1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::Legalize method.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/CodeGen/ISDOpcodes.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/RuntimeLibcalls.h"
26 #include "llvm/CodeGen/SelectionDAG.h"
27 #include "llvm/CodeGen/SelectionDAGNodes.h"
28 #include "llvm/CodeGen/TargetFrameLowering.h"
29 #include "llvm/CodeGen/TargetLowering.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/CodeGen/ValueTypes.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstdint>
51 #include <tuple>
52 #include <utility>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "legalizedag"
57 
58 namespace {
59 
60 /// Keeps track of state when getting the sign of a floating-point value as an
61 /// integer.
62 struct FloatSignAsInt {
63   EVT FloatVT;
64   SDValue Chain;
65   SDValue FloatPtr;
66   SDValue IntPtr;
67   MachinePointerInfo IntPointerInfo;
68   MachinePointerInfo FloatPointerInfo;
69   SDValue IntValue;
70   APInt SignMask;
71   uint8_t SignBit;
72 };
73 
74 //===----------------------------------------------------------------------===//
75 /// This takes an arbitrary SelectionDAG as input and
76 /// hacks on it until the target machine can handle it.  This involves
77 /// eliminating value sizes the machine cannot handle (promoting small sizes to
78 /// large sizes or splitting up large values into small values) as well as
79 /// eliminating operations the machine cannot handle.
80 ///
81 /// This code also does a small amount of optimization and recognition of idioms
82 /// as part of its processing.  For example, if a target does not support a
83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
84 /// will attempt merge setcc and brc instructions into brcc's.
85 class SelectionDAGLegalize {
86   const TargetMachine &TM;
87   const TargetLowering &TLI;
88   SelectionDAG &DAG;
89 
90   /// The set of nodes which have already been legalized. We hold a
91   /// reference to it in order to update as necessary on node deletion.
92   SmallPtrSetImpl<SDNode *> &LegalizedNodes;
93 
94   /// A set of all the nodes updated during legalization.
95   SmallSetVector<SDNode *, 16> *UpdatedNodes;
96 
97   EVT getSetCCResultType(EVT VT) const {
98     return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
99   }
100 
101   // Libcall insertion helpers.
102 
103 public:
104   SelectionDAGLegalize(SelectionDAG &DAG,
105                        SmallPtrSetImpl<SDNode *> &LegalizedNodes,
106                        SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr)
107       : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG),
108         LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {}
109 
110   /// Legalizes the given operation.
111   void LegalizeOp(SDNode *Node);
112 
113 private:
114   SDValue OptimizeFloatStore(StoreSDNode *ST);
115 
116   void LegalizeLoadOps(SDNode *Node);
117   void LegalizeStoreOps(SDNode *Node);
118 
119   /// Some targets cannot handle a variable
120   /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
121   /// is necessary to spill the vector being inserted into to memory, perform
122   /// the insert there, and then read the result back.
123   SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
124                                          const SDLoc &dl);
125   SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx,
126                                   const SDLoc &dl);
127 
128   /// Return a vector shuffle operation which
129   /// performs the same shuffe in terms of order or result bytes, but on a type
130   /// whose vector element type is narrower than the original shuffle type.
131   /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
132   SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl,
133                                      SDValue N1, SDValue N2,
134                                      ArrayRef<int> Mask) const;
135 
136   bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
137                              bool &NeedInvert, const SDLoc &dl, SDValue &Chain,
138                              bool IsSignaling = false);
139 
140   SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
141 
142   void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
143                        RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
144                        RTLIB::Libcall Call_F128,
145                        RTLIB::Libcall Call_PPCF128,
146                        SmallVectorImpl<SDValue> &Results);
147   SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
148                            RTLIB::Libcall Call_I8,
149                            RTLIB::Libcall Call_I16,
150                            RTLIB::Libcall Call_I32,
151                            RTLIB::Libcall Call_I64,
152                            RTLIB::Libcall Call_I128);
153   void ExpandArgFPLibCall(SDNode *Node,
154                           RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64,
155                           RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128,
156                           RTLIB::Libcall Call_PPCF128,
157                           SmallVectorImpl<SDValue> &Results);
158   void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
159   void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
160 
161   SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
162                            const SDLoc &dl);
163   SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
164                            const SDLoc &dl, SDValue ChainIn);
165   SDValue ExpandBUILD_VECTOR(SDNode *Node);
166   SDValue ExpandSPLAT_VECTOR(SDNode *Node);
167   SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
168   void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
169                                 SmallVectorImpl<SDValue> &Results);
170   void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL,
171                          SDValue Value) const;
172   SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL,
173                           SDValue NewIntValue) const;
174   SDValue ExpandFCOPYSIGN(SDNode *Node) const;
175   SDValue ExpandFABS(SDNode *Node) const;
176   SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain);
177   void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl,
178                              SmallVectorImpl<SDValue> &Results);
179   void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl,
180                              SmallVectorImpl<SDValue> &Results);
181 
182   SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl);
183   SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl);
184 
185   SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
186   SDValue ExpandInsertToVectorThroughStack(SDValue Op);
187   SDValue ExpandVectorBuildThroughStack(SDNode* Node);
188 
189   SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
190   SDValue ExpandConstant(ConstantSDNode *CP);
191 
192   // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall
193   bool ExpandNode(SDNode *Node);
194   void ConvertNodeToLibcall(SDNode *Node);
195   void PromoteNode(SDNode *Node);
196 
197 public:
198   // Node replacement helpers
199 
200   void ReplacedNode(SDNode *N) {
201     LegalizedNodes.erase(N);
202     if (UpdatedNodes)
203       UpdatedNodes->insert(N);
204   }
205 
206   void ReplaceNode(SDNode *Old, SDNode *New) {
207     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
208                dbgs() << "     with:      "; New->dump(&DAG));
209 
210     assert(Old->getNumValues() == New->getNumValues() &&
211            "Replacing one node with another that produces a different number "
212            "of values!");
213     DAG.ReplaceAllUsesWith(Old, New);
214     if (UpdatedNodes)
215       UpdatedNodes->insert(New);
216     ReplacedNode(Old);
217   }
218 
219   void ReplaceNode(SDValue Old, SDValue New) {
220     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
221                dbgs() << "     with:      "; New->dump(&DAG));
222 
223     DAG.ReplaceAllUsesWith(Old, New);
224     if (UpdatedNodes)
225       UpdatedNodes->insert(New.getNode());
226     ReplacedNode(Old.getNode());
227   }
228 
229   void ReplaceNode(SDNode *Old, const SDValue *New) {
230     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG));
231 
232     DAG.ReplaceAllUsesWith(Old, New);
233     for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
234       LLVM_DEBUG(dbgs() << (i == 0 ? "     with:      " : "      and:      ");
235                  New[i]->dump(&DAG));
236       if (UpdatedNodes)
237         UpdatedNodes->insert(New[i].getNode());
238     }
239     ReplacedNode(Old);
240   }
241 
242   void ReplaceNodeWithValue(SDValue Old, SDValue New) {
243     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
244                dbgs() << "     with:      "; New->dump(&DAG));
245 
246     DAG.ReplaceAllUsesOfValueWith(Old, New);
247     if (UpdatedNodes)
248       UpdatedNodes->insert(New.getNode());
249     ReplacedNode(Old.getNode());
250   }
251 };
252 
253 } // end anonymous namespace
254 
255 /// Return a vector shuffle operation which
256 /// performs the same shuffle in terms of order or result bytes, but on a type
257 /// whose vector element type is narrower than the original shuffle type.
258 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
259 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType(
260     EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
261     ArrayRef<int> Mask) const {
262   unsigned NumMaskElts = VT.getVectorNumElements();
263   unsigned NumDestElts = NVT.getVectorNumElements();
264   unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
265 
266   assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
267 
268   if (NumEltsGrowth == 1)
269     return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask);
270 
271   SmallVector<int, 8> NewMask;
272   for (unsigned i = 0; i != NumMaskElts; ++i) {
273     int Idx = Mask[i];
274     for (unsigned j = 0; j != NumEltsGrowth; ++j) {
275       if (Idx < 0)
276         NewMask.push_back(-1);
277       else
278         NewMask.push_back(Idx * NumEltsGrowth + j);
279     }
280   }
281   assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
282   assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
283   return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask);
284 }
285 
286 /// Expands the ConstantFP node to an integer constant or
287 /// a load from the constant pool.
