1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::Legalize method. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/CodeGen/ISDOpcodes.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/RuntimeLibcalls.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/SelectionDAGNodes.h" 28 #include "llvm/CodeGen/TargetFrameLowering.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/CodeGen/ValueTypes.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstdint> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "legalizedag" 57 58 namespace { 59 60 /// Keeps track of state when getting the sign of a floating-point value as an 61 /// integer. 62 struct FloatSignAsInt { 63 EVT FloatVT; 64 SDValue Chain; 65 SDValue FloatPtr; 66 SDValue IntPtr; 67 MachinePointerInfo IntPointerInfo; 68 MachinePointerInfo FloatPointerInfo; 69 SDValue IntValue; 70 APInt SignMask; 71 uint8_t SignBit; 72 }; 73 74 //===----------------------------------------------------------------------===// 75 /// This takes an arbitrary SelectionDAG as input and 76 /// hacks on it until the target machine can handle it. This involves 77 /// eliminating value sizes the machine cannot handle (promoting small sizes to 78 /// large sizes or splitting up large values into small values) as well as 79 /// eliminating operations the machine cannot handle. 80 /// 81 /// This code also does a small amount of optimization and recognition of idioms 82 /// as part of its processing. For example, if a target does not support a 83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 84 /// will attempt merge setcc and brc instructions into brcc's. 85 class SelectionDAGLegalize { 86 const TargetMachine &TM; 87 const TargetLowering &TLI; 88 SelectionDAG &DAG; 89 90 /// The set of nodes which have already been legalized. We hold a 91 /// reference to it in order to update as necessary on node deletion. 92 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 93 94 /// A set of all the nodes updated during legalization. 95 SmallSetVector<SDNode *, 16> *UpdatedNodes; 96 97 EVT getSetCCResultType(EVT VT) const { 98 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 99 } 100 101 // Libcall insertion helpers. 102 103 public: 104 SelectionDAGLegalize(SelectionDAG &DAG, 105 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 106 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 107 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 108 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 109 110 /// Legalizes the given operation. 111 void LegalizeOp(SDNode *Node); 112 113 private: 114 SDValue OptimizeFloatStore(StoreSDNode *ST); 115 116 void LegalizeLoadOps(SDNode *Node); 117 void LegalizeStoreOps(SDNode *Node); 118 119 /// Some targets cannot handle a variable 120 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 121 /// is necessary to spill the vector being inserted into to memory, perform 122 /// the insert there, and then read the result back. 123 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 124 const SDLoc &dl); 125 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 126 const SDLoc &dl); 127 128 /// Return a vector shuffle operation which 129 /// performs the same shuffe in terms of order or result bytes, but on a type 130 /// whose vector element type is narrower than the original shuffle type. 131 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 132 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 133 SDValue N1, SDValue N2, 134 ArrayRef<int> Mask) const; 135 136 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 137 bool &NeedInvert, const SDLoc &dl, SDValue &Chain, 138 bool IsSignaling = false); 139 140 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 141 142 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 143 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 144 RTLIB::Libcall Call_F128, 145 RTLIB::Libcall Call_PPCF128, 146 SmallVectorImpl<SDValue> &Results); 147 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 148 RTLIB::Libcall Call_I8, 149 RTLIB::Libcall Call_I16, 150 RTLIB::Libcall Call_I32, 151 RTLIB::Libcall Call_I64, 152 RTLIB::Libcall Call_I128); 153 void ExpandArgFPLibCall(SDNode *Node, 154 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, 155 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, 156 RTLIB::Libcall Call_PPCF128, 157 SmallVectorImpl<SDValue> &Results); 158 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 159 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 160 161 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 162 const SDLoc &dl); 163 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 164 const SDLoc &dl, SDValue ChainIn); 165 SDValue ExpandBUILD_VECTOR(SDNode *Node); 166 SDValue ExpandSPLAT_VECTOR(SDNode *Node); 167 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 168 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 169 SmallVectorImpl<SDValue> &Results); 170 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 171 SDValue Value) const; 172 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 173 SDValue NewIntValue) const; 174 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 175 SDValue ExpandFABS(SDNode *Node) const; 176 SDValue ExpandFNEG(SDNode *Node) const; 177 SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain); 178 void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl, 179 SmallVectorImpl<SDValue> &Results); 180 void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 181 SmallVectorImpl<SDValue> &Results); 182 183 SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl); 184 SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl); 185 SDValue ExpandPARITY(SDValue Op, const SDLoc &dl); 186 187 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 188 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 189 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 190 191 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 192 SDValue ExpandConstant(ConstantSDNode *CP); 193 194 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 195 bool ExpandNode(SDNode *Node); 196 void ConvertNodeToLibcall(SDNode *Node); 197 void PromoteNode(SDNode *Node); 198 199 public: 200 // Node replacement helpers 201 202 void ReplacedNode(SDNode *N) { 203 LegalizedNodes.erase(N); 204 if (UpdatedNodes) 205 UpdatedNodes->insert(N); 206 } 207 208 void ReplaceNode(SDNode *Old, SDNode *New) { 209 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 210 dbgs() << " with: "; New->dump(&DAG)); 211 212 assert(Old->getNumValues() == New->getNumValues() && 213 "Replacing one node with another that produces a different number " 214 "of values!"); 215 DAG.ReplaceAllUsesWith(Old, New); 216 if (UpdatedNodes) 217 UpdatedNodes->insert(New); 218 ReplacedNode(Old); 219 } 220 221 void ReplaceNode(SDValue Old, SDValue New) { 222 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 223 dbgs() << " with: "; New->dump(&DAG)); 224 225 DAG.ReplaceAllUsesWith(Old, New); 226 if (UpdatedNodes) 227 UpdatedNodes->insert(New.getNode()); 228 ReplacedNode(Old.getNode()); 229 } 230 231 void ReplaceNode(SDNode *Old, const SDValue *New) { 232 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 233 234 DAG.ReplaceAllUsesWith(Old, New); 235 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 236 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); 237 New[i]->dump(&DAG)); 238 if (UpdatedNodes) 239 UpdatedNodes->insert(New[i].getNode()); 240 } 241 ReplacedNode(Old); 242 } 243 244 void ReplaceNodeWithValue(SDValue Old, SDValue New) { 245 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 246 dbgs() << " with: "; New->dump(&DAG)); 247 248 DAG.ReplaceAllUsesOfValueWith(Old, New); 249 if (UpdatedNodes) 250 UpdatedNodes->insert(New.getNode()); 251 ReplacedNode(Old.getNode()); 252 } 253 }; 254 255 } // end anonymous namespace 256 257 /// Return a vector shuffle operation which 258 /// performs the same shuffle in terms of order or result bytes, but on a type 259 /// whose vector element type is narrower than the original shuffle type. 260 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 261 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 262 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 263 ArrayRef<int> Mask) const { 264 unsigned NumMaskElts = VT.getVectorNumElements(); 265 unsigned NumDestElts = NVT.getVectorNumElements(); 266 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 267 268 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 269 270 if (NumEltsGrowth == 1) 271 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 272 273 SmallVector<int, 8> NewMask; 274 for (unsigned i = 0; i != NumMaskElts; ++i) { 275 int Idx = Mask[i]; 276 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 277 if (Idx < 0) 278 NewMask.push_back(-1); 279 else 280 NewMask.push_back(Idx * NumEltsGrowth + j); 281 } 282 } 283 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 284 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 285 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 286 } 287 288 /// Expands the ConstantFP node to an integer constant or 289 /// a load from the constant pool. 290 SDValue 291 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 292 bool Extend = false; 293 SDLoc dl(CFP); 294 295 // If a FP immediate is precise when represented as a float and if the 296 // target can do an extending load from float to double, we put it into 297 // the constant pool as a float, even if it's is statically typed as a 298 // double. This shrinks FP constants and canonicalizes them for targets where 299 // an FP extending load is the same cost as a normal load (such as on the x87 300 // fp stack or PPC FP unit). 301 EVT VT = CFP->getValueType(0); 302 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 303 if (!UseCP) { 304 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 305 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 306 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 307 } 308 309 APFloat APF = CFP->getValueAPF(); 310 EVT OrigVT = VT; 311 EVT SVT = VT; 312 313 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 314 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 315 if (!APF.isSignaling()) { 316 while (SVT != MVT::f32 && SVT != MVT::f16) { 317 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 318 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 319 // Only do this if the target has a native EXTLOAD instruction from 320 // smaller type. 321 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 322 TLI.ShouldShrinkFPConstant(OrigVT)) { 323 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 324 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 325 VT = SVT; 326 Extend = true; 327 } 328 } 329 } 330 331 SDValue CPIdx = 332 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 333 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 334 if (Extend) { 335 SDValue Result = DAG.getExtLoad( 336 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 337 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 338 Alignment); 339 return Result; 340 } 341 SDValue Result = DAG.getLoad( 342 OrigVT, dl, DAG.getEntryNode(), CPIdx, 343 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 344 return Result; 345 } 346 347 /// Expands the Constant node to a load from the constant pool. 348 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 349 SDLoc dl(CP); 350 EVT VT = CP->getValueType(0); 351 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 352 TLI.getPointerTy(DAG.getDataLayout())); 353 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 354 SDValue Result = DAG.getLoad( 355 VT, dl, DAG.getEntryNode(), CPIdx, 356 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 357 return Result; 358 } 359 360 /// Some target cannot handle a variable insertion index for the 361 /// INSERT_VECTOR_ELT instruction. In this case, it 362 /// is necessary to spill the vector being inserted into to memory, perform 363 /// the insert there, and then read the result back. 364 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 365 SDValue Val, 366 SDValue Idx, 367 const SDLoc &dl) { 368 SDValue Tmp1 = Vec; 369 SDValue Tmp2 = Val; 370 SDValue Tmp3 = Idx; 371 372 // If the target doesn't support this, we have to spill the input vector 373 // to a temporary stack slot, update the element, then reload it. This is 374 // badness. We could also load the value into a vector register (either 375 // with a "move to register" or "extload into register" instruction, then 376 // permute it into place, if the idx is a constant and if the idx is 377 // supported by the target. 378 EVT VT = Tmp1.getValueType(); 379 EVT EltVT = VT.getVectorElementType(); 380 SDValue StackPtr = DAG.CreateStackTemporary(VT); 381 382 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 383 384 // Store the vector. 385 SDValue Ch = DAG.getStore( 386 DAG.getEntryNode(), dl, Tmp1, StackPtr, 387 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 388 389 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 390 391 // Store the scalar value. 392 Ch = DAG.getTruncStore( 393 Ch, dl, Tmp2, StackPtr2, 394 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT); 395 // Load the updated vector. 396 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 397 DAG.getMachineFunction(), SPFI)); 398 } 399 400 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 401 SDValue Idx, 402 const SDLoc &dl) { 403 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 404 // SCALAR_TO_VECTOR requires that the type of the value being inserted 405 // match the element type of the vector being created, except for 406 // integers in which case the inserted value can be over width. 407 EVT EltVT = Vec.getValueType().getVectorElementType(); 408 if (Val.getValueType() == EltVT || 409 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 410 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 411 Vec.getValueType(), Val); 412 413 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 414 // We generate a shuffle of InVec and ScVec, so the shuffle mask 415 // should be 0,1,2,3,4,5... with the appropriate element replaced with 416 // elt 0 of the RHS. 417 SmallVector<int, 8> ShufOps; 418 for (unsigned i = 0; i != NumElts; ++i) 419 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 420 421 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 422 } 423 } 424 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 425 } 426 427 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 428 if (!ISD::isNormalStore(ST)) 429 return SDValue(); 430 431 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); 432 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 433 // FIXME: We shouldn't do this for TargetConstantFP's. 434 // FIXME: move this to the DAG Combiner! Note that we can't regress due 435 // to phase ordering between legalized code and the dag combiner. This 436 // probably means that we need to integrate dag combiner and legalizer 437 // together. 438 // We generally can't do this one for long doubles. 439 SDValue Chain = ST->getChain(); 440 SDValue Ptr = ST->getBasePtr(); 441 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 442 AAMDNodes AAInfo = ST->getAAInfo(); 443 SDLoc dl(ST); 444 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 445 if (CFP->getValueType(0) == MVT::f32 && 446 TLI.isTypeLegal(MVT::i32)) { 447 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 448 bitcastToAPInt().zextOrTrunc(32), 449 SDLoc(CFP), MVT::i32); 450 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 451 ST->getOriginalAlign(), MMOFlags, AAInfo); 452 } 453 454 if (CFP->getValueType(0) == MVT::f64) { 455 // If this target supports 64-bit registers, do a single 64-bit store. 456 if (TLI.isTypeLegal(MVT::i64)) { 457 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 458 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 459 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 460 ST->getOriginalAlign(), MMOFlags, AAInfo); 461 } 462 463 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 464 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 465 // stores. If the target supports neither 32- nor 64-bits, this 466 // xform is certainly not worth it. 467 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 468 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 469 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 470 if (DAG.getDataLayout().isBigEndian()) 471 std::swap(Lo, Hi); 472 473 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), 474 ST->getOriginalAlign(), MMOFlags, AAInfo); 475 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), dl); 476 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 477 ST->getPointerInfo().getWithOffset(4), 478 ST->getOriginalAlign(), MMOFlags, AAInfo); 479 480 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 481 } 482 } 483 } 484 return SDValue(nullptr, 0); 485 } 486 487 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 488 StoreSDNode *ST = cast<StoreSDNode>(Node); 489 SDValue Chain = ST->getChain(); 490 SDValue Ptr = ST->getBasePtr(); 491 SDLoc dl(Node); 492 493 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 494 AAMDNodes AAInfo = ST->getAAInfo(); 495 496 if (!ST->isTruncatingStore()) { 497 LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); 498 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 499 ReplaceNode(ST, OptStore); 500 return; 501 } 502 503 SDValue Value = ST->getValue(); 504 MVT VT = Value.getSimpleValueType(); 505 switch (TLI.getOperationAction(ISD::STORE, VT)) { 506 default: llvm_unreachable("This action is not supported yet!"); 507 case TargetLowering::Legal: { 508 // If this is an unaligned store and the target doesn't support it, 509 // expand it. 510 EVT MemVT = ST->getMemoryVT(); 511 const DataLayout &DL = DAG.getDataLayout(); 512 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 513 *ST->getMemOperand())) { 514 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 515 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 516 ReplaceNode(SDValue(ST, 0), Result); 517 } else 518 LLVM_DEBUG(dbgs() << "Legal store\n"); 519 break; 520 } 521 case TargetLowering::Custom: { 522 LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); 523 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 524 if (Res && Res != SDValue(Node, 0)) 525 ReplaceNode(SDValue(Node, 0), Res); 526 return; 527 } 528 case TargetLowering::Promote: { 529 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 530 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 531 "Can only promote stores to same size type"); 532 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 533 SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 534 ST->getOriginalAlign(), MMOFlags, AAInfo); 535 ReplaceNode(SDValue(Node, 0), Result); 536 break; 537 } 538 } 539 return; 540 } 541 542 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); 543 SDValue Value = ST->getValue(); 544 EVT StVT = ST->getMemoryVT(); 545 TypeSize StWidth = StVT.getSizeInBits(); 546 TypeSize StSize = StVT.getStoreSizeInBits(); 547 auto &DL = DAG.getDataLayout(); 548 549 if (StWidth != StSize) { 550 // Promote to a byte-sized store with upper bits zero if not 551 // storing an integral number of bytes. For example, promote 552 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 553 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StSize.getFixedSize()); 554 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 555 SDValue Result = 556 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 557 ST->getOriginalAlign(), MMOFlags, AAInfo); 558 ReplaceNode(SDValue(Node, 0), Result); 559 } else if (!StVT.isVector() && !isPowerOf2_64(StWidth.getFixedSize())) { 560 // If not storing a power-of-2 number of bits, expand as two stores. 561 assert(!StVT.isVector() && "Unsupported truncstore!"); 562 unsigned StWidthBits = StWidth.getFixedSize(); 563 unsigned LogStWidth = Log2_32(StWidthBits); 564 assert(LogStWidth < 32); 565 unsigned RoundWidth = 1 << LogStWidth; 566 assert(RoundWidth < StWidthBits); 567 unsigned ExtraWidth = StWidthBits - RoundWidth; 568 assert(ExtraWidth < RoundWidth); 569 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 570 "Store size not an integral number of bytes!"); 571 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 572 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 573 SDValue Lo, Hi; 574 unsigned IncrementSize; 575 576 if (DL.isLittleEndian()) { 577 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 578 // Store the bottom RoundWidth bits. 579 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 580 RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 581 582 // Store the remaining ExtraWidth bits. 583 IncrementSize = RoundWidth / 8; 584 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 585 Hi = DAG.getNode( 586 ISD::SRL, dl, Value.getValueType(), Value, 587 DAG.getConstant(RoundWidth, dl, 588 TLI.getShiftAmountTy(Value.getValueType(), DL))); 589 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, 590 ST->getPointerInfo().getWithOffset(IncrementSize), 591 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 592 } else { 593 // Big endian - avoid unaligned stores. 594 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 595 // Store the top RoundWidth bits. 596 Hi = DAG.getNode( 597 ISD::SRL, dl, Value.getValueType(), Value, 598 DAG.getConstant(ExtraWidth, dl, 599 TLI.getShiftAmountTy(Value.getValueType(), DL))); 600 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT, 601 ST->getOriginalAlign(), MMOFlags, AAInfo); 602 603 // Store the remaining ExtraWidth bits. 604 IncrementSize = RoundWidth / 8; 605 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 606 DAG.getConstant(IncrementSize, dl, 607 Ptr.getValueType())); 608 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, 609 ST->getPointerInfo().getWithOffset(IncrementSize), 610 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 611 } 612 613 // The order of the stores doesn't matter. 