432 // FIXME: move this to the DAG Combiner! Note that we can't regress due 433 // to phase ordering between legalized code and the dag combiner. This 434 // probably means that we need to integrate dag combiner and legalizer 435 // together. 436 // We generally can't do this one for long doubles. 437 SDValue Chain = ST->getChain(); 438 SDValue Ptr = ST->getBasePtr(); 439 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 440 AAMDNodes AAInfo = ST->getAAInfo(); 441 SDLoc dl(ST); 442 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 443 if (CFP->getValueType(0) == MVT::f32 && 444 TLI.isTypeLegal(MVT::i32)) { 445 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 446 bitcastToAPInt().zextOrTrunc(32), 447 SDLoc(CFP), MVT::i32); 448 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 449 ST->getOriginalAlign(), MMOFlags, AAInfo); 450 } 451 452 if (CFP->getValueType(0) == MVT::f64) { 453 // If this target supports 64-bit registers, do a single 64-bit store. 454 if (TLI.isTypeLegal(MVT::i64)) { 455 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 456 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 457 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 458 ST->getOriginalAlign(), MMOFlags, AAInfo); 459 } 460 461 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 462 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 463 // stores. If the target supports neither 32- nor 64-bits, this 464 // xform is certainly not worth it. 465 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 466 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 467 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 468 if (DAG.getDataLayout().isBigEndian()) 469 std::swap(Lo, Hi); 470 471 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), 472 ST->getOriginalAlign(), MMOFlags, AAInfo); 473 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), dl); 474 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 475 ST->getPointerInfo().getWithOffset(4), 476 ST->getOriginalAlign(), MMOFlags, AAInfo); 477 478 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 479 } 480 } 481 } 482 return SDValue(nullptr, 0); 483 } 484 485 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 486 StoreSDNode *ST = cast<StoreSDNode>(Node); 487 SDValue Chain = ST->getChain(); 488 SDValue Ptr = ST->getBasePtr(); 489 SDLoc dl(Node); 490 491 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 492 AAMDNodes AAInfo = ST->getAAInfo(); 493 494 if (!ST->isTruncatingStore()) { 495 LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); 496 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 497 ReplaceNode(ST, OptStore); 498 return; 499 } 500 501 SDValue Value = ST->getValue(); 502 MVT VT = Value.getSimpleValueType(); 503 switch (TLI.getOperationAction(ISD::STORE, VT)) { 504 default: llvm_unreachable("This action is not supported yet!"); 505 case TargetLowering::Legal: { 506 // If this is an unaligned store and the target doesn't support it, 507 // expand it. 508 EVT MemVT = ST->getMemoryVT(); 509 const DataLayout &DL = DAG.getDataLayout(); 510 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 511 *ST->getMemOperand())) { 512 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 513 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 514 ReplaceNode(SDValue(ST, 0), Result); 515 } else 516 LLVM_DEBUG(dbgs() << "Legal store\n"); 517 break; 518 } 519 case TargetLowering::Custom: { 520 LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); 521 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 522 if (Res && Res != SDValue(Node, 0)) 523 ReplaceNode(SDValue(Node, 0), Res); 524 return; 525 } 526 case TargetLowering::Promote: { 527 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 528 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 529 "Can only promote stores to same size type"); 530 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 531 SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 532 ST->getOriginalAlign(), MMOFlags, AAInfo); 533 ReplaceNode(SDValue(Node, 0), Result); 534 break; 535 } 536 } 537 return; 538 } 539 540 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); 541 SDValue Value = ST->getValue(); 542 EVT StVT = ST->getMemoryVT(); 543 unsigned StWidth = StVT.getSizeInBits(); 544 auto &DL = DAG.getDataLayout(); 545 546 if (StWidth != StVT.getStoreSizeInBits()) { 547 // Promote to a byte-sized store with upper bits zero if not 548 // storing an integral number of bytes. For example, promote 549 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 550 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), 551 StVT.getStoreSizeInBits()); 552 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 553 SDValue Result = 554 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 555 ST->getOriginalAlign(), MMOFlags, AAInfo); 556 ReplaceNode(SDValue(Node, 0), Result); 557 } else if (StWidth & (StWidth - 1)) { 558 // If not storing a power-of-2 number of bits, expand as two stores. 559 assert(!StVT.isVector() && "Unsupported truncstore!"); 560 unsigned LogStWidth = Log2_32(StWidth); 561 assert(LogStWidth < 32); 562 unsigned RoundWidth = 1 << LogStWidth; 563 assert(RoundWidth < StWidth); 564 unsigned ExtraWidth = StWidth - RoundWidth; 565 assert(ExtraWidth < RoundWidth); 566 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 567 "Store size not an integral number of bytes!"); 568 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 569 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 570 SDValue Lo, Hi; 571 unsigned IncrementSize; 572 573 if (DL.isLittleEndian()) { 574 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 575 // Store the bottom RoundWidth bits. 576 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 577 RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 578 579 // Store the remaining ExtraWidth bits. 580 IncrementSize = RoundWidth / 8; 581 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 582 Hi = DAG.getNode( 583 ISD::SRL, dl, Value.getValueType(), Value, 584 DAG.getConstant(RoundWidth, dl, 585 TLI.getShiftAmountTy(Value.getValueType(), DL))); 586 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, 587 ST->getPointerInfo().getWithOffset(IncrementSize), 588 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 589 } else { 590 // Big endian - avoid unaligned stores. 591 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 592 // Store the top RoundWidth bits. 593 Hi = DAG.getNode( 594 ISD::SRL, dl, Value.getValueType(), Value, 595 DAG.getConstant(ExtraWidth, dl, 596 TLI.getShiftAmountTy(Value.getValueType(), DL))); 597 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT, 598 ST->getOriginalAlign(), MMOFlags, AAInfo); 599 600 // Store the remaining ExtraWidth bits. 601 IncrementSize = RoundWidth / 8; 602 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 603 DAG.getConstant(IncrementSize, dl, 604 Ptr.getValueType())); 605 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, 606 ST->getPointerInfo().getWithOffset(IncrementSize), 607 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 608 } 609 610 // The order of the stores doesn't matter. 611 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 612 ReplaceNode(SDValue(Node, 0), Result); 613 } else { 614 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 615 default: llvm_unreachable("This action is not supported yet!"); 616 case TargetLowering::Legal: { 617 EVT MemVT = ST->getMemoryVT(); 618 // If this is an unaligned store and the target doesn't support it, 619 // expand it. 620 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 621 *ST->getMemOperand())) { 622 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 623 ReplaceNode(SDValue(ST, 0), Result); 624 } 625 break; 626 } 627 case TargetLowering::Custom: { 628 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 629 if (Res && Res != SDValue(Node, 0)) 630 ReplaceNode(SDValue(Node, 0), Res); 631 return; 632 } 633 case TargetLowering::Expand: 634 assert(!StVT.isVector() && 635 "Vector Stores are handled in LegalizeVectorOps"); 636 637 SDValue Result; 638 639 // TRUNCSTORE:i16 i32 -> STORE i16 640 if (TLI.isTypeLegal(StVT)) { 641 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 642 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 643 ST->getOriginalAlign(), MMOFlags, AAInfo); 644 } else { 645 // The in-memory type isn't legal. Truncate to the type it would promote 646 // to, and then do a truncstore. 647 Value = DAG.getNode(ISD::TRUNCATE, dl, 648 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 649 Value); 650 Result = 651 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT, 652 ST->getOriginalAlign(), MMOFlags, AAInfo); 653 } 654 655 ReplaceNode(SDValue(Node, 0), Result); 656 break; 657 } 658 } 659 } 660 661 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 662 LoadSDNode *LD = cast<LoadSDNode>(Node); 663 SDValue Chain = LD->getChain(); // The chain. 664 SDValue Ptr = LD->getBasePtr(); // The base pointer. 665 SDValue Value; // The value returned by the load op. 666 SDLoc dl(Node); 667 668 ISD::LoadExtType ExtType = LD->getExtensionType(); 669 if (ExtType == ISD::NON_EXTLOAD) { 670 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 671 MVT VT = Node->getSimpleValueType(0); 672 SDValue RVal = SDValue(Node, 0); 673 SDValue RChain = SDValue(Node, 1); 674 675 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 676 default: llvm_unreachable("This action is not supported yet!"); 677 case TargetLowering::Legal: { 678 EVT MemVT = LD->getMemoryVT(); 679 const DataLayout &DL = DAG.getDataLayout(); 680 // If this is an unaligned load and the target doesn't support it, 681 // expand it. 682 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 683 *LD->getMemOperand())) { 684 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 685 } 686 break; 687 } 688 case TargetLowering::Custom: 689 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 690 RVal = Res; 691 RChain = Res.getValue(1); 692 } 693 break; 694 695 case TargetLowering::Promote: { 696 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 697 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 698 "Can only promote loads to same size type"); 699 700 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 701 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 702 RChain = Res.getValue(1); 703 break; 704 } 705 } 706 if (RChain.getNode() != Node) { 707 assert(RVal.getNode() != Node && "Load must be completely replaced"); 708 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 709 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 710 if (UpdatedNodes) { 711 UpdatedNodes->insert(RVal.getNode()); 712 UpdatedNodes->insert(RChain.getNode()); 713 } 714 ReplacedNode(Node); 715 } 716 return; 717 } 718 719 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); 720 EVT SrcVT = LD->getMemoryVT(); 721 unsigned SrcWidth = SrcVT.getSizeInBits(); 722 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 723 AAMDNodes AAInfo = LD->getAAInfo(); 724 725 if (SrcWidth != SrcVT.getStoreSizeInBits() && 726 // Some targets pretend to have an i1 loading operation, and actually 727 // load an i8. This trick is correct for ZEXTLOAD because the top 7 728 // bits are guaranteed to be zero; it helps the optimizers understand 729 // that these bits are zero. It is also useful for EXTLOAD, since it 730 // tells the optimizers that those bits are undefined. It would be 731 // nice to have an effective generic way of getting these benefits... 732 // Until such a way is found, don't insist on promoting i1 here. 733 (SrcVT != MVT::i1 || 734 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 735 TargetLowering::Promote)) { 736 // Promote to a byte-sized load if not loading an integral number of 737 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 738 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 739 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 740 SDValue Ch; 741 742 // The extra bits are guaranteed to be zero, since we stored them that 743 // way. A zext load from NVT thus automatically gives zext from SrcVT. 744 745 ISD::LoadExtType NewExtType = 746 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 747 748 SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 749 Chain, Ptr, LD->getPointerInfo(), NVT, 750 LD->getOriginalAlign(), MMOFlags, AAInfo); 751 752 Ch = Result.getValue(1); // The chain. 753 754 if (ExtType == ISD::SEXTLOAD) 755 // Having the top bits zero doesn't help when sign extending. 756 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 757 Result.getValueType(), 758 Result, DAG.getValueType(SrcVT)); 759 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 760 // All the top bits are guaranteed to be zero - inform the optimizers. 761 Result = DAG.getNode(ISD::AssertZext, dl, 762 Result.getValueType(), Result, 763 DAG.getValueType(SrcVT)); 764 765 Value = Result; 766 Chain = Ch; 767 } else if (SrcWidth & (SrcWidth - 1)) { 768 // If not loading a power-of-2 number of bits, expand as two loads. 769 assert(!SrcVT.isVector() && "Unsupported extload!"); 770 unsigned LogSrcWidth = Log2_32(SrcWidth); 771 assert(LogSrcWidth < 32); 772 unsigned RoundWidth = 1 << LogSrcWidth; 773 assert(RoundWidth < SrcWidth); 774 unsigned ExtraWidth = SrcWidth - RoundWidth; 775 assert(ExtraWidth < RoundWidth); 776 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 777 "Load size not an integral number of bytes!"); 778 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 779 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 780 SDValue Lo, Hi, Ch; 781 unsigned IncrementSize; 782 auto &DL = DAG.getDataLayout(); 783 784 if (DL.isLittleEndian()) { 785 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 786 // Load the bottom RoundWidth bits. 787 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 788 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 789 MMOFlags, AAInfo); 790 791 // Load the remaining ExtraWidth bits. 792 IncrementSize = RoundWidth / 8; 793 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 794 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 795 LD->getPointerInfo().getWithOffset(IncrementSize), 796 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 797 798 // Build a factor node to remember that this load is independent of 799 // the other one. 800 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 801 Hi.getValue(1)); 802 803 // Move the top bits to the right place. 804 Hi = DAG.getNode( 805 ISD::SHL, dl, Hi.getValueType(), Hi, 806 DAG.getConstant(RoundWidth, dl, 807 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 808 809 // Join the hi and lo parts. 810 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 811 } else { 812 // Big endian - avoid unaligned loads. 813 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 814 // Load the top RoundWidth bits. 815 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 816 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 817 MMOFlags, AAInfo); 818 819 // Load the remaining ExtraWidth bits. 820 IncrementSize = RoundWidth / 8; 821 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 822 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 823 LD->getPointerInfo().getWithOffset(IncrementSize), 824 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 825 826 // Build a factor node to remember that this load is independent of 827 // the other one. 828 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 829 Hi.getValue(1)); 830 831 // Move the top bits to the right place. 832 Hi = DAG.getNode( 833 ISD::SHL, dl, Hi.getValueType(), Hi, 834 DAG.getConstant(ExtraWidth, dl, 835 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 836 837 // Join the hi and lo parts. 838 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 839 } 840 841 Chain = Ch; 842 } else { 843 bool isCustom = false; 844 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 845 SrcVT.getSimpleVT())) { 846 default: llvm_unreachable("This action is not supported yet!"); 847 case TargetLowering::Custom: 848 isCustom = true; 849 LLVM_FALLTHROUGH; 850 case TargetLowering::Legal: 851 Value = SDValue(Node, 0); 852 Chain = SDValue(Node, 1); 853 854 if (isCustom) { 855 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 856 Value = Res; 857 Chain = Res.getValue(1); 858 } 859 } else { 860 // If this is an unaligned load and the target doesn't support it, 861 // expand it. 862 EVT MemVT = LD->getMemoryVT(); 863 const DataLayout &DL = DAG.getDataLayout(); 864 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, 865 *LD->getMemOperand())) { 866 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 867 } 868 } 869 break; 870 871 case TargetLowering::Expand: { 872 EVT DestVT = Node->getValueType(0); 873 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 874 // If the source type is not legal, see if there is a legal extload to 875 // an intermediate type that we can then extend further. 876 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 877 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 878 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 879 // If we are loading a legal type, this is a non-extload followed by a 880 // full extend. 881 ISD::LoadExtType MidExtType = 882 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 883 884 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 885 SrcVT, LD->getMemOperand()); 886 unsigned ExtendOp = 887 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 888 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 889 Chain = Load.getValue(1); 890 break; 891 } 892 893 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 894 // normal undefined upper bits behavior to allow using an in-reg extend 895 // with the illegal FP type, so load as an integer and do the 896 // from-integer conversion. 897 if (SrcVT.getScalarType() == MVT::f16) { 898 EVT ISrcVT = SrcVT.changeTypeToInteger(); 899 EVT IDestVT = DestVT.changeTypeToInteger(); 900 EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 901 902 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain, 903 Ptr, ISrcVT, LD->getMemOperand()); 904 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 905 Chain = Result.getValue(1); 906 break; 907 } 908 } 909 910 assert(!SrcVT.isVector() && 911 "Vector Loads are handled in LegalizeVectorOps"); 912 913 // FIXME: This does not work for vectors on most targets. Sign- 914 // and zero-extend operations are currently folded into extending 915 // loads, whether they are legal or not, and then we end up here 916 // without any support for legalizing them. 917 assert(ExtType != ISD::EXTLOAD && 918 "EXTLOAD should always be supported!"); 919 // Turn the unsupported load into an EXTLOAD followed by an 920 // explicit zero/sign extend inreg. 921 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 922 Node->getValueType(0), 923 Chain, Ptr, SrcVT, 924 LD->getMemOperand()); 925 SDValue ValRes; 926 if (ExtType == ISD::SEXTLOAD) 927 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 928 Result.getValueType(), 929 Result, DAG.getValueType(SrcVT)); 930 else 931 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT); 932 Value = ValRes; 933 Chain = Result.getValue(1); 934 break; 935 } 936 } 937 } 938 939 // Since loads produce two values, make sure to remember that we legalized 940 // both of them. 941 if (Chain.getNode() != Node) { 942 assert(Value.getNode() != Node && "Load must be completely replaced"); 943 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 944 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 945 if (UpdatedNodes) { 946 UpdatedNodes->insert(Value.getNode()); 947 UpdatedNodes->insert(Chain.getNode()); 948 } 949 ReplacedNode(Node); 950 } 951 } 952 953 /// Return a legal replacement for the given operation, with all legal operands. 954 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 955 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 956 957 // Allow illegal target nodes and illegal registers. 