1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::Legalize method. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/FloatingPointMode.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/CodeGen/ISDOpcodes.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/RuntimeLibcalls.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/SelectionDAGNodes.h" 29 #include "llvm/CodeGen/TargetFrameLowering.h" 30 #include "llvm/CodeGen/TargetLowering.h" 31 #include "llvm/CodeGen/TargetSubtargetInfo.h" 32 #include "llvm/CodeGen/ValueTypes.h" 33 #include "llvm/IR/CallingConv.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Compiler.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/MachineValueType.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include <cassert> 50 #include <cstdint> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "legalizedag" 57 58 namespace { 59 60 /// Keeps track of state when getting the sign of a floating-point value as an 61 /// integer. 62 struct FloatSignAsInt { 63 EVT FloatVT; 64 SDValue Chain; 65 SDValue FloatPtr; 66 SDValue IntPtr; 67 MachinePointerInfo IntPointerInfo; 68 MachinePointerInfo FloatPointerInfo; 69 SDValue IntValue; 70 APInt SignMask; 71 uint8_t SignBit; 72 }; 73 74 //===----------------------------------------------------------------------===// 75 /// This takes an arbitrary SelectionDAG as input and 76 /// hacks on it until the target machine can handle it. This involves 77 /// eliminating value sizes the machine cannot handle (promoting small sizes to 78 /// large sizes or splitting up large values into small values) as well as 79 /// eliminating operations the machine cannot handle. 80 /// 81 /// This code also does a small amount of optimization and recognition of idioms 82 /// as part of its processing. For example, if a target does not support a 83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 84 /// will attempt merge setcc and brc instructions into brcc's. 85 class SelectionDAGLegalize { 86 const TargetMachine &TM; 87 const TargetLowering &TLI; 88 SelectionDAG &DAG; 89 90 /// The set of nodes which have already been legalized. We hold a 91 /// reference to it in order to update as necessary on node deletion. 92 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 93 94 /// A set of all the nodes updated during legalization. 95 SmallSetVector<SDNode *, 16> *UpdatedNodes; 96 97 EVT getSetCCResultType(EVT VT) const { 98 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 99 } 100 101 // Libcall insertion helpers. 102 103 public: 104 SelectionDAGLegalize(SelectionDAG &DAG, 105 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 106 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 107 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 108 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 109 110 /// Legalizes the given operation. 111 void LegalizeOp(SDNode *Node); 112 113 private: 114 SDValue OptimizeFloatStore(StoreSDNode *ST); 115 116 void LegalizeLoadOps(SDNode *Node); 117 void LegalizeStoreOps(SDNode *Node); 118 119 /// Some targets cannot handle a variable 120 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 121 /// is necessary to spill the vector being inserted into to memory, perform 122 /// the insert there, and then read the result back. 123 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 124 const SDLoc &dl); 125 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 126 const SDLoc &dl); 127 128 /// Return a vector shuffle operation which 129 /// performs the same shuffe in terms of order or result bytes, but on a type 130 /// whose vector element type is narrower than the original shuffle type. 131 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 132 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 133 SDValue N1, SDValue N2, 134 ArrayRef<int> Mask) const; 135 136 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 137 138 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall LC, 139 SmallVectorImpl<SDValue> &Results); 140 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 141 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 142 RTLIB::Libcall Call_F128, 143 RTLIB::Libcall Call_PPCF128, 144 SmallVectorImpl<SDValue> &Results); 145 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, RTLIB::Libcall Call_I8, 146 RTLIB::Libcall Call_I16, RTLIB::Libcall Call_I32, 147 RTLIB::Libcall Call_I64, RTLIB::Libcall Call_I128, 148 RTLIB::Libcall Call_IEXT); 149 void ExpandArgFPLibCall(SDNode *Node, 150 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, 151 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, 152 RTLIB::Libcall Call_PPCF128, 153 SmallVectorImpl<SDValue> &Results); 154 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 155 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 156 157 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 158 const SDLoc &dl); 159 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 160 const SDLoc &dl, SDValue ChainIn); 161 SDValue ExpandBUILD_VECTOR(SDNode *Node); 162 SDValue ExpandSPLAT_VECTOR(SDNode *Node); 163 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 164 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 165 SmallVectorImpl<SDValue> &Results); 166 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 167 SDValue Value) const; 168 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 169 SDValue NewIntValue) const; 170 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 171 SDValue ExpandFABS(SDNode *Node) const; 172 SDValue ExpandFNEG(SDNode *Node) const; 173 SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain); 174 void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl, 175 SmallVectorImpl<SDValue> &Results); 176 void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 177 SmallVectorImpl<SDValue> &Results); 178 SDValue PromoteLegalFP_TO_INT_SAT(SDNode *Node, const SDLoc &dl); 179 180 SDValue ExpandPARITY(SDValue Op, const SDLoc &dl); 181 182 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 183 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 184 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 185 186 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 187 SDValue ExpandConstant(ConstantSDNode *CP); 188 189 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 190 bool ExpandNode(SDNode *Node); 191 void ConvertNodeToLibcall(SDNode *Node); 192 void PromoteNode(SDNode *Node); 193 194 public: 195 // Node replacement helpers 196 197 void ReplacedNode(SDNode *N) { 198 LegalizedNodes.erase(N); 199 if (UpdatedNodes) 200 UpdatedNodes->insert(N); 201 } 202 203 void ReplaceNode(SDNode *Old, SDNode *New) { 204 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 205 dbgs() << " with: "; New->dump(&DAG)); 206 207 assert(Old->getNumValues() == New->getNumValues() && 208 "Replacing one node with another that produces a different number " 209 "of values!"); 210 DAG.ReplaceAllUsesWith(Old, New); 211 if (UpdatedNodes) 212 UpdatedNodes->insert(New); 213 ReplacedNode(Old); 214 } 215 216 void ReplaceNode(SDValue Old, SDValue New) { 217 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 218 dbgs() << " with: "; New->dump(&DAG)); 219 220 DAG.ReplaceAllUsesWith(Old, New); 221 if (UpdatedNodes) 222 UpdatedNodes->insert(New.getNode()); 223 ReplacedNode(Old.getNode()); 224 } 225 226 void ReplaceNode(SDNode *Old, const SDValue *New) { 227 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 228 229 DAG.ReplaceAllUsesWith(Old, New); 230 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 231 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); 232 New[i]->dump(&DAG)); 233 if (UpdatedNodes) 234 UpdatedNodes->insert(New[i].getNode()); 235 } 236 ReplacedNode(Old); 237 } 238 239 void ReplaceNodeWithValue(SDValue Old, SDValue New) { 240 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 241 dbgs() << " with: "; New->dump(&DAG)); 242 243 DAG.ReplaceAllUsesOfValueWith(Old, New); 244 if (UpdatedNodes) 245 UpdatedNodes->insert(New.getNode()); 246 ReplacedNode(Old.getNode()); 247 } 248 }; 249 250 } // end anonymous namespace 251 252 /// Return a vector shuffle operation which 253 /// performs the same shuffle in terms of order or result bytes, but on a type 254 /// whose vector element type is narrower than the original shuffle type. 255 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 256 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 257 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 258 ArrayRef<int> Mask) const { 259 unsigned NumMaskElts = VT.getVectorNumElements(); 260 unsigned NumDestElts = NVT.getVectorNumElements(); 261 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 262 263 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 264 265 if (NumEltsGrowth == 1) 266 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 267 268 SmallVector<int, 8> NewMask; 269 for (unsigned i = 0; i != NumMaskElts; ++i) { 270 int Idx = Mask[i]; 271 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 272 if (Idx < 0) 273 NewMask.push_back(-1); 274 else 275 NewMask.push_back(Idx * NumEltsGrowth + j); 276 } 277 } 278 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 279 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 280 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 281 } 282 283 /// Expands the ConstantFP node to an integer constant or 284 /// a load from the constant pool. 285 SDValue 286 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 287 bool Extend = false; 288 SDLoc dl(CFP); 289 290 // If a FP immediate is precise when represented as a float and if the 291 // target can do an extending load from float to double, we put it into 292 // the constant pool as a float, even if it's is statically typed as a 293 // double. This shrinks FP constants and canonicalizes them for targets where 294 // an FP extending load is the same cost as a normal load (such as on the x87 295 // fp stack or PPC FP unit). 296 EVT VT = CFP->getValueType(0); 297 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 298 if (!UseCP) { 299 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 300 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 301 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 302 } 303 304 APFloat APF = CFP->getValueAPF(); 305 EVT OrigVT = VT; 306 EVT SVT = VT; 307 308 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 309 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 310 if (!APF.isSignaling()) { 311 while (SVT != MVT::f32 && SVT != MVT::f16) { 312 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 313 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 314 // Only do this if the target has a native EXTLOAD instruction from 315 // smaller type. 316 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 317 TLI.ShouldShrinkFPConstant(OrigVT)) { 318 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 319 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 320 VT = SVT; 321 Extend = true; 322 } 323 } 324 } 325 326 SDValue CPIdx = 327 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 328 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 329 if (Extend) { 330 SDValue Result = DAG.getExtLoad( 331 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 332 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 333 Alignment); 334 return Result; 335 } 336 SDValue Result = DAG.getLoad( 337 OrigVT, dl, DAG.getEntryNode(), CPIdx, 338 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 339 return Result; 340 } 341 342 /// Expands the Constant node to a load from the constant pool. 343 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 344 SDLoc dl(CP); 345 EVT VT = CP->getValueType(0); 346 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 347 TLI.getPointerTy(DAG.getDataLayout())); 348 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 349 SDValue Result = DAG.getLoad( 350 VT, dl, DAG.getEntryNode(), CPIdx, 351 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 352 return Result; 353 } 354 355 /// Some target cannot handle a variable insertion index for the 356 /// INSERT_VECTOR_ELT instruction. In this case, it 357 /// is necessary to spill the vector being inserted into to memory, perform 358 /// the insert there, and then read the result back. 359 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 360 SDValue Val, 361 SDValue Idx, 362 const SDLoc &dl) { 363 SDValue Tmp1 = Vec; 364 SDValue Tmp2 = Val; 365 SDValue Tmp3 = Idx; 366 367 // If the target doesn't support this, we have to spill the input vector 368 // to a temporary stack slot, update the element, then reload it. This is 369 // badness. We could also load the value into a vector register (either 370 // with a "move to register" or "extload into register" instruction, then 371 // permute it into place, if the idx is a constant and if the idx is 372 // supported by the target. 373 EVT VT = Tmp1.getValueType(); 374 EVT EltVT = VT.getVectorElementType(); 375 SDValue StackPtr = DAG.CreateStackTemporary(VT); 376 377 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 378 379 // Store the vector. 380 SDValue Ch = DAG.getStore( 381 DAG.getEntryNode(), dl, Tmp1, StackPtr, 382 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 383 384 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 385 386 // Store the scalar value. 387 Ch = DAG.getTruncStore( 388 Ch, dl, Tmp2, StackPtr2, 389 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT); 390 // Load the updated vector. 391 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 392 DAG.getMachineFunction(), SPFI)); 393 } 394 395 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 396 SDValue Idx, 397 const SDLoc &dl) { 398 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 399 // SCALAR_TO_VECTOR requires that the type of the value being inserted 400 // match the element type of the vector being created, except for 401 // integers in which case the inserted value can be over width. 402 EVT EltVT = Vec.getValueType().getVectorElementType(); 403 if (Val.getValueType() == EltVT || 404 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 405 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 406 Vec.getValueType(), Val); 407 408 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 409 // We generate a shuffle of InVec and ScVec, so the shuffle mask 410 // should be 0,1,2,3,4,5... with the appropriate element replaced with 411 // elt 0 of the RHS. 412 SmallVector<int, 8> ShufOps; 413 for (unsigned i = 0; i != NumElts; ++i) 414 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 415 416 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 417 } 418 } 419 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 420 } 421 422 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 423 if (!ISD::isNormalStore(ST)) 424 return SDValue(); 425 426 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); 427 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 428 // FIXME: move this to the DAG Combiner! Note that we can't regress due 429 // to phase ordering between legalized code and the dag combiner. This 430 // probably means that we need to integrate dag combiner and legalizer 431 // together. 432 // We generally can't do this one for long doubles. 433 SDValue Chain = ST->getChain(); 434 SDValue Ptr = ST->getBasePtr(); 435 SDValue Value = ST->getValue(); 436 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 437 AAMDNodes AAInfo = ST->getAAInfo(); 438 SDLoc dl(ST); 439 440 // Don't optimise TargetConstantFP 441 if (Value.getOpcode() == ISD::TargetConstantFP) 442 return SDValue(); 443 444 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) { 445 if (CFP->getValueType(0) == MVT::f32 && 446 TLI.isTypeLegal(MVT::i32)) { 447 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 448 bitcastToAPInt().zextOrTrunc(32), 449 SDLoc(CFP), MVT::i32); 450 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 451 ST->getOriginalAlign(), MMOFlags, AAInfo); 452 } 453 454 if (CFP->getValueType(0) == MVT::f64) { 455 // If this target supports 64-bit registers, do a single 64-bit store. 456 if (TLI.isTypeLegal(MVT::i64)) { 457 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 458 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 459 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 460 ST->getOriginalAlign(), MMOFlags, AAInfo); 461 } 462 463 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 464 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 465 // stores. If the target supports neither 32- nor 64-bits, this 466 // xform is certainly not worth it. 467 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 468 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 469 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 470 if (DAG.getDataLayout().isBigEndian()) 471 std::swap(Lo, Hi); 472 473 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), 474 ST->getOriginalAlign(), MMOFlags, AAInfo); 475 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), dl); 476 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 477 ST->getPointerInfo().getWithOffset(4), 478 ST->getOriginalAlign(), MMOFlags, AAInfo); 479 480 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 481 } 482 } 483 } 484 return SDValue(); 485 } 486 487 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 488 StoreSDNode *ST = cast<StoreSDNode>(Node); 489 SDValue Chain = ST->getChain(); 490 SDValue Ptr = ST->getBasePtr(); 491 SDLoc dl(Node); 492 493 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 494 AAMDNodes AAInfo = ST->getAAInfo(); 495 496 if (!ST->isTruncatingStore()) { 497 LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); 498 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 499 ReplaceNode(ST, OptStore); 500 return; 501 } 502 503 SDValue Value = ST->getValue(); 504 MVT VT = Value.getSimpleValueType(); 505 switch (TLI.getOperationAction(ISD::STORE, VT)) { 506 default: llvm_unreachable("This action is not supported yet!"); 507 case TargetLowering::Legal: { 508 // If this is an unaligned store and the target doesn't support it, 509 // expand it. 510 EVT MemVT = ST->getMemoryVT(); 511 const DataLayout &DL = DAG.getDataLayout(); 512 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 513 *ST->getMemOperand())) { 514 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 515 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 516 ReplaceNode(SDValue(ST, 0), Result); 517 } else 518 LLVM_DEBUG(dbgs() << "Legal store\n"); 519 break; 520 } 521 case TargetLowering::Custom: { 522 LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); 523 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 524 if (Res && Res != SDValue(Node, 0)) 525 ReplaceNode(SDValue(Node, 0), Res); 526 return; 527 } 528 case TargetLowering::Promote: { 529 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 530 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 531 "Can only promote stores to same size type"); 532 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 533 SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 534 ST->getOriginalAlign(), MMOFlags, AAInfo); 535 ReplaceNode(SDValue(Node, 0), Result); 536 break; 537 } 538 } 539 return; 540 } 541 542 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); 543 SDValue Value = ST->getValue(); 544 EVT StVT = ST->getMemoryVT(); 545 TypeSize StWidth = StVT.getSizeInBits(); 546 TypeSize StSize = StVT.getStoreSizeInBits(); 547 auto &DL = DAG.getDataLayout(); 548 549 if (StWidth != StSize) { 550 // Promote to a byte-sized store with upper bits zero if not 551 // storing an integral number of bytes. For example, promote 552 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 553 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StSize.getFixedSize()); 554 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 555 SDValue Result = 556 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 557 ST->getOriginalAlign(), MMOFlags, AAInfo); 558 ReplaceNode(SDValue(Node, 0), Result); 559 } else if (!StVT.isVector() && !isPowerOf2_64(StWidth.getFixedSize())) { 560 // If not storing a power-of-2 number of bits, expand as two stores. 561 assert(!StVT.isVector() && "Unsupported truncstore!"); 562 unsigned StWidthBits = StWidth.getFixedSize(); 563 unsigned LogStWidth = Log2_32(StWidthBits); 564 assert(LogStWidth < 32); 565 unsigned RoundWidth = 1 << LogStWidth; 566 assert(RoundWidth < StWidthBits); 567 unsigned ExtraWidth = StWidthBits - RoundWidth; 568 assert(ExtraWidth < RoundWidth); 569 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 570 "Store size not an integral number of bytes!"); 571 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 572 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 573 SDValue Lo, Hi; 574 unsigned IncrementSize; 575 576 if (DL.isLittleEndian()) { 577 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 578 // Store the bottom RoundWidth bits. 579 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 580 RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 581 582 // Store the remaining ExtraWidth bits. 583 IncrementSize = RoundWidth / 8; 584 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 585 Hi = DAG.getNode( 586 ISD::SRL, dl, Value.getValueType(), Value, 587 DAG.getConstant(RoundWidth, dl, 588 TLI.getShiftAmountTy(Value.getValueType(), DL))); 589 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, 590 ST->getPointerInfo().getWithOffset(IncrementSize), 591 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 592 } else { 593 // Big endian - avoid unaligned stores. 594 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 595 // Store the top RoundWidth bits. 596 Hi = DAG.getNode( 597 ISD::SRL, dl, Value.getValueType(), Value, 598 DAG.getConstant(ExtraWidth, dl, 599 TLI.getShiftAmountTy(Value.getValueType(), DL))); 600 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT, 601 ST->getOriginalAlign(), MMOFlags, AAInfo); 602 603 // Store the remaining ExtraWidth bits. 604 IncrementSize = RoundWidth / 8; 605 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 606 DAG.getConstant(IncrementSize, dl, 607 Ptr.getValueType())); 608 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, 609 ST->getPointerInfo().getWithOffset(IncrementSize), 610 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 611 } 612 613 // The order of the stores doesn't matter. 614 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 615 ReplaceNode(SDValue(Node, 0), Result); 616 } else { 617 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 618 default: llvm_unreachable("This action is not supported yet!"); 619 case TargetLowering::Legal: { 620 EVT MemVT = ST->getMemoryVT(); 621 // If this is an unaligned store and the target doesn't support it, 622 // expand it. 623 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 624 *ST->getMemOperand())) { 625 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 626 ReplaceNode(SDValue(ST, 0), Result); 627 } 628 break; 629 } 630 case TargetLowering::Custom: { 631 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 632 if (Res && Res != SDValue(Node, 0)) 633 ReplaceNode(SDValue(Node, 0), Res); 634 return; 635 } 636 case TargetLowering::Expand: 637 assert(!StVT.isVector() && 638 "Vector Stores are handled in LegalizeVectorOps"); 639 640 SDValue Result; 641 642 // TRUNCSTORE:i16 i32 -> STORE i16 643 if (TLI.isTypeLegal(StVT)) { 644 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 645 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 646 ST->getOriginalAlign(), MMOFlags, AAInfo); 647 } else { 648 // The in-memory type isn't legal. Truncate to the type it would promote 649 // to, and then do a truncstore. 