614 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 615 ReplaceNode(SDValue(Node, 0), Result); 616 } else { 617 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 618 default: llvm_unreachable("This action is not supported yet!"); 619 case TargetLowering::Legal: { 620 EVT MemVT = ST->getMemoryVT(); 621 // If this is an unaligned store and the target doesn't support it, 622 // expand it. 623 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 624 *ST->getMemOperand())) { 625 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 626 ReplaceNode(SDValue(ST, 0), Result); 627 } 628 break; 629 } 630 case TargetLowering::Custom: { 631 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 632 if (Res && Res != SDValue(Node, 0)) 633 ReplaceNode(SDValue(Node, 0), Res); 634 return; 635 } 636 case TargetLowering::Expand: 637 assert(!StVT.isVector() && 638 "Vector Stores are handled in LegalizeVectorOps"); 639 640 SDValue Result; 641 642 // TRUNCSTORE:i16 i32 -> STORE i16 643 if (TLI.isTypeLegal(StVT)) { 644 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 645 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 646 ST->getOriginalAlign(), MMOFlags, AAInfo); 647 } else { 648 // The in-memory type isn't legal. Truncate to the type it would promote 649 // to, and then do a truncstore. 650 Value = DAG.getNode(ISD::TRUNCATE, dl, 651 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 652 Value); 653 Result = 654 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT, 655 ST->getOriginalAlign(), MMOFlags, AAInfo); 656 } 657 658 ReplaceNode(SDValue(Node, 0), Result); 659 break; 660 } 661 } 662 } 663 664 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 665 LoadSDNode *LD = cast<LoadSDNode>(Node); 666 SDValue Chain = LD->getChain(); // The chain. 667 SDValue Ptr = LD->getBasePtr(); // The base pointer. 668 SDValue Value; // The value returned by the load op. 669 SDLoc dl(Node); 670 671 ISD::LoadExtType ExtType = LD->getExtensionType(); 672 if (ExtType == ISD::NON_EXTLOAD) { 673 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 674 MVT VT = Node->getSimpleValueType(0); 675 SDValue RVal = SDValue(Node, 0); 676 SDValue RChain = SDValue(Node, 1); 677 678 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 679 default: llvm_unreachable("This action is not supported yet!"); 680 case TargetLowering::Legal: { 681 EVT MemVT = LD->getMemoryVT(); 682 const DataLayout &DL = DAG.getDataLayout(); 683 // If this is an unaligned load and the target doesn't support it, 684 // expand it. 685 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 686 *LD->getMemOperand())) { 687 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 688 } 689 break; 690 } 691 case TargetLowering::Custom: 692 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 693 RVal = Res; 694 RChain = Res.getValue(1); 695 } 696 break; 697 698 case TargetLowering::Promote: { 699 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 700 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 701 "Can only promote loads to same size type"); 702 703 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 704 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 705 RChain = Res.getValue(1); 706 break; 707 } 708 } 709 if (RChain.getNode() != Node) { 710 assert(RVal.getNode() != Node && "Load must be completely replaced"); 711 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 712 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 713 if (UpdatedNodes) { 714 UpdatedNodes->insert(RVal.getNode()); 715 UpdatedNodes->insert(RChain.getNode()); 716 } 717 ReplacedNode(Node); 718 } 719 return; 720 } 721 722 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); 723 EVT SrcVT = LD->getMemoryVT(); 724 TypeSize SrcWidth = SrcVT.getSizeInBits(); 725 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 726 AAMDNodes AAInfo = LD->getAAInfo(); 727 728 if (SrcWidth != SrcVT.getStoreSizeInBits() && 729 // Some targets pretend to have an i1 loading operation, and actually 730 // load an i8. This trick is correct for ZEXTLOAD because the top 7 731 // bits are guaranteed to be zero; it helps the optimizers understand 732 // that these bits are zero. It is also useful for EXTLOAD, since it 733 // tells the optimizers that those bits are undefined. It would be 734 // nice to have an effective generic way of getting these benefits... 735 // Until such a way is found, don't insist on promoting i1 here. 736 (SrcVT != MVT::i1 || 737 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 738 TargetLowering::Promote)) { 739 // Promote to a byte-sized load if not loading an integral number of 740 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 741 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 742 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 743 SDValue Ch; 744 745 // The extra bits are guaranteed to be zero, since we stored them that 746 // way. A zext load from NVT thus automatically gives zext from SrcVT. 747 748 ISD::LoadExtType NewExtType = 749 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 750 751 SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 752 Chain, Ptr, LD->getPointerInfo(), NVT, 753 LD->getOriginalAlign(), MMOFlags, AAInfo); 754 755 Ch = Result.getValue(1); // The chain. 756 757 if (ExtType == ISD::SEXTLOAD) 758 // Having the top bits zero doesn't help when sign extending. 759 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 760 Result.getValueType(), 761 Result, DAG.getValueType(SrcVT)); 762 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 763 // All the top bits are guaranteed to be zero - inform the optimizers. 764 Result = DAG.getNode(ISD::AssertZext, dl, 765 Result.getValueType(), Result, 766 DAG.getValueType(SrcVT)); 767 768 Value = Result; 769 Chain = Ch; 770 } else if (!isPowerOf2_64(SrcWidth.getKnownMinSize())) { 771 // If not loading a power-of-2 number of bits, expand as two loads. 772 assert(!SrcVT.isVector() && "Unsupported extload!"); 773 unsigned SrcWidthBits = SrcWidth.getFixedSize(); 774 unsigned LogSrcWidth = Log2_32(SrcWidthBits); 775 assert(LogSrcWidth < 32); 776 unsigned RoundWidth = 1 << LogSrcWidth; 777 assert(RoundWidth < SrcWidthBits); 778 unsigned ExtraWidth = SrcWidthBits - RoundWidth; 779 assert(ExtraWidth < RoundWidth); 780 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 781 "Load size not an integral number of bytes!"); 782 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 783 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 784 SDValue Lo, Hi, Ch; 785 unsigned IncrementSize; 786 auto &DL = DAG.getDataLayout(); 787 788 if (DL.isLittleEndian()) { 789 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 790 // Load the bottom RoundWidth bits. 791 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 792 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 793 MMOFlags, AAInfo); 794 795 // Load the remaining ExtraWidth bits. 796 IncrementSize = RoundWidth / 8; 797 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 798 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 799 LD->getPointerInfo().getWithOffset(IncrementSize), 800 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 801 802 // Build a factor node to remember that this load is independent of 803 // the other one. 804 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 805 Hi.getValue(1)); 806 807 // Move the top bits to the right place. 808 Hi = DAG.getNode( 809 ISD::SHL, dl, Hi.getValueType(), Hi, 810 DAG.getConstant(RoundWidth, dl, 811 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 812 813 // Join the hi and lo parts. 814 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 815 } else { 816 // Big endian - avoid unaligned loads. 817 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 818 // Load the top RoundWidth bits. 819 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 820 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 821 MMOFlags, AAInfo); 822 823 // Load the remaining ExtraWidth bits. 824 IncrementSize = RoundWidth / 8; 825 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 826 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 827 LD->getPointerInfo().getWithOffset(IncrementSize), 828 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 829 830 // Build a factor node to remember that this load is independent of 831 // the other one. 832 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 833 Hi.getValue(1)); 834 835 // Move the top bits to the right place. 836 Hi = DAG.getNode( 837 ISD::SHL, dl, Hi.getValueType(), Hi, 838 DAG.getConstant(ExtraWidth, dl, 839 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 840 841 // Join the hi and lo parts. 842 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 843 } 844 845 Chain = Ch; 846 } else { 847 bool isCustom = false; 848 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 849 SrcVT.getSimpleVT())) { 850 default: llvm_unreachable("This action is not supported yet!"); 851 case TargetLowering::Custom: 852 isCustom = true; 853 LLVM_FALLTHROUGH; 854 case TargetLowering::Legal: 855 Value = SDValue(Node, 0); 856 Chain = SDValue(Node, 1); 857 858 if (isCustom) { 859 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 860 Value = Res; 861 Chain = Res.getValue(1); 862 } 863 } else { 864 // If this is an unaligned load and the target doesn't support it, 865 // expand it. 866 EVT MemVT = LD->getMemoryVT(); 867 const DataLayout &DL = DAG.getDataLayout(); 868 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, 869 *LD->getMemOperand())) { 870 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 871 } 872 } 873 break; 874 875 case TargetLowering::Expand: { 876 EVT DestVT = Node->getValueType(0); 877 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 878 // If the source type is not legal, see if there is a legal extload to 879 // an intermediate type that we can then extend further. 880 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 881 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 882 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 883 // If we are loading a legal type, this is a non-extload followed by a 884 // full extend. 885 ISD::LoadExtType MidExtType = 886 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 887 888 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 889 SrcVT, LD->getMemOperand()); 890 unsigned ExtendOp = 891 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 892 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 893 Chain = Load.getValue(1); 894 break; 895 } 896 897 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 898 // normal undefined upper bits behavior to allow using an in-reg extend 899 // with the illegal FP type, so load as an integer and do the 900 // from-integer conversion. 901 if (SrcVT.getScalarType() == MVT::f16) { 902 EVT ISrcVT = SrcVT.changeTypeToInteger(); 903 EVT IDestVT = DestVT.changeTypeToInteger(); 904 EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 905 906 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain, 907 Ptr, ISrcVT, LD->getMemOperand()); 908 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 909 Chain = Result.getValue(1); 910 break; 911 } 912 } 913 914 assert(!SrcVT.isVector() && 915 "Vector Loads are handled in LegalizeVectorOps"); 916 917 // FIXME: This does not work for vectors on most targets. Sign- 918 // and zero-extend operations are currently folded into extending 919 // loads, whether they are legal or not, and then we end up here 920 // without any support for legalizing them. 921 assert(ExtType != ISD::EXTLOAD && 922 "EXTLOAD should always be supported!"); 923 // Turn the unsupported load into an EXTLOAD followed by an 924 // explicit zero/sign extend inreg. 925 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 926 Node->getValueType(0), 927 Chain, Ptr, SrcVT, 928 LD->getMemOperand()); 929 SDValue ValRes; 930 if (ExtType == ISD::SEXTLOAD) 931 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 932 Result.getValueType(), 933 Result, DAG.getValueType(SrcVT)); 934 else 935 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT); 936 Value = ValRes; 937 Chain = Result.getValue(1); 938 break; 939 } 940 } 941 } 942 943 // Since loads produce two values, make sure to remember that we legalized 944 // both of them. 945 if (Chain.getNode() != Node) { 946 assert(Value.getNode() != Node && "Load must be completely replaced"); 947 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 948 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 949 if (UpdatedNodes) { 950 UpdatedNodes->insert(Value.getNode()); 951 UpdatedNodes->insert(Chain.getNode()); 952 } 953 ReplacedNode(Node); 954 } 955 } 956 957 /// Return a legal replacement for the given operation, with all legal operands. 958 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 959 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 960 961 // Allow illegal target nodes and illegal registers. 962 if (Node->getOpcode() == ISD::TargetConstant || 963 Node->getOpcode() == ISD::Register) 964 return; 965 966 #ifndef NDEBUG 967 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 968 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 969 TargetLowering::TypeLegal && 970 "Unexpected illegal type!"); 971 972 for (const SDValue &Op : Node->op_values()) 973 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 974 TargetLowering::TypeLegal || 975 Op.getOpcode() == ISD::TargetConstant || 976 Op.getOpcode() == ISD::Register) && 977 "Unexpected illegal type!"); 978 #endif 979 980 // Figure out the correct action; the way to query this varies by opcode 981 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 982 bool SimpleFinishLegalizing = true; 983 switch (Node->getOpcode()) { 984 case ISD::INTRINSIC_W_CHAIN: 985 case ISD::INTRINSIC_WO_CHAIN: 986 case ISD::INTRINSIC_VOID: 987 case ISD::STACKSAVE: 988 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 989 break; 990 case ISD::GET_DYNAMIC_AREA_OFFSET: 991 Action = TLI.getOperationAction(Node->getOpcode(), 992 Node->getValueType(0)); 993 break; 994 case ISD::VAARG: 995 Action = TLI.getOperationAction(Node->getOpcode(), 996 Node->getValueType(0)); 997 if (Action != TargetLowering::Promote) 998 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 999 break; 1000 case ISD::FP_TO_FP16: 1001 case ISD::SINT_TO_FP: 1002 case ISD::UINT_TO_FP: 1003 case ISD::EXTRACT_VECTOR_ELT: 1004 case ISD::LROUND: 1005 case ISD::LLROUND: 1006 case ISD::LRINT: 1007 case ISD::LLRINT: 1008 Action = TLI.getOperationAction(Node->getOpcode(), 1009 Node->getOperand(0).getValueType()); 1010 break; 1011 case ISD::STRICT_FP_TO_FP16: 1012 case ISD::STRICT_SINT_TO_FP: 1013 case ISD::STRICT_UINT_TO_FP: 1014 case ISD::STRICT_LRINT: 1015 case ISD::STRICT_LLRINT: 1016 case ISD::STRICT_LROUND: 1017 case ISD::STRICT_LLROUND: 1018 // These pseudo-ops are the same as the other STRICT_ ops except 1019 // they are registered with setOperationAction() using the input type 1020 // instead of the output type. 1021 Action = TLI.getOperationAction(Node->getOpcode(), 1022 Node->getOperand(1).getValueType()); 1023 break; 1024 case ISD::SIGN_EXTEND_INREG: { 1025 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1026 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1027 break; 1028 } 1029 case ISD::ATOMIC_STORE: 1030 Action = TLI.getOperationAction(Node->getOpcode(), 1031 Node->getOperand(2).getValueType()); 1032 break; 1033 case ISD::SELECT_CC: 1034 case ISD::STRICT_FSETCC: 1035 case ISD::STRICT_FSETCCS: 1036 case ISD::SETCC: 1037 case ISD::BR_CC: { 1038 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 1039 Node->getOpcode() == ISD::STRICT_FSETCC ? 3 : 1040 Node->getOpcode() == ISD::STRICT_FSETCCS ? 3 : 1041 Node->getOpcode() == ISD::SETCC ? 2 : 1; 1042 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 1043 Node->getOpcode() == ISD::STRICT_FSETCC ? 1 : 1044 Node->getOpcode() == ISD::STRICT_FSETCCS ? 1 : 0; 1045 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1046 ISD::CondCode CCCode = 1047 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1048 Action = TLI.getCondCodeAction(CCCode, OpVT); 1049 if (Action == TargetLowering::Legal) { 1050 if (Node->getOpcode() == ISD::SELECT_CC) 1051 Action = TLI.getOperationAction(Node->getOpcode(), 1052 Node->getValueType(0)); 1053 else 1054 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1055 } 1056 break; 1057 } 1058 case ISD::LOAD: 1059 case ISD::STORE: 1060 // FIXME: Model these properly. LOAD and STORE are complicated, and 1061 // STORE expects the unlegalized operand in some cases. 1062 SimpleFinishLegalizing = false; 1063 break; 1064 case ISD::CALLSEQ_START: 1065 case ISD::CALLSEQ_END: 1066 // FIXME: This shouldn't be necessary. These nodes have special properties 1067 // dealing with the recursive nature of legalization. Removing this 1068 // special case should be done as part of making LegalizeDAG non-recursive. 1069 SimpleFinishLegalizing = false; 1070 break; 1071 case ISD::EXTRACT_ELEMENT: 1072 case ISD::FLT_ROUNDS_: 1073 case ISD::MERGE_VALUES: 1074 case ISD::EH_RETURN: 1075 case ISD::FRAME_TO_ARGS_OFFSET: 1076 case ISD::EH_DWARF_CFA: 1077 case ISD::EH_SJLJ_SETJMP: 1078 case ISD::EH_SJLJ_LONGJMP: 1079 case ISD::EH_SJLJ_SETUP_DISPATCH: 1080 // These operations lie about being legal: when they claim to be legal, 1081 // they should actually be expanded. 1082 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1083 if (Action == TargetLowering::Legal) 1084 Action = TargetLowering::Expand; 1085 break; 1086 case ISD::INIT_TRAMPOLINE: 1087 case ISD::ADJUST_TRAMPOLINE: 1088 case ISD::FRAMEADDR: 1089 case ISD::RETURNADDR: 1090 case ISD::ADDROFRETURNADDR: 1091 case ISD::SPONENTRY: 1092 // These operations lie about being legal: when they claim to be legal, 1093 // they should actually be custom-lowered. 1094 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1095 if (Action == TargetLowering::Legal) 1096 Action = TargetLowering::Custom; 1097 break; 1098 case ISD::READCYCLECOUNTER: 1099 // READCYCLECOUNTER returns an i64, even if type legalization might have 1100 // expanded that to several smaller types. 1101 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1102 break; 1103 case ISD::READ_REGISTER: 1104 case ISD::WRITE_REGISTER: 1105 // Named register is legal in the DAG, but blocked by register name 1106 // selection if not implemented by target (to chose the correct register) 1107 // They'll be converted to Copy(To/From)Reg. 1108 Action = TargetLowering::Legal; 1109 break; 1110 case ISD::DEBUGTRAP: 1111 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1112 if (Action == TargetLowering::Expand) { 1113 // replace ISD::DEBUGTRAP with ISD::TRAP 1114 SDValue NewVal; 1115 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1116 Node->getOperand(0)); 1117 ReplaceNode(Node, NewVal.getNode()); 1118 LegalizeOp(NewVal.getNode()); 1119 return; 1120 } 1121 break; 1122 case ISD::SADDSAT: 1123 case ISD::UADDSAT: 1124 case ISD::SSUBSAT: 1125 case ISD::USUBSAT: 1126 case ISD::SSHLSAT: 1127 case ISD::USHLSAT: { 1128 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1129 break; 1130 } 1131 case ISD::SMULFIX: 1132 case ISD::SMULFIXSAT: 1133 case ISD::UMULFIX: 1134 case ISD::UMULFIXSAT: 1135 case ISD::SDIVFIX: 1136 case ISD::SDIVFIXSAT: 1137 case ISD::UDIVFIX: 1138 case ISD::UDIVFIXSAT: { 1139 unsigned Scale = Node->getConstantOperandVal(2); 1140 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 1141 Node->getValueType(0), Scale); 1142 break; 1143 } 1144 case ISD::MSCATTER: 1145 Action = TLI.getOperationAction(Node->getOpcode(), 1146 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 1147 break; 1148 case ISD::MSTORE: 1149 Action = TLI.getOperationAction(Node->getOpcode(), 1150 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 1151 break; 1152 case ISD::VECREDUCE_FADD: 1153 case ISD::VECREDUCE_FMUL: 1154 case ISD::VECREDUCE_ADD: 1155 case ISD::VECREDUCE_MUL: 1156 case ISD::VECREDUCE_AND: 1157 case ISD::VECREDUCE_OR: 1158 case ISD::VECREDUCE_XOR: 1159 case ISD::VECREDUCE_SMAX: 1160 case ISD::VECREDUCE_SMIN: 1161 case ISD::VECREDUCE_UMAX: 1162 case ISD::VECREDUCE_UMIN: 1163 case ISD::VECREDUCE_FMAX: 1164 case ISD::VECREDUCE_FMIN: 1165 Action = TLI.getOperationAction( 1166 Node->getOpcode(), Node->getOperand(0).getValueType()); 1167 break; 1168 default: 1169 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1170 Action = TargetLowering::Legal; 1171 } else { 1172 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1173 } 1174 break; 1175 } 1176 1177 if (SimpleFinishLegalizing) { 1178 SDNode *NewNode = Node; 1179 switch (Node->getOpcode()) { 1180 default: break; 1181 case ISD::SHL: 1182 case ISD::SRL: 1183 case ISD::SRA: 1184 case ISD::ROTL: 1185 case ISD::ROTR: { 1186 // Legalizing shifts/rotates requires adjusting the shift amount 1187 // to the appropriate width. 1188 SDValue Op0 = Node->getOperand(0); 1189 SDValue Op1 = Node->getOperand(1); 1190 if (!Op1.getValueType().isVector()) { 1191 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1192 // The getShiftAmountOperand() may create a new operand node or 1193 // return the existing one. If new operand is created we need 1194 // to update the parent node. 1195 // Do not try to legalize SAO here! It will be automatically legalized 1196 // in the next round. 1197 if (SAO != Op1) 1198 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1199 } 1200 } 1201 break; 1202 case ISD::FSHL: 1203 case ISD::FSHR: 1204 case ISD::SRL_PARTS: 1205 case ISD::SRA_PARTS: 1206 case ISD::SHL_PARTS: { 1207 // Legalizing shifts/rotates requires adjusting the shift amount 1208 // to the appropriate width. 1209 SDValue Op0 = Node->getOperand(0); 1210 SDValue Op1 = Node->getOperand(1); 1211 SDValue Op2 = Node->getOperand(2); 1212 if (!Op2.getValueType().isVector()) { 1213 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1214 // The getShiftAmountOperand() may create a new operand node or 1215 // return the existing one. If new operand is created we need 1216 // to update the parent node. 1217 if (SAO != Op2) 1218 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1219 } 1220 break; 1221 } 1222 } 1223 1224 if (NewNode != Node) { 1225 ReplaceNode(Node, NewNode); 1226 Node = NewNode; 1227 } 1228 switch (Action) { 1229 case TargetLowering::Legal: 1230 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 1231 return; 1232 case TargetLowering::Custom: 1233 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 1234 // FIXME: The handling for custom lowering with multiple results is 1235 // a complete mess. 1236 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1237 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1238 return; 1239 1240 if (Node->getNumValues() == 1) { 1241 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1242 // We can just directly replace this node with the lowered value. 