958 if (Node->getOpcode() == ISD::TargetConstant || 959 Node->getOpcode() == ISD::Register) 960 return; 961 962 #ifndef NDEBUG 963 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 964 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 965 TargetLowering::TypeLegal && 966 "Unexpected illegal type!"); 967 968 for (const SDValue &Op : Node->op_values()) 969 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 970 TargetLowering::TypeLegal || 971 Op.getOpcode() == ISD::TargetConstant || 972 Op.getOpcode() == ISD::Register) && 973 "Unexpected illegal type!"); 974 #endif 975 976 // Figure out the correct action; the way to query this varies by opcode 977 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 978 bool SimpleFinishLegalizing = true; 979 switch (Node->getOpcode()) { 980 case ISD::INTRINSIC_W_CHAIN: 981 case ISD::INTRINSIC_WO_CHAIN: 982 case ISD::INTRINSIC_VOID: 983 case ISD::STACKSAVE: 984 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 985 break; 986 case ISD::GET_DYNAMIC_AREA_OFFSET: 987 Action = TLI.getOperationAction(Node->getOpcode(), 988 Node->getValueType(0)); 989 break; 990 case ISD::VAARG: 991 Action = TLI.getOperationAction(Node->getOpcode(), 992 Node->getValueType(0)); 993 if (Action != TargetLowering::Promote) 994 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 995 break; 996 case ISD::FP_TO_FP16: 997 case ISD::SINT_TO_FP: 998 case ISD::UINT_TO_FP: 999 case ISD::EXTRACT_VECTOR_ELT: 1000 case ISD::LROUND: 1001 case ISD::LLROUND: 1002 case ISD::LRINT: 1003 case ISD::LLRINT: 1004 Action = TLI.getOperationAction(Node->getOpcode(), 1005 Node->getOperand(0).getValueType()); 1006 break; 1007 case ISD::STRICT_FP_TO_FP16: 1008 case ISD::STRICT_SINT_TO_FP: 1009 case ISD::STRICT_UINT_TO_FP: 1010 case ISD::STRICT_LRINT: 1011 case ISD::STRICT_LLRINT: 1012 case ISD::STRICT_LROUND: 1013 case ISD::STRICT_LLROUND: 1014 // These pseudo-ops are the same as the other STRICT_ ops except 1015 // they are registered with setOperationAction() using the input type 1016 // instead of the output type. 1017 Action = TLI.getOperationAction(Node->getOpcode(), 1018 Node->getOperand(1).getValueType()); 1019 break; 1020 case ISD::SIGN_EXTEND_INREG: { 1021 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1022 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1023 break; 1024 } 1025 case ISD::ATOMIC_STORE: 1026 Action = TLI.getOperationAction(Node->getOpcode(), 1027 Node->getOperand(2).getValueType()); 1028 break; 1029 case ISD::SELECT_CC: 1030 case ISD::STRICT_FSETCC: 1031 case ISD::STRICT_FSETCCS: 1032 case ISD::SETCC: 1033 case ISD::BR_CC: { 1034 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 1035 Node->getOpcode() == ISD::STRICT_FSETCC ? 3 : 1036 Node->getOpcode() == ISD::STRICT_FSETCCS ? 3 : 1037 Node->getOpcode() == ISD::SETCC ? 2 : 1; 1038 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 1039 Node->getOpcode() == ISD::STRICT_FSETCC ? 1 : 1040 Node->getOpcode() == ISD::STRICT_FSETCCS ? 1 : 0; 1041 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1042 ISD::CondCode CCCode = 1043 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1044 Action = TLI.getCondCodeAction(CCCode, OpVT); 1045 if (Action == TargetLowering::Legal) { 1046 if (Node->getOpcode() == ISD::SELECT_CC) 1047 Action = TLI.getOperationAction(Node->getOpcode(), 1048 Node->getValueType(0)); 1049 else 1050 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1051 } 1052 break; 1053 } 1054 case ISD::LOAD: 1055 case ISD::STORE: 1056 // FIXME: Model these properly. LOAD and STORE are complicated, and 1057 // STORE expects the unlegalized operand in some cases. 1058 SimpleFinishLegalizing = false; 1059 break; 1060 case ISD::CALLSEQ_START: 1061 case ISD::CALLSEQ_END: 1062 // FIXME: This shouldn't be necessary. These nodes have special properties 1063 // dealing with the recursive nature of legalization. Removing this 1064 // special case should be done as part of making LegalizeDAG non-recursive. 1065 SimpleFinishLegalizing = false; 1066 break; 1067 case ISD::EXTRACT_ELEMENT: 1068 case ISD::FLT_ROUNDS_: 1069 case ISD::MERGE_VALUES: 1070 case ISD::EH_RETURN: 1071 case ISD::FRAME_TO_ARGS_OFFSET: 1072 case ISD::EH_DWARF_CFA: 1073 case ISD::EH_SJLJ_SETJMP: 1074 case ISD::EH_SJLJ_LONGJMP: 1075 case ISD::EH_SJLJ_SETUP_DISPATCH: 1076 // These operations lie about being legal: when they claim to be legal, 1077 // they should actually be expanded. 1078 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1079 if (Action == TargetLowering::Legal) 1080 Action = TargetLowering::Expand; 1081 break; 1082 case ISD::INIT_TRAMPOLINE: 1083 case ISD::ADJUST_TRAMPOLINE: 1084 case ISD::FRAMEADDR: 1085 case ISD::RETURNADDR: 1086 case ISD::ADDROFRETURNADDR: 1087 case ISD::SPONENTRY: 1088 // These operations lie about being legal: when they claim to be legal, 1089 // they should actually be custom-lowered. 1090 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1091 if (Action == TargetLowering::Legal) 1092 Action = TargetLowering::Custom; 1093 break; 1094 case ISD::READCYCLECOUNTER: 1095 // READCYCLECOUNTER returns an i64, even if type legalization might have 1096 // expanded that to several smaller types. 1097 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1098 break; 1099 case ISD::READ_REGISTER: 1100 case ISD::WRITE_REGISTER: 1101 // Named register is legal in the DAG, but blocked by register name 1102 // selection if not implemented by target (to chose the correct register) 1103 // They'll be converted to Copy(To/From)Reg. 1104 Action = TargetLowering::Legal; 1105 break; 1106 case ISD::DEBUGTRAP: 1107 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1108 if (Action == TargetLowering::Expand) { 1109 // replace ISD::DEBUGTRAP with ISD::TRAP 1110 SDValue NewVal; 1111 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1112 Node->getOperand(0)); 1113 ReplaceNode(Node, NewVal.getNode()); 1114 LegalizeOp(NewVal.getNode()); 1115 return; 1116 } 1117 break; 1118 case ISD::SADDSAT: 1119 case ISD::UADDSAT: 1120 case ISD::SSUBSAT: 1121 case ISD::USUBSAT: 1122 case ISD::SSHLSAT: 1123 case ISD::USHLSAT: { 1124 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1125 break; 1126 } 1127 case ISD::SMULFIX: 1128 case ISD::SMULFIXSAT: 1129 case ISD::UMULFIX: 1130 case ISD::UMULFIXSAT: 1131 case ISD::SDIVFIX: 1132 case ISD::SDIVFIXSAT: 1133 case ISD::UDIVFIX: 1134 case ISD::UDIVFIXSAT: { 1135 unsigned Scale = Node->getConstantOperandVal(2); 1136 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 1137 Node->getValueType(0), Scale); 1138 break; 1139 } 1140 case ISD::MSCATTER: 1141 Action = TLI.getOperationAction(Node->getOpcode(), 1142 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 1143 break; 1144 case ISD::MSTORE: 1145 Action = TLI.getOperationAction(Node->getOpcode(), 1146 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 1147 break; 1148 case ISD::VECREDUCE_FADD: 1149 case ISD::VECREDUCE_FMUL: 1150 case ISD::VECREDUCE_ADD: 1151 case ISD::VECREDUCE_MUL: 1152 case ISD::VECREDUCE_AND: 1153 case ISD::VECREDUCE_OR: 1154 case ISD::VECREDUCE_XOR: 1155 case ISD::VECREDUCE_SMAX: 1156 case ISD::VECREDUCE_SMIN: 1157 case ISD::VECREDUCE_UMAX: 1158 case ISD::VECREDUCE_UMIN: 1159 case ISD::VECREDUCE_FMAX: 1160 case ISD::VECREDUCE_FMIN: 1161 Action = TLI.getOperationAction( 1162 Node->getOpcode(), Node->getOperand(0).getValueType()); 1163 break; 1164 default: 1165 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1166 Action = TargetLowering::Legal; 1167 } else { 1168 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1169 } 1170 break; 1171 } 1172 1173 if (SimpleFinishLegalizing) { 1174 SDNode *NewNode = Node; 1175 switch (Node->getOpcode()) { 1176 default: break; 1177 case ISD::SHL: 1178 case ISD::SRL: 1179 case ISD::SRA: 1180 case ISD::ROTL: 1181 case ISD::ROTR: { 1182 // Legalizing shifts/rotates requires adjusting the shift amount 1183 // to the appropriate width. 1184 SDValue Op0 = Node->getOperand(0); 1185 SDValue Op1 = Node->getOperand(1); 1186 if (!Op1.getValueType().isVector()) { 1187 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1188 // The getShiftAmountOperand() may create a new operand node or 1189 // return the existing one. If new operand is created we need 1190 // to update the parent node. 1191 // Do not try to legalize SAO here! It will be automatically legalized 1192 // in the next round. 1193 if (SAO != Op1) 1194 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1195 } 1196 } 1197 break; 1198 case ISD::FSHL: 1199 case ISD::FSHR: 1200 case ISD::SRL_PARTS: 1201 case ISD::SRA_PARTS: 1202 case ISD::SHL_PARTS: { 1203 // Legalizing shifts/rotates requires adjusting the shift amount 1204 // to the appropriate width. 1205 SDValue Op0 = Node->getOperand(0); 1206 SDValue Op1 = Node->getOperand(1); 1207 SDValue Op2 = Node->getOperand(2); 1208 if (!Op2.getValueType().isVector()) { 1209 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1210 // The getShiftAmountOperand() may create a new operand node or 1211 // return the existing one. If new operand is created we need 1212 // to update the parent node. 1213 if (SAO != Op2) 1214 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1215 } 1216 break; 1217 } 1218 } 1219 1220 if (NewNode != Node) { 1221 ReplaceNode(Node, NewNode); 1222 Node = NewNode; 1223 } 1224 switch (Action) { 1225 case TargetLowering::Legal: 1226 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 1227 return; 1228 case TargetLowering::Custom: 1229 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 1230 // FIXME: The handling for custom lowering with multiple results is 1231 // a complete mess. 1232 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1233 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1234 return; 1235 1236 if (Node->getNumValues() == 1) { 1237 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1238 // We can just directly replace this node with the lowered value. 1239 ReplaceNode(SDValue(Node, 0), Res); 1240 return; 1241 } 1242 1243 SmallVector<SDValue, 8> ResultVals; 1244 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1245 ResultVals.push_back(Res.getValue(i)); 1246 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1247 ReplaceNode(Node, ResultVals.data()); 1248 return; 1249 } 1250 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 1251 LLVM_FALLTHROUGH; 1252 case TargetLowering::Expand: 1253 if (ExpandNode(Node)) 1254 return; 1255 LLVM_FALLTHROUGH; 1256 case TargetLowering::LibCall: 1257 ConvertNodeToLibcall(Node); 1258 return; 1259 case TargetLowering::Promote: 1260 PromoteNode(Node); 1261 return; 1262 } 1263 } 1264 1265 switch (Node->getOpcode()) { 1266 default: 1267 #ifndef NDEBUG 1268 dbgs() << "NODE: "; 1269 Node->dump( &DAG); 1270 dbgs() << "\n"; 1271 #endif 1272 llvm_unreachable("Do not know how to legalize this operator!"); 1273 1274 case ISD::CALLSEQ_START: 1275 case ISD::CALLSEQ_END: 1276 break; 1277 case ISD::LOAD: 1278 return LegalizeLoadOps(Node); 1279 case ISD::STORE: 1280 return LegalizeStoreOps(Node); 1281 } 1282 } 1283 1284 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1285 SDValue Vec = Op.getOperand(0); 1286 SDValue Idx = Op.getOperand(1); 1287 SDLoc dl(Op); 1288 1289 // Before we generate a new store to a temporary stack slot, see if there is 1290 // already one that we can use. There often is because when we scalarize 1291 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1292 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1293 // the vector. If all are expanded here, we don't want one store per vector 1294 // element. 1295 1296 // Caches for hasPredecessorHelper 1297 SmallPtrSet<const SDNode *, 32> Visited; 1298 SmallVector<const SDNode *, 16> Worklist; 1299 Visited.insert(Op.getNode()); 1300 Worklist.push_back(Idx.getNode()); 1301 SDValue StackPtr, Ch; 1302 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), 1303 UE = Vec.getNode()->use_end(); UI != UE; ++UI) { 1304 SDNode *User = *UI; 1305 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1306 if (ST->isIndexed() || ST->isTruncatingStore() || 1307 ST->getValue() != Vec) 1308 continue; 1309 1310 // Make sure that nothing else could have stored into the destination of 1311 // this store. 1312 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1313 continue; 1314 1315 // If the index is dependent on the store we will introduce a cycle when 1316 // creating the load (the load uses the index, and by replacing the chain 1317 // we will make the index dependent on the load). Also, the store might be 1318 // dependent on the extractelement and introduce a cycle when creating 1319 // the load. 1320 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1321 ST->hasPredecessor(Op.getNode())) 1322 continue; 1323 1324 StackPtr = ST->getBasePtr(); 1325 Ch = SDValue(ST, 0); 1326 break; 1327 } 1328 } 1329 1330 EVT VecVT = Vec.getValueType(); 1331 1332 if (!Ch.getNode()) { 1333 // Store the value to a temporary stack slot, then LOAD the returned part. 1334 StackPtr = DAG.CreateStackTemporary(VecVT); 1335 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1336 MachinePointerInfo()); 1337 } 1338 1339 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1340 1341 SDValue NewLoad; 1342 1343 if (Op.getValueType().isVector()) 1344 NewLoad = 1345 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); 1346 else 1347 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1348 MachinePointerInfo(), 1349 VecVT.getVectorElementType()); 1350 1351 // Replace the chain going out of the store, by the one out of the load. 1352 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1353 1354 // We introduced a cycle though, so update the loads operands, making sure 1355 // to use the original store's chain as an incoming chain. 1356 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1357 NewLoad->op_end()); 1358 NewLoadOperands[0] = Ch; 1359 NewLoad = 1360 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1361 return NewLoad; 1362 } 1363 1364 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1365 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1366 1367 SDValue Vec = Op.getOperand(0); 1368 SDValue Part = Op.getOperand(1); 1369 SDValue Idx = Op.getOperand(2); 1370 SDLoc dl(Op); 1371 1372 // Store the value to a temporary stack slot, then LOAD the returned part. 1373 EVT VecVT = Vec.getValueType(); 1374 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1375 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1376 MachinePointerInfo PtrInfo = 1377 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1378 1379 // First store the whole vector. 1380 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1381 1382 // Then store the inserted part. 1383 SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1384 1385 // Store the subvector. 1386 Ch = DAG.getStore( 1387 Ch, dl, Part, SubStackPtr, 1388 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1389 1390 // Finally, load the updated vector. 1391 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1392 } 1393 1394 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1395 assert((Node->getOpcode() == ISD::BUILD_VECTOR || 1396 Node->getOpcode() == ISD::CONCAT_VECTORS) && 1397 "Unexpected opcode!"); 1398 1399 // We can't handle this case efficiently. Allocate a sufficiently 1400 // aligned object on the stack, store each operand into it, then load 1401 // the result as a vector. 1402 // Create the stack frame object. 1403 EVT VT = Node->getValueType(0); 1404 EVT MemVT = isa<BuildVectorSDNode>(Node) ? VT.getVectorElementType() 1405 : Node->getOperand(0).getValueType(); 1406 SDLoc dl(Node); 1407 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1408 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1409 MachinePointerInfo PtrInfo = 1410 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1411 1412 // Emit a store of each element to the stack slot. 1413 SmallVector<SDValue, 8> Stores; 1414 unsigned TypeByteSize = MemVT.getSizeInBits() / 8; 1415 assert(TypeByteSize > 0 && "Vector element type too small for stack store!"); 1416 1417 // If the destination vector element type of a BUILD_VECTOR is narrower than 1418 // the source element type, only store the bits necessary. 1419 bool Truncate = isa<BuildVectorSDNode>(Node) && 1420 MemVT.bitsLT(Node->getOperand(0).getValueType()); 1421 1422 // Store (in the right endianness) the elements to memory. 1423 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1424 // Ignore undef elements. 1425 if (Node->getOperand(i).isUndef()) continue; 1426 1427 unsigned Offset = TypeByteSize*i; 1428 1429 SDValue Idx = DAG.getMemBasePlusOffset(FIPtr, TypeSize::Fixed(Offset), dl); 1430 1431 if (Truncate) 1432 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1433 Node->getOperand(i), Idx, 1434 PtrInfo.getWithOffset(Offset), MemVT)); 1435 else 1436 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1437 Idx, PtrInfo.getWithOffset(Offset))); 1438 } 1439 1440 SDValue StoreChain; 1441 if (!Stores.empty()) // Not all undef elements? 1442 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1443 else 1444 StoreChain = DAG.getEntryNode(); 1445 1446 // Result is a load from the stack slot. 1447 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1448 } 1449 1450 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1451 /// containing the sign bit if the target has no integer value capable of 1452 /// holding all bits of the floating-point value. 1453 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1454 const SDLoc &DL, 1455 SDValue Value) const { 1456 EVT FloatVT = Value.getValueType(); 1457 unsigned NumBits = FloatVT.getSizeInBits(); 1458 State.FloatVT = FloatVT; 1459 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1460 // Convert to an integer of the same size. 1461 if (TLI.isTypeLegal(IVT)) { 1462 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1463 State.SignMask = APInt::getSignMask(NumBits); 1464 State.SignBit = NumBits - 1; 1465 return; 1466 } 1467 1468 auto &DataLayout = DAG.getDataLayout(); 1469 // Store the float to memory, then load the sign part out as an integer. 1470 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1471 // First create a temporary that is aligned for both the load and store. 1472 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1473 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1474 // Then store the float to it. 1475 State.FloatPtr = StackPtr; 1476 MachineFunction &MF = DAG.getMachineFunction(); 1477 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1478 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1479 State.FloatPointerInfo); 1480 1481 SDValue IntPtr; 1482 if (DataLayout.isBigEndian()) { 1483 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1484 // Load out a legal integer with the same sign bit as the float. 1485 IntPtr = StackPtr; 1486 State.IntPointerInfo = State.FloatPointerInfo; 1487 } else { 1488 // Advance the pointer so that the loaded byte will contain the sign bit. 1489 unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1; 1490 IntPtr = 1491 DAG.getMemBasePlusOffset(StackPtr, TypeSize::Fixed(ByteOffset), DL); 1492 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1493 ByteOffset); 1494 } 1495 1496 State.IntPtr = IntPtr; 1497 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1498 State.IntPointerInfo, MVT::i8); 1499 State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7); 1500 State.SignBit = 7; 1501 } 1502 1503 /// Replace the integer value produced by getSignAsIntValue() with a new value 1504 /// and cast the result back to a floating-point type. 1505 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1506 const SDLoc &DL, 1507 SDValue NewIntValue) const { 1508 if (!State.Chain) 1509 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1510 1511 // Override the part containing the sign bit in the value stored on the stack. 1512 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1513 State.IntPointerInfo, MVT::i8); 1514 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1515 State.FloatPointerInfo); 1516 } 1517 1518 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1519 SDLoc DL(Node); 1520 SDValue Mag = Node->getOperand(0); 1521 SDValue Sign = Node->getOperand(1); 1522 1523 // Get sign bit into an integer value. 1524 FloatSignAsInt SignAsInt; 1525 getSignAsIntValue(SignAsInt, DL, Sign); 1526 1527 EVT IntVT = SignAsInt.IntValue.getValueType(); 1528 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1529 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1530 SignMask); 1531 1532 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1533 EVT FloatVT = Mag.getValueType(); 1534 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1535 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1536 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1537 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1538 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1539 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1540 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1541 } 1542 1543 // Transform Mag value to integer, and clear the sign bit. 1544 FloatSignAsInt MagAsInt; 1545 getSignAsIntValue(MagAsInt, DL, Mag); 1546 EVT MagVT = MagAsInt.IntValue.getValueType(); 1547 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1548 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1549 ClearSignMask); 1550 1551 // Get the signbit at the right position for MagAsInt. 