1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::Legalize method. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/CodeGen/ISDOpcodes.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/RuntimeLibcalls.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/SelectionDAGNodes.h" 28 #include "llvm/CodeGen/TargetFrameLowering.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/CodeGen/ValueTypes.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstdint> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "legalizedag" 57 58 namespace { 59 60 /// Keeps track of state when getting the sign of a floating-point value as an 61 /// integer. 62 struct FloatSignAsInt { 63 EVT FloatVT; 64 SDValue Chain; 65 SDValue FloatPtr; 66 SDValue IntPtr; 67 MachinePointerInfo IntPointerInfo; 68 MachinePointerInfo FloatPointerInfo; 69 SDValue IntValue; 70 APInt SignMask; 71 uint8_t SignBit; 72 }; 73 74 //===----------------------------------------------------------------------===// 75 /// This takes an arbitrary SelectionDAG as input and 76 /// hacks on it until the target machine can handle it. This involves 77 /// eliminating value sizes the machine cannot handle (promoting small sizes to 78 /// large sizes or splitting up large values into small values) as well as 79 /// eliminating operations the machine cannot handle. 80 /// 81 /// This code also does a small amount of optimization and recognition of idioms 82 /// as part of its processing. For example, if a target does not support a 83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 84 /// will attempt merge setcc and brc instructions into brcc's. 85 class SelectionDAGLegalize { 86 const TargetMachine &TM; 87 const TargetLowering &TLI; 88 SelectionDAG &DAG; 89 90 /// The set of nodes which have already been legalized. We hold a 91 /// reference to it in order to update as necessary on node deletion. 92 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 93 94 /// A set of all the nodes updated during legalization. 95 SmallSetVector<SDNode *, 16> *UpdatedNodes; 96 97 EVT getSetCCResultType(EVT VT) const { 98 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 99 } 100 101 // Libcall insertion helpers. 102 103 public: 104 SelectionDAGLegalize(SelectionDAG &DAG, 105 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 106 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 107 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 108 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 109 110 /// Legalizes the given operation. 111 void LegalizeOp(SDNode *Node); 112 113 private: 114 SDValue OptimizeFloatStore(StoreSDNode *ST); 115 116 void LegalizeLoadOps(SDNode *Node); 117 void LegalizeStoreOps(SDNode *Node); 118 119 /// Some targets cannot handle a variable 120 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 121 /// is necessary to spill the vector being inserted into to memory, perform 122 /// the insert there, and then read the result back. 123 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 124 const SDLoc &dl); 125 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 126 const SDLoc &dl); 127 128 /// Return a vector shuffle operation which 129 /// performs the same shuffe in terms of order or result bytes, but on a type 130 /// whose vector element type is narrower than the original shuffle type. 131 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 132 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 133 SDValue N1, SDValue N2, 134 ArrayRef<int> Mask) const; 135 136 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 137 bool &NeedInvert, const SDLoc &dl); 138 139 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 140 SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops, 141 unsigned NumOps, bool isSigned, const SDLoc &dl); 142 143 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC, 144 SDNode *Node, bool isSigned); 145 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 146 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 147 RTLIB::Libcall Call_F128, 148 RTLIB::Libcall Call_PPCF128); 149 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 150 RTLIB::Libcall Call_I8, 151 RTLIB::Libcall Call_I16, 152 RTLIB::Libcall Call_I32, 153 RTLIB::Libcall Call_I64, 154 RTLIB::Libcall Call_I128); 155 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 156 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 157 158 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 159 const SDLoc &dl); 160 SDValue ExpandBUILD_VECTOR(SDNode *Node); 161 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 162 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 163 SmallVectorImpl<SDValue> &Results); 164 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 165 SDValue Value) const; 166 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 167 SDValue NewIntValue) const; 168 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 169 SDValue ExpandFABS(SDNode *Node) const; 170 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0, EVT DestVT, 171 const SDLoc &dl); 172 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, 173 const SDLoc &dl); 174 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, 175 const SDLoc &dl); 176 177 SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl); 178 SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl); 179 180 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 181 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 182 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 183 184 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 185 SDValue ExpandConstant(ConstantSDNode *CP); 186 187 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 188 bool ExpandNode(SDNode *Node); 189 void ConvertNodeToLibcall(SDNode *Node); 190 void PromoteNode(SDNode *Node); 191 192 public: 193 // Node replacement helpers 194 195 void ReplacedNode(SDNode *N) { 196 LegalizedNodes.erase(N); 197 if (UpdatedNodes) 198 UpdatedNodes->insert(N); 199 } 200 201 void ReplaceNode(SDNode *Old, SDNode *New) { 202 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 203 dbgs() << " with: "; New->dump(&DAG)); 204 205 assert(Old->getNumValues() == New->getNumValues() && 206 "Replacing one node with another that produces a different number " 207 "of values!"); 208 DAG.ReplaceAllUsesWith(Old, New); 209 if (UpdatedNodes) 210 UpdatedNodes->insert(New); 211 ReplacedNode(Old); 212 } 213 214 void ReplaceNode(SDValue Old, SDValue New) { 215 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 216 dbgs() << " with: "; New->dump(&DAG)); 217 218 DAG.ReplaceAllUsesWith(Old, New); 219 if (UpdatedNodes) 220 UpdatedNodes->insert(New.getNode()); 221 ReplacedNode(Old.getNode()); 222 } 223 224 void ReplaceNode(SDNode *Old, const SDValue *New) { 225 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 226 227 DAG.ReplaceAllUsesWith(Old, New); 228 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 229 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); 230 New[i]->dump(&DAG)); 231 if (UpdatedNodes) 232 UpdatedNodes->insert(New[i].getNode()); 233 } 234 ReplacedNode(Old); 235 } 236 }; 237 238 } // end anonymous namespace 239 240 /// Return a vector shuffle operation which 241 /// performs the same shuffle in terms of order or result bytes, but on a type 242 /// whose vector element type is narrower than the original shuffle type. 243 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 244 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 245 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 246 ArrayRef<int> Mask) const { 247 unsigned NumMaskElts = VT.getVectorNumElements(); 248 unsigned NumDestElts = NVT.getVectorNumElements(); 249 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 250 251 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 252 253 if (NumEltsGrowth == 1) 254 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 255 256 SmallVector<int, 8> NewMask; 257 for (unsigned i = 0; i != NumMaskElts; ++i) { 258 int Idx = Mask[i]; 259 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 260 if (Idx < 0) 261 NewMask.push_back(-1); 262 else 263 NewMask.push_back(Idx * NumEltsGrowth + j); 264 } 265 } 266 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 267 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 268 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 269 } 270 271 /// Expands the ConstantFP node to an integer constant or 272 /// a load from the constant pool. 273 SDValue 274 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 275 bool Extend = false; 276 SDLoc dl(CFP); 277 278 // If a FP immediate is precise when represented as a float and if the 279 // target can do an extending load from float to double, we put it into 280 // the constant pool as a float, even if it's is statically typed as a 281 // double. This shrinks FP constants and canonicalizes them for targets where 282 // an FP extending load is the same cost as a normal load (such as on the x87 283 // fp stack or PPC FP unit). 284 EVT VT = CFP->getValueType(0); 285 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 286 if (!UseCP) { 287 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 288 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 289 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 290 } 291 292 APFloat APF = CFP->getValueAPF(); 293 EVT OrigVT = VT; 294 EVT SVT = VT; 295 296 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 297 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 298 if (!APF.isSignaling()) { 299 while (SVT != MVT::f32 && SVT != MVT::f16) { 300 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 301 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 302 // Only do this if the target has a native EXTLOAD instruction from 303 // smaller type. 304 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 305 TLI.ShouldShrinkFPConstant(OrigVT)) { 306 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 307 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 308 VT = SVT; 309 Extend = true; 310 } 311 } 312 } 313 314 SDValue CPIdx = 315 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 316 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 317 if (Extend) { 318 SDValue Result = DAG.getExtLoad( 319 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 320 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 321 Alignment); 322 return Result; 323 } 324 SDValue Result = DAG.getLoad( 325 OrigVT, dl, DAG.getEntryNode(), CPIdx, 326 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 327 return Result; 328 } 329 330 /// Expands the Constant node to a load from the constant pool. 331 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 332 SDLoc dl(CP); 333 EVT VT = CP->getValueType(0); 334 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 335 TLI.getPointerTy(DAG.getDataLayout())); 336 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 337 SDValue Result = DAG.getLoad( 338 VT, dl, DAG.getEntryNode(), CPIdx, 339 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 340 return Result; 341 } 342 343 /// Some target cannot handle a variable insertion index for the 344 /// INSERT_VECTOR_ELT instruction. In this case, it 345 /// is necessary to spill the vector being inserted into to memory, perform 346 /// the insert there, and then read the result back. 347 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 348 SDValue Val, 349 SDValue Idx, 350 const SDLoc &dl) { 351 SDValue Tmp1 = Vec; 352 SDValue Tmp2 = Val; 353 SDValue Tmp3 = Idx; 354 355 // If the target doesn't support this, we have to spill the input vector 356 // to a temporary stack slot, update the element, then reload it. This is 357 // badness. We could also load the value into a vector register (either 358 // with a "move to register" or "extload into register" instruction, then 359 // permute it into place, if the idx is a constant and if the idx is 360 // supported by the target. 361 EVT VT = Tmp1.getValueType(); 362 EVT EltVT = VT.getVectorElementType(); 363 SDValue StackPtr = DAG.CreateStackTemporary(VT); 364 365 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 366 367 // Store the vector. 368 SDValue Ch = DAG.getStore( 369 DAG.getEntryNode(), dl, Tmp1, StackPtr, 370 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 371 372 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 373 374 // Store the scalar value. 375 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT); 376 // Load the updated vector. 377 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 378 DAG.getMachineFunction(), SPFI)); 379 } 380 381 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 382 SDValue Idx, 383 const SDLoc &dl) { 384 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 385 // SCALAR_TO_VECTOR requires that the type of the value being inserted 386 // match the element type of the vector being created, except for 387 // integers in which case the inserted value can be over width. 388 EVT EltVT = Vec.getValueType().getVectorElementType(); 389 if (Val.getValueType() == EltVT || 390 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 391 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 392 Vec.getValueType(), Val); 393 394 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 395 // We generate a shuffle of InVec and ScVec, so the shuffle mask 396 // should be 0,1,2,3,4,5... with the appropriate element replaced with 397 // elt 0 of the RHS. 398 SmallVector<int, 8> ShufOps; 399 for (unsigned i = 0; i != NumElts; ++i) 400 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 401 402 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 403 } 404 } 405 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 406 } 407 408 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 409 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); 410 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 411 // FIXME: We shouldn't do this for TargetConstantFP's. 412 // FIXME: move this to the DAG Combiner! Note that we can't regress due 413 // to phase ordering between legalized code and the dag combiner. This 414 // probably means that we need to integrate dag combiner and legalizer 415 // together. 416 // We generally can't do this one for long doubles. 417 SDValue Chain = ST->getChain(); 418 SDValue Ptr = ST->getBasePtr(); 419 unsigned Alignment = ST->getAlignment(); 420 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 421 AAMDNodes AAInfo = ST->getAAInfo(); 422 SDLoc dl(ST); 423 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 424 if (CFP->getValueType(0) == MVT::f32 && 425 TLI.isTypeLegal(MVT::i32)) { 426 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 427 bitcastToAPInt().zextOrTrunc(32), 428 SDLoc(CFP), MVT::i32); 429 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), Alignment, 430 MMOFlags, AAInfo); 431 } 432 433 if (CFP->getValueType(0) == MVT::f64) { 434 // If this target supports 64-bit registers, do a single 64-bit store. 435 if (TLI.isTypeLegal(MVT::i64)) { 436 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 437 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 438 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 439 Alignment, MMOFlags, AAInfo); 440 } 441 442 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 443 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 444 // stores. If the target supports neither 32- nor 64-bits, this 445 // xform is certainly not worth it. 446 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 447 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 448 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 449 if (DAG.getDataLayout().isBigEndian()) 450 std::swap(Lo, Hi); 451 452 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), Alignment, 453 MMOFlags, AAInfo); 454 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 455 DAG.getConstant(4, dl, Ptr.getValueType())); 456 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 457 ST->getPointerInfo().getWithOffset(4), 458 MinAlign(Alignment, 4U), MMOFlags, AAInfo); 459 460 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 461 } 462 } 463 } 464 return SDValue(nullptr, 0); 465 } 466 467 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 468 StoreSDNode *ST = cast<StoreSDNode>(Node); 469 SDValue Chain = ST->getChain(); 470 SDValue Ptr = ST->getBasePtr(); 471 SDLoc dl(Node); 472 473 unsigned Alignment = ST->getAlignment(); 474 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 475 AAMDNodes AAInfo = ST->getAAInfo(); 476 477 if (!ST->isTruncatingStore()) { 478 LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); 479 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 480 ReplaceNode(ST, OptStore); 481 return; 482 } 483 484 SDValue Value = ST->getValue(); 485 MVT VT = Value.getSimpleValueType(); 486 switch (TLI.getOperationAction(ISD::STORE, VT)) { 487 default: llvm_unreachable("This action is not supported yet!"); 488 case TargetLowering::Legal: { 489 // If this is an unaligned store and the target doesn't support it, 490 // expand it. 491 EVT MemVT = ST->getMemoryVT(); 492 unsigned AS = ST->getAddressSpace(); 493 unsigned Align = ST->getAlignment(); 494 const DataLayout &DL = DAG.getDataLayout(); 495 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 496 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 497 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 498 ReplaceNode(SDValue(ST, 0), Result); 499 } else 500 LLVM_DEBUG(dbgs() << "Legal store\n"); 501 break; 502 } 503 case TargetLowering::Custom: { 504 LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); 505 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 506 if (Res && Res != SDValue(Node, 0)) 507 ReplaceNode(SDValue(Node, 0), Res); 508 return; 509 } 510 case TargetLowering::Promote: { 511 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 512 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 513 "Can only promote stores to same size type"); 514 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 515 SDValue Result = 516 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 517 Alignment, MMOFlags, AAInfo); 518 ReplaceNode(SDValue(Node, 0), Result); 519 break; 520 } 521 } 522 return; 523 } 524 525 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); 526 SDValue Value = ST->getValue(); 527 EVT StVT = ST->getMemoryVT(); 528 unsigned StWidth = StVT.getSizeInBits(); 529 auto &DL = DAG.getDataLayout(); 530 531 if (StWidth != StVT.getStoreSizeInBits()) { 532 // Promote to a byte-sized store with upper bits zero if not 533 // storing an integral number of bytes. For example, promote 534 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 535 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), 536 StVT.getStoreSizeInBits()); 537 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 538 SDValue Result = 539 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 540 Alignment, MMOFlags, AAInfo); 541 ReplaceNode(SDValue(Node, 0), Result); 542 } else if (StWidth & (StWidth - 1)) { 543 // If not storing a power-of-2 number of bits, expand as two stores. 544 assert(!StVT.isVector() && "Unsupported truncstore!"); 545 unsigned RoundWidth = 1 << Log2_32(StWidth); 546 assert(RoundWidth < StWidth); 547 unsigned ExtraWidth = StWidth - RoundWidth; 548 assert(ExtraWidth < RoundWidth); 549 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 550 "Store size not an integral number of bytes!"); 551 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 552 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 553 SDValue Lo, Hi; 554 unsigned IncrementSize; 555 556 if (DL.isLittleEndian()) { 557 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 558 // Store the bottom RoundWidth bits. 559 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 560 RoundVT, Alignment, MMOFlags, AAInfo); 561 562 // Store the remaining ExtraWidth bits. 563 IncrementSize = RoundWidth / 8; 564 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 565 DAG.getConstant(IncrementSize, dl, 566 Ptr.getValueType())); 567 Hi = DAG.getNode( 568 ISD::SRL, dl, Value.getValueType(), Value, 569 DAG.getConstant(RoundWidth, dl, 570 TLI.getShiftAmountTy(Value.getValueType(), DL))); 571 Hi = DAG.getTruncStore( 572 Chain, dl, Hi, Ptr, 573 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, 574 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); 575 } else { 576 // Big endian - avoid unaligned stores. 577 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 578 // Store the top RoundWidth bits. 579 Hi = DAG.getNode( 580 ISD::SRL, dl, Value.getValueType(), Value, 581 DAG.getConstant(ExtraWidth, dl, 582 TLI.getShiftAmountTy(Value.getValueType(), DL))); 583 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), 584 RoundVT, Alignment, MMOFlags, AAInfo); 585 586 // Store the remaining ExtraWidth bits. 587 IncrementSize = RoundWidth / 8; 588 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 589 DAG.getConstant(IncrementSize, dl, 590 Ptr.getValueType())); 591 Lo = DAG.getTruncStore( 592 Chain, dl, Value, Ptr, 593 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, 594 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); 595 } 596 597 // The order of the stores doesn't matter. 