1243 ReplaceNode(SDValue(Node, 0), Res); 1244 return; 1245 } 1246 1247 SmallVector<SDValue, 8> ResultVals; 1248 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1249 ResultVals.push_back(Res.getValue(i)); 1250 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1251 ReplaceNode(Node, ResultVals.data()); 1252 return; 1253 } 1254 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 1255 LLVM_FALLTHROUGH; 1256 case TargetLowering::Expand: 1257 if (ExpandNode(Node)) 1258 return; 1259 LLVM_FALLTHROUGH; 1260 case TargetLowering::LibCall: 1261 ConvertNodeToLibcall(Node); 1262 return; 1263 case TargetLowering::Promote: 1264 PromoteNode(Node); 1265 return; 1266 } 1267 } 1268 1269 switch (Node->getOpcode()) { 1270 default: 1271 #ifndef NDEBUG 1272 dbgs() << "NODE: "; 1273 Node->dump( &DAG); 1274 dbgs() << "\n"; 1275 #endif 1276 llvm_unreachable("Do not know how to legalize this operator!"); 1277 1278 case ISD::CALLSEQ_START: 1279 case ISD::CALLSEQ_END: 1280 break; 1281 case ISD::LOAD: 1282 return LegalizeLoadOps(Node); 1283 case ISD::STORE: 1284 return LegalizeStoreOps(Node); 1285 } 1286 } 1287 1288 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1289 SDValue Vec = Op.getOperand(0); 1290 SDValue Idx = Op.getOperand(1); 1291 SDLoc dl(Op); 1292 1293 // Before we generate a new store to a temporary stack slot, see if there is 1294 // already one that we can use. There often is because when we scalarize 1295 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1296 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1297 // the vector. If all are expanded here, we don't want one store per vector 1298 // element. 1299 1300 // Caches for hasPredecessorHelper 1301 SmallPtrSet<const SDNode *, 32> Visited; 1302 SmallVector<const SDNode *, 16> Worklist; 1303 Visited.insert(Op.getNode()); 1304 Worklist.push_back(Idx.getNode()); 1305 SDValue StackPtr, Ch; 1306 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), 1307 UE = Vec.getNode()->use_end(); UI != UE; ++UI) { 1308 SDNode *User = *UI; 1309 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1310 if (ST->isIndexed() || ST->isTruncatingStore() || 1311 ST->getValue() != Vec) 1312 continue; 1313 1314 // Make sure that nothing else could have stored into the destination of 1315 // this store. 1316 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1317 continue; 1318 1319 // If the index is dependent on the store we will introduce a cycle when 1320 // creating the load (the load uses the index, and by replacing the chain 1321 // we will make the index dependent on the load). Also, the store might be 1322 // dependent on the extractelement and introduce a cycle when creating 1323 // the load. 1324 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1325 ST->hasPredecessor(Op.getNode())) 1326 continue; 1327 1328 StackPtr = ST->getBasePtr(); 1329 Ch = SDValue(ST, 0); 1330 break; 1331 } 1332 } 1333 1334 EVT VecVT = Vec.getValueType(); 1335 1336 if (!Ch.getNode()) { 1337 // Store the value to a temporary stack slot, then LOAD the returned part. 1338 StackPtr = DAG.CreateStackTemporary(VecVT); 1339 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1340 MachinePointerInfo()); 1341 } 1342 1343 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1344 1345 SDValue NewLoad; 1346 1347 if (Op.getValueType().isVector()) 1348 NewLoad = 1349 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); 1350 else 1351 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1352 MachinePointerInfo(), 1353 VecVT.getVectorElementType()); 1354 1355 // Replace the chain going out of the store, by the one out of the load. 1356 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1357 1358 // We introduced a cycle though, so update the loads operands, making sure 1359 // to use the original store's chain as an incoming chain. 1360 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1361 NewLoad->op_end()); 1362 NewLoadOperands[0] = Ch; 1363 NewLoad = 1364 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1365 return NewLoad; 1366 } 1367 1368 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1369 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1370 1371 SDValue Vec = Op.getOperand(0); 1372 SDValue Part = Op.getOperand(1); 1373 SDValue Idx = Op.getOperand(2); 1374 SDLoc dl(Op); 1375 1376 // Store the value to a temporary stack slot, then LOAD the returned part. 1377 EVT VecVT = Vec.getValueType(); 1378 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1379 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1380 MachinePointerInfo PtrInfo = 1381 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1382 1383 // First store the whole vector. 1384 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1385 1386 // Then store the inserted part. 1387 SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1388 1389 // Store the subvector. 1390 Ch = DAG.getStore( 1391 Ch, dl, Part, SubStackPtr, 1392 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1393 1394 // Finally, load the updated vector. 1395 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1396 } 1397 1398 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1399 assert((Node->getOpcode() == ISD::BUILD_VECTOR || 1400 Node->getOpcode() == ISD::CONCAT_VECTORS) && 1401 "Unexpected opcode!"); 1402 1403 // We can't handle this case efficiently. Allocate a sufficiently 1404 // aligned object on the stack, store each operand into it, then load 1405 // the result as a vector. 1406 // Create the stack frame object. 1407 EVT VT = Node->getValueType(0); 1408 EVT MemVT = isa<BuildVectorSDNode>(Node) ? VT.getVectorElementType() 1409 : Node->getOperand(0).getValueType(); 1410 SDLoc dl(Node); 1411 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1412 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1413 MachinePointerInfo PtrInfo = 1414 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1415 1416 // Emit a store of each element to the stack slot. 1417 SmallVector<SDValue, 8> Stores; 1418 unsigned TypeByteSize = MemVT.getSizeInBits() / 8; 1419 assert(TypeByteSize > 0 && "Vector element type too small for stack store!"); 1420 1421 // If the destination vector element type of a BUILD_VECTOR is narrower than 1422 // the source element type, only store the bits necessary. 1423 bool Truncate = isa<BuildVectorSDNode>(Node) && 1424 MemVT.bitsLT(Node->getOperand(0).getValueType()); 1425 1426 // Store (in the right endianness) the elements to memory. 1427 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1428 // Ignore undef elements. 1429 if (Node->getOperand(i).isUndef()) continue; 1430 1431 unsigned Offset = TypeByteSize*i; 1432 1433 SDValue Idx = DAG.getMemBasePlusOffset(FIPtr, TypeSize::Fixed(Offset), dl); 1434 1435 if (Truncate) 1436 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1437 Node->getOperand(i), Idx, 1438 PtrInfo.getWithOffset(Offset), MemVT)); 1439 else 1440 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1441 Idx, PtrInfo.getWithOffset(Offset))); 1442 } 1443 1444 SDValue StoreChain; 1445 if (!Stores.empty()) // Not all undef elements? 1446 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1447 else 1448 StoreChain = DAG.getEntryNode(); 1449 1450 // Result is a load from the stack slot. 1451 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1452 } 1453 1454 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1455 /// containing the sign bit if the target has no integer value capable of 1456 /// holding all bits of the floating-point value. 1457 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1458 const SDLoc &DL, 1459 SDValue Value) const { 1460 EVT FloatVT = Value.getValueType(); 1461 unsigned NumBits = FloatVT.getSizeInBits(); 1462 State.FloatVT = FloatVT; 1463 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1464 // Convert to an integer of the same size. 1465 if (TLI.isTypeLegal(IVT)) { 1466 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1467 State.SignMask = APInt::getSignMask(NumBits); 1468 State.SignBit = NumBits - 1; 1469 return; 1470 } 1471 1472 auto &DataLayout = DAG.getDataLayout(); 1473 // Store the float to memory, then load the sign part out as an integer. 1474 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1475 // First create a temporary that is aligned for both the load and store. 1476 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1477 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1478 // Then store the float to it. 1479 State.FloatPtr = StackPtr; 1480 MachineFunction &MF = DAG.getMachineFunction(); 1481 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1482 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1483 State.FloatPointerInfo); 1484 1485 SDValue IntPtr; 1486 if (DataLayout.isBigEndian()) { 1487 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1488 // Load out a legal integer with the same sign bit as the float. 1489 IntPtr = StackPtr; 1490 State.IntPointerInfo = State.FloatPointerInfo; 1491 } else { 1492 // Advance the pointer so that the loaded byte will contain the sign bit. 1493 unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1; 1494 IntPtr = 1495 DAG.getMemBasePlusOffset(StackPtr, TypeSize::Fixed(ByteOffset), DL); 1496 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1497 ByteOffset); 1498 } 1499 1500 State.IntPtr = IntPtr; 1501 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1502 State.IntPointerInfo, MVT::i8); 1503 State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7); 1504 State.SignBit = 7; 1505 } 1506 1507 /// Replace the integer value produced by getSignAsIntValue() with a new value 1508 /// and cast the result back to a floating-point type. 1509 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1510 const SDLoc &DL, 1511 SDValue NewIntValue) const { 1512 if (!State.Chain) 1513 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1514 1515 // Override the part containing the sign bit in the value stored on the stack. 1516 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1517 State.IntPointerInfo, MVT::i8); 1518 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1519 State.FloatPointerInfo); 1520 } 1521 1522 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1523 SDLoc DL(Node); 1524 SDValue Mag = Node->getOperand(0); 1525 SDValue Sign = Node->getOperand(1); 1526 1527 // Get sign bit into an integer value. 1528 FloatSignAsInt SignAsInt; 1529 getSignAsIntValue(SignAsInt, DL, Sign); 1530 1531 EVT IntVT = SignAsInt.IntValue.getValueType(); 1532 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1533 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1534 SignMask); 1535 1536 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1537 EVT FloatVT = Mag.getValueType(); 1538 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1539 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1540 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1541 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1542 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1543 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1544 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1545 } 1546 1547 // Transform Mag value to integer, and clear the sign bit. 1548 FloatSignAsInt MagAsInt; 1549 getSignAsIntValue(MagAsInt, DL, Mag); 1550 EVT MagVT = MagAsInt.IntValue.getValueType(); 1551 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1552 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1553 ClearSignMask); 1554 1555 // Get the signbit at the right position for MagAsInt. 1556 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1557 EVT ShiftVT = IntVT; 1558 if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) { 1559 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1560 ShiftVT = MagVT; 1561 } 1562 if (ShiftAmount > 0) { 1563 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); 1564 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); 1565 } else if (ShiftAmount < 0) { 1566 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); 1567 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); 1568 } 1569 if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) { 1570 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1571 } 1572 1573 // Store the part with the modified sign and convert back to float. 1574 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1575 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1576 } 1577 1578 SDValue SelectionDAGLegalize::ExpandFNEG(SDNode *Node) const { 1579 // Get the sign bit as an integer. 1580 SDLoc DL(Node); 1581 FloatSignAsInt SignAsInt; 1582 getSignAsIntValue(SignAsInt, DL, Node->getOperand(0)); 1583 EVT IntVT = SignAsInt.IntValue.getValueType(); 1584 1585 // Flip the sign. 1586 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1587 SDValue SignFlip = 1588 DAG.getNode(ISD::XOR, DL, IntVT, SignAsInt.IntValue, SignMask); 1589 1590 // Convert back to float. 1591 return modifySignAsInt(SignAsInt, DL, SignFlip); 1592 } 1593 1594 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1595 SDLoc DL(Node); 1596 SDValue Value = Node->getOperand(0); 1597 1598 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1599 EVT FloatVT = Value.getValueType(); 1600 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1601 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1602 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1603 } 1604 1605 // Transform value to integer, clear the sign bit and transform back. 1606 FloatSignAsInt ValueAsInt; 1607 getSignAsIntValue(ValueAsInt, DL, Value); 1608 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1609 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1610 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1611 ClearSignMask); 1612 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1613 } 1614 1615 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1616 SmallVectorImpl<SDValue> &Results) { 1617 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1618 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1619 " not tell us which reg is the stack pointer!"); 1620 SDLoc dl(Node); 1621 EVT VT = Node->getValueType(0); 1622 SDValue Tmp1 = SDValue(Node, 0); 1623 SDValue Tmp2 = SDValue(Node, 1); 1624 SDValue Tmp3 = Node->getOperand(2); 1625 SDValue Chain = Tmp1.getOperand(0); 1626 1627 // Chain the dynamic stack allocation so that it doesn't modify the stack 1628 // pointer when other instructions are using the stack. 1629 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1630 1631 SDValue Size = Tmp2.getOperand(1); 1632 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1633 Chain = SP.getValue(1); 1634 Align Alignment = cast<ConstantSDNode>(Tmp3)->getAlignValue(); 1635 const TargetFrameLowering *TFL = DAG.getSubtarget().getFrameLowering(); 1636 unsigned Opc = 1637 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 1638 ISD::ADD : ISD::SUB; 1639 1640 Align StackAlign = TFL->getStackAlign(); 1641 Tmp1 = DAG.getNode(Opc, dl, VT, SP, Size); // Value 1642 if (Alignment > StackAlign) 1643 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1644 DAG.getConstant(-Alignment.value(), dl, VT)); 1645 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1646 1647 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1648 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1649 1650 Results.push_back(Tmp1); 1651 Results.push_back(Tmp2); 1652 } 1653 1654 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current 1655 /// target. 1656 /// 1657 /// If the SETCC has been legalized using AND / OR, then the legalized node 1658 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert 1659 /// will be set to false. 1660 /// 1661 /// If the SETCC has been legalized by using getSetCCSwappedOperands(), 1662 /// then the values of LHS and RHS will be swapped, CC will be set to the 1663 /// new condition, and NeedInvert will be set to false. 1664 /// 1665 /// If the SETCC has been legalized using the inverse condcode, then LHS and 1666 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert 1667 /// will be set to true. The caller must invert the result of the SETCC with 1668 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect 1669 /// of a true/false result. 1670 /// 1671 /// \returns true if the SetCC has been legalized, false if it hasn't. 1672 bool SelectionDAGLegalize::LegalizeSetCCCondCode( 1673 EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, bool &NeedInvert, 1674 const SDLoc &dl, SDValue &Chain, bool IsSignaling) { 1675 MVT OpVT = LHS.getSimpleValueType(); 1676 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1677 NeedInvert = false; 1678 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1679 default: llvm_unreachable("Unknown condition code action!"); 1680 case TargetLowering::Legal: 1681 // Nothing to do. 1682 break; 1683 case TargetLowering::Expand: { 1684 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 1685 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1686 std::swap(LHS, RHS); 1687 CC = DAG.getCondCode(InvCC); 1688 return true; 1689 } 1690 // Swapping operands didn't work. Try inverting the condition. 1691 bool NeedSwap = false; 1692 InvCC = getSetCCInverse(CCCode, OpVT); 1693 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1694 // If inverting the condition is not enough, try swapping operands 1695 // on top of it. 1696 InvCC = ISD::getSetCCSwappedOperands(InvCC); 1697 NeedSwap = true; 1698 } 1699 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1700 CC = DAG.getCondCode(InvCC); 1701 NeedInvert = true; 1702 if (NeedSwap) 1703 std::swap(LHS, RHS); 1704 return true; 1705 } 1706 1707 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1708 unsigned Opc = 0; 1709 switch (CCCode) { 1710 default: llvm_unreachable("Don't know how to expand this condition!"); 1711 case ISD::SETO: 1712 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) 1713 && "If SETO is expanded, SETOEQ must be legal!"); 1714 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; 1715 case ISD::SETUO: 1716 assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT) 1717 && "If SETUO is expanded, SETUNE must be legal!"); 1718 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break; 1719 case ISD::SETOEQ: 1720 case ISD::SETOGT: 1721 case ISD::SETOGE: 1722 case ISD::SETOLT: 1723 case ISD::SETOLE: 1724 case ISD::SETONE: 1725 case ISD::SETUEQ: 1726 case ISD::SETUNE: 1727 case ISD::SETUGT: 1728 case ISD::SETUGE: 1729 case ISD::SETULT: 1730 case ISD::SETULE: 1731 // If we are floating point, assign and break, otherwise fall through. 1732 if (!OpVT.isInteger()) { 1733 // We can use the 4th bit to tell if we are the unordered 1734 // or ordered version of the opcode. 1735 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 1736 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 1737 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 1738 break; 1739 } 1740 // Fallthrough if we are unsigned integer. 1741 LLVM_FALLTHROUGH; 1742 case ISD::SETLE: 1743 case ISD::SETGT: 1744 case ISD::SETGE: 1745 case ISD::SETLT: 1746 case ISD::SETNE: 1747 case ISD::SETEQ: 1748 // If all combinations of inverting the condition and swapping operands 1749 // didn't work then we have no means to expand the condition. 1750 llvm_unreachable("Don't know how to expand this condition!"); 1751 } 1752 1753 SDValue SetCC1, SetCC2; 1754 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 1755 // If we aren't the ordered or unorder operation, 1756 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 1757 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, 1758 IsSignaling); 1759 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, 1760 IsSignaling); 1761 } else { 1762 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 1763 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, 1764 IsSignaling); 1765 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, 1766 IsSignaling); 1767 } 1768 if (Chain) 1769 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 1770 SetCC2.getValue(1)); 1771 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1772 RHS = SDValue(); 1773 CC = SDValue(); 1774 return true; 1775 } 1776 } 1777 return false; 1778 } 1779 1780 /// Emit a store/load combination to the stack. This stores 1781 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1782 /// a load from the stack slot to DestVT, extending it if needed. 1783 /// The resultant code need not be legal. 1784 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1785 EVT DestVT, const SDLoc &dl) { 1786 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode()); 1787 } 1788 1789 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1790 EVT DestVT, const SDLoc &dl, 1791 SDValue Chain) { 1792 // Create the stack frame object. 1793 Align SrcAlign = DAG.getDataLayout().getPrefTypeAlign( 1794 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1795 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT.getStoreSize(), SrcAlign); 1796 1797 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1798 int SPFI = StackPtrFI->getIndex(); 1799 MachinePointerInfo PtrInfo = 1800 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1801 1802 unsigned SrcSize = SrcOp.getValueSizeInBits(); 1803 unsigned SlotSize = SlotVT.getSizeInBits(); 1804 unsigned DestSize = DestVT.getSizeInBits(); 1805 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1806 Align DestAlign = DAG.getDataLayout().getPrefTypeAlign(DestType); 1807 1808 // Emit a store to the stack slot. Use a truncstore if the input value is 1809 // later than DestVT. 1810 SDValue Store; 1811 1812 if (SrcSize > SlotSize) 1813 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo, 1814 SlotVT, SrcAlign); 1815 else { 1816 assert(SrcSize == SlotSize && "Invalid store"); 1817 Store = 1818 DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1819 } 1820 1821 // Result is a load from the stack slot. 1822 if (SlotSize == DestSize) 1823 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1824 1825 assert(SlotSize < DestSize && "Unknown extension!"); 1826 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1827 DestAlign); 1828 } 1829 1830 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1831 SDLoc dl(Node); 1832 // Create a vector sized/aligned stack slot, store the value to element #0, 1833 // then load the whole vector back out. 1834 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1835 1836 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1837 int SPFI = StackPtrFI->getIndex(); 1838 1839 SDValue Ch = DAG.getTruncStore( 1840 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1841 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1842 Node->getValueType(0).getVectorElementType()); 1843 return DAG.getLoad( 1844 Node->getValueType(0), dl, Ch, StackPtr, 1845 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1846 } 1847 1848 static bool 1849 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1850 const TargetLowering &TLI, SDValue &Res) { 1851 unsigned NumElems = Node->getNumOperands(); 1852 SDLoc dl(Node); 1853 EVT VT = Node->getValueType(0); 1854 1855 // Try to group the scalars into pairs, shuffle the pairs together, then 1856 // shuffle the pairs of pairs together, etc. until the vector has 1857 // been built. This will work only if all of the necessary shuffle masks 1858 // are legal. 