1552 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1553 EVT ShiftVT = IntVT; 1554 if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) { 1555 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1556 ShiftVT = MagVT; 1557 } 1558 if (ShiftAmount > 0) { 1559 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); 1560 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); 1561 } else if (ShiftAmount < 0) { 1562 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); 1563 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); 1564 } 1565 if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) { 1566 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1567 } 1568 1569 // Store the part with the modified sign and convert back to float. 1570 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1571 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1572 } 1573 1574 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1575 SDLoc DL(Node); 1576 SDValue Value = Node->getOperand(0); 1577 1578 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1579 EVT FloatVT = Value.getValueType(); 1580 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1581 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1582 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1583 } 1584 1585 // Transform value to integer, clear the sign bit and transform back. 1586 FloatSignAsInt ValueAsInt; 1587 getSignAsIntValue(ValueAsInt, DL, Value); 1588 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1589 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1590 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1591 ClearSignMask); 1592 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1593 } 1594 1595 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1596 SmallVectorImpl<SDValue> &Results) { 1597 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1598 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1599 " not tell us which reg is the stack pointer!"); 1600 SDLoc dl(Node); 1601 EVT VT = Node->getValueType(0); 1602 SDValue Tmp1 = SDValue(Node, 0); 1603 SDValue Tmp2 = SDValue(Node, 1); 1604 SDValue Tmp3 = Node->getOperand(2); 1605 SDValue Chain = Tmp1.getOperand(0); 1606 1607 // Chain the dynamic stack allocation so that it doesn't modify the stack 1608 // pointer when other instructions are using the stack. 1609 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1610 1611 SDValue Size = Tmp2.getOperand(1); 1612 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1613 Chain = SP.getValue(1); 1614 Align Alignment = cast<ConstantSDNode>(Tmp3)->getAlignValue(); 1615 const TargetFrameLowering *TFL = DAG.getSubtarget().getFrameLowering(); 1616 unsigned Opc = 1617 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 1618 ISD::ADD : ISD::SUB; 1619 1620 Align StackAlign = TFL->getStackAlign(); 1621 Tmp1 = DAG.getNode(Opc, dl, VT, SP, Size); // Value 1622 if (Alignment > StackAlign) 1623 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1624 DAG.getConstant(-Alignment.value(), dl, VT)); 1625 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1626 1627 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1628 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1629 1630 Results.push_back(Tmp1); 1631 Results.push_back(Tmp2); 1632 } 1633 1634 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current 1635 /// target. 1636 /// 1637 /// If the SETCC has been legalized using AND / OR, then the legalized node 1638 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert 1639 /// will be set to false. 1640 /// 1641 /// If the SETCC has been legalized by using getSetCCSwappedOperands(), 1642 /// then the values of LHS and RHS will be swapped, CC will be set to the 1643 /// new condition, and NeedInvert will be set to false. 1644 /// 1645 /// If the SETCC has been legalized using the inverse condcode, then LHS and 1646 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert 1647 /// will be set to true. The caller must invert the result of the SETCC with 1648 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect 1649 /// of a true/false result. 1650 /// 1651 /// \returns true if the SetCC has been legalized, false if it hasn't. 1652 bool SelectionDAGLegalize::LegalizeSetCCCondCode( 1653 EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, bool &NeedInvert, 1654 const SDLoc &dl, SDValue &Chain, bool IsSignaling) { 1655 MVT OpVT = LHS.getSimpleValueType(); 1656 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1657 NeedInvert = false; 1658 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1659 default: llvm_unreachable("Unknown condition code action!"); 1660 case TargetLowering::Legal: 1661 // Nothing to do. 1662 break; 1663 case TargetLowering::Expand: { 1664 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 1665 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1666 std::swap(LHS, RHS); 1667 CC = DAG.getCondCode(InvCC); 1668 return true; 1669 } 1670 // Swapping operands didn't work. Try inverting the condition. 1671 bool NeedSwap = false; 1672 InvCC = getSetCCInverse(CCCode, OpVT); 1673 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1674 // If inverting the condition is not enough, try swapping operands 1675 // on top of it. 1676 InvCC = ISD::getSetCCSwappedOperands(InvCC); 1677 NeedSwap = true; 1678 } 1679 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1680 CC = DAG.getCondCode(InvCC); 1681 NeedInvert = true; 1682 if (NeedSwap) 1683 std::swap(LHS, RHS); 1684 return true; 1685 } 1686 1687 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1688 unsigned Opc = 0; 1689 switch (CCCode) { 1690 default: llvm_unreachable("Don't know how to expand this condition!"); 1691 case ISD::SETO: 1692 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) 1693 && "If SETO is expanded, SETOEQ must be legal!"); 1694 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; 1695 case ISD::SETUO: 1696 assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT) 1697 && "If SETUO is expanded, SETUNE must be legal!"); 1698 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break; 1699 case ISD::SETOEQ: 1700 case ISD::SETOGT: 1701 case ISD::SETOGE: 1702 case ISD::SETOLT: 1703 case ISD::SETOLE: 1704 case ISD::SETONE: 1705 case ISD::SETUEQ: 1706 case ISD::SETUNE: 1707 case ISD::SETUGT: 1708 case ISD::SETUGE: 1709 case ISD::SETULT: 1710 case ISD::SETULE: 1711 // If we are floating point, assign and break, otherwise fall through. 1712 if (!OpVT.isInteger()) { 1713 // We can use the 4th bit to tell if we are the unordered 1714 // or ordered version of the opcode. 1715 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 1716 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 1717 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 1718 break; 1719 } 1720 // Fallthrough if we are unsigned integer. 1721 LLVM_FALLTHROUGH; 1722 case ISD::SETLE: 1723 case ISD::SETGT: 1724 case ISD::SETGE: 1725 case ISD::SETLT: 1726 case ISD::SETNE: 1727 case ISD::SETEQ: 1728 // If all combinations of inverting the condition and swapping operands 1729 // didn't work then we have no means to expand the condition. 1730 llvm_unreachable("Don't know how to expand this condition!"); 1731 } 1732 1733 SDValue SetCC1, SetCC2; 1734 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 1735 // If we aren't the ordered or unorder operation, 1736 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 1737 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 1738 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 1739 } else { 1740 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 1741 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 1742 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 1743 } 1744 if (Chain) 1745 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 1746 SetCC2.getValue(1)); 1747 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1748 RHS = SDValue(); 1749 CC = SDValue(); 1750 return true; 1751 } 1752 } 1753 return false; 1754 } 1755 1756 /// Emit a store/load combination to the stack. This stores 1757 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1758 /// a load from the stack slot to DestVT, extending it if needed. 1759 /// The resultant code need not be legal. 1760 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1761 EVT DestVT, const SDLoc &dl) { 1762 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode()); 1763 } 1764 1765 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1766 EVT DestVT, const SDLoc &dl, 1767 SDValue Chain) { 1768 // Create the stack frame object. 1769 unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment( 1770 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1771 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 1772 1773 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1774 int SPFI = StackPtrFI->getIndex(); 1775 MachinePointerInfo PtrInfo = 1776 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1777 1778 unsigned SrcSize = SrcOp.getValueSizeInBits(); 1779 unsigned SlotSize = SlotVT.getSizeInBits(); 1780 unsigned DestSize = DestVT.getSizeInBits(); 1781 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1782 unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType); 1783 1784 // Emit a store to the stack slot. Use a truncstore if the input value is 1785 // later than DestVT. 1786 SDValue Store; 1787 1788 if (SrcSize > SlotSize) 1789 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo, 1790 SlotVT, SrcAlign); 1791 else { 1792 assert(SrcSize == SlotSize && "Invalid store"); 1793 Store = 1794 DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1795 } 1796 1797 // Result is a load from the stack slot. 1798 if (SlotSize == DestSize) 1799 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1800 1801 assert(SlotSize < DestSize && "Unknown extension!"); 1802 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1803 DestAlign); 1804 } 1805 1806 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1807 SDLoc dl(Node); 1808 // Create a vector sized/aligned stack slot, store the value to element #0, 1809 // then load the whole vector back out. 1810 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1811 1812 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1813 int SPFI = StackPtrFI->getIndex(); 1814 1815 SDValue Ch = DAG.getTruncStore( 1816 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1817 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1818 Node->getValueType(0).getVectorElementType()); 1819 return DAG.getLoad( 1820 Node->getValueType(0), dl, Ch, StackPtr, 1821 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1822 } 1823 1824 static bool 1825 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1826 const TargetLowering &TLI, SDValue &Res) { 1827 unsigned NumElems = Node->getNumOperands(); 1828 SDLoc dl(Node); 1829 EVT VT = Node->getValueType(0); 1830 1831 // Try to group the scalars into pairs, shuffle the pairs together, then 1832 // shuffle the pairs of pairs together, etc. until the vector has 1833 // been built. This will work only if all of the necessary shuffle masks 1834 // are legal. 1835 1836 // We do this in two phases; first to check the legality of the shuffles, 1837 // and next, assuming that all shuffles are legal, to create the new nodes. 1838 for (int Phase = 0; Phase < 2; ++Phase) { 1839 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1840 NewIntermedVals; 1841 for (unsigned i = 0; i < NumElems; ++i) { 1842 SDValue V = Node->getOperand(i); 1843 if (V.isUndef()) 1844 continue; 1845 1846 SDValue Vec; 1847 if (Phase) 1848 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1849 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1850 } 1851 1852 while (IntermedVals.size() > 2) { 1853 NewIntermedVals.clear(); 1854 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1855 // This vector and the next vector are shuffled together (simply to 1856 // append the one to the other). 1857 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1858 1859 SmallVector<int, 16> FinalIndices; 1860 FinalIndices.reserve(IntermedVals[i].second.size() + 1861 IntermedVals[i+1].second.size()); 1862 1863 int k = 0; 1864 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1865 ++j, ++k) { 1866 ShuffleVec[k] = j; 1867 FinalIndices.push_back(IntermedVals[i].second[j]); 1868 } 1869 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1870 ++j, ++k) { 1871 ShuffleVec[k] = NumElems + j; 1872 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1873 } 1874 1875 SDValue Shuffle; 1876 if (Phase) 1877 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1878 IntermedVals[i+1].first, 1879 ShuffleVec); 1880 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1881 return false; 1882 NewIntermedVals.push_back( 1883 std::make_pair(Shuffle, std::move(FinalIndices))); 1884 } 1885 1886 // If we had an odd number of defined values, then append the last 1887 // element to the array of new vectors. 1888 if ((IntermedVals.size() & 1) != 0) 1889 NewIntermedVals.push_back(IntermedVals.back()); 1890 1891 IntermedVals.swap(NewIntermedVals); 1892 } 1893 1894 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1895 "Invalid number of intermediate vectors"); 1896 SDValue Vec1 = IntermedVals[0].first; 1897 SDValue Vec2; 1898 if (IntermedVals.size() > 1) 1899 Vec2 = IntermedVals[1].first; 1900 else if (Phase) 1901 Vec2 = DAG.getUNDEF(VT); 1902 1903 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1904 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1905 ShuffleVec[IntermedVals[0].second[i]] = i; 1906 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1907 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1908 1909 if (Phase) 1910 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1911 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1912 return false; 1913 } 1914 1915 return true; 1916 } 1917 1918 /// Expand a BUILD_VECTOR node on targets that don't 1919 /// support the operation, but do support the resultant vector type. 1920 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1921 unsigned NumElems = Node->getNumOperands(); 1922 SDValue Value1, Value2; 1923 SDLoc dl(Node); 1924 EVT VT = Node->getValueType(0); 1925 EVT OpVT = Node->getOperand(0).getValueType(); 1926 EVT EltVT = VT.getVectorElementType(); 1927 1928 // If the only non-undef value is the low element, turn this into a 1929 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1930 bool isOnlyLowElement = true; 1931 bool MoreThanTwoValues = false; 1932 bool isConstant = true; 1933 for (unsigned i = 0; i < NumElems; ++i) { 1934 SDValue V = Node->getOperand(i); 1935 if (V.isUndef()) 1936 continue; 1937 if (i > 0) 1938 isOnlyLowElement = false; 1939 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1940 isConstant = false; 1941 1942 if (!Value1.getNode()) { 1943 Value1 = V; 1944 } else if (!Value2.getNode()) { 1945 if (V != Value1) 1946 Value2 = V; 1947 } else if (V != Value1 && V != Value2) { 1948 MoreThanTwoValues = true; 1949 } 1950 } 1951 1952 if (!Value1.getNode()) 1953 return DAG.getUNDEF(VT); 1954 1955 if (isOnlyLowElement) 1956 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1957 1958 // If all elements are constants, create a load from the constant pool. 1959 if (isConstant) { 1960 SmallVector<Constant*, 16> CV; 1961 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1962 if (ConstantFPSDNode *V = 1963 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1964 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1965 } else if (ConstantSDNode *V = 1966 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1967 if (OpVT==EltVT) 1968 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1969 else { 1970 // If OpVT and EltVT don't match, EltVT is not legal and the 1971 // element values have been promoted/truncated earlier. Undo this; 1972 // we don't want a v16i8 to become a v16i32 for example. 1973 const ConstantInt *CI = V->getConstantIntValue(); 1974 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1975 CI->getZExtValue())); 1976 } 1977 } else { 1978 assert(Node->getOperand(i).isUndef()); 1979 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1980 CV.push_back(UndefValue::get(OpNTy)); 1981 } 1982 } 1983 Constant *CP = ConstantVector::get(CV); 1984 SDValue CPIdx = 1985 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 1986 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 1987 return DAG.getLoad( 1988 VT, dl, DAG.getEntryNode(), CPIdx, 1989 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 1990 Alignment); 1991 } 1992 1993 SmallSet<SDValue, 16> DefinedValues; 1994 for (unsigned i = 0; i < NumElems; ++i) { 1995 if (Node->getOperand(i).isUndef()) 1996 continue; 1997 DefinedValues.insert(Node->getOperand(i)); 1998 } 1999 2000 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 2001 if (!MoreThanTwoValues) { 2002 SmallVector<int, 8> ShuffleVec(NumElems, -1); 2003 for (unsigned i = 0; i < NumElems; ++i) { 2004 SDValue V = Node->getOperand(i); 2005 if (V.isUndef()) 2006 continue; 2007 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 2008 } 2009 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 2010 // Get the splatted value into the low element of a vector register. 2011 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 2012 SDValue Vec2; 2013 if (Value2.getNode()) 2014 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 2015 else 2016 Vec2 = DAG.getUNDEF(VT); 2017 2018 // Return shuffle(LowValVec, undef, <0,0,0,0>) 2019 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 2020 } 2021 } else { 2022 SDValue Res; 2023 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 2024 return Res; 2025 } 2026 } 2027 2028 // Otherwise, we can't handle this case efficiently. 2029 return ExpandVectorBuildThroughStack(Node); 2030 } 2031 2032 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) { 2033 SDLoc DL(Node); 2034 EVT VT = Node->getValueType(0); 2035 SDValue SplatVal = Node->getOperand(0); 2036 2037 return DAG.getSplatBuildVector(VT, DL, SplatVal); 2038 } 2039 2040 // Expand a node into a call to a libcall. If the result value 2041 // does not fit into a register, return the lo part and set the hi part to the 2042 // by-reg argument. If it does fit into a single register, return the result 2043 // and leave the Hi part unset. 2044 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2045 bool isSigned) { 2046 TargetLowering::ArgListTy Args; 2047 TargetLowering::ArgListEntry Entry; 2048 for (const SDValue &Op : Node->op_values()) { 2049 EVT ArgVT = Op.getValueType(); 2050 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2051 Entry.Node = Op; 2052 Entry.Ty = ArgTy; 2053 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2054 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2055 Args.push_back(Entry); 2056 } 2057 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2058 TLI.getPointerTy(DAG.getDataLayout())); 2059 2060 EVT RetVT = Node->getValueType(0); 2061 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2062 2063 // By default, the input chain to this libcall is the entry node of the 2064 // function. If the libcall is going to be emitted as a tail call then 2065 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2066 // node which is being folded has a non-entry input chain. 2067 SDValue InChain = DAG.getEntryNode(); 2068 2069 // isTailCall may be true since the callee does not reference caller stack 2070 // frame. Check if it's in the right position and that the return types match. 2071 SDValue TCChain = InChain; 2072 const Function &F = DAG.getMachineFunction().getFunction(); 2073 bool isTailCall = 2074 TLI.isInTailCallPosition(DAG, Node, TCChain) && 2075 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 2076 if (isTailCall) 2077 InChain = TCChain; 2078 2079 TargetLowering::CallLoweringInfo CLI(DAG); 2080 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2081 CLI.setDebugLoc(SDLoc(Node)) 2082 .setChain(InChain) 2083 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2084 std::move(Args)) 2085 .setTailCall(isTailCall) 2086 .setSExtResult(signExtend) 2087 .setZExtResult(!signExtend) 2088 .setIsPostTypeLegalization(true); 2089 2090 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2091 2092 if (!CallInfo.second.getNode()) { 2093 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG)); 2094 // It's a tailcall, return the chain (which is the DAG root). 