1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::Legalize method. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/CodeGen/ISDOpcodes.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/MachineValueType.h" 26 #include "llvm/CodeGen/RuntimeLibcalls.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/SelectionDAGNodes.h" 29 #include "llvm/CodeGen/TargetFrameLowering.h" 30 #include "llvm/CodeGen/TargetLowering.h" 31 #include "llvm/CodeGen/TargetSubtargetInfo.h" 32 #include "llvm/CodeGen/ValueTypes.h" 33 #include "llvm/IR/CallingConv.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Compiler.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstdint> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "legalizedag" 57 58 namespace { 59 60 /// Keeps track of state when getting the sign of a floating-point value as an 61 /// integer. 62 struct FloatSignAsInt { 63 EVT FloatVT; 64 SDValue Chain; 65 SDValue FloatPtr; 66 SDValue IntPtr; 67 MachinePointerInfo IntPointerInfo; 68 MachinePointerInfo FloatPointerInfo; 69 SDValue IntValue; 70 APInt SignMask; 71 uint8_t SignBit; 72 }; 73 74 //===----------------------------------------------------------------------===// 75 /// This takes an arbitrary SelectionDAG as input and 76 /// hacks on it until the target machine can handle it. This involves 77 /// eliminating value sizes the machine cannot handle (promoting small sizes to 78 /// large sizes or splitting up large values into small values) as well as 79 /// eliminating operations the machine cannot handle. 80 /// 81 /// This code also does a small amount of optimization and recognition of idioms 82 /// as part of its processing. For example, if a target does not support a 83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 84 /// will attempt merge setcc and brc instructions into brcc's. 85 class SelectionDAGLegalize { 86 const TargetMachine &TM; 87 const TargetLowering &TLI; 88 SelectionDAG &DAG; 89 90 /// \brief The set of nodes which have already been legalized. We hold a 91 /// reference to it in order to update as necessary on node deletion. 92 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 93 94 /// \brief A set of all the nodes updated during legalization. 95 SmallSetVector<SDNode *, 16> *UpdatedNodes; 96 97 EVT getSetCCResultType(EVT VT) const { 98 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 99 } 100 101 // Libcall insertion helpers. 102 103 public: 104 SelectionDAGLegalize(SelectionDAG &DAG, 105 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 106 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 107 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 108 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 109 110 /// \brief Legalizes the given operation. 111 void LegalizeOp(SDNode *Node); 112 113 private: 114 SDValue OptimizeFloatStore(StoreSDNode *ST); 115 116 void LegalizeLoadOps(SDNode *Node); 117 void LegalizeStoreOps(SDNode *Node); 118 119 /// Some targets cannot handle a variable 120 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 121 /// is necessary to spill the vector being inserted into to memory, perform 122 /// the insert there, and then read the result back. 123 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 124 const SDLoc &dl); 125 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 126 const SDLoc &dl); 127 128 /// Return a vector shuffle operation which 129 /// performs the same shuffe in terms of order or result bytes, but on a type 130 /// whose vector element type is narrower than the original shuffle type. 131 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 132 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 133 SDValue N1, SDValue N2, 134 ArrayRef<int> Mask) const; 135 136 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 137 bool &NeedInvert, const SDLoc &dl); 138 139 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 140 SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops, 141 unsigned NumOps, bool isSigned, const SDLoc &dl); 142 143 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC, 144 SDNode *Node, bool isSigned); 145 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 146 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 147 RTLIB::Libcall Call_F128, 148 RTLIB::Libcall Call_PPCF128); 149 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 150 RTLIB::Libcall Call_I8, 151 RTLIB::Libcall Call_I16, 152 RTLIB::Libcall Call_I32, 153 RTLIB::Libcall Call_I64, 154 RTLIB::Libcall Call_I128); 155 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 156 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 157 158 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 159 const SDLoc &dl); 160 SDValue ExpandBUILD_VECTOR(SDNode *Node); 161 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 162 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 163 SmallVectorImpl<SDValue> &Results); 164 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 165 SDValue Value) const; 166 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 167 SDValue NewIntValue) const; 168 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 169 SDValue ExpandFABS(SDNode *Node) const; 170 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT, 171 const SDLoc &dl); 172 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, 173 const SDLoc &dl); 174 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, 175 const SDLoc &dl); 176 177 SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl); 178 SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl); 179 SDValue ExpandBitCount(unsigned Opc, SDValue Op, const SDLoc &dl); 180 181 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 182 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 183 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 184 185 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 186 SDValue ExpandConstant(ConstantSDNode *CP); 187 188 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 189 bool ExpandNode(SDNode *Node); 190 void ConvertNodeToLibcall(SDNode *Node); 191 void PromoteNode(SDNode *Node); 192 193 public: 194 // Node replacement helpers 195 196 void ReplacedNode(SDNode *N) { 197 LegalizedNodes.erase(N); 198 if (UpdatedNodes) 199 UpdatedNodes->insert(N); 200 } 201 202 void ReplaceNode(SDNode *Old, SDNode *New) { 203 DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 204 dbgs() << " with: "; New->dump(&DAG)); 205 206 assert(Old->getNumValues() == New->getNumValues() && 207 "Replacing one node with another that produces a different number " 208 "of values!"); 209 DAG.ReplaceAllUsesWith(Old, New); 210 if (UpdatedNodes) 211 UpdatedNodes->insert(New); 212 ReplacedNode(Old); 213 } 214 215 void ReplaceNode(SDValue Old, SDValue New) { 216 DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 217 dbgs() << " with: "; New->dump(&DAG)); 218 219 DAG.ReplaceAllUsesWith(Old, New); 220 if (UpdatedNodes) 221 UpdatedNodes->insert(New.getNode()); 222 ReplacedNode(Old.getNode()); 223 } 224 225 void ReplaceNode(SDNode *Old, const SDValue *New) { 226 DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 227 228 DAG.ReplaceAllUsesWith(Old, New); 229 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 230 DEBUG(dbgs() << (i == 0 ? " with: " 231 : " and: "); 232 New[i]->dump(&DAG)); 233 if (UpdatedNodes) 234 UpdatedNodes->insert(New[i].getNode()); 235 } 236 ReplacedNode(Old); 237 } 238 }; 239 240 } // end anonymous namespace 241 242 /// Return a vector shuffle operation which 243 /// performs the same shuffe in terms of order or result bytes, but on a type 244 /// whose vector element type is narrower than the original shuffle type. 245 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 246 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 247 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 248 ArrayRef<int> Mask) const { 249 unsigned NumMaskElts = VT.getVectorNumElements(); 250 unsigned NumDestElts = NVT.getVectorNumElements(); 251 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 252 253 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 254 255 if (NumEltsGrowth == 1) 256 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 257 258 SmallVector<int, 8> NewMask; 259 for (unsigned i = 0; i != NumMaskElts; ++i) { 260 int Idx = Mask[i]; 261 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 262 if (Idx < 0) 263 NewMask.push_back(-1); 264 else 265 NewMask.push_back(Idx * NumEltsGrowth + j); 266 } 267 } 268 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 269 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 270 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 271 } 272 273 /// Expands the ConstantFP node to an integer constant or 274 /// a load from the constant pool. 275 SDValue 276 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 277 bool Extend = false; 278 SDLoc dl(CFP); 279 280 // If a FP immediate is precise when represented as a float and if the 281 // target can do an extending load from float to double, we put it into 282 // the constant pool as a float, even if it's is statically typed as a 283 // double. This shrinks FP constants and canonicalizes them for targets where 284 // an FP extending load is the same cost as a normal load (such as on the x87 285 // fp stack or PPC FP unit). 286 EVT VT = CFP->getValueType(0); 287 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 288 if (!UseCP) { 289 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 290 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 291 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 292 } 293 294 APFloat APF = CFP->getValueAPF(); 295 EVT OrigVT = VT; 296 EVT SVT = VT; 297 298 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 299 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 300 if (!APF.isSignaling()) { 301 while (SVT != MVT::f32 && SVT != MVT::f16) { 302 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 303 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 304 // Only do this if the target has a native EXTLOAD instruction from 305 // smaller type. 306 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 307 TLI.ShouldShrinkFPConstant(OrigVT)) { 308 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 309 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 310 VT = SVT; 311 Extend = true; 312 } 313 } 314 } 315 316 SDValue CPIdx = 317 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 318 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 319 if (Extend) { 320 SDValue Result = DAG.getExtLoad( 321 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 322 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 323 Alignment); 324 return Result; 325 } 326 SDValue Result = DAG.getLoad( 327 OrigVT, dl, DAG.getEntryNode(), CPIdx, 328 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 329 return Result; 330 } 331 332 /// Expands the Constant node to a load from the constant pool. 333 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 334 SDLoc dl(CP); 335 EVT VT = CP->getValueType(0); 336 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 337 TLI.getPointerTy(DAG.getDataLayout())); 338 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 339 SDValue Result = DAG.getLoad( 340 VT, dl, DAG.getEntryNode(), CPIdx, 341 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 342 return Result; 343 } 344 345 /// Some target cannot handle a variable insertion index for the 346 /// INSERT_VECTOR_ELT instruction. In this case, it 347 /// is necessary to spill the vector being inserted into to memory, perform 348 /// the insert there, and then read the result back. 349 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 350 SDValue Val, 351 SDValue Idx, 352 const SDLoc &dl) { 353 SDValue Tmp1 = Vec; 354 SDValue Tmp2 = Val; 355 SDValue Tmp3 = Idx; 356 357 // If the target doesn't support this, we have to spill the input vector 358 // to a temporary stack slot, update the element, then reload it. This is 359 // badness. We could also load the value into a vector register (either 360 // with a "move to register" or "extload into register" instruction, then 361 // permute it into place, if the idx is a constant and if the idx is 362 // supported by the target. 363 EVT VT = Tmp1.getValueType(); 364 EVT EltVT = VT.getVectorElementType(); 365 SDValue StackPtr = DAG.CreateStackTemporary(VT); 366 367 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 368 369 // Store the vector. 370 SDValue Ch = DAG.getStore( 371 DAG.getEntryNode(), dl, Tmp1, StackPtr, 372 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 373 374 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 375 376 // Store the scalar value. 377 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT); 378 // Load the updated vector. 379 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 380 DAG.getMachineFunction(), SPFI)); 381 } 382 383 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 384 SDValue Idx, 385 const SDLoc &dl) { 386 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 387 // SCALAR_TO_VECTOR requires that the type of the value being inserted 388 // match the element type of the vector being created, except for 389 // integers in which case the inserted value can be over width. 390 EVT EltVT = Vec.getValueType().getVectorElementType(); 391 if (Val.getValueType() == EltVT || 392 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 393 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 394 Vec.getValueType(), Val); 395 396 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 397 // We generate a shuffle of InVec and ScVec, so the shuffle mask 398 // should be 0,1,2,3,4,5... with the appropriate element replaced with 399 // elt 0 of the RHS. 400 SmallVector<int, 8> ShufOps; 401 for (unsigned i = 0; i != NumElts; ++i) 402 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 403 404 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 405 } 406 } 407 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 408 } 409 410 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 411 DEBUG(dbgs() << "Optimizing float store operations\n"); 412 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 413 // FIXME: We shouldn't do this for TargetConstantFP's. 414 // FIXME: move this to the DAG Combiner! Note that we can't regress due 415 // to phase ordering between legalized code and the dag combiner. This 416 // probably means that we need to integrate dag combiner and legalizer 417 // together. 418 // We generally can't do this one for long doubles. 419 SDValue Chain = ST->getChain(); 420 SDValue Ptr = ST->getBasePtr(); 421 unsigned Alignment = ST->getAlignment(); 422 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 423 AAMDNodes AAInfo = ST->getAAInfo(); 424 SDLoc dl(ST); 425 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 426 if (CFP->getValueType(0) == MVT::f32 && 427 TLI.isTypeLegal(MVT::i32)) { 428 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 429 bitcastToAPInt().zextOrTrunc(32), 430 SDLoc(CFP), MVT::i32); 431 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), Alignment, 432 MMOFlags, AAInfo); 433 } 434 435 if (CFP->getValueType(0) == MVT::f64) { 436 // If this target supports 64-bit registers, do a single 64-bit store. 437 if (TLI.isTypeLegal(MVT::i64)) { 438 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 439 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 440 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 441 Alignment, MMOFlags, AAInfo); 442 } 443 444 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 445 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 446 // stores. If the target supports neither 32- nor 64-bits, this 447 // xform is certainly not worth it. 448 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 449 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 450 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 451 if (DAG.getDataLayout().isBigEndian()) 452 std::swap(Lo, Hi); 453 454 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), Alignment, 455 MMOFlags, AAInfo); 456 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 457 DAG.getConstant(4, dl, Ptr.getValueType())); 458 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 459 ST->getPointerInfo().getWithOffset(4), 460 MinAlign(Alignment, 4U), MMOFlags, AAInfo); 461 462 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 463 } 464 } 465 } 466 return SDValue(nullptr, 0); 467 } 468 469 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 470 StoreSDNode *ST = cast<StoreSDNode>(Node); 471 SDValue Chain = ST->getChain(); 472 SDValue Ptr = ST->getBasePtr(); 473 SDLoc dl(Node); 474 475 unsigned Alignment = ST->getAlignment(); 476 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 477 AAMDNodes AAInfo = ST->getAAInfo(); 478 479 if (!ST->isTruncatingStore()) { 480 DEBUG(dbgs() << "Legalizing store operation\n"); 481 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 482 ReplaceNode(ST, OptStore); 483 return; 484 } 485 486 SDValue Value = ST->getValue(); 487 MVT VT = Value.getSimpleValueType(); 488 switch (TLI.getOperationAction(ISD::STORE, VT)) { 489 default: llvm_unreachable("This action is not supported yet!"); 490 case TargetLowering::Legal: { 491 // If this is an unaligned store and the target doesn't support it, 492 // expand it. 493 EVT MemVT = ST->getMemoryVT(); 494 unsigned AS = ST->getAddressSpace(); 495 unsigned Align = ST->getAlignment(); 496 const DataLayout &DL = DAG.getDataLayout(); 497 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 498 DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 499 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 500 ReplaceNode(SDValue(ST, 0), Result); 501 } else 502 DEBUG(dbgs() << "Legal store\n"); 503 break; 504 } 505 case TargetLowering::Custom: { 506 DEBUG(dbgs() << "Trying custom lowering\n"); 507 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 508 if (Res && Res != SDValue(Node, 0)) 509 ReplaceNode(SDValue(Node, 0), Res); 510 return; 511 } 512 case TargetLowering::Promote: { 513 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 514 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 515 "Can only promote stores to same size type"); 516 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 517 SDValue Result = 518 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 519 Alignment, MMOFlags, AAInfo); 520 ReplaceNode(SDValue(Node, 0), Result); 521 break; 522 } 523 } 524 return; 525 } 526 527 DEBUG(dbgs() << "Legalizing truncating store operations\n"); 528 SDValue Value = ST->getValue(); 529 EVT StVT = ST->getMemoryVT(); 530 unsigned StWidth = StVT.getSizeInBits(); 531 auto &DL = DAG.getDataLayout(); 532 533 if (StWidth != StVT.getStoreSizeInBits()) { 534 // Promote to a byte-sized store with upper bits zero if not 535 // storing an integral number of bytes. For example, promote 536 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 537 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), 538 StVT.getStoreSizeInBits()); 539 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 540 SDValue Result = 541 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 542 Alignment, MMOFlags, AAInfo); 543 ReplaceNode(SDValue(Node, 0), Result); 544 } else if (StWidth & (StWidth - 1)) { 545 // If not storing a power-of-2 number of bits, expand as two stores. 546 assert(!StVT.isVector() && "Unsupported truncstore!"); 547 unsigned RoundWidth = 1 << Log2_32(StWidth); 548 assert(RoundWidth < StWidth); 549 unsigned ExtraWidth = StWidth - RoundWidth; 550 assert(ExtraWidth < RoundWidth); 551 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 552 "Store size not an integral number of bytes!"); 553 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 554 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 555 SDValue Lo, Hi; 556 unsigned IncrementSize; 557 558 if (DL.isLittleEndian()) { 559 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 560 // Store the bottom RoundWidth bits. 561 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 562 RoundVT, Alignment, MMOFlags, AAInfo); 563 564 // Store the remaining ExtraWidth bits. 565 IncrementSize = RoundWidth / 8; 566 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 567 DAG.getConstant(IncrementSize, dl, 568 Ptr.getValueType())); 569 Hi = DAG.getNode( 570 ISD::SRL, dl, Value.getValueType(), Value, 571 DAG.getConstant(RoundWidth, dl, 572 TLI.getShiftAmountTy(Value.getValueType(), DL))); 573 Hi = DAG.getTruncStore( 574 Chain, dl, Hi, Ptr, 575 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, 576 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); 577 } else { 578 // Big endian - avoid unaligned stores. 579 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 580 // Store the top RoundWidth bits. 581 Hi = DAG.getNode( 582 ISD::SRL, dl, Value.getValueType(), Value, 583 DAG.getConstant(ExtraWidth, dl, 584 TLI.getShiftAmountTy(Value.getValueType(), DL))); 585 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), 586 RoundVT, Alignment, MMOFlags, AAInfo); 587 588 // Store the remaining ExtraWidth bits. 589 IncrementSize = RoundWidth / 8; 590 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 591 DAG.getConstant(IncrementSize, dl, 592 Ptr.getValueType())); 593 Lo = DAG.getTruncStore( 594 Chain, dl, Value, Ptr, 595 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, 596 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); 597 } 598 599 // The order of the stores doesn't matter. 