1859 1860 // We do this in two phases; first to check the legality of the shuffles, 1861 // and next, assuming that all shuffles are legal, to create the new nodes. 1862 for (int Phase = 0; Phase < 2; ++Phase) { 1863 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1864 NewIntermedVals; 1865 for (unsigned i = 0; i < NumElems; ++i) { 1866 SDValue V = Node->getOperand(i); 1867 if (V.isUndef()) 1868 continue; 1869 1870 SDValue Vec; 1871 if (Phase) 1872 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1873 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1874 } 1875 1876 while (IntermedVals.size() > 2) { 1877 NewIntermedVals.clear(); 1878 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1879 // This vector and the next vector are shuffled together (simply to 1880 // append the one to the other). 1881 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1882 1883 SmallVector<int, 16> FinalIndices; 1884 FinalIndices.reserve(IntermedVals[i].second.size() + 1885 IntermedVals[i+1].second.size()); 1886 1887 int k = 0; 1888 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1889 ++j, ++k) { 1890 ShuffleVec[k] = j; 1891 FinalIndices.push_back(IntermedVals[i].second[j]); 1892 } 1893 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1894 ++j, ++k) { 1895 ShuffleVec[k] = NumElems + j; 1896 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1897 } 1898 1899 SDValue Shuffle; 1900 if (Phase) 1901 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1902 IntermedVals[i+1].first, 1903 ShuffleVec); 1904 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1905 return false; 1906 NewIntermedVals.push_back( 1907 std::make_pair(Shuffle, std::move(FinalIndices))); 1908 } 1909 1910 // If we had an odd number of defined values, then append the last 1911 // element to the array of new vectors. 1912 if ((IntermedVals.size() & 1) != 0) 1913 NewIntermedVals.push_back(IntermedVals.back()); 1914 1915 IntermedVals.swap(NewIntermedVals); 1916 } 1917 1918 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1919 "Invalid number of intermediate vectors"); 1920 SDValue Vec1 = IntermedVals[0].first; 1921 SDValue Vec2; 1922 if (IntermedVals.size() > 1) 1923 Vec2 = IntermedVals[1].first; 1924 else if (Phase) 1925 Vec2 = DAG.getUNDEF(VT); 1926 1927 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1928 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1929 ShuffleVec[IntermedVals[0].second[i]] = i; 1930 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1931 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1932 1933 if (Phase) 1934 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1935 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1936 return false; 1937 } 1938 1939 return true; 1940 } 1941 1942 /// Expand a BUILD_VECTOR node on targets that don't 1943 /// support the operation, but do support the resultant vector type. 1944 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1945 unsigned NumElems = Node->getNumOperands(); 1946 SDValue Value1, Value2; 1947 SDLoc dl(Node); 1948 EVT VT = Node->getValueType(0); 1949 EVT OpVT = Node->getOperand(0).getValueType(); 1950 EVT EltVT = VT.getVectorElementType(); 1951 1952 // If the only non-undef value is the low element, turn this into a 1953 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1954 bool isOnlyLowElement = true; 1955 bool MoreThanTwoValues = false; 1956 bool isConstant = true; 1957 for (unsigned i = 0; i < NumElems; ++i) { 1958 SDValue V = Node->getOperand(i); 1959 if (V.isUndef()) 1960 continue; 1961 if (i > 0) 1962 isOnlyLowElement = false; 1963 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1964 isConstant = false; 1965 1966 if (!Value1.getNode()) { 1967 Value1 = V; 1968 } else if (!Value2.getNode()) { 1969 if (V != Value1) 1970 Value2 = V; 1971 } else if (V != Value1 && V != Value2) { 1972 MoreThanTwoValues = true; 1973 } 1974 } 1975 1976 if (!Value1.getNode()) 1977 return DAG.getUNDEF(VT); 1978 1979 if (isOnlyLowElement) 1980 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1981 1982 // If all elements are constants, create a load from the constant pool. 1983 if (isConstant) { 1984 SmallVector<Constant*, 16> CV; 1985 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1986 if (ConstantFPSDNode *V = 1987 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1988 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1989 } else if (ConstantSDNode *V = 1990 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1991 if (OpVT==EltVT) 1992 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1993 else { 1994 // If OpVT and EltVT don't match, EltVT is not legal and the 1995 // element values have been promoted/truncated earlier. Undo this; 1996 // we don't want a v16i8 to become a v16i32 for example. 1997 const ConstantInt *CI = V->getConstantIntValue(); 1998 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1999 CI->getZExtValue())); 2000 } 2001 } else { 2002 assert(Node->getOperand(i).isUndef()); 2003 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 2004 CV.push_back(UndefValue::get(OpNTy)); 2005 } 2006 } 2007 Constant *CP = ConstantVector::get(CV); 2008 SDValue CPIdx = 2009 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 2010 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 2011 return DAG.getLoad( 2012 VT, dl, DAG.getEntryNode(), CPIdx, 2013 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2014 Alignment); 2015 } 2016 2017 SmallSet<SDValue, 16> DefinedValues; 2018 for (unsigned i = 0; i < NumElems; ++i) { 2019 if (Node->getOperand(i).isUndef()) 2020 continue; 2021 DefinedValues.insert(Node->getOperand(i)); 2022 } 2023 2024 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 2025 if (!MoreThanTwoValues) { 2026 SmallVector<int, 8> ShuffleVec(NumElems, -1); 2027 for (unsigned i = 0; i < NumElems; ++i) { 2028 SDValue V = Node->getOperand(i); 2029 if (V.isUndef()) 2030 continue; 2031 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 2032 } 2033 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 2034 // Get the splatted value into the low element of a vector register. 2035 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 2036 SDValue Vec2; 2037 if (Value2.getNode()) 2038 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 2039 else 2040 Vec2 = DAG.getUNDEF(VT); 2041 2042 // Return shuffle(LowValVec, undef, <0,0,0,0>) 2043 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 2044 } 2045 } else { 2046 SDValue Res; 2047 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 2048 return Res; 2049 } 2050 } 2051 2052 // Otherwise, we can't handle this case efficiently. 2053 return ExpandVectorBuildThroughStack(Node); 2054 } 2055 2056 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) { 2057 SDLoc DL(Node); 2058 EVT VT = Node->getValueType(0); 2059 SDValue SplatVal = Node->getOperand(0); 2060 2061 return DAG.getSplatBuildVector(VT, DL, SplatVal); 2062 } 2063 2064 // Expand a node into a call to a libcall. If the result value 2065 // does not fit into a register, return the lo part and set the hi part to the 2066 // by-reg argument. If it does fit into a single register, return the result 2067 // and leave the Hi part unset. 2068 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2069 bool isSigned) { 2070 TargetLowering::ArgListTy Args; 2071 TargetLowering::ArgListEntry Entry; 2072 for (const SDValue &Op : Node->op_values()) { 2073 EVT ArgVT = Op.getValueType(); 2074 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2075 Entry.Node = Op; 2076 Entry.Ty = ArgTy; 2077 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2078 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2079 Args.push_back(Entry); 2080 } 2081 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2082 TLI.getPointerTy(DAG.getDataLayout())); 2083 2084 EVT RetVT = Node->getValueType(0); 2085 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2086 2087 // By default, the input chain to this libcall is the entry node of the 2088 // function. If the libcall is going to be emitted as a tail call then 2089 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2090 // node which is being folded has a non-entry input chain. 2091 SDValue InChain = DAG.getEntryNode(); 2092 2093 // isTailCall may be true since the callee does not reference caller stack 2094 // frame. Check if it's in the right position and that the return types match. 2095 SDValue TCChain = InChain; 2096 const Function &F = DAG.getMachineFunction().getFunction(); 2097 bool isTailCall = 2098 TLI.isInTailCallPosition(DAG, Node, TCChain) && 2099 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 2100 if (isTailCall) 2101 InChain = TCChain; 2102 2103 TargetLowering::CallLoweringInfo CLI(DAG); 2104 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2105 CLI.setDebugLoc(SDLoc(Node)) 2106 .setChain(InChain) 2107 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2108 std::move(Args)) 2109 .setTailCall(isTailCall) 2110 .setSExtResult(signExtend) 2111 .setZExtResult(!signExtend) 2112 .setIsPostTypeLegalization(true); 2113 2114 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2115 2116 if (!CallInfo.second.getNode()) { 2117 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG)); 2118 // It's a tailcall, return the chain (which is the DAG root). 2119 return DAG.getRoot(); 2120 } 2121 2122 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG)); 2123 return CallInfo.first; 2124 } 2125 2126 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2127 RTLIB::Libcall Call_F32, 2128 RTLIB::Libcall Call_F64, 2129 RTLIB::Libcall Call_F80, 2130 RTLIB::Libcall Call_F128, 2131 RTLIB::Libcall Call_PPCF128, 2132 SmallVectorImpl<SDValue> &Results) { 2133 RTLIB::Libcall LC; 2134 switch (Node->getSimpleValueType(0).SimpleTy) { 2135 default: llvm_unreachable("Unexpected request for libcall!"); 2136 case MVT::f32: LC = Call_F32; break; 2137 case MVT::f64: LC = Call_F64; break; 2138 case MVT::f80: LC = Call_F80; break; 2139 case MVT::f128: LC = Call_F128; break; 2140 case MVT::ppcf128: LC = Call_PPCF128; break; 2141 } 2142 2143 if (Node->isStrictFPOpcode()) { 2144 EVT RetVT = Node->getValueType(0); 2145 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); 2146 TargetLowering::MakeLibCallOptions CallOptions; 2147 // FIXME: This doesn't support tail calls. 2148 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2149 Ops, CallOptions, 2150 SDLoc(Node), 2151 Node->getOperand(0)); 2152 Results.push_back(Tmp.first); 2153 Results.push_back(Tmp.second); 2154 } else { 2155 SDValue Tmp = ExpandLibCall(LC, Node, false); 2156 Results.push_back(Tmp); 2157 } 2158 } 2159 2160 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2161 RTLIB::Libcall Call_I8, 2162 RTLIB::Libcall Call_I16, 2163 RTLIB::Libcall Call_I32, 2164 RTLIB::Libcall Call_I64, 2165 RTLIB::Libcall Call_I128) { 2166 RTLIB::Libcall LC; 2167 switch (Node->getSimpleValueType(0).SimpleTy) { 2168 default: llvm_unreachable("Unexpected request for libcall!"); 2169 case MVT::i8: LC = Call_I8; break; 2170 case MVT::i16: LC = Call_I16; break; 2171 case MVT::i32: LC = Call_I32; break; 2172 case MVT::i64: LC = Call_I64; break; 2173 case MVT::i128: LC = Call_I128; break; 2174 } 2175 return ExpandLibCall(LC, Node, isSigned); 2176 } 2177 2178 /// Expand the node to a libcall based on first argument type (for instance 2179 /// lround and its variant). 2180 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node, 2181 RTLIB::Libcall Call_F32, 2182 RTLIB::Libcall Call_F64, 2183 RTLIB::Libcall Call_F80, 2184 RTLIB::Libcall Call_F128, 2185 RTLIB::Libcall Call_PPCF128, 2186 SmallVectorImpl<SDValue> &Results) { 2187 EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType(); 2188 2189 RTLIB::Libcall LC; 2190 switch (InVT.getSimpleVT().SimpleTy) { 2191 default: llvm_unreachable("Unexpected request for libcall!"); 2192 case MVT::f32: LC = Call_F32; break; 2193 case MVT::f64: LC = Call_F64; break; 2194 case MVT::f80: LC = Call_F80; break; 2195 case MVT::f128: LC = Call_F128; break; 2196 case MVT::ppcf128: LC = Call_PPCF128; break; 2197 } 2198 2199 if (Node->isStrictFPOpcode()) { 2200 EVT RetVT = Node->getValueType(0); 2201 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); 2202 TargetLowering::MakeLibCallOptions CallOptions; 2203 // FIXME: This doesn't support tail calls. 2204 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2205 Ops, CallOptions, 2206 SDLoc(Node), 2207 Node->getOperand(0)); 2208 Results.push_back(Tmp.first); 2209 Results.push_back(Tmp.second); 2210 } else { 2211 SDValue Tmp = ExpandLibCall(LC, Node, false); 2212 Results.push_back(Tmp); 2213 } 2214 } 2215 2216 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2217 void 2218 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2219 SmallVectorImpl<SDValue> &Results) { 2220 unsigned Opcode = Node->getOpcode(); 2221 bool isSigned = Opcode == ISD::SDIVREM; 2222 2223 RTLIB::Libcall LC; 2224 switch (Node->getSimpleValueType(0).SimpleTy) { 2225 default: llvm_unreachable("Unexpected request for libcall!"); 2226 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2227 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2228 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2229 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2230 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2231 } 2232 2233 // The input chain to this libcall is the entry node of the function. 2234 // Legalizing the call will automatically add the previous call to the 2235 // dependence. 2236 SDValue InChain = DAG.getEntryNode(); 2237 2238 EVT RetVT = Node->getValueType(0); 2239 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2240 2241 TargetLowering::ArgListTy Args; 2242 TargetLowering::ArgListEntry Entry; 2243 for (const SDValue &Op : Node->op_values()) { 2244 EVT ArgVT = Op.getValueType(); 2245 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2246 Entry.Node = Op; 2247 Entry.Ty = ArgTy; 2248 Entry.IsSExt = isSigned; 2249 Entry.IsZExt = !isSigned; 2250 Args.push_back(Entry); 2251 } 2252 2253 // Also pass the return address of the remainder. 2254 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2255 Entry.Node = FIPtr; 2256 Entry.Ty = RetTy->getPointerTo(); 2257 Entry.IsSExt = isSigned; 2258 Entry.IsZExt = !isSigned; 2259 Args.push_back(Entry); 2260 2261 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2262 TLI.getPointerTy(DAG.getDataLayout())); 2263 2264 SDLoc dl(Node); 2265 TargetLowering::CallLoweringInfo CLI(DAG); 2266 CLI.setDebugLoc(dl) 2267 .setChain(InChain) 2268 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2269 std::move(Args)) 2270 .setSExtResult(isSigned) 2271 .setZExtResult(!isSigned); 2272 2273 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2274 2275 // Remainder is loaded back from the stack frame. 2276 SDValue Rem = 2277 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2278 Results.push_back(CallInfo.first); 2279 Results.push_back(Rem); 2280 } 2281 2282 /// Return true if sincos libcall is available. 2283 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2284 RTLIB::Libcall LC; 2285 switch (Node->getSimpleValueType(0).SimpleTy) { 2286 default: llvm_unreachable("Unexpected request for libcall!"); 2287 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2288 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2289 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2290 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2291 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2292 } 2293 return TLI.getLibcallName(LC) != nullptr; 2294 } 2295 2296 /// Only issue sincos libcall if both sin and cos are needed. 2297 static bool useSinCos(SDNode *Node) { 2298 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2299 ? ISD::FCOS : ISD::FSIN; 2300 2301 SDValue Op0 = Node->getOperand(0); 2302 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2303 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2304 SDNode *User = *UI; 2305 if (User == Node) 2306 continue; 2307 // The other user might have been turned into sincos already. 2308 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2309 return true; 2310 } 2311 return false; 2312 } 2313 2314 /// Issue libcalls to sincos to compute sin / cos pairs. 2315 void 2316 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2317 SmallVectorImpl<SDValue> &Results) { 2318 RTLIB::Libcall LC; 2319 switch (Node->getSimpleValueType(0).SimpleTy) { 2320 default: llvm_unreachable("Unexpected request for libcall!"); 2321 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2322 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2323 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2324 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2325 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2326 } 2327 2328 // The input chain to this libcall is the entry node of the function. 2329 // Legalizing the call will automatically add the previous call to the 2330 // dependence. 2331 SDValue InChain = DAG.getEntryNode(); 2332 2333 EVT RetVT = Node->getValueType(0); 2334 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2335 2336 TargetLowering::ArgListTy Args; 2337 TargetLowering::ArgListEntry Entry; 2338 2339 // Pass the argument. 2340 Entry.Node = Node->getOperand(0); 2341 Entry.Ty = RetTy; 2342 Entry.IsSExt = false; 2343 Entry.IsZExt = false; 2344 Args.push_back(Entry); 2345 2346 // Pass the return address of sin. 2347 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2348 Entry.Node = SinPtr; 2349 Entry.Ty = RetTy->getPointerTo(); 2350 Entry.IsSExt = false; 2351 Entry.IsZExt = false; 2352 Args.push_back(Entry); 2353 2354 // Also pass the return address of the cos. 2355 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2356 Entry.Node = CosPtr; 2357 Entry.Ty = RetTy->getPointerTo(); 2358 Entry.IsSExt = false; 2359 Entry.IsZExt = false; 2360 Args.push_back(Entry); 2361 2362 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2363 TLI.getPointerTy(DAG.getDataLayout())); 2364 2365 SDLoc dl(Node); 2366 TargetLowering::CallLoweringInfo CLI(DAG); 2367 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2368 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2369 std::move(Args)); 2370 2371 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2372 2373 Results.push_back( 2374 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2375 Results.push_back( 2376 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2377 } 2378 2379 /// This function is responsible for legalizing a 2380 /// INT_TO_FP operation of the specified operand when the target requests that 2381 /// we expand it. At this point, we know that the result and operand types are 2382 /// legal for the target. 2383 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node, 2384 SDValue &Chain) { 2385 bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 2386 Node->getOpcode() == ISD::SINT_TO_FP); 2387 EVT DestVT = Node->getValueType(0); 2388 SDLoc dl(Node); 2389 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 2390 SDValue Op0 = Node->getOperand(OpNo); 2391 EVT SrcVT = Op0.getValueType(); 2392 2393 // TODO: Should any fast-math-flags be set for the created nodes? 2394 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2395 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { 2396 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2397 "expansion\n"); 2398 2399 // Get the stack frame index of a 8 byte buffer. 2400 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2401 2402 SDValue Lo = Op0; 2403 // if signed map to unsigned space 2404 if (isSigned) { 2405 // Invert sign bit (signed to unsigned mapping). 2406 Lo = DAG.getNode(ISD::XOR, dl, MVT::i32, Lo, 2407 DAG.getConstant(0x80000000u, dl, MVT::i32)); 2408 } 2409 // Initial hi portion of constructed double. 2410 SDValue Hi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2411 2412 // If this a big endian target, swap the lo and high data. 2413 if (DAG.getDataLayout().isBigEndian()) 2414 std::swap(Lo, Hi); 2415 2416 SDValue MemChain = DAG.getEntryNode(); 2417 2418 // Store the lo of the constructed double. 2419 SDValue Store1 = DAG.getStore(MemChain, dl, Lo, StackSlot, 2420 MachinePointerInfo()); 2421 // Store the hi of the constructed double. 2422 SDValue HiPtr = DAG.getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), dl); 2423 SDValue Store2 = 2424 DAG.getStore(MemChain, dl, Hi, HiPtr, MachinePointerInfo()); 2425 MemChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 2426 2427 // load the constructed double 2428 SDValue Load = 2429 DAG.getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo()); 2430 // FP constant to bias correct the final result 2431 SDValue Bias = DAG.getConstantFP(isSigned ? 2432 BitsToDouble(0x4330000080000000ULL) : 2433 BitsToDouble(0x4330000000000000ULL), 2434 dl, MVT::f64); 2435 // Subtract the bias and get the final result. 2436 SDValue Sub; 2437 SDValue Result; 2438 if (Node->isStrictFPOpcode()) { 2439 Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other}, 2440 {Node->getOperand(0), Load, Bias}); 2441 Chain = Sub.getValue(1); 2442 if (DestVT != Sub.getValueType()) { 2443 std::pair<SDValue, SDValue> ResultPair; 2444 ResultPair = 2445 DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT); 2446 Result = ResultPair.first; 2447 Chain = ResultPair.second; 2448 } 2449 else 2450 Result = Sub; 2451 } else { 2452 Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2453 Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); 2454 } 2455 return Result; 2456 } 2457 // Code below here assumes !isSigned without checking again. 2458 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2459 2460 // TODO: Generalize this for use with other types. 