598 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 599 ReplaceNode(SDValue(Node, 0), Result); 600 } else { 601 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 602 default: llvm_unreachable("This action is not supported yet!"); 603 case TargetLowering::Legal: { 604 EVT MemVT = ST->getMemoryVT(); 605 unsigned AS = ST->getAddressSpace(); 606 unsigned Align = ST->getAlignment(); 607 // If this is an unaligned store and the target doesn't support it, 608 // expand it. 609 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 610 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 611 ReplaceNode(SDValue(ST, 0), Result); 612 } 613 break; 614 } 615 case TargetLowering::Custom: { 616 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 617 if (Res && Res != SDValue(Node, 0)) 618 ReplaceNode(SDValue(Node, 0), Res); 619 return; 620 } 621 case TargetLowering::Expand: 622 assert(!StVT.isVector() && 623 "Vector Stores are handled in LegalizeVectorOps"); 624 625 SDValue Result; 626 627 // TRUNCSTORE:i16 i32 -> STORE i16 628 if (TLI.isTypeLegal(StVT)) { 629 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 630 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 631 Alignment, MMOFlags, AAInfo); 632 } else { 633 // The in-memory type isn't legal. Truncate to the type it would promote 634 // to, and then do a truncstore. 635 Value = DAG.getNode(ISD::TRUNCATE, dl, 636 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 637 Value); 638 Result = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 639 StVT, Alignment, MMOFlags, AAInfo); 640 } 641 642 ReplaceNode(SDValue(Node, 0), Result); 643 break; 644 } 645 } 646 } 647 648 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 649 LoadSDNode *LD = cast<LoadSDNode>(Node); 650 SDValue Chain = LD->getChain(); // The chain. 651 SDValue Ptr = LD->getBasePtr(); // The base pointer. 652 SDValue Value; // The value returned by the load op. 653 SDLoc dl(Node); 654 655 ISD::LoadExtType ExtType = LD->getExtensionType(); 656 if (ExtType == ISD::NON_EXTLOAD) { 657 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 658 MVT VT = Node->getSimpleValueType(0); 659 SDValue RVal = SDValue(Node, 0); 660 SDValue RChain = SDValue(Node, 1); 661 662 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 663 default: llvm_unreachable("This action is not supported yet!"); 664 case TargetLowering::Legal: { 665 EVT MemVT = LD->getMemoryVT(); 666 unsigned AS = LD->getAddressSpace(); 667 unsigned Align = LD->getAlignment(); 668 const DataLayout &DL = DAG.getDataLayout(); 669 // If this is an unaligned load and the target doesn't support it, 670 // expand it. 671 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 672 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 673 } 674 break; 675 } 676 case TargetLowering::Custom: 677 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 678 RVal = Res; 679 RChain = Res.getValue(1); 680 } 681 break; 682 683 case TargetLowering::Promote: { 684 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 685 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 686 "Can only promote loads to same size type"); 687 688 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 689 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 690 RChain = Res.getValue(1); 691 break; 692 } 693 } 694 if (RChain.getNode() != Node) { 695 assert(RVal.getNode() != Node && "Load must be completely replaced"); 696 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 697 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 698 if (UpdatedNodes) { 699 UpdatedNodes->insert(RVal.getNode()); 700 UpdatedNodes->insert(RChain.getNode()); 701 } 702 ReplacedNode(Node); 703 } 704 return; 705 } 706 707 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); 708 EVT SrcVT = LD->getMemoryVT(); 709 unsigned SrcWidth = SrcVT.getSizeInBits(); 710 unsigned Alignment = LD->getAlignment(); 711 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 712 AAMDNodes AAInfo = LD->getAAInfo(); 713 714 if (SrcWidth != SrcVT.getStoreSizeInBits() && 715 // Some targets pretend to have an i1 loading operation, and actually 716 // load an i8. This trick is correct for ZEXTLOAD because the top 7 717 // bits are guaranteed to be zero; it helps the optimizers understand 718 // that these bits are zero. It is also useful for EXTLOAD, since it 719 // tells the optimizers that those bits are undefined. It would be 720 // nice to have an effective generic way of getting these benefits... 721 // Until such a way is found, don't insist on promoting i1 here. 722 (SrcVT != MVT::i1 || 723 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 724 TargetLowering::Promote)) { 725 // Promote to a byte-sized load if not loading an integral number of 726 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 727 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 728 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 729 SDValue Ch; 730 731 // The extra bits are guaranteed to be zero, since we stored them that 732 // way. A zext load from NVT thus automatically gives zext from SrcVT. 733 734 ISD::LoadExtType NewExtType = 735 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 736 737 SDValue Result = 738 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), Chain, Ptr, 739 LD->getPointerInfo(), NVT, Alignment, MMOFlags, AAInfo); 740 741 Ch = Result.getValue(1); // The chain. 742 743 if (ExtType == ISD::SEXTLOAD) 744 // Having the top bits zero doesn't help when sign extending. 745 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 746 Result.getValueType(), 747 Result, DAG.getValueType(SrcVT)); 748 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 749 // All the top bits are guaranteed to be zero - inform the optimizers. 750 Result = DAG.getNode(ISD::AssertZext, dl, 751 Result.getValueType(), Result, 752 DAG.getValueType(SrcVT)); 753 754 Value = Result; 755 Chain = Ch; 756 } else if (SrcWidth & (SrcWidth - 1)) { 757 // If not loading a power-of-2 number of bits, expand as two loads. 758 assert(!SrcVT.isVector() && "Unsupported extload!"); 759 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 760 assert(RoundWidth < SrcWidth); 761 unsigned ExtraWidth = SrcWidth - RoundWidth; 762 assert(ExtraWidth < RoundWidth); 763 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 764 "Load size not an integral number of bytes!"); 765 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 766 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 767 SDValue Lo, Hi, Ch; 768 unsigned IncrementSize; 769 auto &DL = DAG.getDataLayout(); 770 771 if (DL.isLittleEndian()) { 772 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 773 // Load the bottom RoundWidth bits. 774 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 775 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, 776 AAInfo); 777 778 // Load the remaining ExtraWidth bits. 779 IncrementSize = RoundWidth / 8; 780 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 781 DAG.getConstant(IncrementSize, dl, 782 Ptr.getValueType())); 783 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 784 LD->getPointerInfo().getWithOffset(IncrementSize), 785 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, 786 AAInfo); 787 788 // Build a factor node to remember that this load is independent of 789 // the other one. 790 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 791 Hi.getValue(1)); 792 793 // Move the top bits to the right place. 794 Hi = DAG.getNode( 795 ISD::SHL, dl, Hi.getValueType(), Hi, 796 DAG.getConstant(RoundWidth, dl, 797 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 798 799 // Join the hi and lo parts. 800 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 801 } else { 802 // Big endian - avoid unaligned loads. 803 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 804 // Load the top RoundWidth bits. 805 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 806 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, 807 AAInfo); 808 809 // Load the remaining ExtraWidth bits. 810 IncrementSize = RoundWidth / 8; 811 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 812 DAG.getConstant(IncrementSize, dl, 813 Ptr.getValueType())); 814 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 815 LD->getPointerInfo().getWithOffset(IncrementSize), 816 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, 817 AAInfo); 818 819 // Build a factor node to remember that this load is independent of 820 // the other one. 821 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 822 Hi.getValue(1)); 823 824 // Move the top bits to the right place. 825 Hi = DAG.getNode( 826 ISD::SHL, dl, Hi.getValueType(), Hi, 827 DAG.getConstant(ExtraWidth, dl, 828 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 829 830 // Join the hi and lo parts. 831 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 832 } 833 834 Chain = Ch; 835 } else { 836 bool isCustom = false; 837 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 838 SrcVT.getSimpleVT())) { 839 default: llvm_unreachable("This action is not supported yet!"); 840 case TargetLowering::Custom: 841 isCustom = true; 842 LLVM_FALLTHROUGH; 843 case TargetLowering::Legal: 844 Value = SDValue(Node, 0); 845 Chain = SDValue(Node, 1); 846 847 if (isCustom) { 848 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 849 Value = Res; 850 Chain = Res.getValue(1); 851 } 852 } else { 853 // If this is an unaligned load and the target doesn't support it, 854 // expand it. 855 EVT MemVT = LD->getMemoryVT(); 856 unsigned AS = LD->getAddressSpace(); 857 unsigned Align = LD->getAlignment(); 858 const DataLayout &DL = DAG.getDataLayout(); 859 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 860 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 861 } 862 } 863 break; 864 865 case TargetLowering::Expand: { 866 EVT DestVT = Node->getValueType(0); 867 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 868 // If the source type is not legal, see if there is a legal extload to 869 // an intermediate type that we can then extend further. 870 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 871 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 872 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 873 // If we are loading a legal type, this is a non-extload followed by a 874 // full extend. 875 ISD::LoadExtType MidExtType = 876 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 877 878 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 879 SrcVT, LD->getMemOperand()); 880 unsigned ExtendOp = 881 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 882 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 883 Chain = Load.getValue(1); 884 break; 885 } 886 887 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 888 // normal undefined upper bits behavior to allow using an in-reg extend 889 // with the illegal FP type, so load as an integer and do the 890 // from-integer conversion. 891 if (SrcVT.getScalarType() == MVT::f16) { 892 EVT ISrcVT = SrcVT.changeTypeToInteger(); 893 EVT IDestVT = DestVT.changeTypeToInteger(); 894 EVT LoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 895 896 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, LoadVT, 897 Chain, Ptr, ISrcVT, 898 LD->getMemOperand()); 899 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 900 Chain = Result.getValue(1); 901 break; 902 } 903 } 904 905 assert(!SrcVT.isVector() && 906 "Vector Loads are handled in LegalizeVectorOps"); 907 908 // FIXME: This does not work for vectors on most targets. Sign- 909 // and zero-extend operations are currently folded into extending 910 // loads, whether they are legal or not, and then we end up here 911 // without any support for legalizing them. 912 assert(ExtType != ISD::EXTLOAD && 913 "EXTLOAD should always be supported!"); 914 // Turn the unsupported load into an EXTLOAD followed by an 915 // explicit zero/sign extend inreg. 916 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 917 Node->getValueType(0), 918 Chain, Ptr, SrcVT, 919 LD->getMemOperand()); 920 SDValue ValRes; 921 if (ExtType == ISD::SEXTLOAD) 922 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 923 Result.getValueType(), 924 Result, DAG.getValueType(SrcVT)); 925 else 926 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); 927 Value = ValRes; 928 Chain = Result.getValue(1); 929 break; 930 } 931 } 932 } 933 934 // Since loads produce two values, make sure to remember that we legalized 935 // both of them. 936 if (Chain.getNode() != Node) { 937 assert(Value.getNode() != Node && "Load must be completely replaced"); 938 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 939 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 940 if (UpdatedNodes) { 941 UpdatedNodes->insert(Value.getNode()); 942 UpdatedNodes->insert(Chain.getNode()); 943 } 944 ReplacedNode(Node); 945 } 946 } 947 948 /// Return a legal replacement for the given operation, with all legal operands. 949 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 950 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 951 952 // Allow illegal target nodes and illegal registers. 953 if (Node->getOpcode() == ISD::TargetConstant || 954 Node->getOpcode() == ISD::Register) 955 return; 956 957 #ifndef NDEBUG 958 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 959 assert((TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 960 TargetLowering::TypeLegal || 961 TLI.isTypeLegal(Node->getValueType(i))) && 962 "Unexpected illegal type!"); 963 964 for (const SDValue &Op : Node->op_values()) 965 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 966 TargetLowering::TypeLegal || 967 TLI.isTypeLegal(Op.getValueType()) || 968 Op.getOpcode() == ISD::TargetConstant || 969 Op.getOpcode() == ISD::Register) && 970 "Unexpected illegal type!"); 971 #endif 972 973 // Figure out the correct action; the way to query this varies by opcode 974 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 975 bool SimpleFinishLegalizing = true; 976 switch (Node->getOpcode()) { 977 case ISD::INTRINSIC_W_CHAIN: 978 case ISD::INTRINSIC_WO_CHAIN: 979 case ISD::INTRINSIC_VOID: 980 case ISD::STACKSAVE: 981 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 982 break; 983 case ISD::GET_DYNAMIC_AREA_OFFSET: 984 Action = TLI.getOperationAction(Node->getOpcode(), 985 Node->getValueType(0)); 986 break; 987 case ISD::VAARG: 988 Action = TLI.getOperationAction(Node->getOpcode(), 989 Node->getValueType(0)); 990 if (Action != TargetLowering::Promote) 991 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 992 break; 993 case ISD::FP_TO_FP16: 994 case ISD::SINT_TO_FP: 995 case ISD::UINT_TO_FP: 996 case ISD::EXTRACT_VECTOR_ELT: 997 Action = TLI.getOperationAction(Node->getOpcode(), 998 Node->getOperand(0).getValueType()); 999 break; 1000 case ISD::FP_ROUND_INREG: 1001 case ISD::SIGN_EXTEND_INREG: { 1002 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1003 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1004 break; 1005 } 1006 case ISD::ATOMIC_STORE: 1007 Action = TLI.getOperationAction(Node->getOpcode(), 1008 Node->getOperand(2).getValueType()); 1009 break; 1010 case ISD::SELECT_CC: 1011 case ISD::SETCC: 1012 case ISD::BR_CC: { 1013 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 1014 Node->getOpcode() == ISD::SETCC ? 2 : 1; 1015 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; 1016 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1017 ISD::CondCode CCCode = 1018 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1019 Action = TLI.getCondCodeAction(CCCode, OpVT); 1020 if (Action == TargetLowering::Legal) { 1021 if (Node->getOpcode() == ISD::SELECT_CC) 1022 Action = TLI.getOperationAction(Node->getOpcode(), 1023 Node->getValueType(0)); 1024 else 1025 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1026 } 1027 break; 1028 } 1029 case ISD::LOAD: 1030 case ISD::STORE: 1031 // FIXME: Model these properly. LOAD and STORE are complicated, and 1032 // STORE expects the unlegalized operand in some cases. 1033 SimpleFinishLegalizing = false; 1034 break; 1035 case ISD::CALLSEQ_START: 1036 case ISD::CALLSEQ_END: 1037 // FIXME: This shouldn't be necessary. These nodes have special properties 1038 // dealing with the recursive nature of legalization. Removing this 1039 // special case should be done as part of making LegalizeDAG non-recursive. 1040 SimpleFinishLegalizing = false; 1041 break; 1042 case ISD::EXTRACT_ELEMENT: 1043 case ISD::FLT_ROUNDS_: 1044 case ISD::MERGE_VALUES: 1045 case ISD::EH_RETURN: 1046 case ISD::FRAME_TO_ARGS_OFFSET: 1047 case ISD::EH_DWARF_CFA: 1048 case ISD::EH_SJLJ_SETJMP: 1049 case ISD::EH_SJLJ_LONGJMP: 1050 case ISD::EH_SJLJ_SETUP_DISPATCH: 1051 // These operations lie about being legal: when they claim to be legal, 1052 // they should actually be expanded. 1053 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1054 if (Action == TargetLowering::Legal) 1055 Action = TargetLowering::Expand; 1056 break; 1057 case ISD::INIT_TRAMPOLINE: 1058 case ISD::ADJUST_TRAMPOLINE: 1059 case ISD::FRAMEADDR: 1060 case ISD::RETURNADDR: 1061 case ISD::ADDROFRETURNADDR: 1062 case ISD::SPONENTRY: 1063 // These operations lie about being legal: when they claim to be legal, 1064 // they should actually be custom-lowered. 1065 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1066 if (Action == TargetLowering::Legal) 1067 Action = TargetLowering::Custom; 1068 break; 1069 case ISD::READCYCLECOUNTER: 1070 // READCYCLECOUNTER returns an i64, even if type legalization might have 1071 // expanded that to several smaller types. 1072 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1073 break; 1074 case ISD::READ_REGISTER: 1075 case ISD::WRITE_REGISTER: 1076 // Named register is legal in the DAG, but blocked by register name 1077 // selection if not implemented by target (to chose the correct register) 1078 // They'll be converted to Copy(To/From)Reg. 1079 Action = TargetLowering::Legal; 1080 break; 1081 case ISD::DEBUGTRAP: 1082 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1083 if (Action == TargetLowering::Expand) { 1084 // replace ISD::DEBUGTRAP with ISD::TRAP 1085 SDValue NewVal; 1086 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1087 Node->getOperand(0)); 1088 ReplaceNode(Node, NewVal.getNode()); 1089 LegalizeOp(NewVal.getNode()); 1090 return; 1091 } 1092 break; 1093 case ISD::STRICT_FADD: 1094 case ISD::STRICT_FSUB: 1095 case ISD::STRICT_FMUL: 1096 case ISD::STRICT_FDIV: 1097 case ISD::STRICT_FREM: 1098 case ISD::STRICT_FSQRT: 1099 case ISD::STRICT_FMA: 1100 case ISD::STRICT_FPOW: 1101 case ISD::STRICT_FPOWI: 1102 case ISD::STRICT_FSIN: 1103 case ISD::STRICT_FCOS: 1104 case ISD::STRICT_FEXP: 1105 case ISD::STRICT_FEXP2: 1106 case ISD::STRICT_FLOG: 1107 case ISD::STRICT_FLOG10: 1108 case ISD::STRICT_FLOG2: 1109 case ISD::STRICT_FRINT: 1110 case ISD::STRICT_FNEARBYINT: 1111 case ISD::STRICT_FMAXNUM: 1112 case ISD::STRICT_FMINNUM: 1113 case ISD::STRICT_FCEIL: 1114 case ISD::STRICT_FFLOOR: 1115 case ISD::STRICT_FROUND: 1116 case ISD::STRICT_FTRUNC: 1117 // These pseudo-ops get legalized as if they were their non-strict 1118 // equivalent. For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT 1119 // is also legal, but if ISD::FSQRT requires expansion then so does 1120 // ISD::STRICT_FSQRT. 1121 Action = TLI.getStrictFPOperationAction(Node->getOpcode(), 1122 Node->getValueType(0)); 1123 break; 1124 case ISD::SADDSAT: 1125 case ISD::UADDSAT: 1126 case ISD::SSUBSAT: 1127 case ISD::USUBSAT: { 1128 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1129 break; 1130 } 1131 case ISD::SMULFIX: { 1132 unsigned Scale = Node->getConstantOperandVal(2); 1133 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 1134 Node->getValueType(0), Scale); 1135 break; 1136 } 1137 case ISD::MSCATTER: 1138 Action = TLI.getOperationAction(Node->getOpcode(), 1139 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 1140 break; 1141 case ISD::MSTORE: 1142 Action = TLI.getOperationAction(Node->getOpcode(), 1143 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 1144 break; 1145 default: 1146 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1147 Action = TargetLowering::Legal; 1148 } else { 1149 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1150 } 1151 break; 1152 } 1153 1154 if (SimpleFinishLegalizing) { 1155 SDNode *NewNode = Node; 1156 switch (Node->getOpcode()) { 1157 default: break; 1158 case ISD::SHL: 1159 case ISD::SRL: 1160 case ISD::SRA: 1161 case ISD::ROTL: 1162 case ISD::ROTR: { 1163 // Legalizing shifts/rotates requires adjusting the shift amount 1164 // to the appropriate width. 