650 Value = DAG.getNode(ISD::TRUNCATE, dl, 651 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 652 Value); 653 Result = 654 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT, 655 ST->getOriginalAlign(), MMOFlags, AAInfo); 656 } 657 658 ReplaceNode(SDValue(Node, 0), Result); 659 break; 660 } 661 } 662 } 663 664 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 665 LoadSDNode *LD = cast<LoadSDNode>(Node); 666 SDValue Chain = LD->getChain(); // The chain. 667 SDValue Ptr = LD->getBasePtr(); // The base pointer. 668 SDValue Value; // The value returned by the load op. 669 SDLoc dl(Node); 670 671 ISD::LoadExtType ExtType = LD->getExtensionType(); 672 if (ExtType == ISD::NON_EXTLOAD) { 673 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 674 MVT VT = Node->getSimpleValueType(0); 675 SDValue RVal = SDValue(Node, 0); 676 SDValue RChain = SDValue(Node, 1); 677 678 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 679 default: llvm_unreachable("This action is not supported yet!"); 680 case TargetLowering::Legal: { 681 EVT MemVT = LD->getMemoryVT(); 682 const DataLayout &DL = DAG.getDataLayout(); 683 // If this is an unaligned load and the target doesn't support it, 684 // expand it. 685 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 686 *LD->getMemOperand())) { 687 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 688 } 689 break; 690 } 691 case TargetLowering::Custom: 692 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 693 RVal = Res; 694 RChain = Res.getValue(1); 695 } 696 break; 697 698 case TargetLowering::Promote: { 699 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 700 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 701 "Can only promote loads to same size type"); 702 703 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 704 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 705 RChain = Res.getValue(1); 706 break; 707 } 708 } 709 if (RChain.getNode() != Node) { 710 assert(RVal.getNode() != Node && "Load must be completely replaced"); 711 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 712 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 713 if (UpdatedNodes) { 714 UpdatedNodes->insert(RVal.getNode()); 715 UpdatedNodes->insert(RChain.getNode()); 716 } 717 ReplacedNode(Node); 718 } 719 return; 720 } 721 722 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); 723 EVT SrcVT = LD->getMemoryVT(); 724 TypeSize SrcWidth = SrcVT.getSizeInBits(); 725 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 726 AAMDNodes AAInfo = LD->getAAInfo(); 727 728 if (SrcWidth != SrcVT.getStoreSizeInBits() && 729 // Some targets pretend to have an i1 loading operation, and actually 730 // load an i8. This trick is correct for ZEXTLOAD because the top 7 731 // bits are guaranteed to be zero; it helps the optimizers understand 732 // that these bits are zero. It is also useful for EXTLOAD, since it 733 // tells the optimizers that those bits are undefined. It would be 734 // nice to have an effective generic way of getting these benefits... 735 // Until such a way is found, don't insist on promoting i1 here. 736 (SrcVT != MVT::i1 || 737 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 738 TargetLowering::Promote)) { 739 // Promote to a byte-sized load if not loading an integral number of 740 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 741 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 742 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 743 SDValue Ch; 744 745 // The extra bits are guaranteed to be zero, since we stored them that 746 // way. A zext load from NVT thus automatically gives zext from SrcVT. 747 748 ISD::LoadExtType NewExtType = 749 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 750 751 SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 752 Chain, Ptr, LD->getPointerInfo(), NVT, 753 LD->getOriginalAlign(), MMOFlags, AAInfo); 754 755 Ch = Result.getValue(1); // The chain. 756 757 if (ExtType == ISD::SEXTLOAD) 758 // Having the top bits zero doesn't help when sign extending. 759 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 760 Result.getValueType(), 761 Result, DAG.getValueType(SrcVT)); 762 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 763 // All the top bits are guaranteed to be zero - inform the optimizers. 764 Result = DAG.getNode(ISD::AssertZext, dl, 765 Result.getValueType(), Result, 766 DAG.getValueType(SrcVT)); 767 768 Value = Result; 769 Chain = Ch; 770 } else if (!isPowerOf2_64(SrcWidth.getKnownMinSize())) { 771 // If not loading a power-of-2 number of bits, expand as two loads. 772 assert(!SrcVT.isVector() && "Unsupported extload!"); 773 unsigned SrcWidthBits = SrcWidth.getFixedSize(); 774 unsigned LogSrcWidth = Log2_32(SrcWidthBits); 775 assert(LogSrcWidth < 32); 776 unsigned RoundWidth = 1 << LogSrcWidth; 777 assert(RoundWidth < SrcWidthBits); 778 unsigned ExtraWidth = SrcWidthBits - RoundWidth; 779 assert(ExtraWidth < RoundWidth); 780 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 781 "Load size not an integral number of bytes!"); 782 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 783 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 784 SDValue Lo, Hi, Ch; 785 unsigned IncrementSize; 786 auto &DL = DAG.getDataLayout(); 787 788 if (DL.isLittleEndian()) { 789 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 790 // Load the bottom RoundWidth bits. 791 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 792 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 793 MMOFlags, AAInfo); 794 795 // Load the remaining ExtraWidth bits. 796 IncrementSize = RoundWidth / 8; 797 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 798 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 799 LD->getPointerInfo().getWithOffset(IncrementSize), 800 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 801 802 // Build a factor node to remember that this load is independent of 803 // the other one. 804 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 805 Hi.getValue(1)); 806 807 // Move the top bits to the right place. 808 Hi = DAG.getNode( 809 ISD::SHL, dl, Hi.getValueType(), Hi, 810 DAG.getConstant(RoundWidth, dl, 811 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 812 813 // Join the hi and lo parts. 814 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 815 } else { 816 // Big endian - avoid unaligned loads. 817 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 818 // Load the top RoundWidth bits. 819 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 820 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 821 MMOFlags, AAInfo); 822 823 // Load the remaining ExtraWidth bits. 824 IncrementSize = RoundWidth / 8; 825 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 826 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 827 LD->getPointerInfo().getWithOffset(IncrementSize), 828 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 829 830 // Build a factor node to remember that this load is independent of 831 // the other one. 832 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 833 Hi.getValue(1)); 834 835 // Move the top bits to the right place. 836 Hi = DAG.getNode( 837 ISD::SHL, dl, Hi.getValueType(), Hi, 838 DAG.getConstant(ExtraWidth, dl, 839 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 840 841 // Join the hi and lo parts. 842 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 843 } 844 845 Chain = Ch; 846 } else { 847 bool isCustom = false; 848 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 849 SrcVT.getSimpleVT())) { 850 default: llvm_unreachable("This action is not supported yet!"); 851 case TargetLowering::Custom: 852 isCustom = true; 853 LLVM_FALLTHROUGH; 854 case TargetLowering::Legal: 855 Value = SDValue(Node, 0); 856 Chain = SDValue(Node, 1); 857 858 if (isCustom) { 859 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 860 Value = Res; 861 Chain = Res.getValue(1); 862 } 863 } else { 864 // If this is an unaligned load and the target doesn't support it, 865 // expand it. 866 EVT MemVT = LD->getMemoryVT(); 867 const DataLayout &DL = DAG.getDataLayout(); 868 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, 869 *LD->getMemOperand())) { 870 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 871 } 872 } 873 break; 874 875 case TargetLowering::Expand: { 876 EVT DestVT = Node->getValueType(0); 877 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 878 // If the source type is not legal, see if there is a legal extload to 879 // an intermediate type that we can then extend further. 880 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 881 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 882 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 883 // If we are loading a legal type, this is a non-extload followed by a 884 // full extend. 885 ISD::LoadExtType MidExtType = 886 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 887 888 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 889 SrcVT, LD->getMemOperand()); 890 unsigned ExtendOp = 891 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 892 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 893 Chain = Load.getValue(1); 894 break; 895 } 896 897 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 898 // normal undefined upper bits behavior to allow using an in-reg extend 899 // with the illegal FP type, so load as an integer and do the 900 // from-integer conversion. 901 if (SrcVT.getScalarType() == MVT::f16) { 902 EVT ISrcVT = SrcVT.changeTypeToInteger(); 903 EVT IDestVT = DestVT.changeTypeToInteger(); 904 EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 905 906 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain, 907 Ptr, ISrcVT, LD->getMemOperand()); 908 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 909 Chain = Result.getValue(1); 910 break; 911 } 912 } 913 914 assert(!SrcVT.isVector() && 915 "Vector Loads are handled in LegalizeVectorOps"); 916 917 // FIXME: This does not work for vectors on most targets. Sign- 918 // and zero-extend operations are currently folded into extending 919 // loads, whether they are legal or not, and then we end up here 920 // without any support for legalizing them. 921 assert(ExtType != ISD::EXTLOAD && 922 "EXTLOAD should always be supported!"); 923 // Turn the unsupported load into an EXTLOAD followed by an 924 // explicit zero/sign extend inreg. 925 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 926 Node->getValueType(0), 927 Chain, Ptr, SrcVT, 928 LD->getMemOperand()); 929 SDValue ValRes; 930 if (ExtType == ISD::SEXTLOAD) 931 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 932 Result.getValueType(), 933 Result, DAG.getValueType(SrcVT)); 934 else 935 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT); 936 Value = ValRes; 937 Chain = Result.getValue(1); 938 break; 939 } 940 } 941 } 942 943 // Since loads produce two values, make sure to remember that we legalized 944 // both of them. 945 if (Chain.getNode() != Node) { 946 assert(Value.getNode() != Node && "Load must be completely replaced"); 947 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 948 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 949 if (UpdatedNodes) { 950 UpdatedNodes->insert(Value.getNode()); 951 UpdatedNodes->insert(Chain.getNode()); 952 } 953 ReplacedNode(Node); 954 } 955 } 956 957 /// Return a legal replacement for the given operation, with all legal operands. 958 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 959 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 960 961 // Allow illegal target nodes and illegal registers. 962 if (Node->getOpcode() == ISD::TargetConstant || 963 Node->getOpcode() == ISD::Register) 964 return; 965 966 #ifndef NDEBUG 967 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 968 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 969 TargetLowering::TypeLegal && 970 "Unexpected illegal type!"); 971 972 for (const SDValue &Op : Node->op_values()) 973 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 974 TargetLowering::TypeLegal || 975 Op.getOpcode() == ISD::TargetConstant || 976 Op.getOpcode() == ISD::Register) && 977 "Unexpected illegal type!"); 978 #endif 979 980 // Figure out the correct action; the way to query this varies by opcode 981 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 982 bool SimpleFinishLegalizing = true; 983 switch (Node->getOpcode()) { 984 case ISD::INTRINSIC_W_CHAIN: 985 case ISD::INTRINSIC_WO_CHAIN: 986 case ISD::INTRINSIC_VOID: 987 case ISD::STACKSAVE: 988 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 989 break; 990 case ISD::GET_DYNAMIC_AREA_OFFSET: 991 Action = TLI.getOperationAction(Node->getOpcode(), 992 Node->getValueType(0)); 993 break; 994 case ISD::VAARG: 995 Action = TLI.getOperationAction(Node->getOpcode(), 996 Node->getValueType(0)); 997 if (Action != TargetLowering::Promote) 998 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 999 break; 1000 case ISD::FP_TO_FP16: 1001 case ISD::SINT_TO_FP: 1002 case ISD::UINT_TO_FP: 1003 case ISD::EXTRACT_VECTOR_ELT: 1004 case ISD::LROUND: 1005 case ISD::LLROUND: 1006 case ISD::LRINT: 1007 case ISD::LLRINT: 1008 Action = TLI.getOperationAction(Node->getOpcode(), 1009 Node->getOperand(0).getValueType()); 1010 break; 1011 case ISD::STRICT_FP_TO_FP16: 1012 case ISD::STRICT_SINT_TO_FP: 1013 case ISD::STRICT_UINT_TO_FP: 1014 case ISD::STRICT_LRINT: 1015 case ISD::STRICT_LLRINT: 1016 case ISD::STRICT_LROUND: 1017 case ISD::STRICT_LLROUND: 1018 // These pseudo-ops are the same as the other STRICT_ ops except 1019 // they are registered with setOperationAction() using the input type 1020 // instead of the output type. 1021 Action = TLI.getOperationAction(Node->getOpcode(), 1022 Node->getOperand(1).getValueType()); 1023 break; 1024 case ISD::SIGN_EXTEND_INREG: { 1025 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1026 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1027 break; 1028 } 1029 case ISD::ATOMIC_STORE: 1030 Action = TLI.getOperationAction(Node->getOpcode(), 1031 Node->getOperand(2).getValueType()); 1032 break; 1033 case ISD::SELECT_CC: 1034 case ISD::STRICT_FSETCC: 1035 case ISD::STRICT_FSETCCS: 1036 case ISD::SETCC: 1037 case ISD::VP_SETCC: 1038 case ISD::BR_CC: { 1039 unsigned Opc = Node->getOpcode(); 1040 unsigned CCOperand = Opc == ISD::SELECT_CC ? 4 1041 : Opc == ISD::STRICT_FSETCC ? 3 1042 : Opc == ISD::STRICT_FSETCCS ? 3 1043 : (Opc == ISD::SETCC || Opc == ISD::VP_SETCC) ? 2 1044 : 1; 1045 unsigned CompareOperand = Opc == ISD::BR_CC ? 2 1046 : Opc == ISD::STRICT_FSETCC ? 1 1047 : Opc == ISD::STRICT_FSETCCS ? 1 1048 : 0; 1049 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1050 ISD::CondCode CCCode = 1051 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1052 Action = TLI.getCondCodeAction(CCCode, OpVT); 1053 if (Action == TargetLowering::Legal) { 1054 if (Node->getOpcode() == ISD::SELECT_CC) 1055 Action = TLI.getOperationAction(Node->getOpcode(), 1056 Node->getValueType(0)); 1057 else 1058 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1059 } 1060 break; 1061 } 1062 case ISD::LOAD: 1063 case ISD::STORE: 1064 // FIXME: Model these properly. LOAD and STORE are complicated, and 1065 // STORE expects the unlegalized operand in some cases. 1066 SimpleFinishLegalizing = false; 1067 break; 1068 case ISD::CALLSEQ_START: 1069 case ISD::CALLSEQ_END: 1070 // FIXME: This shouldn't be necessary. These nodes have special properties 1071 // dealing with the recursive nature of legalization. Removing this 1072 // special case should be done as part of making LegalizeDAG non-recursive. 1073 SimpleFinishLegalizing = false; 1074 break; 1075 case ISD::EXTRACT_ELEMENT: 1076 case ISD::FLT_ROUNDS_: 1077 case ISD::MERGE_VALUES: 1078 case ISD::EH_RETURN: 1079 case ISD::FRAME_TO_ARGS_OFFSET: 1080 case ISD::EH_DWARF_CFA: 1081 case ISD::EH_SJLJ_SETJMP: 1082 case ISD::EH_SJLJ_LONGJMP: 1083 case ISD::EH_SJLJ_SETUP_DISPATCH: 1084 // These operations lie about being legal: when they claim to be legal, 1085 // they should actually be expanded. 1086 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1087 if (Action == TargetLowering::Legal) 1088 Action = TargetLowering::Expand; 1089 break; 1090 case ISD::INIT_TRAMPOLINE: 1091 case ISD::ADJUST_TRAMPOLINE: 1092 case ISD::FRAMEADDR: 1093 case ISD::RETURNADDR: 1094 case ISD::ADDROFRETURNADDR: 1095 case ISD::SPONENTRY: 1096 // These operations lie about being legal: when they claim to be legal, 1097 // they should actually be custom-lowered. 1098 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1099 if (Action == TargetLowering::Legal) 1100 Action = TargetLowering::Custom; 1101 break; 1102 case ISD::READCYCLECOUNTER: 1103 // READCYCLECOUNTER returns an i64, even if type legalization might have 1104 // expanded that to several smaller types. 1105 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1106 break; 1107 case ISD::READ_REGISTER: 1108 case ISD::WRITE_REGISTER: 1109 // Named register is legal in the DAG, but blocked by register name 1110 // selection if not implemented by target (to chose the correct register) 1111 // They'll be converted to Copy(To/From)Reg. 1112 Action = TargetLowering::Legal; 1113 break; 1114 case ISD::UBSANTRAP: 1115 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1116 if (Action == TargetLowering::Expand) { 1117 // replace ISD::UBSANTRAP with ISD::TRAP 1118 SDValue NewVal; 1119 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1120 Node->getOperand(0)); 1121 ReplaceNode(Node, NewVal.getNode()); 1122 LegalizeOp(NewVal.getNode()); 1123 return; 1124 } 1125 break; 1126 case ISD::DEBUGTRAP: 1127 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1128 if (Action == TargetLowering::Expand) { 1129 // replace ISD::DEBUGTRAP with ISD::TRAP 1130 SDValue NewVal; 1131 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1132 Node->getOperand(0)); 1133 ReplaceNode(Node, NewVal.getNode()); 1134 LegalizeOp(NewVal.getNode()); 1135 return; 1136 } 1137 break; 1138 case ISD::SADDSAT: 1139 case ISD::UADDSAT: 1140 case ISD::SSUBSAT: 1141 case ISD::USUBSAT: 1142 case ISD::SSHLSAT: 1143 case ISD::USHLSAT: 1144 case ISD::FP_TO_SINT_SAT: 1145 case ISD::FP_TO_UINT_SAT: 1146 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1147 break; 1148 case ISD::SMULFIX: 1149 case ISD::SMULFIXSAT: 1150 case ISD::UMULFIX: 1151 case ISD::UMULFIXSAT: 1152 case ISD::SDIVFIX: 1153 case ISD::SDIVFIXSAT: 1154 case ISD::UDIVFIX: 1155 case ISD::UDIVFIXSAT: { 1156 unsigned Scale = Node->getConstantOperandVal(2); 1157 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 1158 Node->getValueType(0), Scale); 1159 break; 1160 } 1161 case ISD::MSCATTER: 1162 Action = TLI.getOperationAction(Node->getOpcode(), 1163 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 1164 break; 1165 case ISD::MSTORE: 1166 Action = TLI.getOperationAction(Node->getOpcode(), 1167 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 1168 break; 1169 case ISD::VP_SCATTER: 1170 Action = TLI.getOperationAction( 1171 Node->getOpcode(), 1172 cast<VPScatterSDNode>(Node)->getValue().getValueType()); 1173 break; 1174 case ISD::VP_STORE: 1175 Action = TLI.getOperationAction( 1176 Node->getOpcode(), 1177 cast<VPStoreSDNode>(Node)->getValue().getValueType()); 1178 break; 1179 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 1180 Action = TLI.getOperationAction( 1181 Node->getOpcode(), 1182 cast<VPStridedStoreSDNode>(Node)->getValue().getValueType()); 1183 break; 1184 case ISD::VECREDUCE_FADD: 1185 case ISD::VECREDUCE_FMUL: 1186 case ISD::VECREDUCE_ADD: 1187 case ISD::VECREDUCE_MUL: 1188 case ISD::VECREDUCE_AND: 1189 case ISD::VECREDUCE_OR: 1190 case ISD::VECREDUCE_XOR: 1191 case ISD::VECREDUCE_SMAX: 1192 case ISD::VECREDUCE_SMIN: 1193 case ISD::VECREDUCE_UMAX: 1194 case ISD::VECREDUCE_UMIN: 1195 case ISD::VECREDUCE_FMAX: 1196 case ISD::VECREDUCE_FMIN: 1197 case ISD::IS_FPCLASS: 1198 Action = TLI.getOperationAction( 1199 Node->getOpcode(), Node->getOperand(0).getValueType()); 1200 break; 1201 case ISD::VECREDUCE_SEQ_FADD: 1202 case ISD::VECREDUCE_SEQ_FMUL: 1203 case ISD::VP_REDUCE_FADD: 1204 case ISD::VP_REDUCE_FMUL: 1205 case ISD::VP_REDUCE_ADD: 1206 case ISD::VP_REDUCE_MUL: 1207 case ISD::VP_REDUCE_AND: 1208 case ISD::VP_REDUCE_OR: 1209 case ISD::VP_REDUCE_XOR: 1210 case ISD::VP_REDUCE_SMAX: 1211 case ISD::VP_REDUCE_SMIN: 1212 case ISD::VP_REDUCE_UMAX: 1213 case ISD::VP_REDUCE_UMIN: 1214 case ISD::VP_REDUCE_FMAX: 1215 case ISD::VP_REDUCE_FMIN: 1216 case ISD::VP_REDUCE_SEQ_FADD: 1217 case ISD::VP_REDUCE_SEQ_FMUL: 1218 Action = TLI.getOperationAction( 1219 Node->getOpcode(), Node->getOperand(1).getValueType()); 1220 break; 1221 default: 1222 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1223 Action = TLI.getCustomOperationAction(*Node); 1224 } else { 1225 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1226 } 1227 break; 1228 } 1229 1230 if (SimpleFinishLegalizing) { 1231 SDNode *NewNode = Node; 1232 switch (Node->getOpcode()) { 1233 default: break; 1234 case ISD::SHL: 1235 case ISD::SRL: 1236 case ISD::SRA: 1237 case ISD::ROTL: 1238 case ISD::ROTR: { 1239 // Legalizing shifts/rotates requires adjusting the shift amount 1240 // to the appropriate width. 1241 SDValue Op0 = Node->getOperand(0); 1242 SDValue Op1 = Node->getOperand(1); 1243 if (!Op1.getValueType().isVector()) { 1244 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1245 // The getShiftAmountOperand() may create a new operand node or 1246 // return the existing one. If new operand is created we need 1247 // to update the parent node. 1248 // Do not try to legalize SAO here! It will be automatically legalized 1249 // in the next round. 1250 if (SAO != Op1) 1251 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1252 } 1253 } 1254 break; 1255 case ISD::FSHL: 1256 case ISD::FSHR: 1257 case ISD::SRL_PARTS: 1258 case ISD::SRA_PARTS: 1259 case ISD::SHL_PARTS: { 1260 // Legalizing shifts/rotates requires adjusting the shift amount 1261 // to the appropriate width. 1262 SDValue Op0 = Node->getOperand(0); 1263 SDValue Op1 = Node->getOperand(1); 1264 SDValue Op2 = Node->getOperand(2); 1265 if (!Op2.getValueType().isVector()) { 1266 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1267 // The getShiftAmountOperand() may create a new operand node or 1268 // return the existing one. If new operand is created we need 1269 // to update the parent node. 1270 if (SAO != Op2) 1271 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1272 } 1273 break; 1274 } 1275 } 1276 1277 if (NewNode != Node) { 1278 ReplaceNode(Node, NewNode); 1279 Node = NewNode; 1280 } 1281 switch (Action) { 1282 case TargetLowering::Legal: 1283 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 1284 return; 1285 case TargetLowering::Custom: 1286 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 1287 // FIXME: The handling for custom lowering with multiple results is 1288 // a complete mess. 1289 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1290 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1291 return; 1292 1293 if (Node->getNumValues() == 1) { 1294 // Verify the new types match the original. Glue is waived because 1295 // ISD::ADDC can be legalized by replacing Glue with an integer type. 1296 assert((Res.getValueType() == Node->getValueType(0) || 1297 Node->getValueType(0) == MVT::Glue) && 1298 "Type mismatch for custom legalized operation"); 1299 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1300 // We can just directly replace this node with the lowered value. 