2461 if ((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) { 2462 LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32\n"); 2463 // For unsigned conversions, convert them to signed conversions using the 2464 // algorithm from the x86_64 __floatundisf in compiler_rt. That method 2465 // should be valid for i32->f32 as well. 2466 2467 // TODO: This really should be implemented using a branch rather than a 2468 // select. We happen to get lucky and machinesink does the right 2469 // thing most of the time. This would be a good candidate for a 2470 // pseudo-op, or, even better, for whole-function isel. 2471 EVT SetCCVT = getSetCCResultType(SrcVT); 2472 2473 SDValue SignBitTest = DAG.getSetCC( 2474 dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2475 2476 EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout()); 2477 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 2478 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst); 2479 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 2480 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst); 2481 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 2482 2483 SDValue Slow, Fast; 2484 if (Node->isStrictFPOpcode()) { 2485 // In strict mode, we must avoid spurious exceptions, and therefore 2486 // must make sure to only emit a single STRICT_SINT_TO_FP. 2487 SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0); 2488 Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2489 { Node->getOperand(0), InCvt }); 2490 Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2491 { Fast.getValue(1), Fast, Fast }); 2492 Chain = Slow.getValue(1); 2493 // The STRICT_SINT_TO_FP inherits the exception mode from the 2494 // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can 2495 // never raise any exception. 2496 SDNodeFlags Flags; 2497 Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept()); 2498 Fast->setFlags(Flags); 2499 Flags.setNoFPExcept(true); 2500 Slow->setFlags(Flags); 2501 } else { 2502 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or); 2503 Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt); 2504 Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2505 } 2506 2507 return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast); 2508 } 2509 2510 // The following optimization is valid only if every value in SrcVT (when 2511 // treated as signed) is representable in DestVT. Check that the mantissa 2512 // size of DestVT is >= than the number of bits in SrcVT -1. 2513 assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >= 2514 SrcVT.getSizeInBits() - 1 && 2515 "Cannot perform lossless SINT_TO_FP!"); 2516 2517 SDValue Tmp1; 2518 if (Node->isStrictFPOpcode()) { 2519 Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2520 { Node->getOperand(0), Op0 }); 2521 } else 2522 Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2523 2524 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, 2525 DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2526 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2527 Four = DAG.getIntPtrConstant(4, dl); 2528 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2529 SignSet, Four, Zero); 2530 2531 // If the sign bit of the integer is set, the large number will be treated 2532 // as a negative number. To counteract this, the dynamic code adds an 2533 // offset depending on the data type. 2534 uint64_t FF; 2535 switch (SrcVT.getSimpleVT().SimpleTy) { 2536 default: llvm_unreachable("Unsupported integer type!"); 2537 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2538 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2539 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2540 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2541 } 2542 if (DAG.getDataLayout().isLittleEndian()) 2543 FF <<= 32; 2544 Constant *FudgeFactor = ConstantInt::get( 2545 Type::getInt64Ty(*DAG.getContext()), FF); 2546 2547 SDValue CPIdx = 2548 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2549 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 2550 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2551 Alignment = commonAlignment(Alignment, 4); 2552 SDValue FudgeInReg; 2553 if (DestVT == MVT::f32) 2554 FudgeInReg = DAG.getLoad( 2555 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2556 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2557 Alignment); 2558 else { 2559 SDValue Load = DAG.getExtLoad( 2560 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2561 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2562 Alignment); 2563 HandleSDNode Handle(Load); 2564 LegalizeOp(Load.getNode()); 2565 FudgeInReg = Handle.getValue(); 2566 } 2567 2568 if (Node->isStrictFPOpcode()) { 2569 SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2570 { Tmp1.getValue(1), Tmp1, FudgeInReg }); 2571 Chain = Result.getValue(1); 2572 return Result; 2573 } 2574 2575 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2576 } 2577 2578 /// This function is responsible for legalizing a 2579 /// *INT_TO_FP operation of the specified operand when the target requests that 2580 /// we promote it. At this point, we know that the result and operand types are 2581 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2582 /// operation that takes a larger input. 2583 void SelectionDAGLegalize::PromoteLegalINT_TO_FP( 2584 SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) { 2585 bool IsStrict = N->isStrictFPOpcode(); 2586 bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP || 2587 N->getOpcode() == ISD::STRICT_SINT_TO_FP; 2588 EVT DestVT = N->getValueType(0); 2589 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2590 unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP; 2591 unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP; 2592 2593 // First step, figure out the appropriate *INT_TO_FP operation to use. 2594 EVT NewInTy = LegalOp.getValueType(); 2595 2596 unsigned OpToUse = 0; 2597 2598 // Scan for the appropriate larger type to use. 2599 while (true) { 2600 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2601 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2602 2603 // If the target supports SINT_TO_FP of this type, use it. 2604 if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) { 2605 OpToUse = SIntOp; 2606 break; 2607 } 2608 if (IsSigned) 2609 continue; 2610 2611 // If the target supports UINT_TO_FP of this type, use it. 2612 if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) { 2613 OpToUse = UIntOp; 2614 break; 2615 } 2616 2617 // Otherwise, try a larger type. 2618 } 2619 2620 // Okay, we found the operation and type to use. Zero extend our input to the 2621 // desired type then run the operation on it. 2622 if (IsStrict) { 2623 SDValue Res = 2624 DAG.getNode(OpToUse, dl, {DestVT, MVT::Other}, 2625 {N->getOperand(0), 2626 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2627 dl, NewInTy, LegalOp)}); 2628 Results.push_back(Res); 2629 Results.push_back(Res.getValue(1)); 2630 return; 2631 } 2632 2633 Results.push_back( 2634 DAG.getNode(OpToUse, dl, DestVT, 2635 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2636 dl, NewInTy, LegalOp))); 2637 } 2638 2639 /// This function is responsible for legalizing a 2640 /// FP_TO_*INT operation of the specified operand when the target requests that 2641 /// we promote it. At this point, we know that the result and operand types are 2642 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2643 /// operation that returns a larger result. 2644 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 2645 SmallVectorImpl<SDValue> &Results) { 2646 bool IsStrict = N->isStrictFPOpcode(); 2647 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 2648 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 2649 EVT DestVT = N->getValueType(0); 2650 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2651 // First step, figure out the appropriate FP_TO*INT operation to use. 2652 EVT NewOutTy = DestVT; 2653 2654 unsigned OpToUse = 0; 2655 2656 // Scan for the appropriate larger type to use. 2657 while (true) { 2658 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2659 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2660 2661 // A larger signed type can hold all unsigned values of the requested type, 2662 // so using FP_TO_SINT is valid 2663 OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT; 2664 if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2665 break; 2666 2667 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2668 OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT; 2669 if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2670 break; 2671 2672 // Otherwise, try a larger type. 2673 } 2674 2675 // Okay, we found the operation and type to use. 2676 SDValue Operation; 2677 if (IsStrict) { 2678 SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other); 2679 Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp); 2680 } else 2681 Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2682 2683 // Truncate the result of the extended FP_TO_*INT operation to the desired 2684 // size. 2685 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2686 Results.push_back(Trunc); 2687 if (IsStrict) 2688 Results.push_back(Operation.getValue(1)); 2689 } 2690 2691 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts. 2692 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) { 2693 EVT VT = Op.getValueType(); 2694 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2695 unsigned Sz = VT.getScalarSizeInBits(); 2696 2697 SDValue Tmp, Tmp2, Tmp3; 2698 2699 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 2700 // and finally the i1 pairs. 2701 // TODO: We can easily support i4/i2 legal types if any target ever does. 2702 if (Sz >= 8 && isPowerOf2_32(Sz)) { 2703 // Create the masks - repeating the pattern every byte. 2704 APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0)); 2705 APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC)); 2706 APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA)); 2707 APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 2708 APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33)); 2709 APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55)); 2710 2711 // BSWAP if the type is wider than a single byte. 2712 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 2713 2714 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) 2715 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); 2716 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); 2717 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT)); 2718 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 2719 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2720 2721 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) 2722 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); 2723 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); 2724 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT)); 2725 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 2726 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2727 2728 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) 2729 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); 2730 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); 2731 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT)); 2732 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 2733 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2734 return Tmp; 2735 } 2736 2737 Tmp = DAG.getConstant(0, dl, VT); 2738 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 2739 if (I < J) 2740 Tmp2 = 2741 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 2742 else 2743 Tmp2 = 2744 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 2745 2746 APInt Shift(Sz, 1); 2747 Shift <<= J; 2748 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 2749 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 2750 } 2751 2752 return Tmp; 2753 } 2754 2755 /// Open code the operations for BSWAP of the specified operation. 2756 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) { 2757 EVT VT = Op.getValueType(); 2758 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2759 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2760 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 2761 default: llvm_unreachable("Unhandled Expand type in BSWAP!"); 2762 case MVT::i16: 2763 // Use a rotate by 8. This can be further expanded if necessary. 2764 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2765 case MVT::i32: 2766 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2767 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2768 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2769 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2770 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2771 DAG.getConstant(0xFF0000, dl, VT)); 2772 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 2773 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2774 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2775 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2776 case MVT::i64: 2777 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2778 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2779 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2780 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2781 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2782 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2783 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2784 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2785 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 2786 DAG.getConstant(255ULL<<48, dl, VT)); 2787 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 2788 DAG.getConstant(255ULL<<40, dl, VT)); 2789 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 2790 DAG.getConstant(255ULL<<32, dl, VT)); 2791 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 2792 DAG.getConstant(255ULL<<24, dl, VT)); 2793 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2794 DAG.getConstant(255ULL<<16, dl, VT)); 2795 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 2796 DAG.getConstant(255ULL<<8 , dl, VT)); 2797 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2798 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2799 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2800 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2801 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2802 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2803 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2804 } 2805 } 2806 2807 /// Open code the operations for PARITY of the specified operation. 2808 SDValue SelectionDAGLegalize::ExpandPARITY(SDValue Op, const SDLoc &dl) { 2809 EVT VT = Op.getValueType(); 2810 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2811 unsigned Sz = VT.getScalarSizeInBits(); 2812 2813 // If CTPOP is legal, use it. Otherwise use shifts and xor. 2814 SDValue Result; 2815 if (TLI.isOperationLegal(ISD::CTPOP, VT)) { 2816 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 2817 } else { 2818 Result = Op; 2819 for (unsigned i = Log2_32_Ceil(Sz); i != 0;) { 2820 SDValue Shift = DAG.getNode(ISD::SRL, dl, VT, Result, 2821 DAG.getConstant(1ULL << (--i), dl, ShVT)); 2822 Result = DAG.getNode(ISD::XOR, dl, VT, Result, Shift); 2823 } 2824 } 2825 2826 return DAG.getNode(ISD::AND, dl, VT, Result, DAG.getConstant(1, dl, VT)); 2827 } 2828 2829 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2830 LLVM_DEBUG(dbgs() << "Trying to expand node\n"); 2831 SmallVector<SDValue, 8> Results; 2832 SDLoc dl(Node); 2833 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2834 bool NeedInvert; 2835 switch (Node->getOpcode()) { 2836 case ISD::ABS: 2837 if (TLI.expandABS(Node, Tmp1, DAG)) 2838 Results.push_back(Tmp1); 2839 break; 2840 case ISD::CTPOP: 2841 if (TLI.expandCTPOP(Node, Tmp1, DAG)) 2842 Results.push_back(Tmp1); 2843 break; 2844 case ISD::CTLZ: 2845 case ISD::CTLZ_ZERO_UNDEF: 2846 if (TLI.expandCTLZ(Node, Tmp1, DAG)) 2847 Results.push_back(Tmp1); 2848 break; 2849 case ISD::CTTZ: 2850 case ISD::CTTZ_ZERO_UNDEF: 2851 if (TLI.expandCTTZ(Node, Tmp1, DAG)) 2852 Results.push_back(Tmp1); 2853 break; 2854 case ISD::BITREVERSE: 2855 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl)); 2856 break; 2857 case ISD::BSWAP: 2858 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2859 break; 2860 case ISD::PARITY: 2861 Results.push_back(ExpandPARITY(Node->getOperand(0), dl)); 2862 break; 2863 case ISD::FRAMEADDR: 2864 case ISD::RETURNADDR: 2865 case ISD::FRAME_TO_ARGS_OFFSET: 2866 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2867 break; 2868 case ISD::EH_DWARF_CFA: { 2869 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 2870 TLI.getPointerTy(DAG.getDataLayout())); 2871 SDValue Offset = DAG.getNode(ISD::ADD, dl, 2872 CfaArg.getValueType(), 2873 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 2874 CfaArg.getValueType()), 2875 CfaArg); 2876 SDValue FA = DAG.getNode( 2877 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 2878 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2879 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 2880 FA, Offset)); 2881 break; 2882 } 2883 case ISD::FLT_ROUNDS_: 2884 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2885 Results.push_back(Node->getOperand(0)); 2886 break; 2887 case ISD::EH_RETURN: 2888 case ISD::EH_LABEL: 2889 case ISD::PREFETCH: 2890 case ISD::VAEND: 2891 case ISD::EH_SJLJ_LONGJMP: 2892 // If the target didn't expand these, there's nothing to do, so just 2893 // preserve the chain and be done. 2894 Results.push_back(Node->getOperand(0)); 2895 break; 2896 case ISD::READCYCLECOUNTER: 2897 // If the target didn't expand this, just return 'zero' and preserve the 2898 // chain. 2899 Results.append(Node->getNumValues() - 1, 2900 DAG.getConstant(0, dl, Node->getValueType(0))); 2901 Results.push_back(Node->getOperand(0)); 2902 break; 2903 case ISD::EH_SJLJ_SETJMP: 2904 // If the target didn't expand this, just return 'zero' and preserve the 2905 // chain. 2906 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2907 Results.push_back(Node->getOperand(0)); 2908 break; 2909 case ISD::ATOMIC_LOAD: { 2910 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2911 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2912 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2913 SDValue Swap = DAG.getAtomicCmpSwap( 2914 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2915 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2916 cast<AtomicSDNode>(Node)->getMemOperand()); 2917 Results.push_back(Swap.getValue(0)); 2918 Results.push_back(Swap.getValue(1)); 2919 break; 2920 } 2921 case ISD::ATOMIC_STORE: { 2922 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2923 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2924 cast<AtomicSDNode>(Node)->getMemoryVT(), 2925 Node->getOperand(0), 2926 Node->getOperand(1), Node->getOperand(2), 2927 cast<AtomicSDNode>(Node)->getMemOperand()); 2928 Results.push_back(Swap.getValue(1)); 2929 break; 2930 } 2931 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 2932 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 2933 // splits out the success value as a comparison. Expanding the resulting 2934 // ATOMIC_CMP_SWAP will produce a libcall. 2935 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2936 SDValue Res = DAG.getAtomicCmpSwap( 2937 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2938 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 2939 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 2940 2941 SDValue ExtRes = Res; 2942 SDValue LHS = Res; 2943 SDValue RHS = Node->getOperand(1); 2944 2945 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 2946 EVT OuterType = Node->getValueType(0); 2947 switch (TLI.getExtendForAtomicOps()) { 2948 case ISD::SIGN_EXTEND: 2949 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 2950 DAG.getValueType(AtomicType)); 2951 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 2952 Node->getOperand(2), DAG.getValueType(AtomicType)); 2953 ExtRes = LHS; 2954 break; 2955 case ISD::ZERO_EXTEND: 2956 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 2957 DAG.getValueType(AtomicType)); 2958 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2959 ExtRes = LHS; 2960 break; 2961 case ISD::ANY_EXTEND: 2962 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 2963 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2964 break; 2965 default: 2966 llvm_unreachable("Invalid atomic op extension"); 2967 } 2968 2969 SDValue Success = 2970 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 2971 2972 Results.push_back(ExtRes.getValue(0)); 2973 Results.push_back(Success); 2974 Results.push_back(Res.getValue(1)); 2975 break; 2976 } 2977 case ISD::DYNAMIC_STACKALLOC: 2978 ExpandDYNAMIC_STACKALLOC(Node, Results); 2979 break; 2980 case ISD::MERGE_VALUES: 2981 for (unsigned i = 0; i < Node->getNumValues(); i++) 2982 Results.push_back(Node->getOperand(i)); 2983 break; 2984 case ISD::UNDEF: { 2985 EVT VT = Node->getValueType(0); 2986 if (VT.isInteger()) 2987 Results.push_back(DAG.getConstant(0, dl, VT)); 2988 else { 2989 assert(VT.isFloatingPoint() && "Unknown value type!"); 2990 Results.push_back(DAG.getConstantFP(0, dl, VT)); 2991 } 2992 break; 2993 } 2994 case ISD::STRICT_FP_ROUND: 2995 // When strict mode is enforced we can't do expansion because it 2996 // does not honor the "strict" properties. Only libcall is allowed. 2997 if (TLI.isStrictFPEnabled()) 2998 break; 2999 // We might as well mutate to FP_ROUND when FP_ROUND operation is legal 3000 // since this operation is more efficient than stack operation. 3001 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3002 Node->getValueType(0)) 3003 == TargetLowering::Legal) 3004 break; 3005 // We fall back to use stack operation when the FP_ROUND operation 3006 // isn't available. 3007 Tmp1 = EmitStackConvert(Node->getOperand(1), 3008 Node->getValueType(0), 3009 Node->getValueType(0), dl, Node->getOperand(0)); 3010 ReplaceNode(Node, Tmp1.getNode()); 3011 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n"); 3012 return true; 3013 case ISD::FP_ROUND: 3014 case ISD::BITCAST: 3015 Tmp1 = EmitStackConvert(Node->getOperand(0), 3016 Node->getValueType(0), 3017 Node->getValueType(0), dl); 3018 Results.push_back(Tmp1); 3019 break; 3020 case ISD::STRICT_FP_EXTEND: 3021 // When strict mode is enforced we can't do expansion because it 3022 // does not honor the "strict" properties. Only libcall is allowed. 3023 if (TLI.isStrictFPEnabled()) 3024 break; 3025 // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal 3026 // since this operation is more efficient than stack operation. 3027 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3028 Node->getValueType(0)) 3029 == TargetLowering::Legal) 3030 break; 3031 // We fall back to use stack operation when the FP_EXTEND operation 3032 // isn't available. 