1165 SDValue Op0 = Node->getOperand(0); 1166 SDValue Op1 = Node->getOperand(1); 1167 if (!Op1.getValueType().isVector()) { 1168 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1169 // The getShiftAmountOperand() may create a new operand node or 1170 // return the existing one. If new operand is created we need 1171 // to update the parent node. 1172 // Do not try to legalize SAO here! It will be automatically legalized 1173 // in the next round. 1174 if (SAO != Op1) 1175 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1176 } 1177 } 1178 break; 1179 case ISD::FSHL: 1180 case ISD::FSHR: 1181 case ISD::SRL_PARTS: 1182 case ISD::SRA_PARTS: 1183 case ISD::SHL_PARTS: { 1184 // Legalizing shifts/rotates requires adjusting the shift amount 1185 // to the appropriate width. 1186 SDValue Op0 = Node->getOperand(0); 1187 SDValue Op1 = Node->getOperand(1); 1188 SDValue Op2 = Node->getOperand(2); 1189 if (!Op2.getValueType().isVector()) { 1190 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1191 // The getShiftAmountOperand() may create a new operand node or 1192 // return the existing one. If new operand is created we need 1193 // to update the parent node. 1194 if (SAO != Op2) 1195 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1196 } 1197 break; 1198 } 1199 } 1200 1201 if (NewNode != Node) { 1202 ReplaceNode(Node, NewNode); 1203 Node = NewNode; 1204 } 1205 switch (Action) { 1206 case TargetLowering::Legal: 1207 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 1208 return; 1209 case TargetLowering::Custom: 1210 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 1211 // FIXME: The handling for custom lowering with multiple results is 1212 // a complete mess. 1213 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1214 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1215 return; 1216 1217 if (Node->getNumValues() == 1) { 1218 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1219 // We can just directly replace this node with the lowered value. 1220 ReplaceNode(SDValue(Node, 0), Res); 1221 return; 1222 } 1223 1224 SmallVector<SDValue, 8> ResultVals; 1225 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1226 ResultVals.push_back(Res.getValue(i)); 1227 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1228 ReplaceNode(Node, ResultVals.data()); 1229 return; 1230 } 1231 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 1232 LLVM_FALLTHROUGH; 1233 case TargetLowering::Expand: 1234 if (ExpandNode(Node)) 1235 return; 1236 LLVM_FALLTHROUGH; 1237 case TargetLowering::LibCall: 1238 ConvertNodeToLibcall(Node); 1239 return; 1240 case TargetLowering::Promote: 1241 PromoteNode(Node); 1242 return; 1243 } 1244 } 1245 1246 switch (Node->getOpcode()) { 1247 default: 1248 #ifndef NDEBUG 1249 dbgs() << "NODE: "; 1250 Node->dump( &DAG); 1251 dbgs() << "\n"; 1252 #endif 1253 llvm_unreachable("Do not know how to legalize this operator!"); 1254 1255 case ISD::CALLSEQ_START: 1256 case ISD::CALLSEQ_END: 1257 break; 1258 case ISD::LOAD: 1259 return LegalizeLoadOps(Node); 1260 case ISD::STORE: 1261 return LegalizeStoreOps(Node); 1262 } 1263 } 1264 1265 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1266 SDValue Vec = Op.getOperand(0); 1267 SDValue Idx = Op.getOperand(1); 1268 SDLoc dl(Op); 1269 1270 // Before we generate a new store to a temporary stack slot, see if there is 1271 // already one that we can use. There often is because when we scalarize 1272 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1273 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1274 // the vector. If all are expanded here, we don't want one store per vector 1275 // element. 1276 1277 // Caches for hasPredecessorHelper 1278 SmallPtrSet<const SDNode *, 32> Visited; 1279 SmallVector<const SDNode *, 16> Worklist; 1280 Visited.insert(Op.getNode()); 1281 Worklist.push_back(Idx.getNode()); 1282 SDValue StackPtr, Ch; 1283 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), 1284 UE = Vec.getNode()->use_end(); UI != UE; ++UI) { 1285 SDNode *User = *UI; 1286 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1287 if (ST->isIndexed() || ST->isTruncatingStore() || 1288 ST->getValue() != Vec) 1289 continue; 1290 1291 // Make sure that nothing else could have stored into the destination of 1292 // this store. 1293 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1294 continue; 1295 1296 // If the index is dependent on the store we will introduce a cycle when 1297 // creating the load (the load uses the index, and by replacing the chain 1298 // we will make the index dependent on the load). Also, the store might be 1299 // dependent on the extractelement and introduce a cycle when creating 1300 // the load. 1301 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1302 ST->hasPredecessor(Op.getNode())) 1303 continue; 1304 1305 StackPtr = ST->getBasePtr(); 1306 Ch = SDValue(ST, 0); 1307 break; 1308 } 1309 } 1310 1311 EVT VecVT = Vec.getValueType(); 1312 1313 if (!Ch.getNode()) { 1314 // Store the value to a temporary stack slot, then LOAD the returned part. 1315 StackPtr = DAG.CreateStackTemporary(VecVT); 1316 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1317 MachinePointerInfo()); 1318 } 1319 1320 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1321 1322 SDValue NewLoad; 1323 1324 if (Op.getValueType().isVector()) 1325 NewLoad = 1326 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); 1327 else 1328 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1329 MachinePointerInfo(), 1330 VecVT.getVectorElementType()); 1331 1332 // Replace the chain going out of the store, by the one out of the load. 1333 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1334 1335 // We introduced a cycle though, so update the loads operands, making sure 1336 // to use the original store's chain as an incoming chain. 1337 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1338 NewLoad->op_end()); 1339 NewLoadOperands[0] = Ch; 1340 NewLoad = 1341 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1342 return NewLoad; 1343 } 1344 1345 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1346 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1347 1348 SDValue Vec = Op.getOperand(0); 1349 SDValue Part = Op.getOperand(1); 1350 SDValue Idx = Op.getOperand(2); 1351 SDLoc dl(Op); 1352 1353 // Store the value to a temporary stack slot, then LOAD the returned part. 1354 EVT VecVT = Vec.getValueType(); 1355 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1356 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1357 MachinePointerInfo PtrInfo = 1358 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1359 1360 // First store the whole vector. 1361 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1362 1363 // Then store the inserted part. 1364 SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1365 1366 // Store the subvector. 1367 Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, MachinePointerInfo()); 1368 1369 // Finally, load the updated vector. 1370 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1371 } 1372 1373 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1374 // We can't handle this case efficiently. Allocate a sufficiently 1375 // aligned object on the stack, store each element into it, then load 1376 // the result as a vector. 1377 // Create the stack frame object. 1378 EVT VT = Node->getValueType(0); 1379 EVT EltVT = VT.getVectorElementType(); 1380 SDLoc dl(Node); 1381 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1382 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1383 MachinePointerInfo PtrInfo = 1384 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1385 1386 // Emit a store of each element to the stack slot. 1387 SmallVector<SDValue, 8> Stores; 1388 unsigned TypeByteSize = EltVT.getSizeInBits() / 8; 1389 // Store (in the right endianness) the elements to memory. 1390 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1391 // Ignore undef elements. 1392 if (Node->getOperand(i).isUndef()) continue; 1393 1394 unsigned Offset = TypeByteSize*i; 1395 1396 SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType()); 1397 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); 1398 1399 // If the destination vector element type is narrower than the source 1400 // element type, only store the bits necessary. 1401 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { 1402 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1403 Node->getOperand(i), Idx, 1404 PtrInfo.getWithOffset(Offset), EltVT)); 1405 } else 1406 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1407 Idx, PtrInfo.getWithOffset(Offset))); 1408 } 1409 1410 SDValue StoreChain; 1411 if (!Stores.empty()) // Not all undef elements? 1412 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1413 else 1414 StoreChain = DAG.getEntryNode(); 1415 1416 // Result is a load from the stack slot. 1417 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1418 } 1419 1420 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1421 /// containing the sign bit if the target has no integer value capable of 1422 /// holding all bits of the floating-point value. 1423 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1424 const SDLoc &DL, 1425 SDValue Value) const { 1426 EVT FloatVT = Value.getValueType(); 1427 unsigned NumBits = FloatVT.getSizeInBits(); 1428 State.FloatVT = FloatVT; 1429 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1430 // Convert to an integer of the same size. 1431 if (TLI.isTypeLegal(IVT)) { 1432 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1433 State.SignMask = APInt::getSignMask(NumBits); 1434 State.SignBit = NumBits - 1; 1435 return; 1436 } 1437 1438 auto &DataLayout = DAG.getDataLayout(); 1439 // Store the float to memory, then load the sign part out as an integer. 1440 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1441 // First create a temporary that is aligned for both the load and store. 1442 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1443 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1444 // Then store the float to it. 1445 State.FloatPtr = StackPtr; 1446 MachineFunction &MF = DAG.getMachineFunction(); 1447 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1448 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1449 State.FloatPointerInfo); 1450 1451 SDValue IntPtr; 1452 if (DataLayout.isBigEndian()) { 1453 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1454 // Load out a legal integer with the same sign bit as the float. 1455 IntPtr = StackPtr; 1456 State.IntPointerInfo = State.FloatPointerInfo; 1457 } else { 1458 // Advance the pointer so that the loaded byte will contain the sign bit. 1459 unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1; 1460 IntPtr = DAG.getNode(ISD::ADD, DL, StackPtr.getValueType(), StackPtr, 1461 DAG.getConstant(ByteOffset, DL, StackPtr.getValueType())); 1462 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1463 ByteOffset); 1464 } 1465 1466 State.IntPtr = IntPtr; 1467 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1468 State.IntPointerInfo, MVT::i8); 1469 State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7); 1470 State.SignBit = 7; 1471 } 1472 1473 /// Replace the integer value produced by getSignAsIntValue() with a new value 1474 /// and cast the result back to a floating-point type. 1475 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1476 const SDLoc &DL, 1477 SDValue NewIntValue) const { 1478 if (!State.Chain) 1479 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1480 1481 // Override the part containing the sign bit in the value stored on the stack. 1482 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1483 State.IntPointerInfo, MVT::i8); 1484 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1485 State.FloatPointerInfo); 1486 } 1487 1488 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1489 SDLoc DL(Node); 1490 SDValue Mag = Node->getOperand(0); 1491 SDValue Sign = Node->getOperand(1); 1492 1493 // Get sign bit into an integer value. 1494 FloatSignAsInt SignAsInt; 1495 getSignAsIntValue(SignAsInt, DL, Sign); 1496 1497 EVT IntVT = SignAsInt.IntValue.getValueType(); 1498 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1499 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1500 SignMask); 1501 1502 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1503 EVT FloatVT = Mag.getValueType(); 1504 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1505 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1506 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1507 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1508 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1509 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1510 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1511 } 1512 1513 // Transform Mag value to integer, and clear the sign bit. 1514 FloatSignAsInt MagAsInt; 1515 getSignAsIntValue(MagAsInt, DL, Mag); 1516 EVT MagVT = MagAsInt.IntValue.getValueType(); 1517 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1518 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1519 ClearSignMask); 1520 1521 // Get the signbit at the right position for MagAsInt. 1522 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1523 EVT ShiftVT = IntVT; 1524 if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) { 1525 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1526 ShiftVT = MagVT; 1527 } 1528 if (ShiftAmount > 0) { 1529 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); 1530 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); 1531 } else if (ShiftAmount < 0) { 1532 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); 1533 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); 1534 } 1535 if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) { 1536 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1537 } 1538 1539 // Store the part with the modified sign and convert back to float. 1540 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1541 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1542 } 1543 1544 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1545 SDLoc DL(Node); 1546 SDValue Value = Node->getOperand(0); 1547 1548 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1549 EVT FloatVT = Value.getValueType(); 1550 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1551 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1552 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1553 } 1554 1555 // Transform value to integer, clear the sign bit and transform back. 1556 FloatSignAsInt ValueAsInt; 1557 getSignAsIntValue(ValueAsInt, DL, Value); 1558 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1559 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1560 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1561 ClearSignMask); 1562 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1563 } 1564 1565 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1566 SmallVectorImpl<SDValue> &Results) { 1567 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1568 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1569 " not tell us which reg is the stack pointer!"); 1570 SDLoc dl(Node); 1571 EVT VT = Node->getValueType(0); 1572 SDValue Tmp1 = SDValue(Node, 0); 1573 SDValue Tmp2 = SDValue(Node, 1); 1574 SDValue Tmp3 = Node->getOperand(2); 1575 SDValue Chain = Tmp1.getOperand(0); 1576 1577 // Chain the dynamic stack allocation so that it doesn't modify the stack 1578 // pointer when other instructions are using the stack. 1579 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1580 1581 SDValue Size = Tmp2.getOperand(1); 1582 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1583 Chain = SP.getValue(1); 1584 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1585 unsigned StackAlign = 1586 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 1587 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 1588 if (Align > StackAlign) 1589 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1590 DAG.getConstant(-(uint64_t)Align, dl, VT)); 1591 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1592 1593 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1594 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1595 1596 Results.push_back(Tmp1); 1597 Results.push_back(Tmp2); 1598 } 1599 1600 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current 1601 /// target. 1602 /// 1603 /// If the SETCC has been legalized using AND / OR, then the legalized node 1604 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert 1605 /// will be set to false. 1606 /// 1607 /// If the SETCC has been legalized by using getSetCCSwappedOperands(), 1608 /// then the values of LHS and RHS will be swapped, CC will be set to the 1609 /// new condition, and NeedInvert will be set to false. 1610 /// 1611 /// If the SETCC has been legalized using the inverse condcode, then LHS and 1612 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert 1613 /// will be set to true. The caller must invert the result of the SETCC with 1614 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect 1615 /// of a true/false result. 1616 /// 1617 /// \returns true if the SetCC has been legalized, false if it hasn't. 1618 bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, SDValue &LHS, 1619 SDValue &RHS, SDValue &CC, 1620 bool &NeedInvert, 1621 const SDLoc &dl) { 1622 MVT OpVT = LHS.getSimpleValueType(); 1623 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1624 NeedInvert = false; 1625 bool NeedSwap = false; 1626 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1627 default: llvm_unreachable("Unknown condition code action!"); 1628 case TargetLowering::Legal: 1629 // Nothing to do. 1630 break; 1631 case TargetLowering::Expand: { 1632 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 1633 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1634 std::swap(LHS, RHS); 1635 CC = DAG.getCondCode(InvCC); 1636 return true; 1637 } 1638 // Swapping operands didn't work. Try inverting the condition. 1639 InvCC = getSetCCInverse(CCCode, OpVT.isInteger()); 1640 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1641 // If inverting the condition is not enough, try swapping operands 1642 // on top of it. 1643 InvCC = ISD::getSetCCSwappedOperands(InvCC); 1644 NeedSwap = true; 1645 } 1646 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1647 CC = DAG.getCondCode(InvCC); 1648 NeedInvert = true; 1649 if (NeedSwap) 1650 std::swap(LHS, RHS); 1651 return true; 1652 } 1653 1654 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1655 unsigned Opc = 0; 1656 switch (CCCode) { 1657 default: llvm_unreachable("Don't know how to expand this condition!"); 1658 case ISD::SETO: 1659 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) 1660 && "If SETO is expanded, SETOEQ must be legal!"); 1661 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; 1662 case ISD::SETUO: 1663 assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT) 1664 && "If SETUO is expanded, SETUNE must be legal!"); 1665 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break; 1666 case ISD::SETOEQ: 1667 case ISD::SETOGT: 1668 case ISD::SETOGE: 1669 case ISD::SETOLT: 1670 case ISD::SETOLE: 1671 case ISD::SETONE: 1672 case ISD::SETUEQ: 1673 case ISD::SETUNE: 1674 case ISD::SETUGT: 1675 case ISD::SETUGE: 1676 case ISD::SETULT: 1677 case ISD::SETULE: 1678 // If we are floating point, assign and break, otherwise fall through. 1679 if (!OpVT.isInteger()) { 1680 // We can use the 4th bit to tell if we are the unordered 1681 // or ordered version of the opcode. 1682 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 1683 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 1684 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 1685 break; 1686 } 1687 // Fallthrough if we are unsigned integer. 1688 LLVM_FALLTHROUGH; 1689 case ISD::SETLE: 1690 case ISD::SETGT: 1691 case ISD::SETGE: 1692 case ISD::SETLT: 1693 case ISD::SETNE: 1694 case ISD::SETEQ: 1695 // If all combinations of inverting the condition and swapping operands 1696 // didn't work then we have no means to expand the condition. 1697 llvm_unreachable("Don't know how to expand this condition!"); 1698 } 1699 1700 SDValue SetCC1, SetCC2; 1701 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 1702 // If we aren't the ordered or unorder operation, 1703 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 1704 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); 1705 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); 1706 } else { 1707 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 1708 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1); 1709 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2); 1710 } 1711 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1712 RHS = SDValue(); 1713 CC = SDValue(); 1714 return true; 1715 } 1716 } 1717 return false; 1718 } 1719 1720 /// Emit a store/load combination to the stack. This stores 1721 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1722 /// a load from the stack slot to DestVT, extending it if needed. 