1301 ReplaceNode(SDValue(Node, 0), Res); 1302 return; 1303 } 1304 1305 SmallVector<SDValue, 8> ResultVals; 1306 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 1307 // Verify the new types match the original. Glue is waived because 1308 // ISD::ADDC can be legalized by replacing Glue with an integer type. 1309 assert((Res->getValueType(i) == Node->getValueType(i) || 1310 Node->getValueType(i) == MVT::Glue) && 1311 "Type mismatch for custom legalized operation"); 1312 ResultVals.push_back(Res.getValue(i)); 1313 } 1314 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1315 ReplaceNode(Node, ResultVals.data()); 1316 return; 1317 } 1318 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 1319 LLVM_FALLTHROUGH; 1320 case TargetLowering::Expand: 1321 if (ExpandNode(Node)) 1322 return; 1323 LLVM_FALLTHROUGH; 1324 case TargetLowering::LibCall: 1325 ConvertNodeToLibcall(Node); 1326 return; 1327 case TargetLowering::Promote: 1328 PromoteNode(Node); 1329 return; 1330 } 1331 } 1332 1333 switch (Node->getOpcode()) { 1334 default: 1335 #ifndef NDEBUG 1336 dbgs() << "NODE: "; 1337 Node->dump( &DAG); 1338 dbgs() << "\n"; 1339 #endif 1340 llvm_unreachable("Do not know how to legalize this operator!"); 1341 1342 case ISD::CALLSEQ_START: 1343 case ISD::CALLSEQ_END: 1344 break; 1345 case ISD::LOAD: 1346 return LegalizeLoadOps(Node); 1347 case ISD::STORE: 1348 return LegalizeStoreOps(Node); 1349 } 1350 } 1351 1352 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1353 SDValue Vec = Op.getOperand(0); 1354 SDValue Idx = Op.getOperand(1); 1355 SDLoc dl(Op); 1356 1357 // Before we generate a new store to a temporary stack slot, see if there is 1358 // already one that we can use. There often is because when we scalarize 1359 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1360 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1361 // the vector. If all are expanded here, we don't want one store per vector 1362 // element. 1363 1364 // Caches for hasPredecessorHelper 1365 SmallPtrSet<const SDNode *, 32> Visited; 1366 SmallVector<const SDNode *, 16> Worklist; 1367 Visited.insert(Op.getNode()); 1368 Worklist.push_back(Idx.getNode()); 1369 SDValue StackPtr, Ch; 1370 for (SDNode *User : Vec.getNode()->uses()) { 1371 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1372 if (ST->isIndexed() || ST->isTruncatingStore() || 1373 ST->getValue() != Vec) 1374 continue; 1375 1376 // Make sure that nothing else could have stored into the destination of 1377 // this store. 1378 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1379 continue; 1380 1381 // If the index is dependent on the store we will introduce a cycle when 1382 // creating the load (the load uses the index, and by replacing the chain 1383 // we will make the index dependent on the load). Also, the store might be 1384 // dependent on the extractelement and introduce a cycle when creating 1385 // the load. 1386 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1387 ST->hasPredecessor(Op.getNode())) 1388 continue; 1389 1390 StackPtr = ST->getBasePtr(); 1391 Ch = SDValue(ST, 0); 1392 break; 1393 } 1394 } 1395 1396 EVT VecVT = Vec.getValueType(); 1397 1398 if (!Ch.getNode()) { 1399 // Store the value to a temporary stack slot, then LOAD the returned part. 1400 StackPtr = DAG.CreateStackTemporary(VecVT); 1401 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1402 MachinePointerInfo()); 1403 } 1404 1405 SDValue NewLoad; 1406 1407 if (Op.getValueType().isVector()) { 1408 StackPtr = TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, 1409 Op.getValueType(), Idx); 1410 NewLoad = 1411 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); 1412 } else { 1413 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1414 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1415 MachinePointerInfo(), 1416 VecVT.getVectorElementType()); 1417 } 1418 1419 // Replace the chain going out of the store, by the one out of the load. 1420 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1421 1422 // We introduced a cycle though, so update the loads operands, making sure 1423 // to use the original store's chain as an incoming chain. 1424 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1425 NewLoad->op_end()); 1426 NewLoadOperands[0] = Ch; 1427 NewLoad = 1428 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1429 return NewLoad; 1430 } 1431 1432 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1433 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1434 1435 SDValue Vec = Op.getOperand(0); 1436 SDValue Part = Op.getOperand(1); 1437 SDValue Idx = Op.getOperand(2); 1438 SDLoc dl(Op); 1439 1440 // Store the value to a temporary stack slot, then LOAD the returned part. 1441 EVT VecVT = Vec.getValueType(); 1442 EVT SubVecVT = Part.getValueType(); 1443 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1444 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1445 MachinePointerInfo PtrInfo = 1446 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1447 1448 // First store the whole vector. 1449 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1450 1451 // Then store the inserted part. 1452 SDValue SubStackPtr = 1453 TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, SubVecVT, Idx); 1454 1455 // Store the subvector. 1456 Ch = DAG.getStore( 1457 Ch, dl, Part, SubStackPtr, 1458 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1459 1460 // Finally, load the updated vector. 1461 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1462 } 1463 1464 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1465 assert((Node->getOpcode() == ISD::BUILD_VECTOR || 1466 Node->getOpcode() == ISD::CONCAT_VECTORS) && 1467 "Unexpected opcode!"); 1468 1469 // We can't handle this case efficiently. Allocate a sufficiently 1470 // aligned object on the stack, store each operand into it, then load 1471 // the result as a vector. 1472 // Create the stack frame object. 1473 EVT VT = Node->getValueType(0); 1474 EVT MemVT = isa<BuildVectorSDNode>(Node) ? VT.getVectorElementType() 1475 : Node->getOperand(0).getValueType(); 1476 SDLoc dl(Node); 1477 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1478 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1479 MachinePointerInfo PtrInfo = 1480 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1481 1482 // Emit a store of each element to the stack slot. 1483 SmallVector<SDValue, 8> Stores; 1484 unsigned TypeByteSize = MemVT.getSizeInBits() / 8; 1485 assert(TypeByteSize > 0 && "Vector element type too small for stack store!"); 1486 1487 // If the destination vector element type of a BUILD_VECTOR is narrower than 1488 // the source element type, only store the bits necessary. 1489 bool Truncate = isa<BuildVectorSDNode>(Node) && 1490 MemVT.bitsLT(Node->getOperand(0).getValueType()); 1491 1492 // Store (in the right endianness) the elements to memory. 1493 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1494 // Ignore undef elements. 1495 if (Node->getOperand(i).isUndef()) continue; 1496 1497 unsigned Offset = TypeByteSize*i; 1498 1499 SDValue Idx = DAG.getMemBasePlusOffset(FIPtr, TypeSize::Fixed(Offset), dl); 1500 1501 if (Truncate) 1502 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1503 Node->getOperand(i), Idx, 1504 PtrInfo.getWithOffset(Offset), MemVT)); 1505 else 1506 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1507 Idx, PtrInfo.getWithOffset(Offset))); 1508 } 1509 1510 SDValue StoreChain; 1511 if (!Stores.empty()) // Not all undef elements? 1512 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1513 else 1514 StoreChain = DAG.getEntryNode(); 1515 1516 // Result is a load from the stack slot. 1517 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1518 } 1519 1520 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1521 /// containing the sign bit if the target has no integer value capable of 1522 /// holding all bits of the floating-point value. 1523 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1524 const SDLoc &DL, 1525 SDValue Value) const { 1526 EVT FloatVT = Value.getValueType(); 1527 unsigned NumBits = FloatVT.getScalarSizeInBits(); 1528 State.FloatVT = FloatVT; 1529 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1530 // Convert to an integer of the same size. 1531 if (TLI.isTypeLegal(IVT)) { 1532 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1533 State.SignMask = APInt::getSignMask(NumBits); 1534 State.SignBit = NumBits - 1; 1535 return; 1536 } 1537 1538 auto &DataLayout = DAG.getDataLayout(); 1539 // Store the float to memory, then load the sign part out as an integer. 1540 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1541 // First create a temporary that is aligned for both the load and store. 1542 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1543 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1544 // Then store the float to it. 1545 State.FloatPtr = StackPtr; 1546 MachineFunction &MF = DAG.getMachineFunction(); 1547 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1548 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1549 State.FloatPointerInfo); 1550 1551 SDValue IntPtr; 1552 if (DataLayout.isBigEndian()) { 1553 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1554 // Load out a legal integer with the same sign bit as the float. 1555 IntPtr = StackPtr; 1556 State.IntPointerInfo = State.FloatPointerInfo; 1557 } else { 1558 // Advance the pointer so that the loaded byte will contain the sign bit. 1559 unsigned ByteOffset = (NumBits / 8) - 1; 1560 IntPtr = 1561 DAG.getMemBasePlusOffset(StackPtr, TypeSize::Fixed(ByteOffset), DL); 1562 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1563 ByteOffset); 1564 } 1565 1566 State.IntPtr = IntPtr; 1567 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1568 State.IntPointerInfo, MVT::i8); 1569 State.SignMask = APInt::getOneBitSet(LoadTy.getScalarSizeInBits(), 7); 1570 State.SignBit = 7; 1571 } 1572 1573 /// Replace the integer value produced by getSignAsIntValue() with a new value 1574 /// and cast the result back to a floating-point type. 1575 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1576 const SDLoc &DL, 1577 SDValue NewIntValue) const { 1578 if (!State.Chain) 1579 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1580 1581 // Override the part containing the sign bit in the value stored on the stack. 1582 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1583 State.IntPointerInfo, MVT::i8); 1584 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1585 State.FloatPointerInfo); 1586 } 1587 1588 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1589 SDLoc DL(Node); 1590 SDValue Mag = Node->getOperand(0); 1591 SDValue Sign = Node->getOperand(1); 1592 1593 // Get sign bit into an integer value. 1594 FloatSignAsInt SignAsInt; 1595 getSignAsIntValue(SignAsInt, DL, Sign); 1596 1597 EVT IntVT = SignAsInt.IntValue.getValueType(); 1598 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1599 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1600 SignMask); 1601 1602 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1603 EVT FloatVT = Mag.getValueType(); 1604 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1605 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1606 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1607 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1608 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1609 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1610 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1611 } 1612 1613 // Transform Mag value to integer, and clear the sign bit. 1614 FloatSignAsInt MagAsInt; 1615 getSignAsIntValue(MagAsInt, DL, Mag); 1616 EVT MagVT = MagAsInt.IntValue.getValueType(); 1617 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1618 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1619 ClearSignMask); 1620 1621 // Get the signbit at the right position for MagAsInt. 1622 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1623 EVT ShiftVT = IntVT; 1624 if (SignBit.getScalarValueSizeInBits() < 1625 ClearedSign.getScalarValueSizeInBits()) { 1626 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1627 ShiftVT = MagVT; 1628 } 1629 if (ShiftAmount > 0) { 1630 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); 1631 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); 1632 } else if (ShiftAmount < 0) { 1633 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); 1634 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); 1635 } 1636 if (SignBit.getScalarValueSizeInBits() > 1637 ClearedSign.getScalarValueSizeInBits()) { 1638 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1639 } 1640 1641 // Store the part with the modified sign and convert back to float. 1642 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1643 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1644 } 1645 1646 SDValue SelectionDAGLegalize::ExpandFNEG(SDNode *Node) const { 1647 // Get the sign bit as an integer. 1648 SDLoc DL(Node); 1649 FloatSignAsInt SignAsInt; 1650 getSignAsIntValue(SignAsInt, DL, Node->getOperand(0)); 1651 EVT IntVT = SignAsInt.IntValue.getValueType(); 1652 1653 // Flip the sign. 1654 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1655 SDValue SignFlip = 1656 DAG.getNode(ISD::XOR, DL, IntVT, SignAsInt.IntValue, SignMask); 1657 1658 // Convert back to float. 1659 return modifySignAsInt(SignAsInt, DL, SignFlip); 1660 } 1661 1662 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1663 SDLoc DL(Node); 1664 SDValue Value = Node->getOperand(0); 1665 1666 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1667 EVT FloatVT = Value.getValueType(); 1668 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1669 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1670 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1671 } 1672 1673 // Transform value to integer, clear the sign bit and transform back. 1674 FloatSignAsInt ValueAsInt; 1675 getSignAsIntValue(ValueAsInt, DL, Value); 1676 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1677 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1678 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1679 ClearSignMask); 1680 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1681 } 1682 1683 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1684 SmallVectorImpl<SDValue> &Results) { 1685 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1686 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1687 " not tell us which reg is the stack pointer!"); 1688 SDLoc dl(Node); 1689 EVT VT = Node->getValueType(0); 1690 SDValue Tmp1 = SDValue(Node, 0); 1691 SDValue Tmp2 = SDValue(Node, 1); 1692 SDValue Tmp3 = Node->getOperand(2); 1693 SDValue Chain = Tmp1.getOperand(0); 1694 1695 // Chain the dynamic stack allocation so that it doesn't modify the stack 1696 // pointer when other instructions are using the stack. 1697 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1698 1699 SDValue Size = Tmp2.getOperand(1); 1700 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1701 Chain = SP.getValue(1); 1702 Align Alignment = cast<ConstantSDNode>(Tmp3)->getAlignValue(); 1703 const TargetFrameLowering *TFL = DAG.getSubtarget().getFrameLowering(); 1704 unsigned Opc = 1705 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 1706 ISD::ADD : ISD::SUB; 1707 1708 Align StackAlign = TFL->getStackAlign(); 1709 Tmp1 = DAG.getNode(Opc, dl, VT, SP, Size); // Value 1710 if (Alignment > StackAlign) 1711 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1712 DAG.getConstant(-Alignment.value(), dl, VT)); 1713 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1714 1715 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1716 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1717 1718 Results.push_back(Tmp1); 1719 Results.push_back(Tmp2); 1720 } 1721 1722 /// Emit a store/load combination to the stack. This stores 1723 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1724 /// a load from the stack slot to DestVT, extending it if needed. 1725 /// The resultant code need not be legal. 1726 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1727 EVT DestVT, const SDLoc &dl) { 1728 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode()); 1729 } 1730 1731 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1732 EVT DestVT, const SDLoc &dl, 1733 SDValue Chain) { 1734 EVT SrcVT = SrcOp.getValueType(); 1735 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1736 Align DestAlign = DAG.getDataLayout().getPrefTypeAlign(DestType); 1737 1738 // Don't convert with stack if the load/store is expensive. 1739 if ((SrcVT.bitsGT(SlotVT) && 1740 !TLI.isTruncStoreLegalOrCustom(SrcOp.getValueType(), SlotVT)) || 1741 (SlotVT.bitsLT(DestVT) && 1742 !TLI.isLoadExtLegalOrCustom(ISD::EXTLOAD, DestVT, SlotVT))) 1743 return SDValue(); 1744 1745 // Create the stack frame object. 1746 Align SrcAlign = DAG.getDataLayout().getPrefTypeAlign( 1747 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1748 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT.getStoreSize(), SrcAlign); 1749 1750 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1751 int SPFI = StackPtrFI->getIndex(); 1752 MachinePointerInfo PtrInfo = 1753 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1754 1755 // Emit a store to the stack slot. Use a truncstore if the input value is 1756 // later than DestVT. 1757 SDValue Store; 1758 1759 if (SrcVT.bitsGT(SlotVT)) 1760 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo, 1761 SlotVT, SrcAlign); 1762 else { 1763 assert(SrcVT.bitsEq(SlotVT) && "Invalid store"); 1764 Store = DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1765 } 1766 1767 // Result is a load from the stack slot. 1768 if (SlotVT.bitsEq(DestVT)) 1769 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1770 1771 assert(SlotVT.bitsLT(DestVT) && "Unknown extension!"); 1772 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1773 DestAlign); 1774 } 1775 1776 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1777 SDLoc dl(Node); 1778 // Create a vector sized/aligned stack slot, store the value to element #0, 1779 // then load the whole vector back out. 1780 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1781 1782 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1783 int SPFI = StackPtrFI->getIndex(); 1784 1785 SDValue Ch = DAG.getTruncStore( 1786 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1787 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1788 Node->getValueType(0).getVectorElementType()); 1789 return DAG.getLoad( 1790 Node->getValueType(0), dl, Ch, StackPtr, 1791 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1792 } 1793 1794 static bool 1795 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1796 const TargetLowering &TLI, SDValue &Res) { 1797 unsigned NumElems = Node->getNumOperands(); 1798 SDLoc dl(Node); 1799 EVT VT = Node->getValueType(0); 1800 1801 // Try to group the scalars into pairs, shuffle the pairs together, then 1802 // shuffle the pairs of pairs together, etc. until the vector has 1803 // been built. This will work only if all of the necessary shuffle masks 1804 // are legal. 1805 1806 // We do this in two phases; first to check the legality of the shuffles, 1807 // and next, assuming that all shuffles are legal, to create the new nodes. 1808 for (int Phase = 0; Phase < 2; ++Phase) { 1809 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1810 NewIntermedVals; 1811 for (unsigned i = 0; i < NumElems; ++i) { 1812 SDValue V = Node->getOperand(i); 1813 if (V.isUndef()) 1814 continue; 1815 1816 SDValue Vec; 1817 if (Phase) 1818 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1819 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1820 } 1821 1822 while (IntermedVals.size() > 2) { 1823 NewIntermedVals.clear(); 1824 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1825 // This vector and the next vector are shuffled together (simply to 1826 // append the one to the other). 1827 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1828 1829 SmallVector<int, 16> FinalIndices; 1830 FinalIndices.reserve(IntermedVals[i].second.size() + 1831 IntermedVals[i+1].second.size()); 1832 1833 int k = 0; 1834 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1835 ++j, ++k) { 1836 ShuffleVec[k] = j; 1837 FinalIndices.push_back(IntermedVals[i].second[j]); 1838 } 1839 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1840 ++j, ++k) { 1841 ShuffleVec[k] = NumElems + j; 1842 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1843 } 1844 1845 SDValue Shuffle; 1846 if (Phase) 1847 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1848 IntermedVals[i+1].first, 1849 ShuffleVec); 1850 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1851 return false; 1852 NewIntermedVals.push_back( 1853 std::make_pair(Shuffle, std::move(FinalIndices))); 1854 } 1855 1856 // If we had an odd number of defined values, then append the last 1857 // element to the array of new vectors. 1858 if ((IntermedVals.size() & 1) != 0) 1859 NewIntermedVals.push_back(IntermedVals.back()); 1860 1861 IntermedVals.swap(NewIntermedVals); 1862 } 1863 1864 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1865 "Invalid number of intermediate vectors"); 1866 SDValue Vec1 = IntermedVals[0].first; 1867 SDValue Vec2; 1868 if (IntermedVals.size() > 1) 1869 Vec2 = IntermedVals[1].first; 1870 else if (Phase) 1871 Vec2 = DAG.getUNDEF(VT); 1872 1873 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1874 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1875 ShuffleVec[IntermedVals[0].second[i]] = i; 1876 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1877 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1878 1879 if (Phase) 1880 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1881 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1882 return false; 1883 } 1884 1885 return true; 1886 } 1887 1888 /// Expand a BUILD_VECTOR node on targets that don't 1889 /// support the operation, but do support the resultant vector type. 1890 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1891 unsigned NumElems = Node->getNumOperands(); 1892 SDValue Value1, Value2; 1893 SDLoc dl(Node); 1894 EVT VT = Node->getValueType(0); 1895 EVT OpVT = Node->getOperand(0).getValueType(); 1896 EVT EltVT = VT.getVectorElementType(); 1897 1898 // If the only non-undef value is the low element, turn this into a 1899 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1900 bool isOnlyLowElement = true; 1901 bool MoreThanTwoValues = false; 1902 bool isConstant = true; 1903 for (unsigned i = 0; i < NumElems; ++i) { 1904 SDValue V = Node->getOperand(i); 1905 if (V.isUndef()) 1906 continue; 1907 if (i > 0) 1908 isOnlyLowElement = false; 1909 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1910 isConstant = false; 1911 1912 if (!Value1.getNode()) { 1913 Value1 = V; 1914 } else if (!Value2.getNode()) { 1915 if (V != Value1) 1916 Value2 = V; 1917 } else if (V != Value1 && V != Value2) { 1918 MoreThanTwoValues = true; 1919 } 1920 } 1921 1922 if (!Value1.getNode()) 1923 return DAG.getUNDEF(VT); 1924 1925 if (isOnlyLowElement) 1926 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1927 1928 // If all elements are constants, create a load from the constant pool. 1929 if (isConstant) { 1930 SmallVector<Constant*, 16> CV; 1931 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1932 if (ConstantFPSDNode *V = 1933 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1934 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1935 } else if (ConstantSDNode *V = 1936 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1937 if (OpVT==EltVT) 1938 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1939 else { 1940 // If OpVT and EltVT don't match, EltVT is not legal and the 1941 // element values have been promoted/truncated earlier. Undo this; 1942 // we don't want a v16i8 to become a v16i32 for example. 