600 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 601 ReplaceNode(SDValue(Node, 0), Result); 602 } else { 603 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 604 default: llvm_unreachable("This action is not supported yet!"); 605 case TargetLowering::Legal: { 606 EVT MemVT = ST->getMemoryVT(); 607 unsigned AS = ST->getAddressSpace(); 608 unsigned Align = ST->getAlignment(); 609 // If this is an unaligned store and the target doesn't support it, 610 // expand it. 611 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 612 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 613 ReplaceNode(SDValue(ST, 0), Result); 614 } 615 break; 616 } 617 case TargetLowering::Custom: { 618 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 619 if (Res && Res != SDValue(Node, 0)) 620 ReplaceNode(SDValue(Node, 0), Res); 621 return; 622 } 623 case TargetLowering::Expand: 624 assert(!StVT.isVector() && 625 "Vector Stores are handled in LegalizeVectorOps"); 626 627 SDValue Result; 628 629 // TRUNCSTORE:i16 i32 -> STORE i16 630 if (TLI.isTypeLegal(StVT)) { 631 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 632 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 633 Alignment, MMOFlags, AAInfo); 634 } else { 635 // The in-memory type isn't legal. Truncate to the type it would promote 636 // to, and then do a truncstore. 637 Value = DAG.getNode(ISD::TRUNCATE, dl, 638 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 639 Value); 640 Result = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 641 StVT, Alignment, MMOFlags, AAInfo); 642 } 643 644 ReplaceNode(SDValue(Node, 0), Result); 645 break; 646 } 647 } 648 } 649 650 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 651 LoadSDNode *LD = cast<LoadSDNode>(Node); 652 SDValue Chain = LD->getChain(); // The chain. 653 SDValue Ptr = LD->getBasePtr(); // The base pointer. 654 SDValue Value; // The value returned by the load op. 655 SDLoc dl(Node); 656 657 ISD::LoadExtType ExtType = LD->getExtensionType(); 658 if (ExtType == ISD::NON_EXTLOAD) { 659 DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 660 MVT VT = Node->getSimpleValueType(0); 661 SDValue RVal = SDValue(Node, 0); 662 SDValue RChain = SDValue(Node, 1); 663 664 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 665 default: llvm_unreachable("This action is not supported yet!"); 666 case TargetLowering::Legal: { 667 EVT MemVT = LD->getMemoryVT(); 668 unsigned AS = LD->getAddressSpace(); 669 unsigned Align = LD->getAlignment(); 670 const DataLayout &DL = DAG.getDataLayout(); 671 // If this is an unaligned load and the target doesn't support it, 672 // expand it. 673 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 674 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 675 } 676 break; 677 } 678 case TargetLowering::Custom: 679 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 680 RVal = Res; 681 RChain = Res.getValue(1); 682 } 683 break; 684 685 case TargetLowering::Promote: { 686 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 687 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 688 "Can only promote loads to same size type"); 689 690 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 691 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 692 RChain = Res.getValue(1); 693 break; 694 } 695 } 696 if (RChain.getNode() != Node) { 697 assert(RVal.getNode() != Node && "Load must be completely replaced"); 698 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 699 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 700 if (UpdatedNodes) { 701 UpdatedNodes->insert(RVal.getNode()); 702 UpdatedNodes->insert(RChain.getNode()); 703 } 704 ReplacedNode(Node); 705 } 706 return; 707 } 708 709 DEBUG(dbgs() << "Legalizing extending load operation\n"); 710 EVT SrcVT = LD->getMemoryVT(); 711 unsigned SrcWidth = SrcVT.getSizeInBits(); 712 unsigned Alignment = LD->getAlignment(); 713 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 714 AAMDNodes AAInfo = LD->getAAInfo(); 715 716 if (SrcWidth != SrcVT.getStoreSizeInBits() && 717 // Some targets pretend to have an i1 loading operation, and actually 718 // load an i8. This trick is correct for ZEXTLOAD because the top 7 719 // bits are guaranteed to be zero; it helps the optimizers understand 720 // that these bits are zero. It is also useful for EXTLOAD, since it 721 // tells the optimizers that those bits are undefined. It would be 722 // nice to have an effective generic way of getting these benefits... 723 // Until such a way is found, don't insist on promoting i1 here. 724 (SrcVT != MVT::i1 || 725 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 726 TargetLowering::Promote)) { 727 // Promote to a byte-sized load if not loading an integral number of 728 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 729 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 730 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 731 SDValue Ch; 732 733 // The extra bits are guaranteed to be zero, since we stored them that 734 // way. A zext load from NVT thus automatically gives zext from SrcVT. 735 736 ISD::LoadExtType NewExtType = 737 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 738 739 SDValue Result = 740 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), Chain, Ptr, 741 LD->getPointerInfo(), NVT, Alignment, MMOFlags, AAInfo); 742 743 Ch = Result.getValue(1); // The chain. 744 745 if (ExtType == ISD::SEXTLOAD) 746 // Having the top bits zero doesn't help when sign extending. 747 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 748 Result.getValueType(), 749 Result, DAG.getValueType(SrcVT)); 750 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 751 // All the top bits are guaranteed to be zero - inform the optimizers. 752 Result = DAG.getNode(ISD::AssertZext, dl, 753 Result.getValueType(), Result, 754 DAG.getValueType(SrcVT)); 755 756 Value = Result; 757 Chain = Ch; 758 } else if (SrcWidth & (SrcWidth - 1)) { 759 // If not loading a power-of-2 number of bits, expand as two loads. 760 assert(!SrcVT.isVector() && "Unsupported extload!"); 761 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 762 assert(RoundWidth < SrcWidth); 763 unsigned ExtraWidth = SrcWidth - RoundWidth; 764 assert(ExtraWidth < RoundWidth); 765 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 766 "Load size not an integral number of bytes!"); 767 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 768 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 769 SDValue Lo, Hi, Ch; 770 unsigned IncrementSize; 771 auto &DL = DAG.getDataLayout(); 772 773 if (DL.isLittleEndian()) { 774 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 775 // Load the bottom RoundWidth bits. 776 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 777 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, 778 AAInfo); 779 780 // Load the remaining ExtraWidth bits. 781 IncrementSize = RoundWidth / 8; 782 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 783 DAG.getConstant(IncrementSize, dl, 784 Ptr.getValueType())); 785 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 786 LD->getPointerInfo().getWithOffset(IncrementSize), 787 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, 788 AAInfo); 789 790 // Build a factor node to remember that this load is independent of 791 // the other one. 792 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 793 Hi.getValue(1)); 794 795 // Move the top bits to the right place. 796 Hi = DAG.getNode( 797 ISD::SHL, dl, Hi.getValueType(), Hi, 798 DAG.getConstant(RoundWidth, dl, 799 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 800 801 // Join the hi and lo parts. 802 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 803 } else { 804 // Big endian - avoid unaligned loads. 805 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 806 // Load the top RoundWidth bits. 807 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 808 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, 809 AAInfo); 810 811 // Load the remaining ExtraWidth bits. 812 IncrementSize = RoundWidth / 8; 813 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 814 DAG.getConstant(IncrementSize, dl, 815 Ptr.getValueType())); 816 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 817 LD->getPointerInfo().getWithOffset(IncrementSize), 818 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, 819 AAInfo); 820 821 // Build a factor node to remember that this load is independent of 822 // the other one. 823 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 824 Hi.getValue(1)); 825 826 // Move the top bits to the right place. 827 Hi = DAG.getNode( 828 ISD::SHL, dl, Hi.getValueType(), Hi, 829 DAG.getConstant(ExtraWidth, dl, 830 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 831 832 // Join the hi and lo parts. 833 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 834 } 835 836 Chain = Ch; 837 } else { 838 bool isCustom = false; 839 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 840 SrcVT.getSimpleVT())) { 841 default: llvm_unreachable("This action is not supported yet!"); 842 case TargetLowering::Custom: 843 isCustom = true; 844 LLVM_FALLTHROUGH; 845 case TargetLowering::Legal: 846 Value = SDValue(Node, 0); 847 Chain = SDValue(Node, 1); 848 849 if (isCustom) { 850 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 851 Value = Res; 852 Chain = Res.getValue(1); 853 } 854 } else { 855 // If this is an unaligned load and the target doesn't support it, 856 // expand it. 857 EVT MemVT = LD->getMemoryVT(); 858 unsigned AS = LD->getAddressSpace(); 859 unsigned Align = LD->getAlignment(); 860 const DataLayout &DL = DAG.getDataLayout(); 861 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 862 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 863 } 864 } 865 break; 866 867 case TargetLowering::Expand: { 868 EVT DestVT = Node->getValueType(0); 869 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 870 // If the source type is not legal, see if there is a legal extload to 871 // an intermediate type that we can then extend further. 872 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 873 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 874 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 875 // If we are loading a legal type, this is a non-extload followed by a 876 // full extend. 877 ISD::LoadExtType MidExtType = 878 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 879 880 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 881 SrcVT, LD->getMemOperand()); 882 unsigned ExtendOp = 883 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 884 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 885 Chain = Load.getValue(1); 886 break; 887 } 888 889 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 890 // normal undefined upper bits behavior to allow using an in-reg extend 891 // with the illegal FP type, so load as an integer and do the 892 // from-integer conversion. 893 if (SrcVT.getScalarType() == MVT::f16) { 894 EVT ISrcVT = SrcVT.changeTypeToInteger(); 895 EVT IDestVT = DestVT.changeTypeToInteger(); 896 EVT LoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 897 898 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, LoadVT, 899 Chain, Ptr, ISrcVT, 900 LD->getMemOperand()); 901 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 902 Chain = Result.getValue(1); 903 break; 904 } 905 } 906 907 assert(!SrcVT.isVector() && 908 "Vector Loads are handled in LegalizeVectorOps"); 909 910 // FIXME: This does not work for vectors on most targets. Sign- 911 // and zero-extend operations are currently folded into extending 912 // loads, whether they are legal or not, and then we end up here 913 // without any support for legalizing them. 914 assert(ExtType != ISD::EXTLOAD && 915 "EXTLOAD should always be supported!"); 916 // Turn the unsupported load into an EXTLOAD followed by an 917 // explicit zero/sign extend inreg. 918 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 919 Node->getValueType(0), 920 Chain, Ptr, SrcVT, 921 LD->getMemOperand()); 922 SDValue ValRes; 923 if (ExtType == ISD::SEXTLOAD) 924 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 925 Result.getValueType(), 926 Result, DAG.getValueType(SrcVT)); 927 else 928 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); 929 Value = ValRes; 930 Chain = Result.getValue(1); 931 break; 932 } 933 } 934 } 935 936 // Since loads produce two values, make sure to remember that we legalized 937 // both of them. 938 if (Chain.getNode() != Node) { 939 assert(Value.getNode() != Node && "Load must be completely replaced"); 940 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 941 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 942 if (UpdatedNodes) { 943 UpdatedNodes->insert(Value.getNode()); 944 UpdatedNodes->insert(Chain.getNode()); 945 } 946 ReplacedNode(Node); 947 } 948 } 949 950 static TargetLowering::LegalizeAction 951 getStrictFPOpcodeAction(const TargetLowering &TLI, unsigned Opcode, EVT VT) { 952 unsigned EqOpc; 953 switch (Opcode) { 954 default: llvm_unreachable("Unexpected FP pseudo-opcode"); 955 case ISD::STRICT_FSQRT: EqOpc = ISD::FSQRT; break; 956 case ISD::STRICT_FPOW: EqOpc = ISD::FPOW; break; 957 case ISD::STRICT_FPOWI: EqOpc = ISD::FPOWI; break; 958 case ISD::STRICT_FMA: EqOpc = ISD::FMA; break; 959 case ISD::STRICT_FSIN: EqOpc = ISD::FSIN; break; 960 case ISD::STRICT_FCOS: EqOpc = ISD::FCOS; break; 961 case ISD::STRICT_FEXP: EqOpc = ISD::FEXP; break; 962 case ISD::STRICT_FEXP2: EqOpc = ISD::FEXP2; break; 963 case ISD::STRICT_FLOG: EqOpc = ISD::FLOG; break; 964 case ISD::STRICT_FLOG10: EqOpc = ISD::FLOG10; break; 965 case ISD::STRICT_FLOG2: EqOpc = ISD::FLOG2; break; 966 case ISD::STRICT_FRINT: EqOpc = ISD::FRINT; break; 967 case ISD::STRICT_FNEARBYINT: EqOpc = ISD::FNEARBYINT; break; 968 } 969 970 auto Action = TLI.getOperationAction(EqOpc, VT); 971 972 // We don't currently handle Custom or Promote for strict FP pseudo-ops. 973 // For now, we just expand for those cases. 974 if (Action != TargetLowering::Legal) 975 Action = TargetLowering::Expand; 976 977 return Action; 978 } 979 980 /// Return a legal replacement for the given operation, with all legal operands. 981 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 982 DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 983 984 // Allow illegal target nodes and illegal registers. 985 if (Node->getOpcode() == ISD::TargetConstant || 986 Node->getOpcode() == ISD::Register) 987 return; 988 989 #ifndef NDEBUG 990 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 991 assert((TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 992 TargetLowering::TypeLegal || 993 TLI.isTypeLegal(Node->getValueType(i))) && 994 "Unexpected illegal type!"); 995 996 for (const SDValue &Op : Node->op_values()) 997 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 998 TargetLowering::TypeLegal || 999 TLI.isTypeLegal(Op.getValueType()) || 1000 Op.getOpcode() == ISD::TargetConstant || 1001 Op.getOpcode() == ISD::Register) && 1002 "Unexpected illegal type!"); 1003 #endif 1004 1005 // Figure out the correct action; the way to query this varies by opcode 1006 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 1007 bool SimpleFinishLegalizing = true; 1008 switch (Node->getOpcode()) { 1009 case ISD::INTRINSIC_W_CHAIN: 1010 case ISD::INTRINSIC_WO_CHAIN: 1011 case ISD::INTRINSIC_VOID: 1012 case ISD::STACKSAVE: 1013 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 1014 break; 1015 case ISD::GET_DYNAMIC_AREA_OFFSET: 1016 Action = TLI.getOperationAction(Node->getOpcode(), 1017 Node->getValueType(0)); 1018 break; 1019 case ISD::VAARG: 1020 Action = TLI.getOperationAction(Node->getOpcode(), 1021 Node->getValueType(0)); 1022 if (Action != TargetLowering::Promote) 1023 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 1024 break; 1025 case ISD::FP_TO_FP16: 1026 case ISD::SINT_TO_FP: 1027 case ISD::UINT_TO_FP: 1028 case ISD::EXTRACT_VECTOR_ELT: 1029 Action = TLI.getOperationAction(Node->getOpcode(), 1030 Node->getOperand(0).getValueType()); 1031 break; 1032 case ISD::FP_ROUND_INREG: 1033 case ISD::SIGN_EXTEND_INREG: { 1034 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1035 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1036 break; 1037 } 1038 case ISD::ATOMIC_STORE: 1039 Action = TLI.getOperationAction(Node->getOpcode(), 1040 Node->getOperand(2).getValueType()); 1041 break; 1042 case ISD::SELECT_CC: 1043 case ISD::SETCC: 1044 case ISD::BR_CC: { 1045 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 1046 Node->getOpcode() == ISD::SETCC ? 2 : 1047 Node->getOpcode() == ISD::SETCCE ? 3 : 1; 1048 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; 1049 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1050 ISD::CondCode CCCode = 1051 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1052 Action = TLI.getCondCodeAction(CCCode, OpVT); 1053 if (Action == TargetLowering::Legal) { 1054 if (Node->getOpcode() == ISD::SELECT_CC) 1055 Action = TLI.getOperationAction(Node->getOpcode(), 1056 Node->getValueType(0)); 1057 else 1058 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1059 } 1060 break; 1061 } 1062 case ISD::LOAD: 1063 case ISD::STORE: 1064 // FIXME: Model these properly. LOAD and STORE are complicated, and 1065 // STORE expects the unlegalized operand in some cases. 1066 SimpleFinishLegalizing = false; 1067 break; 1068 case ISD::CALLSEQ_START: 1069 case ISD::CALLSEQ_END: 1070 // FIXME: This shouldn't be necessary. These nodes have special properties 1071 // dealing with the recursive nature of legalization. Removing this 1072 // special case should be done as part of making LegalizeDAG non-recursive. 1073 SimpleFinishLegalizing = false; 1074 break; 1075 case ISD::EXTRACT_ELEMENT: 1076 case ISD::FLT_ROUNDS_: 1077 case ISD::MERGE_VALUES: 1078 case ISD::EH_RETURN: 1079 case ISD::FRAME_TO_ARGS_OFFSET: 1080 case ISD::EH_DWARF_CFA: 1081 case ISD::EH_SJLJ_SETJMP: 1082 case ISD::EH_SJLJ_LONGJMP: 1083 case ISD::EH_SJLJ_SETUP_DISPATCH: 1084 // These operations lie about being legal: when they claim to be legal, 1085 // they should actually be expanded. 1086 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1087 if (Action == TargetLowering::Legal) 1088 Action = TargetLowering::Expand; 1089 break; 1090 case ISD::INIT_TRAMPOLINE: 1091 case ISD::ADJUST_TRAMPOLINE: 1092 case ISD::FRAMEADDR: 1093 case ISD::RETURNADDR: 1094 case ISD::ADDROFRETURNADDR: 1095 // These operations lie about being legal: when they claim to be legal, 1096 // they should actually be custom-lowered. 1097 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1098 if (Action == TargetLowering::Legal) 1099 Action = TargetLowering::Custom; 1100 break; 1101 case ISD::READCYCLECOUNTER: 1102 // READCYCLECOUNTER returns an i64, even if type legalization might have 1103 // expanded that to several smaller types. 1104 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1105 break; 1106 case ISD::READ_REGISTER: 1107 case ISD::WRITE_REGISTER: 1108 // Named register is legal in the DAG, but blocked by register name 1109 // selection if not implemented by target (to chose the correct register) 1110 // They'll be converted to Copy(To/From)Reg. 1111 Action = TargetLowering::Legal; 1112 break; 1113 case ISD::DEBUGTRAP: 1114 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1115 if (Action == TargetLowering::Expand) { 1116 // replace ISD::DEBUGTRAP with ISD::TRAP 1117 SDValue NewVal; 1118 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1119 Node->getOperand(0)); 1120 ReplaceNode(Node, NewVal.getNode()); 1121 LegalizeOp(NewVal.getNode()); 1122 return; 1123 } 1124 break; 1125 case ISD::STRICT_FSQRT: 1126 case ISD::STRICT_FMA: 1127 case ISD::STRICT_FPOW: 1128 case ISD::STRICT_FPOWI: 1129 case ISD::STRICT_FSIN: 1130 case ISD::STRICT_FCOS: 1131 case ISD::STRICT_FEXP: 1132 case ISD::STRICT_FEXP2: 1133 case ISD::STRICT_FLOG: 1134 case ISD::STRICT_FLOG10: 1135 case ISD::STRICT_FLOG2: 1136 case ISD::STRICT_FRINT: 1137 case ISD::STRICT_FNEARBYINT: 1138 // These pseudo-ops get legalized as if they were their non-strict 1139 // equivalent. For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT 1140 // is also legal, but if ISD::FSQRT requires expansion then so does 1141 // ISD::STRICT_FSQRT. 1142 Action = getStrictFPOpcodeAction(TLI, Node->getOpcode(), 1143 Node->getValueType(0)); 1144 break; 1145 default: 1146 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1147 Action = TargetLowering::Legal; 1148 } else { 1149 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1150 } 1151 break; 1152 } 1153 1154 if (SimpleFinishLegalizing) { 1155 SDNode *NewNode = Node; 1156 switch (Node->getOpcode()) { 1157 default: break; 1158 case ISD::SHL: 1159 case ISD::SRL: 1160 case ISD::SRA: 1161 case ISD::ROTL: 1162 case ISD::ROTR: { 1163 // Legalizing shifts/rotates requires adjusting the shift amount 1164 // to the appropriate width. 1165 SDValue Op0 = Node->getOperand(0); 1166 SDValue Op1 = Node->getOperand(1); 1167 if (!Op1.getValueType().isVector()) { 1168 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1169 // The getShiftAmountOperand() may create a new operand node or 1170 // return the existing one. If new operand is created we need 1171 // to update the parent node. 1172 // Do not try to legalize SAO here! It will be automatically legalized 1173 // in the next round. 1174 if (SAO != Op1) 1175 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1176 } 1177 } 1178 break; 1179 case ISD::SRL_PARTS: 1180 case ISD::SRA_PARTS: 1181 case ISD::SHL_PARTS: { 1182 // Legalizing shifts/rotates requires adjusting the shift amount 1183 // to the appropriate width. 1184 SDValue Op0 = Node->getOperand(0); 1185 SDValue Op1 = Node->getOperand(1); 1186 SDValue Op2 = Node->getOperand(2); 1187 if (!Op2.getValueType().isVector()) { 1188 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1189 // The getShiftAmountOperand() may create a new operand node or 1190 // return the existing one. If new operand is created we need 1191 // to update the parent node. 1192 if (SAO != Op2) 1193 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1194 } 1195 break; 1196 } 1197 } 1198 1199 if (NewNode != Node) { 1200 ReplaceNode(Node, NewNode); 1201 Node = NewNode; 1202 } 1203 switch (Action) { 1204 case TargetLowering::Legal: 1205 DEBUG(dbgs() << "Legal node: nothing to do\n"); 1206 return; 1207 case TargetLowering::Custom: 1208 DEBUG(dbgs() << "Trying custom legalization\n"); 1209 // FIXME: The handling for custom lowering with multiple results is 1210 // a complete mess. 1211 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1212 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1213 return; 1214 1215 if (Node->getNumValues() == 1) { 1216 DEBUG(dbgs() << "Successfully custom legalized node\n"); 1217 // We can just directly replace this node with the lowered value. 