288 SDValue
289 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
290   bool Extend = false;
291   SDLoc dl(CFP);
292 
293   // If a FP immediate is precise when represented as a float and if the
294   // target can do an extending load from float to double, we put it into
295   // the constant pool as a float, even if it's is statically typed as a
296   // double.  This shrinks FP constants and canonicalizes them for targets where
297   // an FP extending load is the same cost as a normal load (such as on the x87
298   // fp stack or PPC FP unit).
299   EVT VT = CFP->getValueType(0);
300   ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
301   if (!UseCP) {
302     assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
303     return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl,
304                            (VT == MVT::f64) ? MVT::i64 : MVT::i32);
305   }
306 
307   APFloat APF = CFP->getValueAPF();
308   EVT OrigVT = VT;
309   EVT SVT = VT;
310 
311   // We don't want to shrink SNaNs. Converting the SNaN back to its real type
312   // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ).
313   if (!APF.isSignaling()) {
314     while (SVT != MVT::f32 && SVT != MVT::f16) {
315       SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
316       if (ConstantFPSDNode::isValueValidForType(SVT, APF) &&
317           // Only do this if the target has a native EXTLOAD instruction from
318           // smaller type.
319           TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) &&
320           TLI.ShouldShrinkFPConstant(OrigVT)) {
321         Type *SType = SVT.getTypeForEVT(*DAG.getContext());
322         LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
323         VT = SVT;
324         Extend = true;
325       }
326     }
327   }
328 
329   SDValue CPIdx =
330       DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout()));
331   Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
332   if (Extend) {
333     SDValue Result = DAG.getExtLoad(
334         ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx,
335         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT,
336         Alignment);
337     return Result;
338   }
339   SDValue Result = DAG.getLoad(
340       OrigVT, dl, DAG.getEntryNode(), CPIdx,
341       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
342   return Result;
343 }
344 
345 /// Expands the Constant node to a load from the constant pool.
346 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) {
347   SDLoc dl(CP);
348   EVT VT = CP->getValueType(0);
349   SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(),
350                                       TLI.getPointerTy(DAG.getDataLayout()));
351   Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
352   SDValue Result = DAG.getLoad(
353       VT, dl, DAG.getEntryNode(), CPIdx,
354       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
355   return Result;
356 }
357 
358 /// Some target cannot handle a variable insertion index for the
359 /// INSERT_VECTOR_ELT instruction.  In this case, it
360 /// is necessary to spill the vector being inserted into to memory, perform
361 /// the insert there, and then read the result back.
362 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec,
363                                                              SDValue Val,
364                                                              SDValue Idx,
365                                                              const SDLoc &dl) {
366   SDValue Tmp1 = Vec;
367   SDValue Tmp2 = Val;
368   SDValue Tmp3 = Idx;
369 
370   // If the target doesn't support this, we have to spill the input vector
371   // to a temporary stack slot, update the element, then reload it.  This is
372   // badness.  We could also load the value into a vector register (either
373   // with a "move to register" or "extload into register" instruction, then
374   // permute it into place, if the idx is a constant and if the idx is
375   // supported by the target.
376   EVT VT    = Tmp1.getValueType();
377   EVT EltVT = VT.getVectorElementType();
378   SDValue StackPtr = DAG.CreateStackTemporary(VT);
379 
380   int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
381 
382   // Store the vector.
383   SDValue Ch = DAG.getStore(
384       DAG.getEntryNode(), dl, Tmp1, StackPtr,
385       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
386 
387   SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3);
388 
389   // Store the scalar value.
390   Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT);
391   // Load the updated vector.
392   return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack(
393                                                DAG.getMachineFunction(), SPFI));
394 }
395 
396 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
397                                                       SDValue Idx,
398                                                       const SDLoc &dl) {
399   if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
400     // SCALAR_TO_VECTOR requires that the type of the value being inserted
401     // match the element type of the vector being created, except for
402     // integers in which case the inserted value can be over width.
403     EVT EltVT = Vec.getValueType().getVectorElementType();
404     if (Val.getValueType() == EltVT ||
405         (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
406       SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
407                                   Vec.getValueType(), Val);
408 
409       unsigned NumElts = Vec.getValueType().getVectorNumElements();
410       // We generate a shuffle of InVec and ScVec, so the shuffle mask
411       // should be 0,1,2,3,4,5... with the appropriate element replaced with
412       // elt 0 of the RHS.
413       SmallVector<int, 8> ShufOps;
414       for (unsigned i = 0; i != NumElts; ++i)
415         ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
416 
417       return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps);
418     }
419   }
420   return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
421 }
422 
423 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
424   if (!ISD::isNormalStore(ST))
425     return SDValue();
426 
427   LLVM_DEBUG(dbgs() << "Optimizing float store operations\n");
428   // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
429   // FIXME: We shouldn't do this for TargetConstantFP's.
430   // FIXME: move this to the DAG Combiner!  Note that we can't regress due
431   // to phase ordering between legalized code and the dag combiner.  This
432   // probably means that we need to integrate dag combiner and legalizer
433   // together.
434   // We generally can't do this one for long doubles.
435   SDValue Chain = ST->getChain();
436   SDValue Ptr = ST->getBasePtr();
437   MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
438   AAMDNodes AAInfo = ST->getAAInfo();
439   SDLoc dl(ST);
440   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
441     if (CFP->getValueType(0) == MVT::f32 &&
442         TLI.isTypeLegal(MVT::i32)) {
443       SDValue Con = DAG.getConstant(CFP->getValueAPF().
444                                       bitcastToAPInt().zextOrTrunc(32),
445                                     SDLoc(CFP), MVT::i32);
446       return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
447                           ST->getOriginalAlign(), MMOFlags, AAInfo);
448     }
449 
450     if (CFP->getValueType(0) == MVT::f64) {
451       // If this target supports 64-bit registers, do a single 64-bit store.
452       if (TLI.isTypeLegal(MVT::i64)) {
453         SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
454                                       zextOrTrunc(64), SDLoc(CFP), MVT::i64);
455         return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
456                             ST->getOriginalAlign(), MMOFlags, AAInfo);
457       }
458 
459       if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
460         // Otherwise, if the target supports 32-bit registers, use 2 32-bit
461         // stores.  If the target supports neither 32- nor 64-bits, this
462         // xform is certainly not worth it.
463         const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt();
464         SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32);
465         SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32);
466         if (DAG.getDataLayout().isBigEndian())
467           std::swap(Lo, Hi);
468 
469         Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(),
470                           ST->getOriginalAlign(), MMOFlags, AAInfo);
471         Ptr = DAG.getMemBasePlusOffset(Ptr, 4, dl);
472         Hi = DAG.getStore(Chain, dl, Hi, Ptr,
473                           ST->getPointerInfo().getWithOffset(4),
474                           ST->getOriginalAlign(), MMOFlags, AAInfo);
475 
476         return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
477       }
478     }
479   }
480   return SDValue(nullptr, 0);
481 }
482 
483 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
484   StoreSDNode *ST = cast<StoreSDNode>(Node);
485   SDValue Chain = ST->getChain();
486   SDValue Ptr = ST->getBasePtr();
487   SDLoc dl(Node);
488 
489   MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
490   AAMDNodes AAInfo = ST->getAAInfo();
491 
492   if (!ST->isTruncatingStore()) {
493     LLVM_DEBUG(dbgs() << "Legalizing store operation\n");
494     if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
495       ReplaceNode(ST, OptStore);
496       return;
497     }
498 
499     SDValue Value = ST->getValue();
500     MVT VT = Value.getSimpleValueType();
501     switch (TLI.getOperationAction(ISD::STORE, VT)) {
502     default: llvm_unreachable("This action is not supported yet!");
503     case TargetLowering::Legal: {
504       // If this is an unaligned store and the target doesn't support it,
505       // expand it.