2095 return DAG.getRoot(); 2096 } 2097 2098 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG)); 2099 return CallInfo.first; 2100 } 2101 2102 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2103 RTLIB::Libcall Call_F32, 2104 RTLIB::Libcall Call_F64, 2105 RTLIB::Libcall Call_F80, 2106 RTLIB::Libcall Call_F128, 2107 RTLIB::Libcall Call_PPCF128, 2108 SmallVectorImpl<SDValue> &Results) { 2109 RTLIB::Libcall LC; 2110 switch (Node->getSimpleValueType(0).SimpleTy) { 2111 default: llvm_unreachable("Unexpected request for libcall!"); 2112 case MVT::f32: LC = Call_F32; break; 2113 case MVT::f64: LC = Call_F64; break; 2114 case MVT::f80: LC = Call_F80; break; 2115 case MVT::f128: LC = Call_F128; break; 2116 case MVT::ppcf128: LC = Call_PPCF128; break; 2117 } 2118 2119 if (Node->isStrictFPOpcode()) { 2120 EVT RetVT = Node->getValueType(0); 2121 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); 2122 TargetLowering::MakeLibCallOptions CallOptions; 2123 // FIXME: This doesn't support tail calls. 2124 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2125 Ops, CallOptions, 2126 SDLoc(Node), 2127 Node->getOperand(0)); 2128 Results.push_back(Tmp.first); 2129 Results.push_back(Tmp.second); 2130 } else { 2131 SDValue Tmp = ExpandLibCall(LC, Node, false); 2132 Results.push_back(Tmp); 2133 } 2134 } 2135 2136 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2137 RTLIB::Libcall Call_I8, 2138 RTLIB::Libcall Call_I16, 2139 RTLIB::Libcall Call_I32, 2140 RTLIB::Libcall Call_I64, 2141 RTLIB::Libcall Call_I128) { 2142 RTLIB::Libcall LC; 2143 switch (Node->getSimpleValueType(0).SimpleTy) { 2144 default: llvm_unreachable("Unexpected request for libcall!"); 2145 case MVT::i8: LC = Call_I8; break; 2146 case MVT::i16: LC = Call_I16; break; 2147 case MVT::i32: LC = Call_I32; break; 2148 case MVT::i64: LC = Call_I64; break; 2149 case MVT::i128: LC = Call_I128; break; 2150 } 2151 return ExpandLibCall(LC, Node, isSigned); 2152 } 2153 2154 /// Expand the node to a libcall based on first argument type (for instance 2155 /// lround and its variant). 2156 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node, 2157 RTLIB::Libcall Call_F32, 2158 RTLIB::Libcall Call_F64, 2159 RTLIB::Libcall Call_F80, 2160 RTLIB::Libcall Call_F128, 2161 RTLIB::Libcall Call_PPCF128, 2162 SmallVectorImpl<SDValue> &Results) { 2163 EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType(); 2164 2165 RTLIB::Libcall LC; 2166 switch (InVT.getSimpleVT().SimpleTy) { 2167 default: llvm_unreachable("Unexpected request for libcall!"); 2168 case MVT::f32: LC = Call_F32; break; 2169 case MVT::f64: LC = Call_F64; break; 2170 case MVT::f80: LC = Call_F80; break; 2171 case MVT::f128: LC = Call_F128; break; 2172 case MVT::ppcf128: LC = Call_PPCF128; break; 2173 } 2174 2175 if (Node->isStrictFPOpcode()) { 2176 EVT RetVT = Node->getValueType(0); 2177 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); 2178 TargetLowering::MakeLibCallOptions CallOptions; 2179 // FIXME: This doesn't support tail calls. 2180 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2181 Ops, CallOptions, 2182 SDLoc(Node), 2183 Node->getOperand(0)); 2184 Results.push_back(Tmp.first); 2185 Results.push_back(Tmp.second); 2186 } else { 2187 SDValue Tmp = ExpandLibCall(LC, Node, false); 2188 Results.push_back(Tmp); 2189 } 2190 } 2191 2192 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2193 void 2194 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2195 SmallVectorImpl<SDValue> &Results) { 2196 unsigned Opcode = Node->getOpcode(); 2197 bool isSigned = Opcode == ISD::SDIVREM; 2198 2199 RTLIB::Libcall LC; 2200 switch (Node->getSimpleValueType(0).SimpleTy) { 2201 default: llvm_unreachable("Unexpected request for libcall!"); 2202 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2203 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2204 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2205 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2206 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2207 } 2208 2209 // The input chain to this libcall is the entry node of the function. 2210 // Legalizing the call will automatically add the previous call to the 2211 // dependence. 2212 SDValue InChain = DAG.getEntryNode(); 2213 2214 EVT RetVT = Node->getValueType(0); 2215 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2216 2217 TargetLowering::ArgListTy Args; 2218 TargetLowering::ArgListEntry Entry; 2219 for (const SDValue &Op : Node->op_values()) { 2220 EVT ArgVT = Op.getValueType(); 2221 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2222 Entry.Node = Op; 2223 Entry.Ty = ArgTy; 2224 Entry.IsSExt = isSigned; 2225 Entry.IsZExt = !isSigned; 2226 Args.push_back(Entry); 2227 } 2228 2229 // Also pass the return address of the remainder. 2230 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2231 Entry.Node = FIPtr; 2232 Entry.Ty = RetTy->getPointerTo(); 2233 Entry.IsSExt = isSigned; 2234 Entry.IsZExt = !isSigned; 2235 Args.push_back(Entry); 2236 2237 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2238 TLI.getPointerTy(DAG.getDataLayout())); 2239 2240 SDLoc dl(Node); 2241 TargetLowering::CallLoweringInfo CLI(DAG); 2242 CLI.setDebugLoc(dl) 2243 .setChain(InChain) 2244 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2245 std::move(Args)) 2246 .setSExtResult(isSigned) 2247 .setZExtResult(!isSigned); 2248 2249 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2250 2251 // Remainder is loaded back from the stack frame. 2252 SDValue Rem = 2253 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2254 Results.push_back(CallInfo.first); 2255 Results.push_back(Rem); 2256 } 2257 2258 /// Return true if sincos libcall is available. 2259 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2260 RTLIB::Libcall LC; 2261 switch (Node->getSimpleValueType(0).SimpleTy) { 2262 default: llvm_unreachable("Unexpected request for libcall!"); 2263 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2264 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2265 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2266 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2267 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2268 } 2269 return TLI.getLibcallName(LC) != nullptr; 2270 } 2271 2272 /// Only issue sincos libcall if both sin and cos are needed. 2273 static bool useSinCos(SDNode *Node) { 2274 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2275 ? ISD::FCOS : ISD::FSIN; 2276 2277 SDValue Op0 = Node->getOperand(0); 2278 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2279 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2280 SDNode *User = *UI; 2281 if (User == Node) 2282 continue; 2283 // The other user might have been turned into sincos already. 2284 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2285 return true; 2286 } 2287 return false; 2288 } 2289 2290 /// Issue libcalls to sincos to compute sin / cos pairs. 2291 void 2292 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2293 SmallVectorImpl<SDValue> &Results) { 2294 RTLIB::Libcall LC; 2295 switch (Node->getSimpleValueType(0).SimpleTy) { 2296 default: llvm_unreachable("Unexpected request for libcall!"); 2297 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2298 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2299 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2300 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2301 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2302 } 2303 2304 // The input chain to this libcall is the entry node of the function. 2305 // Legalizing the call will automatically add the previous call to the 2306 // dependence. 2307 SDValue InChain = DAG.getEntryNode(); 2308 2309 EVT RetVT = Node->getValueType(0); 2310 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2311 2312 TargetLowering::ArgListTy Args; 2313 TargetLowering::ArgListEntry Entry; 2314 2315 // Pass the argument. 2316 Entry.Node = Node->getOperand(0); 2317 Entry.Ty = RetTy; 2318 Entry.IsSExt = false; 2319 Entry.IsZExt = false; 2320 Args.push_back(Entry); 2321 2322 // Pass the return address of sin. 2323 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2324 Entry.Node = SinPtr; 2325 Entry.Ty = RetTy->getPointerTo(); 2326 Entry.IsSExt = false; 2327 Entry.IsZExt = false; 2328 Args.push_back(Entry); 2329 2330 // Also pass the return address of the cos. 2331 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2332 Entry.Node = CosPtr; 2333 Entry.Ty = RetTy->getPointerTo(); 2334 Entry.IsSExt = false; 2335 Entry.IsZExt = false; 2336 Args.push_back(Entry); 2337 2338 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2339 TLI.getPointerTy(DAG.getDataLayout())); 2340 2341 SDLoc dl(Node); 2342 TargetLowering::CallLoweringInfo CLI(DAG); 2343 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2344 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2345 std::move(Args)); 2346 2347 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2348 2349 Results.push_back( 2350 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2351 Results.push_back( 2352 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2353 } 2354 2355 /// This function is responsible for legalizing a 2356 /// INT_TO_FP operation of the specified operand when the target requests that 2357 /// we expand it. At this point, we know that the result and operand types are 2358 /// legal for the target. 2359 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node, 2360 SDValue &Chain) { 2361 bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 2362 Node->getOpcode() == ISD::SINT_TO_FP); 2363 EVT DestVT = Node->getValueType(0); 2364 SDLoc dl(Node); 2365 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 2366 SDValue Op0 = Node->getOperand(OpNo); 2367 EVT SrcVT = Op0.getValueType(); 2368 2369 // TODO: Should any fast-math-flags be set for the created nodes? 2370 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2371 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { 2372 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2373 "expansion\n"); 2374 2375 // Get the stack frame index of a 8 byte buffer. 2376 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2377 2378 SDValue Lo = Op0; 2379 // if signed map to unsigned space 2380 if (isSigned) { 2381 // Invert sign bit (signed to unsigned mapping). 2382 Lo = DAG.getNode(ISD::XOR, dl, MVT::i32, Lo, 2383 DAG.getConstant(0x80000000u, dl, MVT::i32)); 2384 } 2385 // Initial hi portion of constructed double. 2386 SDValue Hi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2387 2388 // If this a big endian target, swap the lo and high data. 2389 if (DAG.getDataLayout().isBigEndian()) 2390 std::swap(Lo, Hi); 2391 2392 SDValue MemChain = DAG.getEntryNode(); 2393 2394 // Store the lo of the constructed double. 2395 SDValue Store1 = DAG.getStore(MemChain, dl, Lo, StackSlot, 2396 MachinePointerInfo()); 2397 // Store the hi of the constructed double. 2398 SDValue HiPtr = DAG.getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), dl); 2399 SDValue Store2 = 2400 DAG.getStore(MemChain, dl, Hi, HiPtr, MachinePointerInfo()); 2401 MemChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 2402 2403 // load the constructed double 2404 SDValue Load = 2405 DAG.getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo()); 2406 // FP constant to bias correct the final result 2407 SDValue Bias = DAG.getConstantFP(isSigned ? 2408 BitsToDouble(0x4330000080000000ULL) : 2409 BitsToDouble(0x4330000000000000ULL), 2410 dl, MVT::f64); 2411 // Subtract the bias and get the final result. 2412 SDValue Sub; 2413 SDValue Result; 2414 if (Node->isStrictFPOpcode()) { 2415 Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other}, 2416 {Node->getOperand(0), Load, Bias}); 2417 Chain = Sub.getValue(1); 2418 if (DestVT != Sub.getValueType()) { 2419 std::pair<SDValue, SDValue> ResultPair; 2420 ResultPair = 2421 DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT); 2422 Result = ResultPair.first; 2423 Chain = ResultPair.second; 2424 } 2425 else 2426 Result = Sub; 2427 } else { 2428 Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2429 Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); 2430 } 2431 return Result; 2432 } 2433 // Code below here assumes !isSigned without checking again. 2434 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2435 2436 // TODO: Generalize this for use with other types. 2437 if ((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) { 2438 LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32\n"); 2439 // For unsigned conversions, convert them to signed conversions using the 2440 // algorithm from the x86_64 __floatundisf in compiler_rt. That method 2441 // should be valid for i32->f32 as well. 2442 2443 // TODO: This really should be implemented using a branch rather than a 2444 // select. We happen to get lucky and machinesink does the right 2445 // thing most of the time. This would be a good candidate for a 2446 // pseudo-op, or, even better, for whole-function isel. 2447 EVT SetCCVT = getSetCCResultType(SrcVT); 2448 2449 SDValue SignBitTest = DAG.getSetCC( 2450 dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2451 2452 EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout()); 2453 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 2454 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst); 2455 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 2456 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst); 2457 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 2458 2459 SDValue Slow, Fast; 2460 if (Node->isStrictFPOpcode()) { 2461 // In strict mode, we must avoid spurious exceptions, and therefore 2462 // must make sure to only emit a single STRICT_SINT_TO_FP. 2463 SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0); 2464 Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2465 { Node->getOperand(0), InCvt }); 2466 Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2467 { Fast.getValue(1), Fast, Fast }); 2468 Chain = Slow.getValue(1); 2469 // The STRICT_SINT_TO_FP inherits the exception mode from the 2470 // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can 2471 // never raise any exception. 2472 SDNodeFlags Flags; 2473 Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept()); 2474 Fast->setFlags(Flags); 2475 Flags.setNoFPExcept(true); 2476 Slow->setFlags(Flags); 2477 } else { 2478 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or); 2479 Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt); 2480 Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2481 } 2482 2483 return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast); 2484 } 2485 2486 // The following optimization is valid only if every value in SrcVT (when 2487 // treated as signed) is representable in DestVT. Check that the mantissa 2488 // size of DestVT is >= than the number of bits in SrcVT -1. 2489 assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >= 2490 SrcVT.getSizeInBits() - 1 && 2491 "Cannot perform lossless SINT_TO_FP!"); 2492 2493 SDValue Tmp1; 2494 if (Node->isStrictFPOpcode()) { 2495 Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2496 { Node->getOperand(0), Op0 }); 2497 } else 2498 Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2499 2500 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, 2501 DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2502 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2503 Four = DAG.getIntPtrConstant(4, dl); 2504 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2505 SignSet, Four, Zero); 2506 2507 // If the sign bit of the integer is set, the large number will be treated 2508 // as a negative number. To counteract this, the dynamic code adds an 2509 // offset depending on the data type. 2510 uint64_t FF; 2511 switch (SrcVT.getSimpleVT().SimpleTy) { 2512 default: llvm_unreachable("Unsupported integer type!"); 2513 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2514 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2515 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2516 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2517 } 2518 if (DAG.getDataLayout().isLittleEndian()) 2519 FF <<= 32; 2520 Constant *FudgeFactor = ConstantInt::get( 2521 Type::getInt64Ty(*DAG.getContext()), FF); 2522 2523 SDValue CPIdx = 2524 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2525 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 2526 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2527 Alignment = commonAlignment(Alignment, 4); 2528 SDValue FudgeInReg; 2529 if (DestVT == MVT::f32) 2530 FudgeInReg = DAG.getLoad( 2531 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2532 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2533 Alignment); 2534 else { 2535 SDValue Load = DAG.getExtLoad( 2536 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2537 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2538 Alignment); 2539 HandleSDNode Handle(Load); 2540 LegalizeOp(Load.getNode()); 2541 FudgeInReg = Handle.getValue(); 2542 } 2543 2544 if (Node->isStrictFPOpcode()) { 2545 SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2546 { Tmp1.getValue(1), Tmp1, FudgeInReg }); 2547 Chain = Result.getValue(1); 2548 return Result; 2549 } 2550 2551 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2552 } 2553 2554 /// This function is responsible for legalizing a 2555 /// *INT_TO_FP operation of the specified operand when the target requests that 2556 /// we promote it. At this point, we know that the result and operand types are 2557 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2558 /// operation that takes a larger input. 2559 void SelectionDAGLegalize::PromoteLegalINT_TO_FP( 2560 SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) { 2561 bool IsStrict = N->isStrictFPOpcode(); 2562 bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP || 2563 N->getOpcode() == ISD::STRICT_SINT_TO_FP; 2564 EVT DestVT = N->getValueType(0); 2565 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2566 unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP; 2567 unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP; 2568 2569 // First step, figure out the appropriate *INT_TO_FP operation to use. 2570 EVT NewInTy = LegalOp.getValueType(); 2571 2572 unsigned OpToUse = 0; 2573 2574 // Scan for the appropriate larger type to use. 2575 while (true) { 2576 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2577 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2578 2579 // If the target supports SINT_TO_FP of this type, use it. 2580 if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) { 2581 OpToUse = SIntOp; 2582 break; 2583 } 2584 if (IsSigned) 2585 continue; 2586 2587 // If the target supports UINT_TO_FP of this type, use it. 2588 if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) { 2589 OpToUse = UIntOp; 2590 break; 2591 } 2592 2593 // Otherwise, try a larger type. 2594 } 2595 2596 // Okay, we found the operation and type to use. Zero extend our input to the 2597 // desired type then run the operation on it. 2598 if (IsStrict) { 2599 SDValue Res = 2600 DAG.getNode(OpToUse, dl, {DestVT, MVT::Other}, 2601 {N->getOperand(0), 2602 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2603 dl, NewInTy, LegalOp)}); 2604 Results.push_back(Res); 2605 Results.push_back(Res.getValue(1)); 2606 return; 2607 } 2608 2609 Results.push_back( 2610 DAG.getNode(OpToUse, dl, DestVT, 2611 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2612 dl, NewInTy, LegalOp))); 2613 } 2614 2615 /// This function is responsible for legalizing a 2616 /// FP_TO_*INT operation of the specified operand when the target requests that 2617 /// we promote it. At this point, we know that the result and operand types are 2618 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2619 /// operation that returns a larger result. 