1943 const ConstantInt *CI = V->getConstantIntValue(); 1944 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1945 CI->getZExtValue())); 1946 } 1947 } else { 1948 assert(Node->getOperand(i).isUndef()); 1949 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1950 CV.push_back(UndefValue::get(OpNTy)); 1951 } 1952 } 1953 Constant *CP = ConstantVector::get(CV); 1954 SDValue CPIdx = 1955 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 1956 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 1957 return DAG.getLoad( 1958 VT, dl, DAG.getEntryNode(), CPIdx, 1959 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 1960 Alignment); 1961 } 1962 1963 SmallSet<SDValue, 16> DefinedValues; 1964 for (unsigned i = 0; i < NumElems; ++i) { 1965 if (Node->getOperand(i).isUndef()) 1966 continue; 1967 DefinedValues.insert(Node->getOperand(i)); 1968 } 1969 1970 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 1971 if (!MoreThanTwoValues) { 1972 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1973 for (unsigned i = 0; i < NumElems; ++i) { 1974 SDValue V = Node->getOperand(i); 1975 if (V.isUndef()) 1976 continue; 1977 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1978 } 1979 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1980 // Get the splatted value into the low element of a vector register. 1981 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1982 SDValue Vec2; 1983 if (Value2.getNode()) 1984 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 1985 else 1986 Vec2 = DAG.getUNDEF(VT); 1987 1988 // Return shuffle(LowValVec, undef, <0,0,0,0>) 1989 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1990 } 1991 } else { 1992 SDValue Res; 1993 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 1994 return Res; 1995 } 1996 } 1997 1998 // Otherwise, we can't handle this case efficiently. 1999 return ExpandVectorBuildThroughStack(Node); 2000 } 2001 2002 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) { 2003 SDLoc DL(Node); 2004 EVT VT = Node->getValueType(0); 2005 SDValue SplatVal = Node->getOperand(0); 2006 2007 return DAG.getSplatBuildVector(VT, DL, SplatVal); 2008 } 2009 2010 // Expand a node into a call to a libcall. If the result value 2011 // does not fit into a register, return the lo part and set the hi part to the 2012 // by-reg argument. If it does fit into a single register, return the result 2013 // and leave the Hi part unset. 2014 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2015 bool isSigned) { 2016 TargetLowering::ArgListTy Args; 2017 TargetLowering::ArgListEntry Entry; 2018 for (const SDValue &Op : Node->op_values()) { 2019 EVT ArgVT = Op.getValueType(); 2020 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2021 Entry.Node = Op; 2022 Entry.Ty = ArgTy; 2023 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2024 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2025 Args.push_back(Entry); 2026 } 2027 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2028 TLI.getPointerTy(DAG.getDataLayout())); 2029 2030 EVT RetVT = Node->getValueType(0); 2031 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2032 2033 // By default, the input chain to this libcall is the entry node of the 2034 // function. If the libcall is going to be emitted as a tail call then 2035 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2036 // node which is being folded has a non-entry input chain. 2037 SDValue InChain = DAG.getEntryNode(); 2038 2039 // isTailCall may be true since the callee does not reference caller stack 2040 // frame. Check if it's in the right position and that the return types match. 2041 SDValue TCChain = InChain; 2042 const Function &F = DAG.getMachineFunction().getFunction(); 2043 bool isTailCall = 2044 TLI.isInTailCallPosition(DAG, Node, TCChain) && 2045 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 2046 if (isTailCall) 2047 InChain = TCChain; 2048 2049 TargetLowering::CallLoweringInfo CLI(DAG); 2050 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2051 CLI.setDebugLoc(SDLoc(Node)) 2052 .setChain(InChain) 2053 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2054 std::move(Args)) 2055 .setTailCall(isTailCall) 2056 .setSExtResult(signExtend) 2057 .setZExtResult(!signExtend) 2058 .setIsPostTypeLegalization(true); 2059 2060 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2061 2062 if (!CallInfo.second.getNode()) { 2063 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG)); 2064 // It's a tailcall, return the chain (which is the DAG root). 2065 return DAG.getRoot(); 2066 } 2067 2068 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG)); 2069 return CallInfo.first; 2070 } 2071 2072 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2073 RTLIB::Libcall LC, 2074 SmallVectorImpl<SDValue> &Results) { 2075 if (LC == RTLIB::UNKNOWN_LIBCALL) 2076 llvm_unreachable("Can't create an unknown libcall!"); 2077 2078 if (Node->isStrictFPOpcode()) { 2079 EVT RetVT = Node->getValueType(0); 2080 SmallVector<SDValue, 4> Ops(drop_begin(Node->ops())); 2081 TargetLowering::MakeLibCallOptions CallOptions; 2082 // FIXME: This doesn't support tail calls. 2083 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2084 Ops, CallOptions, 2085 SDLoc(Node), 2086 Node->getOperand(0)); 2087 Results.push_back(Tmp.first); 2088 Results.push_back(Tmp.second); 2089 } else { 2090 SDValue Tmp = ExpandLibCall(LC, Node, false); 2091 Results.push_back(Tmp); 2092 } 2093 } 2094 2095 /// Expand the node to a libcall based on the result type. 2096 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2097 RTLIB::Libcall Call_F32, 2098 RTLIB::Libcall Call_F64, 2099 RTLIB::Libcall Call_F80, 2100 RTLIB::Libcall Call_F128, 2101 RTLIB::Libcall Call_PPCF128, 2102 SmallVectorImpl<SDValue> &Results) { 2103 RTLIB::Libcall LC = RTLIB::getFPLibCall(Node->getSimpleValueType(0), 2104 Call_F32, Call_F64, Call_F80, 2105 Call_F128, Call_PPCF128); 2106 ExpandFPLibCall(Node, LC, Results); 2107 } 2108 2109 SDValue SelectionDAGLegalize::ExpandIntLibCall( 2110 SDNode *Node, bool isSigned, RTLIB::Libcall Call_I8, 2111 RTLIB::Libcall Call_I16, RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64, 2112 RTLIB::Libcall Call_I128, RTLIB::Libcall Call_IEXT) { 2113 RTLIB::Libcall LC; 2114 switch (Node->getSimpleValueType(0).SimpleTy) { 2115 2116 default: 2117 LC = Call_IEXT; 2118 break; 2119 2120 case MVT::i8: LC = Call_I8; break; 2121 case MVT::i16: LC = Call_I16; break; 2122 case MVT::i32: LC = Call_I32; break; 2123 case MVT::i64: LC = Call_I64; break; 2124 case MVT::i128: LC = Call_I128; break; 2125 } 2126 return ExpandLibCall(LC, Node, isSigned); 2127 } 2128 2129 /// Expand the node to a libcall based on first argument type (for instance 2130 /// lround and its variant). 2131 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node, 2132 RTLIB::Libcall Call_F32, 2133 RTLIB::Libcall Call_F64, 2134 RTLIB::Libcall Call_F80, 2135 RTLIB::Libcall Call_F128, 2136 RTLIB::Libcall Call_PPCF128, 2137 SmallVectorImpl<SDValue> &Results) { 2138 EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType(); 2139 RTLIB::Libcall LC = RTLIB::getFPLibCall(InVT.getSimpleVT(), 2140 Call_F32, Call_F64, Call_F80, 2141 Call_F128, Call_PPCF128); 2142 ExpandFPLibCall(Node, LC, Results); 2143 } 2144 2145 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2146 void 2147 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2148 SmallVectorImpl<SDValue> &Results) { 2149 unsigned Opcode = Node->getOpcode(); 2150 bool isSigned = Opcode == ISD::SDIVREM; 2151 2152 RTLIB::Libcall LC; 2153 switch (Node->getSimpleValueType(0).SimpleTy) { 2154 2155 default: 2156 LC = isSigned ? RTLIB::SDIVREM_IEXT : RTLIB::UDIVREM_IEXT; 2157 break; 2158 2159 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2160 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2161 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2162 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2163 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2164 } 2165 2166 // The input chain to this libcall is the entry node of the function. 2167 // Legalizing the call will automatically add the previous call to the 2168 // dependence. 2169 SDValue InChain = DAG.getEntryNode(); 2170 2171 EVT RetVT = Node->getValueType(0); 2172 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2173 2174 TargetLowering::ArgListTy Args; 2175 TargetLowering::ArgListEntry Entry; 2176 for (const SDValue &Op : Node->op_values()) { 2177 EVT ArgVT = Op.getValueType(); 2178 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2179 Entry.Node = Op; 2180 Entry.Ty = ArgTy; 2181 Entry.IsSExt = isSigned; 2182 Entry.IsZExt = !isSigned; 2183 Args.push_back(Entry); 2184 } 2185 2186 // Also pass the return address of the remainder. 2187 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2188 Entry.Node = FIPtr; 2189 Entry.Ty = RetTy->getPointerTo(); 2190 Entry.IsSExt = isSigned; 2191 Entry.IsZExt = !isSigned; 2192 Args.push_back(Entry); 2193 2194 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2195 TLI.getPointerTy(DAG.getDataLayout())); 2196 2197 SDLoc dl(Node); 2198 TargetLowering::CallLoweringInfo CLI(DAG); 2199 CLI.setDebugLoc(dl) 2200 .setChain(InChain) 2201 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2202 std::move(Args)) 2203 .setSExtResult(isSigned) 2204 .setZExtResult(!isSigned); 2205 2206 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2207 2208 // Remainder is loaded back from the stack frame. 2209 SDValue Rem = 2210 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2211 Results.push_back(CallInfo.first); 2212 Results.push_back(Rem); 2213 } 2214 2215 /// Return true if sincos libcall is available. 2216 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2217 RTLIB::Libcall LC; 2218 switch (Node->getSimpleValueType(0).SimpleTy) { 2219 default: llvm_unreachable("Unexpected request for libcall!"); 2220 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2221 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2222 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2223 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2224 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2225 } 2226 return TLI.getLibcallName(LC) != nullptr; 2227 } 2228 2229 /// Only issue sincos libcall if both sin and cos are needed. 2230 static bool useSinCos(SDNode *Node) { 2231 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2232 ? ISD::FCOS : ISD::FSIN; 2233 2234 SDValue Op0 = Node->getOperand(0); 2235 for (const SDNode *User : Op0.getNode()->uses()) { 2236 if (User == Node) 2237 continue; 2238 // The other user might have been turned into sincos already. 2239 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2240 return true; 2241 } 2242 return false; 2243 } 2244 2245 /// Issue libcalls to sincos to compute sin / cos pairs. 2246 void 2247 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2248 SmallVectorImpl<SDValue> &Results) { 2249 RTLIB::Libcall LC; 2250 switch (Node->getSimpleValueType(0).SimpleTy) { 2251 default: llvm_unreachable("Unexpected request for libcall!"); 2252 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2253 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2254 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2255 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2256 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2257 } 2258 2259 // The input chain to this libcall is the entry node of the function. 2260 // Legalizing the call will automatically add the previous call to the 2261 // dependence. 2262 SDValue InChain = DAG.getEntryNode(); 2263 2264 EVT RetVT = Node->getValueType(0); 2265 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2266 2267 TargetLowering::ArgListTy Args; 2268 TargetLowering::ArgListEntry Entry; 2269 2270 // Pass the argument. 2271 Entry.Node = Node->getOperand(0); 2272 Entry.Ty = RetTy; 2273 Entry.IsSExt = false; 2274 Entry.IsZExt = false; 2275 Args.push_back(Entry); 2276 2277 // Pass the return address of sin. 2278 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2279 Entry.Node = SinPtr; 2280 Entry.Ty = RetTy->getPointerTo(); 2281 Entry.IsSExt = false; 2282 Entry.IsZExt = false; 2283 Args.push_back(Entry); 2284 2285 // Also pass the return address of the cos. 2286 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2287 Entry.Node = CosPtr; 2288 Entry.Ty = RetTy->getPointerTo(); 2289 Entry.IsSExt = false; 2290 Entry.IsZExt = false; 2291 Args.push_back(Entry); 2292 2293 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2294 TLI.getPointerTy(DAG.getDataLayout())); 2295 2296 SDLoc dl(Node); 2297 TargetLowering::CallLoweringInfo CLI(DAG); 2298 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2299 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2300 std::move(Args)); 2301 2302 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2303 2304 Results.push_back( 2305 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2306 Results.push_back( 2307 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2308 } 2309 2310 /// This function is responsible for legalizing a 2311 /// INT_TO_FP operation of the specified operand when the target requests that 2312 /// we expand it. At this point, we know that the result and operand types are 2313 /// legal for the target. 2314 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node, 2315 SDValue &Chain) { 2316 bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 2317 Node->getOpcode() == ISD::SINT_TO_FP); 2318 EVT DestVT = Node->getValueType(0); 2319 SDLoc dl(Node); 2320 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 2321 SDValue Op0 = Node->getOperand(OpNo); 2322 EVT SrcVT = Op0.getValueType(); 2323 2324 // TODO: Should any fast-math-flags be set for the created nodes? 2325 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2326 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64) && 2327 (DestVT.bitsLE(MVT::f64) || 2328 TLI.isOperationLegal(Node->isStrictFPOpcode() ? ISD::STRICT_FP_EXTEND 2329 : ISD::FP_EXTEND, 2330 DestVT))) { 2331 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2332 "expansion\n"); 2333 2334 // Get the stack frame index of a 8 byte buffer. 2335 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2336 2337 SDValue Lo = Op0; 2338 // if signed map to unsigned space 2339 if (isSigned) { 2340 // Invert sign bit (signed to unsigned mapping). 2341 Lo = DAG.getNode(ISD::XOR, dl, MVT::i32, Lo, 2342 DAG.getConstant(0x80000000u, dl, MVT::i32)); 2343 } 2344 // Initial hi portion of constructed double. 2345 SDValue Hi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2346 2347 // If this a big endian target, swap the lo and high data. 2348 if (DAG.getDataLayout().isBigEndian()) 2349 std::swap(Lo, Hi); 2350 2351 SDValue MemChain = DAG.getEntryNode(); 2352 2353 // Store the lo of the constructed double. 2354 SDValue Store1 = DAG.getStore(MemChain, dl, Lo, StackSlot, 2355 MachinePointerInfo()); 2356 // Store the hi of the constructed double. 2357 SDValue HiPtr = DAG.getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), dl); 2358 SDValue Store2 = 2359 DAG.getStore(MemChain, dl, Hi, HiPtr, MachinePointerInfo()); 2360 MemChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 2361 2362 // load the constructed double 2363 SDValue Load = 2364 DAG.getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo()); 2365 // FP constant to bias correct the final result 2366 SDValue Bias = DAG.getConstantFP(isSigned ? 2367 BitsToDouble(0x4330000080000000ULL) : 2368 BitsToDouble(0x4330000000000000ULL), 2369 dl, MVT::f64); 2370 // Subtract the bias and get the final result. 2371 SDValue Sub; 2372 SDValue Result; 2373 if (Node->isStrictFPOpcode()) { 2374 Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other}, 2375 {Node->getOperand(0), Load, Bias}); 2376 Chain = Sub.getValue(1); 2377 if (DestVT != Sub.getValueType()) { 2378 std::pair<SDValue, SDValue> ResultPair; 2379 ResultPair = 2380 DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT); 2381 Result = ResultPair.first; 2382 Chain = ResultPair.second; 2383 } 2384 else 2385 Result = Sub; 2386 } else { 2387 Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2388 Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); 2389 } 2390 return Result; 2391 } 2392 2393 if (isSigned) 2394 return SDValue(); 2395 2396 // TODO: Generalize this for use with other types. 2397 if (((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) || 2398 (SrcVT == MVT::i64 && DestVT == MVT::f64)) { 2399 LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32/f64\n"); 2400 // For unsigned conversions, convert them to signed conversions using the 2401 // algorithm from the x86_64 __floatundisf in compiler_rt. That method 2402 // should be valid for i32->f32 as well. 2403 2404 // More generally this transform should be valid if there are 3 more bits 2405 // in the integer type than the significand. Rounding uses the first bit 2406 // after the width of the significand and the OR of all bits after that. So 2407 // we need to be able to OR the shifted out bit into one of the bits that 2408 // participate in the OR. 2409 2410 // TODO: This really should be implemented using a branch rather than a 2411 // select. We happen to get lucky and machinesink does the right 2412 // thing most of the time. This would be a good candidate for a 2413 // pseudo-op, or, even better, for whole-function isel. 2414 EVT SetCCVT = getSetCCResultType(SrcVT); 2415 2416 SDValue SignBitTest = DAG.getSetCC( 2417 dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2418 2419 EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout()); 2420 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 2421 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst); 2422 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 2423 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst); 2424 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 2425 2426 SDValue Slow, Fast; 2427 if (Node->isStrictFPOpcode()) { 2428 // In strict mode, we must avoid spurious exceptions, and therefore 2429 // must make sure to only emit a single STRICT_SINT_TO_FP. 2430 SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0); 2431 Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2432 { Node->getOperand(0), InCvt }); 2433 Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2434 { Fast.getValue(1), Fast, Fast }); 2435 Chain = Slow.getValue(1); 2436 // The STRICT_SINT_TO_FP inherits the exception mode from the 2437 // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can 2438 // never raise any exception. 2439 SDNodeFlags Flags; 2440 Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept()); 2441 Fast->setFlags(Flags); 2442 Flags.setNoFPExcept(true); 2443 Slow->setFlags(Flags); 2444 } else { 2445 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or); 2446 Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt); 2447 Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2448 } 2449 2450 return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast); 2451 } 2452 2453 // Don't expand it if there isn't cheap fadd. 2454 if (!TLI.isOperationLegalOrCustom( 2455 Node->isStrictFPOpcode() ? ISD::STRICT_FADD : ISD::FADD, DestVT)) 2456 return SDValue(); 2457 2458 // The following optimization is valid only if every value in SrcVT (when 2459 // treated as signed) is representable in DestVT. Check that the mantissa 2460 // size of DestVT is >= than the number of bits in SrcVT -1. 2461 assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >= 2462 SrcVT.getSizeInBits() - 1 && 2463 "Cannot perform lossless SINT_TO_FP!"); 2464 2465 SDValue Tmp1; 2466 if (Node->isStrictFPOpcode()) { 2467 Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2468 { Node->getOperand(0), Op0 }); 2469 } else 2470 Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2471 2472 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, 2473 DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2474 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2475 Four = DAG.getIntPtrConstant(4, dl); 2476 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2477 SignSet, Four, Zero); 2478 2479 // If the sign bit of the integer is set, the large number will be treated 2480 // as a negative number. To counteract this, the dynamic code adds an 2481 // offset depending on the data type. 2482 uint64_t FF; 2483 switch (SrcVT.getSimpleVT().SimpleTy) { 2484 default: 2485 return SDValue(); 2486 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2487 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2488 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2489 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2490 } 2491 if (DAG.getDataLayout().isLittleEndian()) 2492 FF <<= 32; 2493 Constant *FudgeFactor = ConstantInt::get( 2494 Type::getInt64Ty(*DAG.getContext()), FF); 2495 2496 SDValue CPIdx = 2497 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2498 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 2499 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2500 Alignment = commonAlignment(Alignment, 4); 2501 SDValue FudgeInReg; 2502 if (DestVT == MVT::f32) 2503 FudgeInReg = DAG.getLoad( 2504 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2505 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2506 Alignment); 2507 else { 2508 SDValue Load = DAG.getExtLoad( 2509 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2510 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2511 Alignment); 2512 HandleSDNode Handle(Load); 2513 LegalizeOp(Load.getNode()); 2514 FudgeInReg = Handle.getValue(); 2515 } 2516 2517 if (Node->isStrictFPOpcode()) { 2518 SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2519 { Tmp1.getValue(1), Tmp1, FudgeInReg }); 2520 Chain = Result.getValue(1); 2521 return Result; 2522 } 2523 2524 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2525 } 2526 2527 /// This function is responsible for legalizing a 2528 /// *INT_TO_FP operation of the specified operand when the target requests that 2529 /// we promote it. At this point, we know that the result and operand types are 2530 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2531 /// operation that takes a larger input. 