1218 ReplaceNode(SDValue(Node, 0), Res); 1219 return; 1220 } 1221 1222 SmallVector<SDValue, 8> ResultVals; 1223 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1224 ResultVals.push_back(Res.getValue(i)); 1225 DEBUG(dbgs() << "Successfully custom legalized node\n"); 1226 ReplaceNode(Node, ResultVals.data()); 1227 return; 1228 } 1229 DEBUG(dbgs() << "Could not custom legalize node\n"); 1230 LLVM_FALLTHROUGH; 1231 case TargetLowering::Expand: 1232 if (ExpandNode(Node)) 1233 return; 1234 LLVM_FALLTHROUGH; 1235 case TargetLowering::LibCall: 1236 ConvertNodeToLibcall(Node); 1237 return; 1238 case TargetLowering::Promote: 1239 PromoteNode(Node); 1240 return; 1241 } 1242 } 1243 1244 switch (Node->getOpcode()) { 1245 default: 1246 #ifndef NDEBUG 1247 dbgs() << "NODE: "; 1248 Node->dump( &DAG); 1249 dbgs() << "\n"; 1250 #endif 1251 llvm_unreachable("Do not know how to legalize this operator!"); 1252 1253 case ISD::CALLSEQ_START: 1254 case ISD::CALLSEQ_END: 1255 break; 1256 case ISD::LOAD: 1257 return LegalizeLoadOps(Node); 1258 case ISD::STORE: 1259 return LegalizeStoreOps(Node); 1260 } 1261 } 1262 1263 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1264 SDValue Vec = Op.getOperand(0); 1265 SDValue Idx = Op.getOperand(1); 1266 SDLoc dl(Op); 1267 1268 // Before we generate a new store to a temporary stack slot, see if there is 1269 // already one that we can use. There often is because when we scalarize 1270 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1271 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1272 // the vector. If all are expanded here, we don't want one store per vector 1273 // element. 1274 1275 // Caches for hasPredecessorHelper 1276 SmallPtrSet<const SDNode *, 32> Visited; 1277 SmallVector<const SDNode *, 16> Worklist; 1278 Worklist.push_back(Idx.getNode()); 1279 SDValue StackPtr, Ch; 1280 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), 1281 UE = Vec.getNode()->use_end(); UI != UE; ++UI) { 1282 SDNode *User = *UI; 1283 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1284 if (ST->isIndexed() || ST->isTruncatingStore() || 1285 ST->getValue() != Vec) 1286 continue; 1287 1288 // Make sure that nothing else could have stored into the destination of 1289 // this store. 1290 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1291 continue; 1292 1293 // If the index is dependent on the store we will introduce a cycle when 1294 // creating the load (the load uses the index, and by replacing the chain 1295 // we will make the index dependent on the load). Also, the store might be 1296 // dependent on the extractelement and introduce a cycle when creating 1297 // the load. 1298 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1299 ST->hasPredecessor(Op.getNode())) 1300 continue; 1301 1302 StackPtr = ST->getBasePtr(); 1303 Ch = SDValue(ST, 0); 1304 break; 1305 } 1306 } 1307 1308 EVT VecVT = Vec.getValueType(); 1309 1310 if (!Ch.getNode()) { 1311 // Store the value to a temporary stack slot, then LOAD the returned part. 1312 StackPtr = DAG.CreateStackTemporary(VecVT); 1313 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1314 MachinePointerInfo()); 1315 } 1316 1317 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1318 1319 SDValue NewLoad; 1320 1321 if (Op.getValueType().isVector()) 1322 NewLoad = 1323 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); 1324 else 1325 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1326 MachinePointerInfo(), 1327 VecVT.getVectorElementType()); 1328 1329 // Replace the chain going out of the store, by the one out of the load. 1330 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1331 1332 // We introduced a cycle though, so update the loads operands, making sure 1333 // to use the original store's chain as an incoming chain. 1334 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1335 NewLoad->op_end()); 1336 NewLoadOperands[0] = Ch; 1337 NewLoad = 1338 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1339 return NewLoad; 1340 } 1341 1342 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1343 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1344 1345 SDValue Vec = Op.getOperand(0); 1346 SDValue Part = Op.getOperand(1); 1347 SDValue Idx = Op.getOperand(2); 1348 SDLoc dl(Op); 1349 1350 // Store the value to a temporary stack slot, then LOAD the returned part. 1351 EVT VecVT = Vec.getValueType(); 1352 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1353 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1354 MachinePointerInfo PtrInfo = 1355 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1356 1357 // First store the whole vector. 1358 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1359 1360 // Then store the inserted part. 1361 SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1362 1363 // Store the subvector. 1364 Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, MachinePointerInfo()); 1365 1366 // Finally, load the updated vector. 1367 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1368 } 1369 1370 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1371 // We can't handle this case efficiently. Allocate a sufficiently 1372 // aligned object on the stack, store each element into it, then load 1373 // the result as a vector. 1374 // Create the stack frame object. 1375 EVT VT = Node->getValueType(0); 1376 EVT EltVT = VT.getVectorElementType(); 1377 SDLoc dl(Node); 1378 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1379 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1380 MachinePointerInfo PtrInfo = 1381 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1382 1383 // Emit a store of each element to the stack slot. 1384 SmallVector<SDValue, 8> Stores; 1385 unsigned TypeByteSize = EltVT.getSizeInBits() / 8; 1386 // Store (in the right endianness) the elements to memory. 1387 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1388 // Ignore undef elements. 1389 if (Node->getOperand(i).isUndef()) continue; 1390 1391 unsigned Offset = TypeByteSize*i; 1392 1393 SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType()); 1394 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); 1395 1396 // If the destination vector element type is narrower than the source 1397 // element type, only store the bits necessary. 1398 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { 1399 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1400 Node->getOperand(i), Idx, 1401 PtrInfo.getWithOffset(Offset), EltVT)); 1402 } else 1403 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1404 Idx, PtrInfo.getWithOffset(Offset))); 1405 } 1406 1407 SDValue StoreChain; 1408 if (!Stores.empty()) // Not all undef elements? 1409 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1410 else 1411 StoreChain = DAG.getEntryNode(); 1412 1413 // Result is a load from the stack slot. 1414 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1415 } 1416 1417 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1418 /// containing the sign bit if the target has no integer value capable of 1419 /// holding all bits of the floating-point value. 1420 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1421 const SDLoc &DL, 1422 SDValue Value) const { 1423 EVT FloatVT = Value.getValueType(); 1424 unsigned NumBits = FloatVT.getSizeInBits(); 1425 State.FloatVT = FloatVT; 1426 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1427 // Convert to an integer of the same size. 1428 if (TLI.isTypeLegal(IVT)) { 1429 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1430 State.SignMask = APInt::getSignMask(NumBits); 1431 State.SignBit = NumBits - 1; 1432 return; 1433 } 1434 1435 auto &DataLayout = DAG.getDataLayout(); 1436 // Store the float to memory, then load the sign part out as an integer. 1437 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1438 // First create a temporary that is aligned for both the load and store. 1439 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1440 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1441 // Then store the float to it. 1442 State.FloatPtr = StackPtr; 1443 MachineFunction &MF = DAG.getMachineFunction(); 1444 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1445 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1446 State.FloatPointerInfo); 1447 1448 SDValue IntPtr; 1449 if (DataLayout.isBigEndian()) { 1450 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1451 // Load out a legal integer with the same sign bit as the float. 1452 IntPtr = StackPtr; 1453 State.IntPointerInfo = State.FloatPointerInfo; 1454 } else { 1455 // Advance the pointer so that the loaded byte will contain the sign bit. 1456 unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1; 1457 IntPtr = DAG.getNode(ISD::ADD, DL, StackPtr.getValueType(), StackPtr, 1458 DAG.getConstant(ByteOffset, DL, StackPtr.getValueType())); 1459 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1460 ByteOffset); 1461 } 1462 1463 State.IntPtr = IntPtr; 1464 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1465 State.IntPointerInfo, MVT::i8); 1466 State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7); 1467 State.SignBit = 7; 1468 } 1469 1470 /// Replace the integer value produced by getSignAsIntValue() with a new value 1471 /// and cast the result back to a floating-point type. 1472 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1473 const SDLoc &DL, 1474 SDValue NewIntValue) const { 1475 if (!State.Chain) 1476 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1477 1478 // Override the part containing the sign bit in the value stored on the stack. 1479 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1480 State.IntPointerInfo, MVT::i8); 1481 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1482 State.FloatPointerInfo); 1483 } 1484 1485 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1486 SDLoc DL(Node); 1487 SDValue Mag = Node->getOperand(0); 1488 SDValue Sign = Node->getOperand(1); 1489 1490 // Get sign bit into an integer value. 1491 FloatSignAsInt SignAsInt; 1492 getSignAsIntValue(SignAsInt, DL, Sign); 1493 1494 EVT IntVT = SignAsInt.IntValue.getValueType(); 1495 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1496 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1497 SignMask); 1498 1499 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1500 EVT FloatVT = Mag.getValueType(); 1501 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1502 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1503 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1504 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1505 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1506 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1507 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1508 } 1509 1510 // Transform Mag value to integer, and clear the sign bit. 1511 FloatSignAsInt MagAsInt; 1512 getSignAsIntValue(MagAsInt, DL, Mag); 1513 EVT MagVT = MagAsInt.IntValue.getValueType(); 1514 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1515 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1516 ClearSignMask); 1517 1518 // Get the signbit at the right position for MagAsInt. 1519 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1520 if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) { 1521 if (ShiftAmount > 0) { 1522 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, IntVT); 1523 SignBit = DAG.getNode(ISD::SRL, DL, IntVT, SignBit, ShiftCnst); 1524 } else if (ShiftAmount < 0) { 1525 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, IntVT); 1526 SignBit = DAG.getNode(ISD::SHL, DL, IntVT, SignBit, ShiftCnst); 1527 } 1528 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1529 } else if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) { 1530 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1531 if (ShiftAmount > 0) { 1532 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, MagVT); 1533 SignBit = DAG.getNode(ISD::SRL, DL, MagVT, SignBit, ShiftCnst); 1534 } else if (ShiftAmount < 0) { 1535 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, MagVT); 1536 SignBit = DAG.getNode(ISD::SHL, DL, MagVT, SignBit, ShiftCnst); 1537 } 1538 } 1539 1540 // Store the part with the modified sign and convert back to float. 1541 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1542 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1543 } 1544 1545 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1546 SDLoc DL(Node); 1547 SDValue Value = Node->getOperand(0); 1548 1549 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1550 EVT FloatVT = Value.getValueType(); 1551 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1552 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1553 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1554 } 1555 1556 // Transform value to integer, clear the sign bit and transform back. 1557 FloatSignAsInt ValueAsInt; 1558 getSignAsIntValue(ValueAsInt, DL, Value); 1559 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1560 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1561 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1562 ClearSignMask); 1563 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1564 } 1565 1566 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1567 SmallVectorImpl<SDValue> &Results) { 1568 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1569 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1570 " not tell us which reg is the stack pointer!"); 1571 SDLoc dl(Node); 1572 EVT VT = Node->getValueType(0); 1573 SDValue Tmp1 = SDValue(Node, 0); 1574 SDValue Tmp2 = SDValue(Node, 1); 1575 SDValue Tmp3 = Node->getOperand(2); 1576 SDValue Chain = Tmp1.getOperand(0); 1577 1578 // Chain the dynamic stack allocation so that it doesn't modify the stack 1579 // pointer when other instructions are using the stack. 1580 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1581 1582 SDValue Size = Tmp2.getOperand(1); 1583 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1584 Chain = SP.getValue(1); 1585 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1586 unsigned StackAlign = 1587 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 1588 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 1589 if (Align > StackAlign) 1590 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1591 DAG.getConstant(-(uint64_t)Align, dl, VT)); 1592 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1593 1594 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1595 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1596 1597 Results.push_back(Tmp1); 1598 Results.push_back(Tmp2); 1599 } 1600 1601 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current 1602 /// target. 1603 /// 1604 /// If the SETCC has been legalized using AND / OR, then the legalized node 1605 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert 1606 /// will be set to false. 1607 /// 1608 /// If the SETCC has been legalized by using getSetCCSwappedOperands(), 1609 /// then the values of LHS and RHS will be swapped, CC will be set to the 1610 /// new condition, and NeedInvert will be set to false. 1611 /// 1612 /// If the SETCC has been legalized using the inverse condcode, then LHS and 1613 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert 1614 /// will be set to true. The caller must invert the result of the SETCC with 1615 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect 1616 /// of a true/false result. 1617 /// 1618 /// \returns true if the SetCC has been legalized, false if it hasn't. 1619 bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, SDValue &LHS, 1620 SDValue &RHS, SDValue &CC, 1621 bool &NeedInvert, 1622 const SDLoc &dl) { 1623 MVT OpVT = LHS.getSimpleValueType(); 1624 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1625 NeedInvert = false; 1626 bool NeedSwap = false; 1627 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1628 default: llvm_unreachable("Unknown condition code action!"); 1629 case TargetLowering::Legal: 1630 // Nothing to do. 1631 break; 1632 case TargetLowering::Expand: { 1633 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 1634 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1635 std::swap(LHS, RHS); 1636 CC = DAG.getCondCode(InvCC); 1637 return true; 1638 } 1639 // Swapping operands didn't work. Try inverting the condition. 1640 InvCC = getSetCCInverse(CCCode, OpVT.isInteger()); 1641 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1642 // If inverting the condition is not enough, try swapping operands 1643 // on top of it. 1644 InvCC = ISD::getSetCCSwappedOperands(InvCC); 1645 NeedSwap = true; 1646 } 1647 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1648 CC = DAG.getCondCode(InvCC); 1649 NeedInvert = true; 1650 if (NeedSwap) 1651 std::swap(LHS, RHS); 1652 return true; 1653 } 1654 1655 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1656 unsigned Opc = 0; 1657 switch (CCCode) { 1658 default: llvm_unreachable("Don't know how to expand this condition!"); 1659 case ISD::SETO: 1660 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) 1661 && "If SETO is expanded, SETOEQ must be legal!"); 1662 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; 1663 case ISD::SETUO: 1664 assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT) 1665 && "If SETUO is expanded, SETUNE must be legal!"); 1666 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break; 1667 case ISD::SETOEQ: 1668 case ISD::SETOGT: 1669 case ISD::SETOGE: 1670 case ISD::SETOLT: 1671 case ISD::SETOLE: 1672 case ISD::SETONE: 1673 case ISD::SETUEQ: 1674 case ISD::SETUNE: 1675 case ISD::SETUGT: 1676 case ISD::SETUGE: 1677 case ISD::SETULT: 1678 case ISD::SETULE: 1679 // If we are floating point, assign and break, otherwise fall through. 1680 if (!OpVT.isInteger()) { 1681 // We can use the 4th bit to tell if we are the unordered 1682 // or ordered version of the opcode. 1683 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 1684 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 1685 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 1686 break; 1687 } 1688 // Fallthrough if we are unsigned integer. 1689 LLVM_FALLTHROUGH; 1690 case ISD::SETLE: 1691 case ISD::SETGT: 1692 case ISD::SETGE: 1693 case ISD::SETLT: 1694 case ISD::SETNE: 1695 case ISD::SETEQ: 1696 // If all combinations of inverting the condition and swapping operands 1697 // didn't work then we have no means to expand the condition. 1698 llvm_unreachable("Don't know how to expand this condition!"); 1699 } 1700 1701 SDValue SetCC1, SetCC2; 1702 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 1703 // If we aren't the ordered or unorder operation, 1704 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 1705 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); 1706 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); 1707 } else { 1708 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 1709 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1); 1710 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2); 1711 } 1712 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1713 RHS = SDValue(); 1714 CC = SDValue(); 1715 return true; 1716 } 1717 } 1718 return false; 1719 } 1720 1721 /// Emit a store/load combination to the stack. This stores 1722 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1723 /// a load from the stack slot to DestVT, extending it if needed. 1724 /// The resultant code need not be legal. 1725 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1726 EVT DestVT, const SDLoc &dl) { 1727 // Create the stack frame object. 1728 unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment( 1729 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1730 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 1731 1732 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1733 int SPFI = StackPtrFI->getIndex(); 1734 MachinePointerInfo PtrInfo = 1735 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1736 1737 unsigned SrcSize = SrcOp.getValueSizeInBits(); 1738 unsigned SlotSize = SlotVT.getSizeInBits(); 1739 unsigned DestSize = DestVT.getSizeInBits(); 1740 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1741 unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType); 1742 1743 // Emit a store to the stack slot. Use a truncstore if the input value is 1744 // later than DestVT. 1745 SDValue Store; 1746 1747 if (SrcSize > SlotSize) 1748 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, PtrInfo, 1749 SlotVT, SrcAlign); 1750 else { 1751 assert(SrcSize == SlotSize && "Invalid store"); 1752 Store = 1753 DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1754 } 1755 1756 // Result is a load from the stack slot. 1757 if (SlotSize == DestSize) 1758 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1759 1760 assert(SlotSize < DestSize && "Unknown extension!"); 1761 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1762 DestAlign); 1763 } 1764 1765 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1766 SDLoc dl(Node); 1767 // Create a vector sized/aligned stack slot, store the value to element #0, 1768 // then load the whole vector back out. 1769 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1770 1771 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1772 int SPFI = StackPtrFI->getIndex(); 1773 1774 SDValue Ch = DAG.getTruncStore( 1775 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1776 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1777 Node->getValueType(0).getVectorElementType()); 1778 return DAG.getLoad( 1779 Node->getValueType(0), dl, Ch, StackPtr, 1780 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1781 } 1782 1783 static bool 1784 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1785 const TargetLowering &TLI, SDValue &Res) { 1786 unsigned NumElems = Node->getNumOperands(); 1787 SDLoc dl(Node); 1788 EVT VT = Node->getValueType(0); 1789 1790 // Try to group the scalars into pairs, shuffle the pairs together, then 1791 // shuffle the pairs of pairs together, etc. until the vector has 1792 // been built. This will work only if all of the necessary shuffle masks 1793 // are legal. 