506       EVT MemVT = ST->getMemoryVT();
507       const DataLayout &DL = DAG.getDataLayout();
508       if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
509                                               *ST->getMemOperand())) {
510         LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n");
511         SDValue Result = TLI.expandUnalignedStore(ST, DAG);
512         ReplaceNode(SDValue(ST, 0), Result);
513       } else
514         LLVM_DEBUG(dbgs() << "Legal store\n");
515       break;
516     }
517     case TargetLowering::Custom: {
518       LLVM_DEBUG(dbgs() << "Trying custom lowering\n");
519       SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
520       if (Res && Res != SDValue(Node, 0))
521         ReplaceNode(SDValue(Node, 0), Res);
522       return;
523     }
524     case TargetLowering::Promote: {
525       MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
526       assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
527              "Can only promote stores to same size type");
528       Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
529       SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
530                                     ST->getOriginalAlign(), MMOFlags, AAInfo);
531       ReplaceNode(SDValue(Node, 0), Result);
532       break;
533     }
534     }
535     return;
536   }
537 
538   LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n");
539   SDValue Value = ST->getValue();
540   EVT StVT = ST->getMemoryVT();
541   unsigned StWidth = StVT.getSizeInBits();
542   auto &DL = DAG.getDataLayout();
543 
544   if (StWidth != StVT.getStoreSizeInBits()) {
545     // Promote to a byte-sized store with upper bits zero if not
546     // storing an integral number of bytes.  For example, promote
547     // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
548     EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
549                                 StVT.getStoreSizeInBits());
550     Value = DAG.getZeroExtendInReg(Value, dl, StVT);
551     SDValue Result =
552         DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT,
553                           ST->getOriginalAlign(), MMOFlags, AAInfo);
554     ReplaceNode(SDValue(Node, 0), Result);
555   } else if (StWidth & (StWidth - 1)) {
556     // If not storing a power-of-2 number of bits, expand as two stores.
557     assert(!StVT.isVector() && "Unsupported truncstore!");
558     unsigned LogStWidth = Log2_32(StWidth);
559     assert(LogStWidth < 32);
560     unsigned RoundWidth = 1 << LogStWidth;
561     assert(RoundWidth < StWidth);
562     unsigned ExtraWidth = StWidth - RoundWidth;
563     assert(ExtraWidth < RoundWidth);
564     assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
565            "Store size not an integral number of bytes!");
566     EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
567     EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
568     SDValue Lo, Hi;
569     unsigned IncrementSize;
570 
571     if (DL.isLittleEndian()) {
572       // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
573       // Store the bottom RoundWidth bits.
574       Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
575                              RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
576 
577       // Store the remaining ExtraWidth bits.
578       IncrementSize = RoundWidth / 8;
579       Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl);
580       Hi = DAG.getNode(
581           ISD::SRL, dl, Value.getValueType(), Value,
582           DAG.getConstant(RoundWidth, dl,
583                           TLI.getShiftAmountTy(Value.getValueType(), DL)));
584       Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
585                              ST->getPointerInfo().getWithOffset(IncrementSize),
586                              ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
587     } else {
588       // Big endian - avoid unaligned stores.
589       // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
590       // Store the top RoundWidth bits.
591       Hi = DAG.getNode(
592           ISD::SRL, dl, Value.getValueType(), Value,
593           DAG.getConstant(ExtraWidth, dl,
594                           TLI.getShiftAmountTy(Value.getValueType(), DL)));
595       Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT,
596                              ST->getOriginalAlign(), MMOFlags, AAInfo);
597 
598       // Store the remaining ExtraWidth bits.
599       IncrementSize = RoundWidth / 8;
600       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
601                         DAG.getConstant(IncrementSize, dl,
602                                         Ptr.getValueType()));
603       Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
604                              ST->getPointerInfo().getWithOffset(IncrementSize),
605                              ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
606     }
607 
608     // The order of the stores doesn't matter.
609     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
610     ReplaceNode(SDValue(Node, 0), Result);
611   } else {
612     switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
613     default: llvm_unreachable("This action is not supported yet!");
614     case TargetLowering::Legal: {
615       EVT MemVT = ST->getMemoryVT();
616       // If this is an unaligned store and the target doesn't support it,
617       // expand it.
618       if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
619                                               *ST->getMemOperand())) {
620         SDValue Result = TLI.expandUnalignedStore(ST, DAG);
621         ReplaceNode(SDValue(ST, 0), Result);
622       }
623       break;
624     }
625     case TargetLowering::Custom: {
626       SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
627       if (Res && Res != SDValue(Node, 0))
628         ReplaceNode(SDValue(Node, 0), Res);
629       return;
630     }
631     case TargetLowering::Expand:
632       assert(!StVT.isVector() &&
633              "Vector Stores are handled in LegalizeVectorOps");
634 
635       SDValue Result;
636 
637       // TRUNCSTORE:i16 i32 -> STORE i16
638       if (TLI.isTypeLegal(StVT)) {
639         Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
640         Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
641                               ST->getOriginalAlign(), MMOFlags, AAInfo);
642       } else {
643         // The in-memory type isn't legal. Truncate to the type it would promote
644         // to, and then do a truncstore.
645         Value = DAG.getNode(ISD::TRUNCATE, dl,
646                             TLI.getTypeToTransformTo(*DAG.getContext(), StVT),
647                             Value);
648         Result =
649             DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT,
650                               ST->getOriginalAlign(), MMOFlags, AAInfo);
651       }
652 
653       ReplaceNode(SDValue(Node, 0), Result);
654       break;
655     }
656   }
657 }
658 
659 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
660   LoadSDNode *LD = cast<LoadSDNode>(Node);
661   SDValue Chain = LD->getChain();  // The chain.
662   SDValue Ptr = LD->getBasePtr();  // The base pointer.
663   SDValue Value;                   // The value returned by the load op.
664   SDLoc dl(Node);
665 
666   ISD::LoadExtType ExtType = LD->getExtensionType();
667   if (ExtType == ISD::NON_EXTLOAD) {
668     LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n");
669     MVT VT = Node->getSimpleValueType(0);
670     SDValue RVal = SDValue(Node, 0);
671     SDValue RChain = SDValue(Node, 1);
672 
673     switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
674     default: llvm_unreachable("This action is not supported yet!");
675     case TargetLowering::Legal: {
676       EVT MemVT = LD->getMemoryVT();
677       const DataLayout &DL = DAG.getDataLayout();
678       // If this is an unaligned load and the target doesn't support it,
679       // expand it.
680       if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
681                                               *LD->getMemOperand())) {
682         std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG);
683       }
684       break;
685     }
686     case TargetLowering::Custom:
687       if (SDValue Res = TLI.LowerOperation(RVal, DAG)) {
688         RVal = Res;
689         RChain = Res.getValue(1);
690       }
691       break;
692 
693     case TargetLowering::Promote: {
694       MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
695       assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
696              "Can only promote loads to same size type");
697 
698       SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand());
699       RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
700       RChain = Res.getValue(1);
701       break;
702     }
703     }
704     if (RChain.getNode() != Node) {
705       assert(RVal.getNode() != Node && "Load must be completely replaced");
706       DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
707       DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
708       if (UpdatedNodes) {
709         UpdatedNodes->insert(RVal.getNode());
710         UpdatedNodes->insert(RChain.getNode());
711       }
712       ReplacedNode(Node);
713     }
714     return;
715   }
716 
717   LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n");
718   EVT SrcVT = LD->getMemoryVT();
719   unsigned SrcWidth = SrcVT.getSizeInBits();
720   MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
721   AAMDNodes AAInfo = LD->getAAInfo();
722 
723   if (SrcWidth != SrcVT.getStoreSizeInBits() &&
724       // Some targets pretend to have an i1 loading operation, and actually
725       // load an i8.  This trick is correct for ZEXTLOAD because the top 7
726       // bits are guaranteed to be zero; it helps the optimizers understand
727       // that these bits are zero.  It is also useful for EXTLOAD, since it
728       // tells the optimizers that those bits are undefined.  It would be
729       // nice to have an effective generic way of getting these benefits...
730       // Until such a way is found, don't insist on promoting i1 here.
731       (SrcVT != MVT::i1 ||
732        TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) ==
733          TargetLowering::Promote)) {
734     // Promote to a byte-sized load if not loading an integral number of
735     // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
736     unsigned NewWidth = SrcVT.getStoreSizeInBits();
737     EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
738     SDValue Ch;
739 
740     // The extra bits are guaranteed to be zero, since we stored them that
741     // way.  A zext load from NVT thus automatically gives zext from SrcVT.
742 
743     ISD::LoadExtType NewExtType =
744       ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
745 
746     SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
747                                     Chain, Ptr, LD->getPointerInfo(), NVT,
748                                     LD->getOriginalAlign(), MMOFlags, AAInfo);
749 
750     Ch = Result.getValue(1); // The chain.
751 
752     if (ExtType == ISD::SEXTLOAD)
753       // Having the top bits zero doesn't help when sign extending.