2620 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 2621 SmallVectorImpl<SDValue> &Results) { 2622 bool IsStrict = N->isStrictFPOpcode(); 2623 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 2624 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 2625 EVT DestVT = N->getValueType(0); 2626 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2627 // First step, figure out the appropriate FP_TO*INT operation to use. 2628 EVT NewOutTy = DestVT; 2629 2630 unsigned OpToUse = 0; 2631 2632 // Scan for the appropriate larger type to use. 2633 while (true) { 2634 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2635 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2636 2637 // A larger signed type can hold all unsigned values of the requested type, 2638 // so using FP_TO_SINT is valid 2639 OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT; 2640 if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2641 break; 2642 2643 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2644 OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT; 2645 if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2646 break; 2647 2648 // Otherwise, try a larger type. 2649 } 2650 2651 // Okay, we found the operation and type to use. 2652 SDValue Operation; 2653 if (IsStrict) { 2654 SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other); 2655 Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp); 2656 } else 2657 Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2658 2659 // Truncate the result of the extended FP_TO_*INT operation to the desired 2660 // size. 2661 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2662 Results.push_back(Trunc); 2663 if (IsStrict) 2664 Results.push_back(Operation.getValue(1)); 2665 } 2666 2667 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts. 2668 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) { 2669 EVT VT = Op.getValueType(); 2670 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2671 unsigned Sz = VT.getScalarSizeInBits(); 2672 2673 SDValue Tmp, Tmp2, Tmp3; 2674 2675 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 2676 // and finally the i1 pairs. 2677 // TODO: We can easily support i4/i2 legal types if any target ever does. 2678 if (Sz >= 8 && isPowerOf2_32(Sz)) { 2679 // Create the masks - repeating the pattern every byte. 2680 APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0)); 2681 APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC)); 2682 APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA)); 2683 APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 2684 APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33)); 2685 APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55)); 2686 2687 // BSWAP if the type is wider than a single byte. 2688 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 2689 2690 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) 2691 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); 2692 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); 2693 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT)); 2694 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 2695 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2696 2697 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) 2698 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); 2699 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); 2700 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT)); 2701 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 2702 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2703 2704 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) 2705 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); 2706 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); 2707 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT)); 2708 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 2709 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2710 return Tmp; 2711 } 2712 2713 Tmp = DAG.getConstant(0, dl, VT); 2714 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 2715 if (I < J) 2716 Tmp2 = 2717 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 2718 else 2719 Tmp2 = 2720 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 2721 2722 APInt Shift(Sz, 1); 2723 Shift <<= J; 2724 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 2725 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 2726 } 2727 2728 return Tmp; 2729 } 2730 2731 /// Open code the operations for BSWAP of the specified operation. 2732 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) { 2733 EVT VT = Op.getValueType(); 2734 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2735 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2736 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 2737 default: llvm_unreachable("Unhandled Expand type in BSWAP!"); 2738 case MVT::i16: 2739 // Use a rotate by 8. This can be further expanded if necessary. 2740 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2741 case MVT::i32: 2742 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2743 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2744 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2745 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2746 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2747 DAG.getConstant(0xFF0000, dl, VT)); 2748 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 2749 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2750 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2751 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2752 case MVT::i64: 2753 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2754 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2755 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2756 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2757 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2758 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2759 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2760 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2761 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 2762 DAG.getConstant(255ULL<<48, dl, VT)); 2763 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 2764 DAG.getConstant(255ULL<<40, dl, VT)); 2765 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 2766 DAG.getConstant(255ULL<<32, dl, VT)); 2767 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 2768 DAG.getConstant(255ULL<<24, dl, VT)); 2769 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2770 DAG.getConstant(255ULL<<16, dl, VT)); 2771 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 2772 DAG.getConstant(255ULL<<8 , dl, VT)); 2773 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2774 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2775 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2776 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2777 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2778 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2779 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2780 } 2781 } 2782 2783 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2784 LLVM_DEBUG(dbgs() << "Trying to expand node\n"); 2785 SmallVector<SDValue, 8> Results; 2786 SDLoc dl(Node); 2787 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2788 bool NeedInvert; 2789 switch (Node->getOpcode()) { 2790 case ISD::ABS: 2791 if (TLI.expandABS(Node, Tmp1, DAG)) 2792 Results.push_back(Tmp1); 2793 break; 2794 case ISD::CTPOP: 2795 if (TLI.expandCTPOP(Node, Tmp1, DAG)) 2796 Results.push_back(Tmp1); 2797 break; 2798 case ISD::CTLZ: 2799 case ISD::CTLZ_ZERO_UNDEF: 2800 if (TLI.expandCTLZ(Node, Tmp1, DAG)) 2801 Results.push_back(Tmp1); 2802 break; 2803 case ISD::CTTZ: 2804 case ISD::CTTZ_ZERO_UNDEF: 2805 if (TLI.expandCTTZ(Node, Tmp1, DAG)) 2806 Results.push_back(Tmp1); 2807 break; 2808 case ISD::BITREVERSE: 2809 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl)); 2810 break; 2811 case ISD::BSWAP: 2812 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2813 break; 2814 case ISD::FRAMEADDR: 2815 case ISD::RETURNADDR: 2816 case ISD::FRAME_TO_ARGS_OFFSET: 2817 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2818 break; 2819 case ISD::EH_DWARF_CFA: { 2820 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 2821 TLI.getPointerTy(DAG.getDataLayout())); 2822 SDValue Offset = DAG.getNode(ISD::ADD, dl, 2823 CfaArg.getValueType(), 2824 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 2825 CfaArg.getValueType()), 2826 CfaArg); 2827 SDValue FA = DAG.getNode( 2828 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 2829 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2830 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 2831 FA, Offset)); 2832 break; 2833 } 2834 case ISD::FLT_ROUNDS_: 2835 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2836 Results.push_back(Node->getOperand(0)); 2837 break; 2838 case ISD::EH_RETURN: 2839 case ISD::EH_LABEL: 2840 case ISD::PREFETCH: 2841 case ISD::VAEND: 2842 case ISD::EH_SJLJ_LONGJMP: 2843 // If the target didn't expand these, there's nothing to do, so just 2844 // preserve the chain and be done. 2845 Results.push_back(Node->getOperand(0)); 2846 break; 2847 case ISD::READCYCLECOUNTER: 2848 // If the target didn't expand this, just return 'zero' and preserve the 2849 // chain. 2850 Results.append(Node->getNumValues() - 1, 2851 DAG.getConstant(0, dl, Node->getValueType(0))); 2852 Results.push_back(Node->getOperand(0)); 2853 break; 2854 case ISD::EH_SJLJ_SETJMP: 2855 // If the target didn't expand this, just return 'zero' and preserve the 2856 // chain. 2857 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2858 Results.push_back(Node->getOperand(0)); 2859 break; 2860 case ISD::ATOMIC_LOAD: { 2861 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2862 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2863 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2864 SDValue Swap = DAG.getAtomicCmpSwap( 2865 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2866 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2867 cast<AtomicSDNode>(Node)->getMemOperand()); 2868 Results.push_back(Swap.getValue(0)); 2869 Results.push_back(Swap.getValue(1)); 2870 break; 2871 } 2872 case ISD::ATOMIC_STORE: { 2873 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2874 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2875 cast<AtomicSDNode>(Node)->getMemoryVT(), 2876 Node->getOperand(0), 2877 Node->getOperand(1), Node->getOperand(2), 2878 cast<AtomicSDNode>(Node)->getMemOperand()); 2879 Results.push_back(Swap.getValue(1)); 2880 break; 2881 } 2882 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 2883 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 2884 // splits out the success value as a comparison. Expanding the resulting 2885 // ATOMIC_CMP_SWAP will produce a libcall. 2886 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2887 SDValue Res = DAG.getAtomicCmpSwap( 2888 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2889 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 2890 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 2891 2892 SDValue ExtRes = Res; 2893 SDValue LHS = Res; 2894 SDValue RHS = Node->getOperand(1); 2895 2896 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 2897 EVT OuterType = Node->getValueType(0); 2898 switch (TLI.getExtendForAtomicOps()) { 2899 case ISD::SIGN_EXTEND: 2900 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 2901 DAG.getValueType(AtomicType)); 2902 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 2903 Node->getOperand(2), DAG.getValueType(AtomicType)); 2904 ExtRes = LHS; 2905 break; 2906 case ISD::ZERO_EXTEND: 2907 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 2908 DAG.getValueType(AtomicType)); 2909 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2910 ExtRes = LHS; 2911 break; 2912 case ISD::ANY_EXTEND: 2913 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 2914 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2915 break; 2916 default: 2917 llvm_unreachable("Invalid atomic op extension"); 2918 } 2919 2920 SDValue Success = 2921 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 2922 2923 Results.push_back(ExtRes.getValue(0)); 2924 Results.push_back(Success); 2925 Results.push_back(Res.getValue(1)); 2926 break; 2927 } 2928 case ISD::DYNAMIC_STACKALLOC: 2929 ExpandDYNAMIC_STACKALLOC(Node, Results); 2930 break; 2931 case ISD::MERGE_VALUES: 2932 for (unsigned i = 0; i < Node->getNumValues(); i++) 2933 Results.push_back(Node->getOperand(i)); 2934 break; 2935 case ISD::UNDEF: { 2936 EVT VT = Node->getValueType(0); 2937 if (VT.isInteger()) 2938 Results.push_back(DAG.getConstant(0, dl, VT)); 2939 else { 2940 assert(VT.isFloatingPoint() && "Unknown value type!"); 2941 Results.push_back(DAG.getConstantFP(0, dl, VT)); 2942 } 2943 break; 2944 } 2945 case ISD::STRICT_FP_ROUND: 2946 // When strict mode is enforced we can't do expansion because it 2947 // does not honor the "strict" properties. Only libcall is allowed. 2948 if (TLI.isStrictFPEnabled()) 2949 break; 2950 // We might as well mutate to FP_ROUND when FP_ROUND operation is legal 2951 // since this operation is more efficient than stack operation. 2952 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2953 Node->getValueType(0)) 2954 == TargetLowering::Legal) 2955 break; 2956 // We fall back to use stack operation when the FP_ROUND operation 2957 // isn't available. 2958 Tmp1 = EmitStackConvert(Node->getOperand(1), 2959 Node->getValueType(0), 2960 Node->getValueType(0), dl, Node->getOperand(0)); 2961 ReplaceNode(Node, Tmp1.getNode()); 2962 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n"); 2963 return true; 2964 case ISD::FP_ROUND: 2965 case ISD::BITCAST: 2966 Tmp1 = EmitStackConvert(Node->getOperand(0), 2967 Node->getValueType(0), 2968 Node->getValueType(0), dl); 2969 Results.push_back(Tmp1); 2970 break; 2971 case ISD::STRICT_FP_EXTEND: 2972 // When strict mode is enforced we can't do expansion because it 2973 // does not honor the "strict" properties. Only libcall is allowed. 2974 if (TLI.isStrictFPEnabled()) 2975 break; 2976 // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal 2977 // since this operation is more efficient than stack operation. 2978 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2979 Node->getValueType(0)) 2980 == TargetLowering::Legal) 2981 break; 2982 // We fall back to use stack operation when the FP_EXTEND operation 2983 // isn't available. 2984 Tmp1 = EmitStackConvert(Node->getOperand(1), 2985 Node->getOperand(1).getValueType(), 2986 Node->getValueType(0), dl, Node->getOperand(0)); 2987 ReplaceNode(Node, Tmp1.getNode()); 2988 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n"); 2989 return true; 2990 case ISD::FP_EXTEND: 2991 Tmp1 = EmitStackConvert(Node->getOperand(0), 2992 Node->getOperand(0).getValueType(), 2993 Node->getValueType(0), dl); 2994 Results.push_back(Tmp1); 2995 break; 2996 case ISD::SIGN_EXTEND_INREG: { 2997 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2998 EVT VT = Node->getValueType(0); 2999 3000 // An in-register sign-extend of a boolean is a negation: 3001 // 'true' (1) sign-extended is -1. 3002 // 'false' (0) sign-extended is 0. 3003 // However, we must mask the high bits of the source operand because the 3004 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 3005 3006 // TODO: Do this for vectors too? 3007 if (ExtraVT.getSizeInBits() == 1) { 3008 SDValue One = DAG.getConstant(1, dl, VT); 3009 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 3010 SDValue Zero = DAG.getConstant(0, dl, VT); 3011 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 3012 Results.push_back(Neg); 3013 break; 3014 } 3015 3016 // NOTE: we could fall back on load/store here too for targets without 3017 // SRA. However, it is doubtful that any exist. 3018 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 3019 unsigned BitsDiff = VT.getScalarSizeInBits() - 3020 ExtraVT.getScalarSizeInBits(); 3021 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 3022 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 3023 Node->getOperand(0), ShiftCst); 3024 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 3025 Results.push_back(Tmp1); 3026 break; 3027 } 3028 case ISD::UINT_TO_FP: 3029 case ISD::STRICT_UINT_TO_FP: 3030 if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) { 3031 Results.push_back(Tmp1); 3032 if (Node->isStrictFPOpcode()) 3033 Results.push_back(Tmp2); 3034 break; 3035 } 3036 LLVM_FALLTHROUGH; 3037 case ISD::SINT_TO_FP: 3038 case ISD::STRICT_SINT_TO_FP: 3039 Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2); 3040 Results.push_back(Tmp1); 3041 if (Node->isStrictFPOpcode()) 3042 Results.push_back(Tmp2); 3043 break; 3044 case ISD::FP_TO_SINT: 3045 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 3046 Results.push_back(Tmp1); 3047 break; 3048 case ISD::STRICT_FP_TO_SINT: 3049 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) { 3050 ReplaceNode(Node, Tmp1.getNode()); 3051 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n"); 3052 return true; 3053 } 3054 break; 3055 case ISD::FP_TO_UINT: 3056 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) 3057 Results.push_back(Tmp1); 3058 break; 3059 case ISD::STRICT_FP_TO_UINT: 3060 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) { 3061 // Relink the chain. 3062 DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2); 3063 // Replace the new UINT result. 3064 ReplaceNodeWithValue(SDValue(Node, 0), Tmp1); 3065 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n"); 3066 return true; 3067 } 3068 break; 3069 case ISD::VAARG: 3070 Results.push_back(DAG.expandVAArg(Node)); 3071 Results.push_back(Results[0].getValue(1)); 3072 break; 3073 case ISD::VACOPY: 3074 Results.push_back(DAG.expandVACopy(Node)); 3075 break; 3076 case ISD::EXTRACT_VECTOR_ELT: 3077 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 3078 // This must be an access of the only element. Return it. 3079 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 3080 Node->getOperand(0)); 3081 else 3082 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 3083 Results.push_back(Tmp1); 3084 break; 3085 case ISD::EXTRACT_SUBVECTOR: 3086 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 3087 break; 3088 case ISD::INSERT_SUBVECTOR: 3089 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 3090 break; 3091 case ISD::CONCAT_VECTORS: 3092 Results.push_back(ExpandVectorBuildThroughStack(Node)); 3093 break; 3094 case ISD::SCALAR_TO_VECTOR: 3095 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3096 break; 3097 case ISD::INSERT_VECTOR_ELT: 3098 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3099 Node->getOperand(1), 3100 Node->getOperand(2), dl)); 3101 break; 3102 case ISD::VECTOR_SHUFFLE: { 3103 SmallVector<int, 32> NewMask; 3104 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3105 3106 EVT VT = Node->getValueType(0); 3107 EVT EltVT = VT.getVectorElementType(); 3108 SDValue Op0 = Node->getOperand(0); 3109 SDValue Op1 = Node->getOperand(1); 3110 if (!TLI.isTypeLegal(EltVT)) { 3111 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3112 3113 // BUILD_VECTOR operands are allowed to be wider than the element type. 3114 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 3115 // it. 3116 if (NewEltVT.bitsLT(EltVT)) { 3117 // Convert shuffle node. 3118 // If original node was v4i64 and the new EltVT is i32, 3119 // cast operands to v8i32 and re-build the mask. 3120 3121 // Calculate new VT, the size of the new VT should be equal to original. 3122 EVT NewVT = 3123 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3124 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 3125 assert(NewVT.bitsEq(VT)); 3126 3127 // cast operands to new VT 3128 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3129 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3130 3131 // Convert the shuffle mask 3132 unsigned int factor = 3133 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3134 3135 // EltVT gets smaller 3136 assert(factor > 0); 3137 3138 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3139 if (Mask[i] < 0) { 3140 for (unsigned fi = 0; fi < factor; ++fi) 3141 NewMask.push_back(Mask[i]); 3142 } 3143 else { 3144 for (unsigned fi = 0; fi < factor; ++fi) 3145 NewMask.push_back(Mask[i]*factor+fi); 3146 } 3147 } 3148 Mask = NewMask; 3149 VT = NewVT; 3150 } 3151 EltVT = NewEltVT; 3152 } 3153 unsigned NumElems = VT.getVectorNumElements(); 3154 SmallVector<SDValue, 16> Ops; 3155 for (unsigned i = 0; i != NumElems; ++i) { 3156 if (Mask[i] < 0) { 3157 Ops.push_back(DAG.getUNDEF(EltVT)); 3158 continue; 3159 } 3160 unsigned Idx = Mask[i]; 3161 if (Idx < NumElems) 3162 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3163 DAG.getVectorIdxConstant(Idx, dl))); 3164 else 3165 Ops.push_back( 3166 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3167 DAG.getVectorIdxConstant(Idx - NumElems, dl))); 3168 } 3169 3170 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 3171 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3172 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3173 Results.push_back(Tmp1); 3174 break; 3175 } 3176 case ISD::EXTRACT_ELEMENT: { 3177 EVT OpTy = Node->getOperand(0).getValueType(); 3178 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3179 // 1 -> Hi 3180 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3181 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3182 TLI.getShiftAmountTy( 3183 Node->getOperand(0).getValueType(), 3184 DAG.getDataLayout()))); 3185 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3186 } else { 3187 // 0 -> Lo 3188 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3189 Node->getOperand(0)); 3190 } 3191 Results.push_back(Tmp1); 3192 break; 3193 } 3194 case ISD::STACKSAVE: 3195 // Expand to CopyFromReg if the target set 3196 // StackPointerRegisterToSaveRestore. 