1794 1795 // We do this in two phases; first to check the legality of the shuffles, 1796 // and next, assuming that all shuffles are legal, to create the new nodes. 1797 for (int Phase = 0; Phase < 2; ++Phase) { 1798 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1799 NewIntermedVals; 1800 for (unsigned i = 0; i < NumElems; ++i) { 1801 SDValue V = Node->getOperand(i); 1802 if (V.isUndef()) 1803 continue; 1804 1805 SDValue Vec; 1806 if (Phase) 1807 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1808 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1809 } 1810 1811 while (IntermedVals.size() > 2) { 1812 NewIntermedVals.clear(); 1813 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1814 // This vector and the next vector are shuffled together (simply to 1815 // append the one to the other). 1816 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1817 1818 SmallVector<int, 16> FinalIndices; 1819 FinalIndices.reserve(IntermedVals[i].second.size() + 1820 IntermedVals[i+1].second.size()); 1821 1822 int k = 0; 1823 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1824 ++j, ++k) { 1825 ShuffleVec[k] = j; 1826 FinalIndices.push_back(IntermedVals[i].second[j]); 1827 } 1828 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1829 ++j, ++k) { 1830 ShuffleVec[k] = NumElems + j; 1831 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1832 } 1833 1834 SDValue Shuffle; 1835 if (Phase) 1836 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1837 IntermedVals[i+1].first, 1838 ShuffleVec); 1839 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1840 return false; 1841 NewIntermedVals.push_back( 1842 std::make_pair(Shuffle, std::move(FinalIndices))); 1843 } 1844 1845 // If we had an odd number of defined values, then append the last 1846 // element to the array of new vectors. 1847 if ((IntermedVals.size() & 1) != 0) 1848 NewIntermedVals.push_back(IntermedVals.back()); 1849 1850 IntermedVals.swap(NewIntermedVals); 1851 } 1852 1853 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1854 "Invalid number of intermediate vectors"); 1855 SDValue Vec1 = IntermedVals[0].first; 1856 SDValue Vec2; 1857 if (IntermedVals.size() > 1) 1858 Vec2 = IntermedVals[1].first; 1859 else if (Phase) 1860 Vec2 = DAG.getUNDEF(VT); 1861 1862 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1863 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1864 ShuffleVec[IntermedVals[0].second[i]] = i; 1865 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1866 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1867 1868 if (Phase) 1869 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1870 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1871 return false; 1872 } 1873 1874 return true; 1875 } 1876 1877 /// Expand a BUILD_VECTOR node on targets that don't 1878 /// support the operation, but do support the resultant vector type. 1879 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1880 unsigned NumElems = Node->getNumOperands(); 1881 SDValue Value1, Value2; 1882 SDLoc dl(Node); 1883 EVT VT = Node->getValueType(0); 1884 EVT OpVT = Node->getOperand(0).getValueType(); 1885 EVT EltVT = VT.getVectorElementType(); 1886 1887 // If the only non-undef value is the low element, turn this into a 1888 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1889 bool isOnlyLowElement = true; 1890 bool MoreThanTwoValues = false; 1891 bool isConstant = true; 1892 for (unsigned i = 0; i < NumElems; ++i) { 1893 SDValue V = Node->getOperand(i); 1894 if (V.isUndef()) 1895 continue; 1896 if (i > 0) 1897 isOnlyLowElement = false; 1898 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1899 isConstant = false; 1900 1901 if (!Value1.getNode()) { 1902 Value1 = V; 1903 } else if (!Value2.getNode()) { 1904 if (V != Value1) 1905 Value2 = V; 1906 } else if (V != Value1 && V != Value2) { 1907 MoreThanTwoValues = true; 1908 } 1909 } 1910 1911 if (!Value1.getNode()) 1912 return DAG.getUNDEF(VT); 1913 1914 if (isOnlyLowElement) 1915 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1916 1917 // If all elements are constants, create a load from the constant pool. 1918 if (isConstant) { 1919 SmallVector<Constant*, 16> CV; 1920 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1921 if (ConstantFPSDNode *V = 1922 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1923 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1924 } else if (ConstantSDNode *V = 1925 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1926 if (OpVT==EltVT) 1927 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1928 else { 1929 // If OpVT and EltVT don't match, EltVT is not legal and the 1930 // element values have been promoted/truncated earlier. Undo this; 1931 // we don't want a v16i8 to become a v16i32 for example. 1932 const ConstantInt *CI = V->getConstantIntValue(); 1933 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1934 CI->getZExtValue())); 1935 } 1936 } else { 1937 assert(Node->getOperand(i).isUndef()); 1938 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1939 CV.push_back(UndefValue::get(OpNTy)); 1940 } 1941 } 1942 Constant *CP = ConstantVector::get(CV); 1943 SDValue CPIdx = 1944 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 1945 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 1946 return DAG.getLoad( 1947 VT, dl, DAG.getEntryNode(), CPIdx, 1948 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 1949 Alignment); 1950 } 1951 1952 SmallSet<SDValue, 16> DefinedValues; 1953 for (unsigned i = 0; i < NumElems; ++i) { 1954 if (Node->getOperand(i).isUndef()) 1955 continue; 1956 DefinedValues.insert(Node->getOperand(i)); 1957 } 1958 1959 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 1960 if (!MoreThanTwoValues) { 1961 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1962 for (unsigned i = 0; i < NumElems; ++i) { 1963 SDValue V = Node->getOperand(i); 1964 if (V.isUndef()) 1965 continue; 1966 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1967 } 1968 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1969 // Get the splatted value into the low element of a vector register. 1970 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1971 SDValue Vec2; 1972 if (Value2.getNode()) 1973 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 1974 else 1975 Vec2 = DAG.getUNDEF(VT); 1976 1977 // Return shuffle(LowValVec, undef, <0,0,0,0>) 1978 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1979 } 1980 } else { 1981 SDValue Res; 1982 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 1983 return Res; 1984 } 1985 } 1986 1987 // Otherwise, we can't handle this case efficiently. 1988 return ExpandVectorBuildThroughStack(Node); 1989 } 1990 1991 // Expand a node into a call to a libcall. If the result value 1992 // does not fit into a register, return the lo part and set the hi part to the 1993 // by-reg argument. If it does fit into a single register, return the result 1994 // and leave the Hi part unset. 1995 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 1996 bool isSigned) { 1997 TargetLowering::ArgListTy Args; 1998 TargetLowering::ArgListEntry Entry; 1999 for (const SDValue &Op : Node->op_values()) { 2000 EVT ArgVT = Op.getValueType(); 2001 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2002 Entry.Node = Op; 2003 Entry.Ty = ArgTy; 2004 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2005 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2006 Args.push_back(Entry); 2007 } 2008 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2009 TLI.getPointerTy(DAG.getDataLayout())); 2010 2011 EVT RetVT = Node->getValueType(0); 2012 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2013 2014 // By default, the input chain to this libcall is the entry node of the 2015 // function. If the libcall is going to be emitted as a tail call then 2016 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2017 // node which is being folded has a non-entry input chain. 2018 SDValue InChain = DAG.getEntryNode(); 2019 2020 // isTailCall may be true since the callee does not reference caller stack 2021 // frame. Check if it's in the right position and that the return types match. 2022 SDValue TCChain = InChain; 2023 const Function &F = DAG.getMachineFunction().getFunction(); 2024 bool isTailCall = 2025 TLI.isInTailCallPosition(DAG, Node, TCChain) && 2026 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 2027 if (isTailCall) 2028 InChain = TCChain; 2029 2030 TargetLowering::CallLoweringInfo CLI(DAG); 2031 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2032 CLI.setDebugLoc(SDLoc(Node)) 2033 .setChain(InChain) 2034 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2035 std::move(Args)) 2036 .setTailCall(isTailCall) 2037 .setSExtResult(signExtend) 2038 .setZExtResult(!signExtend) 2039 .setIsPostTypeLegalization(true); 2040 2041 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2042 2043 if (!CallInfo.second.getNode()) { 2044 DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump()); 2045 // It's a tailcall, return the chain (which is the DAG root). 2046 return DAG.getRoot(); 2047 } 2048 2049 DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump()); 2050 return CallInfo.first; 2051 } 2052 2053 /// Generate a libcall taking the given operands as arguments 2054 /// and returning a result of type RetVT. 2055 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, 2056 const SDValue *Ops, unsigned NumOps, 2057 bool isSigned, const SDLoc &dl) { 2058 TargetLowering::ArgListTy Args; 2059 Args.reserve(NumOps); 2060 2061 TargetLowering::ArgListEntry Entry; 2062 for (unsigned i = 0; i != NumOps; ++i) { 2063 Entry.Node = Ops[i]; 2064 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 2065 Entry.IsSExt = isSigned; 2066 Entry.IsZExt = !isSigned; 2067 Args.push_back(Entry); 2068 } 2069 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2070 TLI.getPointerTy(DAG.getDataLayout())); 2071 2072 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2073 2074 TargetLowering::CallLoweringInfo CLI(DAG); 2075 CLI.setDebugLoc(dl) 2076 .setChain(DAG.getEntryNode()) 2077 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2078 std::move(Args)) 2079 .setSExtResult(isSigned) 2080 .setZExtResult(!isSigned) 2081 .setIsPostTypeLegalization(true); 2082 2083 std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI); 2084 2085 return CallInfo.first; 2086 } 2087 2088 // Expand a node into a call to a libcall. Similar to 2089 // ExpandLibCall except that the first operand is the in-chain. 2090 std::pair<SDValue, SDValue> 2091 SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC, 2092 SDNode *Node, 2093 bool isSigned) { 2094 SDValue InChain = Node->getOperand(0); 2095 2096 TargetLowering::ArgListTy Args; 2097 TargetLowering::ArgListEntry Entry; 2098 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { 2099 EVT ArgVT = Node->getOperand(i).getValueType(); 2100 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2101 Entry.Node = Node->getOperand(i); 2102 Entry.Ty = ArgTy; 2103 Entry.IsSExt = isSigned; 2104 Entry.IsZExt = !isSigned; 2105 Args.push_back(Entry); 2106 } 2107 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2108 TLI.getPointerTy(DAG.getDataLayout())); 2109 2110 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 2111 2112 TargetLowering::CallLoweringInfo CLI(DAG); 2113 CLI.setDebugLoc(SDLoc(Node)) 2114 .setChain(InChain) 2115 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2116 std::move(Args)) 2117 .setSExtResult(isSigned) 2118 .setZExtResult(!isSigned); 2119 2120 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2121 2122 return CallInfo; 2123 } 2124 2125 SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2126 RTLIB::Libcall Call_F32, 2127 RTLIB::Libcall Call_F64, 2128 RTLIB::Libcall Call_F80, 2129 RTLIB::Libcall Call_F128, 2130 RTLIB::Libcall Call_PPCF128) { 2131 if (Node->isStrictFPOpcode()) 2132 Node = DAG.mutateStrictFPToFP(Node); 2133 2134 RTLIB::Libcall LC; 2135 switch (Node->getSimpleValueType(0).SimpleTy) { 2136 default: llvm_unreachable("Unexpected request for libcall!"); 2137 case MVT::f32: LC = Call_F32; break; 2138 case MVT::f64: LC = Call_F64; break; 2139 case MVT::f80: LC = Call_F80; break; 2140 case MVT::f128: LC = Call_F128; break; 2141 case MVT::ppcf128: LC = Call_PPCF128; break; 2142 } 2143 return ExpandLibCall(LC, Node, false); 2144 } 2145 2146 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2147 RTLIB::Libcall Call_I8, 2148 RTLIB::Libcall Call_I16, 2149 RTLIB::Libcall Call_I32, 2150 RTLIB::Libcall Call_I64, 2151 RTLIB::Libcall Call_I128) { 2152 RTLIB::Libcall LC; 2153 switch (Node->getSimpleValueType(0).SimpleTy) { 2154 default: llvm_unreachable("Unexpected request for libcall!"); 2155 case MVT::i8: LC = Call_I8; break; 2156 case MVT::i16: LC = Call_I16; break; 2157 case MVT::i32: LC = Call_I32; break; 2158 case MVT::i64: LC = Call_I64; break; 2159 case MVT::i128: LC = Call_I128; break; 2160 } 2161 return ExpandLibCall(LC, Node, isSigned); 2162 } 2163 2164 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2165 void 2166 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2167 SmallVectorImpl<SDValue> &Results) { 2168 unsigned Opcode = Node->getOpcode(); 2169 bool isSigned = Opcode == ISD::SDIVREM; 2170 2171 RTLIB::Libcall LC; 2172 switch (Node->getSimpleValueType(0).SimpleTy) { 2173 default: llvm_unreachable("Unexpected request for libcall!"); 2174 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2175 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2176 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2177 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2178 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2179 } 2180 2181 // The input chain to this libcall is the entry node of the function. 2182 // Legalizing the call will automatically add the previous call to the 2183 // dependence. 2184 SDValue InChain = DAG.getEntryNode(); 2185 2186 EVT RetVT = Node->getValueType(0); 2187 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2188 2189 TargetLowering::ArgListTy Args; 2190 TargetLowering::ArgListEntry Entry; 2191 for (const SDValue &Op : Node->op_values()) { 2192 EVT ArgVT = Op.getValueType(); 2193 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2194 Entry.Node = Op; 2195 Entry.Ty = ArgTy; 2196 Entry.IsSExt = isSigned; 2197 Entry.IsZExt = !isSigned; 2198 Args.push_back(Entry); 2199 } 2200 2201 // Also pass the return address of the remainder. 2202 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2203 Entry.Node = FIPtr; 2204 Entry.Ty = RetTy->getPointerTo(); 2205 Entry.IsSExt = isSigned; 2206 Entry.IsZExt = !isSigned; 2207 Args.push_back(Entry); 2208 2209 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2210 TLI.getPointerTy(DAG.getDataLayout())); 2211 2212 SDLoc dl(Node); 2213 TargetLowering::CallLoweringInfo CLI(DAG); 2214 CLI.setDebugLoc(dl) 2215 .setChain(InChain) 2216 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2217 std::move(Args)) 2218 .setSExtResult(isSigned) 2219 .setZExtResult(!isSigned); 2220 2221 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2222 2223 // Remainder is loaded back from the stack frame. 2224 SDValue Rem = 2225 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2226 Results.push_back(CallInfo.first); 2227 Results.push_back(Rem); 2228 } 2229 2230 /// Return true if sincos libcall is available. 2231 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2232 RTLIB::Libcall LC; 2233 switch (Node->getSimpleValueType(0).SimpleTy) { 2234 default: llvm_unreachable("Unexpected request for libcall!"); 2235 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2236 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2237 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2238 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2239 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2240 } 2241 return TLI.getLibcallName(LC) != nullptr; 2242 } 2243 2244 /// Only issue sincos libcall if both sin and cos are needed. 2245 static bool useSinCos(SDNode *Node) { 2246 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2247 ? ISD::FCOS : ISD::FSIN; 2248 2249 SDValue Op0 = Node->getOperand(0); 2250 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2251 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2252 SDNode *User = *UI; 2253 if (User == Node) 2254 continue; 2255 // The other user might have been turned into sincos already. 2256 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2257 return true; 2258 } 2259 return false; 2260 } 2261 2262 /// Issue libcalls to sincos to compute sin / cos pairs. 2263 void 2264 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2265 SmallVectorImpl<SDValue> &Results) { 2266 RTLIB::Libcall LC; 2267 switch (Node->getSimpleValueType(0).SimpleTy) { 2268 default: llvm_unreachable("Unexpected request for libcall!"); 2269 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2270 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2271 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2272 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2273 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2274 } 2275 2276 // The input chain to this libcall is the entry node of the function. 2277 // Legalizing the call will automatically add the previous call to the 2278 // dependence. 2279 SDValue InChain = DAG.getEntryNode(); 2280 2281 EVT RetVT = Node->getValueType(0); 2282 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2283 2284 TargetLowering::ArgListTy Args; 2285 TargetLowering::ArgListEntry Entry; 2286 2287 // Pass the argument. 2288 Entry.Node = Node->getOperand(0); 2289 Entry.Ty = RetTy; 2290 Entry.IsSExt = false; 2291 Entry.IsZExt = false; 2292 Args.push_back(Entry); 2293 2294 // Pass the return address of sin. 2295 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2296 Entry.Node = SinPtr; 2297 Entry.Ty = RetTy->getPointerTo(); 2298 Entry.IsSExt = false; 2299 Entry.IsZExt = false; 2300 Args.push_back(Entry); 2301 2302 // Also pass the return address of the cos. 2303 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2304 Entry.Node = CosPtr; 2305 Entry.Ty = RetTy->getPointerTo(); 2306 Entry.IsSExt = false; 2307 Entry.IsZExt = false; 2308 Args.push_back(Entry); 2309 2310 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2311 TLI.getPointerTy(DAG.getDataLayout())); 2312 2313 SDLoc dl(Node); 2314 TargetLowering::CallLoweringInfo CLI(DAG); 2315 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2316 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2317 std::move(Args)); 2318 2319 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2320 2321 Results.push_back( 2322 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2323 Results.push_back( 2324 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2325 } 2326 2327 /// This function is responsible for legalizing a 2328 /// INT_TO_FP operation of the specified operand when the target requests that 2329 /// we expand it. At this point, we know that the result and operand types are 2330 /// legal for the target. 2331 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0, 2332 EVT DestVT, 2333 const SDLoc &dl) { 2334 // TODO: Should any fast-math-flags be set for the created nodes? 2335 DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2336 if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { 2337 DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2338 "expansion\n"); 2339 2340 // Get the stack frame index of a 8 byte buffer. 2341 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2342 2343 // word offset constant for Hi/Lo address computation 2344 SDValue WordOff = DAG.getConstant(sizeof(int), dl, 2345 StackSlot.getValueType()); 2346 // set up Hi and Lo (into buffer) address based on endian 2347 SDValue Hi = StackSlot; 2348 SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(), 2349 StackSlot, WordOff); 2350 if (DAG.getDataLayout().isLittleEndian()) 2351 std::swap(Hi, Lo); 2352 2353 // if signed map to unsigned space 2354 SDValue Op0Mapped; 2355 if (isSigned) { 2356 // constant used to invert sign bit (signed to unsigned mapping) 2357 SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32); 2358 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); 2359 } else { 2360 Op0Mapped = Op0; 2361 } 2362 // store the lo of the constructed double - based on integer input 2363 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo, 2364 MachinePointerInfo()); 2365 // initial hi portion of constructed double 2366 SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2367 // store the hi of the constructed double - biased exponent 2368 SDValue Store2 = 2369 DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo()); 2370 // load the constructed double 2371 SDValue Load = 2372 DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo()); 2373 // FP constant to bias correct the final result 2374 SDValue Bias = DAG.getConstantFP(isSigned ? 2375 BitsToDouble(0x4330000080000000ULL) : 2376 BitsToDouble(0x4330000000000000ULL), 2377 dl, MVT::f64); 2378 // subtract the bias 2379 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2380 // final result 2381 SDValue Result; 2382 // handle final rounding 2383 if (DestVT == MVT::f64) { 2384 // do nothing 2385 Result = Sub; 2386 } else if (DestVT.bitsLT(MVT::f64)) { 2387 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, 2388 DAG.getIntPtrConstant(0, dl)); 2389 } else if (DestVT.bitsGT(MVT::f64)) { 2390 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); 2391 } 2392 return Result; 2393 } 2394 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2395 // Code below here assumes !isSigned without checking again. 