754       Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
755                            Result.getValueType(),
756                            Result, DAG.getValueType(SrcVT));
757     else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
758       // All the top bits are guaranteed to be zero - inform the optimizers.
759       Result = DAG.getNode(ISD::AssertZext, dl,
760                            Result.getValueType(), Result,
761                            DAG.getValueType(SrcVT));
762 
763     Value = Result;
764     Chain = Ch;
765   } else if (SrcWidth & (SrcWidth - 1)) {
766     // If not loading a power-of-2 number of bits, expand as two loads.
767     assert(!SrcVT.isVector() && "Unsupported extload!");
768     unsigned LogSrcWidth = Log2_32(SrcWidth);
769     assert(LogSrcWidth < 32);
770     unsigned RoundWidth = 1 << LogSrcWidth;
771     assert(RoundWidth < SrcWidth);
772     unsigned ExtraWidth = SrcWidth - RoundWidth;
773     assert(ExtraWidth < RoundWidth);
774     assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
775            "Load size not an integral number of bytes!");
776     EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
777     EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
778     SDValue Lo, Hi, Ch;
779     unsigned IncrementSize;
780     auto &DL = DAG.getDataLayout();
781 
782     if (DL.isLittleEndian()) {
783       // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
784       // Load the bottom RoundWidth bits.
785       Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
786                           LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(),
787                           MMOFlags, AAInfo);
788 
789       // Load the remaining ExtraWidth bits.
790       IncrementSize = RoundWidth / 8;
791       Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl);
792       Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
793                           LD->getPointerInfo().getWithOffset(IncrementSize),
794                           ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo);
795 
796       // Build a factor node to remember that this load is independent of
797       // the other one.
798       Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
799                        Hi.getValue(1));
800 
801       // Move the top bits to the right place.
802       Hi = DAG.getNode(
803           ISD::SHL, dl, Hi.getValueType(), Hi,
804           DAG.getConstant(RoundWidth, dl,
805                           TLI.getShiftAmountTy(Hi.getValueType(), DL)));
806 
807       // Join the hi and lo parts.
808       Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
809     } else {
810       // Big endian - avoid unaligned loads.
811       // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
812       // Load the top RoundWidth bits.
813       Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
814                           LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(),
815                           MMOFlags, AAInfo);
816 
817       // Load the remaining ExtraWidth bits.
818       IncrementSize = RoundWidth / 8;
819       Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl);
820       Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
821                           LD->getPointerInfo().getWithOffset(IncrementSize),
822                           ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo);
823 
824       // Build a factor node to remember that this load is independent of
825       // the other one.
826       Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
827                        Hi.getValue(1));
828 
829       // Move the top bits to the right place.
830       Hi = DAG.getNode(
831           ISD::SHL, dl, Hi.getValueType(), Hi,
832           DAG.getConstant(ExtraWidth, dl,
833                           TLI.getShiftAmountTy(Hi.getValueType(), DL)));
834 
835       // Join the hi and lo parts.
836       Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
837     }
838 
839     Chain = Ch;
840   } else {
841     bool isCustom = false;
842     switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0),
843                                  SrcVT.getSimpleVT())) {
844     default: llvm_unreachable("This action is not supported yet!");
845     case TargetLowering::Custom:
846       isCustom = true;
847       LLVM_FALLTHROUGH;
848     case TargetLowering::Legal:
849       Value = SDValue(Node, 0);
850       Chain = SDValue(Node, 1);
851 
852       if (isCustom) {
853         if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
854           Value = Res;
855           Chain = Res.getValue(1);
856         }
857       } else {
858         // If this is an unaligned load and the target doesn't support it,
859         // expand it.
860         EVT MemVT = LD->getMemoryVT();
861         const DataLayout &DL = DAG.getDataLayout();
862         if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT,
863                                     *LD->getMemOperand())) {
864           std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG);
865         }
866       }
867       break;
868 
869     case TargetLowering::Expand: {
870       EVT DestVT = Node->getValueType(0);
871       if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) {
872         // If the source type is not legal, see if there is a legal extload to
873         // an intermediate type that we can then extend further.
874         EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT());
875         if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT?
876             TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) {
877           // If we are loading a legal type, this is a non-extload followed by a
878           // full extend.
879           ISD::LoadExtType MidExtType =
880               (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType;
881 
882           SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr,
883                                         SrcVT, LD->getMemOperand());
884           unsigned ExtendOp =
885               ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType);
886           Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
887           Chain = Load.getValue(1);
888           break;
889         }
890 
891         // Handle the special case of fp16 extloads. EXTLOAD doesn't have the
892         // normal undefined upper bits behavior to allow using an in-reg extend
893         // with the illegal FP type, so load as an integer and do the
894         // from-integer conversion.
895         if (SrcVT.getScalarType() == MVT::f16) {
896           EVT ISrcVT = SrcVT.changeTypeToInteger();
897           EVT IDestVT = DestVT.changeTypeToInteger();
898           EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT());
899 
900           SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain,
901                                           Ptr, ISrcVT, LD->getMemOperand());
902           Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result);
903           Chain = Result.getValue(1);
904           break;
905         }
906       }
907 
908       assert(!SrcVT.isVector() &&
909              "Vector Loads are handled in LegalizeVectorOps");
910 
911       // FIXME: This does not work for vectors on most targets.  Sign-
912       // and zero-extend operations are currently folded into extending
913       // loads, whether they are legal or not, and then we end up here
914       // without any support for legalizing them.
915       assert(ExtType != ISD::EXTLOAD &&
916              "EXTLOAD should always be supported!");
917       // Turn the unsupported load into an EXTLOAD followed by an
918       // explicit zero/sign extend inreg.
919       SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl,
920                                       Node->getValueType(0),
921                                       Chain, Ptr, SrcVT,
922                                       LD->getMemOperand());
923       SDValue ValRes;
924       if (ExtType == ISD::SEXTLOAD)
925         ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
926                              Result.getValueType(),
927                              Result, DAG.getValueType(SrcVT));
928       else
929         ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
930       Value = ValRes;
931       Chain = Result.getValue(1);
932       break;
933     }
934     }
935   }
936 
937   // Since loads produce two values, make sure to remember that we legalized
938   // both of them.
939   if (Chain.getNode() != Node) {
940     assert(Value.getNode() != Node && "Load must be completely replaced");
941     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
942     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
943     if (UpdatedNodes) {
944       UpdatedNodes->insert(Value.getNode());
945       UpdatedNodes->insert(Chain.getNode());
946     }
947     ReplacedNode(Node);
948   }
949 }
950 
951 /// Return a legal replacement for the given operation, with all legal operands.
952 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
953   LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG));
954 
955   // Allow illegal target nodes and illegal registers.
956   if (Node->getOpcode() == ISD::TargetConstant ||
957       Node->getOpcode() == ISD::Register)
958     return;
959 
960 #ifndef NDEBUG
961   for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
962     assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
963              TargetLowering::TypeLegal &&
964            "Unexpected illegal type!");
965 
966   for (const SDValue &Op : Node->op_values())
967     assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) ==
968               TargetLowering::TypeLegal ||
969             Op.getOpcode() == ISD::TargetConstant ||
970             Op.getOpcode() == ISD::Register) &&
971             "Unexpected illegal type!");
972 #endif
973 
974   // Figure out the correct action; the way to query this varies by opcode
975   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
976   bool SimpleFinishLegalizing = true;
977   switch (Node->getOpcode()) {
978   case ISD::INTRINSIC_W_CHAIN:
979   case ISD::INTRINSIC_WO_CHAIN:
980   case ISD::INTRINSIC_VOID:
981   case ISD::STACKSAVE:
982     Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
983     break;
984   case ISD::GET_DYNAMIC_AREA_OFFSET:
985     Action = TLI.getOperationAction(Node->getOpcode(),
986                                     Node->getValueType(0));
987     break;
988   case ISD::VAARG:
989     Action = TLI.getOperationAction(Node->getOpcode(),
990                                     Node->getValueType(0));
991     if (Action != TargetLowering::Promote)
992       Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
993     break;
994   case ISD::FP_TO_FP16:
995   case ISD::SINT_TO_FP:
996   case ISD::UINT_TO_FP:
997   case ISD::EXTRACT_VECTOR_ELT:
998   case ISD::LROUND:
999   case ISD::LLROUND:
1000   case ISD::LRINT:
1001   case ISD::LLRINT:
1002     Action = TLI.getOperationAction(Node->getOpcode(),
1003                                     Node->getOperand(0).getValueType());
1004     break;
1005   case ISD::STRICT_FP_TO_FP16:
1006   case ISD::STRICT_SINT_TO_FP:
1007   case ISD::STRICT_UINT_TO_FP:
1008   case ISD::STRICT_LRINT:
1009   case ISD::STRICT_LLRINT:
1010   case ISD::STRICT_LROUND:
1011   case ISD::STRICT_LLROUND:
1012     // These pseudo-ops are the same as the other STRICT_ ops except
1013     // they are registered with setOperationAction() using the input type
1014     // instead of the output type.