1723 /// The resultant code need not be legal. 1724 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1725 EVT DestVT, const SDLoc &dl) { 1726 // Create the stack frame object. 1727 unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment( 1728 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1729 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 1730 1731 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1732 int SPFI = StackPtrFI->getIndex(); 1733 MachinePointerInfo PtrInfo = 1734 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1735 1736 unsigned SrcSize = SrcOp.getValueSizeInBits(); 1737 unsigned SlotSize = SlotVT.getSizeInBits(); 1738 unsigned DestSize = DestVT.getSizeInBits(); 1739 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1740 unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType); 1741 1742 // Emit a store to the stack slot. Use a truncstore if the input value is 1743 // later than DestVT. 1744 SDValue Store; 1745 1746 if (SrcSize > SlotSize) 1747 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, PtrInfo, 1748 SlotVT, SrcAlign); 1749 else { 1750 assert(SrcSize == SlotSize && "Invalid store"); 1751 Store = 1752 DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1753 } 1754 1755 // Result is a load from the stack slot. 1756 if (SlotSize == DestSize) 1757 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1758 1759 assert(SlotSize < DestSize && "Unknown extension!"); 1760 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1761 DestAlign); 1762 } 1763 1764 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1765 SDLoc dl(Node); 1766 // Create a vector sized/aligned stack slot, store the value to element #0, 1767 // then load the whole vector back out. 1768 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1769 1770 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1771 int SPFI = StackPtrFI->getIndex(); 1772 1773 SDValue Ch = DAG.getTruncStore( 1774 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1775 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1776 Node->getValueType(0).getVectorElementType()); 1777 return DAG.getLoad( 1778 Node->getValueType(0), dl, Ch, StackPtr, 1779 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1780 } 1781 1782 static bool 1783 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1784 const TargetLowering &TLI, SDValue &Res) { 1785 unsigned NumElems = Node->getNumOperands(); 1786 SDLoc dl(Node); 1787 EVT VT = Node->getValueType(0); 1788 1789 // Try to group the scalars into pairs, shuffle the pairs together, then 1790 // shuffle the pairs of pairs together, etc. until the vector has 1791 // been built. This will work only if all of the necessary shuffle masks 1792 // are legal. 1793 1794 // We do this in two phases; first to check the legality of the shuffles, 1795 // and next, assuming that all shuffles are legal, to create the new nodes. 1796 for (int Phase = 0; Phase < 2; ++Phase) { 1797 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1798 NewIntermedVals; 1799 for (unsigned i = 0; i < NumElems; ++i) { 1800 SDValue V = Node->getOperand(i); 1801 if (V.isUndef()) 1802 continue; 1803 1804 SDValue Vec; 1805 if (Phase) 1806 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1807 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1808 } 1809 1810 while (IntermedVals.size() > 2) { 1811 NewIntermedVals.clear(); 1812 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1813 // This vector and the next vector are shuffled together (simply to 1814 // append the one to the other). 1815 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1816 1817 SmallVector<int, 16> FinalIndices; 1818 FinalIndices.reserve(IntermedVals[i].second.size() + 1819 IntermedVals[i+1].second.size()); 1820 1821 int k = 0; 1822 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1823 ++j, ++k) { 1824 ShuffleVec[k] = j; 1825 FinalIndices.push_back(IntermedVals[i].second[j]); 1826 } 1827 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1828 ++j, ++k) { 1829 ShuffleVec[k] = NumElems + j; 1830 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1831 } 1832 1833 SDValue Shuffle; 1834 if (Phase) 1835 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1836 IntermedVals[i+1].first, 1837 ShuffleVec); 1838 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1839 return false; 1840 NewIntermedVals.push_back( 1841 std::make_pair(Shuffle, std::move(FinalIndices))); 1842 } 1843 1844 // If we had an odd number of defined values, then append the last 1845 // element to the array of new vectors. 1846 if ((IntermedVals.size() & 1) != 0) 1847 NewIntermedVals.push_back(IntermedVals.back()); 1848 1849 IntermedVals.swap(NewIntermedVals); 1850 } 1851 1852 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1853 "Invalid number of intermediate vectors"); 1854 SDValue Vec1 = IntermedVals[0].first; 1855 SDValue Vec2; 1856 if (IntermedVals.size() > 1) 1857 Vec2 = IntermedVals[1].first; 1858 else if (Phase) 1859 Vec2 = DAG.getUNDEF(VT); 1860 1861 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1862 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1863 ShuffleVec[IntermedVals[0].second[i]] = i; 1864 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1865 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1866 1867 if (Phase) 1868 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1869 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1870 return false; 1871 } 1872 1873 return true; 1874 } 1875 1876 /// Expand a BUILD_VECTOR node on targets that don't 1877 /// support the operation, but do support the resultant vector type. 1878 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1879 unsigned NumElems = Node->getNumOperands(); 1880 SDValue Value1, Value2; 1881 SDLoc dl(Node); 1882 EVT VT = Node->getValueType(0); 1883 EVT OpVT = Node->getOperand(0).getValueType(); 1884 EVT EltVT = VT.getVectorElementType(); 1885 1886 // If the only non-undef value is the low element, turn this into a 1887 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1888 bool isOnlyLowElement = true; 1889 bool MoreThanTwoValues = false; 1890 bool isConstant = true; 1891 for (unsigned i = 0; i < NumElems; ++i) { 1892 SDValue V = Node->getOperand(i); 1893 if (V.isUndef()) 1894 continue; 1895 if (i > 0) 1896 isOnlyLowElement = false; 1897 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1898 isConstant = false; 1899 1900 if (!Value1.getNode()) { 1901 Value1 = V; 1902 } else if (!Value2.getNode()) { 1903 if (V != Value1) 1904 Value2 = V; 1905 } else if (V != Value1 && V != Value2) { 1906 MoreThanTwoValues = true; 1907 } 1908 } 1909 1910 if (!Value1.getNode()) 1911 return DAG.getUNDEF(VT); 1912 1913 if (isOnlyLowElement) 1914 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1915 1916 // If all elements are constants, create a load from the constant pool. 1917 if (isConstant) { 1918 SmallVector<Constant*, 16> CV; 1919 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1920 if (ConstantFPSDNode *V = 1921 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1922 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1923 } else if (ConstantSDNode *V = 1924 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1925 if (OpVT==EltVT) 1926 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1927 else { 1928 // If OpVT and EltVT don't match, EltVT is not legal and the 1929 // element values have been promoted/truncated earlier. Undo this; 1930 // we don't want a v16i8 to become a v16i32 for example. 1931 const ConstantInt *CI = V->getConstantIntValue(); 1932 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1933 CI->getZExtValue())); 1934 } 1935 } else { 1936 assert(Node->getOperand(i).isUndef()); 1937 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1938 CV.push_back(UndefValue::get(OpNTy)); 1939 } 1940 } 1941 Constant *CP = ConstantVector::get(CV); 1942 SDValue CPIdx = 1943 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 1944 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 1945 return DAG.getLoad( 1946 VT, dl, DAG.getEntryNode(), CPIdx, 1947 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 1948 Alignment); 1949 } 1950 1951 SmallSet<SDValue, 16> DefinedValues; 1952 for (unsigned i = 0; i < NumElems; ++i) { 1953 if (Node->getOperand(i).isUndef()) 1954 continue; 1955 DefinedValues.insert(Node->getOperand(i)); 1956 } 1957 1958 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 1959 if (!MoreThanTwoValues) { 1960 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1961 for (unsigned i = 0; i < NumElems; ++i) { 1962 SDValue V = Node->getOperand(i); 1963 if (V.isUndef()) 1964 continue; 1965 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1966 } 1967 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1968 // Get the splatted value into the low element of a vector register. 1969 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1970 SDValue Vec2; 1971 if (Value2.getNode()) 1972 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 1973 else 1974 Vec2 = DAG.getUNDEF(VT); 1975 1976 // Return shuffle(LowValVec, undef, <0,0,0,0>) 1977 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1978 } 1979 } else { 1980 SDValue Res; 1981 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 1982 return Res; 1983 } 1984 } 1985 1986 // Otherwise, we can't handle this case efficiently. 1987 return ExpandVectorBuildThroughStack(Node); 1988 } 1989 1990 // Expand a node into a call to a libcall. If the result value 1991 // does not fit into a register, return the lo part and set the hi part to the 1992 // by-reg argument. If it does fit into a single register, return the result 1993 // and leave the Hi part unset. 1994 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 1995 bool isSigned) { 1996 TargetLowering::ArgListTy Args; 1997 TargetLowering::ArgListEntry Entry; 1998 for (const SDValue &Op : Node->op_values()) { 1999 EVT ArgVT = Op.getValueType(); 2000 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2001 Entry.Node = Op; 2002 Entry.Ty = ArgTy; 2003 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2004 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2005 Args.push_back(Entry); 2006 } 2007 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2008 TLI.getPointerTy(DAG.getDataLayout())); 2009 2010 EVT RetVT = Node->getValueType(0); 2011 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2012 2013 // By default, the input chain to this libcall is the entry node of the 2014 // function. If the libcall is going to be emitted as a tail call then 2015 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2016 // node which is being folded has a non-entry input chain. 2017 SDValue InChain = DAG.getEntryNode(); 2018 2019 // isTailCall may be true since the callee does not reference caller stack 2020 // frame. Check if it's in the right position and that the return types match. 2021 SDValue TCChain = InChain; 2022 const Function &F = DAG.getMachineFunction().getFunction(); 2023 bool isTailCall = 2024 TLI.isInTailCallPosition(DAG, Node, TCChain) && 2025 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 2026 if (isTailCall) 2027 InChain = TCChain; 2028 2029 TargetLowering::CallLoweringInfo CLI(DAG); 2030 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2031 CLI.setDebugLoc(SDLoc(Node)) 2032 .setChain(InChain) 2033 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2034 std::move(Args)) 2035 .setTailCall(isTailCall) 2036 .setSExtResult(signExtend) 2037 .setZExtResult(!signExtend) 2038 .setIsPostTypeLegalization(true); 2039 2040 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2041 2042 if (!CallInfo.second.getNode()) { 2043 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump()); 2044 // It's a tailcall, return the chain (which is the DAG root). 2045 return DAG.getRoot(); 2046 } 2047 2048 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump()); 2049 return CallInfo.first; 2050 } 2051 2052 /// Generate a libcall taking the given operands as arguments 2053 /// and returning a result of type RetVT. 2054 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, 2055 const SDValue *Ops, unsigned NumOps, 2056 bool isSigned, const SDLoc &dl) { 2057 TargetLowering::ArgListTy Args; 2058 Args.reserve(NumOps); 2059 2060 TargetLowering::ArgListEntry Entry; 2061 for (unsigned i = 0; i != NumOps; ++i) { 2062 Entry.Node = Ops[i]; 2063 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 2064 Entry.IsSExt = isSigned; 2065 Entry.IsZExt = !isSigned; 2066 Args.push_back(Entry); 2067 } 2068 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2069 TLI.getPointerTy(DAG.getDataLayout())); 2070 2071 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2072 2073 TargetLowering::CallLoweringInfo CLI(DAG); 2074 CLI.setDebugLoc(dl) 2075 .setChain(DAG.getEntryNode()) 2076 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2077 std::move(Args)) 2078 .setSExtResult(isSigned) 2079 .setZExtResult(!isSigned) 2080 .setIsPostTypeLegalization(true); 2081 2082 std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI); 2083 2084 return CallInfo.first; 2085 } 2086 2087 // Expand a node into a call to a libcall. Similar to 2088 // ExpandLibCall except that the first operand is the in-chain. 2089 std::pair<SDValue, SDValue> 2090 SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC, 2091 SDNode *Node, 2092 bool isSigned) { 2093 SDValue InChain = Node->getOperand(0); 2094 2095 TargetLowering::ArgListTy Args; 2096 TargetLowering::ArgListEntry Entry; 2097 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { 2098 EVT ArgVT = Node->getOperand(i).getValueType(); 2099 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2100 Entry.Node = Node->getOperand(i); 2101 Entry.Ty = ArgTy; 2102 Entry.IsSExt = isSigned; 2103 Entry.IsZExt = !isSigned; 2104 Args.push_back(Entry); 2105 } 2106 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2107 TLI.getPointerTy(DAG.getDataLayout())); 2108 2109 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 2110 2111 TargetLowering::CallLoweringInfo CLI(DAG); 2112 CLI.setDebugLoc(SDLoc(Node)) 2113 .setChain(InChain) 2114 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2115 std::move(Args)) 2116 .setSExtResult(isSigned) 2117 .setZExtResult(!isSigned); 2118 2119 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2120 2121 return CallInfo; 2122 } 2123 2124 SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2125 RTLIB::Libcall Call_F32, 2126 RTLIB::Libcall Call_F64, 2127 RTLIB::Libcall Call_F80, 2128 RTLIB::Libcall Call_F128, 2129 RTLIB::Libcall Call_PPCF128) { 2130 if (Node->isStrictFPOpcode()) 2131 Node = DAG.mutateStrictFPToFP(Node); 2132 2133 RTLIB::Libcall LC; 2134 switch (Node->getSimpleValueType(0).SimpleTy) { 2135 default: llvm_unreachable("Unexpected request for libcall!"); 2136 case MVT::f32: LC = Call_F32; break; 2137 case MVT::f64: LC = Call_F64; break; 2138 case MVT::f80: LC = Call_F80; break; 2139 case MVT::f128: LC = Call_F128; break; 2140 case MVT::ppcf128: LC = Call_PPCF128; break; 2141 } 2142 return ExpandLibCall(LC, Node, false); 2143 } 2144 2145 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2146 RTLIB::Libcall Call_I8, 2147 RTLIB::Libcall Call_I16, 2148 RTLIB::Libcall Call_I32, 2149 RTLIB::Libcall Call_I64, 2150 RTLIB::Libcall Call_I128) { 2151 RTLIB::Libcall LC; 2152 switch (Node->getSimpleValueType(0).SimpleTy) { 2153 default: llvm_unreachable("Unexpected request for libcall!"); 2154 case MVT::i8: LC = Call_I8; break; 2155 case MVT::i16: LC = Call_I16; break; 2156 case MVT::i32: LC = Call_I32; break; 2157 case MVT::i64: LC = Call_I64; break; 2158 case MVT::i128: LC = Call_I128; break; 2159 } 2160 return ExpandLibCall(LC, Node, isSigned); 2161 } 2162 2163 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2164 void 2165 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2166 SmallVectorImpl<SDValue> &Results) { 2167 unsigned Opcode = Node->getOpcode(); 2168 bool isSigned = Opcode == ISD::SDIVREM; 2169 2170 RTLIB::Libcall LC; 2171 switch (Node->getSimpleValueType(0).SimpleTy) { 2172 default: llvm_unreachable("Unexpected request for libcall!"); 2173 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2174 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2175 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2176 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2177 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2178 } 2179 2180 // The input chain to this libcall is the entry node of the function. 2181 // Legalizing the call will automatically add the previous call to the 2182 // dependence. 2183 SDValue InChain = DAG.getEntryNode(); 2184 2185 EVT RetVT = Node->getValueType(0); 2186 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2187 2188 TargetLowering::ArgListTy Args; 2189 TargetLowering::ArgListEntry Entry; 2190 for (const SDValue &Op : Node->op_values()) { 2191 EVT ArgVT = Op.getValueType(); 2192 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2193 Entry.Node = Op; 2194 Entry.Ty = ArgTy; 2195 Entry.IsSExt = isSigned; 2196 Entry.IsZExt = !isSigned; 2197 Args.push_back(Entry); 2198 } 2199 2200 // Also pass the return address of the remainder. 2201 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2202 Entry.Node = FIPtr; 2203 Entry.Ty = RetTy->getPointerTo(); 2204 Entry.IsSExt = isSigned; 2205 Entry.IsZExt = !isSigned; 2206 Args.push_back(Entry); 2207 2208 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2209 TLI.getPointerTy(DAG.getDataLayout())); 2210 2211 SDLoc dl(Node); 2212 TargetLowering::CallLoweringInfo CLI(DAG); 2213 CLI.setDebugLoc(dl) 2214 .setChain(InChain) 2215 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2216 std::move(Args)) 2217 .setSExtResult(isSigned) 2218 .setZExtResult(!isSigned); 2219 2220 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2221 2222 // Remainder is loaded back from the stack frame. 2223 SDValue Rem = 2224 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2225 Results.push_back(CallInfo.first); 2226 Results.push_back(Rem); 2227 } 2228 2229 /// Return true if sincos libcall is available. 2230 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2231 RTLIB::Libcall LC; 2232 switch (Node->getSimpleValueType(0).SimpleTy) { 2233 default: llvm_unreachable("Unexpected request for libcall!"); 2234 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2235 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2236 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2237 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2238 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2239 } 2240 return TLI.getLibcallName(LC) != nullptr; 2241 } 2242 2243 /// Only issue sincos libcall if both sin and cos are needed. 2244 static bool useSinCos(SDNode *Node) { 2245 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2246 ? ISD::FCOS : ISD::FSIN; 2247 2248 SDValue Op0 = Node->getOperand(0); 2249 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2250 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2251 SDNode *User = *UI; 2252 if (User == Node) 2253 continue; 2254 // The other user might have been turned into sincos already. 2255 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2256 return true; 2257 } 2258 return false; 2259 } 2260 2261 /// Issue libcalls to sincos to compute sin / cos pairs. 2262 void 2263 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2264 SmallVectorImpl<SDValue> &Results) { 2265 RTLIB::Libcall LC; 2266 switch (Node->getSimpleValueType(0).SimpleTy) { 2267 default: llvm_unreachable("Unexpected request for libcall!"); 2268 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2269 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2270 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2271 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2272 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2273 } 2274 2275 // The input chain to this libcall is the entry node of the function. 2276 // Legalizing the call will automatically add the previous call to the 2277 // dependence. 2278 SDValue InChain = DAG.getEntryNode(); 2279 2280 EVT RetVT = Node->getValueType(0); 2281 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2282 2283 TargetLowering::ArgListTy Args; 2284 TargetLowering::ArgListEntry Entry; 2285 2286 // Pass the argument. 