2396 2397 // Implementation of unsigned i64 to f64 following the algorithm in 2398 // __floatundidf in compiler_rt. This implementation has the advantage 2399 // of performing rounding correctly, both in the default rounding mode 2400 // and in all alternate rounding modes. 2401 // TODO: Generalize this for use with other types. 2402 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) { 2403 DEBUG(dbgs() << "Converting unsigned i64 to f64\n"); 2404 SDValue TwoP52 = 2405 DAG.getConstant(UINT64_C(0x4330000000000000), dl, MVT::i64); 2406 SDValue TwoP84PlusTwoP52 = 2407 DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), dl, 2408 MVT::f64); 2409 SDValue TwoP84 = 2410 DAG.getConstant(UINT64_C(0x4530000000000000), dl, MVT::i64); 2411 2412 SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32); 2413 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, 2414 DAG.getConstant(32, dl, MVT::i64)); 2415 SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52); 2416 SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84); 2417 SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr); 2418 SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr); 2419 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, 2420 TwoP84PlusTwoP52); 2421 return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub); 2422 } 2423 2424 // TODO: Generalize this for use with other types. 2425 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) { 2426 DEBUG(dbgs() << "Converting unsigned i64 to f32\n"); 2427 // For unsigned conversions, convert them to signed conversions using the 2428 // algorithm from the x86_64 __floatundidf in compiler_rt. 2429 if (!isSigned) { 2430 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0); 2431 2432 SDValue ShiftConst = DAG.getConstant( 2433 1, dl, TLI.getShiftAmountTy(Op0.getValueType(), DAG.getDataLayout())); 2434 SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst); 2435 SDValue AndConst = DAG.getConstant(1, dl, MVT::i64); 2436 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst); 2437 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr); 2438 2439 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or); 2440 SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt); 2441 2442 // TODO: This really should be implemented using a branch rather than a 2443 // select. We happen to get lucky and machinesink does the right 2444 // thing most of the time. This would be a good candidate for a 2445 //pseudo-op, or, even better, for whole-function isel. 2446 SDValue SignBitTest = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), 2447 Op0, DAG.getConstant(0, dl, MVT::i64), ISD::SETLT); 2448 return DAG.getSelect(dl, MVT::f32, SignBitTest, Slow, Fast); 2449 } 2450 2451 // Otherwise, implement the fully general conversion. 2452 2453 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2454 DAG.getConstant(UINT64_C(0xfffffffffffff800), dl, MVT::i64)); 2455 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, 2456 DAG.getConstant(UINT64_C(0x800), dl, MVT::i64)); 2457 SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2458 DAG.getConstant(UINT64_C(0x7ff), dl, MVT::i64)); 2459 SDValue Ne = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), And2, 2460 DAG.getConstant(UINT64_C(0), dl, MVT::i64), 2461 ISD::SETNE); 2462 SDValue Sel = DAG.getSelect(dl, MVT::i64, Ne, Or, Op0); 2463 SDValue Ge = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), Op0, 2464 DAG.getConstant(UINT64_C(0x0020000000000000), dl, 2465 MVT::i64), 2466 ISD::SETUGE); 2467 SDValue Sel2 = DAG.getSelect(dl, MVT::i64, Ge, Sel, Op0); 2468 EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType(), DAG.getDataLayout()); 2469 2470 SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2, 2471 DAG.getConstant(32, dl, SHVT)); 2472 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh); 2473 SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc); 2474 SDValue TwoP32 = 2475 DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), dl, 2476 MVT::f64); 2477 SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt); 2478 SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2); 2479 SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo); 2480 SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2); 2481 return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd, 2482 DAG.getIntPtrConstant(0, dl)); 2483 } 2484 2485 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2486 2487 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(Op0.getValueType()), 2488 Op0, 2489 DAG.getConstant(0, dl, Op0.getValueType()), 2490 ISD::SETLT); 2491 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2492 Four = DAG.getIntPtrConstant(4, dl); 2493 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2494 SignSet, Four, Zero); 2495 2496 // If the sign bit of the integer is set, the large number will be treated 2497 // as a negative number. To counteract this, the dynamic code adds an 2498 // offset depending on the data type. 2499 uint64_t FF; 2500 switch (Op0.getSimpleValueType().SimpleTy) { 2501 default: llvm_unreachable("Unsupported integer type!"); 2502 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2503 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2504 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2505 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2506 } 2507 if (DAG.getDataLayout().isLittleEndian()) 2508 FF <<= 32; 2509 Constant *FudgeFactor = ConstantInt::get( 2510 Type::getInt64Ty(*DAG.getContext()), FF); 2511 2512 SDValue CPIdx = 2513 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2514 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2515 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2516 Alignment = std::min(Alignment, 4u); 2517 SDValue FudgeInReg; 2518 if (DestVT == MVT::f32) 2519 FudgeInReg = DAG.getLoad( 2520 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2521 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2522 Alignment); 2523 else { 2524 SDValue Load = DAG.getExtLoad( 2525 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2526 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2527 Alignment); 2528 HandleSDNode Handle(Load); 2529 LegalizeOp(Load.getNode()); 2530 FudgeInReg = Handle.getValue(); 2531 } 2532 2533 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2534 } 2535 2536 /// This function is responsible for legalizing a 2537 /// *INT_TO_FP operation of the specified operand when the target requests that 2538 /// we promote it. At this point, we know that the result and operand types are 2539 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2540 /// operation that takes a larger input. 2541 SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, 2542 bool isSigned, 2543 const SDLoc &dl) { 2544 // First step, figure out the appropriate *INT_TO_FP operation to use. 2545 EVT NewInTy = LegalOp.getValueType(); 2546 2547 unsigned OpToUse = 0; 2548 2549 // Scan for the appropriate larger type to use. 2550 while (true) { 2551 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2552 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2553 2554 // If the target supports SINT_TO_FP of this type, use it. 2555 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { 2556 OpToUse = ISD::SINT_TO_FP; 2557 break; 2558 } 2559 if (isSigned) continue; 2560 2561 // If the target supports UINT_TO_FP of this type, use it. 2562 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { 2563 OpToUse = ISD::UINT_TO_FP; 2564 break; 2565 } 2566 2567 // Otherwise, try a larger type. 2568 } 2569 2570 // Okay, we found the operation and type to use. Zero extend our input to the 2571 // desired type then run the operation on it. 2572 return DAG.getNode(OpToUse, dl, DestVT, 2573 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2574 dl, NewInTy, LegalOp)); 2575 } 2576 2577 /// This function is responsible for legalizing a 2578 /// FP_TO_*INT operation of the specified operand when the target requests that 2579 /// we promote it. At this point, we know that the result and operand types are 2580 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2581 /// operation that returns a larger result. 2582 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, 2583 bool isSigned, 2584 const SDLoc &dl) { 2585 // First step, figure out the appropriate FP_TO*INT operation to use. 2586 EVT NewOutTy = DestVT; 2587 2588 unsigned OpToUse = 0; 2589 2590 // Scan for the appropriate larger type to use. 2591 while (true) { 2592 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2593 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2594 2595 // A larger signed type can hold all unsigned values of the requested type, 2596 // so using FP_TO_SINT is valid 2597 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { 2598 OpToUse = ISD::FP_TO_SINT; 2599 break; 2600 } 2601 2602 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2603 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { 2604 OpToUse = ISD::FP_TO_UINT; 2605 break; 2606 } 2607 2608 // Otherwise, try a larger type. 2609 } 2610 2611 // Okay, we found the operation and type to use. 2612 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2613 2614 // Truncate the result of the extended FP_TO_*INT operation to the desired 2615 // size. 2616 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2617 } 2618 2619 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts. 2620 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) { 2621 EVT VT = Op.getValueType(); 2622 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2623 unsigned Sz = VT.getScalarSizeInBits(); 2624 2625 SDValue Tmp, Tmp2, Tmp3; 2626 2627 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 2628 // and finally the i1 pairs. 2629 // TODO: We can easily support i4/i2 legal types if any target ever does. 2630 if (Sz >= 8 && isPowerOf2_32(Sz)) { 2631 // Create the masks - repeating the pattern every byte. 2632 APInt MaskHi4(Sz, 0), MaskHi2(Sz, 0), MaskHi1(Sz, 0); 2633 APInt MaskLo4(Sz, 0), MaskLo2(Sz, 0), MaskLo1(Sz, 0); 2634 for (unsigned J = 0; J != Sz; J += 8) { 2635 MaskHi4 = MaskHi4 | (0xF0ull << J); 2636 MaskLo4 = MaskLo4 | (0x0Full << J); 2637 MaskHi2 = MaskHi2 | (0xCCull << J); 2638 MaskLo2 = MaskLo2 | (0x33ull << J); 2639 MaskHi1 = MaskHi1 | (0xAAull << J); 2640 MaskLo1 = MaskLo1 | (0x55ull << J); 2641 } 2642 2643 // BSWAP if the type is wider than a single byte. 2644 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 2645 2646 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) 2647 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); 2648 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); 2649 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, VT)); 2650 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, VT)); 2651 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2652 2653 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) 2654 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); 2655 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); 2656 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, VT)); 2657 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, VT)); 2658 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2659 2660 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) 2661 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); 2662 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); 2663 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, VT)); 2664 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, VT)); 2665 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2666 return Tmp; 2667 } 2668 2669 Tmp = DAG.getConstant(0, dl, VT); 2670 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 2671 if (I < J) 2672 Tmp2 = 2673 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 2674 else 2675 Tmp2 = 2676 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 2677 2678 APInt Shift(Sz, 1); 2679 Shift <<= J; 2680 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 2681 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 2682 } 2683 2684 return Tmp; 2685 } 2686 2687 /// Open code the operations for BSWAP of the specified operation. 2688 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) { 2689 EVT VT = Op.getValueType(); 2690 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2691 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2692 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 2693 default: llvm_unreachable("Unhandled Expand type in BSWAP!"); 2694 case MVT::i16: 2695 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2696 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2697 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 2698 case MVT::i32: 2699 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2700 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2701 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2702 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2703 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2704 DAG.getConstant(0xFF0000, dl, VT)); 2705 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 2706 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2707 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2708 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2709 case MVT::i64: 2710 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2711 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2712 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2713 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2714 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2715 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2716 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2717 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2718 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 2719 DAG.getConstant(255ULL<<48, dl, VT)); 2720 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 2721 DAG.getConstant(255ULL<<40, dl, VT)); 2722 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 2723 DAG.getConstant(255ULL<<32, dl, VT)); 2724 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 2725 DAG.getConstant(255ULL<<24, dl, VT)); 2726 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2727 DAG.getConstant(255ULL<<16, dl, VT)); 2728 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 2729 DAG.getConstant(255ULL<<8 , dl, VT)); 2730 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2731 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2732 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2733 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2734 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2735 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2736 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2737 } 2738 } 2739 2740 /// Expand the specified bitcount instruction into operations. 2741 SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op, 2742 const SDLoc &dl) { 2743 switch (Opc) { 2744 default: llvm_unreachable("Cannot expand this yet!"); 2745 case ISD::CTPOP: { 2746 EVT VT = Op.getValueType(); 2747 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2748 unsigned Len = VT.getSizeInBits(); 2749 2750 assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 && 2751 "CTPOP not implemented for this type."); 2752 2753 // This is the "best" algorithm from 2754 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 2755 2756 SDValue Mask55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), 2757 dl, VT); 2758 SDValue Mask33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), 2759 dl, VT); 2760 SDValue Mask0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), 2761 dl, VT); 2762 SDValue Mask01 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), 2763 dl, VT); 2764 2765 // v = v - ((v >> 1) & 0x55555555...) 2766 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 2767 DAG.getNode(ISD::AND, dl, VT, 2768 DAG.getNode(ISD::SRL, dl, VT, Op, 2769 DAG.getConstant(1, dl, ShVT)), 2770 Mask55)); 2771 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 2772 Op = DAG.getNode(ISD::ADD, dl, VT, 2773 DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 2774 DAG.getNode(ISD::AND, dl, VT, 2775 DAG.getNode(ISD::SRL, dl, VT, Op, 2776 DAG.getConstant(2, dl, ShVT)), 2777 Mask33)); 2778 // v = (v + (v >> 4)) & 0x0F0F0F0F... 2779 Op = DAG.getNode(ISD::AND, dl, VT, 2780 DAG.getNode(ISD::ADD, dl, VT, Op, 2781 DAG.getNode(ISD::SRL, dl, VT, Op, 2782 DAG.getConstant(4, dl, ShVT))), 2783 Mask0F); 2784 // v = (v * 0x01010101...) >> (Len - 8) 2785 Op = DAG.getNode(ISD::SRL, dl, VT, 2786 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 2787 DAG.getConstant(Len - 8, dl, ShVT)); 2788 2789 return Op; 2790 } 2791 case ISD::CTLZ_ZERO_UNDEF: 2792 // This trivially expands to CTLZ. 2793 return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op); 2794 case ISD::CTLZ: { 2795 EVT VT = Op.getValueType(); 2796 unsigned Len = VT.getSizeInBits(); 2797 2798 if (TLI.isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 2799 EVT SetCCVT = getSetCCResultType(VT); 2800 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 2801 SDValue Zero = DAG.getConstant(0, dl, VT); 2802 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 2803 return DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 2804 DAG.getConstant(Len, dl, VT), CTLZ); 2805 } 2806 2807 // for now, we do this: 2808 // x = x | (x >> 1); 2809 // x = x | (x >> 2); 2810 // ... 2811 // x = x | (x >>16); 2812 // x = x | (x >>32); // for 64-bit input 2813 // return popcount(~x); 2814 // 2815 // Ref: "Hacker's Delight" by Henry Warren 2816 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2817 for (unsigned i = 0; (1U << i) <= (Len / 2); ++i) { 2818 SDValue Tmp3 = DAG.getConstant(1ULL << i, dl, ShVT); 2819 Op = DAG.getNode(ISD::OR, dl, VT, Op, 2820 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3)); 2821 } 2822 Op = DAG.getNOT(dl, Op, VT); 2823 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 2824 } 2825 case ISD::CTTZ_ZERO_UNDEF: 2826 // This trivially expands to CTTZ. 2827 return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op); 2828 case ISD::CTTZ: { 2829 EVT VT = Op.getValueType(); 2830 unsigned Len = VT.getSizeInBits(); 2831 2832 if (TLI.isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 2833 EVT SetCCVT = getSetCCResultType(VT); 2834 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 2835 SDValue Zero = DAG.getConstant(0, dl, VT); 2836 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 2837 return DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 2838 DAG.getConstant(Len, dl, VT), CTTZ); 2839 } 2840 2841 // for now, we use: { return popcount(~x & (x - 1)); } 2842 // unless the target has ctlz but not ctpop, in which case we use: 2843 // { return 32 - nlz(~x & (x-1)); } 2844 // Ref: "Hacker's Delight" by Henry Warren 2845 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT, 2846 DAG.getNOT(dl, Op, VT), 2847 DAG.getNode(ISD::SUB, dl, VT, Op, 2848 DAG.getConstant(1, dl, VT))); 2849 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 2850 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && 2851 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) 2852 return DAG.getNode(ISD::SUB, dl, VT, 2853 DAG.getConstant(VT.getSizeInBits(), dl, VT), 2854 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3)); 2855 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3); 2856 } 2857 } 2858 } 2859 2860 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2861 DEBUG(dbgs() << "Trying to expand node\n"); 2862 SmallVector<SDValue, 8> Results; 2863 SDLoc dl(Node); 2864 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2865 bool NeedInvert; 2866 switch (Node->getOpcode()) { 2867 case ISD::CTPOP: 2868 case ISD::CTLZ: 2869 case ISD::CTLZ_ZERO_UNDEF: 2870 case ISD::CTTZ: 2871 case ISD::CTTZ_ZERO_UNDEF: 2872 Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl); 2873 Results.push_back(Tmp1); 2874 break; 2875 case ISD::BITREVERSE: 2876 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl)); 2877 break; 2878 case ISD::BSWAP: 2879 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2880 break; 2881 case ISD::FRAMEADDR: 2882 case ISD::RETURNADDR: 2883 case ISD::FRAME_TO_ARGS_OFFSET: 2884 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2885 break; 2886 case ISD::EH_DWARF_CFA: { 2887 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 2888 TLI.getPointerTy(DAG.getDataLayout())); 2889 SDValue Offset = DAG.getNode(ISD::ADD, dl, 2890 CfaArg.getValueType(), 2891 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 2892 CfaArg.getValueType()), 2893 CfaArg); 2894 SDValue FA = DAG.getNode( 2895 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 2896 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2897 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 2898 FA, Offset)); 2899 break; 2900 } 2901 case ISD::FLT_ROUNDS_: 2902 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2903 break; 2904 case ISD::EH_RETURN: 2905 case ISD::EH_LABEL: 2906 case ISD::PREFETCH: 2907 case ISD::VAEND: 2908 case ISD::EH_SJLJ_LONGJMP: 2909 // If the target didn't expand these, there's nothing to do, so just 2910 // preserve the chain and be done. 2911 Results.push_back(Node->getOperand(0)); 2912 break; 2913 case ISD::READCYCLECOUNTER: 2914 // If the target didn't expand this, just return 'zero' and preserve the 2915 // chain. 2916 Results.append(Node->getNumValues() - 1, 2917 DAG.getConstant(0, dl, Node->getValueType(0))); 2918 Results.push_back(Node->getOperand(0)); 2919 break; 2920 case ISD::EH_SJLJ_SETJMP: 2921 // If the target didn't expand this, just return 'zero' and preserve the 2922 // chain. 