1015     Action = TLI.getOperationAction(Node->getOpcode(),
1016                                     Node->getOperand(1).getValueType());
1017     break;
1018   case ISD::SIGN_EXTEND_INREG: {
1019     EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
1020     Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
1021     break;
1022   }
1023   case ISD::ATOMIC_STORE:
1024     Action = TLI.getOperationAction(Node->getOpcode(),
1025                                     Node->getOperand(2).getValueType());
1026     break;
1027   case ISD::SELECT_CC:
1028   case ISD::STRICT_FSETCC:
1029   case ISD::STRICT_FSETCCS:
1030   case ISD::SETCC:
1031   case ISD::BR_CC: {
1032     unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
1033                          Node->getOpcode() == ISD::STRICT_FSETCC ? 3 :
1034                          Node->getOpcode() == ISD::STRICT_FSETCCS ? 3 :
1035                          Node->getOpcode() == ISD::SETCC ? 2 : 1;
1036     unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 :
1037                               Node->getOpcode() == ISD::STRICT_FSETCC ? 1 :
1038                               Node->getOpcode() == ISD::STRICT_FSETCCS ? 1 : 0;
1039     MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
1040     ISD::CondCode CCCode =
1041         cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
1042     Action = TLI.getCondCodeAction(CCCode, OpVT);
1043     if (Action == TargetLowering::Legal) {
1044       if (Node->getOpcode() == ISD::SELECT_CC)
1045         Action = TLI.getOperationAction(Node->getOpcode(),
1046                                         Node->getValueType(0));
1047       else
1048         Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
1049     }
1050     break;
1051   }
1052   case ISD::LOAD:
1053   case ISD::STORE:
1054     // FIXME: Model these properly.  LOAD and STORE are complicated, and
1055     // STORE expects the unlegalized operand in some cases.
1056     SimpleFinishLegalizing = false;
1057     break;
1058   case ISD::CALLSEQ_START:
1059   case ISD::CALLSEQ_END:
1060     // FIXME: This shouldn't be necessary.  These nodes have special properties
1061     // dealing with the recursive nature of legalization.  Removing this
1062     // special case should be done as part of making LegalizeDAG non-recursive.
1063     SimpleFinishLegalizing = false;
1064     break;
1065   case ISD::EXTRACT_ELEMENT:
1066   case ISD::FLT_ROUNDS_:
1067   case ISD::MERGE_VALUES:
1068   case ISD::EH_RETURN:
1069   case ISD::FRAME_TO_ARGS_OFFSET:
1070   case ISD::EH_DWARF_CFA:
1071   case ISD::EH_SJLJ_SETJMP:
1072   case ISD::EH_SJLJ_LONGJMP:
1073   case ISD::EH_SJLJ_SETUP_DISPATCH:
1074     // These operations lie about being legal: when they claim to be legal,
1075     // they should actually be expanded.
1076     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1077     if (Action == TargetLowering::Legal)
1078       Action = TargetLowering::Expand;
1079     break;
1080   case ISD::INIT_TRAMPOLINE:
1081   case ISD::ADJUST_TRAMPOLINE:
1082   case ISD::FRAMEADDR:
1083   case ISD::RETURNADDR:
1084   case ISD::ADDROFRETURNADDR:
1085   case ISD::SPONENTRY:
1086     // These operations lie about being legal: when they claim to be legal,
1087     // they should actually be custom-lowered.
1088     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1089     if (Action == TargetLowering::Legal)
1090       Action = TargetLowering::Custom;
1091     break;
1092   case ISD::READCYCLECOUNTER:
1093     // READCYCLECOUNTER returns an i64, even if type legalization might have
1094     // expanded that to several smaller types.
1095     Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64);
1096     break;
1097   case ISD::READ_REGISTER:
1098   case ISD::WRITE_REGISTER:
1099     // Named register is legal in the DAG, but blocked by register name
1100     // selection if not implemented by target (to chose the correct register)
1101     // They'll be converted to Copy(To/From)Reg.
1102     Action = TargetLowering::Legal;
1103     break;
1104   case ISD::DEBUGTRAP:
1105     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1106     if (Action == TargetLowering::Expand) {
1107       // replace ISD::DEBUGTRAP with ISD::TRAP
1108       SDValue NewVal;
1109       NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
1110                            Node->getOperand(0));
1111       ReplaceNode(Node, NewVal.getNode());
1112       LegalizeOp(NewVal.getNode());
1113       return;
1114     }
1115     break;
1116   case ISD::SADDSAT:
1117   case ISD::UADDSAT:
1118   case ISD::SSUBSAT:
1119   case ISD::USUBSAT: {
1120     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1121     break;
1122   }
1123   case ISD::SMULFIX:
1124   case ISD::SMULFIXSAT:
1125   case ISD::UMULFIX:
1126   case ISD::UMULFIXSAT:
1127   case ISD::SDIVFIX:
1128   case ISD::SDIVFIXSAT:
1129   case ISD::UDIVFIX:
1130   case ISD::UDIVFIXSAT: {
1131     unsigned Scale = Node->getConstantOperandVal(2);
1132     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
1133                                               Node->getValueType(0), Scale);
1134     break;
1135   }
1136   case ISD::MSCATTER:
1137     Action = TLI.getOperationAction(Node->getOpcode(),
1138                     cast<MaskedScatterSDNode>(Node)->getValue().getValueType());
1139     break;
1140   case ISD::MSTORE:
1141     Action = TLI.getOperationAction(Node->getOpcode(),
1142                     cast<MaskedStoreSDNode>(Node)->getValue().getValueType());
1143     break;
1144   case ISD::VECREDUCE_FADD:
1145   case ISD::VECREDUCE_FMUL:
1146   case ISD::VECREDUCE_ADD:
1147   case ISD::VECREDUCE_MUL:
1148   case ISD::VECREDUCE_AND:
1149   case ISD::VECREDUCE_OR:
1150   case ISD::VECREDUCE_XOR:
1151   case ISD::VECREDUCE_SMAX:
1152   case ISD::VECREDUCE_SMIN:
1153   case ISD::VECREDUCE_UMAX:
1154   case ISD::VECREDUCE_UMIN:
1155   case ISD::VECREDUCE_FMAX:
1156   case ISD::VECREDUCE_FMIN:
1157     Action = TLI.getOperationAction(
1158         Node->getOpcode(), Node->getOperand(0).getValueType());
1159     break;
1160   default:
1161     if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1162       Action = TargetLowering::Legal;
1163     } else {
1164       Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1165     }
1166     break;
1167   }
1168 
1169   if (SimpleFinishLegalizing) {
1170     SDNode *NewNode = Node;
1171     switch (Node->getOpcode()) {
1172     default: break;
1173     case ISD::SHL:
1174     case ISD::SRL:
1175     case ISD::SRA:
1176     case ISD::ROTL:
1177     case ISD::ROTR: {
1178       // Legalizing shifts/rotates requires adjusting the shift amount
1179       // to the appropriate width.
1180       SDValue Op0 = Node->getOperand(0);
1181       SDValue Op1 = Node->getOperand(1);
1182       if (!Op1.getValueType().isVector()) {
1183         SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1);
1184         // The getShiftAmountOperand() may create a new operand node or
1185         // return the existing one. If new operand is created we need
1186         // to update the parent node.
1187         // Do not try to legalize SAO here! It will be automatically legalized
1188         // in the next round.
1189         if (SAO != Op1)
1190           NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO);
1191       }
1192     }
1193     break;
1194     case ISD::FSHL:
1195     case ISD::FSHR:
1196     case ISD::SRL_PARTS:
1197     case ISD::SRA_PARTS:
1198     case ISD::SHL_PARTS: {
1199       // Legalizing shifts/rotates requires adjusting the shift amount
1200       // to the appropriate width.