2287 Entry.Node = Node->getOperand(0); 2288 Entry.Ty = RetTy; 2289 Entry.IsSExt = false; 2290 Entry.IsZExt = false; 2291 Args.push_back(Entry); 2292 2293 // Pass the return address of sin. 2294 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2295 Entry.Node = SinPtr; 2296 Entry.Ty = RetTy->getPointerTo(); 2297 Entry.IsSExt = false; 2298 Entry.IsZExt = false; 2299 Args.push_back(Entry); 2300 2301 // Also pass the return address of the cos. 2302 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2303 Entry.Node = CosPtr; 2304 Entry.Ty = RetTy->getPointerTo(); 2305 Entry.IsSExt = false; 2306 Entry.IsZExt = false; 2307 Args.push_back(Entry); 2308 2309 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2310 TLI.getPointerTy(DAG.getDataLayout())); 2311 2312 SDLoc dl(Node); 2313 TargetLowering::CallLoweringInfo CLI(DAG); 2314 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2315 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2316 std::move(Args)); 2317 2318 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2319 2320 Results.push_back( 2321 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2322 Results.push_back( 2323 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2324 } 2325 2326 /// This function is responsible for legalizing a 2327 /// INT_TO_FP operation of the specified operand when the target requests that 2328 /// we expand it. At this point, we know that the result and operand types are 2329 /// legal for the target. 2330 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0, 2331 EVT DestVT, 2332 const SDLoc &dl) { 2333 EVT SrcVT = Op0.getValueType(); 2334 2335 // TODO: Should any fast-math-flags be set for the created nodes? 2336 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2337 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { 2338 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2339 "expansion\n"); 2340 2341 // Get the stack frame index of a 8 byte buffer. 2342 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2343 2344 // word offset constant for Hi/Lo address computation 2345 SDValue WordOff = DAG.getConstant(sizeof(int), dl, 2346 StackSlot.getValueType()); 2347 // set up Hi and Lo (into buffer) address based on endian 2348 SDValue Hi = StackSlot; 2349 SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(), 2350 StackSlot, WordOff); 2351 if (DAG.getDataLayout().isLittleEndian()) 2352 std::swap(Hi, Lo); 2353 2354 // if signed map to unsigned space 2355 SDValue Op0Mapped; 2356 if (isSigned) { 2357 // constant used to invert sign bit (signed to unsigned mapping) 2358 SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32); 2359 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); 2360 } else { 2361 Op0Mapped = Op0; 2362 } 2363 // store the lo of the constructed double - based on integer input 2364 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo, 2365 MachinePointerInfo()); 2366 // initial hi portion of constructed double 2367 SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2368 // store the hi of the constructed double - biased exponent 2369 SDValue Store2 = 2370 DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo()); 2371 // load the constructed double 2372 SDValue Load = 2373 DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo()); 2374 // FP constant to bias correct the final result 2375 SDValue Bias = DAG.getConstantFP(isSigned ? 2376 BitsToDouble(0x4330000080000000ULL) : 2377 BitsToDouble(0x4330000000000000ULL), 2378 dl, MVT::f64); 2379 // subtract the bias 2380 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2381 // final result 2382 SDValue Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); 2383 return Result; 2384 } 2385 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2386 // Code below here assumes !isSigned without checking again. 2387 2388 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2389 2390 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, 2391 DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2392 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2393 Four = DAG.getIntPtrConstant(4, dl); 2394 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2395 SignSet, Four, Zero); 2396 2397 // If the sign bit of the integer is set, the large number will be treated 2398 // as a negative number. To counteract this, the dynamic code adds an 2399 // offset depending on the data type. 2400 uint64_t FF; 2401 switch (SrcVT.getSimpleVT().SimpleTy) { 2402 default: llvm_unreachable("Unsupported integer type!"); 2403 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2404 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2405 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2406 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2407 } 2408 if (DAG.getDataLayout().isLittleEndian()) 2409 FF <<= 32; 2410 Constant *FudgeFactor = ConstantInt::get( 2411 Type::getInt64Ty(*DAG.getContext()), FF); 2412 2413 SDValue CPIdx = 2414 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2415 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2416 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2417 Alignment = std::min(Alignment, 4u); 2418 SDValue FudgeInReg; 2419 if (DestVT == MVT::f32) 2420 FudgeInReg = DAG.getLoad( 2421 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2422 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2423 Alignment); 2424 else { 2425 SDValue Load = DAG.getExtLoad( 2426 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2427 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2428 Alignment); 2429 HandleSDNode Handle(Load); 2430 LegalizeOp(Load.getNode()); 2431 FudgeInReg = Handle.getValue(); 2432 } 2433 2434 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2435 } 2436 2437 /// This function is responsible for legalizing a 2438 /// *INT_TO_FP operation of the specified operand when the target requests that 2439 /// we promote it. At this point, we know that the result and operand types are 2440 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2441 /// operation that takes a larger input. 2442 SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, 2443 bool isSigned, 2444 const SDLoc &dl) { 2445 // First step, figure out the appropriate *INT_TO_FP operation to use. 2446 EVT NewInTy = LegalOp.getValueType(); 2447 2448 unsigned OpToUse = 0; 2449 2450 // Scan for the appropriate larger type to use. 2451 while (true) { 2452 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2453 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2454 2455 // If the target supports SINT_TO_FP of this type, use it. 2456 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { 2457 OpToUse = ISD::SINT_TO_FP; 2458 break; 2459 } 2460 if (isSigned) continue; 2461 2462 // If the target supports UINT_TO_FP of this type, use it. 2463 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { 2464 OpToUse = ISD::UINT_TO_FP; 2465 break; 2466 } 2467 2468 // Otherwise, try a larger type. 2469 } 2470 2471 // Okay, we found the operation and type to use. Zero extend our input to the 2472 // desired type then run the operation on it. 2473 return DAG.getNode(OpToUse, dl, DestVT, 2474 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2475 dl, NewInTy, LegalOp)); 2476 } 2477 2478 /// This function is responsible for legalizing a 2479 /// FP_TO_*INT operation of the specified operand when the target requests that 2480 /// we promote it. At this point, we know that the result and operand types are 2481 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2482 /// operation that returns a larger result. 2483 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, 2484 bool isSigned, 2485 const SDLoc &dl) { 2486 // First step, figure out the appropriate FP_TO*INT operation to use. 2487 EVT NewOutTy = DestVT; 2488 2489 unsigned OpToUse = 0; 2490 2491 // Scan for the appropriate larger type to use. 2492 while (true) { 2493 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2494 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2495 2496 // A larger signed type can hold all unsigned values of the requested type, 2497 // so using FP_TO_SINT is valid 2498 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { 2499 OpToUse = ISD::FP_TO_SINT; 2500 break; 2501 } 2502 2503 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2504 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { 2505 OpToUse = ISD::FP_TO_UINT; 2506 break; 2507 } 2508 2509 // Otherwise, try a larger type. 2510 } 2511 2512 // Okay, we found the operation and type to use. 2513 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2514 2515 // Truncate the result of the extended FP_TO_*INT operation to the desired 2516 // size. 2517 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2518 } 2519 2520 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts. 2521 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) { 2522 EVT VT = Op.getValueType(); 2523 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2524 unsigned Sz = VT.getScalarSizeInBits(); 2525 2526 SDValue Tmp, Tmp2, Tmp3; 2527 2528 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 2529 // and finally the i1 pairs. 2530 // TODO: We can easily support i4/i2 legal types if any target ever does. 2531 if (Sz >= 8 && isPowerOf2_32(Sz)) { 2532 // Create the masks - repeating the pattern every byte. 2533 APInt MaskHi4(Sz, 0), MaskHi2(Sz, 0), MaskHi1(Sz, 0); 2534 APInt MaskLo4(Sz, 0), MaskLo2(Sz, 0), MaskLo1(Sz, 0); 2535 for (unsigned J = 0; J != Sz; J += 8) { 2536 MaskHi4 = MaskHi4 | (0xF0ull << J); 2537 MaskLo4 = MaskLo4 | (0x0Full << J); 2538 MaskHi2 = MaskHi2 | (0xCCull << J); 2539 MaskLo2 = MaskLo2 | (0x33ull << J); 2540 MaskHi1 = MaskHi1 | (0xAAull << J); 2541 MaskLo1 = MaskLo1 | (0x55ull << J); 2542 } 2543 2544 // BSWAP if the type is wider than a single byte. 2545 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 2546 2547 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) 2548 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); 2549 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); 2550 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT)); 2551 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 2552 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2553 2554 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) 2555 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); 2556 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); 2557 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT)); 2558 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 2559 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2560 2561 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) 2562 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); 2563 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); 2564 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT)); 2565 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 2566 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2567 return Tmp; 2568 } 2569 2570 Tmp = DAG.getConstant(0, dl, VT); 2571 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 2572 if (I < J) 2573 Tmp2 = 2574 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 2575 else 2576 Tmp2 = 2577 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 2578 2579 APInt Shift(Sz, 1); 2580 Shift <<= J; 2581 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 2582 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 2583 } 2584 2585 return Tmp; 2586 } 2587 2588 /// Open code the operations for BSWAP of the specified operation. 2589 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) { 2590 EVT VT = Op.getValueType(); 2591 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2592 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2593 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 2594 default: llvm_unreachable("Unhandled Expand type in BSWAP!"); 2595 case MVT::i16: 2596 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2597 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2598 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 2599 case MVT::i32: 2600 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2601 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2602 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2603 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2604 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2605 DAG.getConstant(0xFF0000, dl, VT)); 2606 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 2607 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2608 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2609 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2610 case MVT::i64: 2611 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2612 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2613 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2614 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2615 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2616 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2617 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2618 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2619 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 2620 DAG.getConstant(255ULL<<48, dl, VT)); 2621 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 2622 DAG.getConstant(255ULL<<40, dl, VT)); 2623 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 2624 DAG.getConstant(255ULL<<32, dl, VT)); 2625 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 2626 DAG.getConstant(255ULL<<24, dl, VT)); 2627 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2628 DAG.getConstant(255ULL<<16, dl, VT)); 2629 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 2630 DAG.getConstant(255ULL<<8 , dl, VT)); 2631 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2632 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2633 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2634 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2635 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2636 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2637 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2638 } 2639 } 2640 2641 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2642 LLVM_DEBUG(dbgs() << "Trying to expand node\n"); 2643 SmallVector<SDValue, 8> Results; 2644 SDLoc dl(Node); 2645 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2646 bool NeedInvert; 2647 switch (Node->getOpcode()) { 2648 case ISD::CTPOP: 2649 if (TLI.expandCTPOP(Node, Tmp1, DAG)) 2650 Results.push_back(Tmp1); 2651 break; 2652 case ISD::CTLZ: 2653 case ISD::CTLZ_ZERO_UNDEF: 2654 if (TLI.expandCTLZ(Node, Tmp1, DAG)) 2655 Results.push_back(Tmp1); 2656 break; 2657 case ISD::CTTZ: 2658 case ISD::CTTZ_ZERO_UNDEF: 2659 if (TLI.expandCTTZ(Node, Tmp1, DAG)) 2660 Results.push_back(Tmp1); 2661 break; 2662 case ISD::BITREVERSE: 2663 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl)); 2664 break; 2665 case ISD::BSWAP: 2666 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2667 break; 2668 case ISD::FRAMEADDR: 2669 case ISD::RETURNADDR: 2670 case ISD::FRAME_TO_ARGS_OFFSET: 2671 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2672 break; 2673 case ISD::EH_DWARF_CFA: { 2674 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 2675 TLI.getPointerTy(DAG.getDataLayout())); 2676 SDValue Offset = DAG.getNode(ISD::ADD, dl, 2677 CfaArg.getValueType(), 2678 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 2679 CfaArg.getValueType()), 2680 CfaArg); 2681 SDValue FA = DAG.getNode( 2682 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 2683 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2684 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 2685 FA, Offset)); 2686 break; 2687 } 2688 case ISD::FLT_ROUNDS_: 2689 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2690 break; 2691 case ISD::EH_RETURN: 2692 case ISD::EH_LABEL: 2693 case ISD::PREFETCH: 2694 case ISD::VAEND: 2695 case ISD::EH_SJLJ_LONGJMP: 2696 // If the target didn't expand these, there's nothing to do, so just 2697 // preserve the chain and be done. 2698 Results.push_back(Node->getOperand(0)); 2699 break; 2700 case ISD::READCYCLECOUNTER: 2701 // If the target didn't expand this, just return 'zero' and preserve the 2702 // chain. 2703 Results.append(Node->getNumValues() - 1, 2704 DAG.getConstant(0, dl, Node->getValueType(0))); 2705 Results.push_back(Node->getOperand(0)); 2706 break; 2707 case ISD::EH_SJLJ_SETJMP: 2708 // If the target didn't expand this, just return 'zero' and preserve the 2709 // chain. 2710 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2711 Results.push_back(Node->getOperand(0)); 2712 break; 2713 case ISD::ATOMIC_LOAD: { 2714 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2715 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2716 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2717 SDValue Swap = DAG.getAtomicCmpSwap( 2718 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2719 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2720 cast<AtomicSDNode>(Node)->getMemOperand()); 2721 Results.push_back(Swap.getValue(0)); 2722 Results.push_back(Swap.getValue(1)); 2723 break; 2724 } 2725 case ISD::ATOMIC_STORE: { 2726 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2727 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2728 cast<AtomicSDNode>(Node)->getMemoryVT(), 2729 Node->getOperand(0), 2730 Node->getOperand(1), Node->getOperand(2), 2731 cast<AtomicSDNode>(Node)->getMemOperand()); 2732 Results.push_back(Swap.getValue(1)); 2733 break; 2734 } 2735 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 2736 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 2737 // splits out the success value as a comparison. Expanding the resulting 2738 // ATOMIC_CMP_SWAP will produce a libcall. 2739 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2740 SDValue Res = DAG.getAtomicCmpSwap( 2741 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2742 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 2743 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 2744 2745 SDValue ExtRes = Res; 2746 SDValue LHS = Res; 2747 SDValue RHS = Node->getOperand(1); 2748 2749 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 2750 EVT OuterType = Node->getValueType(0); 2751 switch (TLI.getExtendForAtomicOps()) { 2752 case ISD::SIGN_EXTEND: 2753 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 2754 DAG.getValueType(AtomicType)); 2755 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 2756 Node->getOperand(2), DAG.getValueType(AtomicType)); 2757 ExtRes = LHS; 2758 break; 2759 case ISD::ZERO_EXTEND: 2760 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 2761 DAG.getValueType(AtomicType)); 2762 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2763 ExtRes = LHS; 2764 break; 2765 case ISD::ANY_EXTEND: 2766 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 2767 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2768 break; 2769 default: 2770 llvm_unreachable("Invalid atomic op extension"); 2771 } 2772 2773 SDValue Success = 2774 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 2775 2776 Results.push_back(ExtRes.getValue(0)); 2777 Results.push_back(Success); 2778 Results.push_back(Res.getValue(1)); 2779 break; 2780 } 2781 case ISD::DYNAMIC_STACKALLOC: 2782 ExpandDYNAMIC_STACKALLOC(Node, Results); 2783 break; 2784 case ISD::MERGE_VALUES: 2785 for (unsigned i = 0; i < Node->getNumValues(); i++) 2786 Results.push_back(Node->getOperand(i)); 2787 break; 2788 case ISD::UNDEF: { 2789 EVT VT = Node->getValueType(0); 2790 if (VT.isInteger()) 2791 Results.push_back(DAG.getConstant(0, dl, VT)); 2792 else { 2793 assert(VT.isFloatingPoint() && "Unknown value type!"); 2794 Results.push_back(DAG.getConstantFP(0, dl, VT)); 2795 } 2796 break; 2797 } 2798 case ISD::FP_ROUND: 2799 case ISD::BITCAST: 2800 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 2801 Node->getValueType(0), dl); 2802 Results.push_back(Tmp1); 2803 break; 2804 case ISD::FP_EXTEND: 2805 Tmp1 = EmitStackConvert(Node->getOperand(0), 2806 Node->getOperand(0).getValueType(), 2807 Node->getValueType(0), dl); 2808 Results.push_back(Tmp1); 2809 break; 2810 case ISD::SIGN_EXTEND_INREG: { 2811 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2812 EVT VT = Node->getValueType(0); 2813 2814 // An in-register sign-extend of a boolean is a negation: 2815 // 'true' (1) sign-extended is -1. 2816 // 'false' (0) sign-extended is 0. 2817 // However, we must mask the high bits of the source operand because the 2818 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 2819 2820 // TODO: Do this for vectors too? 2821 if (ExtraVT.getSizeInBits() == 1) { 2822 SDValue One = DAG.getConstant(1, dl, VT); 2823 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 2824 SDValue Zero = DAG.getConstant(0, dl, VT); 2825 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 2826 Results.push_back(Neg); 2827 break; 2828 } 2829 2830 // NOTE: we could fall back on load/store here too for targets without 2831 // SRA. However, it is doubtful that any exist. 2832 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2833 unsigned BitsDiff = VT.getScalarSizeInBits() - 2834 ExtraVT.getScalarSizeInBits(); 2835 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 2836 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 2837 Node->getOperand(0), ShiftCst); 2838 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 2839 Results.push_back(Tmp1); 2840 break; 2841 } 2842 case ISD::FP_ROUND_INREG: { 2843 // The only way we can lower this is to turn it into a TRUNCSTORE, 2844 // EXTLOAD pair, targeting a temporary location (a stack slot). 