3033 Tmp1 = EmitStackConvert(Node->getOperand(1), 3034 Node->getOperand(1).getValueType(), 3035 Node->getValueType(0), dl, Node->getOperand(0)); 3036 ReplaceNode(Node, Tmp1.getNode()); 3037 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n"); 3038 return true; 3039 case ISD::FP_EXTEND: 3040 Tmp1 = EmitStackConvert(Node->getOperand(0), 3041 Node->getOperand(0).getValueType(), 3042 Node->getValueType(0), dl); 3043 Results.push_back(Tmp1); 3044 break; 3045 case ISD::SIGN_EXTEND_INREG: { 3046 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 3047 EVT VT = Node->getValueType(0); 3048 3049 // An in-register sign-extend of a boolean is a negation: 3050 // 'true' (1) sign-extended is -1. 3051 // 'false' (0) sign-extended is 0. 3052 // However, we must mask the high bits of the source operand because the 3053 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 3054 3055 // TODO: Do this for vectors too? 3056 if (ExtraVT.getSizeInBits() == 1) { 3057 SDValue One = DAG.getConstant(1, dl, VT); 3058 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 3059 SDValue Zero = DAG.getConstant(0, dl, VT); 3060 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 3061 Results.push_back(Neg); 3062 break; 3063 } 3064 3065 // NOTE: we could fall back on load/store here too for targets without 3066 // SRA. However, it is doubtful that any exist. 3067 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 3068 unsigned BitsDiff = VT.getScalarSizeInBits() - 3069 ExtraVT.getScalarSizeInBits(); 3070 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 3071 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 3072 Node->getOperand(0), ShiftCst); 3073 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 3074 Results.push_back(Tmp1); 3075 break; 3076 } 3077 case ISD::UINT_TO_FP: 3078 case ISD::STRICT_UINT_TO_FP: 3079 if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) { 3080 Results.push_back(Tmp1); 3081 if (Node->isStrictFPOpcode()) 3082 Results.push_back(Tmp2); 3083 break; 3084 } 3085 LLVM_FALLTHROUGH; 3086 case ISD::SINT_TO_FP: 3087 case ISD::STRICT_SINT_TO_FP: 3088 Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2); 3089 Results.push_back(Tmp1); 3090 if (Node->isStrictFPOpcode()) 3091 Results.push_back(Tmp2); 3092 break; 3093 case ISD::FP_TO_SINT: 3094 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 3095 Results.push_back(Tmp1); 3096 break; 3097 case ISD::STRICT_FP_TO_SINT: 3098 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) { 3099 ReplaceNode(Node, Tmp1.getNode()); 3100 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n"); 3101 return true; 3102 } 3103 break; 3104 case ISD::FP_TO_UINT: 3105 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) 3106 Results.push_back(Tmp1); 3107 break; 3108 case ISD::STRICT_FP_TO_UINT: 3109 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) { 3110 // Relink the chain. 3111 DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2); 3112 // Replace the new UINT result. 3113 ReplaceNodeWithValue(SDValue(Node, 0), Tmp1); 3114 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n"); 3115 return true; 3116 } 3117 break; 3118 case ISD::VAARG: 3119 Results.push_back(DAG.expandVAArg(Node)); 3120 Results.push_back(Results[0].getValue(1)); 3121 break; 3122 case ISD::VACOPY: 3123 Results.push_back(DAG.expandVACopy(Node)); 3124 break; 3125 case ISD::EXTRACT_VECTOR_ELT: 3126 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 3127 // This must be an access of the only element. Return it. 3128 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 3129 Node->getOperand(0)); 3130 else 3131 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 3132 Results.push_back(Tmp1); 3133 break; 3134 case ISD::EXTRACT_SUBVECTOR: 3135 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 3136 break; 3137 case ISD::INSERT_SUBVECTOR: 3138 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 3139 break; 3140 case ISD::CONCAT_VECTORS: 3141 Results.push_back(ExpandVectorBuildThroughStack(Node)); 3142 break; 3143 case ISD::SCALAR_TO_VECTOR: 3144 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3145 break; 3146 case ISD::INSERT_VECTOR_ELT: 3147 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3148 Node->getOperand(1), 3149 Node->getOperand(2), dl)); 3150 break; 3151 case ISD::VECTOR_SHUFFLE: { 3152 SmallVector<int, 32> NewMask; 3153 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3154 3155 EVT VT = Node->getValueType(0); 3156 EVT EltVT = VT.getVectorElementType(); 3157 SDValue Op0 = Node->getOperand(0); 3158 SDValue Op1 = Node->getOperand(1); 3159 if (!TLI.isTypeLegal(EltVT)) { 3160 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3161 3162 // BUILD_VECTOR operands are allowed to be wider than the element type. 3163 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 3164 // it. 3165 if (NewEltVT.bitsLT(EltVT)) { 3166 // Convert shuffle node. 3167 // If original node was v4i64 and the new EltVT is i32, 3168 // cast operands to v8i32 and re-build the mask. 3169 3170 // Calculate new VT, the size of the new VT should be equal to original. 3171 EVT NewVT = 3172 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3173 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 3174 assert(NewVT.bitsEq(VT)); 3175 3176 // cast operands to new VT 3177 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3178 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3179 3180 // Convert the shuffle mask 3181 unsigned int factor = 3182 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3183 3184 // EltVT gets smaller 3185 assert(factor > 0); 3186 3187 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3188 if (Mask[i] < 0) { 3189 for (unsigned fi = 0; fi < factor; ++fi) 3190 NewMask.push_back(Mask[i]); 3191 } 3192 else { 3193 for (unsigned fi = 0; fi < factor; ++fi) 3194 NewMask.push_back(Mask[i]*factor+fi); 3195 } 3196 } 3197 Mask = NewMask; 3198 VT = NewVT; 3199 } 3200 EltVT = NewEltVT; 3201 } 3202 unsigned NumElems = VT.getVectorNumElements(); 3203 SmallVector<SDValue, 16> Ops; 3204 for (unsigned i = 0; i != NumElems; ++i) { 3205 if (Mask[i] < 0) { 3206 Ops.push_back(DAG.getUNDEF(EltVT)); 3207 continue; 3208 } 3209 unsigned Idx = Mask[i]; 3210 if (Idx < NumElems) 3211 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3212 DAG.getVectorIdxConstant(Idx, dl))); 3213 else 3214 Ops.push_back( 3215 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3216 DAG.getVectorIdxConstant(Idx - NumElems, dl))); 3217 } 3218 3219 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 3220 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3221 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3222 Results.push_back(Tmp1); 3223 break; 3224 } 3225 case ISD::EXTRACT_ELEMENT: { 3226 EVT OpTy = Node->getOperand(0).getValueType(); 3227 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3228 // 1 -> Hi 3229 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3230 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3231 TLI.getShiftAmountTy( 3232 Node->getOperand(0).getValueType(), 3233 DAG.getDataLayout()))); 3234 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3235 } else { 3236 // 0 -> Lo 3237 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3238 Node->getOperand(0)); 3239 } 3240 Results.push_back(Tmp1); 3241 break; 3242 } 3243 case ISD::STACKSAVE: 3244 // Expand to CopyFromReg if the target set 3245 // StackPointerRegisterToSaveRestore. 3246 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3247 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3248 Node->getValueType(0))); 3249 Results.push_back(Results[0].getValue(1)); 3250 } else { 3251 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3252 Results.push_back(Node->getOperand(0)); 3253 } 3254 break; 3255 case ISD::STACKRESTORE: 3256 // Expand to CopyToReg if the target set 3257 // StackPointerRegisterToSaveRestore. 3258 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3259 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3260 Node->getOperand(1))); 3261 } else { 3262 Results.push_back(Node->getOperand(0)); 3263 } 3264 break; 3265 case ISD::GET_DYNAMIC_AREA_OFFSET: 3266 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3267 Results.push_back(Results[0].getValue(0)); 3268 break; 3269 case ISD::FCOPYSIGN: 3270 Results.push_back(ExpandFCOPYSIGN(Node)); 3271 break; 3272 case ISD::FNEG: 3273 Results.push_back(ExpandFNEG(Node)); 3274 break; 3275 case ISD::FABS: 3276 Results.push_back(ExpandFABS(Node)); 3277 break; 3278 case ISD::SMIN: 3279 case ISD::SMAX: 3280 case ISD::UMIN: 3281 case ISD::UMAX: { 3282 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3283 ISD::CondCode Pred; 3284 switch (Node->getOpcode()) { 3285 default: llvm_unreachable("How did we get here?"); 3286 case ISD::SMAX: Pred = ISD::SETGT; break; 3287 case ISD::SMIN: Pred = ISD::SETLT; break; 3288 case ISD::UMAX: Pred = ISD::SETUGT; break; 3289 case ISD::UMIN: Pred = ISD::SETULT; break; 3290 } 3291 Tmp1 = Node->getOperand(0); 3292 Tmp2 = Node->getOperand(1); 3293 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3294 Results.push_back(Tmp1); 3295 break; 3296 } 3297 case ISD::FMINNUM: 3298 case ISD::FMAXNUM: { 3299 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) 3300 Results.push_back(Expanded); 3301 break; 3302 } 3303 case ISD::FSIN: 3304 case ISD::FCOS: { 3305 EVT VT = Node->getValueType(0); 3306 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3307 // fcos which share the same operand and both are used. 3308 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3309 isSinCosLibcallAvailable(Node, TLI)) 3310 && useSinCos(Node)) { 3311 SDVTList VTs = DAG.getVTList(VT, VT); 3312 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3313 if (Node->getOpcode() == ISD::FCOS) 3314 Tmp1 = Tmp1.getValue(1); 3315 Results.push_back(Tmp1); 3316 } 3317 break; 3318 } 3319 case ISD::FMAD: 3320 llvm_unreachable("Illegal fmad should never be formed"); 3321 3322 case ISD::FP16_TO_FP: 3323 if (Node->getValueType(0) != MVT::f32) { 3324 // We can extend to types bigger than f32 in two steps without changing 3325 // the result. Since "f16 -> f32" is much more commonly available, give 3326 // CodeGen the option of emitting that before resorting to a libcall. 3327 SDValue Res = 3328 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3329 Results.push_back( 3330 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3331 } 3332 break; 3333 case ISD::STRICT_FP16_TO_FP: 3334 if (Node->getValueType(0) != MVT::f32) { 3335 // We can extend to types bigger than f32 in two steps without changing 3336 // the result. Since "f16 -> f32" is much more commonly available, give 3337 // CodeGen the option of emitting that before resorting to a libcall. 3338 SDValue Res = 3339 DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other}, 3340 {Node->getOperand(0), Node->getOperand(1)}); 3341 Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 3342 {Node->getValueType(0), MVT::Other}, 3343 {Res.getValue(1), Res}); 3344 Results.push_back(Res); 3345 Results.push_back(Res.getValue(1)); 3346 } 3347 break; 3348 case ISD::FP_TO_FP16: 3349 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3350 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3351 SDValue Op = Node->getOperand(0); 3352 MVT SVT = Op.getSimpleValueType(); 3353 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3354 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3355 // Under fastmath, we can expand this node into a fround followed by 3356 // a float-half conversion. 3357 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3358 DAG.getIntPtrConstant(0, dl)); 3359 Results.push_back( 3360 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3361 } 3362 } 3363 break; 3364 case ISD::ConstantFP: { 3365 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3366 // Check to see if this FP immediate is already legal. 3367 // If this is a legal constant, turn it into a TargetConstantFP node. 3368 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0), 3369 DAG.shouldOptForSize())) 3370 Results.push_back(ExpandConstantFP(CFP, true)); 3371 break; 3372 } 3373 case ISD::Constant: { 3374 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3375 Results.push_back(ExpandConstant(CP)); 3376 break; 3377 } 3378 case ISD::FSUB: { 3379 EVT VT = Node->getValueType(0); 3380 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3381 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3382 const SDNodeFlags Flags = Node->getFlags(); 3383 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3384 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3385 Results.push_back(Tmp1); 3386 } 3387 break; 3388 } 3389 case ISD::SUB: { 3390 EVT VT = Node->getValueType(0); 3391 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3392 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3393 "Don't know how to expand this subtraction!"); 3394 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3395 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, 3396 VT)); 3397 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3398 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3399 break; 3400 } 3401 case ISD::UREM: 3402 case ISD::SREM: 3403 if (TLI.expandREM(Node, Tmp1, DAG)) 3404 Results.push_back(Tmp1); 3405 break; 3406 case ISD::UDIV: 3407 case ISD::SDIV: { 3408 bool isSigned = Node->getOpcode() == ISD::SDIV; 3409 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3410 EVT VT = Node->getValueType(0); 3411 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3412 SDVTList VTs = DAG.getVTList(VT, VT); 3413 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3414 Node->getOperand(1)); 3415 Results.push_back(Tmp1); 3416 } 3417 break; 3418 } 3419 case ISD::MULHU: 3420 case ISD::MULHS: { 3421 unsigned ExpandOpcode = 3422 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3423 EVT VT = Node->getValueType(0); 3424 SDVTList VTs = DAG.getVTList(VT, VT); 3425 3426 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3427 Node->getOperand(1)); 3428 Results.push_back(Tmp1.getValue(1)); 3429 break; 3430 } 3431 case ISD::UMUL_LOHI: 3432 case ISD::SMUL_LOHI: { 3433 SDValue LHS = Node->getOperand(0); 3434 SDValue RHS = Node->getOperand(1); 3435 MVT VT = LHS.getSimpleValueType(); 3436 unsigned MULHOpcode = 3437 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3438 3439 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3440 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3441 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3442 break; 3443 } 3444 3445 SmallVector<SDValue, 4> Halves; 3446 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3447 assert(TLI.isTypeLegal(HalfType)); 3448 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, dl, LHS, RHS, Halves, 3449 HalfType, DAG, 3450 TargetLowering::MulExpansionKind::Always)) { 3451 for (unsigned i = 0; i < 2; ++i) { 3452 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3453 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3454 SDValue Shift = DAG.getConstant( 3455 HalfType.getScalarSizeInBits(), dl, 3456 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3457 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3458 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3459 } 3460 break; 3461 } 3462 break; 3463 } 3464 case ISD::MUL: { 3465 EVT VT = Node->getValueType(0); 3466 SDVTList VTs = DAG.getVTList(VT, VT); 3467 // See if multiply or divide can be lowered using two-result operations. 3468 // We just need the low half of the multiply; try both the signed 3469 // and unsigned forms. If the target supports both SMUL_LOHI and 3470 // UMUL_LOHI, form a preference by checking which forms of plain 3471 // MULH it supports. 3472 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3473 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3474 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3475 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3476 unsigned OpToUse = 0; 3477 if (HasSMUL_LOHI && !HasMULHS) { 3478 OpToUse = ISD::SMUL_LOHI; 3479 } else if (HasUMUL_LOHI && !HasMULHU) { 3480 OpToUse = ISD::UMUL_LOHI; 3481 } else if (HasSMUL_LOHI) { 3482 OpToUse = ISD::SMUL_LOHI; 3483 } else if (HasUMUL_LOHI) { 3484 OpToUse = ISD::UMUL_LOHI; 3485 } 3486 if (OpToUse) { 3487 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3488 Node->getOperand(1))); 3489 break; 3490 } 3491 3492 SDValue Lo, Hi; 3493 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3494 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3495 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3496 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3497 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3498 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3499 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3500 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3501 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3502 SDValue Shift = 3503 DAG.getConstant(HalfType.getSizeInBits(), dl, 3504 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3505 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3506 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3507 } 3508 break; 3509 } 3510 case ISD::FSHL: 3511 case ISD::FSHR: 3512 if (TLI.expandFunnelShift(Node, Tmp1, DAG)) 3513 Results.push_back(Tmp1); 3514 break; 3515 case ISD::ROTL: 3516 case ISD::ROTR: 3517 if (TLI.expandROT(Node, Tmp1, DAG)) 3518 Results.push_back(Tmp1); 3519 break; 3520 case ISD::SADDSAT: 3521 case ISD::UADDSAT: 3522 case ISD::SSUBSAT: 3523 case ISD::USUBSAT: 3524 Results.push_back(TLI.expandAddSubSat(Node, DAG)); 3525 break; 3526 case ISD::SSHLSAT: 3527 case ISD::USHLSAT: 3528 Results.push_back(TLI.expandShlSat(Node, DAG)); 3529 break; 3530 case ISD::SMULFIX: 3531 case ISD::SMULFIXSAT: 3532 case ISD::UMULFIX: 3533 case ISD::UMULFIXSAT: 3534 Results.push_back(TLI.expandFixedPointMul(Node, DAG)); 3535 break; 3536 case ISD::SDIVFIX: 3537 case ISD::SDIVFIXSAT: 3538 case ISD::UDIVFIX: 3539 case ISD::UDIVFIXSAT: 3540 if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node), 3541 Node->getOperand(0), 3542 Node->getOperand(1), 3543 Node->getConstantOperandVal(2), 3544 DAG)) { 3545 Results.push_back(V); 3546 break; 3547 } 3548 // FIXME: We might want to retry here with a wider type if we fail, if that 3549 // type is legal. 3550 // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is 3551 // <= 128 (which is the case for all of the default Embedded-C types), 3552 // we will only get here with types and scales that we could always expand 3553 // if we were allowed to generate libcalls to division functions of illegal 3554 // type. But we cannot do that. 3555 llvm_unreachable("Cannot expand DIVFIX!"); 3556 case ISD::ADDCARRY: 3557 case ISD::SUBCARRY: { 3558 SDValue LHS = Node->getOperand(0); 3559 SDValue RHS = Node->getOperand(1); 3560 SDValue Carry = Node->getOperand(2); 3561 3562 bool IsAdd = Node->getOpcode() == ISD::ADDCARRY; 3563 3564 // Initial add of the 2 operands. 3565 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB; 3566 EVT VT = LHS.getValueType(); 3567 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS); 3568 3569 // Initial check for overflow. 3570 EVT CarryType = Node->getValueType(1); 3571 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3572 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 3573 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3574 3575 // Add of the sum and the carry. 3576 SDValue One = DAG.getConstant(1, dl, VT); 3577 SDValue CarryExt = 3578 DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One); 3579 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt); 3580 3581 // Second check for overflow. If we are adding, we can only overflow if the 3582 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0. 3583 // If we are subtracting, we can only overflow if the initial sum is 0 and 3584 // the carry is set, resulting in a new sum of all 1s. 3585 SDValue Zero = DAG.getConstant(0, dl, VT); 3586 SDValue Overflow2 = 3587 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ) 3588 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ); 3589 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2, 3590 DAG.getZExtOrTrunc(Carry, dl, SetCCType)); 3591 3592 SDValue ResultCarry = 3593 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2); 3594 3595 Results.push_back(Sum2); 3596 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT)); 3597 break; 3598 } 3599 case ISD::SADDO: 3600 case ISD::SSUBO: { 3601 SDValue Result, Overflow; 3602 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 3603 Results.push_back(Result); 3604 Results.push_back(Overflow); 3605 break; 3606 } 3607 case ISD::UADDO: 3608 case ISD::USUBO: { 3609 SDValue Result, Overflow; 3610 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 3611 Results.push_back(Result); 3612 Results.push_back(Overflow); 3613 break; 3614 } 3615 case ISD::UMULO: 3616 case ISD::SMULO: { 3617 SDValue Result, Overflow; 3618 if (TLI.expandMULO(Node, Result, Overflow, DAG)) { 3619 Results.push_back(Result); 3620 Results.push_back(Overflow); 3621 } 3622 break; 3623 } 3624 case ISD::BUILD_PAIR: { 3625 EVT PairTy = Node->getValueType(0); 3626 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3627 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3628 Tmp2 = DAG.getNode( 3629 ISD::SHL, dl, PairTy, Tmp2, 3630 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3631 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3632 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3633 break; 3634 } 3635 case ISD::SELECT: 3636 Tmp1 = Node->getOperand(0); 3637 Tmp2 = Node->getOperand(1); 3638 Tmp3 = Node->getOperand(2); 3639 if (Tmp1.getOpcode() == ISD::SETCC) { 3640 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3641 Tmp2, Tmp3, 3642 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3643 } else { 3644 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3645 DAG.getConstant(0, dl, Tmp1.getValueType()), 3646 Tmp2, Tmp3, ISD::SETNE); 3647 } 3648 Tmp1->setFlags(Node->getFlags()); 3649 Results.push_back(Tmp1); 3650 break; 3651 case ISD::BR_JT: { 3652 SDValue Chain = Node->getOperand(0); 3653 SDValue Table = Node->getOperand(1); 3654 SDValue Index = Node->getOperand(2); 3655 3656 const DataLayout &TD = DAG.getDataLayout(); 3657 EVT PTy = TLI.getPointerTy(TD); 3658 3659 unsigned EntrySize = 3660 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3661 3662 // For power-of-two jumptable entry sizes convert multiplication to a shift. 3663 // This transformation needs to be done here since otherwise the MIPS 3664 // backend will end up emitting a three instruction multiply sequence 3665 // instead of a single shift and MSP430 will call a runtime function. 