1201       SDValue Op0 = Node->getOperand(0);
1202       SDValue Op1 = Node->getOperand(1);
1203       SDValue Op2 = Node->getOperand(2);
1204       if (!Op2.getValueType().isVector()) {
1205         SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2);
1206         // The getShiftAmountOperand() may create a new operand node or
1207         // return the existing one. If new operand is created we need
1208         // to update the parent node.
1209         if (SAO != Op2)
1210           NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO);
1211       }
1212       break;
1213     }
1214     }
1215 
1216     if (NewNode != Node) {
1217       ReplaceNode(Node, NewNode);
1218       Node = NewNode;
1219     }
1220     switch (Action) {
1221     case TargetLowering::Legal:
1222       LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
1223       return;
1224     case TargetLowering::Custom:
1225       LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
1226       // FIXME: The handling for custom lowering with multiple results is
1227       // a complete mess.
1228       if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
1229         if (!(Res.getNode() != Node || Res.getResNo() != 0))
1230           return;
1231 
1232         if (Node->getNumValues() == 1) {
1233           LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1234           // We can just directly replace this node with the lowered value.
1235           ReplaceNode(SDValue(Node, 0), Res);
1236           return;
1237         }
1238 
1239         SmallVector<SDValue, 8> ResultVals;
1240         for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1241           ResultVals.push_back(Res.getValue(i));
1242         LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1243         ReplaceNode(Node, ResultVals.data());
1244         return;
1245       }
1246       LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
1247       LLVM_FALLTHROUGH;
1248     case TargetLowering::Expand:
1249       if (ExpandNode(Node))
1250         return;
1251       LLVM_FALLTHROUGH;
1252     case TargetLowering::LibCall:
1253       ConvertNodeToLibcall(Node);
1254       return;
1255     case TargetLowering::Promote:
1256       PromoteNode(Node);
1257       return;
1258     }
1259   }
1260 
1261   switch (Node->getOpcode()) {
1262   default:
1263 #ifndef NDEBUG
1264     dbgs() << "NODE: ";
1265     Node->dump( &DAG);
1266     dbgs() << "\n";
1267 #endif
1268     llvm_unreachable("Do not know how to legalize this operator!");
1269 
1270   case ISD::CALLSEQ_START:
1271   case ISD::CALLSEQ_END:
1272     break;
1273   case ISD::LOAD:
1274     return LegalizeLoadOps(Node);
1275   case ISD::STORE:
1276     return LegalizeStoreOps(Node);
1277   }
1278 }
1279 
1280 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1281   SDValue Vec = Op.getOperand(0);
1282   SDValue Idx = Op.getOperand(1);
1283   SDLoc dl(Op);
1284 
1285   // Before we generate a new store to a temporary stack slot, see if there is
1286   // already one that we can use. There often is because when we scalarize
1287   // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole
1288   // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in
1289   // the vector. If all are expanded here, we don't want one store per vector
1290   // element.
1291 
1292   // Caches for hasPredecessorHelper
1293   SmallPtrSet<const SDNode *, 32> Visited;
1294   SmallVector<const SDNode *, 16> Worklist;
1295   Visited.insert(Op.getNode());
1296   Worklist.push_back(Idx.getNode());
1297   SDValue StackPtr, Ch;
1298   for (SDNode::use_iterator UI = Vec.getNode()->use_begin(),
1299        UE = Vec.getNode()->use_end(); UI != UE; ++UI) {
1300     SDNode *User = *UI;
1301     if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) {
1302       if (ST->isIndexed() || ST->isTruncatingStore() ||
1303           ST->getValue() != Vec)
1304         continue;
1305 
1306       // Make sure that nothing else could have stored into the destination of
1307       // this store.
1308       if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode()))
1309         continue;
1310 
1311       // If the index is dependent on the store we will introduce a cycle when
1312       // creating the load (the load uses the index, and by replacing the chain
1313       // we will make the index dependent on the load). Also, the store might be
1314       // dependent on the extractelement and introduce a cycle when creating
1315       // the load.
1316       if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) ||
1317           ST->hasPredecessor(Op.getNode()))
1318         continue;
1319 
1320       StackPtr = ST->getBasePtr();
1321       Ch = SDValue(ST, 0);
1322       break;
1323     }
1324   }
1325 
1326   EVT VecVT = Vec.getValueType();
1327 
1328   if (!Ch.getNode()) {
1329     // Store the value to a temporary stack slot, then LOAD the returned part.
1330     StackPtr = DAG.CreateStackTemporary(VecVT);
1331     Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1332                       MachinePointerInfo());
1333   }
1334 
1335   StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1336 
1337   SDValue NewLoad;
1338 
1339   if (Op.getValueType().isVector())
1340     NewLoad =
1341         DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo());
1342   else
1343     NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1344                              MachinePointerInfo(),
1345                              VecVT.getVectorElementType());
1346 
1347   // Replace the chain going out of the store, by the one out of the load.
1348   DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1));
1349 
1350   // We introduced a cycle though, so update the loads operands, making sure
1351   // to use the original store's chain as an incoming chain.
1352   SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(),
1353                                           NewLoad->op_end());
1354   NewLoadOperands[0] = Ch;
1355   NewLoad =
1356       SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0);
1357   return NewLoad;
1358 }
1359 
1360 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1361   assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1362 
1363   SDValue Vec  = Op.getOperand(0);
1364   SDValue Part = Op.getOperand(1);
1365   SDValue Idx  = Op.getOperand(2);
1366   SDLoc dl(Op);
1367 
1368   // Store the value to a temporary stack slot, then LOAD the returned part.
1369   EVT VecVT = Vec.getValueType();
1370   SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
1371   int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1372   MachinePointerInfo PtrInfo =
1373       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1374 
1375   // First store the whole vector.
1376   SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo);
1377 
1378   // Then store the inserted part.
1379   SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1380 
1381   // Store the subvector.
1382   Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, MachinePointerInfo());
1383 
1384   // Finally, load the updated vector.
1385   return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo);
1386 }
1387 
1388 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1389   // We can't handle this case efficiently.  Allocate a sufficiently
1390   // aligned object on the stack, store each element into it, then load
1391   // the result as a vector.
1392   // Create the stack frame object.
1393   EVT VT = Node->getValueType(0);
1394   EVT EltVT = VT.getVectorElementType();
1395   SDLoc dl(Node);
1396   SDValue FIPtr = DAG.CreateStackTemporary(VT);
1397   int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1398   MachinePointerInfo PtrInfo =
1399       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1400 
1401   // Emit a store of each element to the stack slot.
1402   SmallVector<SDValue, 8> Stores;
1403   unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1404   assert(TypeByteSize > 0 && "Vector element type too small for stack store!");
1405   // Store (in the right endianness) the elements to memory.
1406   for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1407     // Ignore undef elements.
1408     if (Node->getOperand(i).isUndef()) continue;
1409 
1410     unsigned Offset = TypeByteSize*i;
1411 
1412     SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType());
1413     Idx = DAG.getMemBasePlusOffset(FIPtr, Idx, dl);
1414 
1415     // If the destination vector element type is narrower than the source
1416     // element type, only store the bits necessary.
1417     if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1418       Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1419                                          Node->getOperand(i), Idx,
1420                                          PtrInfo.getWithOffset(Offset), EltVT));
1421     } else
1422       Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1423                                     Idx, PtrInfo.getWithOffset(Offset)));
1424   }
1425 
1426   SDValue StoreChain;
1427   if (!Stores.empty())    // Not all undef elements?
1428     StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
1429   else
1430     StoreChain = DAG.getEntryNode();
1431 
1432   // Result is a load from the stack slot.
1433   return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo);
1434 }
1435 
1436 /// Bitcast a floating-point value to an integer value. Only bitcast the part
1437 /// containing the sign bit if the target has no integer value capable of
1438 /// holding all bits of the floating-point value.
1439 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State,
1440                                              const SDLoc &DL,
1441                                              SDValue Value) const {
1442   EVT FloatVT = Value.getValueType();
1443   unsigned NumBits = FloatVT.getSizeInBits();
1444   State.FloatVT = FloatVT;
1445   EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
1446   // Convert to an integer of the same size.
1447   if (TLI.isTypeLegal(IVT)) {
1448     State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value);
1449     State.SignMask = APInt::getSignMask(NumBits);
1450     State.SignBit = NumBits - 1;
1451     return;
1452   }
1453 
1454   auto &DataLayout = DAG.getDataLayout();
1455   // Store the float to memory, then load the sign part out as an integer.