2845 2846 // NOTE: there is a choice here between constantly creating new stack 2847 // slots and always reusing the same one. We currently always create 2848 // new ones, as reuse may inhibit scheduling. 2849 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2850 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT, 2851 Node->getValueType(0), dl); 2852 Results.push_back(Tmp1); 2853 break; 2854 } 2855 case ISD::UINT_TO_FP: 2856 if (TLI.expandUINT_TO_FP(Node, Tmp1, DAG)) { 2857 Results.push_back(Tmp1); 2858 break; 2859 } 2860 LLVM_FALLTHROUGH; 2861 case ISD::SINT_TO_FP: 2862 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, 2863 Node->getOperand(0), Node->getValueType(0), dl); 2864 Results.push_back(Tmp1); 2865 break; 2866 case ISD::FP_TO_SINT: 2867 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 2868 Results.push_back(Tmp1); 2869 break; 2870 case ISD::FP_TO_UINT: 2871 if (TLI.expandFP_TO_UINT(Node, Tmp1, DAG)) 2872 Results.push_back(Tmp1); 2873 break; 2874 case ISD::VAARG: 2875 Results.push_back(DAG.expandVAArg(Node)); 2876 Results.push_back(Results[0].getValue(1)); 2877 break; 2878 case ISD::VACOPY: 2879 Results.push_back(DAG.expandVACopy(Node)); 2880 break; 2881 case ISD::EXTRACT_VECTOR_ELT: 2882 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 2883 // This must be an access of the only element. Return it. 2884 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 2885 Node->getOperand(0)); 2886 else 2887 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 2888 Results.push_back(Tmp1); 2889 break; 2890 case ISD::EXTRACT_SUBVECTOR: 2891 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 2892 break; 2893 case ISD::INSERT_SUBVECTOR: 2894 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 2895 break; 2896 case ISD::CONCAT_VECTORS: 2897 Results.push_back(ExpandVectorBuildThroughStack(Node)); 2898 break; 2899 case ISD::SCALAR_TO_VECTOR: 2900 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 2901 break; 2902 case ISD::INSERT_VECTOR_ELT: 2903 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 2904 Node->getOperand(1), 2905 Node->getOperand(2), dl)); 2906 break; 2907 case ISD::VECTOR_SHUFFLE: { 2908 SmallVector<int, 32> NewMask; 2909 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 2910 2911 EVT VT = Node->getValueType(0); 2912 EVT EltVT = VT.getVectorElementType(); 2913 SDValue Op0 = Node->getOperand(0); 2914 SDValue Op1 = Node->getOperand(1); 2915 if (!TLI.isTypeLegal(EltVT)) { 2916 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 2917 2918 // BUILD_VECTOR operands are allowed to be wider than the element type. 2919 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 2920 // it. 2921 if (NewEltVT.bitsLT(EltVT)) { 2922 // Convert shuffle node. 2923 // If original node was v4i64 and the new EltVT is i32, 2924 // cast operands to v8i32 and re-build the mask. 2925 2926 // Calculate new VT, the size of the new VT should be equal to original. 2927 EVT NewVT = 2928 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 2929 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 2930 assert(NewVT.bitsEq(VT)); 2931 2932 // cast operands to new VT 2933 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 2934 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 2935 2936 // Convert the shuffle mask 2937 unsigned int factor = 2938 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 2939 2940 // EltVT gets smaller 2941 assert(factor > 0); 2942 2943 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 2944 if (Mask[i] < 0) { 2945 for (unsigned fi = 0; fi < factor; ++fi) 2946 NewMask.push_back(Mask[i]); 2947 } 2948 else { 2949 for (unsigned fi = 0; fi < factor; ++fi) 2950 NewMask.push_back(Mask[i]*factor+fi); 2951 } 2952 } 2953 Mask = NewMask; 2954 VT = NewVT; 2955 } 2956 EltVT = NewEltVT; 2957 } 2958 unsigned NumElems = VT.getVectorNumElements(); 2959 SmallVector<SDValue, 16> Ops; 2960 for (unsigned i = 0; i != NumElems; ++i) { 2961 if (Mask[i] < 0) { 2962 Ops.push_back(DAG.getUNDEF(EltVT)); 2963 continue; 2964 } 2965 unsigned Idx = Mask[i]; 2966 if (Idx < NumElems) 2967 Ops.push_back(DAG.getNode( 2968 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 2969 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())))); 2970 else 2971 Ops.push_back(DAG.getNode( 2972 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 2973 DAG.getConstant(Idx - NumElems, dl, 2974 TLI.getVectorIdxTy(DAG.getDataLayout())))); 2975 } 2976 2977 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 2978 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 2979 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 2980 Results.push_back(Tmp1); 2981 break; 2982 } 2983 case ISD::EXTRACT_ELEMENT: { 2984 EVT OpTy = Node->getOperand(0).getValueType(); 2985 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 2986 // 1 -> Hi 2987 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 2988 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 2989 TLI.getShiftAmountTy( 2990 Node->getOperand(0).getValueType(), 2991 DAG.getDataLayout()))); 2992 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 2993 } else { 2994 // 0 -> Lo 2995 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 2996 Node->getOperand(0)); 2997 } 2998 Results.push_back(Tmp1); 2999 break; 3000 } 3001 case ISD::STACKSAVE: 3002 // Expand to CopyFromReg if the target set 3003 // StackPointerRegisterToSaveRestore. 3004 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3005 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3006 Node->getValueType(0))); 3007 Results.push_back(Results[0].getValue(1)); 3008 } else { 3009 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3010 Results.push_back(Node->getOperand(0)); 3011 } 3012 break; 3013 case ISD::STACKRESTORE: 3014 // Expand to CopyToReg if the target set 3015 // StackPointerRegisterToSaveRestore. 3016 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3017 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3018 Node->getOperand(1))); 3019 } else { 3020 Results.push_back(Node->getOperand(0)); 3021 } 3022 break; 3023 case ISD::GET_DYNAMIC_AREA_OFFSET: 3024 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3025 Results.push_back(Results[0].getValue(0)); 3026 break; 3027 case ISD::FCOPYSIGN: 3028 Results.push_back(ExpandFCOPYSIGN(Node)); 3029 break; 3030 case ISD::FNEG: 3031 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3032 Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0)); 3033 // TODO: If FNEG has fast-math-flags, propagate them to the FSUB. 3034 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, 3035 Node->getOperand(0)); 3036 Results.push_back(Tmp1); 3037 break; 3038 case ISD::FABS: 3039 Results.push_back(ExpandFABS(Node)); 3040 break; 3041 case ISD::SMIN: 3042 case ISD::SMAX: 3043 case ISD::UMIN: 3044 case ISD::UMAX: { 3045 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3046 ISD::CondCode Pred; 3047 switch (Node->getOpcode()) { 3048 default: llvm_unreachable("How did we get here?"); 3049 case ISD::SMAX: Pred = ISD::SETGT; break; 3050 case ISD::SMIN: Pred = ISD::SETLT; break; 3051 case ISD::UMAX: Pred = ISD::SETUGT; break; 3052 case ISD::UMIN: Pred = ISD::SETULT; break; 3053 } 3054 Tmp1 = Node->getOperand(0); 3055 Tmp2 = Node->getOperand(1); 3056 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3057 Results.push_back(Tmp1); 3058 break; 3059 } 3060 case ISD::FMINNUM: 3061 case ISD::FMAXNUM: { 3062 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) 3063 Results.push_back(Expanded); 3064 break; 3065 } 3066 case ISD::FSIN: 3067 case ISD::FCOS: { 3068 EVT VT = Node->getValueType(0); 3069 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3070 // fcos which share the same operand and both are used. 3071 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3072 isSinCosLibcallAvailable(Node, TLI)) 3073 && useSinCos(Node)) { 3074 SDVTList VTs = DAG.getVTList(VT, VT); 3075 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3076 if (Node->getOpcode() == ISD::FCOS) 3077 Tmp1 = Tmp1.getValue(1); 3078 Results.push_back(Tmp1); 3079 } 3080 break; 3081 } 3082 case ISD::FMAD: 3083 llvm_unreachable("Illegal fmad should never be formed"); 3084 3085 case ISD::FP16_TO_FP: 3086 if (Node->getValueType(0) != MVT::f32) { 3087 // We can extend to types bigger than f32 in two steps without changing 3088 // the result. Since "f16 -> f32" is much more commonly available, give 3089 // CodeGen the option of emitting that before resorting to a libcall. 3090 SDValue Res = 3091 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3092 Results.push_back( 3093 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3094 } 3095 break; 3096 case ISD::FP_TO_FP16: 3097 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3098 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3099 SDValue Op = Node->getOperand(0); 3100 MVT SVT = Op.getSimpleValueType(); 3101 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3102 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3103 // Under fastmath, we can expand this node into a fround followed by 3104 // a float-half conversion. 3105 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3106 DAG.getIntPtrConstant(0, dl)); 3107 Results.push_back( 3108 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3109 } 3110 } 3111 break; 3112 case ISD::ConstantFP: { 3113 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3114 // Check to see if this FP immediate is already legal. 3115 // If this is a legal constant, turn it into a TargetConstantFP node. 3116 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0))) 3117 Results.push_back(ExpandConstantFP(CFP, true)); 3118 break; 3119 } 3120 case ISD::Constant: { 3121 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3122 Results.push_back(ExpandConstant(CP)); 3123 break; 3124 } 3125 case ISD::FSUB: { 3126 EVT VT = Node->getValueType(0); 3127 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3128 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3129 const SDNodeFlags Flags = Node->getFlags(); 3130 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3131 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3132 Results.push_back(Tmp1); 3133 } 3134 break; 3135 } 3136 case ISD::SUB: { 3137 EVT VT = Node->getValueType(0); 3138 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3139 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3140 "Don't know how to expand this subtraction!"); 3141 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3142 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, 3143 VT)); 3144 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3145 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3146 break; 3147 } 3148 case ISD::UREM: 3149 case ISD::SREM: { 3150 EVT VT = Node->getValueType(0); 3151 bool isSigned = Node->getOpcode() == ISD::SREM; 3152 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 3153 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3154 Tmp2 = Node->getOperand(0); 3155 Tmp3 = Node->getOperand(1); 3156 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3157 SDVTList VTs = DAG.getVTList(VT, VT); 3158 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); 3159 Results.push_back(Tmp1); 3160 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { 3161 // X % Y -> X-X/Y*Y 3162 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); 3163 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); 3164 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); 3165 Results.push_back(Tmp1); 3166 } 3167 break; 3168 } 3169 case ISD::UDIV: 3170 case ISD::SDIV: { 3171 bool isSigned = Node->getOpcode() == ISD::SDIV; 3172 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3173 EVT VT = Node->getValueType(0); 3174 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3175 SDVTList VTs = DAG.getVTList(VT, VT); 3176 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3177 Node->getOperand(1)); 3178 Results.push_back(Tmp1); 3179 } 3180 break; 3181 } 3182 case ISD::MULHU: 3183 case ISD::MULHS: { 3184 unsigned ExpandOpcode = 3185 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3186 EVT VT = Node->getValueType(0); 3187 SDVTList VTs = DAG.getVTList(VT, VT); 3188 3189 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3190 Node->getOperand(1)); 3191 Results.push_back(Tmp1.getValue(1)); 3192 break; 3193 } 3194 case ISD::UMUL_LOHI: 3195 case ISD::SMUL_LOHI: { 3196 SDValue LHS = Node->getOperand(0); 3197 SDValue RHS = Node->getOperand(1); 3198 MVT VT = LHS.getSimpleValueType(); 3199 unsigned MULHOpcode = 3200 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3201 3202 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3203 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3204 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3205 break; 3206 } 3207 3208 SmallVector<SDValue, 4> Halves; 3209 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3210 assert(TLI.isTypeLegal(HalfType)); 3211 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves, 3212 HalfType, DAG, 3213 TargetLowering::MulExpansionKind::Always)) { 3214 for (unsigned i = 0; i < 2; ++i) { 3215 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3216 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3217 SDValue Shift = DAG.getConstant( 3218 HalfType.getScalarSizeInBits(), dl, 3219 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3220 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3221 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3222 } 3223 break; 3224 } 3225 break; 3226 } 3227 case ISD::MUL: { 3228 EVT VT = Node->getValueType(0); 3229 SDVTList VTs = DAG.getVTList(VT, VT); 3230 // See if multiply or divide can be lowered using two-result operations. 3231 // We just need the low half of the multiply; try both the signed 3232 // and unsigned forms. If the target supports both SMUL_LOHI and 3233 // UMUL_LOHI, form a preference by checking which forms of plain 3234 // MULH it supports. 3235 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3236 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3237 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3238 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3239 unsigned OpToUse = 0; 3240 if (HasSMUL_LOHI && !HasMULHS) { 3241 OpToUse = ISD::SMUL_LOHI; 3242 } else if (HasUMUL_LOHI && !HasMULHU) { 3243 OpToUse = ISD::UMUL_LOHI; 3244 } else if (HasSMUL_LOHI) { 3245 OpToUse = ISD::SMUL_LOHI; 3246 } else if (HasUMUL_LOHI) { 3247 OpToUse = ISD::UMUL_LOHI; 3248 } 3249 if (OpToUse) { 3250 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3251 Node->getOperand(1))); 3252 break; 3253 } 3254 3255 SDValue Lo, Hi; 3256 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3257 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3258 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3259 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3260 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3261 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3262 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3263 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3264 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3265 SDValue Shift = 3266 DAG.getConstant(HalfType.getSizeInBits(), dl, 3267 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3268 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3269 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3270 } 3271 break; 3272 } 3273 case ISD::FSHL: 3274 case ISD::FSHR: 3275 if (TLI.expandFunnelShift(Node, Tmp1, DAG)) 3276 Results.push_back(Tmp1); 3277 break; 3278 case ISD::ROTL: 3279 case ISD::ROTR: 3280 if (TLI.expandROT(Node, Tmp1, DAG)) 3281 Results.push_back(Tmp1); 3282 break; 3283 case ISD::SADDSAT: 3284 case ISD::UADDSAT: 3285 case ISD::SSUBSAT: 3286 case ISD::USUBSAT: { 3287 Results.push_back(TLI.getExpandedSaturationAdditionSubtraction(Node, DAG)); 3288 break; 3289 } 3290 case ISD::SMULFIX: { 3291 Results.push_back(TLI.getExpandedFixedPointMultiplication(Node, DAG)); 3292 break; 3293 } 3294 case ISD::SADDO: 3295 case ISD::SSUBO: { 3296 SDValue LHS = Node->getOperand(0); 3297 SDValue RHS = Node->getOperand(1); 3298 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? 3299 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3300 LHS, RHS); 3301 Results.push_back(Sum); 3302 EVT ResultType = Node->getValueType(1); 3303 EVT OType = getSetCCResultType(Node->getValueType(0)); 3304 3305 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 3306 3307 // LHSSign -> LHS >= 0 3308 // RHSSign -> RHS >= 0 3309 // SumSign -> Sum >= 0 3310 // 3311 // Add: 3312 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 3313 // Sub: 3314 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 3315 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 3316 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 3317 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 3318 Node->getOpcode() == ISD::SADDO ? 3319 ISD::SETEQ : ISD::SETNE); 3320 3321 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); 3322 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 3323 3324 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 3325 Results.push_back(DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType)); 3326 break; 3327 } 3328 case ISD::UADDO: 3329 case ISD::USUBO: { 3330 SDValue LHS = Node->getOperand(0); 3331 SDValue RHS = Node->getOperand(1); 3332 bool IsAdd = Node->getOpcode() == ISD::UADDO; 3333 // If ADD/SUBCARRY is legal, use that instead. 3334 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 3335 if (TLI.isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 3336 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 3337 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 3338 { LHS, RHS, CarryIn }); 3339 Results.push_back(SDValue(NodeCarry.getNode(), 0)); 3340 Results.push_back(SDValue(NodeCarry.getNode(), 1)); 3341 break; 3342 } 3343 3344 SDValue Sum = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 3345 LHS.getValueType(), LHS, RHS); 3346 Results.push_back(Sum); 3347 3348 EVT ResultType = Node->getValueType(1); 3349 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3350 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 3351 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3352 3353 Results.push_back(DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType)); 3354 break; 3355 } 3356 case ISD::UMULO: 3357 case ISD::SMULO: { 3358 EVT VT = Node->getValueType(0); 3359 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); 3360 SDValue LHS = Node->getOperand(0); 3361 SDValue RHS = Node->getOperand(1); 3362 SDValue BottomHalf; 3363 SDValue TopHalf; 3364 static const unsigned Ops[2][3] = 3365 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 3366 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 3367 bool isSigned = Node->getOpcode() == ISD::SMULO; 3368 if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 3369 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 3370 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 3371 } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 3372 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 3373 RHS); 3374 TopHalf = BottomHalf.getValue(1); 3375 } else if (TLI.isTypeLegal(WideVT)) { 3376 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 3377 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 3378 Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 3379 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3380 DAG.getIntPtrConstant(0, dl)); 3381 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3382 DAG.getIntPtrConstant(1, dl)); 3383 } else { 3384 // We can fall back to a libcall with an illegal type for the MUL if we 3385 // have a libcall big enough. 3386 // Also, we can fall back to a division in some cases, but that's a big 3387 // performance hit in the general case. 3388 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3389 if (WideVT == MVT::i16) 3390 LC = RTLIB::MUL_I16; 3391 else if (WideVT == MVT::i32) 3392 LC = RTLIB::MUL_I32; 3393 else if (WideVT == MVT::i64) 3394 LC = RTLIB::MUL_I64; 3395 else if (WideVT == MVT::i128) 3396 LC = RTLIB::MUL_I128; 3397 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 3398 3399 SDValue HiLHS; 3400 SDValue HiRHS; 3401 if (isSigned) { 3402 // The high part is obtained by SRA'ing all but one of the bits of low 3403 // part. 3404 unsigned LoSize = VT.getSizeInBits(); 3405 HiLHS = 3406 DAG.getNode(ISD::SRA, dl, VT, LHS, 3407 DAG.getConstant(LoSize - 1, dl, 3408 TLI.getPointerTy(DAG.getDataLayout()))); 3409 HiRHS = 3410 DAG.getNode(ISD::SRA, dl, VT, RHS, 3411 DAG.getConstant(LoSize - 1, dl, 3412 TLI.getPointerTy(DAG.getDataLayout()))); 3413 } else { 3414 HiLHS = DAG.getConstant(0, dl, VT); 3415 HiRHS = DAG.getConstant(0, dl, VT); 3416 } 3417 3418 // Here we're passing the 2 arguments explicitly as 4 arguments that are 3419 // pre-lowered to the correct types. This all depends upon WideVT not 3420 // being a legal type for the architecture and thus has to be split to 3421 // two arguments. 