3666 if (llvm::isPowerOf2_32(EntrySize)) 3667 Index = DAG.getNode( 3668 ISD::SHL, dl, Index.getValueType(), Index, 3669 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); 3670 else 3671 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3672 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3673 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3674 Index, Table); 3675 3676 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3677 SDValue LD = DAG.getExtLoad( 3678 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3679 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3680 Addr = LD; 3681 if (TLI.isJumpTableRelative()) { 3682 // For PIC, the sequence is: 3683 // BRIND(load(Jumptable + index) + RelocBase) 3684 // RelocBase can be JumpTable, GOT or some sort of global base. 3685 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3686 TLI.getPICJumpTableRelocBase(Table, DAG)); 3687 } 3688 3689 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); 3690 Results.push_back(Tmp1); 3691 break; 3692 } 3693 case ISD::BRCOND: 3694 // Expand brcond's setcc into its constituent parts and create a BR_CC 3695 // Node. 3696 Tmp1 = Node->getOperand(0); 3697 Tmp2 = Node->getOperand(1); 3698 if (Tmp2.getOpcode() == ISD::SETCC) { 3699 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3700 Tmp1, Tmp2.getOperand(2), 3701 Tmp2.getOperand(0), Tmp2.getOperand(1), 3702 Node->getOperand(2)); 3703 } else { 3704 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 3705 if (Tmp2.isUndef() || 3706 (Tmp2.getOpcode() == ISD::AND && 3707 isa<ConstantSDNode>(Tmp2.getOperand(1)) && 3708 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) 3709 Tmp3 = Tmp2; 3710 else 3711 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3712 DAG.getConstant(1, dl, Tmp2.getValueType())); 3713 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3714 DAG.getCondCode(ISD::SETNE), Tmp3, 3715 DAG.getConstant(0, dl, Tmp3.getValueType()), 3716 Node->getOperand(2)); 3717 } 3718 Results.push_back(Tmp1); 3719 break; 3720 case ISD::SETCC: 3721 case ISD::STRICT_FSETCC: 3722 case ISD::STRICT_FSETCCS: { 3723 bool IsStrict = Node->getOpcode() != ISD::SETCC; 3724 bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS; 3725 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 3726 unsigned Offset = IsStrict ? 1 : 0; 3727 Tmp1 = Node->getOperand(0 + Offset); 3728 Tmp2 = Node->getOperand(1 + Offset); 3729 Tmp3 = Node->getOperand(2 + Offset); 3730 bool Legalized = 3731 LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, 3732 NeedInvert, dl, Chain, IsSignaling); 3733 3734 if (Legalized) { 3735 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3736 // condition code, create a new SETCC node. 3737 if (Tmp3.getNode()) 3738 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3739 Tmp1, Tmp2, Tmp3, Node->getFlags()); 3740 3741 // If we expanded the SETCC by inverting the condition code, then wrap 3742 // the existing SETCC in a NOT to restore the intended condition. 3743 if (NeedInvert) 3744 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3745 3746 Results.push_back(Tmp1); 3747 if (IsStrict) 3748 Results.push_back(Chain); 3749 3750 break; 3751 } 3752 3753 // FIXME: It seems Legalized is false iff CCCode is Legal. I don't 3754 // understand if this code is useful for strict nodes. 3755 assert(!IsStrict && "Don't know how to expand for strict nodes."); 3756 3757 // Otherwise, SETCC for the given comparison type must be completely 3758 // illegal; expand it into a SELECT_CC. 3759 EVT VT = Node->getValueType(0); 3760 int TrueValue; 3761 switch (TLI.getBooleanContents(Tmp1.getValueType())) { 3762 case TargetLowering::ZeroOrOneBooleanContent: 3763 case TargetLowering::UndefinedBooleanContent: 3764 TrueValue = 1; 3765 break; 3766 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3767 TrueValue = -1; 3768 break; 3769 } 3770 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3771 DAG.getConstant(TrueValue, dl, VT), 3772 DAG.getConstant(0, dl, VT), 3773 Tmp3); 3774 Tmp1->setFlags(Node->getFlags()); 3775 Results.push_back(Tmp1); 3776 break; 3777 } 3778 case ISD::SELECT_CC: { 3779 // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS 3780 Tmp1 = Node->getOperand(0); // LHS 3781 Tmp2 = Node->getOperand(1); // RHS 3782 Tmp3 = Node->getOperand(2); // True 3783 Tmp4 = Node->getOperand(3); // False 3784 EVT VT = Node->getValueType(0); 3785 SDValue Chain; 3786 SDValue CC = Node->getOperand(4); 3787 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3788 3789 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 3790 // If the condition code is legal, then we need to expand this 3791 // node using SETCC and SELECT. 3792 EVT CmpVT = Tmp1.getValueType(); 3793 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3794 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3795 "expanded."); 3796 EVT CCVT = getSetCCResultType(CmpVT); 3797 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags()); 3798 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3799 break; 3800 } 3801 3802 // SELECT_CC is legal, so the condition code must not be. 3803 bool Legalized = false; 3804 // Try to legalize by inverting the condition. This is for targets that 3805 // might support an ordered version of a condition, but not the unordered 3806 // version (or vice versa). 3807 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType()); 3808 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 3809 // Use the new condition code and swap true and false 3810 Legalized = true; 3811 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3812 Tmp1->setFlags(Node->getFlags()); 3813 } else { 3814 // If The inverse is not legal, then try to swap the arguments using 3815 // the inverse condition code. 3816 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3817 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 3818 // The swapped inverse condition is legal, so swap true and false, 3819 // lhs and rhs. 3820 Legalized = true; 3821 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3822 Tmp1->setFlags(Node->getFlags()); 3823 } 3824 } 3825 3826 if (!Legalized) { 3827 Legalized = LegalizeSetCCCondCode(getSetCCResultType(Tmp1.getValueType()), 3828 Tmp1, Tmp2, CC, NeedInvert, dl, Chain); 3829 3830 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3831 3832 // If we expanded the SETCC by inverting the condition code, then swap 3833 // the True/False operands to match. 3834 if (NeedInvert) 3835 std::swap(Tmp3, Tmp4); 3836 3837 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3838 // condition code, create a new SELECT_CC node. 3839 if (CC.getNode()) { 3840 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3841 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3842 } else { 3843 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3844 CC = DAG.getCondCode(ISD::SETNE); 3845 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3846 Tmp2, Tmp3, Tmp4, CC); 3847 } 3848 Tmp1->setFlags(Node->getFlags()); 3849 } 3850 Results.push_back(Tmp1); 3851 break; 3852 } 3853 case ISD::BR_CC: { 3854 // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS 3855 SDValue Chain; 3856 Tmp1 = Node->getOperand(0); // Chain 3857 Tmp2 = Node->getOperand(2); // LHS 3858 Tmp3 = Node->getOperand(3); // RHS 3859 Tmp4 = Node->getOperand(1); // CC 3860 3861 bool Legalized = 3862 LegalizeSetCCCondCode(getSetCCResultType(Tmp2.getValueType()), Tmp2, 3863 Tmp3, Tmp4, NeedInvert, dl, Chain); 3864 (void)Legalized; 3865 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3866 3867 assert(!NeedInvert && "Don't know how to invert BR_CC!"); 3868 3869 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3870 // node. 3871 if (Tmp4.getNode()) { 3872 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3873 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3874 } else { 3875 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3876 Tmp4 = DAG.getCondCode(ISD::SETNE); 3877 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3878 Tmp2, Tmp3, Node->getOperand(4)); 3879 } 3880 Results.push_back(Tmp1); 3881 break; 3882 } 3883 case ISD::BUILD_VECTOR: 3884 Results.push_back(ExpandBUILD_VECTOR(Node)); 3885 break; 3886 case ISD::SPLAT_VECTOR: 3887 Results.push_back(ExpandSPLAT_VECTOR(Node)); 3888 break; 3889 case ISD::SRA: 3890 case ISD::SRL: 3891 case ISD::SHL: { 3892 // Scalarize vector SRA/SRL/SHL. 3893 EVT VT = Node->getValueType(0); 3894 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3895 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3896 unsigned NumElem = VT.getVectorNumElements(); 3897 3898 SmallVector<SDValue, 8> Scalars; 3899 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3900 SDValue Ex = 3901 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3902 Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl)); 3903 SDValue Sh = 3904 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3905 Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl)); 3906 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3907 VT.getScalarType(), Ex, Sh)); 3908 } 3909 3910 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 3911 Results.push_back(Result); 3912 break; 3913 } 3914 case ISD::VECREDUCE_FADD: 3915 case ISD::VECREDUCE_FMUL: 3916 case ISD::VECREDUCE_ADD: 3917 case ISD::VECREDUCE_MUL: 3918 case ISD::VECREDUCE_AND: 3919 case ISD::VECREDUCE_OR: 3920 case ISD::VECREDUCE_XOR: 3921 case ISD::VECREDUCE_SMAX: 3922 case ISD::VECREDUCE_SMIN: 3923 case ISD::VECREDUCE_UMAX: 3924 case ISD::VECREDUCE_UMIN: 3925 case ISD::VECREDUCE_FMAX: 3926 case ISD::VECREDUCE_FMIN: 3927 Results.push_back(TLI.expandVecReduce(Node, DAG)); 3928 break; 3929 case ISD::GLOBAL_OFFSET_TABLE: 3930 case ISD::GlobalAddress: 3931 case ISD::GlobalTLSAddress: 3932 case ISD::ExternalSymbol: 3933 case ISD::ConstantPool: 3934 case ISD::JumpTable: 3935 case ISD::INTRINSIC_W_CHAIN: 3936 case ISD::INTRINSIC_WO_CHAIN: 3937 case ISD::INTRINSIC_VOID: 3938 // FIXME: Custom lowering for these operations shouldn't return null! 3939 // Return true so that we don't call ConvertNodeToLibcall which also won't 3940 // do anything. 3941 return true; 3942 } 3943 3944 if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) { 3945 // FIXME: We were asked to expand a strict floating-point operation, 3946 // but there is currently no expansion implemented that would preserve 3947 // the "strict" properties. For now, we just fall back to the non-strict 3948 // version if that is legal on the target. The actual mutation of the 3949 // operation will happen in SelectionDAGISel::DoInstructionSelection. 3950 switch (Node->getOpcode()) { 3951 default: 3952 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3953 Node->getValueType(0)) 3954 == TargetLowering::Legal) 3955 return true; 3956 break; 3957 case ISD::STRICT_FSUB: { 3958 if (TLI.getStrictFPOperationAction( 3959 ISD::STRICT_FSUB, Node->getValueType(0)) == TargetLowering::Legal) 3960 return true; 3961 if (TLI.getStrictFPOperationAction( 3962 ISD::STRICT_FADD, Node->getValueType(0)) != TargetLowering::Legal) 3963 break; 3964 3965 EVT VT = Node->getValueType(0); 3966 const SDNodeFlags Flags = Node->getFlags(); 3967 SDValue Neg = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(2), Flags); 3968 SDValue Fadd = DAG.getNode(ISD::STRICT_FADD, dl, Node->getVTList(), 3969 {Node->getOperand(0), Node->getOperand(1), Neg}, 3970 Flags); 3971 3972 Results.push_back(Fadd); 3973 Results.push_back(Fadd.getValue(1)); 3974 break; 3975 } 3976 case ISD::STRICT_LRINT: 3977 case ISD::STRICT_LLRINT: 3978 case ISD::STRICT_LROUND: 3979 case ISD::STRICT_LLROUND: 3980 // These are registered by the operand type instead of the value 3981 // type. Reflect that here. 3982 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3983 Node->getOperand(1).getValueType()) 3984 == TargetLowering::Legal) 3985 return true; 3986 break; 3987 } 3988 } 3989 3990 // Replace the original node with the legalized result. 3991 if (Results.empty()) { 3992 LLVM_DEBUG(dbgs() << "Cannot expand node\n"); 3993 return false; 3994 } 3995 3996 LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); 3997 ReplaceNode(Node, Results.data()); 3998 return true; 3999 } 4000 4001 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 4002 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); 4003 SmallVector<SDValue, 8> Results; 4004 SDLoc dl(Node); 4005 // FIXME: Check flags on the node to see if we can use a finite call. 4006 unsigned Opc = Node->getOpcode(); 4007 switch (Opc) { 4008 case ISD::ATOMIC_FENCE: { 4009 // If the target didn't lower this, lower it to '__sync_synchronize()' call 4010 // FIXME: handle "fence singlethread" more efficiently. 4011 TargetLowering::ArgListTy Args; 4012 4013 TargetLowering::CallLoweringInfo CLI(DAG); 4014 CLI.setDebugLoc(dl) 4015 .setChain(Node->getOperand(0)) 4016 .setLibCallee( 4017 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 4018 DAG.getExternalSymbol("__sync_synchronize", 4019 TLI.getPointerTy(DAG.getDataLayout())), 4020 std::move(Args)); 4021 4022 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 4023 4024 Results.push_back(CallResult.second); 4025 break; 4026 } 4027 // By default, atomic intrinsics are marked Legal and lowered. Targets 4028 // which don't support them directly, however, may want libcalls, in which 4029 // case they mark them Expand, and we get here. 4030 case ISD::ATOMIC_SWAP: 4031 case ISD::ATOMIC_LOAD_ADD: 4032 case ISD::ATOMIC_LOAD_SUB: 4033 case ISD::ATOMIC_LOAD_AND: 4034 case ISD::ATOMIC_LOAD_CLR: 4035 case ISD::ATOMIC_LOAD_OR: 4036 case ISD::ATOMIC_LOAD_XOR: 4037 case ISD::ATOMIC_LOAD_NAND: 4038 case ISD::ATOMIC_LOAD_MIN: 4039 case ISD::ATOMIC_LOAD_MAX: 4040 case ISD::ATOMIC_LOAD_UMIN: 4041 case ISD::ATOMIC_LOAD_UMAX: 4042 case ISD::ATOMIC_CMP_SWAP: { 4043 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 4044 RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT); 4045 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!"); 4046 4047 EVT RetVT = Node->getValueType(0); 4048 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); 4049 TargetLowering::MakeLibCallOptions CallOptions; 4050 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 4051 Ops, CallOptions, 4052 SDLoc(Node), 4053 Node->getOperand(0)); 4054 Results.push_back(Tmp.first); 4055 Results.push_back(Tmp.second); 4056 break; 4057 } 4058 case ISD::TRAP: { 4059 // If this operation is not supported, lower it to 'abort()' call 4060 TargetLowering::ArgListTy Args; 4061 TargetLowering::CallLoweringInfo CLI(DAG); 4062 CLI.setDebugLoc(dl) 4063 .setChain(Node->getOperand(0)) 4064 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 4065 DAG.getExternalSymbol( 4066 "abort", TLI.getPointerTy(DAG.getDataLayout())), 4067 std::move(Args)); 4068 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 4069 4070 Results.push_back(CallResult.second); 4071 break; 4072 } 4073 case ISD::FMINNUM: 4074 case ISD::STRICT_FMINNUM: 4075 ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 4076 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 4077 RTLIB::FMIN_PPCF128, Results); 4078 break; 4079 case ISD::FMAXNUM: 4080 case ISD::STRICT_FMAXNUM: 4081 ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 4082 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 4083 RTLIB::FMAX_PPCF128, Results); 4084 break; 4085 case ISD::FSQRT: 4086 case ISD::STRICT_FSQRT: 4087 ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 4088 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 4089 RTLIB::SQRT_PPCF128, Results); 4090 break; 4091 case ISD::FCBRT: 4092 ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, 4093 RTLIB::CBRT_F80, RTLIB::CBRT_F128, 4094 RTLIB::CBRT_PPCF128, Results); 4095 break; 4096 case ISD::FSIN: 4097 case ISD::STRICT_FSIN: 4098 ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 4099 RTLIB::SIN_F80, RTLIB::SIN_F128, 4100 RTLIB::SIN_PPCF128, Results); 4101 break; 4102 case ISD::FCOS: 4103 case ISD::STRICT_FCOS: 4104 ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 4105 RTLIB::COS_F80, RTLIB::COS_F128, 4106 RTLIB::COS_PPCF128, Results); 4107 break; 4108 case ISD::FSINCOS: 4109 // Expand into sincos libcall. 4110 ExpandSinCosLibCall(Node, Results); 4111 break; 4112 case ISD::FLOG: 4113 case ISD::STRICT_FLOG: 4114 ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80, 4115 RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results); 4116 break; 4117 case ISD::FLOG2: 4118 case ISD::STRICT_FLOG2: 4119 ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80, 4120 RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results); 4121 break; 4122 case ISD::FLOG10: 4123 case ISD::STRICT_FLOG10: 4124 ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80, 4125 RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results); 4126 break; 4127 case ISD::FEXP: 4128 case ISD::STRICT_FEXP: 4129 ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80, 4130 RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results); 4131 break; 4132 case ISD::FEXP2: 4133 case ISD::STRICT_FEXP2: 4134 ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80, 4135 RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results); 4136 break; 4137 case ISD::FTRUNC: 4138 case ISD::STRICT_FTRUNC: 4139 ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 4140 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 4141 RTLIB::TRUNC_PPCF128, Results); 4142 break; 4143 case ISD::FFLOOR: 4144 case ISD::STRICT_FFLOOR: 4145 ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 4146 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 4147 RTLIB::FLOOR_PPCF128, Results); 4148 break; 4149 case ISD::FCEIL: 4150 case ISD::STRICT_FCEIL: 4151 ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 4152 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 4153 RTLIB::CEIL_PPCF128, Results); 4154 break; 4155 case ISD::FRINT: 4156 case ISD::STRICT_FRINT: 4157 ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 4158 RTLIB::RINT_F80, RTLIB::RINT_F128, 4159 RTLIB::RINT_PPCF128, Results); 4160 break; 4161 case ISD::FNEARBYINT: 4162 case ISD::STRICT_FNEARBYINT: 4163 ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 4164 RTLIB::NEARBYINT_F64, 4165 RTLIB::NEARBYINT_F80, 4166 RTLIB::NEARBYINT_F128, 4167 RTLIB::NEARBYINT_PPCF128, Results); 4168 break; 4169 case ISD::FROUND: 4170 case ISD::STRICT_FROUND: 4171 ExpandFPLibCall(Node, RTLIB::ROUND_F32, 4172 RTLIB::ROUND_F64, 4173 RTLIB::ROUND_F80, 4174 RTLIB::ROUND_F128, 4175 RTLIB::ROUND_PPCF128, Results); 4176 break; 4177 case ISD::FROUNDEVEN: 4178 case ISD::STRICT_FROUNDEVEN: 4179 ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32, 4180 RTLIB::ROUNDEVEN_F64, 4181 RTLIB::ROUNDEVEN_F80, 4182 RTLIB::ROUNDEVEN_F128, 4183 RTLIB::ROUNDEVEN_PPCF128, Results); 4184 break; 4185 case ISD::FPOWI: 4186 case ISD::STRICT_FPOWI: { 4187 RTLIB::Libcall LC; 4188 switch (Node->getSimpleValueType(0).SimpleTy) { 4189 default: llvm_unreachable("Unexpected request for libcall!"); 4190 case MVT::f32: LC = RTLIB::POWI_F32; break; 4191 case MVT::f64: LC = RTLIB::POWI_F64; break; 4192 case MVT::f80: LC = RTLIB::POWI_F80; break; 4193 case MVT::f128: LC = RTLIB::POWI_F128; break; 4194 case MVT::ppcf128: LC = RTLIB::POWI_PPCF128; break; 4195 } 4196 if (!TLI.getLibcallName(LC)) { 4197 // Some targets don't have a powi libcall; use pow instead. 4198 SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), 4199 Node->getValueType(0), 4200 Node->getOperand(1)); 4201 Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node), 4202 Node->getValueType(0), Node->getOperand(0), 4203 Exponent)); 4204 break; 4205 } 4206 ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 4207 RTLIB::POWI_F80, RTLIB::POWI_F128, 4208 RTLIB::POWI_PPCF128, Results); 4209 break; 4210 } 4211 case ISD::FPOW: 4212 case ISD::STRICT_FPOW: 4213 ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 4214 RTLIB::POW_F128, RTLIB::POW_PPCF128, Results); 4215 break; 4216 case ISD::LROUND: 4217 case ISD::STRICT_LROUND: 4218 ExpandArgFPLibCall(Node, RTLIB::LROUND_F32, 4219 RTLIB::LROUND_F64, RTLIB::LROUND_F80, 4220 RTLIB::LROUND_F128, 4221 RTLIB::LROUND_PPCF128, Results); 4222 break; 4223 case ISD::LLROUND: 4224 case ISD::STRICT_LLROUND: 4225 ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32, 4226 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, 4227 RTLIB::LLROUND_F128, 4228 RTLIB::LLROUND_PPCF128, Results); 4229 break; 4230 case ISD::LRINT: 4231 case ISD::STRICT_LRINT: 4232 ExpandArgFPLibCall(Node, RTLIB::LRINT_F32, 4233 RTLIB::LRINT_F64, RTLIB::LRINT_F80, 4234 RTLIB::LRINT_F128, 4235 RTLIB::LRINT_PPCF128, Results); 4236 break; 4237 case ISD::LLRINT: 4238 case ISD::STRICT_LLRINT: 4239 ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32, 4240 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80, 4241 RTLIB::LLRINT_F128, 4242 RTLIB::LLRINT_PPCF128, Results); 4243 break; 4244 case ISD::FDIV: 4245 case ISD::STRICT_FDIV: 4246 ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 4247 RTLIB::DIV_F80, RTLIB::DIV_F128, 4248 RTLIB::DIV_PPCF128, Results); 4249 break; 4250 case ISD::FREM: 4251 case ISD::STRICT_FREM: 4252 ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 4253 RTLIB::REM_F80, RTLIB::REM_F128, 4254 RTLIB::REM_PPCF128, Results); 4255 break; 4256 case ISD::FMA: 4257 case ISD::STRICT_FMA: 4258 ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 4259 RTLIB::FMA_F80, RTLIB::FMA_F128, 4260 RTLIB::FMA_PPCF128, Results); 4261 break; 4262 case ISD::FADD: 4263 case ISD::STRICT_FADD: 4264 ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 4265 RTLIB::ADD_F80, RTLIB::ADD_F128, 4266 RTLIB::ADD_PPCF128, Results); 4267 break; 4268 case ISD::FMUL: 4269 case ISD::STRICT_FMUL: 4270 ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 4271 RTLIB::MUL_F80, RTLIB::MUL_F128, 4272 RTLIB::MUL_PPCF128, Results); 4273 break; 4274 case ISD::FP16_TO_FP: 4275 if (Node->getValueType(0) == MVT::f32) { 4276 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 4277 } 4278 break; 4279 case ISD::STRICT_FP16_TO_FP: { 4280 if (Node->getValueType(0) == MVT::f32) { 4281 TargetLowering::MakeLibCallOptions CallOptions; 4282 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall( 4283 DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions, 4284 SDLoc(Node), Node->getOperand(0)); 4285 Results.push_back(Tmp.first); 4286 Results.push_back(Tmp.second); 4287 } 4288 break; 4289 } 4290 case ISD::FP_TO_FP16: { 4291 RTLIB::Libcall LC = 4292 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 4293 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 4294 Results.push_back(ExpandLibCall(LC, Node, false)); 4295 break; 4296 } 4297 case ISD::STRICT_FP_TO_FP16: { 4298 RTLIB::Libcall LC = 4299 RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16); 4300 assert(LC != RTLIB::UNKNOWN_LIBCALL && 4301 "Unable to expand strict_fp_to_fp16"); 4302 TargetLowering::MakeLibCallOptions CallOptions; 4303 std::pair<SDValue, SDValue> Tmp = 4304 TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1), 4305 CallOptions, SDLoc(Node), Node->getOperand(0)); 4306 Results.push_back(Tmp.first); 4307 Results.push_back(Tmp.second); 4308 break; 4309 } 4310 case ISD::FSUB: 4311 case ISD::STRICT_FSUB: 4312 ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4313 RTLIB::SUB_F80, RTLIB::SUB_F128, 4314 RTLIB::SUB_PPCF128, Results); 4315 break; 4316 case ISD::SREM: 4317 Results.push_back(ExpandIntLibCall(Node, true, 4318 RTLIB::SREM_I8, 4319 RTLIB::SREM_I16, RTLIB::SREM_I32, 4320 RTLIB::SREM_I64, RTLIB::SREM_I128)); 4321 break; 4322 case ISD::UREM: 4323 Results.push_back(ExpandIntLibCall(Node, false, 4324 RTLIB::UREM_I8, 4325 RTLIB::UREM_I16, RTLIB::UREM_I32, 4326 RTLIB::UREM_I64, RTLIB::UREM_I128)); 4327 break; 4328 case ISD::SDIV: 4329 Results.push_back(ExpandIntLibCall(Node, true, 4330 RTLIB::SDIV_I8, 4331 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4332 RTLIB::SDIV_I64, RTLIB::SDIV_I128)); 4333 break; 4334 case ISD::UDIV: 4335 Results.push_back(ExpandIntLibCall(Node, false, 4336 RTLIB::UDIV_I8, 4337 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4338 RTLIB::UDIV_I64, RTLIB::UDIV_I128)); 4339 break; 4340 case ISD::SDIVREM: 4341 case ISD::UDIVREM: 4342 // Expand into divrem libcall 4343 ExpandDivRemLibCall(Node, Results); 4344 break; 4345 case ISD::MUL: 4346 Results.push_back(ExpandIntLibCall(Node, false, 4347 RTLIB::MUL_I8, 4348 RTLIB::MUL_I16, RTLIB::MUL_I32, 4349 RTLIB::MUL_I64, RTLIB::MUL_I128)); 4350 break; 4351 case ISD::CTLZ_ZERO_UNDEF: 4352 switch (Node->getSimpleValueType(0).SimpleTy) { 4353 default: 4354 llvm_unreachable("LibCall explicitly requested, but not available"); 4355 case MVT::i32: 4356 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false)); 4357 break; 4358 case MVT::i64: 4359 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false)); 4360 break; 4361 case MVT::i128: 4362 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false)); 4363 break; 4364 } 4365 break; 4366 } 4367 4368 // Replace the original node with the legalized result. 