1456   MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8);
1457   // First create a temporary that is aligned for both the load and store.
1458   SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1459   int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1460   // Then store the float to it.
1461   State.FloatPtr = StackPtr;
1462   MachineFunction &MF = DAG.getMachineFunction();
1463   State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI);
1464   State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr,
1465                              State.FloatPointerInfo);
1466 
1467   SDValue IntPtr;
1468   if (DataLayout.isBigEndian()) {
1469     assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1470     // Load out a legal integer with the same sign bit as the float.
1471     IntPtr = StackPtr;
1472     State.IntPointerInfo = State.FloatPointerInfo;
1473   } else {
1474     // Advance the pointer so that the loaded byte will contain the sign bit.
1475     unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1;
1476     IntPtr = DAG.getMemBasePlusOffset(StackPtr, ByteOffset, DL);
1477     State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI,
1478                                                              ByteOffset);
1479   }
1480 
1481   State.IntPtr = IntPtr;
1482   State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr,
1483                                   State.IntPointerInfo, MVT::i8);
1484   State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7);
1485   State.SignBit = 7;
1486 }
1487 
1488 /// Replace the integer value produced by getSignAsIntValue() with a new value
1489 /// and cast the result back to a floating-point type.
1490 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State,
1491                                               const SDLoc &DL,
1492                                               SDValue NewIntValue) const {
1493   if (!State.Chain)
1494     return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue);
1495 
1496   // Override the part containing the sign bit in the value stored on the stack.
1497   SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr,
1498                                     State.IntPointerInfo, MVT::i8);
1499   return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr,
1500                      State.FloatPointerInfo);
1501 }
1502 
1503 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const {
1504   SDLoc DL(Node);
1505   SDValue Mag = Node->getOperand(0);
1506   SDValue Sign = Node->getOperand(1);
1507 
1508   // Get sign bit into an integer value.
1509   FloatSignAsInt SignAsInt;
1510   getSignAsIntValue(SignAsInt, DL, Sign);
1511 
1512   EVT IntVT = SignAsInt.IntValue.getValueType();
1513   SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT);
1514   SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue,
1515                                 SignMask);
1516 
1517   // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X)
1518   EVT FloatVT = Mag.getValueType();
1519   if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) &&
1520       TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) {
1521     SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag);
1522     SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue);
1523     SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit,
1524                                 DAG.getConstant(0, DL, IntVT), ISD::SETNE);
1525     return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue);
1526   }
1527 
1528   // Transform Mag value to integer, and clear the sign bit.
1529   FloatSignAsInt MagAsInt;
1530   getSignAsIntValue(MagAsInt, DL, Mag);
1531   EVT MagVT = MagAsInt.IntValue.getValueType();
1532   SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT);
1533   SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue,
1534                                     ClearSignMask);
1535 
1536   // Get the signbit at the right position for MagAsInt.
1537   int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit;
1538   EVT ShiftVT = IntVT;
1539   if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) {
1540     SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit);
1541     ShiftVT = MagVT;
1542   }
1543   if (ShiftAmount > 0) {
1544     SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT);
1545     SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst);
1546   } else if (ShiftAmount < 0) {
1547     SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT);
1548     SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst);
1549   }
1550   if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) {
1551     SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit);
1552   }
1553 
1554   // Store the part with the modified sign and convert back to float.
1555   SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit);
1556   return modifySignAsInt(MagAsInt, DL, CopiedSign);
1557 }
1558 
1559 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const {
1560   SDLoc DL(Node);
1561   SDValue Value = Node->getOperand(0);
1562 
1563   // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal.
1564   EVT FloatVT = Value.getValueType();
1565   if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) {
1566     SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT);
1567     return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero);
1568   }
1569 
1570   // Transform value to integer, clear the sign bit and transform back.
1571   FloatSignAsInt ValueAsInt;
1572   getSignAsIntValue(ValueAsInt, DL, Value);
1573   EVT IntVT = ValueAsInt.IntValue.getValueType();
1574   SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT);
1575   SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue,
1576                                     ClearSignMask);
1577   return modifySignAsInt(ValueAsInt, DL, ClearedSign);
1578 }
1579 
1580 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1581                                            SmallVectorImpl<SDValue> &Results) {
1582   unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1583   assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1584           " not tell us which reg is the stack pointer!");
1585   SDLoc dl(Node);
1586   EVT VT = Node->getValueType(0);
1587   SDValue Tmp1 = SDValue(Node, 0);
1588   SDValue Tmp2 = SDValue(Node, 1);
1589   SDValue Tmp3 = Node->getOperand(2);
1590   SDValue Chain = Tmp1.getOperand(0);
1591 
1592   // Chain the dynamic stack allocation so that it doesn't modify the stack
1593   // pointer when other instructions are using the stack.
1594   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
1595 
1596   SDValue Size  = Tmp2.getOperand(1);
1597   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1598   Chain = SP.getValue(1);
1599   unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1600   unsigned StackAlign =
1601       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
1602   Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1603   if (Align > StackAlign)
1604     Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
1605                        DAG.getConstant(-(uint64_t)Align, dl, VT));
1606   Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1607 
1608   Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
1609                             DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
1610 
1611   Results.push_back(Tmp1);
1612   Results.push_back(Tmp2);
1613 }
1614 
1615 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current
1616 /// target.
1617 ///
1618 /// If the SETCC has been legalized using AND / OR, then the legalized node
1619 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
1620 /// will be set to false.
1621 ///
1622 /// If the SETCC has been legalized by using getSetCCSwappedOperands(),
1623 /// then the values of LHS and RHS will be swapped, CC will be set to the
1624 /// new condition, and NeedInvert will be set to false.
1625 ///
1626 /// If the SETCC has been legalized using the inverse condcode, then LHS and
1627 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert
1628 /// will be set to true. The caller must invert the result of the SETCC with
1629 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect
1630 /// of a true/false result.
1631 ///
1632 /// \returns true if the SetCC has been legalized, false if it hasn't.
1633 bool SelectionDAGLegalize::LegalizeSetCCCondCode(
1634     EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, bool &NeedInvert,
1635     const SDLoc &dl, SDValue &Chain, bool IsSignaling) {
1636   MVT OpVT = LHS.getSimpleValueType();
1637   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1638   NeedInvert = false;
1639   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1640   default: llvm_unreachable("Unknown condition code action!");
1641   case TargetLowering::Legal:
1642     // Nothing to do.
1643     break;
1644   case TargetLowering::Expand: {
1645     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
1646     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1647       std::swap(LHS, RHS);
1648       CC = DAG.getCondCode(InvCC);
1649       return true;
1650     }
1651     // Swapping operands didn't work. Try inverting the condition.
1652     bool NeedSwap = false;
1653     InvCC = getSetCCInverse(CCCode, OpVT);
1654     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1655       // If inverting the condition is not enough, try swapping operands
1656       // on top of it.
1657       InvCC = ISD::getSetCCSwappedOperands(InvCC);
1658       NeedSwap = true;
1659     }
1660     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1661       CC = DAG.getCondCode(InvCC);
1662       NeedInvert = true;
1663       if (NeedSwap)
1664         std::swap(LHS, RHS);
1665       return true;
1666     }
1667 
1668     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1669     unsigned Opc = 0;
1670     switch (CCCode) {
1671     default: llvm_unreachable("Don't know how to expand this condition!");
1672     case ISD::SETO:
1673         assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT)
1674             && "If SETO is expanded, SETOEQ must be legal!");
1675         CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
1676     case ISD::SETUO:
1677         assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT)
1678             && "If SETUO is expanded, SETUNE must be legal!");
1679         CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR;  break;
1680     case ISD::SETOEQ:
1681     case ISD::SETOGT:
1682     case ISD::SETOGE:
1683     case ISD::SETOLT:
1684     case ISD::SETOLE:
1685     case ISD::SETONE:
1686     case ISD::SETUEQ:
1687     case ISD::SETUNE:
1688     case ISD::SETUGT:
1689     case ISD::SETUGE:
1690     case ISD::SETULT:
1691     case ISD::SETULE:
1692         // If we are floating point, assign and break, otherwise fall through.
1693         if (!OpVT.isInteger()) {
1694           // We can use the 4th bit to tell if we are the unordered
1695           // or ordered version of the opcode.