3422 SDValue Ret; 3423 if(DAG.getDataLayout().isLittleEndian()) { 3424 // Halves of WideVT are packed into registers in different order 3425 // depending on platform endianness. This is usually handled by 3426 // the C calling convention, but we can't defer to it in 3427 // the legalizer. 3428 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 3429 Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); 3430 } else { 3431 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 3432 Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); 3433 } 3434 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 3435 "Ret value is a collection of constituent nodes holding result."); 3436 BottomHalf = Ret.getOperand(0); 3437 TopHalf = Ret.getOperand(1); 3438 } 3439 3440 if (isSigned) { 3441 Tmp1 = DAG.getConstant( 3442 VT.getSizeInBits() - 1, dl, 3443 TLI.getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 3444 Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1); 3445 TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, Tmp1, 3446 ISD::SETNE); 3447 } else { 3448 TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, 3449 DAG.getConstant(0, dl, VT), ISD::SETNE); 3450 } 3451 3452 // Truncate the result if SetCC returns a larger type than needed. 3453 EVT RType = Node->getValueType(1); 3454 if (RType.getSizeInBits() < TopHalf.getValueSizeInBits()) 3455 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, RType, TopHalf); 3456 3457 assert(RType.getSizeInBits() == TopHalf.getValueSizeInBits() && 3458 "Unexpected result type for S/UMULO legalization"); 3459 3460 Results.push_back(BottomHalf); 3461 Results.push_back(TopHalf); 3462 break; 3463 } 3464 case ISD::BUILD_PAIR: { 3465 EVT PairTy = Node->getValueType(0); 3466 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3467 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3468 Tmp2 = DAG.getNode( 3469 ISD::SHL, dl, PairTy, Tmp2, 3470 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3471 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3472 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3473 break; 3474 } 3475 case ISD::SELECT: 3476 Tmp1 = Node->getOperand(0); 3477 Tmp2 = Node->getOperand(1); 3478 Tmp3 = Node->getOperand(2); 3479 if (Tmp1.getOpcode() == ISD::SETCC) { 3480 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3481 Tmp2, Tmp3, 3482 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3483 } else { 3484 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3485 DAG.getConstant(0, dl, Tmp1.getValueType()), 3486 Tmp2, Tmp3, ISD::SETNE); 3487 } 3488 Results.push_back(Tmp1); 3489 break; 3490 case ISD::BR_JT: { 3491 SDValue Chain = Node->getOperand(0); 3492 SDValue Table = Node->getOperand(1); 3493 SDValue Index = Node->getOperand(2); 3494 3495 const DataLayout &TD = DAG.getDataLayout(); 3496 EVT PTy = TLI.getPointerTy(TD); 3497 3498 unsigned EntrySize = 3499 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3500 3501 // For power-of-two jumptable entry sizes convert multiplication to a shift. 3502 // This transformation needs to be done here since otherwise the MIPS 3503 // backend will end up emitting a three instruction multiply sequence 3504 // instead of a single shift and MSP430 will call a runtime function. 3505 if (llvm::isPowerOf2_32(EntrySize)) 3506 Index = DAG.getNode( 3507 ISD::SHL, dl, Index.getValueType(), Index, 3508 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); 3509 else 3510 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3511 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3512 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3513 Index, Table); 3514 3515 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3516 SDValue LD = DAG.getExtLoad( 3517 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3518 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3519 Addr = LD; 3520 if (TLI.isJumpTableRelative()) { 3521 // For PIC, the sequence is: 3522 // BRIND(load(Jumptable + index) + RelocBase) 3523 // RelocBase can be JumpTable, GOT or some sort of global base. 3524 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3525 TLI.getPICJumpTableRelocBase(Table, DAG)); 3526 } 3527 3528 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); 3529 Results.push_back(Tmp1); 3530 break; 3531 } 3532 case ISD::BRCOND: 3533 // Expand brcond's setcc into its constituent parts and create a BR_CC 3534 // Node. 3535 Tmp1 = Node->getOperand(0); 3536 Tmp2 = Node->getOperand(1); 3537 if (Tmp2.getOpcode() == ISD::SETCC) { 3538 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3539 Tmp1, Tmp2.getOperand(2), 3540 Tmp2.getOperand(0), Tmp2.getOperand(1), 3541 Node->getOperand(2)); 3542 } else { 3543 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 3544 if (Tmp2.isUndef() || 3545 (Tmp2.getOpcode() == ISD::AND && 3546 isa<ConstantSDNode>(Tmp2.getOperand(1)) && 3547 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) 3548 Tmp3 = Tmp2; 3549 else 3550 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3551 DAG.getConstant(1, dl, Tmp2.getValueType())); 3552 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3553 DAG.getCondCode(ISD::SETNE), Tmp3, 3554 DAG.getConstant(0, dl, Tmp3.getValueType()), 3555 Node->getOperand(2)); 3556 } 3557 Results.push_back(Tmp1); 3558 break; 3559 case ISD::SETCC: { 3560 Tmp1 = Node->getOperand(0); 3561 Tmp2 = Node->getOperand(1); 3562 Tmp3 = Node->getOperand(2); 3563 bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, 3564 Tmp3, NeedInvert, dl); 3565 3566 if (Legalized) { 3567 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3568 // condition code, create a new SETCC node. 3569 if (Tmp3.getNode()) 3570 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3571 Tmp1, Tmp2, Tmp3); 3572 3573 // If we expanded the SETCC by inverting the condition code, then wrap 3574 // the existing SETCC in a NOT to restore the intended condition. 3575 if (NeedInvert) 3576 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3577 3578 Results.push_back(Tmp1); 3579 break; 3580 } 3581 3582 // Otherwise, SETCC for the given comparison type must be completely 3583 // illegal; expand it into a SELECT_CC. 3584 EVT VT = Node->getValueType(0); 3585 int TrueValue; 3586 switch (TLI.getBooleanContents(Tmp1.getValueType())) { 3587 case TargetLowering::ZeroOrOneBooleanContent: 3588 case TargetLowering::UndefinedBooleanContent: 3589 TrueValue = 1; 3590 break; 3591 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3592 TrueValue = -1; 3593 break; 3594 } 3595 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3596 DAG.getConstant(TrueValue, dl, VT), 3597 DAG.getConstant(0, dl, VT), 3598 Tmp3); 3599 Results.push_back(Tmp1); 3600 break; 3601 } 3602 case ISD::SELECT_CC: { 3603 Tmp1 = Node->getOperand(0); // LHS 3604 Tmp2 = Node->getOperand(1); // RHS 3605 Tmp3 = Node->getOperand(2); // True 3606 Tmp4 = Node->getOperand(3); // False 3607 EVT VT = Node->getValueType(0); 3608 SDValue CC = Node->getOperand(4); 3609 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3610 3611 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 3612 // If the condition code is legal, then we need to expand this 3613 // node using SETCC and SELECT. 3614 EVT CmpVT = Tmp1.getValueType(); 3615 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3616 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3617 "expanded."); 3618 EVT CCVT = 3619 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT); 3620 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC); 3621 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3622 break; 3623 } 3624 3625 // SELECT_CC is legal, so the condition code must not be. 3626 bool Legalized = false; 3627 // Try to legalize by inverting the condition. This is for targets that 3628 // might support an ordered version of a condition, but not the unordered 3629 // version (or vice versa). 3630 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, 3631 Tmp1.getValueType().isInteger()); 3632 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 3633 // Use the new condition code and swap true and false 3634 Legalized = true; 3635 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3636 } else { 3637 // If The inverse is not legal, then try to swap the arguments using 3638 // the inverse condition code. 3639 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3640 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 3641 // The swapped inverse condition is legal, so swap true and false, 3642 // lhs and rhs. 3643 Legalized = true; 3644 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3645 } 3646 } 3647 3648 if (!Legalized) { 3649 Legalized = LegalizeSetCCCondCode( 3650 getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert, 3651 dl); 3652 3653 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3654 3655 // If we expanded the SETCC by inverting the condition code, then swap 3656 // the True/False operands to match. 3657 if (NeedInvert) 3658 std::swap(Tmp3, Tmp4); 3659 3660 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3661 // condition code, create a new SELECT_CC node. 3662 if (CC.getNode()) { 3663 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3664 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3665 } else { 3666 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3667 CC = DAG.getCondCode(ISD::SETNE); 3668 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3669 Tmp2, Tmp3, Tmp4, CC); 3670 } 3671 } 3672 Results.push_back(Tmp1); 3673 break; 3674 } 3675 case ISD::BR_CC: { 3676 Tmp1 = Node->getOperand(0); // Chain 3677 Tmp2 = Node->getOperand(2); // LHS 3678 Tmp3 = Node->getOperand(3); // RHS 3679 Tmp4 = Node->getOperand(1); // CC 3680 3681 bool Legalized = LegalizeSetCCCondCode(getSetCCResultType( 3682 Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl); 3683 (void)Legalized; 3684 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3685 3686 // If we expanded the SETCC by inverting the condition code, then wrap 3687 // the existing SETCC in a NOT to restore the intended condition. 3688 if (NeedInvert) 3689 Tmp4 = DAG.getNOT(dl, Tmp4, Tmp4->getValueType(0)); 3690 3691 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3692 // node. 3693 if (Tmp4.getNode()) { 3694 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3695 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3696 } else { 3697 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3698 Tmp4 = DAG.getCondCode(ISD::SETNE); 3699 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3700 Tmp2, Tmp3, Node->getOperand(4)); 3701 } 3702 Results.push_back(Tmp1); 3703 break; 3704 } 3705 case ISD::BUILD_VECTOR: 3706 Results.push_back(ExpandBUILD_VECTOR(Node)); 3707 break; 3708 case ISD::SRA: 3709 case ISD::SRL: 3710 case ISD::SHL: { 3711 // Scalarize vector SRA/SRL/SHL. 3712 EVT VT = Node->getValueType(0); 3713 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3714 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3715 unsigned NumElem = VT.getVectorNumElements(); 3716 3717 SmallVector<SDValue, 8> Scalars; 3718 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3719 SDValue Ex = DAG.getNode( 3720 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0), 3721 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3722 SDValue Sh = DAG.getNode( 3723 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1), 3724 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3725 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3726 VT.getScalarType(), Ex, Sh)); 3727 } 3728 3729 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 3730 ReplaceNode(SDValue(Node, 0), Result); 3731 break; 3732 } 3733 case ISD::GLOBAL_OFFSET_TABLE: 3734 case ISD::GlobalAddress: 3735 case ISD::GlobalTLSAddress: 3736 case ISD::ExternalSymbol: 3737 case ISD::ConstantPool: 3738 case ISD::JumpTable: 3739 case ISD::INTRINSIC_W_CHAIN: 3740 case ISD::INTRINSIC_WO_CHAIN: 3741 case ISD::INTRINSIC_VOID: 3742 // FIXME: Custom lowering for these operations shouldn't return null! 3743 break; 3744 } 3745 3746 // Replace the original node with the legalized result. 3747 if (Results.empty()) { 3748 LLVM_DEBUG(dbgs() << "Cannot expand node\n"); 3749 return false; 3750 } 3751 3752 LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); 3753 ReplaceNode(Node, Results.data()); 3754 return true; 3755 } 3756 3757 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 3758 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); 3759 SmallVector<SDValue, 8> Results; 3760 SDLoc dl(Node); 3761 // FIXME: Check flags on the node to see if we can use a finite call. 3762 bool CanUseFiniteLibCall = TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath; 3763 unsigned Opc = Node->getOpcode(); 3764 switch (Opc) { 3765 case ISD::ATOMIC_FENCE: { 3766 // If the target didn't lower this, lower it to '__sync_synchronize()' call 3767 // FIXME: handle "fence singlethread" more efficiently. 3768 TargetLowering::ArgListTy Args; 3769 3770 TargetLowering::CallLoweringInfo CLI(DAG); 3771 CLI.setDebugLoc(dl) 3772 .setChain(Node->getOperand(0)) 3773 .setLibCallee( 3774 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3775 DAG.getExternalSymbol("__sync_synchronize", 3776 TLI.getPointerTy(DAG.getDataLayout())), 3777 std::move(Args)); 3778 3779 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3780 3781 Results.push_back(CallResult.second); 3782 break; 3783 } 3784 // By default, atomic intrinsics are marked Legal and lowered. Targets 3785 // which don't support them directly, however, may want libcalls, in which 3786 // case they mark them Expand, and we get here. 3787 case ISD::ATOMIC_SWAP: 3788 case ISD::ATOMIC_LOAD_ADD: 3789 case ISD::ATOMIC_LOAD_SUB: 3790 case ISD::ATOMIC_LOAD_AND: 3791 case ISD::ATOMIC_LOAD_CLR: 3792 case ISD::ATOMIC_LOAD_OR: 3793 case ISD::ATOMIC_LOAD_XOR: 3794 case ISD::ATOMIC_LOAD_NAND: 3795 case ISD::ATOMIC_LOAD_MIN: 3796 case ISD::ATOMIC_LOAD_MAX: 3797 case ISD::ATOMIC_LOAD_UMIN: 3798 case ISD::ATOMIC_LOAD_UMAX: 3799 case ISD::ATOMIC_CMP_SWAP: { 3800 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 3801 RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT); 3802 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!"); 3803 3804 std::pair<SDValue, SDValue> Tmp = ExpandChainLibCall(LC, Node, false); 3805 Results.push_back(Tmp.first); 3806 Results.push_back(Tmp.second); 3807 break; 3808 } 3809 case ISD::TRAP: { 3810 // If this operation is not supported, lower it to 'abort()' call 3811 TargetLowering::ArgListTy Args; 3812 TargetLowering::CallLoweringInfo CLI(DAG); 3813 CLI.setDebugLoc(dl) 3814 .setChain(Node->getOperand(0)) 3815 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3816 DAG.getExternalSymbol( 3817 "abort", TLI.getPointerTy(DAG.getDataLayout())), 3818 std::move(Args)); 3819 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3820 3821 Results.push_back(CallResult.second); 3822 break; 3823 } 3824 case ISD::FMINNUM: 3825 case ISD::STRICT_FMINNUM: 3826 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 3827 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 3828 RTLIB::FMIN_PPCF128)); 3829 break; 3830 case ISD::FMAXNUM: 3831 case ISD::STRICT_FMAXNUM: 3832 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 3833 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 3834 RTLIB::FMAX_PPCF128)); 3835 break; 3836 case ISD::FSQRT: 3837 case ISD::STRICT_FSQRT: 3838 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3839 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 3840 RTLIB::SQRT_PPCF128)); 3841 break; 3842 case ISD::FCBRT: 3843 Results.push_back(ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, 3844 RTLIB::CBRT_F80, RTLIB::CBRT_F128, 3845 RTLIB::CBRT_PPCF128)); 3846 break; 3847 case ISD::FSIN: 3848 case ISD::STRICT_FSIN: 3849 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 3850 RTLIB::SIN_F80, RTLIB::SIN_F128, 3851 RTLIB::SIN_PPCF128)); 3852 break; 3853 case ISD::FCOS: 3854 case ISD::STRICT_FCOS: 3855 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 3856 RTLIB::COS_F80, RTLIB::COS_F128, 3857 RTLIB::COS_PPCF128)); 3858 break; 3859 case ISD::FSINCOS: 3860 // Expand into sincos libcall. 3861 ExpandSinCosLibCall(Node, Results); 3862 break; 3863 case ISD::FLOG: 3864 case ISD::STRICT_FLOG: 3865 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log_finite)) 3866 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_FINITE_F32, 3867 RTLIB::LOG_FINITE_F64, 3868 RTLIB::LOG_FINITE_F80, 3869 RTLIB::LOG_FINITE_F128, 3870 RTLIB::LOG_FINITE_PPCF128)); 3871 else 3872 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, 3873 RTLIB::LOG_F80, RTLIB::LOG_F128, 3874 RTLIB::LOG_PPCF128)); 3875 break; 3876 case ISD::FLOG2: 3877 case ISD::STRICT_FLOG2: 3878 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log2_finite)) 3879 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_FINITE_F32, 3880 RTLIB::LOG2_FINITE_F64, 3881 RTLIB::LOG2_FINITE_F80, 3882 RTLIB::LOG2_FINITE_F128, 3883 RTLIB::LOG2_FINITE_PPCF128)); 3884 else 3885 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 3886 RTLIB::LOG2_F80, RTLIB::LOG2_F128, 3887 RTLIB::LOG2_PPCF128)); 3888 break; 3889 case ISD::FLOG10: 3890 case ISD::STRICT_FLOG10: 3891 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log10_finite)) 3892 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_FINITE_F32, 3893 RTLIB::LOG10_FINITE_F64, 3894 RTLIB::LOG10_FINITE_F80, 3895 RTLIB::LOG10_FINITE_F128, 3896 RTLIB::LOG10_FINITE_PPCF128)); 3897 else 3898 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 3899 RTLIB::LOG10_F80, RTLIB::LOG10_F128, 3900 RTLIB::LOG10_PPCF128)); 3901 break; 3902 case ISD::FEXP: 3903 case ISD::STRICT_FEXP: 3904 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp_finite)) 3905 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_FINITE_F32, 3906 RTLIB::EXP_FINITE_F64, 3907 RTLIB::EXP_FINITE_F80, 3908 RTLIB::EXP_FINITE_F128, 3909 RTLIB::EXP_FINITE_PPCF128)); 3910 else 3911 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, 3912 RTLIB::EXP_F80, RTLIB::EXP_F128, 3913 RTLIB::EXP_PPCF128)); 3914 break; 3915 case ISD::FEXP2: 3916 case ISD::STRICT_FEXP2: 3917 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp2_finite)) 3918 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_FINITE_F32, 3919 RTLIB::EXP2_FINITE_F64, 3920 RTLIB::EXP2_FINITE_F80, 3921 RTLIB::EXP2_FINITE_F128, 3922 RTLIB::EXP2_FINITE_PPCF128)); 3923 else 3924 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 3925 RTLIB::EXP2_F80, RTLIB::EXP2_F128, 3926 RTLIB::EXP2_PPCF128)); 3927 break; 3928 case ISD::FTRUNC: 3929 case ISD::STRICT_FTRUNC: 3930 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 3931 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 3932 RTLIB::TRUNC_PPCF128)); 3933 break; 3934 case ISD::FFLOOR: 3935 case ISD::STRICT_FFLOOR: 3936 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 3937 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 3938 RTLIB::FLOOR_PPCF128)); 3939 break; 3940 case ISD::FCEIL: 3941 case ISD::STRICT_FCEIL: 3942 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 3943 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 3944 RTLIB::CEIL_PPCF128)); 3945 break; 3946 case ISD::FRINT: 3947 case ISD::STRICT_FRINT: 3948 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 3949 RTLIB::RINT_F80, RTLIB::RINT_F128, 3950 RTLIB::RINT_PPCF128)); 3951 break; 3952 case ISD::FNEARBYINT: 3953 case ISD::STRICT_FNEARBYINT: 3954 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 3955 RTLIB::NEARBYINT_F64, 3956 RTLIB::NEARBYINT_F80, 3957 RTLIB::NEARBYINT_F128, 3958 RTLIB::NEARBYINT_PPCF128)); 3959 break; 3960 case ISD::FROUND: 3961 case ISD::STRICT_FROUND: 3962 Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32, 3963 RTLIB::ROUND_F64, 3964 RTLIB::ROUND_F80, 3965 RTLIB::ROUND_F128, 3966 RTLIB::ROUND_PPCF128)); 3967 break; 3968 case ISD::FPOWI: 3969 case ISD::STRICT_FPOWI: 3970 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 3971 RTLIB::POWI_F80, RTLIB::POWI_F128, 3972 RTLIB::POWI_PPCF128)); 3973 break; 3974 case ISD::FPOW: 3975 case ISD::STRICT_FPOW: 3976 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_pow_finite)) 3977 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_FINITE_F32, 3978 RTLIB::POW_FINITE_F64, 3979 RTLIB::POW_FINITE_F80, 3980 RTLIB::POW_FINITE_F128, 3981 RTLIB::POW_FINITE_PPCF128)); 3982 else 3983 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, 3984 RTLIB::POW_F80, RTLIB::POW_F128, 3985 RTLIB::POW_PPCF128)); 3986 break; 3987 case ISD::FDIV: 3988 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 3989 RTLIB::DIV_F80, RTLIB::DIV_F128, 3990 RTLIB::DIV_PPCF128)); 3991 break; 3992 case ISD::FREM: 3993 case ISD::STRICT_FREM: 3994 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 3995 RTLIB::REM_F80, RTLIB::REM_F128, 3996 RTLIB::REM_PPCF128)); 3997 break; 3998 case ISD::FMA: 3999 case ISD::STRICT_FMA: 4000 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 4001 RTLIB::FMA_F80, RTLIB::FMA_F128, 4002 RTLIB::FMA_PPCF128)); 4003 break; 4004 case ISD::FADD: 4005 Results.push_back(ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 4006 RTLIB::ADD_F80, RTLIB::ADD_F128, 4007 RTLIB::ADD_PPCF128)); 4008 break; 4009 case ISD::FMUL: 4010 Results.push_back(ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 4011 RTLIB::MUL_F80, RTLIB::MUL_F128, 4012 RTLIB::MUL_PPCF128)); 4013 break; 4014 case ISD::FP16_TO_FP: 4015 if (Node->getValueType(0) == MVT::f32) { 4016 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 4017 } 4018 break; 4019 case ISD::FP_TO_FP16: { 4020 RTLIB::Libcall LC = 4021 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 4022 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 4023 Results.push_back(ExpandLibCall(LC, Node, false)); 4024 break; 4025 } 4026 case ISD::FSUB: 4027 Results.push_back(ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4028 RTLIB::SUB_F80, RTLIB::SUB_F128, 4029 RTLIB::SUB_PPCF128)); 4030 break; 4031 case ISD::SREM: 4032 Results.push_back(ExpandIntLibCall(Node, true, 4033 RTLIB::SREM_I8, 4034 RTLIB::SREM_I16, RTLIB::SREM_I32, 4035 RTLIB::SREM_I64, RTLIB::SREM_I128)); 4036 break; 4037 case ISD::UREM: 4038 Results.push_back(ExpandIntLibCall(Node, false, 4039 RTLIB::UREM_I8, 4040 RTLIB::UREM_I16, RTLIB::UREM_I32, 4041 RTLIB::UREM_I64, RTLIB::UREM_I128)); 4042 break; 4043 case ISD::SDIV: 4044 Results.push_back(ExpandIntLibCall(Node, true, 4045 RTLIB::SDIV_I8, 4046 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4047 RTLIB::SDIV_I64, RTLIB::SDIV_I128)); 4048 break; 4049 case ISD::UDIV: 4050 Results.push_back(ExpandIntLibCall(Node, false, 4051 RTLIB::UDIV_I8, 4052 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4053 RTLIB::UDIV_I64, RTLIB::UDIV_I128)); 4054 break; 4055 case ISD::SDIVREM: 4056 case ISD::UDIVREM: 4057 // Expand into divrem libcall 4058 ExpandDivRemLibCall(Node, Results); 4059 break; 4060 case ISD::MUL: 4061 Results.push_back(ExpandIntLibCall(Node, false, 4062 RTLIB::MUL_I8, 4063 RTLIB::MUL_I16, RTLIB::MUL_I32, 4064 RTLIB::MUL_I64, RTLIB::MUL_I128)); 4065 break; 4066 case ISD::CTLZ_ZERO_UNDEF: 4067 switch (Node->getSimpleValueType(0).SimpleTy) { 4068 default: 4069 llvm_unreachable("LibCall explicitly requested, but not available"); 4070 case MVT::i32: 4071 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false)); 4072 break; 4073 case MVT::i64: 4074 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false)); 4075 break; 4076 case MVT::i128: 4077 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false)); 4078 break; 4079 } 4080 break; 4081 } 4082 4083 // Replace the original node with the legalized result. 