2532 void SelectionDAGLegalize::PromoteLegalINT_TO_FP( 2533 SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) { 2534 bool IsStrict = N->isStrictFPOpcode(); 2535 bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP || 2536 N->getOpcode() == ISD::STRICT_SINT_TO_FP; 2537 EVT DestVT = N->getValueType(0); 2538 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2539 unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP; 2540 unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP; 2541 2542 // First step, figure out the appropriate *INT_TO_FP operation to use. 2543 EVT NewInTy = LegalOp.getValueType(); 2544 2545 unsigned OpToUse = 0; 2546 2547 // Scan for the appropriate larger type to use. 2548 while (true) { 2549 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2550 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2551 2552 // If the target supports SINT_TO_FP of this type, use it. 2553 if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) { 2554 OpToUse = SIntOp; 2555 break; 2556 } 2557 if (IsSigned) 2558 continue; 2559 2560 // If the target supports UINT_TO_FP of this type, use it. 2561 if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) { 2562 OpToUse = UIntOp; 2563 break; 2564 } 2565 2566 // Otherwise, try a larger type. 2567 } 2568 2569 // Okay, we found the operation and type to use. Zero extend our input to the 2570 // desired type then run the operation on it. 2571 if (IsStrict) { 2572 SDValue Res = 2573 DAG.getNode(OpToUse, dl, {DestVT, MVT::Other}, 2574 {N->getOperand(0), 2575 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2576 dl, NewInTy, LegalOp)}); 2577 Results.push_back(Res); 2578 Results.push_back(Res.getValue(1)); 2579 return; 2580 } 2581 2582 Results.push_back( 2583 DAG.getNode(OpToUse, dl, DestVT, 2584 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2585 dl, NewInTy, LegalOp))); 2586 } 2587 2588 /// This function is responsible for legalizing a 2589 /// FP_TO_*INT operation of the specified operand when the target requests that 2590 /// we promote it. At this point, we know that the result and operand types are 2591 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2592 /// operation that returns a larger result. 2593 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 2594 SmallVectorImpl<SDValue> &Results) { 2595 bool IsStrict = N->isStrictFPOpcode(); 2596 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 2597 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 2598 EVT DestVT = N->getValueType(0); 2599 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2600 // First step, figure out the appropriate FP_TO*INT operation to use. 2601 EVT NewOutTy = DestVT; 2602 2603 unsigned OpToUse = 0; 2604 2605 // Scan for the appropriate larger type to use. 2606 while (true) { 2607 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2608 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2609 2610 // A larger signed type can hold all unsigned values of the requested type, 2611 // so using FP_TO_SINT is valid 2612 OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT; 2613 if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2614 break; 2615 2616 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2617 OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT; 2618 if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2619 break; 2620 2621 // Otherwise, try a larger type. 2622 } 2623 2624 // Okay, we found the operation and type to use. 2625 SDValue Operation; 2626 if (IsStrict) { 2627 SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other); 2628 Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp); 2629 } else 2630 Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2631 2632 // Truncate the result of the extended FP_TO_*INT operation to the desired 2633 // size. 2634 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2635 Results.push_back(Trunc); 2636 if (IsStrict) 2637 Results.push_back(Operation.getValue(1)); 2638 } 2639 2640 /// Promote FP_TO_*INT_SAT operation to a larger result type. At this point 2641 /// the result and operand types are legal and there must be a legal 2642 /// FP_TO_*INT_SAT operation for a larger result type. 2643 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT_SAT(SDNode *Node, 2644 const SDLoc &dl) { 2645 unsigned Opcode = Node->getOpcode(); 2646 2647 // Scan for the appropriate larger type to use. 2648 EVT NewOutTy = Node->getValueType(0); 2649 while (true) { 2650 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy + 1); 2651 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2652 2653 if (TLI.isOperationLegalOrCustom(Opcode, NewOutTy)) 2654 break; 2655 } 2656 2657 // Saturation width is determined by second operand, so we don't have to 2658 // perform any fixup and can directly truncate the result. 2659 SDValue Result = DAG.getNode(Opcode, dl, NewOutTy, Node->getOperand(0), 2660 Node->getOperand(1)); 2661 return DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Result); 2662 } 2663 2664 /// Open code the operations for PARITY of the specified operation. 2665 SDValue SelectionDAGLegalize::ExpandPARITY(SDValue Op, const SDLoc &dl) { 2666 EVT VT = Op.getValueType(); 2667 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2668 unsigned Sz = VT.getScalarSizeInBits(); 2669 2670 // If CTPOP is legal, use it. Otherwise use shifts and xor. 2671 SDValue Result; 2672 if (TLI.isOperationLegalOrPromote(ISD::CTPOP, VT)) { 2673 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 2674 } else { 2675 Result = Op; 2676 for (unsigned i = Log2_32_Ceil(Sz); i != 0;) { 2677 SDValue Shift = DAG.getNode(ISD::SRL, dl, VT, Result, 2678 DAG.getConstant(1ULL << (--i), dl, ShVT)); 2679 Result = DAG.getNode(ISD::XOR, dl, VT, Result, Shift); 2680 } 2681 } 2682 2683 return DAG.getNode(ISD::AND, dl, VT, Result, DAG.getConstant(1, dl, VT)); 2684 } 2685 2686 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2687 LLVM_DEBUG(dbgs() << "Trying to expand node\n"); 2688 SmallVector<SDValue, 8> Results; 2689 SDLoc dl(Node); 2690 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2691 bool NeedInvert; 2692 switch (Node->getOpcode()) { 2693 case ISD::ABS: 2694 if ((Tmp1 = TLI.expandABS(Node, DAG))) 2695 Results.push_back(Tmp1); 2696 break; 2697 case ISD::CTPOP: 2698 if ((Tmp1 = TLI.expandCTPOP(Node, DAG))) 2699 Results.push_back(Tmp1); 2700 break; 2701 case ISD::CTLZ: 2702 case ISD::CTLZ_ZERO_UNDEF: 2703 if ((Tmp1 = TLI.expandCTLZ(Node, DAG))) 2704 Results.push_back(Tmp1); 2705 break; 2706 case ISD::CTTZ: 2707 case ISD::CTTZ_ZERO_UNDEF: 2708 if ((Tmp1 = TLI.expandCTTZ(Node, DAG))) 2709 Results.push_back(Tmp1); 2710 break; 2711 case ISD::BITREVERSE: 2712 if ((Tmp1 = TLI.expandBITREVERSE(Node, DAG))) 2713 Results.push_back(Tmp1); 2714 break; 2715 case ISD::BSWAP: 2716 if ((Tmp1 = TLI.expandBSWAP(Node, DAG))) 2717 Results.push_back(Tmp1); 2718 break; 2719 case ISD::PARITY: 2720 Results.push_back(ExpandPARITY(Node->getOperand(0), dl)); 2721 break; 2722 case ISD::FRAMEADDR: 2723 case ISD::RETURNADDR: 2724 case ISD::FRAME_TO_ARGS_OFFSET: 2725 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2726 break; 2727 case ISD::EH_DWARF_CFA: { 2728 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 2729 TLI.getPointerTy(DAG.getDataLayout())); 2730 SDValue Offset = DAG.getNode(ISD::ADD, dl, 2731 CfaArg.getValueType(), 2732 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 2733 CfaArg.getValueType()), 2734 CfaArg); 2735 SDValue FA = DAG.getNode( 2736 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 2737 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2738 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 2739 FA, Offset)); 2740 break; 2741 } 2742 case ISD::FLT_ROUNDS_: 2743 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2744 Results.push_back(Node->getOperand(0)); 2745 break; 2746 case ISD::EH_RETURN: 2747 case ISD::EH_LABEL: 2748 case ISD::PREFETCH: 2749 case ISD::VAEND: 2750 case ISD::EH_SJLJ_LONGJMP: 2751 // If the target didn't expand these, there's nothing to do, so just 2752 // preserve the chain and be done. 2753 Results.push_back(Node->getOperand(0)); 2754 break; 2755 case ISD::READCYCLECOUNTER: 2756 // If the target didn't expand this, just return 'zero' and preserve the 2757 // chain. 2758 Results.append(Node->getNumValues() - 1, 2759 DAG.getConstant(0, dl, Node->getValueType(0))); 2760 Results.push_back(Node->getOperand(0)); 2761 break; 2762 case ISD::EH_SJLJ_SETJMP: 2763 // If the target didn't expand this, just return 'zero' and preserve the 2764 // chain. 2765 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2766 Results.push_back(Node->getOperand(0)); 2767 break; 2768 case ISD::ATOMIC_LOAD: { 2769 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2770 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2771 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2772 SDValue Swap = DAG.getAtomicCmpSwap( 2773 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2774 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2775 cast<AtomicSDNode>(Node)->getMemOperand()); 2776 Results.push_back(Swap.getValue(0)); 2777 Results.push_back(Swap.getValue(1)); 2778 break; 2779 } 2780 case ISD::ATOMIC_STORE: { 2781 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2782 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2783 cast<AtomicSDNode>(Node)->getMemoryVT(), 2784 Node->getOperand(0), 2785 Node->getOperand(1), Node->getOperand(2), 2786 cast<AtomicSDNode>(Node)->getMemOperand()); 2787 Results.push_back(Swap.getValue(1)); 2788 break; 2789 } 2790 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 2791 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 2792 // splits out the success value as a comparison. Expanding the resulting 2793 // ATOMIC_CMP_SWAP will produce a libcall. 2794 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2795 SDValue Res = DAG.getAtomicCmpSwap( 2796 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2797 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 2798 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 2799 2800 SDValue ExtRes = Res; 2801 SDValue LHS = Res; 2802 SDValue RHS = Node->getOperand(1); 2803 2804 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 2805 EVT OuterType = Node->getValueType(0); 2806 switch (TLI.getExtendForAtomicOps()) { 2807 case ISD::SIGN_EXTEND: 2808 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 2809 DAG.getValueType(AtomicType)); 2810 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 2811 Node->getOperand(2), DAG.getValueType(AtomicType)); 2812 ExtRes = LHS; 2813 break; 2814 case ISD::ZERO_EXTEND: 2815 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 2816 DAG.getValueType(AtomicType)); 2817 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2818 ExtRes = LHS; 2819 break; 2820 case ISD::ANY_EXTEND: 2821 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 2822 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2823 break; 2824 default: 2825 llvm_unreachable("Invalid atomic op extension"); 2826 } 2827 2828 SDValue Success = 2829 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 2830 2831 Results.push_back(ExtRes.getValue(0)); 2832 Results.push_back(Success); 2833 Results.push_back(Res.getValue(1)); 2834 break; 2835 } 2836 case ISD::DYNAMIC_STACKALLOC: 2837 ExpandDYNAMIC_STACKALLOC(Node, Results); 2838 break; 2839 case ISD::MERGE_VALUES: 2840 for (unsigned i = 0; i < Node->getNumValues(); i++) 2841 Results.push_back(Node->getOperand(i)); 2842 break; 2843 case ISD::UNDEF: { 2844 EVT VT = Node->getValueType(0); 2845 if (VT.isInteger()) 2846 Results.push_back(DAG.getConstant(0, dl, VT)); 2847 else { 2848 assert(VT.isFloatingPoint() && "Unknown value type!"); 2849 Results.push_back(DAG.getConstantFP(0, dl, VT)); 2850 } 2851 break; 2852 } 2853 case ISD::STRICT_FP_ROUND: 2854 // When strict mode is enforced we can't do expansion because it 2855 // does not honor the "strict" properties. Only libcall is allowed. 2856 if (TLI.isStrictFPEnabled()) 2857 break; 2858 // We might as well mutate to FP_ROUND when FP_ROUND operation is legal 2859 // since this operation is more efficient than stack operation. 2860 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2861 Node->getValueType(0)) 2862 == TargetLowering::Legal) 2863 break; 2864 // We fall back to use stack operation when the FP_ROUND operation 2865 // isn't available. 2866 if ((Tmp1 = EmitStackConvert(Node->getOperand(1), Node->getValueType(0), 2867 Node->getValueType(0), dl, 2868 Node->getOperand(0)))) { 2869 ReplaceNode(Node, Tmp1.getNode()); 2870 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n"); 2871 return true; 2872 } 2873 break; 2874 case ISD::FP_ROUND: 2875 case ISD::BITCAST: 2876 if ((Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 2877 Node->getValueType(0), dl))) 2878 Results.push_back(Tmp1); 2879 break; 2880 case ISD::STRICT_FP_EXTEND: 2881 // When strict mode is enforced we can't do expansion because it 2882 // does not honor the "strict" properties. Only libcall is allowed. 2883 if (TLI.isStrictFPEnabled()) 2884 break; 2885 // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal 2886 // since this operation is more efficient than stack operation. 2887 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2888 Node->getValueType(0)) 2889 == TargetLowering::Legal) 2890 break; 2891 // We fall back to use stack operation when the FP_EXTEND operation 2892 // isn't available. 2893 if ((Tmp1 = EmitStackConvert( 2894 Node->getOperand(1), Node->getOperand(1).getValueType(), 2895 Node->getValueType(0), dl, Node->getOperand(0)))) { 2896 ReplaceNode(Node, Tmp1.getNode()); 2897 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n"); 2898 return true; 2899 } 2900 break; 2901 case ISD::FP_EXTEND: 2902 if ((Tmp1 = EmitStackConvert(Node->getOperand(0), 2903 Node->getOperand(0).getValueType(), 2904 Node->getValueType(0), dl))) 2905 Results.push_back(Tmp1); 2906 break; 2907 case ISD::SIGN_EXTEND_INREG: { 2908 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2909 EVT VT = Node->getValueType(0); 2910 2911 // An in-register sign-extend of a boolean is a negation: 2912 // 'true' (1) sign-extended is -1. 2913 // 'false' (0) sign-extended is 0. 2914 // However, we must mask the high bits of the source operand because the 2915 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 2916 2917 // TODO: Do this for vectors too? 2918 if (ExtraVT.isScalarInteger() && ExtraVT.getSizeInBits() == 1) { 2919 SDValue One = DAG.getConstant(1, dl, VT); 2920 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 2921 SDValue Zero = DAG.getConstant(0, dl, VT); 2922 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 2923 Results.push_back(Neg); 2924 break; 2925 } 2926 2927 // NOTE: we could fall back on load/store here too for targets without 2928 // SRA. However, it is doubtful that any exist. 2929 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2930 unsigned BitsDiff = VT.getScalarSizeInBits() - 2931 ExtraVT.getScalarSizeInBits(); 2932 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 2933 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 2934 Node->getOperand(0), ShiftCst); 2935 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 2936 Results.push_back(Tmp1); 2937 break; 2938 } 2939 case ISD::UINT_TO_FP: 2940 case ISD::STRICT_UINT_TO_FP: 2941 if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) { 2942 Results.push_back(Tmp1); 2943 if (Node->isStrictFPOpcode()) 2944 Results.push_back(Tmp2); 2945 break; 2946 } 2947 LLVM_FALLTHROUGH; 2948 case ISD::SINT_TO_FP: 2949 case ISD::STRICT_SINT_TO_FP: 2950 if ((Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2))) { 2951 Results.push_back(Tmp1); 2952 if (Node->isStrictFPOpcode()) 2953 Results.push_back(Tmp2); 2954 } 2955 break; 2956 case ISD::FP_TO_SINT: 2957 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 2958 Results.push_back(Tmp1); 2959 break; 2960 case ISD::STRICT_FP_TO_SINT: 2961 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) { 2962 ReplaceNode(Node, Tmp1.getNode()); 2963 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n"); 2964 return true; 2965 } 2966 break; 2967 case ISD::FP_TO_UINT: 2968 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) 2969 Results.push_back(Tmp1); 2970 break; 2971 case ISD::STRICT_FP_TO_UINT: 2972 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) { 2973 // Relink the chain. 2974 DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2); 2975 // Replace the new UINT result. 2976 ReplaceNodeWithValue(SDValue(Node, 0), Tmp1); 2977 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n"); 2978 return true; 2979 } 2980 break; 2981 case ISD::FP_TO_SINT_SAT: 2982 case ISD::FP_TO_UINT_SAT: 2983 Results.push_back(TLI.expandFP_TO_INT_SAT(Node, DAG)); 2984 break; 2985 case ISD::VAARG: 2986 Results.push_back(DAG.expandVAArg(Node)); 2987 Results.push_back(Results[0].getValue(1)); 2988 break; 2989 case ISD::VACOPY: 2990 Results.push_back(DAG.expandVACopy(Node)); 2991 break; 2992 case ISD::EXTRACT_VECTOR_ELT: 2993 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 2994 // This must be an access of the only element. Return it. 2995 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 2996 Node->getOperand(0)); 2997 else 2998 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 2999 Results.push_back(Tmp1); 3000 break; 3001 case ISD::EXTRACT_SUBVECTOR: 3002 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 3003 break; 3004 case ISD::INSERT_SUBVECTOR: 3005 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 3006 break; 3007 case ISD::CONCAT_VECTORS: 3008 Results.push_back(ExpandVectorBuildThroughStack(Node)); 3009 break; 3010 case ISD::SCALAR_TO_VECTOR: 3011 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3012 break; 3013 case ISD::INSERT_VECTOR_ELT: 3014 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3015 Node->getOperand(1), 3016 Node->getOperand(2), dl)); 3017 break; 3018 case ISD::VECTOR_SHUFFLE: { 3019 SmallVector<int, 32> NewMask; 3020 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3021 3022 EVT VT = Node->getValueType(0); 3023 EVT EltVT = VT.getVectorElementType(); 3024 SDValue Op0 = Node->getOperand(0); 3025 SDValue Op1 = Node->getOperand(1); 3026 if (!TLI.isTypeLegal(EltVT)) { 3027 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3028 3029 // BUILD_VECTOR operands are allowed to be wider than the element type. 3030 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 3031 // it. 3032 if (NewEltVT.bitsLT(EltVT)) { 3033 // Convert shuffle node. 3034 // If original node was v4i64 and the new EltVT is i32, 3035 // cast operands to v8i32 and re-build the mask. 3036 3037 // Calculate new VT, the size of the new VT should be equal to original. 3038 EVT NewVT = 3039 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3040 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 3041 assert(NewVT.bitsEq(VT)); 3042 3043 // cast operands to new VT 3044 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3045 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3046 3047 // Convert the shuffle mask 3048 unsigned int factor = 3049 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3050 3051 // EltVT gets smaller 3052 assert(factor > 0); 3053 3054 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3055 if (Mask[i] < 0) { 3056 for (unsigned fi = 0; fi < factor; ++fi) 3057 NewMask.push_back(Mask[i]); 3058 } 3059 else { 3060 for (unsigned fi = 0; fi < factor; ++fi) 3061 NewMask.push_back(Mask[i]*factor+fi); 3062 } 3063 } 3064 Mask = NewMask; 3065 VT = NewVT; 3066 } 3067 EltVT = NewEltVT; 3068 } 3069 unsigned NumElems = VT.getVectorNumElements(); 3070 SmallVector<SDValue, 16> Ops; 3071 for (unsigned i = 0; i != NumElems; ++i) { 3072 if (Mask[i] < 0) { 3073 Ops.push_back(DAG.getUNDEF(EltVT)); 3074 continue; 3075 } 3076 unsigned Idx = Mask[i]; 3077 if (Idx < NumElems) 3078 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3079 DAG.getVectorIdxConstant(Idx, dl))); 3080 else 3081 Ops.push_back( 3082 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3083 DAG.getVectorIdxConstant(Idx - NumElems, dl))); 3084 } 3085 3086 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 3087 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3088 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3089 Results.push_back(Tmp1); 3090 break; 3091 } 3092 case ISD::VECTOR_SPLICE: { 3093 Results.push_back(TLI.expandVectorSplice(Node, DAG)); 3094 break; 3095 } 3096 case ISD::EXTRACT_ELEMENT: { 3097 EVT OpTy = Node->getOperand(0).getValueType(); 3098 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3099 // 1 -> Hi 3100 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3101 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3102 TLI.getShiftAmountTy( 3103 Node->getOperand(0).getValueType(), 3104 DAG.getDataLayout()))); 3105 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3106 } else { 3107 // 0 -> Lo 3108 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3109 Node->getOperand(0)); 3110 } 3111 Results.push_back(Tmp1); 3112 break; 3113 } 3114 case ISD::STACKSAVE: 3115 // Expand to CopyFromReg if the target set 3116 // StackPointerRegisterToSaveRestore. 3117 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { 3118 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3119 Node->getValueType(0))); 3120 Results.push_back(Results[0].getValue(1)); 3121 } else { 3122 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3123 Results.push_back(Node->getOperand(0)); 3124 } 3125 break; 3126 case ISD::STACKRESTORE: 3127 // Expand to CopyToReg if the target set 3128 // StackPointerRegisterToSaveRestore. 3129 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { 3130 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3131 Node->getOperand(1))); 3132 } else { 3133 Results.push_back(Node->getOperand(0)); 3134 } 3135 break; 3136 case ISD::GET_DYNAMIC_AREA_OFFSET: 3137 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3138 Results.push_back(Results[0].getValue(0)); 3139 break; 3140 case ISD::FCOPYSIGN: 3141 Results.push_back(ExpandFCOPYSIGN(Node)); 3142 break; 3143 case ISD::FNEG: 3144 Results.push_back(ExpandFNEG(Node)); 3145 break; 3146 case ISD::FABS: 3147 Results.push_back(ExpandFABS(Node)); 3148 break; 3149 case ISD::IS_FPCLASS: { 3150 auto CNode = cast<ConstantSDNode>(Node->getOperand(1)); 3151 auto Test = static_cast<FPClassTest>(CNode->getZExtValue()); 3152 if (SDValue Expanded = 3153 TLI.expandIS_FPCLASS(Node->getValueType(0), Node->getOperand(0), 3154 Test, Node->getFlags(), SDLoc(Node), DAG)) 3155 Results.push_back(Expanded); 3156 break; 3157 } 3158 case ISD::SMIN: 3159 case ISD::SMAX: 3160 case ISD::UMIN: 3161 case ISD::UMAX: { 3162 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3163 ISD::CondCode Pred; 3164 switch (Node->getOpcode()) { 3165 default: llvm_unreachable("How did we get here?"); 3166 case ISD::SMAX: Pred = ISD::SETGT; break; 3167 case ISD::SMIN: Pred = ISD::SETLT; break; 3168 case ISD::UMAX: Pred = ISD::SETUGT; break; 3169 case ISD::UMIN: Pred = ISD::SETULT; break; 3170 } 3171 Tmp1 = Node->getOperand(0); 3172 Tmp2 = Node->getOperand(1); 3173 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3174 Results.push_back(Tmp1); 3175 break; 3176 } 3177 case ISD::FMINNUM: 3178 case ISD::FMAXNUM: { 3179 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) 3180 Results.push_back(Expanded); 3181 break; 3182 } 3183 case ISD::FSIN: 3184 case ISD::FCOS: { 3185 EVT VT = Node->getValueType(0); 3186 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3187 // fcos which share the same operand and both are used. 3188 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3189 isSinCosLibcallAvailable(Node, TLI)) 3190 && useSinCos(Node)) { 3191 SDVTList VTs = DAG.getVTList(VT, VT); 3192 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3193 if (Node->getOpcode() == ISD::FCOS) 3194 Tmp1 = Tmp1.getValue(1); 3195 Results.push_back(Tmp1); 3196 } 3197 break; 3198 } 3199 case ISD::FMAD: 3200 llvm_unreachable("Illegal fmad should never be formed"); 3201 3202 case ISD::FP16_TO_FP: 3203 if (Node->getValueType(0) != MVT::f32) { 3204 // We can extend to types bigger than f32 in two steps without changing 3205 // the result. Since "f16 -> f32" is much more commonly available, give 3206 // CodeGen the option of emitting that before resorting to a libcall. 