3197 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3198 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3199 Node->getValueType(0))); 3200 Results.push_back(Results[0].getValue(1)); 3201 } else { 3202 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3203 Results.push_back(Node->getOperand(0)); 3204 } 3205 break; 3206 case ISD::STACKRESTORE: 3207 // Expand to CopyToReg if the target set 3208 // StackPointerRegisterToSaveRestore. 3209 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3210 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3211 Node->getOperand(1))); 3212 } else { 3213 Results.push_back(Node->getOperand(0)); 3214 } 3215 break; 3216 case ISD::GET_DYNAMIC_AREA_OFFSET: 3217 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3218 Results.push_back(Results[0].getValue(0)); 3219 break; 3220 case ISD::FCOPYSIGN: 3221 Results.push_back(ExpandFCOPYSIGN(Node)); 3222 break; 3223 case ISD::FNEG: 3224 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3225 Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0)); 3226 // TODO: If FNEG has fast-math-flags, propagate them to the FSUB. 3227 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, 3228 Node->getOperand(0)); 3229 Results.push_back(Tmp1); 3230 break; 3231 case ISD::FABS: 3232 Results.push_back(ExpandFABS(Node)); 3233 break; 3234 case ISD::SMIN: 3235 case ISD::SMAX: 3236 case ISD::UMIN: 3237 case ISD::UMAX: { 3238 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3239 ISD::CondCode Pred; 3240 switch (Node->getOpcode()) { 3241 default: llvm_unreachable("How did we get here?"); 3242 case ISD::SMAX: Pred = ISD::SETGT; break; 3243 case ISD::SMIN: Pred = ISD::SETLT; break; 3244 case ISD::UMAX: Pred = ISD::SETUGT; break; 3245 case ISD::UMIN: Pred = ISD::SETULT; break; 3246 } 3247 Tmp1 = Node->getOperand(0); 3248 Tmp2 = Node->getOperand(1); 3249 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3250 Results.push_back(Tmp1); 3251 break; 3252 } 3253 case ISD::FMINNUM: 3254 case ISD::FMAXNUM: { 3255 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) 3256 Results.push_back(Expanded); 3257 break; 3258 } 3259 case ISD::FSIN: 3260 case ISD::FCOS: { 3261 EVT VT = Node->getValueType(0); 3262 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3263 // fcos which share the same operand and both are used. 3264 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3265 isSinCosLibcallAvailable(Node, TLI)) 3266 && useSinCos(Node)) { 3267 SDVTList VTs = DAG.getVTList(VT, VT); 3268 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3269 if (Node->getOpcode() == ISD::FCOS) 3270 Tmp1 = Tmp1.getValue(1); 3271 Results.push_back(Tmp1); 3272 } 3273 break; 3274 } 3275 case ISD::FMAD: 3276 llvm_unreachable("Illegal fmad should never be formed"); 3277 3278 case ISD::FP16_TO_FP: 3279 if (Node->getValueType(0) != MVT::f32) { 3280 // We can extend to types bigger than f32 in two steps without changing 3281 // the result. Since "f16 -> f32" is much more commonly available, give 3282 // CodeGen the option of emitting that before resorting to a libcall. 3283 SDValue Res = 3284 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3285 Results.push_back( 3286 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3287 } 3288 break; 3289 case ISD::STRICT_FP16_TO_FP: 3290 if (Node->getValueType(0) != MVT::f32) { 3291 // We can extend to types bigger than f32 in two steps without changing 3292 // the result. Since "f16 -> f32" is much more commonly available, give 3293 // CodeGen the option of emitting that before resorting to a libcall. 3294 SDValue Res = 3295 DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other}, 3296 {Node->getOperand(0), Node->getOperand(1)}); 3297 Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 3298 {Node->getValueType(0), MVT::Other}, 3299 {Res.getValue(1), Res}); 3300 Results.push_back(Res); 3301 Results.push_back(Res.getValue(1)); 3302 } 3303 break; 3304 case ISD::FP_TO_FP16: 3305 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3306 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3307 SDValue Op = Node->getOperand(0); 3308 MVT SVT = Op.getSimpleValueType(); 3309 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3310 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3311 // Under fastmath, we can expand this node into a fround followed by 3312 // a float-half conversion. 3313 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3314 DAG.getIntPtrConstant(0, dl)); 3315 Results.push_back( 3316 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3317 } 3318 } 3319 break; 3320 case ISD::ConstantFP: { 3321 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3322 // Check to see if this FP immediate is already legal. 3323 // If this is a legal constant, turn it into a TargetConstantFP node. 3324 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0), 3325 DAG.shouldOptForSize())) 3326 Results.push_back(ExpandConstantFP(CFP, true)); 3327 break; 3328 } 3329 case ISD::Constant: { 3330 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3331 Results.push_back(ExpandConstant(CP)); 3332 break; 3333 } 3334 case ISD::FSUB: { 3335 EVT VT = Node->getValueType(0); 3336 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3337 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3338 const SDNodeFlags Flags = Node->getFlags(); 3339 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3340 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3341 Results.push_back(Tmp1); 3342 } 3343 break; 3344 } 3345 case ISD::SUB: { 3346 EVT VT = Node->getValueType(0); 3347 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3348 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3349 "Don't know how to expand this subtraction!"); 3350 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3351 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, 3352 VT)); 3353 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3354 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3355 break; 3356 } 3357 case ISD::UREM: 3358 case ISD::SREM: 3359 if (TLI.expandREM(Node, Tmp1, DAG)) 3360 Results.push_back(Tmp1); 3361 break; 3362 case ISD::UDIV: 3363 case ISD::SDIV: { 3364 bool isSigned = Node->getOpcode() == ISD::SDIV; 3365 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3366 EVT VT = Node->getValueType(0); 3367 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3368 SDVTList VTs = DAG.getVTList(VT, VT); 3369 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3370 Node->getOperand(1)); 3371 Results.push_back(Tmp1); 3372 } 3373 break; 3374 } 3375 case ISD::MULHU: 3376 case ISD::MULHS: { 3377 unsigned ExpandOpcode = 3378 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3379 EVT VT = Node->getValueType(0); 3380 SDVTList VTs = DAG.getVTList(VT, VT); 3381 3382 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3383 Node->getOperand(1)); 3384 Results.push_back(Tmp1.getValue(1)); 3385 break; 3386 } 3387 case ISD::UMUL_LOHI: 3388 case ISD::SMUL_LOHI: { 3389 SDValue LHS = Node->getOperand(0); 3390 SDValue RHS = Node->getOperand(1); 3391 MVT VT = LHS.getSimpleValueType(); 3392 unsigned MULHOpcode = 3393 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3394 3395 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3396 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3397 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3398 break; 3399 } 3400 3401 SmallVector<SDValue, 4> Halves; 3402 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3403 assert(TLI.isTypeLegal(HalfType)); 3404 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, dl, LHS, RHS, Halves, 3405 HalfType, DAG, 3406 TargetLowering::MulExpansionKind::Always)) { 3407 for (unsigned i = 0; i < 2; ++i) { 3408 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3409 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3410 SDValue Shift = DAG.getConstant( 3411 HalfType.getScalarSizeInBits(), dl, 3412 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3413 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3414 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3415 } 3416 break; 3417 } 3418 break; 3419 } 3420 case ISD::MUL: { 3421 EVT VT = Node->getValueType(0); 3422 SDVTList VTs = DAG.getVTList(VT, VT); 3423 // See if multiply or divide can be lowered using two-result operations. 3424 // We just need the low half of the multiply; try both the signed 3425 // and unsigned forms. If the target supports both SMUL_LOHI and 3426 // UMUL_LOHI, form a preference by checking which forms of plain 3427 // MULH it supports. 3428 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3429 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3430 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3431 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3432 unsigned OpToUse = 0; 3433 if (HasSMUL_LOHI && !HasMULHS) { 3434 OpToUse = ISD::SMUL_LOHI; 3435 } else if (HasUMUL_LOHI && !HasMULHU) { 3436 OpToUse = ISD::UMUL_LOHI; 3437 } else if (HasSMUL_LOHI) { 3438 OpToUse = ISD::SMUL_LOHI; 3439 } else if (HasUMUL_LOHI) { 3440 OpToUse = ISD::UMUL_LOHI; 3441 } 3442 if (OpToUse) { 3443 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3444 Node->getOperand(1))); 3445 break; 3446 } 3447 3448 SDValue Lo, Hi; 3449 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3450 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3451 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3452 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3453 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3454 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3455 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3456 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3457 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3458 SDValue Shift = 3459 DAG.getConstant(HalfType.getSizeInBits(), dl, 3460 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3461 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3462 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3463 } 3464 break; 3465 } 3466 case ISD::FSHL: 3467 case ISD::FSHR: 3468 if (TLI.expandFunnelShift(Node, Tmp1, DAG)) 3469 Results.push_back(Tmp1); 3470 break; 3471 case ISD::ROTL: 3472 case ISD::ROTR: 3473 if (TLI.expandROT(Node, Tmp1, DAG)) 3474 Results.push_back(Tmp1); 3475 break; 3476 case ISD::SADDSAT: 3477 case ISD::UADDSAT: 3478 case ISD::SSUBSAT: 3479 case ISD::USUBSAT: 3480 Results.push_back(TLI.expandAddSubSat(Node, DAG)); 3481 break; 3482 case ISD::SSHLSAT: 3483 case ISD::USHLSAT: 3484 Results.push_back(TLI.expandShlSat(Node, DAG)); 3485 break; 3486 case ISD::SMULFIX: 3487 case ISD::SMULFIXSAT: 3488 case ISD::UMULFIX: 3489 case ISD::UMULFIXSAT: 3490 Results.push_back(TLI.expandFixedPointMul(Node, DAG)); 3491 break; 3492 case ISD::SDIVFIX: 3493 case ISD::SDIVFIXSAT: 3494 case ISD::UDIVFIX: 3495 case ISD::UDIVFIXSAT: 3496 if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node), 3497 Node->getOperand(0), 3498 Node->getOperand(1), 3499 Node->getConstantOperandVal(2), 3500 DAG)) { 3501 Results.push_back(V); 3502 break; 3503 } 3504 // FIXME: We might want to retry here with a wider type if we fail, if that 3505 // type is legal. 3506 // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is 3507 // <= 128 (which is the case for all of the default Embedded-C types), 3508 // we will only get here with types and scales that we could always expand 3509 // if we were allowed to generate libcalls to division functions of illegal 3510 // type. But we cannot do that. 3511 llvm_unreachable("Cannot expand DIVFIX!"); 3512 case ISD::ADDCARRY: 3513 case ISD::SUBCARRY: { 3514 SDValue LHS = Node->getOperand(0); 3515 SDValue RHS = Node->getOperand(1); 3516 SDValue Carry = Node->getOperand(2); 3517 3518 bool IsAdd = Node->getOpcode() == ISD::ADDCARRY; 3519 3520 // Initial add of the 2 operands. 3521 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB; 3522 EVT VT = LHS.getValueType(); 3523 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS); 3524 3525 // Initial check for overflow. 3526 EVT CarryType = Node->getValueType(1); 3527 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3528 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 3529 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3530 3531 // Add of the sum and the carry. 3532 SDValue One = DAG.getConstant(1, dl, VT); 3533 SDValue CarryExt = 3534 DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One); 3535 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt); 3536 3537 // Second check for overflow. If we are adding, we can only overflow if the 3538 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0. 3539 // If we are subtracting, we can only overflow if the initial sum is 0 and 3540 // the carry is set, resulting in a new sum of all 1s. 3541 SDValue Zero = DAG.getConstant(0, dl, VT); 3542 SDValue Overflow2 = 3543 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ) 3544 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ); 3545 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2, 3546 DAG.getZExtOrTrunc(Carry, dl, SetCCType)); 3547 3548 SDValue ResultCarry = 3549 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2); 3550 3551 Results.push_back(Sum2); 3552 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT)); 3553 break; 3554 } 3555 case ISD::SADDO: 3556 case ISD::SSUBO: { 3557 SDValue Result, Overflow; 3558 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 3559 Results.push_back(Result); 3560 Results.push_back(Overflow); 3561 break; 3562 } 3563 case ISD::UADDO: 3564 case ISD::USUBO: { 3565 SDValue Result, Overflow; 3566 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 3567 Results.push_back(Result); 3568 Results.push_back(Overflow); 3569 break; 3570 } 3571 case ISD::UMULO: 3572 case ISD::SMULO: { 3573 SDValue Result, Overflow; 3574 if (TLI.expandMULO(Node, Result, Overflow, DAG)) { 3575 Results.push_back(Result); 3576 Results.push_back(Overflow); 3577 } 3578 break; 3579 } 3580 case ISD::BUILD_PAIR: { 3581 EVT PairTy = Node->getValueType(0); 3582 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3583 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3584 Tmp2 = DAG.getNode( 3585 ISD::SHL, dl, PairTy, Tmp2, 3586 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3587 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3588 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3589 break; 3590 } 3591 case ISD::SELECT: 3592 Tmp1 = Node->getOperand(0); 3593 Tmp2 = Node->getOperand(1); 3594 Tmp3 = Node->getOperand(2); 3595 if (Tmp1.getOpcode() == ISD::SETCC) { 3596 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3597 Tmp2, Tmp3, 3598 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3599 } else { 3600 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3601 DAG.getConstant(0, dl, Tmp1.getValueType()), 3602 Tmp2, Tmp3, ISD::SETNE); 3603 } 3604 Tmp1->setFlags(Node->getFlags()); 3605 Results.push_back(Tmp1); 3606 break; 3607 case ISD::BR_JT: { 3608 SDValue Chain = Node->getOperand(0); 3609 SDValue Table = Node->getOperand(1); 3610 SDValue Index = Node->getOperand(2); 3611 3612 const DataLayout &TD = DAG.getDataLayout(); 3613 EVT PTy = TLI.getPointerTy(TD); 3614 3615 unsigned EntrySize = 3616 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3617 3618 // For power-of-two jumptable entry sizes convert multiplication to a shift. 3619 // This transformation needs to be done here since otherwise the MIPS 3620 // backend will end up emitting a three instruction multiply sequence 3621 // instead of a single shift and MSP430 will call a runtime function. 3622 if (llvm::isPowerOf2_32(EntrySize)) 3623 Index = DAG.getNode( 3624 ISD::SHL, dl, Index.getValueType(), Index, 3625 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); 3626 else 3627 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3628 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3629 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3630 Index, Table); 3631 3632 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3633 SDValue LD = DAG.getExtLoad( 3634 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3635 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3636 Addr = LD; 3637 if (TLI.isJumpTableRelative()) { 3638 // For PIC, the sequence is: 3639 // BRIND(load(Jumptable + index) + RelocBase) 3640 // RelocBase can be JumpTable, GOT or some sort of global base. 3641 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3642 TLI.getPICJumpTableRelocBase(Table, DAG)); 3643 } 3644 3645 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); 3646 Results.push_back(Tmp1); 3647 break; 3648 } 3649 case ISD::BRCOND: 3650 // Expand brcond's setcc into its constituent parts and create a BR_CC 3651 // Node. 3652 Tmp1 = Node->getOperand(0); 3653 Tmp2 = Node->getOperand(1); 3654 if (Tmp2.getOpcode() == ISD::SETCC) { 3655 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3656 Tmp1, Tmp2.getOperand(2), 3657 Tmp2.getOperand(0), Tmp2.getOperand(1), 3658 Node->getOperand(2)); 3659 } else { 3660 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 3661 if (Tmp2.isUndef() || 3662 (Tmp2.getOpcode() == ISD::AND && 3663 isa<ConstantSDNode>(Tmp2.getOperand(1)) && 3664 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) 3665 Tmp3 = Tmp2; 3666 else 3667 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3668 DAG.getConstant(1, dl, Tmp2.getValueType())); 3669 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3670 DAG.getCondCode(ISD::SETNE), Tmp3, 3671 DAG.getConstant(0, dl, Tmp3.getValueType()), 3672 Node->getOperand(2)); 3673 } 3674 Results.push_back(Tmp1); 3675 break; 3676 case ISD::SETCC: 3677 case ISD::STRICT_FSETCC: 3678 case ISD::STRICT_FSETCCS: { 3679 bool IsStrict = Node->getOpcode() != ISD::SETCC; 3680 bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS; 3681 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 3682 unsigned Offset = IsStrict ? 1 : 0; 3683 Tmp1 = Node->getOperand(0 + Offset); 3684 Tmp2 = Node->getOperand(1 + Offset); 3685 Tmp3 = Node->getOperand(2 + Offset); 3686 bool Legalized = 3687 LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, 3688 NeedInvert, dl, Chain, IsSignaling); 3689 3690 if (Legalized) { 3691 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3692 // condition code, create a new SETCC node. 3693 if (Tmp3.getNode()) 3694 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3695 Tmp1, Tmp2, Tmp3, Node->getFlags()); 3696 3697 // If we expanded the SETCC by inverting the condition code, then wrap 3698 // the existing SETCC in a NOT to restore the intended condition. 3699 if (NeedInvert) 3700 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3701 3702 Results.push_back(Tmp1); 3703 if (IsStrict) 3704 Results.push_back(Chain); 3705 3706 break; 3707 } 3708 3709 // FIXME: It seems Legalized is false iff CCCode is Legal. I don't 3710 // understand if this code is useful for strict nodes. 3711 assert(!IsStrict && "Don't know how to expand for strict nodes."); 3712 3713 // Otherwise, SETCC for the given comparison type must be completely 3714 // illegal; expand it into a SELECT_CC. 3715 EVT VT = Node->getValueType(0); 3716 int TrueValue; 3717 switch (TLI.getBooleanContents(Tmp1.getValueType())) { 3718 case TargetLowering::ZeroOrOneBooleanContent: 3719 case TargetLowering::UndefinedBooleanContent: 3720 TrueValue = 1; 3721 break; 3722 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3723 TrueValue = -1; 3724 break; 3725 } 3726 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3727 DAG.getConstant(TrueValue, dl, VT), 3728 DAG.getConstant(0, dl, VT), 3729 Tmp3); 3730 Tmp1->setFlags(Node->getFlags()); 3731 Results.push_back(Tmp1); 3732 break; 3733 } 3734 case ISD::SELECT_CC: { 3735 // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS 3736 Tmp1 = Node->getOperand(0); // LHS 3737 Tmp2 = Node->getOperand(1); // RHS 3738 Tmp3 = Node->getOperand(2); // True 3739 Tmp4 = Node->getOperand(3); // False 3740 EVT VT = Node->getValueType(0); 3741 SDValue Chain; 3742 SDValue CC = Node->getOperand(4); 3743 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3744 3745 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 3746 // If the condition code is legal, then we need to expand this 3747 // node using SETCC and SELECT. 