4369 if (!Results.empty()) { 4370 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); 4371 ReplaceNode(Node, Results.data()); 4372 } else 4373 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); 4374 } 4375 4376 // Determine the vector type to use in place of an original scalar element when 4377 // promoting equally sized vectors. 4378 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4379 MVT EltVT, MVT NewEltVT) { 4380 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4381 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4382 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4383 return MidVT; 4384 } 4385 4386 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4387 LLVM_DEBUG(dbgs() << "Trying to promote node\n"); 4388 SmallVector<SDValue, 8> Results; 4389 MVT OVT = Node->getSimpleValueType(0); 4390 if (Node->getOpcode() == ISD::UINT_TO_FP || 4391 Node->getOpcode() == ISD::SINT_TO_FP || 4392 Node->getOpcode() == ISD::SETCC || 4393 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4394 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4395 OVT = Node->getOperand(0).getSimpleValueType(); 4396 } 4397 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP || 4398 Node->getOpcode() == ISD::STRICT_SINT_TO_FP) 4399 OVT = Node->getOperand(1).getSimpleValueType(); 4400 if (Node->getOpcode() == ISD::BR_CC) 4401 OVT = Node->getOperand(2).getSimpleValueType(); 4402 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4403 SDLoc dl(Node); 4404 SDValue Tmp1, Tmp2, Tmp3; 4405 switch (Node->getOpcode()) { 4406 case ISD::CTTZ: 4407 case ISD::CTTZ_ZERO_UNDEF: 4408 case ISD::CTLZ: 4409 case ISD::CTLZ_ZERO_UNDEF: 4410 case ISD::CTPOP: 4411 // Zero extend the argument unless its cttz, then use any_extend. 4412 if (Node->getOpcode() == ISD::CTTZ || 4413 Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 4414 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 4415 else 4416 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4417 4418 if (Node->getOpcode() == ISD::CTTZ) { 4419 // The count is the same in the promoted type except if the original 4420 // value was zero. This can be handled by setting the bit just off 4421 // the top of the original type. 4422 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4423 OVT.getSizeInBits()); 4424 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4425 DAG.getConstant(TopBit, dl, NVT)); 4426 } 4427 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4428 // already the correct result. 4429 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4430 if (Node->getOpcode() == ISD::CTLZ || 4431 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4432 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4433 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4434 DAG.getConstant(NVT.getSizeInBits() - 4435 OVT.getSizeInBits(), dl, NVT)); 4436 } 4437 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4438 break; 4439 case ISD::BITREVERSE: 4440 case ISD::BSWAP: { 4441 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4442 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4443 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4444 Tmp1 = DAG.getNode( 4445 ISD::SRL, dl, NVT, Tmp1, 4446 DAG.getConstant(DiffBits, dl, 4447 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4448 4449 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4450 break; 4451 } 4452 case ISD::FP_TO_UINT: 4453 case ISD::STRICT_FP_TO_UINT: 4454 case ISD::FP_TO_SINT: 4455 case ISD::STRICT_FP_TO_SINT: 4456 PromoteLegalFP_TO_INT(Node, dl, Results); 4457 break; 4458 case ISD::UINT_TO_FP: 4459 case ISD::STRICT_UINT_TO_FP: 4460 case ISD::SINT_TO_FP: 4461 case ISD::STRICT_SINT_TO_FP: 4462 PromoteLegalINT_TO_FP(Node, dl, Results); 4463 break; 4464 case ISD::VAARG: { 4465 SDValue Chain = Node->getOperand(0); // Get the chain. 4466 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4467 4468 unsigned TruncOp; 4469 if (OVT.isVector()) { 4470 TruncOp = ISD::BITCAST; 4471 } else { 4472 assert(OVT.isInteger() 4473 && "VAARG promotion is supported only for vectors or integer types"); 4474 TruncOp = ISD::TRUNCATE; 4475 } 4476 4477 // Perform the larger operation, then convert back 4478 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4479 Node->getConstantOperandVal(3)); 4480 Chain = Tmp1.getValue(1); 4481 4482 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4483 4484 // Modified the chain result - switch anything that used the old chain to 4485 // use the new one. 4486 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4487 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4488 if (UpdatedNodes) { 4489 UpdatedNodes->insert(Tmp2.getNode()); 4490 UpdatedNodes->insert(Chain.getNode()); 4491 } 4492 ReplacedNode(Node); 4493 break; 4494 } 4495 case ISD::MUL: 4496 case ISD::SDIV: 4497 case ISD::SREM: 4498 case ISD::UDIV: 4499 case ISD::UREM: 4500 case ISD::AND: 4501 case ISD::OR: 4502 case ISD::XOR: { 4503 unsigned ExtOp, TruncOp; 4504 if (OVT.isVector()) { 4505 ExtOp = ISD::BITCAST; 4506 TruncOp = ISD::BITCAST; 4507 } else { 4508 assert(OVT.isInteger() && "Cannot promote logic operation"); 4509 4510 switch (Node->getOpcode()) { 4511 default: 4512 ExtOp = ISD::ANY_EXTEND; 4513 break; 4514 case ISD::SDIV: 4515 case ISD::SREM: 4516 ExtOp = ISD::SIGN_EXTEND; 4517 break; 4518 case ISD::UDIV: 4519 case ISD::UREM: 4520 ExtOp = ISD::ZERO_EXTEND; 4521 break; 4522 } 4523 TruncOp = ISD::TRUNCATE; 4524 } 4525 // Promote each of the values to the new type. 4526 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4527 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4528 // Perform the larger operation, then convert back 4529 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4530 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4531 break; 4532 } 4533 case ISD::UMUL_LOHI: 4534 case ISD::SMUL_LOHI: { 4535 // Promote to a multiply in a wider integer type. 4536 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 4537 : ISD::SIGN_EXTEND; 4538 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4539 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4540 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 4541 4542 auto &DL = DAG.getDataLayout(); 4543 unsigned OriginalSize = OVT.getScalarSizeInBits(); 4544 Tmp2 = DAG.getNode( 4545 ISD::SRL, dl, NVT, Tmp1, 4546 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 4547 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4548 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 4549 break; 4550 } 4551 case ISD::SELECT: { 4552 unsigned ExtOp, TruncOp; 4553 if (Node->getValueType(0).isVector() || 4554 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4555 ExtOp = ISD::BITCAST; 4556 TruncOp = ISD::BITCAST; 4557 } else if (Node->getValueType(0).isInteger()) { 4558 ExtOp = ISD::ANY_EXTEND; 4559 TruncOp = ISD::TRUNCATE; 4560 } else { 4561 ExtOp = ISD::FP_EXTEND; 4562 TruncOp = ISD::FP_ROUND; 4563 } 4564 Tmp1 = Node->getOperand(0); 4565 // Promote each of the values to the new type. 4566 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4567 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4568 // Perform the larger operation, then round down. 4569 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4570 Tmp1->setFlags(Node->getFlags()); 4571 if (TruncOp != ISD::FP_ROUND) 4572 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4573 else 4574 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4575 DAG.getIntPtrConstant(0, dl)); 4576 Results.push_back(Tmp1); 4577 break; 4578 } 4579 case ISD::VECTOR_SHUFFLE: { 4580 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4581 4582 // Cast the two input vectors. 4583 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4584 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4585 4586 // Convert the shuffle mask to the right # elements. 4587 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4588 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4589 Results.push_back(Tmp1); 4590 break; 4591 } 4592 case ISD::SETCC: { 4593 unsigned ExtOp = ISD::FP_EXTEND; 4594 if (NVT.isInteger()) { 4595 ISD::CondCode CCCode = 4596 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4597 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4598 } 4599 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4600 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4601 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, 4602 Tmp2, Node->getOperand(2), Node->getFlags())); 4603 break; 4604 } 4605 case ISD::BR_CC: { 4606 unsigned ExtOp = ISD::FP_EXTEND; 4607 if (NVT.isInteger()) { 4608 ISD::CondCode CCCode = 4609 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4610 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4611 } 4612 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4613 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4614 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4615 Node->getOperand(0), Node->getOperand(1), 4616 Tmp1, Tmp2, Node->getOperand(4))); 4617 break; 4618 } 4619 case ISD::FADD: 4620 case ISD::FSUB: 4621 case ISD::FMUL: 4622 case ISD::FDIV: 4623 case ISD::FREM: 4624 case ISD::FMINNUM: 4625 case ISD::FMAXNUM: 4626 case ISD::FPOW: 4627 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4628 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4629 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4630 Node->getFlags()); 4631 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4632 Tmp3, DAG.getIntPtrConstant(0, dl))); 4633 break; 4634 case ISD::STRICT_FREM: 4635 case ISD::STRICT_FPOW: 4636 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4637 {Node->getOperand(0), Node->getOperand(1)}); 4638 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4639 {Node->getOperand(0), Node->getOperand(2)}); 4640 Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 4641 Tmp2.getValue(1)); 4642 Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4643 {Tmp3, Tmp1, Tmp2}); 4644 Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4645 {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)}); 4646 Results.push_back(Tmp1); 4647 Results.push_back(Tmp1.getValue(1)); 4648 break; 4649 case ISD::FMA: 4650 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4651 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4652 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4653 Results.push_back( 4654 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4655 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4656 DAG.getIntPtrConstant(0, dl))); 4657 break; 4658 case ISD::FCOPYSIGN: 4659 case ISD::FPOWI: { 4660 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4661 Tmp2 = Node->getOperand(1); 4662 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4663 4664 // fcopysign doesn't change anything but the sign bit, so 4665 // (fp_round (fcopysign (fpext a), b)) 4666 // is as precise as 4667 // (fp_round (fpext a)) 4668 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4669 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4670 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4671 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4672 break; 4673 } 4674 case ISD::FFLOOR: 4675 case ISD::FCEIL: 4676 case ISD::FRINT: 4677 case ISD::FNEARBYINT: 4678 case ISD::FROUND: 4679 case ISD::FROUNDEVEN: 4680 case ISD::FTRUNC: 4681 case ISD::FNEG: 4682 case ISD::FSQRT: 4683 case ISD::FSIN: 4684 case ISD::FCOS: 4685 case ISD::FLOG: 4686 case ISD::FLOG2: 4687 case ISD::FLOG10: 4688 case ISD::FABS: 4689 case ISD::FEXP: 4690 case ISD::FEXP2: 4691 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4692 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4693 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4694 Tmp2, DAG.getIntPtrConstant(0, dl))); 4695 break; 4696 case ISD::STRICT_FFLOOR: 4697 case ISD::STRICT_FCEIL: 4698 case ISD::STRICT_FSIN: 4699 case ISD::STRICT_FCOS: 4700 case ISD::STRICT_FLOG: 4701 case ISD::STRICT_FLOG10: 4702 case ISD::STRICT_FEXP: 4703 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4704 {Node->getOperand(0), Node->getOperand(1)}); 4705 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4706 {Tmp1.getValue(1), Tmp1}); 4707 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4708 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 4709 Results.push_back(Tmp3); 4710 Results.push_back(Tmp3.getValue(1)); 4711 break; 4712 case ISD::BUILD_VECTOR: { 4713 MVT EltVT = OVT.getVectorElementType(); 4714 MVT NewEltVT = NVT.getVectorElementType(); 4715 4716 // Handle bitcasts to a different vector type with the same total bit size 4717 // 4718 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4719 // => 4720 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4721 4722 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4723 "Invalid promote type for build_vector"); 4724 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4725 4726 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4727 4728 SmallVector<SDValue, 8> NewOps; 4729 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4730 SDValue Op = Node->getOperand(I); 4731 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4732 } 4733 4734 SDLoc SL(Node); 4735 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4736 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4737 Results.push_back(CvtVec); 4738 break; 4739 } 4740 case ISD::EXTRACT_VECTOR_ELT: { 4741 MVT EltVT = OVT.getVectorElementType(); 4742 MVT NewEltVT = NVT.getVectorElementType(); 4743 4744 // Handle bitcasts to a different vector type with the same total bit size. 4745 // 4746 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4747 // => 4748 // v4i32:castx = bitcast x:v2i64 4749 // 4750 // i64 = bitcast 4751 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4752 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4753 // 4754 4755 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4756 "Invalid promote type for extract_vector_elt"); 4757 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4758 4759 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4760 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4761 4762 SDValue Idx = Node->getOperand(1); 4763 EVT IdxVT = Idx.getValueType(); 4764 SDLoc SL(Node); 4765 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4766 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4767 4768 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4769 4770 SmallVector<SDValue, 8> NewOps; 4771 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4772 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4773 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4774 4775 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4776 CastVec, TmpIdx); 4777 NewOps.push_back(Elt); 4778 } 4779 4780 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 4781 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4782 break; 4783 } 4784 case ISD::INSERT_VECTOR_ELT: { 4785 MVT EltVT = OVT.getVectorElementType(); 4786 MVT NewEltVT = NVT.getVectorElementType(); 4787 4788 // Handle bitcasts to a different vector type with the same total bit size 4789 // 4790 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4791 // => 4792 // v4i32:castx = bitcast x:v2i64 4793 // v2i32:casty = bitcast y:i64 4794 // 4795 // v2i64 = bitcast 4796 // (v4i32 insert_vector_elt 4797 // (v4i32 insert_vector_elt v4i32:castx, 4798 // (extract_vector_elt casty, 0), 2 * z), 4799 // (extract_vector_elt casty, 1), (2 * z + 1)) 4800 4801 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4802 "Invalid promote type for insert_vector_elt"); 4803 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4804 4805 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4806 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4807 4808 SDValue Val = Node->getOperand(1); 4809 SDValue Idx = Node->getOperand(2); 4810 EVT IdxVT = Idx.getValueType(); 4811 SDLoc SL(Node); 4812 4813 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 4814 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4815 4816 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4817 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4818 4819 SDValue NewVec = CastVec; 4820 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4821 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4822 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4823 4824 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4825 CastVal, IdxOffset); 4826 4827 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 4828 NewVec, Elt, InEltIdx); 4829 } 4830 4831 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 4832 break; 4833 } 4834 case ISD::SCALAR_TO_VECTOR: { 4835 MVT EltVT = OVT.getVectorElementType(); 4836 MVT NewEltVT = NVT.getVectorElementType(); 4837 4838 // Handle bitcasts to different vector type with the same total bit size. 4839 // 4840 // e.g. v2i64 = scalar_to_vector x:i64 4841 // => 4842 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 4843 // 4844 4845 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4846 SDValue Val = Node->getOperand(0); 4847 SDLoc SL(Node); 4848 4849 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4850 SDValue Undef = DAG.getUNDEF(MidVT); 4851 4852 SmallVector<SDValue, 8> NewElts; 4853 NewElts.push_back(CastVal); 4854 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 4855 NewElts.push_back(Undef); 4856 4857 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 4858 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4859 Results.push_back(CvtVec); 4860 break; 4861 } 4862 case ISD::ATOMIC_SWAP: { 4863 AtomicSDNode *AM = cast<AtomicSDNode>(Node); 4864 SDLoc SL(Node); 4865 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal()); 4866 assert(NVT.getSizeInBits() == OVT.getSizeInBits() && 4867 "unexpected promotion type"); 4868 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && 4869 "unexpected atomic_swap with illegal type"); 4870 4871 SDValue NewAtomic 4872 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT, 4873 DAG.getVTList(NVT, MVT::Other), 4874 { AM->getChain(), AM->getBasePtr(), CastVal }, 4875 AM->getMemOperand()); 4876 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); 4877 Results.push_back(NewAtomic.getValue(1)); 4878 break; 4879 } 4880 } 4881 4882 // Replace the original node with the legalized result. 4883 if (!Results.empty()) { 4884 LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); 4885 ReplaceNode(Node, Results.data()); 4886 } else 4887 LLVM_DEBUG(dbgs() << "Could not promote node\n"); 4888 } 4889 4890 /// This is the entry point for the file. 4891 void SelectionDAG::Legalize() { 4892 AssignTopologicalOrder(); 4893 4894 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4895 // Use a delete listener to remove nodes which were deleted during 4896 // legalization from LegalizeNodes. This is needed to handle the situation 4897 // where a new node is allocated by the object pool to the same address of a 4898 // previously deleted node. 4899 DAGNodeDeletedListener DeleteListener( 4900 *this, 4901 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 4902 4903 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 4904 4905 // Visit all the nodes. We start in topological order, so that we see 4906 // nodes with their original operands intact. Legalization can produce 4907 // new nodes which may themselves need to be legalized. Iterate until all 4908 // nodes have been legalized. 4909 while (true) { 4910 bool AnyLegalized = false; 4911 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 4912 --NI; 4913 4914 SDNode *N = &*NI; 4915 if (N->use_empty() && N != getRoot().getNode()) { 4916 ++NI; 4917 DeleteNode(N); 4918 continue; 4919 } 4920 4921 if (LegalizedNodes.insert(N).second) { 4922 AnyLegalized = true; 4923 Legalizer.LegalizeOp(N); 4924 4925 if (N->use_empty() && N != getRoot().getNode()) { 4926 ++NI; 4927 DeleteNode(N); 4928 } 4929 } 4930 } 4931 if (!AnyLegalized) 4932 break; 4933 4934 } 4935 4936 // Remove dead nodes now. 4937 RemoveDeadNodes(); 4938 } 4939 4940 bool SelectionDAG::LegalizeOp(SDNode *N, 4941 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 4942 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4943 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 4944 4945 // Directly insert the node in question, and legalize it. This will recurse 4946 // as needed through operands. 4947 LegalizedNodes.insert(N); 4948 Legalizer.LegalizeOp(N); 4949 4950 return LegalizedNodes.count(N); 4951 } 4952