3207 SDValue Res = 3208 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3209 Results.push_back( 3210 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3211 } 3212 break; 3213 case ISD::STRICT_FP16_TO_FP: 3214 if (Node->getValueType(0) != MVT::f32) { 3215 // We can extend to types bigger than f32 in two steps without changing 3216 // the result. Since "f16 -> f32" is much more commonly available, give 3217 // CodeGen the option of emitting that before resorting to a libcall. 3218 SDValue Res = 3219 DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other}, 3220 {Node->getOperand(0), Node->getOperand(1)}); 3221 Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 3222 {Node->getValueType(0), MVT::Other}, 3223 {Res.getValue(1), Res}); 3224 Results.push_back(Res); 3225 Results.push_back(Res.getValue(1)); 3226 } 3227 break; 3228 case ISD::FP_TO_FP16: 3229 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3230 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3231 SDValue Op = Node->getOperand(0); 3232 MVT SVT = Op.getSimpleValueType(); 3233 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3234 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3235 // Under fastmath, we can expand this node into a fround followed by 3236 // a float-half conversion. 3237 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3238 DAG.getIntPtrConstant(0, dl)); 3239 Results.push_back( 3240 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3241 } 3242 } 3243 break; 3244 case ISD::ConstantFP: { 3245 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3246 // Check to see if this FP immediate is already legal. 3247 // If this is a legal constant, turn it into a TargetConstantFP node. 3248 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0), 3249 DAG.shouldOptForSize())) 3250 Results.push_back(ExpandConstantFP(CFP, true)); 3251 break; 3252 } 3253 case ISD::Constant: { 3254 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3255 Results.push_back(ExpandConstant(CP)); 3256 break; 3257 } 3258 case ISD::FSUB: { 3259 EVT VT = Node->getValueType(0); 3260 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3261 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3262 const SDNodeFlags Flags = Node->getFlags(); 3263 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3264 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3265 Results.push_back(Tmp1); 3266 } 3267 break; 3268 } 3269 case ISD::SUB: { 3270 EVT VT = Node->getValueType(0); 3271 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3272 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3273 "Don't know how to expand this subtraction!"); 3274 Tmp1 = DAG.getNOT(dl, Node->getOperand(1), VT); 3275 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3276 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3277 break; 3278 } 3279 case ISD::UREM: 3280 case ISD::SREM: 3281 if (TLI.expandREM(Node, Tmp1, DAG)) 3282 Results.push_back(Tmp1); 3283 break; 3284 case ISD::UDIV: 3285 case ISD::SDIV: { 3286 bool isSigned = Node->getOpcode() == ISD::SDIV; 3287 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3288 EVT VT = Node->getValueType(0); 3289 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3290 SDVTList VTs = DAG.getVTList(VT, VT); 3291 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3292 Node->getOperand(1)); 3293 Results.push_back(Tmp1); 3294 } 3295 break; 3296 } 3297 case ISD::MULHU: 3298 case ISD::MULHS: { 3299 unsigned ExpandOpcode = 3300 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3301 EVT VT = Node->getValueType(0); 3302 SDVTList VTs = DAG.getVTList(VT, VT); 3303 3304 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3305 Node->getOperand(1)); 3306 Results.push_back(Tmp1.getValue(1)); 3307 break; 3308 } 3309 case ISD::UMUL_LOHI: 3310 case ISD::SMUL_LOHI: { 3311 SDValue LHS = Node->getOperand(0); 3312 SDValue RHS = Node->getOperand(1); 3313 MVT VT = LHS.getSimpleValueType(); 3314 unsigned MULHOpcode = 3315 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3316 3317 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3318 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3319 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3320 break; 3321 } 3322 3323 SmallVector<SDValue, 4> Halves; 3324 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3325 assert(TLI.isTypeLegal(HalfType)); 3326 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, dl, LHS, RHS, Halves, 3327 HalfType, DAG, 3328 TargetLowering::MulExpansionKind::Always)) { 3329 for (unsigned i = 0; i < 2; ++i) { 3330 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3331 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3332 SDValue Shift = DAG.getConstant( 3333 HalfType.getScalarSizeInBits(), dl, 3334 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3335 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3336 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3337 } 3338 break; 3339 } 3340 break; 3341 } 3342 case ISD::MUL: { 3343 EVT VT = Node->getValueType(0); 3344 SDVTList VTs = DAG.getVTList(VT, VT); 3345 // See if multiply or divide can be lowered using two-result operations. 3346 // We just need the low half of the multiply; try both the signed 3347 // and unsigned forms. If the target supports both SMUL_LOHI and 3348 // UMUL_LOHI, form a preference by checking which forms of plain 3349 // MULH it supports. 3350 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3351 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3352 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3353 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3354 unsigned OpToUse = 0; 3355 if (HasSMUL_LOHI && !HasMULHS) { 3356 OpToUse = ISD::SMUL_LOHI; 3357 } else if (HasUMUL_LOHI && !HasMULHU) { 3358 OpToUse = ISD::UMUL_LOHI; 3359 } else if (HasSMUL_LOHI) { 3360 OpToUse = ISD::SMUL_LOHI; 3361 } else if (HasUMUL_LOHI) { 3362 OpToUse = ISD::UMUL_LOHI; 3363 } 3364 if (OpToUse) { 3365 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3366 Node->getOperand(1))); 3367 break; 3368 } 3369 3370 SDValue Lo, Hi; 3371 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3372 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3373 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3374 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3375 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3376 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3377 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3378 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3379 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3380 SDValue Shift = 3381 DAG.getConstant(HalfType.getSizeInBits(), dl, 3382 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3383 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3384 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3385 } 3386 break; 3387 } 3388 case ISD::FSHL: 3389 case ISD::FSHR: 3390 if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) 3391 Results.push_back(Expanded); 3392 break; 3393 case ISD::ROTL: 3394 case ISD::ROTR: 3395 if (SDValue Expanded = TLI.expandROT(Node, true /*AllowVectorOps*/, DAG)) 3396 Results.push_back(Expanded); 3397 break; 3398 case ISD::SADDSAT: 3399 case ISD::UADDSAT: 3400 case ISD::SSUBSAT: 3401 case ISD::USUBSAT: 3402 Results.push_back(TLI.expandAddSubSat(Node, DAG)); 3403 break; 3404 case ISD::SSHLSAT: 3405 case ISD::USHLSAT: 3406 Results.push_back(TLI.expandShlSat(Node, DAG)); 3407 break; 3408 case ISD::SMULFIX: 3409 case ISD::SMULFIXSAT: 3410 case ISD::UMULFIX: 3411 case ISD::UMULFIXSAT: 3412 Results.push_back(TLI.expandFixedPointMul(Node, DAG)); 3413 break; 3414 case ISD::SDIVFIX: 3415 case ISD::SDIVFIXSAT: 3416 case ISD::UDIVFIX: 3417 case ISD::UDIVFIXSAT: 3418 if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node), 3419 Node->getOperand(0), 3420 Node->getOperand(1), 3421 Node->getConstantOperandVal(2), 3422 DAG)) { 3423 Results.push_back(V); 3424 break; 3425 } 3426 // FIXME: We might want to retry here with a wider type if we fail, if that 3427 // type is legal. 3428 // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is 3429 // <= 128 (which is the case for all of the default Embedded-C types), 3430 // we will only get here with types and scales that we could always expand 3431 // if we were allowed to generate libcalls to division functions of illegal 3432 // type. But we cannot do that. 3433 llvm_unreachable("Cannot expand DIVFIX!"); 3434 case ISD::ADDCARRY: 3435 case ISD::SUBCARRY: { 3436 SDValue LHS = Node->getOperand(0); 3437 SDValue RHS = Node->getOperand(1); 3438 SDValue Carry = Node->getOperand(2); 3439 3440 bool IsAdd = Node->getOpcode() == ISD::ADDCARRY; 3441 3442 // Initial add of the 2 operands. 3443 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB; 3444 EVT VT = LHS.getValueType(); 3445 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS); 3446 3447 // Initial check for overflow. 3448 EVT CarryType = Node->getValueType(1); 3449 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3450 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 3451 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3452 3453 // Add of the sum and the carry. 3454 SDValue One = DAG.getConstant(1, dl, VT); 3455 SDValue CarryExt = 3456 DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One); 3457 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt); 3458 3459 // Second check for overflow. If we are adding, we can only overflow if the 3460 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0. 3461 // If we are subtracting, we can only overflow if the initial sum is 0 and 3462 // the carry is set, resulting in a new sum of all 1s. 3463 SDValue Zero = DAG.getConstant(0, dl, VT); 3464 SDValue Overflow2 = 3465 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ) 3466 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ); 3467 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2, 3468 DAG.getZExtOrTrunc(Carry, dl, SetCCType)); 3469 3470 SDValue ResultCarry = 3471 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2); 3472 3473 Results.push_back(Sum2); 3474 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT)); 3475 break; 3476 } 3477 case ISD::SADDO: 3478 case ISD::SSUBO: { 3479 SDValue Result, Overflow; 3480 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 3481 Results.push_back(Result); 3482 Results.push_back(Overflow); 3483 break; 3484 } 3485 case ISD::UADDO: 3486 case ISD::USUBO: { 3487 SDValue Result, Overflow; 3488 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 3489 Results.push_back(Result); 3490 Results.push_back(Overflow); 3491 break; 3492 } 3493 case ISD::UMULO: 3494 case ISD::SMULO: { 3495 SDValue Result, Overflow; 3496 if (TLI.expandMULO(Node, Result, Overflow, DAG)) { 3497 Results.push_back(Result); 3498 Results.push_back(Overflow); 3499 } 3500 break; 3501 } 3502 case ISD::BUILD_PAIR: { 3503 EVT PairTy = Node->getValueType(0); 3504 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3505 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3506 Tmp2 = DAG.getNode( 3507 ISD::SHL, dl, PairTy, Tmp2, 3508 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3509 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3510 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3511 break; 3512 } 3513 case ISD::SELECT: 3514 Tmp1 = Node->getOperand(0); 3515 Tmp2 = Node->getOperand(1); 3516 Tmp3 = Node->getOperand(2); 3517 if (Tmp1.getOpcode() == ISD::SETCC) { 3518 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3519 Tmp2, Tmp3, 3520 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3521 } else { 3522 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3523 DAG.getConstant(0, dl, Tmp1.getValueType()), 3524 Tmp2, Tmp3, ISD::SETNE); 3525 } 3526 Tmp1->setFlags(Node->getFlags()); 3527 Results.push_back(Tmp1); 3528 break; 3529 case ISD::BR_JT: { 3530 SDValue Chain = Node->getOperand(0); 3531 SDValue Table = Node->getOperand(1); 3532 SDValue Index = Node->getOperand(2); 3533 3534 const DataLayout &TD = DAG.getDataLayout(); 3535 EVT PTy = TLI.getPointerTy(TD); 3536 3537 unsigned EntrySize = 3538 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3539 3540 // For power-of-two jumptable entry sizes convert multiplication to a shift. 3541 // This transformation needs to be done here since otherwise the MIPS 3542 // backend will end up emitting a three instruction multiply sequence 3543 // instead of a single shift and MSP430 will call a runtime function. 3544 if (llvm::isPowerOf2_32(EntrySize)) 3545 Index = DAG.getNode( 3546 ISD::SHL, dl, Index.getValueType(), Index, 3547 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); 3548 else 3549 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3550 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3551 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3552 Index, Table); 3553 3554 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3555 SDValue LD = DAG.getExtLoad( 3556 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3557 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3558 Addr = LD; 3559 if (TLI.isJumpTableRelative()) { 3560 // For PIC, the sequence is: 3561 // BRIND(load(Jumptable + index) + RelocBase) 3562 // RelocBase can be JumpTable, GOT or some sort of global base. 3563 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3564 TLI.getPICJumpTableRelocBase(Table, DAG)); 3565 } 3566 3567 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); 3568 Results.push_back(Tmp1); 3569 break; 3570 } 3571 case ISD::BRCOND: 3572 // Expand brcond's setcc into its constituent parts and create a BR_CC 3573 // Node. 3574 Tmp1 = Node->getOperand(0); 3575 Tmp2 = Node->getOperand(1); 3576 if (Tmp2.getOpcode() == ISD::SETCC && 3577 TLI.isOperationLegalOrCustom(ISD::BR_CC, 3578 Tmp2.getOperand(0).getValueType())) { 3579 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, Tmp2.getOperand(2), 3580 Tmp2.getOperand(0), Tmp2.getOperand(1), 3581 Node->getOperand(2)); 3582 } else { 3583 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 3584 if (Tmp2.isUndef() || 3585 (Tmp2.getOpcode() == ISD::AND && 3586 isa<ConstantSDNode>(Tmp2.getOperand(1)) && 3587 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) 3588 Tmp3 = Tmp2; 3589 else 3590 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3591 DAG.getConstant(1, dl, Tmp2.getValueType())); 3592 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3593 DAG.getCondCode(ISD::SETNE), Tmp3, 3594 DAG.getConstant(0, dl, Tmp3.getValueType()), 3595 Node->getOperand(2)); 3596 } 3597 Results.push_back(Tmp1); 3598 break; 3599 case ISD::SETCC: 3600 case ISD::VP_SETCC: 3601 case ISD::STRICT_FSETCC: 3602 case ISD::STRICT_FSETCCS: { 3603 bool IsVP = Node->getOpcode() == ISD::VP_SETCC; 3604 bool IsStrict = Node->getOpcode() == ISD::STRICT_FSETCC || 3605 Node->getOpcode() == ISD::STRICT_FSETCCS; 3606 bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS; 3607 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 3608 unsigned Offset = IsStrict ? 1 : 0; 3609 Tmp1 = Node->getOperand(0 + Offset); 3610 Tmp2 = Node->getOperand(1 + Offset); 3611 Tmp3 = Node->getOperand(2 + Offset); 3612 SDValue Mask, EVL; 3613 if (IsVP) { 3614 Mask = Node->getOperand(3 + Offset); 3615 EVL = Node->getOperand(4 + Offset); 3616 } 3617 bool Legalized = TLI.LegalizeSetCCCondCode( 3618 DAG, Node->getValueType(0), Tmp1, Tmp2, Tmp3, Mask, EVL, NeedInvert, dl, 3619 Chain, IsSignaling); 3620 3621 if (Legalized) { 3622 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3623 // condition code, create a new SETCC node. 3624 if (Tmp3.getNode()) { 3625 if (IsStrict) { 3626 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getVTList(), 3627 {Chain, Tmp1, Tmp2, Tmp3}, Node->getFlags()); 3628 Chain = Tmp1.getValue(1); 3629 } else if (IsVP) { 3630 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), 3631 {Tmp1, Tmp2, Tmp3, Mask, EVL}, Node->getFlags()); 3632 } else { 3633 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Tmp1, 3634 Tmp2, Tmp3, Node->getFlags()); 3635 } 3636 } 3637 3638 // If we expanded the SETCC by inverting the condition code, then wrap 3639 // the existing SETCC in a NOT to restore the intended condition. 3640 if (NeedInvert) { 3641 if (!IsVP) 3642 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3643 else 3644 Tmp1 = 3645 DAG.getVPLogicalNOT(dl, Tmp1, Mask, EVL, Tmp1->getValueType(0)); 3646 } 3647 3648 Results.push_back(Tmp1); 3649 if (IsStrict) 3650 Results.push_back(Chain); 3651 3652 break; 3653 } 3654 3655 // FIXME: It seems Legalized is false iff CCCode is Legal. I don't 3656 // understand if this code is useful for strict nodes. 3657 assert(!IsStrict && "Don't know how to expand for strict nodes."); 3658 3659 // Otherwise, SETCC for the given comparison type must be completely 3660 // illegal; expand it into a SELECT_CC. 3661 // FIXME: This drops the mask/evl for VP_SETCC. 3662 EVT VT = Node->getValueType(0); 3663 EVT Tmp1VT = Tmp1.getValueType(); 3664 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3665 DAG.getBoolConstant(true, dl, VT, Tmp1VT), 3666 DAG.getBoolConstant(false, dl, VT, Tmp1VT), Tmp3); 3667 Tmp1->setFlags(Node->getFlags()); 3668 Results.push_back(Tmp1); 3669 break; 3670 } 3671 case ISD::SELECT_CC: { 3672 // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS 3673 Tmp1 = Node->getOperand(0); // LHS 3674 Tmp2 = Node->getOperand(1); // RHS 3675 Tmp3 = Node->getOperand(2); // True 3676 Tmp4 = Node->getOperand(3); // False 3677 EVT VT = Node->getValueType(0); 3678 SDValue Chain; 3679 SDValue CC = Node->getOperand(4); 3680 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3681 3682 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 3683 // If the condition code is legal, then we need to expand this 3684 // node using SETCC and SELECT. 3685 EVT CmpVT = Tmp1.getValueType(); 3686 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3687 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3688 "expanded."); 3689 EVT CCVT = getSetCCResultType(CmpVT); 3690 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags()); 3691 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3692 break; 3693 } 3694 3695 // SELECT_CC is legal, so the condition code must not be. 3696 bool Legalized = false; 3697 // Try to legalize by inverting the condition. This is for targets that 3698 // might support an ordered version of a condition, but not the unordered 3699 // version (or vice versa). 3700 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType()); 3701 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 3702 // Use the new condition code and swap true and false 3703 Legalized = true; 3704 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3705 Tmp1->setFlags(Node->getFlags()); 3706 } else { 3707 // If The inverse is not legal, then try to swap the arguments using 3708 // the inverse condition code. 3709 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3710 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 3711 // The swapped inverse condition is legal, so swap true and false, 3712 // lhs and rhs. 3713 Legalized = true; 3714 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3715 Tmp1->setFlags(Node->getFlags()); 3716 } 3717 } 3718 3719 if (!Legalized) { 3720 Legalized = TLI.LegalizeSetCCCondCode( 3721 DAG, getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, 3722 /*Mask*/ SDValue(), /*EVL*/ SDValue(), NeedInvert, dl, Chain); 3723 3724 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3725 3726 // If we expanded the SETCC by inverting the condition code, then swap 3727 // the True/False operands to match. 3728 if (NeedInvert) 3729 std::swap(Tmp3, Tmp4); 3730 3731 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3732 // condition code, create a new SELECT_CC node. 3733 if (CC.getNode()) { 3734 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3735 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3736 } else { 3737 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3738 CC = DAG.getCondCode(ISD::SETNE); 3739 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3740 Tmp2, Tmp3, Tmp4, CC); 3741 } 3742 Tmp1->setFlags(Node->getFlags()); 3743 } 3744 Results.push_back(Tmp1); 3745 break; 3746 } 3747 case ISD::BR_CC: { 3748 // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS 3749 SDValue Chain; 3750 Tmp1 = Node->getOperand(0); // Chain 3751 Tmp2 = Node->getOperand(2); // LHS 3752 Tmp3 = Node->getOperand(3); // RHS 3753 Tmp4 = Node->getOperand(1); // CC 3754 3755 bool Legalized = TLI.LegalizeSetCCCondCode( 3756 DAG, getSetCCResultType(Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, 3757 /*Mask*/ SDValue(), /*EVL*/ SDValue(), NeedInvert, dl, Chain); 3758 (void)Legalized; 3759 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3760 3761 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3762 // node. 3763 if (Tmp4.getNode()) { 3764 assert(!NeedInvert && "Don't know how to invert BR_CC!"); 3765 3766 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3767 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3768 } else { 3769 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3770 Tmp4 = DAG.getCondCode(NeedInvert ? ISD::SETEQ : ISD::SETNE); 3771 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3772 Tmp2, Tmp3, Node->getOperand(4)); 3773 } 3774 Results.push_back(Tmp1); 3775 break; 3776 } 3777 case ISD::BUILD_VECTOR: 3778 Results.push_back(ExpandBUILD_VECTOR(Node)); 3779 break; 3780 case ISD::SPLAT_VECTOR: 3781 Results.push_back(ExpandSPLAT_VECTOR(Node)); 3782 break; 3783 case ISD::SRA: 3784 case ISD::SRL: 3785 case ISD::SHL: { 3786 // Scalarize vector SRA/SRL/SHL. 3787 EVT VT = Node->getValueType(0); 3788 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3789 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3790 unsigned NumElem = VT.getVectorNumElements(); 3791 3792 SmallVector<SDValue, 8> Scalars; 3793 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3794 SDValue Ex = 3795 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3796 Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl)); 3797 SDValue Sh = 3798 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3799 Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl)); 3800 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3801 VT.getScalarType(), Ex, Sh)); 3802 } 3803 3804 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 3805 Results.push_back(Result); 3806 break; 3807 } 3808 case ISD::VECREDUCE_FADD: 3809 case ISD::VECREDUCE_FMUL: 3810 case ISD::VECREDUCE_ADD: 3811 case ISD::VECREDUCE_MUL: 3812 case ISD::VECREDUCE_AND: 3813 case ISD::VECREDUCE_OR: 3814 case ISD::VECREDUCE_XOR: 3815 case ISD::VECREDUCE_SMAX: 3816 case ISD::VECREDUCE_SMIN: 3817 case ISD::VECREDUCE_UMAX: 3818 case ISD::VECREDUCE_UMIN: 3819 case ISD::VECREDUCE_FMAX: 3820 case ISD::VECREDUCE_FMIN: 3821 Results.push_back(TLI.expandVecReduce(Node, DAG)); 3822 break; 3823 case ISD::GLOBAL_OFFSET_TABLE: 3824 case ISD::GlobalAddress: 3825 case ISD::GlobalTLSAddress: 3826 case ISD::ExternalSymbol: 3827 case ISD::ConstantPool: 3828 case ISD::JumpTable: 3829 case ISD::INTRINSIC_W_CHAIN: 3830 case ISD::INTRINSIC_WO_CHAIN: 3831 case ISD::INTRINSIC_VOID: 3832 // FIXME: Custom lowering for these operations shouldn't return null! 3833 // Return true so that we don't call ConvertNodeToLibcall which also won't 3834 // do anything. 