4084 if (!Results.empty()) { 4085 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); 4086 ReplaceNode(Node, Results.data()); 4087 } else 4088 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); 4089 } 4090 4091 // Determine the vector type to use in place of an original scalar element when 4092 // promoting equally sized vectors. 4093 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4094 MVT EltVT, MVT NewEltVT) { 4095 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4096 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4097 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4098 return MidVT; 4099 } 4100 4101 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4102 LLVM_DEBUG(dbgs() << "Trying to promote node\n"); 4103 SmallVector<SDValue, 8> Results; 4104 MVT OVT = Node->getSimpleValueType(0); 4105 if (Node->getOpcode() == ISD::UINT_TO_FP || 4106 Node->getOpcode() == ISD::SINT_TO_FP || 4107 Node->getOpcode() == ISD::SETCC || 4108 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4109 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4110 OVT = Node->getOperand(0).getSimpleValueType(); 4111 } 4112 if (Node->getOpcode() == ISD::BR_CC) 4113 OVT = Node->getOperand(2).getSimpleValueType(); 4114 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4115 SDLoc dl(Node); 4116 SDValue Tmp1, Tmp2, Tmp3; 4117 switch (Node->getOpcode()) { 4118 case ISD::CTTZ: 4119 case ISD::CTTZ_ZERO_UNDEF: 4120 case ISD::CTLZ: 4121 case ISD::CTLZ_ZERO_UNDEF: 4122 case ISD::CTPOP: 4123 // Zero extend the argument. 4124 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4125 if (Node->getOpcode() == ISD::CTTZ) { 4126 // The count is the same in the promoted type except if the original 4127 // value was zero. This can be handled by setting the bit just off 4128 // the top of the original type. 4129 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4130 OVT.getSizeInBits()); 4131 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4132 DAG.getConstant(TopBit, dl, NVT)); 4133 } 4134 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4135 // already the correct result. 4136 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4137 if (Node->getOpcode() == ISD::CTLZ || 4138 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4139 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4140 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4141 DAG.getConstant(NVT.getSizeInBits() - 4142 OVT.getSizeInBits(), dl, NVT)); 4143 } 4144 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4145 break; 4146 case ISD::BITREVERSE: 4147 case ISD::BSWAP: { 4148 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4149 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4150 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4151 Tmp1 = DAG.getNode( 4152 ISD::SRL, dl, NVT, Tmp1, 4153 DAG.getConstant(DiffBits, dl, 4154 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4155 4156 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4157 break; 4158 } 4159 case ISD::FP_TO_UINT: 4160 case ISD::FP_TO_SINT: 4161 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), 4162 Node->getOpcode() == ISD::FP_TO_SINT, dl); 4163 Results.push_back(Tmp1); 4164 break; 4165 case ISD::UINT_TO_FP: 4166 case ISD::SINT_TO_FP: 4167 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), 4168 Node->getOpcode() == ISD::SINT_TO_FP, dl); 4169 Results.push_back(Tmp1); 4170 break; 4171 case ISD::VAARG: { 4172 SDValue Chain = Node->getOperand(0); // Get the chain. 4173 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4174 4175 unsigned TruncOp; 4176 if (OVT.isVector()) { 4177 TruncOp = ISD::BITCAST; 4178 } else { 4179 assert(OVT.isInteger() 4180 && "VAARG promotion is supported only for vectors or integer types"); 4181 TruncOp = ISD::TRUNCATE; 4182 } 4183 4184 // Perform the larger operation, then convert back 4185 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4186 Node->getConstantOperandVal(3)); 4187 Chain = Tmp1.getValue(1); 4188 4189 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4190 4191 // Modified the chain result - switch anything that used the old chain to 4192 // use the new one. 4193 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4194 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4195 if (UpdatedNodes) { 4196 UpdatedNodes->insert(Tmp2.getNode()); 4197 UpdatedNodes->insert(Chain.getNode()); 4198 } 4199 ReplacedNode(Node); 4200 break; 4201 } 4202 case ISD::MUL: 4203 case ISD::SDIV: 4204 case ISD::SREM: 4205 case ISD::UDIV: 4206 case ISD::UREM: 4207 case ISD::AND: 4208 case ISD::OR: 4209 case ISD::XOR: { 4210 unsigned ExtOp, TruncOp; 4211 if (OVT.isVector()) { 4212 ExtOp = ISD::BITCAST; 4213 TruncOp = ISD::BITCAST; 4214 } else { 4215 assert(OVT.isInteger() && "Cannot promote logic operation"); 4216 4217 switch (Node->getOpcode()) { 4218 default: 4219 ExtOp = ISD::ANY_EXTEND; 4220 break; 4221 case ISD::SDIV: 4222 case ISD::SREM: 4223 ExtOp = ISD::SIGN_EXTEND; 4224 break; 4225 case ISD::UDIV: 4226 case ISD::UREM: 4227 ExtOp = ISD::ZERO_EXTEND; 4228 break; 4229 } 4230 TruncOp = ISD::TRUNCATE; 4231 } 4232 // Promote each of the values to the new type. 4233 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4234 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4235 // Perform the larger operation, then convert back 4236 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4237 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4238 break; 4239 } 4240 case ISD::UMUL_LOHI: 4241 case ISD::SMUL_LOHI: { 4242 // Promote to a multiply in a wider integer type. 4243 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 4244 : ISD::SIGN_EXTEND; 4245 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4246 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4247 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 4248 4249 auto &DL = DAG.getDataLayout(); 4250 unsigned OriginalSize = OVT.getScalarSizeInBits(); 4251 Tmp2 = DAG.getNode( 4252 ISD::SRL, dl, NVT, Tmp1, 4253 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 4254 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4255 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 4256 break; 4257 } 4258 case ISD::SELECT: { 4259 unsigned ExtOp, TruncOp; 4260 if (Node->getValueType(0).isVector() || 4261 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4262 ExtOp = ISD::BITCAST; 4263 TruncOp = ISD::BITCAST; 4264 } else if (Node->getValueType(0).isInteger()) { 4265 ExtOp = ISD::ANY_EXTEND; 4266 TruncOp = ISD::TRUNCATE; 4267 } else { 4268 ExtOp = ISD::FP_EXTEND; 4269 TruncOp = ISD::FP_ROUND; 4270 } 4271 Tmp1 = Node->getOperand(0); 4272 // Promote each of the values to the new type. 4273 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4274 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4275 // Perform the larger operation, then round down. 4276 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4277 if (TruncOp != ISD::FP_ROUND) 4278 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4279 else 4280 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4281 DAG.getIntPtrConstant(0, dl)); 4282 Results.push_back(Tmp1); 4283 break; 4284 } 4285 case ISD::VECTOR_SHUFFLE: { 4286 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4287 4288 // Cast the two input vectors. 4289 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4290 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4291 4292 // Convert the shuffle mask to the right # elements. 4293 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4294 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4295 Results.push_back(Tmp1); 4296 break; 4297 } 4298 case ISD::SETCC: { 4299 unsigned ExtOp = ISD::FP_EXTEND; 4300 if (NVT.isInteger()) { 4301 ISD::CondCode CCCode = 4302 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4303 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4304 } 4305 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4306 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4307 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 4308 Tmp1, Tmp2, Node->getOperand(2))); 4309 break; 4310 } 4311 case ISD::BR_CC: { 4312 unsigned ExtOp = ISD::FP_EXTEND; 4313 if (NVT.isInteger()) { 4314 ISD::CondCode CCCode = 4315 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4316 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4317 } 4318 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4319 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4320 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4321 Node->getOperand(0), Node->getOperand(1), 4322 Tmp1, Tmp2, Node->getOperand(4))); 4323 break; 4324 } 4325 case ISD::FADD: 4326 case ISD::FSUB: 4327 case ISD::FMUL: 4328 case ISD::FDIV: 4329 case ISD::FREM: 4330 case ISD::FMINNUM: 4331 case ISD::FMAXNUM: 4332 case ISD::FPOW: 4333 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4334 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4335 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4336 Node->getFlags()); 4337 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4338 Tmp3, DAG.getIntPtrConstant(0, dl))); 4339 break; 4340 case ISD::FMA: 4341 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4342 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4343 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4344 Results.push_back( 4345 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4346 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4347 DAG.getIntPtrConstant(0, dl))); 4348 break; 4349 case ISD::FCOPYSIGN: 4350 case ISD::FPOWI: { 4351 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4352 Tmp2 = Node->getOperand(1); 4353 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4354 4355 // fcopysign doesn't change anything but the sign bit, so 4356 // (fp_round (fcopysign (fpext a), b)) 4357 // is as precise as 4358 // (fp_round (fpext a)) 4359 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4360 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4361 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4362 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4363 break; 4364 } 4365 case ISD::FFLOOR: 4366 case ISD::FCEIL: 4367 case ISD::FRINT: 4368 case ISD::FNEARBYINT: 4369 case ISD::FROUND: 4370 case ISD::FTRUNC: 4371 case ISD::FNEG: 4372 case ISD::FSQRT: 4373 case ISD::FSIN: 4374 case ISD::FCOS: 4375 case ISD::FLOG: 4376 case ISD::FLOG2: 4377 case ISD::FLOG10: 4378 case ISD::FABS: 4379 case ISD::FEXP: 4380 case ISD::FEXP2: 4381 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4382 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4383 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4384 Tmp2, DAG.getIntPtrConstant(0, dl))); 4385 break; 4386 case ISD::BUILD_VECTOR: { 4387 MVT EltVT = OVT.getVectorElementType(); 4388 MVT NewEltVT = NVT.getVectorElementType(); 4389 4390 // Handle bitcasts to a different vector type with the same total bit size 4391 // 4392 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4393 // => 4394 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4395 4396 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4397 "Invalid promote type for build_vector"); 4398 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4399 4400 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4401 4402 SmallVector<SDValue, 8> NewOps; 4403 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4404 SDValue Op = Node->getOperand(I); 4405 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4406 } 4407 4408 SDLoc SL(Node); 4409 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4410 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4411 Results.push_back(CvtVec); 4412 break; 4413 } 4414 case ISD::EXTRACT_VECTOR_ELT: { 4415 MVT EltVT = OVT.getVectorElementType(); 4416 MVT NewEltVT = NVT.getVectorElementType(); 4417 4418 // Handle bitcasts to a different vector type with the same total bit size. 4419 // 4420 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4421 // => 4422 // v4i32:castx = bitcast x:v2i64 4423 // 4424 // i64 = bitcast 4425 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4426 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4427 // 4428 4429 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4430 "Invalid promote type for extract_vector_elt"); 4431 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4432 4433 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4434 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4435 4436 SDValue Idx = Node->getOperand(1); 4437 EVT IdxVT = Idx.getValueType(); 4438 SDLoc SL(Node); 4439 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4440 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4441 4442 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4443 4444 SmallVector<SDValue, 8> NewOps; 4445 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4446 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4447 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4448 4449 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4450 CastVec, TmpIdx); 4451 NewOps.push_back(Elt); 4452 } 4453 4454 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 4455 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4456 break; 4457 } 4458 case ISD::INSERT_VECTOR_ELT: { 4459 MVT EltVT = OVT.getVectorElementType(); 4460 MVT NewEltVT = NVT.getVectorElementType(); 4461 4462 // Handle bitcasts to a different vector type with the same total bit size 4463 // 4464 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4465 // => 4466 // v4i32:castx = bitcast x:v2i64 4467 // v2i32:casty = bitcast y:i64 4468 // 4469 // v2i64 = bitcast 4470 // (v4i32 insert_vector_elt 4471 // (v4i32 insert_vector_elt v4i32:castx, 4472 // (extract_vector_elt casty, 0), 2 * z), 4473 // (extract_vector_elt casty, 1), (2 * z + 1)) 4474 4475 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4476 "Invalid promote type for insert_vector_elt"); 4477 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4478 4479 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4480 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4481 4482 SDValue Val = Node->getOperand(1); 4483 SDValue Idx = Node->getOperand(2); 4484 EVT IdxVT = Idx.getValueType(); 4485 SDLoc SL(Node); 4486 4487 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 4488 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4489 4490 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4491 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4492 4493 SDValue NewVec = CastVec; 4494 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4495 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4496 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4497 4498 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4499 CastVal, IdxOffset); 4500 4501 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 4502 NewVec, Elt, InEltIdx); 4503 } 4504 4505 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 4506 break; 4507 } 4508 case ISD::SCALAR_TO_VECTOR: { 4509 MVT EltVT = OVT.getVectorElementType(); 4510 MVT NewEltVT = NVT.getVectorElementType(); 4511 4512 // Handle bitcasts to different vector type with the same total bit size. 4513 // 4514 // e.g. v2i64 = scalar_to_vector x:i64 4515 // => 4516 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 4517 // 4518 4519 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4520 SDValue Val = Node->getOperand(0); 4521 SDLoc SL(Node); 4522 4523 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4524 SDValue Undef = DAG.getUNDEF(MidVT); 4525 4526 SmallVector<SDValue, 8> NewElts; 4527 NewElts.push_back(CastVal); 4528 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 4529 NewElts.push_back(Undef); 4530 4531 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 4532 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4533 Results.push_back(CvtVec); 4534 break; 4535 } 4536 } 4537 4538 // Replace the original node with the legalized result. 4539 if (!Results.empty()) { 4540 LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); 4541 ReplaceNode(Node, Results.data()); 4542 } else 4543 LLVM_DEBUG(dbgs() << "Could not promote node\n"); 4544 } 4545 4546 /// This is the entry point for the file. 4547 void SelectionDAG::Legalize() { 4548 AssignTopologicalOrder(); 4549 4550 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4551 // Use a delete listener to remove nodes which were deleted during 4552 // legalization from LegalizeNodes. This is needed to handle the situation 4553 // where a new node is allocated by the object pool to the same address of a 4554 // previously deleted node. 4555 DAGNodeDeletedListener DeleteListener( 4556 *this, 4557 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 4558 4559 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 4560 4561 // Visit all the nodes. We start in topological order, so that we see 4562 // nodes with their original operands intact. Legalization can produce 4563 // new nodes which may themselves need to be legalized. Iterate until all 4564 // nodes have been legalized. 4565 while (true) { 4566 bool AnyLegalized = false; 4567 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 4568 --NI; 4569 4570 SDNode *N = &*NI; 4571 if (N->use_empty() && N != getRoot().getNode()) { 4572 ++NI; 4573 DeleteNode(N); 4574 continue; 4575 } 4576 4577 if (LegalizedNodes.insert(N).second) { 4578 AnyLegalized = true; 4579 Legalizer.LegalizeOp(N); 4580 4581 if (N->use_empty() && N != getRoot().getNode()) { 4582 ++NI; 4583 DeleteNode(N); 4584 } 4585 } 4586 } 4587 if (!AnyLegalized) 4588 break; 4589 4590 } 4591 4592 // Remove dead nodes now. 4593 RemoveDeadNodes(); 4594 } 4595 4596 bool SelectionDAG::LegalizeOp(SDNode *N, 4597 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 4598 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4599 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 4600 4601 // Directly insert the node in question, and legalize it. This will recurse 4602 // as needed through operands. 4603 LegalizedNodes.insert(N); 4604 Legalizer.LegalizeOp(N); 4605 4606 return LegalizedNodes.count(N); 4607 } 4608