2923 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2924 Results.push_back(Node->getOperand(0)); 2925 break; 2926 case ISD::ATOMIC_LOAD: { 2927 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2928 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2929 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2930 SDValue Swap = DAG.getAtomicCmpSwap( 2931 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2932 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2933 cast<AtomicSDNode>(Node)->getMemOperand()); 2934 Results.push_back(Swap.getValue(0)); 2935 Results.push_back(Swap.getValue(1)); 2936 break; 2937 } 2938 case ISD::ATOMIC_STORE: { 2939 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2940 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2941 cast<AtomicSDNode>(Node)->getMemoryVT(), 2942 Node->getOperand(0), 2943 Node->getOperand(1), Node->getOperand(2), 2944 cast<AtomicSDNode>(Node)->getMemOperand()); 2945 Results.push_back(Swap.getValue(1)); 2946 break; 2947 } 2948 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 2949 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 2950 // splits out the success value as a comparison. Expanding the resulting 2951 // ATOMIC_CMP_SWAP will produce a libcall. 2952 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2953 SDValue Res = DAG.getAtomicCmpSwap( 2954 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2955 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 2956 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 2957 2958 SDValue ExtRes = Res; 2959 SDValue LHS = Res; 2960 SDValue RHS = Node->getOperand(1); 2961 2962 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 2963 EVT OuterType = Node->getValueType(0); 2964 switch (TLI.getExtendForAtomicOps()) { 2965 case ISD::SIGN_EXTEND: 2966 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 2967 DAG.getValueType(AtomicType)); 2968 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 2969 Node->getOperand(2), DAG.getValueType(AtomicType)); 2970 ExtRes = LHS; 2971 break; 2972 case ISD::ZERO_EXTEND: 2973 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 2974 DAG.getValueType(AtomicType)); 2975 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2976 ExtRes = LHS; 2977 break; 2978 case ISD::ANY_EXTEND: 2979 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 2980 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2981 break; 2982 default: 2983 llvm_unreachable("Invalid atomic op extension"); 2984 } 2985 2986 SDValue Success = 2987 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 2988 2989 Results.push_back(ExtRes.getValue(0)); 2990 Results.push_back(Success); 2991 Results.push_back(Res.getValue(1)); 2992 break; 2993 } 2994 case ISD::DYNAMIC_STACKALLOC: 2995 ExpandDYNAMIC_STACKALLOC(Node, Results); 2996 break; 2997 case ISD::MERGE_VALUES: 2998 for (unsigned i = 0; i < Node->getNumValues(); i++) 2999 Results.push_back(Node->getOperand(i)); 3000 break; 3001 case ISD::UNDEF: { 3002 EVT VT = Node->getValueType(0); 3003 if (VT.isInteger()) 3004 Results.push_back(DAG.getConstant(0, dl, VT)); 3005 else { 3006 assert(VT.isFloatingPoint() && "Unknown value type!"); 3007 Results.push_back(DAG.getConstantFP(0, dl, VT)); 3008 } 3009 break; 3010 } 3011 case ISD::FP_ROUND: 3012 case ISD::BITCAST: 3013 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 3014 Node->getValueType(0), dl); 3015 Results.push_back(Tmp1); 3016 break; 3017 case ISD::FP_EXTEND: 3018 Tmp1 = EmitStackConvert(Node->getOperand(0), 3019 Node->getOperand(0).getValueType(), 3020 Node->getValueType(0), dl); 3021 Results.push_back(Tmp1); 3022 break; 3023 case ISD::SIGN_EXTEND_INREG: { 3024 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 3025 EVT VT = Node->getValueType(0); 3026 3027 // An in-register sign-extend of a boolean is a negation: 3028 // 'true' (1) sign-extended is -1. 3029 // 'false' (0) sign-extended is 0. 3030 // However, we must mask the high bits of the source operand because the 3031 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 3032 3033 // TODO: Do this for vectors too? 3034 if (ExtraVT.getSizeInBits() == 1) { 3035 SDValue One = DAG.getConstant(1, dl, VT); 3036 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 3037 SDValue Zero = DAG.getConstant(0, dl, VT); 3038 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 3039 Results.push_back(Neg); 3040 break; 3041 } 3042 3043 // NOTE: we could fall back on load/store here too for targets without 3044 // SRA. However, it is doubtful that any exist. 3045 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 3046 unsigned BitsDiff = VT.getScalarSizeInBits() - 3047 ExtraVT.getScalarSizeInBits(); 3048 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 3049 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 3050 Node->getOperand(0), ShiftCst); 3051 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 3052 Results.push_back(Tmp1); 3053 break; 3054 } 3055 case ISD::FP_ROUND_INREG: { 3056 // The only way we can lower this is to turn it into a TRUNCSTORE, 3057 // EXTLOAD pair, targeting a temporary location (a stack slot). 3058 3059 // NOTE: there is a choice here between constantly creating new stack 3060 // slots and always reusing the same one. We currently always create 3061 // new ones, as reuse may inhibit scheduling. 3062 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 3063 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT, 3064 Node->getValueType(0), dl); 3065 Results.push_back(Tmp1); 3066 break; 3067 } 3068 case ISD::SINT_TO_FP: 3069 case ISD::UINT_TO_FP: 3070 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, 3071 Node->getOperand(0), Node->getValueType(0), dl); 3072 Results.push_back(Tmp1); 3073 break; 3074 case ISD::FP_TO_SINT: 3075 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 3076 Results.push_back(Tmp1); 3077 break; 3078 case ISD::FP_TO_UINT: { 3079 SDValue True, False; 3080 EVT VT = Node->getOperand(0).getValueType(); 3081 EVT NVT = Node->getValueType(0); 3082 APFloat apf(DAG.EVTToAPFloatSemantics(VT), 3083 APInt::getNullValue(VT.getSizeInBits())); 3084 APInt x = APInt::getSignMask(NVT.getSizeInBits()); 3085 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); 3086 Tmp1 = DAG.getConstantFP(apf, dl, VT); 3087 Tmp2 = DAG.getSetCC(dl, getSetCCResultType(VT), 3088 Node->getOperand(0), 3089 Tmp1, ISD::SETLT); 3090 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0)); 3091 // TODO: Should any fast-math-flags be set for the FSUB? 3092 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, 3093 DAG.getNode(ISD::FSUB, dl, VT, 3094 Node->getOperand(0), Tmp1)); 3095 False = DAG.getNode(ISD::XOR, dl, NVT, False, 3096 DAG.getConstant(x, dl, NVT)); 3097 Tmp1 = DAG.getSelect(dl, NVT, Tmp2, True, False); 3098 Results.push_back(Tmp1); 3099 break; 3100 } 3101 case ISD::VAARG: 3102 Results.push_back(DAG.expandVAArg(Node)); 3103 Results.push_back(Results[0].getValue(1)); 3104 break; 3105 case ISD::VACOPY: 3106 Results.push_back(DAG.expandVACopy(Node)); 3107 break; 3108 case ISD::EXTRACT_VECTOR_ELT: 3109 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 3110 // This must be an access of the only element. Return it. 3111 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 3112 Node->getOperand(0)); 3113 else 3114 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 3115 Results.push_back(Tmp1); 3116 break; 3117 case ISD::EXTRACT_SUBVECTOR: 3118 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 3119 break; 3120 case ISD::INSERT_SUBVECTOR: 3121 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 3122 break; 3123 case ISD::CONCAT_VECTORS: 3124 Results.push_back(ExpandVectorBuildThroughStack(Node)); 3125 break; 3126 case ISD::SCALAR_TO_VECTOR: 3127 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3128 break; 3129 case ISD::INSERT_VECTOR_ELT: 3130 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3131 Node->getOperand(1), 3132 Node->getOperand(2), dl)); 3133 break; 3134 case ISD::VECTOR_SHUFFLE: { 3135 SmallVector<int, 32> NewMask; 3136 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3137 3138 EVT VT = Node->getValueType(0); 3139 EVT EltVT = VT.getVectorElementType(); 3140 SDValue Op0 = Node->getOperand(0); 3141 SDValue Op1 = Node->getOperand(1); 3142 if (!TLI.isTypeLegal(EltVT)) { 3143 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3144 3145 // BUILD_VECTOR operands are allowed to be wider than the element type. 3146 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 3147 // it. 3148 if (NewEltVT.bitsLT(EltVT)) { 3149 // Convert shuffle node. 3150 // If original node was v4i64 and the new EltVT is i32, 3151 // cast operands to v8i32 and re-build the mask. 3152 3153 // Calculate new VT, the size of the new VT should be equal to original. 3154 EVT NewVT = 3155 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3156 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 3157 assert(NewVT.bitsEq(VT)); 3158 3159 // cast operands to new VT 3160 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3161 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3162 3163 // Convert the shuffle mask 3164 unsigned int factor = 3165 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3166 3167 // EltVT gets smaller 3168 assert(factor > 0); 3169 3170 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3171 if (Mask[i] < 0) { 3172 for (unsigned fi = 0; fi < factor; ++fi) 3173 NewMask.push_back(Mask[i]); 3174 } 3175 else { 3176 for (unsigned fi = 0; fi < factor; ++fi) 3177 NewMask.push_back(Mask[i]*factor+fi); 3178 } 3179 } 3180 Mask = NewMask; 3181 VT = NewVT; 3182 } 3183 EltVT = NewEltVT; 3184 } 3185 unsigned NumElems = VT.getVectorNumElements(); 3186 SmallVector<SDValue, 16> Ops; 3187 for (unsigned i = 0; i != NumElems; ++i) { 3188 if (Mask[i] < 0) { 3189 Ops.push_back(DAG.getUNDEF(EltVT)); 3190 continue; 3191 } 3192 unsigned Idx = Mask[i]; 3193 if (Idx < NumElems) 3194 Ops.push_back(DAG.getNode( 3195 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3196 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())))); 3197 else 3198 Ops.push_back(DAG.getNode( 3199 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3200 DAG.getConstant(Idx - NumElems, dl, 3201 TLI.getVectorIdxTy(DAG.getDataLayout())))); 3202 } 3203 3204 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 3205 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3206 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3207 Results.push_back(Tmp1); 3208 break; 3209 } 3210 case ISD::EXTRACT_ELEMENT: { 3211 EVT OpTy = Node->getOperand(0).getValueType(); 3212 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3213 // 1 -> Hi 3214 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3215 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3216 TLI.getShiftAmountTy( 3217 Node->getOperand(0).getValueType(), 3218 DAG.getDataLayout()))); 3219 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3220 } else { 3221 // 0 -> Lo 3222 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3223 Node->getOperand(0)); 3224 } 3225 Results.push_back(Tmp1); 3226 break; 3227 } 3228 case ISD::STACKSAVE: 3229 // Expand to CopyFromReg if the target set 3230 // StackPointerRegisterToSaveRestore. 3231 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3232 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3233 Node->getValueType(0))); 3234 Results.push_back(Results[0].getValue(1)); 3235 } else { 3236 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3237 Results.push_back(Node->getOperand(0)); 3238 } 3239 break; 3240 case ISD::STACKRESTORE: 3241 // Expand to CopyToReg if the target set 3242 // StackPointerRegisterToSaveRestore. 3243 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3244 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3245 Node->getOperand(1))); 3246 } else { 3247 Results.push_back(Node->getOperand(0)); 3248 } 3249 break; 3250 case ISD::GET_DYNAMIC_AREA_OFFSET: 3251 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3252 Results.push_back(Results[0].getValue(0)); 3253 break; 3254 case ISD::FCOPYSIGN: 3255 Results.push_back(ExpandFCOPYSIGN(Node)); 3256 break; 3257 case ISD::FNEG: 3258 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3259 Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0)); 3260 // TODO: If FNEG has fast-math-flags, propagate them to the FSUB. 3261 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, 3262 Node->getOperand(0)); 3263 Results.push_back(Tmp1); 3264 break; 3265 case ISD::FABS: 3266 Results.push_back(ExpandFABS(Node)); 3267 break; 3268 case ISD::SMIN: 3269 case ISD::SMAX: 3270 case ISD::UMIN: 3271 case ISD::UMAX: { 3272 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3273 ISD::CondCode Pred; 3274 switch (Node->getOpcode()) { 3275 default: llvm_unreachable("How did we get here?"); 3276 case ISD::SMAX: Pred = ISD::SETGT; break; 3277 case ISD::SMIN: Pred = ISD::SETLT; break; 3278 case ISD::UMAX: Pred = ISD::SETUGT; break; 3279 case ISD::UMIN: Pred = ISD::SETULT; break; 3280 } 3281 Tmp1 = Node->getOperand(0); 3282 Tmp2 = Node->getOperand(1); 3283 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3284 Results.push_back(Tmp1); 3285 break; 3286 } 3287 3288 case ISD::FSIN: 3289 case ISD::FCOS: { 3290 EVT VT = Node->getValueType(0); 3291 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3292 // fcos which share the same operand and both are used. 3293 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3294 isSinCosLibcallAvailable(Node, TLI)) 3295 && useSinCos(Node)) { 3296 SDVTList VTs = DAG.getVTList(VT, VT); 3297 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3298 if (Node->getOpcode() == ISD::FCOS) 3299 Tmp1 = Tmp1.getValue(1); 3300 Results.push_back(Tmp1); 3301 } 3302 break; 3303 } 3304 case ISD::FMAD: 3305 llvm_unreachable("Illegal fmad should never be formed"); 3306 3307 case ISD::FP16_TO_FP: 3308 if (Node->getValueType(0) != MVT::f32) { 3309 // We can extend to types bigger than f32 in two steps without changing 3310 // the result. Since "f16 -> f32" is much more commonly available, give 3311 // CodeGen the option of emitting that before resorting to a libcall. 3312 SDValue Res = 3313 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3314 Results.push_back( 3315 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3316 } 3317 break; 3318 case ISD::FP_TO_FP16: 3319 DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3320 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3321 SDValue Op = Node->getOperand(0); 3322 MVT SVT = Op.getSimpleValueType(); 3323 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3324 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3325 // Under fastmath, we can expand this node into a fround followed by 3326 // a float-half conversion. 3327 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3328 DAG.getIntPtrConstant(0, dl)); 3329 Results.push_back( 3330 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3331 } 3332 } 3333 break; 3334 case ISD::ConstantFP: { 3335 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3336 // Check to see if this FP immediate is already legal. 3337 // If this is a legal constant, turn it into a TargetConstantFP node. 3338 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0))) 3339 Results.push_back(ExpandConstantFP(CFP, true)); 3340 break; 3341 } 3342 case ISD::Constant: { 3343 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3344 Results.push_back(ExpandConstant(CP)); 3345 break; 3346 } 3347 case ISD::FSUB: { 3348 EVT VT = Node->getValueType(0); 3349 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3350 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3351 const SDNodeFlags Flags = Node->getFlags(); 3352 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3353 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3354 Results.push_back(Tmp1); 3355 } 3356 break; 3357 } 3358 case ISD::SUB: { 3359 EVT VT = Node->getValueType(0); 3360 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3361 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3362 "Don't know how to expand this subtraction!"); 3363 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3364 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, 3365 VT)); 3366 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3367 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3368 break; 3369 } 3370 case ISD::UREM: 3371 case ISD::SREM: { 3372 EVT VT = Node->getValueType(0); 3373 bool isSigned = Node->getOpcode() == ISD::SREM; 3374 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 3375 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3376 Tmp2 = Node->getOperand(0); 3377 Tmp3 = Node->getOperand(1); 3378 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3379 SDVTList VTs = DAG.getVTList(VT, VT); 3380 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); 3381 Results.push_back(Tmp1); 3382 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { 3383 // X % Y -> X-X/Y*Y 3384 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); 3385 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); 3386 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); 3387 Results.push_back(Tmp1); 3388 } 3389 break; 3390 } 3391 case ISD::UDIV: 3392 case ISD::SDIV: { 3393 bool isSigned = Node->getOpcode() == ISD::SDIV; 3394 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3395 EVT VT = Node->getValueType(0); 3396 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3397 SDVTList VTs = DAG.getVTList(VT, VT); 3398 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3399 Node->getOperand(1)); 3400 Results.push_back(Tmp1); 3401 } 3402 break; 3403 } 3404 case ISD::MULHU: 3405 case ISD::MULHS: { 3406 unsigned ExpandOpcode = 3407 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3408 EVT VT = Node->getValueType(0); 3409 SDVTList VTs = DAG.getVTList(VT, VT); 3410 3411 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3412 Node->getOperand(1)); 3413 Results.push_back(Tmp1.getValue(1)); 3414 break; 3415 } 3416 case ISD::UMUL_LOHI: 3417 case ISD::SMUL_LOHI: { 3418 SDValue LHS = Node->getOperand(0); 3419 SDValue RHS = Node->getOperand(1); 3420 MVT VT = LHS.getSimpleValueType(); 3421 unsigned MULHOpcode = 3422 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3423 3424 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3425 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3426 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3427 break; 3428 } 3429 3430 SmallVector<SDValue, 4> Halves; 3431 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3432 assert(TLI.isTypeLegal(HalfType)); 3433 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves, 3434 HalfType, DAG, 3435 TargetLowering::MulExpansionKind::Always)) { 3436 for (unsigned i = 0; i < 2; ++i) { 3437 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3438 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3439 SDValue Shift = DAG.getConstant( 3440 HalfType.getScalarSizeInBits(), dl, 3441 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3442 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3443 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3444 } 3445 break; 3446 } 3447 break; 3448 } 3449 case ISD::MUL: { 3450 EVT VT = Node->getValueType(0); 3451 SDVTList VTs = DAG.getVTList(VT, VT); 3452 // See if multiply or divide can be lowered using two-result operations. 3453 // We just need the low half of the multiply; try both the signed 3454 // and unsigned forms. If the target supports both SMUL_LOHI and 3455 // UMUL_LOHI, form a preference by checking which forms of plain 3456 // MULH it supports. 3457 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3458 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3459 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3460 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3461 unsigned OpToUse = 0; 3462 if (HasSMUL_LOHI && !HasMULHS) { 3463 OpToUse = ISD::SMUL_LOHI; 3464 } else if (HasUMUL_LOHI && !HasMULHU) { 3465 OpToUse = ISD::UMUL_LOHI; 3466 } else if (HasSMUL_LOHI) { 3467 OpToUse = ISD::SMUL_LOHI; 3468 } else if (HasUMUL_LOHI) { 3469 OpToUse = ISD::UMUL_LOHI; 3470 } 3471 if (OpToUse) { 3472 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3473 Node->getOperand(1))); 3474 break; 3475 } 3476 3477 SDValue Lo, Hi; 3478 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3479 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3480 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3481 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3482 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3483 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3484 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3485 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3486 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3487 SDValue Shift = 3488 DAG.getConstant(HalfType.getSizeInBits(), dl, 3489 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3490 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3491 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3492 } 3493 break; 3494 } 3495 case ISD::SADDO: 3496 case ISD::SSUBO: { 3497 SDValue LHS = Node->getOperand(0); 3498 SDValue RHS = Node->getOperand(1); 3499 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? 3500 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3501 LHS, RHS); 3502 Results.push_back(Sum); 3503 EVT ResultType = Node->getValueType(1); 3504 EVT OType = getSetCCResultType(Node->getValueType(0)); 3505 3506 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 3507 3508 // LHSSign -> LHS >= 0 3509 // RHSSign -> RHS >= 0 3510 // SumSign -> Sum >= 0 3511 // 3512 // Add: 3513 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 3514 // Sub: 3515 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 3516 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 3517 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 3518 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 3519 Node->getOpcode() == ISD::SADDO ? 