3835 return true; 3836 } 3837 3838 if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) { 3839 // FIXME: We were asked to expand a strict floating-point operation, 3840 // but there is currently no expansion implemented that would preserve 3841 // the "strict" properties. For now, we just fall back to the non-strict 3842 // version if that is legal on the target. The actual mutation of the 3843 // operation will happen in SelectionDAGISel::DoInstructionSelection. 3844 switch (Node->getOpcode()) { 3845 default: 3846 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3847 Node->getValueType(0)) 3848 == TargetLowering::Legal) 3849 return true; 3850 break; 3851 case ISD::STRICT_FSUB: { 3852 if (TLI.getStrictFPOperationAction( 3853 ISD::STRICT_FSUB, Node->getValueType(0)) == TargetLowering::Legal) 3854 return true; 3855 if (TLI.getStrictFPOperationAction( 3856 ISD::STRICT_FADD, Node->getValueType(0)) != TargetLowering::Legal) 3857 break; 3858 3859 EVT VT = Node->getValueType(0); 3860 const SDNodeFlags Flags = Node->getFlags(); 3861 SDValue Neg = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(2), Flags); 3862 SDValue Fadd = DAG.getNode(ISD::STRICT_FADD, dl, Node->getVTList(), 3863 {Node->getOperand(0), Node->getOperand(1), Neg}, 3864 Flags); 3865 3866 Results.push_back(Fadd); 3867 Results.push_back(Fadd.getValue(1)); 3868 break; 3869 } 3870 case ISD::STRICT_SINT_TO_FP: 3871 case ISD::STRICT_UINT_TO_FP: 3872 case ISD::STRICT_LRINT: 3873 case ISD::STRICT_LLRINT: 3874 case ISD::STRICT_LROUND: 3875 case ISD::STRICT_LLROUND: 3876 // These are registered by the operand type instead of the value 3877 // type. Reflect that here. 3878 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3879 Node->getOperand(1).getValueType()) 3880 == TargetLowering::Legal) 3881 return true; 3882 break; 3883 } 3884 } 3885 3886 // Replace the original node with the legalized result. 3887 if (Results.empty()) { 3888 LLVM_DEBUG(dbgs() << "Cannot expand node\n"); 3889 return false; 3890 } 3891 3892 LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); 3893 ReplaceNode(Node, Results.data()); 3894 return true; 3895 } 3896 3897 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 3898 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); 3899 SmallVector<SDValue, 8> Results; 3900 SDLoc dl(Node); 3901 // FIXME: Check flags on the node to see if we can use a finite call. 3902 unsigned Opc = Node->getOpcode(); 3903 switch (Opc) { 3904 case ISD::ATOMIC_FENCE: { 3905 // If the target didn't lower this, lower it to '__sync_synchronize()' call 3906 // FIXME: handle "fence singlethread" more efficiently. 3907 TargetLowering::ArgListTy Args; 3908 3909 TargetLowering::CallLoweringInfo CLI(DAG); 3910 CLI.setDebugLoc(dl) 3911 .setChain(Node->getOperand(0)) 3912 .setLibCallee( 3913 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3914 DAG.getExternalSymbol("__sync_synchronize", 3915 TLI.getPointerTy(DAG.getDataLayout())), 3916 std::move(Args)); 3917 3918 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3919 3920 Results.push_back(CallResult.second); 3921 break; 3922 } 3923 // By default, atomic intrinsics are marked Legal and lowered. Targets 3924 // which don't support them directly, however, may want libcalls, in which 3925 // case they mark them Expand, and we get here. 3926 case ISD::ATOMIC_SWAP: 3927 case ISD::ATOMIC_LOAD_ADD: 3928 case ISD::ATOMIC_LOAD_SUB: 3929 case ISD::ATOMIC_LOAD_AND: 3930 case ISD::ATOMIC_LOAD_CLR: 3931 case ISD::ATOMIC_LOAD_OR: 3932 case ISD::ATOMIC_LOAD_XOR: 3933 case ISD::ATOMIC_LOAD_NAND: 3934 case ISD::ATOMIC_LOAD_MIN: 3935 case ISD::ATOMIC_LOAD_MAX: 3936 case ISD::ATOMIC_LOAD_UMIN: 3937 case ISD::ATOMIC_LOAD_UMAX: 3938 case ISD::ATOMIC_CMP_SWAP: { 3939 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 3940 AtomicOrdering Order = cast<AtomicSDNode>(Node)->getMergedOrdering(); 3941 RTLIB::Libcall LC = RTLIB::getOUTLINE_ATOMIC(Opc, Order, VT); 3942 EVT RetVT = Node->getValueType(0); 3943 TargetLowering::MakeLibCallOptions CallOptions; 3944 SmallVector<SDValue, 4> Ops; 3945 if (TLI.getLibcallName(LC)) { 3946 // If outline atomic available, prepare its arguments and expand. 3947 Ops.append(Node->op_begin() + 2, Node->op_end()); 3948 Ops.push_back(Node->getOperand(1)); 3949 3950 } else { 3951 LC = RTLIB::getSYNC(Opc, VT); 3952 assert(LC != RTLIB::UNKNOWN_LIBCALL && 3953 "Unexpected atomic op or value type!"); 3954 // Arguments for expansion to sync libcall 3955 Ops.append(Node->op_begin() + 1, Node->op_end()); 3956 } 3957 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 3958 Ops, CallOptions, 3959 SDLoc(Node), 3960 Node->getOperand(0)); 3961 Results.push_back(Tmp.first); 3962 Results.push_back(Tmp.second); 3963 break; 3964 } 3965 case ISD::TRAP: { 3966 // If this operation is not supported, lower it to 'abort()' call 3967 TargetLowering::ArgListTy Args; 3968 TargetLowering::CallLoweringInfo CLI(DAG); 3969 CLI.setDebugLoc(dl) 3970 .setChain(Node->getOperand(0)) 3971 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3972 DAG.getExternalSymbol( 3973 "abort", TLI.getPointerTy(DAG.getDataLayout())), 3974 std::move(Args)); 3975 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3976 3977 Results.push_back(CallResult.second); 3978 break; 3979 } 3980 case ISD::FMINNUM: 3981 case ISD::STRICT_FMINNUM: 3982 ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 3983 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 3984 RTLIB::FMIN_PPCF128, Results); 3985 break; 3986 case ISD::FMAXNUM: 3987 case ISD::STRICT_FMAXNUM: 3988 ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 3989 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 3990 RTLIB::FMAX_PPCF128, Results); 3991 break; 3992 case ISD::FSQRT: 3993 case ISD::STRICT_FSQRT: 3994 ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3995 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 3996 RTLIB::SQRT_PPCF128, Results); 3997 break; 3998 case ISD::FCBRT: 3999 ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, 4000 RTLIB::CBRT_F80, RTLIB::CBRT_F128, 4001 RTLIB::CBRT_PPCF128, Results); 4002 break; 4003 case ISD::FSIN: 4004 case ISD::STRICT_FSIN: 4005 ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 4006 RTLIB::SIN_F80, RTLIB::SIN_F128, 4007 RTLIB::SIN_PPCF128, Results); 4008 break; 4009 case ISD::FCOS: 4010 case ISD::STRICT_FCOS: 4011 ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 4012 RTLIB::COS_F80, RTLIB::COS_F128, 4013 RTLIB::COS_PPCF128, Results); 4014 break; 4015 case ISD::FSINCOS: 4016 // Expand into sincos libcall. 4017 ExpandSinCosLibCall(Node, Results); 4018 break; 4019 case ISD::FLOG: 4020 case ISD::STRICT_FLOG: 4021 ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80, 4022 RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results); 4023 break; 4024 case ISD::FLOG2: 4025 case ISD::STRICT_FLOG2: 4026 ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80, 4027 RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results); 4028 break; 4029 case ISD::FLOG10: 4030 case ISD::STRICT_FLOG10: 4031 ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80, 4032 RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results); 4033 break; 4034 case ISD::FEXP: 4035 case ISD::STRICT_FEXP: 4036 ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80, 4037 RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results); 4038 break; 4039 case ISD::FEXP2: 4040 case ISD::STRICT_FEXP2: 4041 ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80, 4042 RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results); 4043 break; 4044 case ISD::FTRUNC: 4045 case ISD::STRICT_FTRUNC: 4046 ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 4047 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 4048 RTLIB::TRUNC_PPCF128, Results); 4049 break; 4050 case ISD::FFLOOR: 4051 case ISD::STRICT_FFLOOR: 4052 ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 4053 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 4054 RTLIB::FLOOR_PPCF128, Results); 4055 break; 4056 case ISD::FCEIL: 4057 case ISD::STRICT_FCEIL: 4058 ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 4059 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 4060 RTLIB::CEIL_PPCF128, Results); 4061 break; 4062 case ISD::FRINT: 4063 case ISD::STRICT_FRINT: 4064 ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 4065 RTLIB::RINT_F80, RTLIB::RINT_F128, 4066 RTLIB::RINT_PPCF128, Results); 4067 break; 4068 case ISD::FNEARBYINT: 4069 case ISD::STRICT_FNEARBYINT: 4070 ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 4071 RTLIB::NEARBYINT_F64, 4072 RTLIB::NEARBYINT_F80, 4073 RTLIB::NEARBYINT_F128, 4074 RTLIB::NEARBYINT_PPCF128, Results); 4075 break; 4076 case ISD::FROUND: 4077 case ISD::STRICT_FROUND: 4078 ExpandFPLibCall(Node, RTLIB::ROUND_F32, 4079 RTLIB::ROUND_F64, 4080 RTLIB::ROUND_F80, 4081 RTLIB::ROUND_F128, 4082 RTLIB::ROUND_PPCF128, Results); 4083 break; 4084 case ISD::FROUNDEVEN: 4085 case ISD::STRICT_FROUNDEVEN: 4086 ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32, 4087 RTLIB::ROUNDEVEN_F64, 4088 RTLIB::ROUNDEVEN_F80, 4089 RTLIB::ROUNDEVEN_F128, 4090 RTLIB::ROUNDEVEN_PPCF128, Results); 4091 break; 4092 case ISD::FPOWI: 4093 case ISD::STRICT_FPOWI: { 4094 RTLIB::Libcall LC = RTLIB::getPOWI(Node->getSimpleValueType(0)); 4095 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fpowi."); 4096 if (!TLI.getLibcallName(LC)) { 4097 // Some targets don't have a powi libcall; use pow instead. 4098 if (Node->isStrictFPOpcode()) { 4099 SDValue Exponent = 4100 DAG.getNode(ISD::STRICT_SINT_TO_FP, SDLoc(Node), 4101 {Node->getValueType(0), Node->getValueType(1)}, 4102 {Node->getOperand(0), Node->getOperand(2)}); 4103 SDValue FPOW = 4104 DAG.getNode(ISD::STRICT_FPOW, SDLoc(Node), 4105 {Node->getValueType(0), Node->getValueType(1)}, 4106 {Exponent.getValue(1), Node->getOperand(1), Exponent}); 4107 Results.push_back(FPOW); 4108 Results.push_back(FPOW.getValue(1)); 4109 } else { 4110 SDValue Exponent = 4111 DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), Node->getValueType(0), 4112 Node->getOperand(1)); 4113 Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node), 4114 Node->getValueType(0), 4115 Node->getOperand(0), Exponent)); 4116 } 4117 break; 4118 } 4119 unsigned Offset = Node->isStrictFPOpcode() ? 1 : 0; 4120 bool ExponentHasSizeOfInt = 4121 DAG.getLibInfo().getIntSize() == 4122 Node->getOperand(1 + Offset).getValueType().getSizeInBits(); 4123 if (!ExponentHasSizeOfInt) { 4124 // If the exponent does not match with sizeof(int) a libcall to 4125 // RTLIB::POWI would use the wrong type for the argument. 4126 DAG.getContext()->emitError("POWI exponent does not match sizeof(int)"); 4127 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 4128 break; 4129 } 4130 ExpandFPLibCall(Node, LC, Results); 4131 break; 4132 } 4133 case ISD::FPOW: 4134 case ISD::STRICT_FPOW: 4135 ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 4136 RTLIB::POW_F128, RTLIB::POW_PPCF128, Results); 4137 break; 4138 case ISD::LROUND: 4139 case ISD::STRICT_LROUND: 4140 ExpandArgFPLibCall(Node, RTLIB::LROUND_F32, 4141 RTLIB::LROUND_F64, RTLIB::LROUND_F80, 4142 RTLIB::LROUND_F128, 4143 RTLIB::LROUND_PPCF128, Results); 4144 break; 4145 case ISD::LLROUND: 4146 case ISD::STRICT_LLROUND: 4147 ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32, 4148 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, 4149 RTLIB::LLROUND_F128, 4150 RTLIB::LLROUND_PPCF128, Results); 4151 break; 4152 case ISD::LRINT: 4153 case ISD::STRICT_LRINT: 4154 ExpandArgFPLibCall(Node, RTLIB::LRINT_F32, 4155 RTLIB::LRINT_F64, RTLIB::LRINT_F80, 4156 RTLIB::LRINT_F128, 4157 RTLIB::LRINT_PPCF128, Results); 4158 break; 4159 case ISD::LLRINT: 4160 case ISD::STRICT_LLRINT: 4161 ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32, 4162 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80, 4163 RTLIB::LLRINT_F128, 4164 RTLIB::LLRINT_PPCF128, Results); 4165 break; 4166 case ISD::FDIV: 4167 case ISD::STRICT_FDIV: 4168 ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 4169 RTLIB::DIV_F80, RTLIB::DIV_F128, 4170 RTLIB::DIV_PPCF128, Results); 4171 break; 4172 case ISD::FREM: 4173 case ISD::STRICT_FREM: 4174 ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 4175 RTLIB::REM_F80, RTLIB::REM_F128, 4176 RTLIB::REM_PPCF128, Results); 4177 break; 4178 case ISD::FMA: 4179 case ISD::STRICT_FMA: 4180 ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 4181 RTLIB::FMA_F80, RTLIB::FMA_F128, 4182 RTLIB::FMA_PPCF128, Results); 4183 break; 4184 case ISD::FADD: 4185 case ISD::STRICT_FADD: 4186 ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 4187 RTLIB::ADD_F80, RTLIB::ADD_F128, 4188 RTLIB::ADD_PPCF128, Results); 4189 break; 4190 case ISD::FMUL: 4191 case ISD::STRICT_FMUL: 4192 ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 4193 RTLIB::MUL_F80, RTLIB::MUL_F128, 4194 RTLIB::MUL_PPCF128, Results); 4195 break; 4196 case ISD::FP16_TO_FP: 4197 if (Node->getValueType(0) == MVT::f32) { 4198 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 4199 } 4200 break; 4201 case ISD::STRICT_FP16_TO_FP: { 4202 if (Node->getValueType(0) == MVT::f32) { 4203 TargetLowering::MakeLibCallOptions CallOptions; 4204 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall( 4205 DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions, 4206 SDLoc(Node), Node->getOperand(0)); 4207 Results.push_back(Tmp.first); 4208 Results.push_back(Tmp.second); 4209 } 4210 break; 4211 } 4212 case ISD::FP_TO_FP16: { 4213 RTLIB::Libcall LC = 4214 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 4215 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 4216 Results.push_back(ExpandLibCall(LC, Node, false)); 4217 break; 4218 } 4219 case ISD::STRICT_SINT_TO_FP: 4220 case ISD::STRICT_UINT_TO_FP: 4221 case ISD::SINT_TO_FP: 4222 case ISD::UINT_TO_FP: { 4223 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP 4224 bool IsStrict = Node->isStrictFPOpcode(); 4225 bool Signed = Node->getOpcode() == ISD::SINT_TO_FP || 4226 Node->getOpcode() == ISD::STRICT_SINT_TO_FP; 4227 EVT SVT = Node->getOperand(IsStrict ? 1 : 0).getValueType(); 4228 EVT RVT = Node->getValueType(0); 4229 EVT NVT = EVT(); 4230 SDLoc dl(Node); 4231 4232 // Even if the input is legal, no libcall may exactly match, eg. we don't 4233 // have i1 -> fp conversions. So, it needs to be promoted to a larger type, 4234 // eg: i13 -> fp. Then, look for an appropriate libcall. 4235 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 4236 for (unsigned t = MVT::FIRST_INTEGER_VALUETYPE; 4237 t <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; 4238 ++t) { 4239 NVT = (MVT::SimpleValueType)t; 4240 // The source needs to big enough to hold the operand. 4241 if (NVT.bitsGE(SVT)) 4242 LC = Signed ? RTLIB::getSINTTOFP(NVT, RVT) 4243 : RTLIB::getUINTTOFP(NVT, RVT); 4244 } 4245 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4246 4247 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4248 // Sign/zero extend the argument if the libcall takes a larger type. 4249 SDValue Op = DAG.getNode(Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl, 4250 NVT, Node->getOperand(IsStrict ? 1 : 0)); 4251 TargetLowering::MakeLibCallOptions CallOptions; 4252 CallOptions.setSExt(Signed); 4253 std::pair<SDValue, SDValue> Tmp = 4254 TLI.makeLibCall(DAG, LC, RVT, Op, CallOptions, dl, Chain); 4255 Results.push_back(Tmp.first); 4256 if (IsStrict) 4257 Results.push_back(Tmp.second); 4258 break; 4259 } 4260 case ISD::FP_TO_SINT: 4261 case ISD::FP_TO_UINT: 4262 case ISD::STRICT_FP_TO_SINT: 4263 case ISD::STRICT_FP_TO_UINT: { 4264 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatOp_FP_TO_XINT. 4265 bool IsStrict = Node->isStrictFPOpcode(); 4266 bool Signed = Node->getOpcode() == ISD::FP_TO_SINT || 4267 Node->getOpcode() == ISD::STRICT_FP_TO_SINT; 4268 4269 SDValue Op = Node->getOperand(IsStrict ? 1 : 0); 4270 EVT SVT = Op.getValueType(); 4271 EVT RVT = Node->getValueType(0); 4272 EVT NVT = EVT(); 4273 SDLoc dl(Node); 4274 4275 // Even if the result is legal, no libcall may exactly match, eg. we don't 4276 // have fp -> i1 conversions. So, it needs to be promoted to a larger type, 4277 // eg: fp -> i32. Then, look for an appropriate libcall. 4278 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 4279 for (unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE; 4280 IntVT <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; 4281 ++IntVT) { 4282 NVT = (MVT::SimpleValueType)IntVT; 4283 // The type needs to big enough to hold the result. 4284 if (NVT.bitsGE(RVT)) 4285 LC = Signed ? RTLIB::getFPTOSINT(SVT, NVT) 4286 : RTLIB::getFPTOUINT(SVT, NVT); 4287 } 4288 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4289 4290 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4291 TargetLowering::MakeLibCallOptions CallOptions; 4292 std::pair<SDValue, SDValue> Tmp = 4293 TLI.makeLibCall(DAG, LC, NVT, Op, CallOptions, dl, Chain); 4294 4295 // Truncate the result if the libcall returns a larger type. 4296 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, RVT, Tmp.first)); 4297 if (IsStrict) 4298 Results.push_back(Tmp.second); 4299 break; 4300 } 4301 4302 case ISD::FP_ROUND: 4303 case ISD::STRICT_FP_ROUND: { 4304 // X = FP_ROUND(Y, TRUNC) 4305 // TRUNC is a flag, which is always an integer that is zero or one. 4306 // If TRUNC is 0, this is a normal rounding, if it is 1, this FP_ROUND 4307 // is known to not change the value of Y. 4308 // We can only expand it into libcall if the TRUNC is 0. 4309 bool IsStrict = Node->isStrictFPOpcode(); 4310 SDValue Op = Node->getOperand(IsStrict ? 1 : 0); 4311 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4312 EVT VT = Node->getValueType(0); 4313 assert(cast<ConstantSDNode>(Node->getOperand(IsStrict ? 2 : 1))->isZero() && 4314 "Unable to expand as libcall if it is not normal rounding"); 4315 4316 RTLIB::Libcall LC = RTLIB::getFPROUND(Op.getValueType(), VT); 4317 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4318 4319 TargetLowering::MakeLibCallOptions CallOptions; 4320 std::pair<SDValue, SDValue> Tmp = 4321 TLI.makeLibCall(DAG, LC, VT, Op, CallOptions, SDLoc(Node), Chain); 4322 Results.push_back(Tmp.first); 4323 if (IsStrict) 4324 Results.push_back(Tmp.second); 4325 break; 4326 } 4327 case ISD::FP_EXTEND: { 4328 Results.push_back( 4329 ExpandLibCall(RTLIB::getFPEXT(Node->getOperand(0).getValueType(), 4330 Node->getValueType(0)), 4331 Node, false)); 4332 break; 4333 } 4334 case ISD::STRICT_FP_EXTEND: 4335 case ISD::STRICT_FP_TO_FP16: { 4336 RTLIB::Libcall LC = 4337 Node->getOpcode() == ISD::STRICT_FP_TO_FP16 4338 ? RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16) 4339 : RTLIB::getFPEXT(Node->getOperand(1).getValueType(), 4340 Node->getValueType(0)); 4341 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4342 4343 TargetLowering::MakeLibCallOptions CallOptions; 4344 std::pair<SDValue, SDValue> Tmp = 4345 TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1), 4346 CallOptions, SDLoc(Node), Node->getOperand(0)); 4347 Results.push_back(Tmp.first); 4348 Results.push_back(Tmp.second); 4349 break; 4350 } 4351 case ISD::FSUB: 4352 case ISD::STRICT_FSUB: 4353 ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4354 RTLIB::SUB_F80, RTLIB::SUB_F128, 4355 RTLIB::SUB_PPCF128, Results); 4356 break; 4357 case ISD::SREM: 4358 Results.push_back(ExpandIntLibCall( 4359 Node, true, RTLIB::SREM_I8, RTLIB::SREM_I16, RTLIB::SREM_I32, 4360 RTLIB::SREM_I64, RTLIB::SREM_I128, RTLIB::SREM_IEXT)); 4361 break; 4362 case ISD::UREM: 4363 Results.push_back(ExpandIntLibCall( 4364 Node, false, RTLIB::UREM_I8, RTLIB::UREM_I16, RTLIB::UREM_I32, 4365 RTLIB::UREM_I64, RTLIB::UREM_I128, RTLIB::UREM_IEXT)); 4366 break; 4367 case ISD::SDIV: 4368 Results.push_back(ExpandIntLibCall( 4369 Node, true, RTLIB::SDIV_I8, RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4370 RTLIB::SDIV_I64, RTLIB::SDIV_I128, RTLIB::SDIV_IEXT)); 4371 break; 4372 case ISD::UDIV: 4373 Results.push_back(ExpandIntLibCall( 4374 Node, false, RTLIB::UDIV_I8, RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4375 RTLIB::UDIV_I64, RTLIB::UDIV_I128, RTLIB::UDIV_IEXT)); 4376 break; 4377 case ISD::SDIVREM: 4378 case ISD::UDIVREM: 4379 // Expand into divrem libcall 4380 ExpandDivRemLibCall(Node, Results); 4381 break; 4382 case ISD::MUL: 4383 Results.push_back(ExpandIntLibCall( 4384 Node, false, RTLIB::MUL_I8, RTLIB::MUL_I16, RTLIB::MUL_I32, 4385 RTLIB::MUL_I64, RTLIB::MUL_I128, RTLIB::MUL_IEXT)); 4386 break; 4387 case ISD::CTLZ_ZERO_UNDEF: 4388 switch (Node->getSimpleValueType(0).SimpleTy) { 4389 default: 4390 llvm_unreachable("LibCall explicitly requested, but not available"); 4391 case MVT::i32: 4392 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false)); 4393 break; 4394 case MVT::i64: 4395 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false)); 4396 break; 4397 case MVT::i128: 4398 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false)); 4399 break; 4400 } 4401 break; 4402 } 4403 4404 // Replace the original node with the legalized result. 4405 if (!Results.empty()) { 4406 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); 4407 ReplaceNode(Node, Results.data()); 4408 } else 4409 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); 4410 } 4411 4412 // Determine the vector type to use in place of an original scalar element when 4413 // promoting equally sized vectors. 4414 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4415 MVT EltVT, MVT NewEltVT) { 4416 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4417 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4418 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4419 return MidVT; 4420 } 4421 4422 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4423 LLVM_DEBUG(dbgs() << "Trying to promote node\n"); 4424 SmallVector<SDValue, 8> Results; 4425 MVT OVT = Node->getSimpleValueType(0); 4426 if (Node->getOpcode() == ISD::UINT_TO_FP || 4427 Node->getOpcode() == ISD::SINT_TO_FP || 4428 Node->getOpcode() == ISD::SETCC || 4429 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4430 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4431 OVT = Node->getOperand(0).getSimpleValueType(); 4432 } 4433 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP || 4434 Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 4435 Node->getOpcode() == ISD::STRICT_FSETCC || 4436 Node->getOpcode() == ISD::STRICT_FSETCCS) 4437 OVT = Node->getOperand(1).getSimpleValueType(); 4438 if (Node->getOpcode() == ISD::BR_CC || 4439 Node->getOpcode() == ISD::SELECT_CC) 4440 OVT = Node->getOperand(2).getSimpleValueType(); 4441 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4442 SDLoc dl(Node); 4443 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 4444 switch (Node->getOpcode()) { 4445 case ISD::CTTZ: 4446 case ISD::CTTZ_ZERO_UNDEF: 4447 case ISD::CTLZ: 4448 case ISD::CTLZ_ZERO_UNDEF: 4449 case ISD::CTPOP: 4450 // Zero extend the argument unless its cttz, then use any_extend. 