3748 EVT CmpVT = Tmp1.getValueType(); 3749 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3750 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3751 "expanded."); 3752 EVT CCVT = getSetCCResultType(CmpVT); 3753 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags()); 3754 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3755 break; 3756 } 3757 3758 // SELECT_CC is legal, so the condition code must not be. 3759 bool Legalized = false; 3760 // Try to legalize by inverting the condition. This is for targets that 3761 // might support an ordered version of a condition, but not the unordered 3762 // version (or vice versa). 3763 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType()); 3764 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 3765 // Use the new condition code and swap true and false 3766 Legalized = true; 3767 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3768 Tmp1->setFlags(Node->getFlags()); 3769 } else { 3770 // If The inverse is not legal, then try to swap the arguments using 3771 // the inverse condition code. 3772 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3773 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 3774 // The swapped inverse condition is legal, so swap true and false, 3775 // lhs and rhs. 3776 Legalized = true; 3777 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3778 Tmp1->setFlags(Node->getFlags()); 3779 } 3780 } 3781 3782 if (!Legalized) { 3783 Legalized = LegalizeSetCCCondCode(getSetCCResultType(Tmp1.getValueType()), 3784 Tmp1, Tmp2, CC, NeedInvert, dl, Chain); 3785 3786 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3787 3788 // If we expanded the SETCC by inverting the condition code, then swap 3789 // the True/False operands to match. 3790 if (NeedInvert) 3791 std::swap(Tmp3, Tmp4); 3792 3793 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3794 // condition code, create a new SELECT_CC node. 3795 if (CC.getNode()) { 3796 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3797 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3798 } else { 3799 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3800 CC = DAG.getCondCode(ISD::SETNE); 3801 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3802 Tmp2, Tmp3, Tmp4, CC); 3803 } 3804 Tmp1->setFlags(Node->getFlags()); 3805 } 3806 Results.push_back(Tmp1); 3807 break; 3808 } 3809 case ISD::BR_CC: { 3810 // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS 3811 SDValue Chain; 3812 Tmp1 = Node->getOperand(0); // Chain 3813 Tmp2 = Node->getOperand(2); // LHS 3814 Tmp3 = Node->getOperand(3); // RHS 3815 Tmp4 = Node->getOperand(1); // CC 3816 3817 bool Legalized = 3818 LegalizeSetCCCondCode(getSetCCResultType(Tmp2.getValueType()), Tmp2, 3819 Tmp3, Tmp4, NeedInvert, dl, Chain); 3820 (void)Legalized; 3821 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3822 3823 assert(!NeedInvert && "Don't know how to invert BR_CC!"); 3824 3825 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3826 // node. 3827 if (Tmp4.getNode()) { 3828 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3829 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3830 } else { 3831 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3832 Tmp4 = DAG.getCondCode(ISD::SETNE); 3833 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3834 Tmp2, Tmp3, Node->getOperand(4)); 3835 } 3836 Results.push_back(Tmp1); 3837 break; 3838 } 3839 case ISD::BUILD_VECTOR: 3840 Results.push_back(ExpandBUILD_VECTOR(Node)); 3841 break; 3842 case ISD::SPLAT_VECTOR: 3843 Results.push_back(ExpandSPLAT_VECTOR(Node)); 3844 break; 3845 case ISD::SRA: 3846 case ISD::SRL: 3847 case ISD::SHL: { 3848 // Scalarize vector SRA/SRL/SHL. 3849 EVT VT = Node->getValueType(0); 3850 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3851 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3852 unsigned NumElem = VT.getVectorNumElements(); 3853 3854 SmallVector<SDValue, 8> Scalars; 3855 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3856 SDValue Ex = 3857 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3858 Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl)); 3859 SDValue Sh = 3860 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3861 Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl)); 3862 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3863 VT.getScalarType(), Ex, Sh)); 3864 } 3865 3866 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 3867 Results.push_back(Result); 3868 break; 3869 } 3870 case ISD::VECREDUCE_FADD: 3871 case ISD::VECREDUCE_FMUL: 3872 case ISD::VECREDUCE_ADD: 3873 case ISD::VECREDUCE_MUL: 3874 case ISD::VECREDUCE_AND: 3875 case ISD::VECREDUCE_OR: 3876 case ISD::VECREDUCE_XOR: 3877 case ISD::VECREDUCE_SMAX: 3878 case ISD::VECREDUCE_SMIN: 3879 case ISD::VECREDUCE_UMAX: 3880 case ISD::VECREDUCE_UMIN: 3881 case ISD::VECREDUCE_FMAX: 3882 case ISD::VECREDUCE_FMIN: 3883 Results.push_back(TLI.expandVecReduce(Node, DAG)); 3884 break; 3885 case ISD::GLOBAL_OFFSET_TABLE: 3886 case ISD::GlobalAddress: 3887 case ISD::GlobalTLSAddress: 3888 case ISD::ExternalSymbol: 3889 case ISD::ConstantPool: 3890 case ISD::JumpTable: 3891 case ISD::INTRINSIC_W_CHAIN: 3892 case ISD::INTRINSIC_WO_CHAIN: 3893 case ISD::INTRINSIC_VOID: 3894 // FIXME: Custom lowering for these operations shouldn't return null! 3895 // Return true so that we don't call ConvertNodeToLibcall which also won't 3896 // do anything. 3897 return true; 3898 } 3899 3900 if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) { 3901 // FIXME: We were asked to expand a strict floating-point operation, 3902 // but there is currently no expansion implemented that would preserve 3903 // the "strict" properties. For now, we just fall back to the non-strict 3904 // version if that is legal on the target. The actual mutation of the 3905 // operation will happen in SelectionDAGISel::DoInstructionSelection. 3906 switch (Node->getOpcode()) { 3907 default: 3908 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3909 Node->getValueType(0)) 3910 == TargetLowering::Legal) 3911 return true; 3912 break; 3913 case ISD::STRICT_FSUB: { 3914 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3915 Node->getValueType(0)) 3916 == TargetLowering::Legal) 3917 return true; 3918 3919 EVT VT = Node->getValueType(0); 3920 const SDNodeFlags Flags = Node->getFlags(); 3921 SDValue Neg = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(2), Flags); 3922 SDValue Fadd = DAG.getNode(ISD::STRICT_FADD, dl, Node->getVTList(), 3923 {Node->getOperand(0), Node->getOperand(1), Neg}, 3924 Flags); 3925 3926 Results.push_back(Fadd); 3927 Results.push_back(Fadd.getValue(1)); 3928 break; 3929 } 3930 case ISD::STRICT_LRINT: 3931 case ISD::STRICT_LLRINT: 3932 case ISD::STRICT_LROUND: 3933 case ISD::STRICT_LLROUND: 3934 // These are registered by the operand type instead of the value 3935 // type. Reflect that here. 3936 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3937 Node->getOperand(1).getValueType()) 3938 == TargetLowering::Legal) 3939 return true; 3940 break; 3941 } 3942 } 3943 3944 // Replace the original node with the legalized result. 3945 if (Results.empty()) { 3946 LLVM_DEBUG(dbgs() << "Cannot expand node\n"); 3947 return false; 3948 } 3949 3950 LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); 3951 ReplaceNode(Node, Results.data()); 3952 return true; 3953 } 3954 3955 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 3956 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); 3957 SmallVector<SDValue, 8> Results; 3958 SDLoc dl(Node); 3959 // FIXME: Check flags on the node to see if we can use a finite call. 3960 unsigned Opc = Node->getOpcode(); 3961 switch (Opc) { 3962 case ISD::ATOMIC_FENCE: { 3963 // If the target didn't lower this, lower it to '__sync_synchronize()' call 3964 // FIXME: handle "fence singlethread" more efficiently. 3965 TargetLowering::ArgListTy Args; 3966 3967 TargetLowering::CallLoweringInfo CLI(DAG); 3968 CLI.setDebugLoc(dl) 3969 .setChain(Node->getOperand(0)) 3970 .setLibCallee( 3971 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3972 DAG.getExternalSymbol("__sync_synchronize", 3973 TLI.getPointerTy(DAG.getDataLayout())), 3974 std::move(Args)); 3975 3976 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3977 3978 Results.push_back(CallResult.second); 3979 break; 3980 } 3981 // By default, atomic intrinsics are marked Legal and lowered. Targets 3982 // which don't support them directly, however, may want libcalls, in which 3983 // case they mark them Expand, and we get here. 3984 case ISD::ATOMIC_SWAP: 3985 case ISD::ATOMIC_LOAD_ADD: 3986 case ISD::ATOMIC_LOAD_SUB: 3987 case ISD::ATOMIC_LOAD_AND: 3988 case ISD::ATOMIC_LOAD_CLR: 3989 case ISD::ATOMIC_LOAD_OR: 3990 case ISD::ATOMIC_LOAD_XOR: 3991 case ISD::ATOMIC_LOAD_NAND: 3992 case ISD::ATOMIC_LOAD_MIN: 3993 case ISD::ATOMIC_LOAD_MAX: 3994 case ISD::ATOMIC_LOAD_UMIN: 3995 case ISD::ATOMIC_LOAD_UMAX: 3996 case ISD::ATOMIC_CMP_SWAP: { 3997 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 3998 RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT); 3999 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!"); 4000 4001 EVT RetVT = Node->getValueType(0); 4002 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); 4003 TargetLowering::MakeLibCallOptions CallOptions; 4004 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 4005 Ops, CallOptions, 4006 SDLoc(Node), 4007 Node->getOperand(0)); 4008 Results.push_back(Tmp.first); 4009 Results.push_back(Tmp.second); 4010 break; 4011 } 4012 case ISD::TRAP: { 4013 // If this operation is not supported, lower it to 'abort()' call 4014 TargetLowering::ArgListTy Args; 4015 TargetLowering::CallLoweringInfo CLI(DAG); 4016 CLI.setDebugLoc(dl) 4017 .setChain(Node->getOperand(0)) 4018 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 4019 DAG.getExternalSymbol( 4020 "abort", TLI.getPointerTy(DAG.getDataLayout())), 4021 std::move(Args)); 4022 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 4023 4024 Results.push_back(CallResult.second); 4025 break; 4026 } 4027 case ISD::FMINNUM: 4028 case ISD::STRICT_FMINNUM: 4029 ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 4030 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 4031 RTLIB::FMIN_PPCF128, Results); 4032 break; 4033 case ISD::FMAXNUM: 4034 case ISD::STRICT_FMAXNUM: 4035 ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 4036 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 4037 RTLIB::FMAX_PPCF128, Results); 4038 break; 4039 case ISD::FSQRT: 4040 case ISD::STRICT_FSQRT: 4041 ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 4042 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 4043 RTLIB::SQRT_PPCF128, Results); 4044 break; 4045 case ISD::FCBRT: 4046 ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, 4047 RTLIB::CBRT_F80, RTLIB::CBRT_F128, 4048 RTLIB::CBRT_PPCF128, Results); 4049 break; 4050 case ISD::FSIN: 4051 case ISD::STRICT_FSIN: 4052 ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 4053 RTLIB::SIN_F80, RTLIB::SIN_F128, 4054 RTLIB::SIN_PPCF128, Results); 4055 break; 4056 case ISD::FCOS: 4057 case ISD::STRICT_FCOS: 4058 ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 4059 RTLIB::COS_F80, RTLIB::COS_F128, 4060 RTLIB::COS_PPCF128, Results); 4061 break; 4062 case ISD::FSINCOS: 4063 // Expand into sincos libcall. 4064 ExpandSinCosLibCall(Node, Results); 4065 break; 4066 case ISD::FLOG: 4067 case ISD::STRICT_FLOG: 4068 ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80, 4069 RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results); 4070 break; 4071 case ISD::FLOG2: 4072 case ISD::STRICT_FLOG2: 4073 ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80, 4074 RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results); 4075 break; 4076 case ISD::FLOG10: 4077 case ISD::STRICT_FLOG10: 4078 ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80, 4079 RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results); 4080 break; 4081 case ISD::FEXP: 4082 case ISD::STRICT_FEXP: 4083 ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80, 4084 RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results); 4085 break; 4086 case ISD::FEXP2: 4087 case ISD::STRICT_FEXP2: 4088 ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80, 4089 RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results); 4090 break; 4091 case ISD::FTRUNC: 4092 case ISD::STRICT_FTRUNC: 4093 ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 4094 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 4095 RTLIB::TRUNC_PPCF128, Results); 4096 break; 4097 case ISD::FFLOOR: 4098 case ISD::STRICT_FFLOOR: 4099 ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 4100 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 4101 RTLIB::FLOOR_PPCF128, Results); 4102 break; 4103 case ISD::FCEIL: 4104 case ISD::STRICT_FCEIL: 4105 ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 4106 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 4107 RTLIB::CEIL_PPCF128, Results); 4108 break; 4109 case ISD::FRINT: 4110 case ISD::STRICT_FRINT: 4111 ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 4112 RTLIB::RINT_F80, RTLIB::RINT_F128, 4113 RTLIB::RINT_PPCF128, Results); 4114 break; 4115 case ISD::FNEARBYINT: 4116 case ISD::STRICT_FNEARBYINT: 4117 ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 4118 RTLIB::NEARBYINT_F64, 4119 RTLIB::NEARBYINT_F80, 4120 RTLIB::NEARBYINT_F128, 4121 RTLIB::NEARBYINT_PPCF128, Results); 4122 break; 4123 case ISD::FROUND: 4124 case ISD::STRICT_FROUND: 4125 ExpandFPLibCall(Node, RTLIB::ROUND_F32, 4126 RTLIB::ROUND_F64, 4127 RTLIB::ROUND_F80, 4128 RTLIB::ROUND_F128, 4129 RTLIB::ROUND_PPCF128, Results); 4130 break; 4131 case ISD::FROUNDEVEN: 4132 case ISD::STRICT_FROUNDEVEN: 4133 ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32, 4134 RTLIB::ROUNDEVEN_F64, 4135 RTLIB::ROUNDEVEN_F80, 4136 RTLIB::ROUNDEVEN_F128, 4137 RTLIB::ROUNDEVEN_PPCF128, Results); 4138 break; 4139 case ISD::FPOWI: 4140 case ISD::STRICT_FPOWI: { 4141 RTLIB::Libcall LC; 4142 switch (Node->getSimpleValueType(0).SimpleTy) { 4143 default: llvm_unreachable("Unexpected request for libcall!"); 4144 case MVT::f32: LC = RTLIB::POWI_F32; break; 4145 case MVT::f64: LC = RTLIB::POWI_F64; break; 4146 case MVT::f80: LC = RTLIB::POWI_F80; break; 4147 case MVT::f128: LC = RTLIB::POWI_F128; break; 4148 case MVT::ppcf128: LC = RTLIB::POWI_PPCF128; break; 4149 } 4150 if (!TLI.getLibcallName(LC)) { 4151 // Some targets don't have a powi libcall; use pow instead. 4152 SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), 4153 Node->getValueType(0), 4154 Node->getOperand(1)); 4155 Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node), 4156 Node->getValueType(0), Node->getOperand(0), 4157 Exponent)); 4158 break; 4159 } 4160 ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 4161 RTLIB::POWI_F80, RTLIB::POWI_F128, 4162 RTLIB::POWI_PPCF128, Results); 4163 break; 4164 } 4165 case ISD::FPOW: 4166 case ISD::STRICT_FPOW: 4167 ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 4168 RTLIB::POW_F128, RTLIB::POW_PPCF128, Results); 4169 break; 4170 case ISD::LROUND: 4171 case ISD::STRICT_LROUND: 4172 ExpandArgFPLibCall(Node, RTLIB::LROUND_F32, 4173 RTLIB::LROUND_F64, RTLIB::LROUND_F80, 4174 RTLIB::LROUND_F128, 4175 RTLIB::LROUND_PPCF128, Results); 4176 break; 4177 case ISD::LLROUND: 4178 case ISD::STRICT_LLROUND: 4179 ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32, 4180 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, 4181 RTLIB::LLROUND_F128, 4182 RTLIB::LLROUND_PPCF128, Results); 4183 break; 4184 case ISD::LRINT: 4185 case ISD::STRICT_LRINT: 4186 ExpandArgFPLibCall(Node, RTLIB::LRINT_F32, 4187 RTLIB::LRINT_F64, RTLIB::LRINT_F80, 4188 RTLIB::LRINT_F128, 4189 RTLIB::LRINT_PPCF128, Results); 4190 break; 4191 case ISD::LLRINT: 4192 case ISD::STRICT_LLRINT: 4193 ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32, 4194 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80, 4195 RTLIB::LLRINT_F128, 4196 RTLIB::LLRINT_PPCF128, Results); 4197 break; 4198 case ISD::FDIV: 4199 case ISD::STRICT_FDIV: 4200 ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 4201 RTLIB::DIV_F80, RTLIB::DIV_F128, 4202 RTLIB::DIV_PPCF128, Results); 4203 break; 4204 case ISD::FREM: 4205 case ISD::STRICT_FREM: 4206 ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 4207 RTLIB::REM_F80, RTLIB::REM_F128, 4208 RTLIB::REM_PPCF128, Results); 4209 break; 4210 case ISD::FMA: 4211 case ISD::STRICT_FMA: 4212 ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 4213 RTLIB::FMA_F80, RTLIB::FMA_F128, 4214 RTLIB::FMA_PPCF128, Results); 4215 break; 4216 case ISD::FADD: 4217 case ISD::STRICT_FADD: 4218 ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 4219 RTLIB::ADD_F80, RTLIB::ADD_F128, 4220 RTLIB::ADD_PPCF128, Results); 4221 break; 4222 case ISD::FMUL: 4223 case ISD::STRICT_FMUL: 4224 ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 4225 RTLIB::MUL_F80, RTLIB::MUL_F128, 4226 RTLIB::MUL_PPCF128, Results); 4227 break; 4228 case ISD::FP16_TO_FP: 4229 if (Node->getValueType(0) == MVT::f32) { 4230 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 4231 } 4232 break; 4233 case ISD::STRICT_FP16_TO_FP: { 4234 if (Node->getValueType(0) == MVT::f32) { 4235 TargetLowering::MakeLibCallOptions CallOptions; 4236 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall( 4237 DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions, 4238 SDLoc(Node), Node->getOperand(0)); 4239 Results.push_back(Tmp.first); 4240 Results.push_back(Tmp.second); 4241 } 4242 break; 4243 } 4244 case ISD::FP_TO_FP16: { 4245 RTLIB::Libcall LC = 4246 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 4247 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 4248 Results.push_back(ExpandLibCall(LC, Node, false)); 4249 break; 4250 } 4251 case ISD::STRICT_FP_TO_FP16: { 4252 RTLIB::Libcall LC = 4253 RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16); 4254 assert(LC != RTLIB::UNKNOWN_LIBCALL && 4255 "Unable to expand strict_fp_to_fp16"); 4256 TargetLowering::MakeLibCallOptions CallOptions; 4257 std::pair<SDValue, SDValue> Tmp = 4258 TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1), 4259 CallOptions, SDLoc(Node), Node->getOperand(0)); 4260 Results.push_back(Tmp.first); 4261 Results.push_back(Tmp.second); 4262 break; 4263 } 4264 case ISD::FSUB: 4265 case ISD::STRICT_FSUB: 4266 ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4267 RTLIB::SUB_F80, RTLIB::SUB_F128, 4268 RTLIB::SUB_PPCF128, Results); 4269 break; 4270 case ISD::SREM: 4271 Results.push_back(ExpandIntLibCall(Node, true, 4272 RTLIB::SREM_I8, 4273 RTLIB::SREM_I16, RTLIB::SREM_I32, 4274 RTLIB::SREM_I64, RTLIB::SREM_I128)); 4275 break; 4276 case ISD::UREM: 4277 Results.push_back(ExpandIntLibCall(Node, false, 4278 RTLIB::UREM_I8, 4279 RTLIB::UREM_I16, RTLIB::UREM_I32, 4280 RTLIB::UREM_I64, RTLIB::UREM_I128)); 4281 break; 4282 case ISD::SDIV: 4283 Results.push_back(ExpandIntLibCall(Node, true, 4284 RTLIB::SDIV_I8, 4285 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4286 RTLIB::SDIV_I64, RTLIB::SDIV_I128)); 4287 break; 4288 case ISD::UDIV: 4289 Results.push_back(ExpandIntLibCall(Node, false, 4290 RTLIB::UDIV_I8, 4291 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4292 RTLIB::UDIV_I64, RTLIB::UDIV_I128)); 4293 break; 4294 case ISD::SDIVREM: 4295 case ISD::UDIVREM: 4296 // Expand into divrem libcall 4297 ExpandDivRemLibCall(Node, Results); 4298 break; 4299 case ISD::MUL: 4300 Results.push_back(ExpandIntLibCall(Node, false, 4301 RTLIB::MUL_I8, 4302 RTLIB::MUL_I16, RTLIB::MUL_I32, 4303 RTLIB::MUL_I64, RTLIB::MUL_I128)); 4304 break; 4305 case ISD::CTLZ_ZERO_UNDEF: 4306 switch (Node->getSimpleValueType(0).SimpleTy) { 4307 default: 4308 llvm_unreachable("LibCall explicitly requested, but not available"); 4309 case MVT::i32: 4310 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false)); 4311 break; 4312 case MVT::i64: 4313 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false)); 4314 break; 4315 case MVT::i128: 4316 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false)); 4317 break; 4318 } 4319 break; 4320 } 4321 4322 // Replace the original node with the legalized result. 