3520 ISD::SETEQ : ISD::SETNE); 3521 3522 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); 3523 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 3524 3525 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 3526 Results.push_back(DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType)); 3527 break; 3528 } 3529 case ISD::UADDO: 3530 case ISD::USUBO: { 3531 SDValue LHS = Node->getOperand(0); 3532 SDValue RHS = Node->getOperand(1); 3533 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ? 3534 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3535 LHS, RHS); 3536 Results.push_back(Sum); 3537 3538 EVT ResultType = Node->getValueType(1); 3539 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3540 ISD::CondCode CC 3541 = Node->getOpcode() == ISD::UADDO ? ISD::SETULT : ISD::SETUGT; 3542 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3543 3544 Results.push_back(DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType)); 3545 break; 3546 } 3547 case ISD::UMULO: 3548 case ISD::SMULO: { 3549 EVT VT = Node->getValueType(0); 3550 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); 3551 SDValue LHS = Node->getOperand(0); 3552 SDValue RHS = Node->getOperand(1); 3553 SDValue BottomHalf; 3554 SDValue TopHalf; 3555 static const unsigned Ops[2][3] = 3556 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 3557 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 3558 bool isSigned = Node->getOpcode() == ISD::SMULO; 3559 if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 3560 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 3561 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 3562 } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 3563 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 3564 RHS); 3565 TopHalf = BottomHalf.getValue(1); 3566 } else if (TLI.isTypeLegal(WideVT)) { 3567 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 3568 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 3569 Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 3570 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3571 DAG.getIntPtrConstant(0, dl)); 3572 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3573 DAG.getIntPtrConstant(1, dl)); 3574 } else { 3575 // We can fall back to a libcall with an illegal type for the MUL if we 3576 // have a libcall big enough. 3577 // Also, we can fall back to a division in some cases, but that's a big 3578 // performance hit in the general case. 3579 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3580 if (WideVT == MVT::i16) 3581 LC = RTLIB::MUL_I16; 3582 else if (WideVT == MVT::i32) 3583 LC = RTLIB::MUL_I32; 3584 else if (WideVT == MVT::i64) 3585 LC = RTLIB::MUL_I64; 3586 else if (WideVT == MVT::i128) 3587 LC = RTLIB::MUL_I128; 3588 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 3589 3590 SDValue HiLHS; 3591 SDValue HiRHS; 3592 if (isSigned) { 3593 // The high part is obtained by SRA'ing all but one of the bits of low 3594 // part. 3595 unsigned LoSize = VT.getSizeInBits(); 3596 HiLHS = 3597 DAG.getNode(ISD::SRA, dl, VT, LHS, 3598 DAG.getConstant(LoSize - 1, dl, 3599 TLI.getPointerTy(DAG.getDataLayout()))); 3600 HiRHS = 3601 DAG.getNode(ISD::SRA, dl, VT, RHS, 3602 DAG.getConstant(LoSize - 1, dl, 3603 TLI.getPointerTy(DAG.getDataLayout()))); 3604 } else { 3605 HiLHS = DAG.getConstant(0, dl, VT); 3606 HiRHS = DAG.getConstant(0, dl, VT); 3607 } 3608 3609 // Here we're passing the 2 arguments explicitly as 4 arguments that are 3610 // pre-lowered to the correct types. This all depends upon WideVT not 3611 // being a legal type for the architecture and thus has to be split to 3612 // two arguments. 3613 SDValue Ret; 3614 if(DAG.getDataLayout().isLittleEndian()) { 3615 // Halves of WideVT are packed into registers in different order 3616 // depending on platform endianness. This is usually handled by 3617 // the C calling convention, but we can't defer to it in 3618 // the legalizer. 3619 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 3620 Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); 3621 } else { 3622 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 3623 Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); 3624 } 3625 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 3626 "Ret value is a collection of constituent nodes holding result."); 3627 BottomHalf = Ret.getOperand(0); 3628 TopHalf = Ret.getOperand(1); 3629 } 3630 3631 if (isSigned) { 3632 Tmp1 = DAG.getConstant( 3633 VT.getSizeInBits() - 1, dl, 3634 TLI.getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 3635 Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1); 3636 TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, Tmp1, 3637 ISD::SETNE); 3638 } else { 3639 TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, 3640 DAG.getConstant(0, dl, VT), ISD::SETNE); 3641 } 3642 3643 // Truncate the result if SetCC returns a larger type than needed. 3644 EVT RType = Node->getValueType(1); 3645 if (RType.getSizeInBits() < TopHalf.getValueSizeInBits()) 3646 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, RType, TopHalf); 3647 3648 assert(RType.getSizeInBits() == TopHalf.getValueSizeInBits() && 3649 "Unexpected result type for S/UMULO legalization"); 3650 3651 Results.push_back(BottomHalf); 3652 Results.push_back(TopHalf); 3653 break; 3654 } 3655 case ISD::BUILD_PAIR: { 3656 EVT PairTy = Node->getValueType(0); 3657 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3658 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3659 Tmp2 = DAG.getNode( 3660 ISD::SHL, dl, PairTy, Tmp2, 3661 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3662 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3663 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3664 break; 3665 } 3666 case ISD::SELECT: 3667 Tmp1 = Node->getOperand(0); 3668 Tmp2 = Node->getOperand(1); 3669 Tmp3 = Node->getOperand(2); 3670 if (Tmp1.getOpcode() == ISD::SETCC) { 3671 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3672 Tmp2, Tmp3, 3673 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3674 } else { 3675 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3676 DAG.getConstant(0, dl, Tmp1.getValueType()), 3677 Tmp2, Tmp3, ISD::SETNE); 3678 } 3679 Results.push_back(Tmp1); 3680 break; 3681 case ISD::BR_JT: { 3682 SDValue Chain = Node->getOperand(0); 3683 SDValue Table = Node->getOperand(1); 3684 SDValue Index = Node->getOperand(2); 3685 3686 const DataLayout &TD = DAG.getDataLayout(); 3687 EVT PTy = TLI.getPointerTy(TD); 3688 3689 unsigned EntrySize = 3690 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3691 3692 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3693 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3694 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3695 Index, Table); 3696 3697 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3698 SDValue LD = DAG.getExtLoad( 3699 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3700 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3701 Addr = LD; 3702 if (TLI.isJumpTableRelative()) { 3703 // For PIC, the sequence is: 3704 // BRIND(load(Jumptable + index) + RelocBase) 3705 // RelocBase can be JumpTable, GOT or some sort of global base. 3706 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3707 TLI.getPICJumpTableRelocBase(Table, DAG)); 3708 } 3709 Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr); 3710 Results.push_back(Tmp1); 3711 break; 3712 } 3713 case ISD::BRCOND: 3714 // Expand brcond's setcc into its constituent parts and create a BR_CC 3715 // Node. 3716 Tmp1 = Node->getOperand(0); 3717 Tmp2 = Node->getOperand(1); 3718 if (Tmp2.getOpcode() == ISD::SETCC) { 3719 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3720 Tmp1, Tmp2.getOperand(2), 3721 Tmp2.getOperand(0), Tmp2.getOperand(1), 3722 Node->getOperand(2)); 3723 } else { 3724 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 3725 if (Tmp2.isUndef() || 3726 (Tmp2.getOpcode() == ISD::AND && 3727 isa<ConstantSDNode>(Tmp2.getOperand(1)) && 3728 dyn_cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) 3729 Tmp3 = Tmp2; 3730 else 3731 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3732 DAG.getConstant(1, dl, Tmp2.getValueType())); 3733 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3734 DAG.getCondCode(ISD::SETNE), Tmp3, 3735 DAG.getConstant(0, dl, Tmp3.getValueType()), 3736 Node->getOperand(2)); 3737 } 3738 Results.push_back(Tmp1); 3739 break; 3740 case ISD::SETCC: { 3741 Tmp1 = Node->getOperand(0); 3742 Tmp2 = Node->getOperand(1); 3743 Tmp3 = Node->getOperand(2); 3744 bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, 3745 Tmp3, NeedInvert, dl); 3746 3747 if (Legalized) { 3748 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3749 // condition code, create a new SETCC node. 3750 if (Tmp3.getNode()) 3751 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3752 Tmp1, Tmp2, Tmp3); 3753 3754 // If we expanded the SETCC by inverting the condition code, then wrap 3755 // the existing SETCC in a NOT to restore the intended condition. 3756 if (NeedInvert) 3757 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3758 3759 Results.push_back(Tmp1); 3760 break; 3761 } 3762 3763 // Otherwise, SETCC for the given comparison type must be completely 3764 // illegal; expand it into a SELECT_CC. 3765 EVT VT = Node->getValueType(0); 3766 int TrueValue; 3767 switch (TLI.getBooleanContents(Tmp1.getValueType())) { 3768 case TargetLowering::ZeroOrOneBooleanContent: 3769 case TargetLowering::UndefinedBooleanContent: 3770 TrueValue = 1; 3771 break; 3772 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3773 TrueValue = -1; 3774 break; 3775 } 3776 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3777 DAG.getConstant(TrueValue, dl, VT), 3778 DAG.getConstant(0, dl, VT), 3779 Tmp3); 3780 Results.push_back(Tmp1); 3781 break; 3782 } 3783 case ISD::SELECT_CC: { 3784 Tmp1 = Node->getOperand(0); // LHS 3785 Tmp2 = Node->getOperand(1); // RHS 3786 Tmp3 = Node->getOperand(2); // True 3787 Tmp4 = Node->getOperand(3); // False 3788 EVT VT = Node->getValueType(0); 3789 SDValue CC = Node->getOperand(4); 3790 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3791 3792 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 3793 // If the condition code is legal, then we need to expand this 3794 // node using SETCC and SELECT. 3795 EVT CmpVT = Tmp1.getValueType(); 3796 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3797 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3798 "expanded."); 3799 EVT CCVT = 3800 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT); 3801 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC); 3802 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3803 break; 3804 } 3805 3806 // SELECT_CC is legal, so the condition code must not be. 3807 bool Legalized = false; 3808 // Try to legalize by inverting the condition. This is for targets that 3809 // might support an ordered version of a condition, but not the unordered 3810 // version (or vice versa). 3811 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, 3812 Tmp1.getValueType().isInteger()); 3813 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 3814 // Use the new condition code and swap true and false 3815 Legalized = true; 3816 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3817 } else { 3818 // If The inverse is not legal, then try to swap the arguments using 3819 // the inverse condition code. 3820 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3821 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 3822 // The swapped inverse condition is legal, so swap true and false, 3823 // lhs and rhs. 3824 Legalized = true; 3825 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3826 } 3827 } 3828 3829 if (!Legalized) { 3830 Legalized = LegalizeSetCCCondCode( 3831 getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert, 3832 dl); 3833 3834 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3835 3836 // If we expanded the SETCC by inverting the condition code, then swap 3837 // the True/False operands to match. 3838 if (NeedInvert) 3839 std::swap(Tmp3, Tmp4); 3840 3841 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3842 // condition code, create a new SELECT_CC node. 3843 if (CC.getNode()) { 3844 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3845 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3846 } else { 3847 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3848 CC = DAG.getCondCode(ISD::SETNE); 3849 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3850 Tmp2, Tmp3, Tmp4, CC); 3851 } 3852 } 3853 Results.push_back(Tmp1); 3854 break; 3855 } 3856 case ISD::BR_CC: { 3857 Tmp1 = Node->getOperand(0); // Chain 3858 Tmp2 = Node->getOperand(2); // LHS 3859 Tmp3 = Node->getOperand(3); // RHS 3860 Tmp4 = Node->getOperand(1); // CC 3861 3862 bool Legalized = LegalizeSetCCCondCode(getSetCCResultType( 3863 Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl); 3864 (void)Legalized; 3865 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3866 3867 // If we expanded the SETCC by inverting the condition code, then wrap 3868 // the existing SETCC in a NOT to restore the intended condition. 3869 if (NeedInvert) 3870 Tmp4 = DAG.getNOT(dl, Tmp4, Tmp4->getValueType(0)); 3871 3872 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3873 // node. 3874 if (Tmp4.getNode()) { 3875 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3876 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3877 } else { 3878 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3879 Tmp4 = DAG.getCondCode(ISD::SETNE); 3880 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3881 Tmp2, Tmp3, Node->getOperand(4)); 3882 } 3883 Results.push_back(Tmp1); 3884 break; 3885 } 3886 case ISD::BUILD_VECTOR: 3887 Results.push_back(ExpandBUILD_VECTOR(Node)); 3888 break; 3889 case ISD::SRA: 3890 case ISD::SRL: 3891 case ISD::SHL: { 3892 // Scalarize vector SRA/SRL/SHL. 3893 EVT VT = Node->getValueType(0); 3894 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3895 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3896 unsigned NumElem = VT.getVectorNumElements(); 3897 3898 SmallVector<SDValue, 8> Scalars; 3899 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3900 SDValue Ex = DAG.getNode( 3901 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0), 3902 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3903 SDValue Sh = DAG.getNode( 3904 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1), 3905 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3906 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3907 VT.getScalarType(), Ex, Sh)); 3908 } 3909 3910 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 3911 ReplaceNode(SDValue(Node, 0), Result); 3912 break; 3913 } 3914 case ISD::GLOBAL_OFFSET_TABLE: 3915 case ISD::GlobalAddress: 3916 case ISD::GlobalTLSAddress: 3917 case ISD::ExternalSymbol: 3918 case ISD::ConstantPool: 3919 case ISD::JumpTable: 3920 case ISD::INTRINSIC_W_CHAIN: 3921 case ISD::INTRINSIC_WO_CHAIN: 3922 case ISD::INTRINSIC_VOID: 3923 // FIXME: Custom lowering for these operations shouldn't return null! 3924 break; 3925 } 3926 3927 // Replace the original node with the legalized result. 3928 if (Results.empty()) { 3929 DEBUG(dbgs() << "Cannot expand node\n"); 3930 return false; 3931 } 3932 3933 DEBUG(dbgs() << "Succesfully expanded node\n"); 3934 ReplaceNode(Node, Results.data()); 3935 return true; 3936 } 3937 3938 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 3939 DEBUG(dbgs() << "Trying to convert node to libcall\n"); 3940 SmallVector<SDValue, 8> Results; 3941 SDLoc dl(Node); 3942 // FIXME: Check flags on the node to see if we can use a finite call. 3943 bool CanUseFiniteLibCall = TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath; 3944 unsigned Opc = Node->getOpcode(); 3945 switch (Opc) { 3946 case ISD::ATOMIC_FENCE: { 3947 // If the target didn't lower this, lower it to '__sync_synchronize()' call 3948 // FIXME: handle "fence singlethread" more efficiently. 3949 TargetLowering::ArgListTy Args; 3950 3951 TargetLowering::CallLoweringInfo CLI(DAG); 3952 CLI.setDebugLoc(dl) 3953 .setChain(Node->getOperand(0)) 3954 .setLibCallee( 3955 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3956 DAG.getExternalSymbol("__sync_synchronize", 3957 TLI.getPointerTy(DAG.getDataLayout())), 3958 std::move(Args)); 3959 3960 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3961 3962 Results.push_back(CallResult.second); 3963 break; 3964 } 3965 // By default, atomic intrinsics are marked Legal and lowered. Targets 3966 // which don't support them directly, however, may want libcalls, in which 3967 // case they mark them Expand, and we get here. 3968 case ISD::ATOMIC_SWAP: 3969 case ISD::ATOMIC_LOAD_ADD: 3970 case ISD::ATOMIC_LOAD_SUB: 3971 case ISD::ATOMIC_LOAD_AND: 3972 case ISD::ATOMIC_LOAD_CLR: 3973 case ISD::ATOMIC_LOAD_OR: 3974 case ISD::ATOMIC_LOAD_XOR: 3975 case ISD::ATOMIC_LOAD_NAND: 3976 case ISD::ATOMIC_LOAD_MIN: 3977 case ISD::ATOMIC_LOAD_MAX: 3978 case ISD::ATOMIC_LOAD_UMIN: 3979 case ISD::ATOMIC_LOAD_UMAX: 3980 case ISD::ATOMIC_CMP_SWAP: { 3981 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 3982 RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT); 3983 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!"); 3984 3985 std::pair<SDValue, SDValue> Tmp = ExpandChainLibCall(LC, Node, false); 3986 Results.push_back(Tmp.first); 3987 Results.push_back(Tmp.second); 3988 break; 3989 } 3990 case ISD::TRAP: { 3991 // If this operation is not supported, lower it to 'abort()' call 3992 TargetLowering::ArgListTy Args; 3993 TargetLowering::CallLoweringInfo CLI(DAG); 3994 CLI.setDebugLoc(dl) 3995 .setChain(Node->getOperand(0)) 3996 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3997 DAG.getExternalSymbol( 3998 "abort", TLI.getPointerTy(DAG.getDataLayout())), 3999 std::move(Args)); 4000 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 4001 4002 Results.push_back(CallResult.second); 4003 break; 4004 } 4005 case ISD::FMINNUM: 4006 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 4007 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 4008 RTLIB::FMIN_PPCF128)); 4009 break; 4010 case ISD::FMAXNUM: 4011 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 4012 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 4013 RTLIB::FMAX_PPCF128)); 4014 break; 4015 case ISD::FSQRT: 4016 case ISD::STRICT_FSQRT: 4017 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 4018 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 4019 RTLIB::SQRT_PPCF128)); 4020 break; 4021 case ISD::FSIN: 4022 case ISD::STRICT_FSIN: 4023 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 4024 RTLIB::SIN_F80, RTLIB::SIN_F128, 4025 RTLIB::SIN_PPCF128)); 4026 break; 4027 case ISD::FCOS: 4028 case ISD::STRICT_FCOS: 4029 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 4030 RTLIB::COS_F80, RTLIB::COS_F128, 4031 RTLIB::COS_PPCF128)); 4032 break; 4033 case ISD::FSINCOS: 4034 // Expand into sincos libcall. 