4451 if (Node->getOpcode() == ISD::CTTZ || 4452 Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 4453 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 4454 else 4455 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4456 4457 if (Node->getOpcode() == ISD::CTTZ) { 4458 // The count is the same in the promoted type except if the original 4459 // value was zero. This can be handled by setting the bit just off 4460 // the top of the original type. 4461 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4462 OVT.getSizeInBits()); 4463 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4464 DAG.getConstant(TopBit, dl, NVT)); 4465 } 4466 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4467 // already the correct result. 4468 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4469 if (Node->getOpcode() == ISD::CTLZ || 4470 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4471 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4472 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4473 DAG.getConstant(NVT.getSizeInBits() - 4474 OVT.getSizeInBits(), dl, NVT)); 4475 } 4476 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4477 break; 4478 case ISD::BITREVERSE: 4479 case ISD::BSWAP: { 4480 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4481 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4482 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4483 Tmp1 = DAG.getNode( 4484 ISD::SRL, dl, NVT, Tmp1, 4485 DAG.getConstant(DiffBits, dl, 4486 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4487 4488 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4489 break; 4490 } 4491 case ISD::FP_TO_UINT: 4492 case ISD::STRICT_FP_TO_UINT: 4493 case ISD::FP_TO_SINT: 4494 case ISD::STRICT_FP_TO_SINT: 4495 PromoteLegalFP_TO_INT(Node, dl, Results); 4496 break; 4497 case ISD::FP_TO_UINT_SAT: 4498 case ISD::FP_TO_SINT_SAT: 4499 Results.push_back(PromoteLegalFP_TO_INT_SAT(Node, dl)); 4500 break; 4501 case ISD::UINT_TO_FP: 4502 case ISD::STRICT_UINT_TO_FP: 4503 case ISD::SINT_TO_FP: 4504 case ISD::STRICT_SINT_TO_FP: 4505 PromoteLegalINT_TO_FP(Node, dl, Results); 4506 break; 4507 case ISD::VAARG: { 4508 SDValue Chain = Node->getOperand(0); // Get the chain. 4509 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4510 4511 unsigned TruncOp; 4512 if (OVT.isVector()) { 4513 TruncOp = ISD::BITCAST; 4514 } else { 4515 assert(OVT.isInteger() 4516 && "VAARG promotion is supported only for vectors or integer types"); 4517 TruncOp = ISD::TRUNCATE; 4518 } 4519 4520 // Perform the larger operation, then convert back 4521 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4522 Node->getConstantOperandVal(3)); 4523 Chain = Tmp1.getValue(1); 4524 4525 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4526 4527 // Modified the chain result - switch anything that used the old chain to 4528 // use the new one. 4529 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4530 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4531 if (UpdatedNodes) { 4532 UpdatedNodes->insert(Tmp2.getNode()); 4533 UpdatedNodes->insert(Chain.getNode()); 4534 } 4535 ReplacedNode(Node); 4536 break; 4537 } 4538 case ISD::MUL: 4539 case ISD::SDIV: 4540 case ISD::SREM: 4541 case ISD::UDIV: 4542 case ISD::UREM: 4543 case ISD::AND: 4544 case ISD::OR: 4545 case ISD::XOR: { 4546 unsigned ExtOp, TruncOp; 4547 if (OVT.isVector()) { 4548 ExtOp = ISD::BITCAST; 4549 TruncOp = ISD::BITCAST; 4550 } else { 4551 assert(OVT.isInteger() && "Cannot promote logic operation"); 4552 4553 switch (Node->getOpcode()) { 4554 default: 4555 ExtOp = ISD::ANY_EXTEND; 4556 break; 4557 case ISD::SDIV: 4558 case ISD::SREM: 4559 ExtOp = ISD::SIGN_EXTEND; 4560 break; 4561 case ISD::UDIV: 4562 case ISD::UREM: 4563 ExtOp = ISD::ZERO_EXTEND; 4564 break; 4565 } 4566 TruncOp = ISD::TRUNCATE; 4567 } 4568 // Promote each of the values to the new type. 4569 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4570 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4571 // Perform the larger operation, then convert back 4572 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4573 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4574 break; 4575 } 4576 case ISD::UMUL_LOHI: 4577 case ISD::SMUL_LOHI: { 4578 // Promote to a multiply in a wider integer type. 4579 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 4580 : ISD::SIGN_EXTEND; 4581 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4582 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4583 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 4584 4585 auto &DL = DAG.getDataLayout(); 4586 unsigned OriginalSize = OVT.getScalarSizeInBits(); 4587 Tmp2 = DAG.getNode( 4588 ISD::SRL, dl, NVT, Tmp1, 4589 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 4590 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4591 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 4592 break; 4593 } 4594 case ISD::SELECT: { 4595 unsigned ExtOp, TruncOp; 4596 if (Node->getValueType(0).isVector() || 4597 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4598 ExtOp = ISD::BITCAST; 4599 TruncOp = ISD::BITCAST; 4600 } else if (Node->getValueType(0).isInteger()) { 4601 ExtOp = ISD::ANY_EXTEND; 4602 TruncOp = ISD::TRUNCATE; 4603 } else { 4604 ExtOp = ISD::FP_EXTEND; 4605 TruncOp = ISD::FP_ROUND; 4606 } 4607 Tmp1 = Node->getOperand(0); 4608 // Promote each of the values to the new type. 4609 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4610 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4611 // Perform the larger operation, then round down. 4612 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4613 Tmp1->setFlags(Node->getFlags()); 4614 if (TruncOp != ISD::FP_ROUND) 4615 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4616 else 4617 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4618 DAG.getIntPtrConstant(0, dl)); 4619 Results.push_back(Tmp1); 4620 break; 4621 } 4622 case ISD::VECTOR_SHUFFLE: { 4623 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4624 4625 // Cast the two input vectors. 4626 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4627 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4628 4629 // Convert the shuffle mask to the right # elements. 4630 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4631 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4632 Results.push_back(Tmp1); 4633 break; 4634 } 4635 case ISD::VECTOR_SPLICE: { 4636 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 4637 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(1)); 4638 Tmp3 = DAG.getNode(ISD::VECTOR_SPLICE, dl, NVT, Tmp1, Tmp2, 4639 Node->getOperand(2)); 4640 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp3)); 4641 break; 4642 } 4643 case ISD::SELECT_CC: { 4644 SDValue Cond = Node->getOperand(4); 4645 ISD::CondCode CCCode = cast<CondCodeSDNode>(Cond)->get(); 4646 // Type of the comparison operands. 4647 MVT CVT = Node->getSimpleValueType(0); 4648 assert(CVT == OVT && "not handled"); 4649 4650 unsigned ExtOp = ISD::FP_EXTEND; 4651 if (NVT.isInteger()) { 4652 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4653 } 4654 4655 // Promote the comparison operands, if needed. 4656 if (TLI.isCondCodeLegal(CCCode, CVT)) { 4657 Tmp1 = Node->getOperand(0); 4658 Tmp2 = Node->getOperand(1); 4659 } else { 4660 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4661 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4662 } 4663 // Cast the true/false operands. 4664 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4665 Tmp4 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4666 4667 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, NVT, {Tmp1, Tmp2, Tmp3, Tmp4, Cond}, 4668 Node->getFlags()); 4669 4670 // Cast the result back to the original type. 4671 if (ExtOp != ISD::FP_EXTEND) 4672 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1); 4673 else 4674 Tmp1 = DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp1, 4675 DAG.getIntPtrConstant(0, dl)); 4676 4677 Results.push_back(Tmp1); 4678 break; 4679 } 4680 case ISD::SETCC: 4681 case ISD::STRICT_FSETCC: 4682 case ISD::STRICT_FSETCCS: { 4683 unsigned ExtOp = ISD::FP_EXTEND; 4684 if (NVT.isInteger()) { 4685 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4686 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4687 } 4688 if (Node->isStrictFPOpcode()) { 4689 SDValue InChain = Node->getOperand(0); 4690 std::tie(Tmp1, std::ignore) = 4691 DAG.getStrictFPExtendOrRound(Node->getOperand(1), InChain, dl, NVT); 4692 std::tie(Tmp2, std::ignore) = 4693 DAG.getStrictFPExtendOrRound(Node->getOperand(2), InChain, dl, NVT); 4694 SmallVector<SDValue, 2> TmpChains = {Tmp1.getValue(1), Tmp2.getValue(1)}; 4695 SDValue OutChain = DAG.getTokenFactor(dl, TmpChains); 4696 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 4697 Results.push_back(DAG.getNode(Node->getOpcode(), dl, VTs, 4698 {OutChain, Tmp1, Tmp2, Node->getOperand(3)}, 4699 Node->getFlags())); 4700 Results.push_back(Results.back().getValue(1)); 4701 break; 4702 } 4703 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4704 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4705 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, 4706 Tmp2, Node->getOperand(2), Node->getFlags())); 4707 break; 4708 } 4709 case ISD::BR_CC: { 4710 unsigned ExtOp = ISD::FP_EXTEND; 4711 if (NVT.isInteger()) { 4712 ISD::CondCode CCCode = 4713 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4714 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4715 } 4716 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4717 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4718 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4719 Node->getOperand(0), Node->getOperand(1), 4720 Tmp1, Tmp2, Node->getOperand(4))); 4721 break; 4722 } 4723 case ISD::FADD: 4724 case ISD::FSUB: 4725 case ISD::FMUL: 4726 case ISD::FDIV: 4727 case ISD::FREM: 4728 case ISD::FMINNUM: 4729 case ISD::FMAXNUM: 4730 case ISD::FPOW: 4731 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4732 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4733 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4734 Node->getFlags()); 4735 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4736 Tmp3, DAG.getIntPtrConstant(0, dl))); 4737 break; 4738 case ISD::STRICT_FADD: 4739 case ISD::STRICT_FSUB: 4740 case ISD::STRICT_FMUL: 4741 case ISD::STRICT_FDIV: 4742 case ISD::STRICT_FMINNUM: 4743 case ISD::STRICT_FMAXNUM: 4744 case ISD::STRICT_FREM: 4745 case ISD::STRICT_FPOW: 4746 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4747 {Node->getOperand(0), Node->getOperand(1)}); 4748 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4749 {Node->getOperand(0), Node->getOperand(2)}); 4750 Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 4751 Tmp2.getValue(1)); 4752 Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4753 {Tmp3, Tmp1, Tmp2}); 4754 Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4755 {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)}); 4756 Results.push_back(Tmp1); 4757 Results.push_back(Tmp1.getValue(1)); 4758 break; 4759 case ISD::FMA: 4760 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4761 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4762 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4763 Results.push_back( 4764 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4765 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4766 DAG.getIntPtrConstant(0, dl))); 4767 break; 4768 case ISD::STRICT_FMA: 4769 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4770 {Node->getOperand(0), Node->getOperand(1)}); 4771 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4772 {Node->getOperand(0), Node->getOperand(2)}); 4773 Tmp3 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4774 {Node->getOperand(0), Node->getOperand(3)}); 4775 Tmp4 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 4776 Tmp2.getValue(1), Tmp3.getValue(1)); 4777 Tmp4 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4778 {Tmp4, Tmp1, Tmp2, Tmp3}); 4779 Tmp4 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4780 {Tmp4.getValue(1), Tmp4, DAG.getIntPtrConstant(0, dl)}); 4781 Results.push_back(Tmp4); 4782 Results.push_back(Tmp4.getValue(1)); 4783 break; 4784 case ISD::FCOPYSIGN: 4785 case ISD::FPOWI: { 4786 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4787 Tmp2 = Node->getOperand(1); 4788 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4789 4790 // fcopysign doesn't change anything but the sign bit, so 4791 // (fp_round (fcopysign (fpext a), b)) 4792 // is as precise as 4793 // (fp_round (fpext a)) 4794 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4795 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4796 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4797 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4798 break; 4799 } 4800 case ISD::STRICT_FPOWI: 4801 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4802 {Node->getOperand(0), Node->getOperand(1)}); 4803 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4804 {Tmp1.getValue(1), Tmp1, Node->getOperand(2)}); 4805 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4806 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 4807 Results.push_back(Tmp3); 4808 Results.push_back(Tmp3.getValue(1)); 4809 break; 4810 case ISD::FFLOOR: 4811 case ISD::FCEIL: 4812 case ISD::FRINT: 4813 case ISD::FNEARBYINT: 4814 case ISD::FROUND: 4815 case ISD::FROUNDEVEN: 4816 case ISD::FTRUNC: 4817 case ISD::FNEG: 4818 case ISD::FSQRT: 4819 case ISD::FSIN: 4820 case ISD::FCOS: 4821 case ISD::FLOG: 4822 case ISD::FLOG2: 4823 case ISD::FLOG10: 4824 case ISD::FABS: 4825 case ISD::FEXP: 4826 case ISD::FEXP2: 4827 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4828 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4829 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4830 Tmp2, DAG.getIntPtrConstant(0, dl))); 4831 break; 4832 case ISD::STRICT_FFLOOR: 4833 case ISD::STRICT_FCEIL: 4834 case ISD::STRICT_FRINT: 4835 case ISD::STRICT_FNEARBYINT: 4836 case ISD::STRICT_FROUND: 4837 case ISD::STRICT_FROUNDEVEN: 4838 case ISD::STRICT_FTRUNC: 4839 case ISD::STRICT_FSQRT: 4840 case ISD::STRICT_FSIN: 4841 case ISD::STRICT_FCOS: 4842 case ISD::STRICT_FLOG: 4843 case ISD::STRICT_FLOG2: 4844 case ISD::STRICT_FLOG10: 4845 case ISD::STRICT_FEXP: 4846 case ISD::STRICT_FEXP2: 4847 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4848 {Node->getOperand(0), Node->getOperand(1)}); 4849 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4850 {Tmp1.getValue(1), Tmp1}); 4851 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4852 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 4853 Results.push_back(Tmp3); 4854 Results.push_back(Tmp3.getValue(1)); 4855 break; 4856 case ISD::BUILD_VECTOR: { 4857 MVT EltVT = OVT.getVectorElementType(); 4858 MVT NewEltVT = NVT.getVectorElementType(); 4859 4860 // Handle bitcasts to a different vector type with the same total bit size 4861 // 4862 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4863 // => 4864 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4865 4866 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4867 "Invalid promote type for build_vector"); 4868 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4869 4870 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4871 4872 SmallVector<SDValue, 8> NewOps; 4873 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4874 SDValue Op = Node->getOperand(I); 4875 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4876 } 4877 4878 SDLoc SL(Node); 4879 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4880 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4881 Results.push_back(CvtVec); 4882 break; 4883 } 4884 case ISD::EXTRACT_VECTOR_ELT: { 4885 MVT EltVT = OVT.getVectorElementType(); 4886 MVT NewEltVT = NVT.getVectorElementType(); 4887 4888 // Handle bitcasts to a different vector type with the same total bit size. 4889 // 4890 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4891 // => 4892 // v4i32:castx = bitcast x:v2i64 4893 // 4894 // i64 = bitcast 4895 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4896 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4897 // 4898 4899 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4900 "Invalid promote type for extract_vector_elt"); 4901 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4902 4903 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4904 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4905 4906 SDValue Idx = Node->getOperand(1); 4907 EVT IdxVT = Idx.getValueType(); 4908 SDLoc SL(Node); 4909 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4910 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4911 4912 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4913 4914 SmallVector<SDValue, 8> NewOps; 4915 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4916 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4917 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4918 4919 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4920 CastVec, TmpIdx); 4921 NewOps.push_back(Elt); 4922 } 4923 4924 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 4925 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4926 break; 4927 } 4928 case ISD::INSERT_VECTOR_ELT: { 4929 MVT EltVT = OVT.getVectorElementType(); 4930 MVT NewEltVT = NVT.getVectorElementType(); 4931 4932 // Handle bitcasts to a different vector type with the same total bit size 4933 // 4934 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4935 // => 4936 // v4i32:castx = bitcast x:v2i64 4937 // v2i32:casty = bitcast y:i64 4938 // 4939 // v2i64 = bitcast 4940 // (v4i32 insert_vector_elt 4941 // (v4i32 insert_vector_elt v4i32:castx, 4942 // (extract_vector_elt casty, 0), 2 * z), 4943 // (extract_vector_elt casty, 1), (2 * z + 1)) 4944 4945 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4946 "Invalid promote type for insert_vector_elt"); 4947 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4948 4949 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4950 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4951 4952 SDValue Val = Node->getOperand(1); 4953 SDValue Idx = Node->getOperand(2); 4954 EVT IdxVT = Idx.getValueType(); 4955 SDLoc SL(Node); 4956 4957 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 4958 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4959 4960 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4961 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4962 4963 SDValue NewVec = CastVec; 4964 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4965 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4966 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4967 4968 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4969 CastVal, IdxOffset); 4970 4971 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 4972 NewVec, Elt, InEltIdx); 4973 } 4974 4975 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 4976 break; 4977 } 4978 case ISD::SCALAR_TO_VECTOR: { 4979 MVT EltVT = OVT.getVectorElementType(); 4980 MVT NewEltVT = NVT.getVectorElementType(); 4981 4982 // Handle bitcasts to different vector type with the same total bit size. 4983 // 4984 // e.g. v2i64 = scalar_to_vector x:i64 4985 // => 4986 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 4987 // 4988 4989 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4990 SDValue Val = Node->getOperand(0); 4991 SDLoc SL(Node); 4992 4993 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4994 SDValue Undef = DAG.getUNDEF(MidVT); 4995 4996 SmallVector<SDValue, 8> NewElts; 4997 NewElts.push_back(CastVal); 4998 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 4999 NewElts.push_back(Undef); 5000 5001 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 5002 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 5003 Results.push_back(CvtVec); 5004 break; 5005 } 5006 case ISD::ATOMIC_SWAP: { 5007 AtomicSDNode *AM = cast<AtomicSDNode>(Node); 5008 SDLoc SL(Node); 5009 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal()); 5010 assert(NVT.getSizeInBits() == OVT.getSizeInBits() && 5011 "unexpected promotion type"); 5012 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && 5013 "unexpected atomic_swap with illegal type"); 5014 5015 SDValue NewAtomic 5016 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT, 5017 DAG.getVTList(NVT, MVT::Other), 5018 { AM->getChain(), AM->getBasePtr(), CastVal }, 5019 AM->getMemOperand()); 5020 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); 5021 Results.push_back(NewAtomic.getValue(1)); 5022 break; 5023 } 5024 } 5025 5026 // Replace the original node with the legalized result. 5027 if (!Results.empty()) { 5028 LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); 5029 ReplaceNode(Node, Results.data()); 5030 } else 5031 LLVM_DEBUG(dbgs() << "Could not promote node\n"); 5032 } 5033 5034 /// This is the entry point for the file. 5035 void SelectionDAG::Legalize() { 5036 AssignTopologicalOrder(); 5037 5038 SmallPtrSet<SDNode *, 16> LegalizedNodes; 5039 // Use a delete listener to remove nodes which were deleted during 5040 // legalization from LegalizeNodes. This is needed to handle the situation 5041 // where a new node is allocated by the object pool to the same address of a 5042 // previously deleted node. 5043 DAGNodeDeletedListener DeleteListener( 5044 *this, 5045 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 5046 5047 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 5048 5049 // Visit all the nodes. We start in topological order, so that we see 5050 // nodes with their original operands intact. Legalization can produce 5051 // new nodes which may themselves need to be legalized. Iterate until all 5052 // nodes have been legalized. 5053 while (true) { 5054 bool AnyLegalized = false; 5055 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 5056 --NI; 5057 5058 SDNode *N = &*NI; 5059 if (N->use_empty() && N != getRoot().getNode()) { 5060 ++NI; 5061 DeleteNode(N); 5062 continue; 5063 } 5064 5065 if (LegalizedNodes.insert(N).second) { 5066 AnyLegalized = true; 5067 Legalizer.LegalizeOp(N); 5068 5069 if (N->use_empty() && N != getRoot().getNode()) { 5070 ++NI; 5071 DeleteNode(N); 5072 } 5073 } 5074 } 5075 if (!AnyLegalized) 5076 break; 5077 5078 } 5079 5080 // Remove dead nodes now. 5081 RemoveDeadNodes(); 5082 } 5083 5084 bool SelectionDAG::LegalizeOp(SDNode *N, 5085 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 5086 SmallPtrSet<SDNode *, 16> LegalizedNodes; 5087 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 5088 5089 // Directly insert the node in question, and legalize it. This will recurse 5090 // as needed through operands. 5091 LegalizedNodes.insert(N); 5092 Legalizer.LegalizeOp(N); 5093 5094 return LegalizedNodes.count(N); 5095 } 5096