4323 if (!Results.empty()) { 4324 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); 4325 ReplaceNode(Node, Results.data()); 4326 } else 4327 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); 4328 } 4329 4330 // Determine the vector type to use in place of an original scalar element when 4331 // promoting equally sized vectors. 4332 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4333 MVT EltVT, MVT NewEltVT) { 4334 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4335 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4336 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4337 return MidVT; 4338 } 4339 4340 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4341 LLVM_DEBUG(dbgs() << "Trying to promote node\n"); 4342 SmallVector<SDValue, 8> Results; 4343 MVT OVT = Node->getSimpleValueType(0); 4344 if (Node->getOpcode() == ISD::UINT_TO_FP || 4345 Node->getOpcode() == ISD::SINT_TO_FP || 4346 Node->getOpcode() == ISD::SETCC || 4347 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4348 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4349 OVT = Node->getOperand(0).getSimpleValueType(); 4350 } 4351 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP || 4352 Node->getOpcode() == ISD::STRICT_SINT_TO_FP) 4353 OVT = Node->getOperand(1).getSimpleValueType(); 4354 if (Node->getOpcode() == ISD::BR_CC) 4355 OVT = Node->getOperand(2).getSimpleValueType(); 4356 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4357 SDLoc dl(Node); 4358 SDValue Tmp1, Tmp2, Tmp3; 4359 switch (Node->getOpcode()) { 4360 case ISD::CTTZ: 4361 case ISD::CTTZ_ZERO_UNDEF: 4362 case ISD::CTLZ: 4363 case ISD::CTLZ_ZERO_UNDEF: 4364 case ISD::CTPOP: 4365 // Zero extend the argument unless its cttz, then use any_extend. 4366 if (Node->getOpcode() == ISD::CTTZ || 4367 Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 4368 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 4369 else 4370 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4371 4372 if (Node->getOpcode() == ISD::CTTZ) { 4373 // The count is the same in the promoted type except if the original 4374 // value was zero. This can be handled by setting the bit just off 4375 // the top of the original type. 4376 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4377 OVT.getSizeInBits()); 4378 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4379 DAG.getConstant(TopBit, dl, NVT)); 4380 } 4381 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4382 // already the correct result. 4383 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4384 if (Node->getOpcode() == ISD::CTLZ || 4385 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4386 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4387 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4388 DAG.getConstant(NVT.getSizeInBits() - 4389 OVT.getSizeInBits(), dl, NVT)); 4390 } 4391 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4392 break; 4393 case ISD::BITREVERSE: 4394 case ISD::BSWAP: { 4395 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4396 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4397 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4398 Tmp1 = DAG.getNode( 4399 ISD::SRL, dl, NVT, Tmp1, 4400 DAG.getConstant(DiffBits, dl, 4401 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4402 4403 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4404 break; 4405 } 4406 case ISD::FP_TO_UINT: 4407 case ISD::STRICT_FP_TO_UINT: 4408 case ISD::FP_TO_SINT: 4409 case ISD::STRICT_FP_TO_SINT: 4410 PromoteLegalFP_TO_INT(Node, dl, Results); 4411 break; 4412 case ISD::UINT_TO_FP: 4413 case ISD::STRICT_UINT_TO_FP: 4414 case ISD::SINT_TO_FP: 4415 case ISD::STRICT_SINT_TO_FP: 4416 PromoteLegalINT_TO_FP(Node, dl, Results); 4417 break; 4418 case ISD::VAARG: { 4419 SDValue Chain = Node->getOperand(0); // Get the chain. 4420 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4421 4422 unsigned TruncOp; 4423 if (OVT.isVector()) { 4424 TruncOp = ISD::BITCAST; 4425 } else { 4426 assert(OVT.isInteger() 4427 && "VAARG promotion is supported only for vectors or integer types"); 4428 TruncOp = ISD::TRUNCATE; 4429 } 4430 4431 // Perform the larger operation, then convert back 4432 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4433 Node->getConstantOperandVal(3)); 4434 Chain = Tmp1.getValue(1); 4435 4436 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4437 4438 // Modified the chain result - switch anything that used the old chain to 4439 // use the new one. 4440 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4441 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4442 if (UpdatedNodes) { 4443 UpdatedNodes->insert(Tmp2.getNode()); 4444 UpdatedNodes->insert(Chain.getNode()); 4445 } 4446 ReplacedNode(Node); 4447 break; 4448 } 4449 case ISD::MUL: 4450 case ISD::SDIV: 4451 case ISD::SREM: 4452 case ISD::UDIV: 4453 case ISD::UREM: 4454 case ISD::AND: 4455 case ISD::OR: 4456 case ISD::XOR: { 4457 unsigned ExtOp, TruncOp; 4458 if (OVT.isVector()) { 4459 ExtOp = ISD::BITCAST; 4460 TruncOp = ISD::BITCAST; 4461 } else { 4462 assert(OVT.isInteger() && "Cannot promote logic operation"); 4463 4464 switch (Node->getOpcode()) { 4465 default: 4466 ExtOp = ISD::ANY_EXTEND; 4467 break; 4468 case ISD::SDIV: 4469 case ISD::SREM: 4470 ExtOp = ISD::SIGN_EXTEND; 4471 break; 4472 case ISD::UDIV: 4473 case ISD::UREM: 4474 ExtOp = ISD::ZERO_EXTEND; 4475 break; 4476 } 4477 TruncOp = ISD::TRUNCATE; 4478 } 4479 // Promote each of the values to the new type. 4480 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4481 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4482 // Perform the larger operation, then convert back 4483 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4484 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4485 break; 4486 } 4487 case ISD::UMUL_LOHI: 4488 case ISD::SMUL_LOHI: { 4489 // Promote to a multiply in a wider integer type. 4490 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 4491 : ISD::SIGN_EXTEND; 4492 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4493 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4494 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 4495 4496 auto &DL = DAG.getDataLayout(); 4497 unsigned OriginalSize = OVT.getScalarSizeInBits(); 4498 Tmp2 = DAG.getNode( 4499 ISD::SRL, dl, NVT, Tmp1, 4500 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 4501 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4502 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 4503 break; 4504 } 4505 case ISD::SELECT: { 4506 unsigned ExtOp, TruncOp; 4507 if (Node->getValueType(0).isVector() || 4508 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4509 ExtOp = ISD::BITCAST; 4510 TruncOp = ISD::BITCAST; 4511 } else if (Node->getValueType(0).isInteger()) { 4512 ExtOp = ISD::ANY_EXTEND; 4513 TruncOp = ISD::TRUNCATE; 4514 } else { 4515 ExtOp = ISD::FP_EXTEND; 4516 TruncOp = ISD::FP_ROUND; 4517 } 4518 Tmp1 = Node->getOperand(0); 4519 // Promote each of the values to the new type. 4520 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4521 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4522 // Perform the larger operation, then round down. 4523 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4524 Tmp1->setFlags(Node->getFlags()); 4525 if (TruncOp != ISD::FP_ROUND) 4526 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4527 else 4528 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4529 DAG.getIntPtrConstant(0, dl)); 4530 Results.push_back(Tmp1); 4531 break; 4532 } 4533 case ISD::VECTOR_SHUFFLE: { 4534 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4535 4536 // Cast the two input vectors. 4537 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4538 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4539 4540 // Convert the shuffle mask to the right # elements. 4541 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4542 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4543 Results.push_back(Tmp1); 4544 break; 4545 } 4546 case ISD::SETCC: { 4547 unsigned ExtOp = ISD::FP_EXTEND; 4548 if (NVT.isInteger()) { 4549 ISD::CondCode CCCode = 4550 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4551 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4552 } 4553 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4554 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4555 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, 4556 Tmp2, Node->getOperand(2), Node->getFlags())); 4557 break; 4558 } 4559 case ISD::BR_CC: { 4560 unsigned ExtOp = ISD::FP_EXTEND; 4561 if (NVT.isInteger()) { 4562 ISD::CondCode CCCode = 4563 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4564 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4565 } 4566 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4567 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4568 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4569 Node->getOperand(0), Node->getOperand(1), 4570 Tmp1, Tmp2, Node->getOperand(4))); 4571 break; 4572 } 4573 case ISD::FADD: 4574 case ISD::FSUB: 4575 case ISD::FMUL: 4576 case ISD::FDIV: 4577 case ISD::FREM: 4578 case ISD::FMINNUM: 4579 case ISD::FMAXNUM: 4580 case ISD::FPOW: 4581 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4582 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4583 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4584 Node->getFlags()); 4585 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4586 Tmp3, DAG.getIntPtrConstant(0, dl))); 4587 break; 4588 case ISD::STRICT_FREM: 4589 case ISD::STRICT_FPOW: 4590 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4591 {Node->getOperand(0), Node->getOperand(1)}); 4592 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4593 {Node->getOperand(0), Node->getOperand(2)}); 4594 Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 4595 Tmp2.getValue(1)); 4596 Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4597 {Tmp3, Tmp1, Tmp2}); 4598 Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4599 {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)}); 4600 Results.push_back(Tmp1); 4601 Results.push_back(Tmp1.getValue(1)); 4602 break; 4603 case ISD::FMA: 4604 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4605 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4606 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4607 Results.push_back( 4608 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4609 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4610 DAG.getIntPtrConstant(0, dl))); 4611 break; 4612 case ISD::FCOPYSIGN: 4613 case ISD::FPOWI: { 4614 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4615 Tmp2 = Node->getOperand(1); 4616 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4617 4618 // fcopysign doesn't change anything but the sign bit, so 4619 // (fp_round (fcopysign (fpext a), b)) 4620 // is as precise as 4621 // (fp_round (fpext a)) 4622 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4623 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4624 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4625 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4626 break; 4627 } 4628 case ISD::FFLOOR: 4629 case ISD::FCEIL: 4630 case ISD::FRINT: 4631 case ISD::FNEARBYINT: 4632 case ISD::FROUND: 4633 case ISD::FROUNDEVEN: 4634 case ISD::FTRUNC: 4635 case ISD::FNEG: 4636 case ISD::FSQRT: 4637 case ISD::FSIN: 4638 case ISD::FCOS: 4639 case ISD::FLOG: 4640 case ISD::FLOG2: 4641 case ISD::FLOG10: 4642 case ISD::FABS: 4643 case ISD::FEXP: 4644 case ISD::FEXP2: 4645 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4646 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4647 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4648 Tmp2, DAG.getIntPtrConstant(0, dl))); 4649 break; 4650 case ISD::STRICT_FFLOOR: 4651 case ISD::STRICT_FCEIL: 4652 case ISD::STRICT_FSIN: 4653 case ISD::STRICT_FCOS: 4654 case ISD::STRICT_FLOG: 4655 case ISD::STRICT_FLOG10: 4656 case ISD::STRICT_FEXP: 4657 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4658 {Node->getOperand(0), Node->getOperand(1)}); 4659 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4660 {Tmp1.getValue(1), Tmp1}); 4661 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4662 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 4663 Results.push_back(Tmp3); 4664 Results.push_back(Tmp3.getValue(1)); 4665 break; 4666 case ISD::BUILD_VECTOR: { 4667 MVT EltVT = OVT.getVectorElementType(); 4668 MVT NewEltVT = NVT.getVectorElementType(); 4669 4670 // Handle bitcasts to a different vector type with the same total bit size 4671 // 4672 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4673 // => 4674 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4675 4676 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4677 "Invalid promote type for build_vector"); 4678 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4679 4680 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4681 4682 SmallVector<SDValue, 8> NewOps; 4683 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4684 SDValue Op = Node->getOperand(I); 4685 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4686 } 4687 4688 SDLoc SL(Node); 4689 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4690 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4691 Results.push_back(CvtVec); 4692 break; 4693 } 4694 case ISD::EXTRACT_VECTOR_ELT: { 4695 MVT EltVT = OVT.getVectorElementType(); 4696 MVT NewEltVT = NVT.getVectorElementType(); 4697 4698 // Handle bitcasts to a different vector type with the same total bit size. 4699 // 4700 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4701 // => 4702 // v4i32:castx = bitcast x:v2i64 4703 // 4704 // i64 = bitcast 4705 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4706 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4707 // 4708 4709 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4710 "Invalid promote type for extract_vector_elt"); 4711 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4712 4713 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4714 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4715 4716 SDValue Idx = Node->getOperand(1); 4717 EVT IdxVT = Idx.getValueType(); 4718 SDLoc SL(Node); 4719 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4720 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4721 4722 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4723 4724 SmallVector<SDValue, 8> NewOps; 4725 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4726 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4727 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4728 4729 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4730 CastVec, TmpIdx); 4731 NewOps.push_back(Elt); 4732 } 4733 4734 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 4735 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4736 break; 4737 } 4738 case ISD::INSERT_VECTOR_ELT: { 4739 MVT EltVT = OVT.getVectorElementType(); 4740 MVT NewEltVT = NVT.getVectorElementType(); 4741 4742 // Handle bitcasts to a different vector type with the same total bit size 4743 // 4744 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4745 // => 4746 // v4i32:castx = bitcast x:v2i64 4747 // v2i32:casty = bitcast y:i64 4748 // 4749 // v2i64 = bitcast 4750 // (v4i32 insert_vector_elt 4751 // (v4i32 insert_vector_elt v4i32:castx, 4752 // (extract_vector_elt casty, 0), 2 * z), 4753 // (extract_vector_elt casty, 1), (2 * z + 1)) 4754 4755 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4756 "Invalid promote type for insert_vector_elt"); 4757 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4758 4759 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4760 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4761 4762 SDValue Val = Node->getOperand(1); 4763 SDValue Idx = Node->getOperand(2); 4764 EVT IdxVT = Idx.getValueType(); 4765 SDLoc SL(Node); 4766 4767 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 4768 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4769 4770 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4771 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4772 4773 SDValue NewVec = CastVec; 4774 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4775 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4776 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4777 4778 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4779 CastVal, IdxOffset); 4780 4781 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 4782 NewVec, Elt, InEltIdx); 4783 } 4784 4785 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 4786 break; 4787 } 4788 case ISD::SCALAR_TO_VECTOR: { 4789 MVT EltVT = OVT.getVectorElementType(); 4790 MVT NewEltVT = NVT.getVectorElementType(); 4791 4792 // Handle bitcasts to different vector type with the same total bit size. 4793 // 4794 // e.g. v2i64 = scalar_to_vector x:i64 4795 // => 4796 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 4797 // 4798 4799 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4800 SDValue Val = Node->getOperand(0); 4801 SDLoc SL(Node); 4802 4803 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4804 SDValue Undef = DAG.getUNDEF(MidVT); 4805 4806 SmallVector<SDValue, 8> NewElts; 4807 NewElts.push_back(CastVal); 4808 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 4809 NewElts.push_back(Undef); 4810 4811 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 4812 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4813 Results.push_back(CvtVec); 4814 break; 4815 } 4816 case ISD::ATOMIC_SWAP: { 4817 AtomicSDNode *AM = cast<AtomicSDNode>(Node); 4818 SDLoc SL(Node); 4819 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal()); 4820 assert(NVT.getSizeInBits() == OVT.getSizeInBits() && 4821 "unexpected promotion type"); 4822 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && 4823 "unexpected atomic_swap with illegal type"); 4824 4825 SDValue NewAtomic 4826 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT, 4827 DAG.getVTList(NVT, MVT::Other), 4828 { AM->getChain(), AM->getBasePtr(), CastVal }, 4829 AM->getMemOperand()); 4830 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); 4831 Results.push_back(NewAtomic.getValue(1)); 4832 break; 4833 } 4834 } 4835 4836 // Replace the original node with the legalized result. 4837 if (!Results.empty()) { 4838 LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); 4839 ReplaceNode(Node, Results.data()); 4840 } else 4841 LLVM_DEBUG(dbgs() << "Could not promote node\n"); 4842 } 4843 4844 /// This is the entry point for the file. 4845 void SelectionDAG::Legalize() { 4846 AssignTopologicalOrder(); 4847 4848 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4849 // Use a delete listener to remove nodes which were deleted during 4850 // legalization from LegalizeNodes. This is needed to handle the situation 4851 // where a new node is allocated by the object pool to the same address of a 4852 // previously deleted node. 4853 DAGNodeDeletedListener DeleteListener( 4854 *this, 4855 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 4856 4857 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 4858 4859 // Visit all the nodes. We start in topological order, so that we see 4860 // nodes with their original operands intact. Legalization can produce 4861 // new nodes which may themselves need to be legalized. Iterate until all 4862 // nodes have been legalized. 4863 while (true) { 4864 bool AnyLegalized = false; 4865 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 4866 --NI; 4867 4868 SDNode *N = &*NI; 4869 if (N->use_empty() && N != getRoot().getNode()) { 4870 ++NI; 4871 DeleteNode(N); 4872 continue; 4873 } 4874 4875 if (LegalizedNodes.insert(N).second) { 4876 AnyLegalized = true; 4877 Legalizer.LegalizeOp(N); 4878 4879 if (N->use_empty() && N != getRoot().getNode()) { 4880 ++NI; 4881 DeleteNode(N); 4882 } 4883 } 4884 } 4885 if (!AnyLegalized) 4886 break; 4887 4888 } 4889 4890 // Remove dead nodes now. 4891 RemoveDeadNodes(); 4892 } 4893 4894 bool SelectionDAG::LegalizeOp(SDNode *N, 4895 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 4896 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4897 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 4898 4899 // Directly insert the node in question, and legalize it. This will recurse 4900 // as needed through operands. 4901 LegalizedNodes.insert(N); 4902 Legalizer.LegalizeOp(N); 4903 4904 return LegalizedNodes.count(N); 4905 } 4906