4035 ExpandSinCosLibCall(Node, Results); 4036 break; 4037 case ISD::FLOG: 4038 case ISD::STRICT_FLOG: 4039 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log_finite)) 4040 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_FINITE_F32, 4041 RTLIB::LOG_FINITE_F64, 4042 RTLIB::LOG_FINITE_F80, 4043 RTLIB::LOG_FINITE_F128, 4044 RTLIB::LOG_FINITE_PPCF128)); 4045 else 4046 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, 4047 RTLIB::LOG_F80, RTLIB::LOG_F128, 4048 RTLIB::LOG_PPCF128)); 4049 break; 4050 case ISD::FLOG2: 4051 case ISD::STRICT_FLOG2: 4052 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log2_finite)) 4053 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_FINITE_F32, 4054 RTLIB::LOG2_FINITE_F64, 4055 RTLIB::LOG2_FINITE_F80, 4056 RTLIB::LOG2_FINITE_F128, 4057 RTLIB::LOG2_FINITE_PPCF128)); 4058 else 4059 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 4060 RTLIB::LOG2_F80, RTLIB::LOG2_F128, 4061 RTLIB::LOG2_PPCF128)); 4062 break; 4063 case ISD::FLOG10: 4064 case ISD::STRICT_FLOG10: 4065 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log10_finite)) 4066 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_FINITE_F32, 4067 RTLIB::LOG10_FINITE_F64, 4068 RTLIB::LOG10_FINITE_F80, 4069 RTLIB::LOG10_FINITE_F128, 4070 RTLIB::LOG10_FINITE_PPCF128)); 4071 else 4072 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 4073 RTLIB::LOG10_F80, RTLIB::LOG10_F128, 4074 RTLIB::LOG10_PPCF128)); 4075 break; 4076 case ISD::FEXP: 4077 case ISD::STRICT_FEXP: 4078 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp_finite)) 4079 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_FINITE_F32, 4080 RTLIB::EXP_FINITE_F64, 4081 RTLIB::EXP_FINITE_F80, 4082 RTLIB::EXP_FINITE_F128, 4083 RTLIB::EXP_FINITE_PPCF128)); 4084 else 4085 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, 4086 RTLIB::EXP_F80, RTLIB::EXP_F128, 4087 RTLIB::EXP_PPCF128)); 4088 break; 4089 case ISD::FEXP2: 4090 case ISD::STRICT_FEXP2: 4091 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp2_finite)) 4092 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_FINITE_F32, 4093 RTLIB::EXP2_FINITE_F64, 4094 RTLIB::EXP2_FINITE_F80, 4095 RTLIB::EXP2_FINITE_F128, 4096 RTLIB::EXP2_FINITE_PPCF128)); 4097 else 4098 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 4099 RTLIB::EXP2_F80, RTLIB::EXP2_F128, 4100 RTLIB::EXP2_PPCF128)); 4101 break; 4102 case ISD::FTRUNC: 4103 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 4104 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 4105 RTLIB::TRUNC_PPCF128)); 4106 break; 4107 case ISD::FFLOOR: 4108 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 4109 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 4110 RTLIB::FLOOR_PPCF128)); 4111 break; 4112 case ISD::FCEIL: 4113 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 4114 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 4115 RTLIB::CEIL_PPCF128)); 4116 break; 4117 case ISD::FRINT: 4118 case ISD::STRICT_FRINT: 4119 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 4120 RTLIB::RINT_F80, RTLIB::RINT_F128, 4121 RTLIB::RINT_PPCF128)); 4122 break; 4123 case ISD::FNEARBYINT: 4124 case ISD::STRICT_FNEARBYINT: 4125 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 4126 RTLIB::NEARBYINT_F64, 4127 RTLIB::NEARBYINT_F80, 4128 RTLIB::NEARBYINT_F128, 4129 RTLIB::NEARBYINT_PPCF128)); 4130 break; 4131 case ISD::FROUND: 4132 Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32, 4133 RTLIB::ROUND_F64, 4134 RTLIB::ROUND_F80, 4135 RTLIB::ROUND_F128, 4136 RTLIB::ROUND_PPCF128)); 4137 break; 4138 case ISD::FPOWI: 4139 case ISD::STRICT_FPOWI: 4140 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 4141 RTLIB::POWI_F80, RTLIB::POWI_F128, 4142 RTLIB::POWI_PPCF128)); 4143 break; 4144 case ISD::FPOW: 4145 case ISD::STRICT_FPOW: 4146 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_pow_finite)) 4147 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_FINITE_F32, 4148 RTLIB::POW_FINITE_F64, 4149 RTLIB::POW_FINITE_F80, 4150 RTLIB::POW_FINITE_F128, 4151 RTLIB::POW_FINITE_PPCF128)); 4152 else 4153 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, 4154 RTLIB::POW_F80, RTLIB::POW_F128, 4155 RTLIB::POW_PPCF128)); 4156 break; 4157 case ISD::FDIV: 4158 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 4159 RTLIB::DIV_F80, RTLIB::DIV_F128, 4160 RTLIB::DIV_PPCF128)); 4161 break; 4162 case ISD::FREM: 4163 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 4164 RTLIB::REM_F80, RTLIB::REM_F128, 4165 RTLIB::REM_PPCF128)); 4166 break; 4167 case ISD::FMA: 4168 case ISD::STRICT_FMA: 4169 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 4170 RTLIB::FMA_F80, RTLIB::FMA_F128, 4171 RTLIB::FMA_PPCF128)); 4172 break; 4173 case ISD::FADD: 4174 Results.push_back(ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 4175 RTLIB::ADD_F80, RTLIB::ADD_F128, 4176 RTLIB::ADD_PPCF128)); 4177 break; 4178 case ISD::FMUL: 4179 Results.push_back(ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 4180 RTLIB::MUL_F80, RTLIB::MUL_F128, 4181 RTLIB::MUL_PPCF128)); 4182 break; 4183 case ISD::FP16_TO_FP: 4184 if (Node->getValueType(0) == MVT::f32) { 4185 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 4186 } 4187 break; 4188 case ISD::FP_TO_FP16: { 4189 RTLIB::Libcall LC = 4190 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 4191 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 4192 Results.push_back(ExpandLibCall(LC, Node, false)); 4193 break; 4194 } 4195 case ISD::FSUB: 4196 Results.push_back(ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4197 RTLIB::SUB_F80, RTLIB::SUB_F128, 4198 RTLIB::SUB_PPCF128)); 4199 break; 4200 case ISD::SREM: 4201 Results.push_back(ExpandIntLibCall(Node, true, 4202 RTLIB::SREM_I8, 4203 RTLIB::SREM_I16, RTLIB::SREM_I32, 4204 RTLIB::SREM_I64, RTLIB::SREM_I128)); 4205 break; 4206 case ISD::UREM: 4207 Results.push_back(ExpandIntLibCall(Node, false, 4208 RTLIB::UREM_I8, 4209 RTLIB::UREM_I16, RTLIB::UREM_I32, 4210 RTLIB::UREM_I64, RTLIB::UREM_I128)); 4211 break; 4212 case ISD::SDIV: 4213 Results.push_back(ExpandIntLibCall(Node, true, 4214 RTLIB::SDIV_I8, 4215 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4216 RTLIB::SDIV_I64, RTLIB::SDIV_I128)); 4217 break; 4218 case ISD::UDIV: 4219 Results.push_back(ExpandIntLibCall(Node, false, 4220 RTLIB::UDIV_I8, 4221 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4222 RTLIB::UDIV_I64, RTLIB::UDIV_I128)); 4223 break; 4224 case ISD::SDIVREM: 4225 case ISD::UDIVREM: 4226 // Expand into divrem libcall 4227 ExpandDivRemLibCall(Node, Results); 4228 break; 4229 case ISD::MUL: 4230 Results.push_back(ExpandIntLibCall(Node, false, 4231 RTLIB::MUL_I8, 4232 RTLIB::MUL_I16, RTLIB::MUL_I32, 4233 RTLIB::MUL_I64, RTLIB::MUL_I128)); 4234 break; 4235 } 4236 4237 // Replace the original node with the legalized result. 4238 if (!Results.empty()) { 4239 DEBUG(dbgs() << "Successfully converted node to libcall\n"); 4240 ReplaceNode(Node, Results.data()); 4241 } else 4242 DEBUG(dbgs() << "Could not convert node to libcall\n"); 4243 } 4244 4245 // Determine the vector type to use in place of an original scalar element when 4246 // promoting equally sized vectors. 4247 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4248 MVT EltVT, MVT NewEltVT) { 4249 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4250 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4251 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4252 return MidVT; 4253 } 4254 4255 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4256 DEBUG(dbgs() << "Trying to promote node\n"); 4257 SmallVector<SDValue, 8> Results; 4258 MVT OVT = Node->getSimpleValueType(0); 4259 if (Node->getOpcode() == ISD::UINT_TO_FP || 4260 Node->getOpcode() == ISD::SINT_TO_FP || 4261 Node->getOpcode() == ISD::SETCC || 4262 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4263 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4264 OVT = Node->getOperand(0).getSimpleValueType(); 4265 } 4266 if (Node->getOpcode() == ISD::BR_CC) 4267 OVT = Node->getOperand(2).getSimpleValueType(); 4268 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4269 SDLoc dl(Node); 4270 SDValue Tmp1, Tmp2, Tmp3; 4271 switch (Node->getOpcode()) { 4272 case ISD::CTTZ: 4273 case ISD::CTTZ_ZERO_UNDEF: 4274 case ISD::CTLZ: 4275 case ISD::CTLZ_ZERO_UNDEF: 4276 case ISD::CTPOP: 4277 // Zero extend the argument. 4278 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4279 if (Node->getOpcode() == ISD::CTTZ) { 4280 // The count is the same in the promoted type except if the original 4281 // value was zero. This can be handled by setting the bit just off 4282 // the top of the original type. 4283 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4284 OVT.getSizeInBits()); 4285 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4286 DAG.getConstant(TopBit, dl, NVT)); 4287 } 4288 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4289 // already the correct result. 4290 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4291 if (Node->getOpcode() == ISD::CTLZ || 4292 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4293 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4294 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4295 DAG.getConstant(NVT.getSizeInBits() - 4296 OVT.getSizeInBits(), dl, NVT)); 4297 } 4298 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4299 break; 4300 case ISD::BITREVERSE: 4301 case ISD::BSWAP: { 4302 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4303 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4304 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4305 Tmp1 = DAG.getNode( 4306 ISD::SRL, dl, NVT, Tmp1, 4307 DAG.getConstant(DiffBits, dl, 4308 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4309 4310 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4311 break; 4312 } 4313 case ISD::FP_TO_UINT: 4314 case ISD::FP_TO_SINT: 4315 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), 4316 Node->getOpcode() == ISD::FP_TO_SINT, dl); 4317 Results.push_back(Tmp1); 4318 break; 4319 case ISD::UINT_TO_FP: 4320 case ISD::SINT_TO_FP: 4321 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), 4322 Node->getOpcode() == ISD::SINT_TO_FP, dl); 4323 Results.push_back(Tmp1); 4324 break; 4325 case ISD::VAARG: { 4326 SDValue Chain = Node->getOperand(0); // Get the chain. 4327 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4328 4329 unsigned TruncOp; 4330 if (OVT.isVector()) { 4331 TruncOp = ISD::BITCAST; 4332 } else { 4333 assert(OVT.isInteger() 4334 && "VAARG promotion is supported only for vectors or integer types"); 4335 TruncOp = ISD::TRUNCATE; 4336 } 4337 4338 // Perform the larger operation, then convert back 4339 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4340 Node->getConstantOperandVal(3)); 4341 Chain = Tmp1.getValue(1); 4342 4343 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4344 4345 // Modified the chain result - switch anything that used the old chain to 4346 // use the new one. 4347 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4348 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4349 if (UpdatedNodes) { 4350 UpdatedNodes->insert(Tmp2.getNode()); 4351 UpdatedNodes->insert(Chain.getNode()); 4352 } 4353 ReplacedNode(Node); 4354 break; 4355 } 4356 case ISD::MUL: 4357 case ISD::SDIV: 4358 case ISD::SREM: 4359 case ISD::UDIV: 4360 case ISD::UREM: 4361 case ISD::AND: 4362 case ISD::OR: 4363 case ISD::XOR: { 4364 unsigned ExtOp, TruncOp; 4365 if (OVT.isVector()) { 4366 ExtOp = ISD::BITCAST; 4367 TruncOp = ISD::BITCAST; 4368 } else { 4369 assert(OVT.isInteger() && "Cannot promote logic operation"); 4370 4371 switch (Node->getOpcode()) { 4372 default: 4373 ExtOp = ISD::ANY_EXTEND; 4374 break; 4375 case ISD::SDIV: 4376 case ISD::SREM: 4377 ExtOp = ISD::SIGN_EXTEND; 4378 break; 4379 case ISD::UDIV: 4380 case ISD::UREM: 4381 ExtOp = ISD::ZERO_EXTEND; 4382 break; 4383 } 4384 TruncOp = ISD::TRUNCATE; 4385 } 4386 // Promote each of the values to the new type. 4387 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4388 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4389 // Perform the larger operation, then convert back 4390 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4391 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4392 break; 4393 } 4394 case ISD::UMUL_LOHI: 4395 case ISD::SMUL_LOHI: { 4396 // Promote to a multiply in a wider integer type. 4397 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 4398 : ISD::SIGN_EXTEND; 4399 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4400 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4401 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 4402 4403 auto &DL = DAG.getDataLayout(); 4404 unsigned OriginalSize = OVT.getScalarSizeInBits(); 4405 Tmp2 = DAG.getNode( 4406 ISD::SRL, dl, NVT, Tmp1, 4407 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 4408 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4409 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 4410 break; 4411 } 4412 case ISD::SELECT: { 4413 unsigned ExtOp, TruncOp; 4414 if (Node->getValueType(0).isVector() || 4415 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4416 ExtOp = ISD::BITCAST; 4417 TruncOp = ISD::BITCAST; 4418 } else if (Node->getValueType(0).isInteger()) { 4419 ExtOp = ISD::ANY_EXTEND; 4420 TruncOp = ISD::TRUNCATE; 4421 } else { 4422 ExtOp = ISD::FP_EXTEND; 4423 TruncOp = ISD::FP_ROUND; 4424 } 4425 Tmp1 = Node->getOperand(0); 4426 // Promote each of the values to the new type. 4427 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4428 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4429 // Perform the larger operation, then round down. 4430 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4431 if (TruncOp != ISD::FP_ROUND) 4432 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4433 else 4434 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4435 DAG.getIntPtrConstant(0, dl)); 4436 Results.push_back(Tmp1); 4437 break; 4438 } 4439 case ISD::VECTOR_SHUFFLE: { 4440 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4441 4442 // Cast the two input vectors. 4443 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4444 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4445 4446 // Convert the shuffle mask to the right # elements. 4447 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4448 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4449 Results.push_back(Tmp1); 4450 break; 4451 } 4452 case ISD::SETCC: { 4453 unsigned ExtOp = ISD::FP_EXTEND; 4454 if (NVT.isInteger()) { 4455 ISD::CondCode CCCode = 4456 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4457 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4458 } 4459 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4460 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4461 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 4462 Tmp1, Tmp2, Node->getOperand(2))); 4463 break; 4464 } 4465 case ISD::BR_CC: { 4466 unsigned ExtOp = ISD::FP_EXTEND; 4467 if (NVT.isInteger()) { 4468 ISD::CondCode CCCode = 4469 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4470 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4471 } 4472 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4473 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4474 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4475 Node->getOperand(0), Node->getOperand(1), 4476 Tmp1, Tmp2, Node->getOperand(4))); 4477 break; 4478 } 4479 case ISD::FADD: 4480 case ISD::FSUB: 4481 case ISD::FMUL: 4482 case ISD::FDIV: 4483 case ISD::FREM: 4484 case ISD::FMINNUM: 4485 case ISD::FMAXNUM: 4486 case ISD::FPOW: 4487 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4488 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4489 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4490 Node->getFlags()); 4491 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4492 Tmp3, DAG.getIntPtrConstant(0, dl))); 4493 break; 4494 case ISD::FMA: 4495 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4496 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4497 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4498 Results.push_back( 4499 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4500 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4501 DAG.getIntPtrConstant(0, dl))); 4502 break; 4503 case ISD::FCOPYSIGN: 4504 case ISD::FPOWI: { 4505 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4506 Tmp2 = Node->getOperand(1); 4507 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4508 4509 // fcopysign doesn't change anything but the sign bit, so 4510 // (fp_round (fcopysign (fpext a), b)) 4511 // is as precise as 4512 // (fp_round (fpext a)) 4513 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4514 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4515 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4516 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4517 break; 4518 } 4519 case ISD::FFLOOR: 4520 case ISD::FCEIL: 4521 case ISD::FRINT: 4522 case ISD::FNEARBYINT: 4523 case ISD::FROUND: 4524 case ISD::FTRUNC: 4525 case ISD::FNEG: 4526 case ISD::FSQRT: 4527 case ISD::FSIN: 4528 case ISD::FCOS: 4529 case ISD::FLOG: 4530 case ISD::FLOG2: 4531 case ISD::FLOG10: 4532 case ISD::FABS: 4533 case ISD::FEXP: 4534 case ISD::FEXP2: 4535 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4536 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4537 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4538 Tmp2, DAG.getIntPtrConstant(0, dl))); 4539 break; 4540 case ISD::BUILD_VECTOR: { 4541 MVT EltVT = OVT.getVectorElementType(); 4542 MVT NewEltVT = NVT.getVectorElementType(); 4543 4544 // Handle bitcasts to a different vector type with the same total bit size 4545 // 4546 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4547 // => 4548 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4549 4550 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4551 "Invalid promote type for build_vector"); 4552 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4553 4554 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4555 4556 SmallVector<SDValue, 8> NewOps; 4557 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4558 SDValue Op = Node->getOperand(I); 4559 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4560 } 4561 4562 SDLoc SL(Node); 4563 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4564 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4565 Results.push_back(CvtVec); 4566 break; 4567 } 4568 case ISD::EXTRACT_VECTOR_ELT: { 4569 MVT EltVT = OVT.getVectorElementType(); 4570 MVT NewEltVT = NVT.getVectorElementType(); 4571 4572 // Handle bitcasts to a different vector type with the same total bit size. 4573 // 4574 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4575 // => 4576 // v4i32:castx = bitcast x:v2i64 4577 // 4578 // i64 = bitcast 4579 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4580 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4581 // 4582 4583 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4584 "Invalid promote type for extract_vector_elt"); 4585 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4586 4587 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4588 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4589 4590 SDValue Idx = Node->getOperand(1); 4591 EVT IdxVT = Idx.getValueType(); 4592 SDLoc SL(Node); 4593 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4594 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4595 4596 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4597 4598 SmallVector<SDValue, 8> NewOps; 4599 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4600 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4601 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4602 4603 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4604 CastVec, TmpIdx); 4605 NewOps.push_back(Elt); 4606 } 4607 4608 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 4609 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4610 break; 4611 } 4612 case ISD::INSERT_VECTOR_ELT: { 4613 MVT EltVT = OVT.getVectorElementType(); 4614 MVT NewEltVT = NVT.getVectorElementType(); 4615 4616 // Handle bitcasts to a different vector type with the same total bit size 4617 // 4618 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4619 // => 4620 // v4i32:castx = bitcast x:v2i64 4621 // v2i32:casty = bitcast y:i64 4622 // 4623 // v2i64 = bitcast 4624 // (v4i32 insert_vector_elt 4625 // (v4i32 insert_vector_elt v4i32:castx, 4626 // (extract_vector_elt casty, 0), 2 * z), 4627 // (extract_vector_elt casty, 1), (2 * z + 1)) 4628 4629 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4630 "Invalid promote type for insert_vector_elt"); 4631 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4632 4633 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4634 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4635 4636 SDValue Val = Node->getOperand(1); 4637 SDValue Idx = Node->getOperand(2); 4638 EVT IdxVT = Idx.getValueType(); 4639 SDLoc SL(Node); 4640 4641 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 4642 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4643 4644 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4645 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4646 4647 SDValue NewVec = CastVec; 4648 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4649 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4650 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4651 4652 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4653 CastVal, IdxOffset); 4654 4655 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 4656 NewVec, Elt, InEltIdx); 4657 } 4658 4659 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 4660 break; 4661 } 4662 case ISD::SCALAR_TO_VECTOR: { 4663 MVT EltVT = OVT.getVectorElementType(); 4664 MVT NewEltVT = NVT.getVectorElementType(); 4665 4666 // Handle bitcasts to different vector type with the same total bit size. 4667 // 4668 // e.g. v2i64 = scalar_to_vector x:i64 4669 // => 4670 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 4671 // 4672 4673 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4674 SDValue Val = Node->getOperand(0); 4675 SDLoc SL(Node); 4676 4677 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4678 SDValue Undef = DAG.getUNDEF(MidVT); 4679 4680 SmallVector<SDValue, 8> NewElts; 4681 NewElts.push_back(CastVal); 4682 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 4683 NewElts.push_back(Undef); 4684 4685 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 4686 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4687 Results.push_back(CvtVec); 4688 break; 4689 } 4690 } 4691 4692 // Replace the original node with the legalized result. 4693 if (!Results.empty()) { 4694 DEBUG(dbgs() << "Successfully promoted node\n"); 4695 ReplaceNode(Node, Results.data()); 4696 } else 4697 DEBUG(dbgs() << "Could not promote node\n"); 4698 } 4699 4700 /// This is the entry point for the file. 4701 void SelectionDAG::Legalize() { 4702 AssignTopologicalOrder(); 4703 4704 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4705 // Use a delete listener to remove nodes which were deleted during 4706 // legalization from LegalizeNodes. This is needed to handle the situation 4707 // where a new node is allocated by the object pool to the same address of a 4708 // previously deleted node. 4709 DAGNodeDeletedListener DeleteListener( 4710 *this, 4711 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 4712 4713 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 4714 4715 // Visit all the nodes. We start in topological order, so that we see 4716 // nodes with their original operands intact. Legalization can produce 4717 // new nodes which may themselves need to be legalized. Iterate until all 4718 // nodes have been legalized. 4719 while (true) { 4720 bool AnyLegalized = false; 4721 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 4722 --NI; 4723 4724 SDNode *N = &*NI; 4725 if (N->use_empty() && N != getRoot().getNode()) { 4726 ++NI; 4727 DeleteNode(N); 4728 continue; 4729 } 4730 4731 if (LegalizedNodes.insert(N).second) { 4732 AnyLegalized = true; 4733 Legalizer.LegalizeOp(N); 4734 4735 if (N->use_empty() && N != getRoot().getNode()) { 4736 ++NI; 4737 DeleteNode(N); 4738 } 4739 } 4740 } 4741 if (!AnyLegalized) 4742 break; 4743 4744 } 4745 4746 // Remove dead nodes now. 4747 RemoveDeadNodes(); 4748 } 4749 4750 bool SelectionDAG::LegalizeOp(SDNode *N, 4751 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 4752 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4753 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 4754 4755 // Directly insert the node in question, and legalize it. This will recurse 4756 // as needed through operands. 4757 LegalizedNodes.insert(N); 4758 Legalizer.LegalizeOp(N); 4759 4760 return LegalizedNodes.count(N); 4761 } 4762