1696           CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
1697           Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
1698           CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
1699           break;
1700         }
1701         // Fallthrough if we are unsigned integer.
1702         LLVM_FALLTHROUGH;
1703     case ISD::SETLE:
1704     case ISD::SETGT:
1705     case ISD::SETGE:
1706     case ISD::SETLT:
1707     case ISD::SETNE:
1708     case ISD::SETEQ:
1709       // If all combinations of inverting the condition and swapping operands
1710       // didn't work then we have no means to expand the condition.
1711       llvm_unreachable("Don't know how to expand this condition!");
1712     }
1713 
1714     SDValue SetCC1, SetCC2;
1715     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
1716       // If we aren't the ordered or unorder operation,
1717       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
1718       SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
1719       SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
1720     } else {
1721       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
1722       SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
1723       SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
1724     }
1725     if (Chain)
1726       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
1727                           SetCC2.getValue(1));
1728     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1729     RHS = SDValue();
1730     CC  = SDValue();
1731     return true;
1732   }
1733   }
1734   return false;
1735 }
1736 
1737 /// Emit a store/load combination to the stack.  This stores
1738 /// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1739 /// a load from the stack slot to DestVT, extending it if needed.
1740 /// The resultant code need not be legal.
1741 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1742                                                EVT DestVT, const SDLoc &dl) {
1743   return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode());
1744 }
1745 
1746 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1747                                                EVT DestVT, const SDLoc &dl,
1748                                                SDValue Chain) {
1749   // Create the stack frame object.
1750   unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment(
1751       SrcOp.getValueType().getTypeForEVT(*DAG.getContext()));
1752   SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1753 
1754   FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1755   int SPFI = StackPtrFI->getIndex();
1756   MachinePointerInfo PtrInfo =
1757       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
1758 
1759   unsigned SrcSize = SrcOp.getValueSizeInBits();
1760   unsigned SlotSize = SlotVT.getSizeInBits();
1761   unsigned DestSize = DestVT.getSizeInBits();
1762   Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1763   unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType);
1764 
1765   // Emit a store to the stack slot.  Use a truncstore if the input value is
1766   // later than DestVT.
1767   SDValue Store;
1768 
1769   if (SrcSize > SlotSize)
1770     Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo,
1771                               SlotVT, SrcAlign);
1772   else {
1773     assert(SrcSize == SlotSize && "Invalid store");
1774     Store =
1775         DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign);
1776   }
1777 
1778   // Result is a load from the stack slot.
1779   if (SlotSize == DestSize)
1780     return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign);
1781 
1782   assert(SlotSize < DestSize && "Unknown extension!");
1783   return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT,
1784                         DestAlign);
1785 }
1786 
1787 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1788   SDLoc dl(Node);
1789   // Create a vector sized/aligned stack slot, store the value to element #0,
1790   // then load the whole vector back out.
1791   SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1792 
1793   FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1794   int SPFI = StackPtrFI->getIndex();
1795 
1796   SDValue Ch = DAG.getTruncStore(
1797       DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr,
1798       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI),
1799       Node->getValueType(0).getVectorElementType());
1800   return DAG.getLoad(
1801       Node->getValueType(0), dl, Ch, StackPtr,
1802       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
1803 }
1804 
1805 static bool
1806 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG,
1807                      const TargetLowering &TLI, SDValue &Res) {
1808   unsigned NumElems = Node->getNumOperands();
1809   SDLoc dl(Node);
1810   EVT VT = Node->getValueType(0);
1811 
1812   // Try to group the scalars into pairs, shuffle the pairs together, then
1813   // shuffle the pairs of pairs together, etc. until the vector has
1814   // been built. This will work only if all of the necessary shuffle masks
1815   // are legal.
1816 
1817   // We do this in two phases; first to check the legality of the shuffles,
1818   // and next, assuming that all shuffles are legal, to create the new nodes.
1819   for (int Phase = 0; Phase < 2; ++Phase) {
1820     SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals,
1821                                                               NewIntermedVals;
1822     for (unsigned i = 0; i < NumElems; ++i) {
1823       SDValue V = Node->getOperand(i);
1824       if (V.isUndef())
1825         continue;
1826 
1827       SDValue Vec;
1828       if (Phase)
1829         Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V);
1830       IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i)));
1831     }
1832 
1833     while (IntermedVals.size() > 2) {
1834       NewIntermedVals.clear();
1835       for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) {
1836         // This vector and the next vector are shuffled together (simply to
1837         // append the one to the other).
1838         SmallVector<int, 16> ShuffleVec(NumElems, -1);
1839 
1840         SmallVector<int, 16> FinalIndices;
1841         FinalIndices.reserve(IntermedVals[i].second.size() +
1842                              IntermedVals[i+1].second.size());
1843 
1844         int k = 0;
1845         for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f;
1846              ++j, ++k) {
1847           ShuffleVec[k] = j;
1848           FinalIndices.push_back(IntermedVals[i].second[j]);
1849         }
1850         for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f;
1851              ++j, ++k) {
1852           ShuffleVec[k] = NumElems + j;
1853           FinalIndices.push_back(IntermedVals[i+1].second[j]);
1854         }
1855 
1856         SDValue Shuffle;
1857         if (Phase)
1858           Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first,
1859                                          IntermedVals[i+1].first,
1860                                          ShuffleVec);
1861         else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1862           return false;
1863         NewIntermedVals.push_back(
1864             std::make_pair(Shuffle, std::move(FinalIndices)));
1865       }
1866 
1867       // If we had an odd number of defined values, then append the last
1868       // element to the array of new vectors.
1869       if ((IntermedVals.size() & 1) != 0)
1870         NewIntermedVals.push_back(IntermedVals.back());
1871 
1872       IntermedVals.swap(NewIntermedVals);
1873     }
1874 
1875     assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 &&
1876            "Invalid number of intermediate vectors");
1877     SDValue Vec1 = IntermedVals[0].first;
1878     SDValue Vec2;
1879     if (IntermedVals.size() > 1)
1880       Vec2 = IntermedVals[1].first;
1881     else if (Phase)
1882       Vec2 = DAG.getUNDEF(VT);
1883 
1884     SmallVector<int, 16> ShuffleVec(NumElems, -1);
1885     for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i)
1886       ShuffleVec[IntermedVals[0].second[i]] = i;
1887     for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i)
1888       ShuffleVec[IntermedVals[1].second[i]] = NumElems + i;
1889 
1890     if (Phase)
1891       Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
1892     else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1893       return false;
1894   }
1895 
1896   return true;
1897 }
1898 
1899 /// Expand a BUILD_VECTOR node on targets that don't
1900 /// support the operation, but do support the resultant vector type.
1901 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1902   unsigned NumElems = Node->getNumOperands();
1903   SDValue Value1, Value2;
1904   SDLoc dl(Node);
1905   EVT VT = Node->getValueType(0);
1906   EVT OpVT = Node->getOperand(0).getValueType();
1907   EVT EltVT = VT.getVectorElementType();
1908 
1909   // If the only non-undef value is the low element, turn this into a
1910   // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1911   bool isOnlyLowElement = true;
1912   bool MoreThanTwoValues = false;
1913   bool isConstant = true;
1914   for (unsigned i = 0; i < NumElems; ++i) {
1915     SDValue V = Node->getOperand(i);
1916     if (V.isUndef())
1917       continue;
1918     if (i > 0)
1919       isOnlyLowElement = false;
1920     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1921       isConstant = false;
1922 
1923     if (!Value1.getNode()) {
1924       Value1 = V;
1925     } else if (!Value2.getNode()) {
1926       if (V != Value1)
1927         Value2 = V;
1928     } else if (V != Value1 && V != Value2) {
1929       MoreThanTwoValues = true;
1930     }
1931   }
1932 
1933   if (!Value1.getNode())
1934     return DAG.getUNDEF(VT);
1935 
1936   if (isOnlyLowElement)
1937     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1938 
1939   // If all elements are constants, create a load from the constant pool.
1940   if (isConstant) {
1941     SmallVector<Constant*, 16> CV;
1942     for (unsigned i = 0, e = NumElems; i != e; ++i) {
1943       if (ConstantFPSDNode *V =
1944           dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1945         CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1946       } else if (ConstantSDNode *V =
1947                  dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1948         if (OpVT==EltVT)
1949           CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1950         else {
1951           // If OpVT and EltVT don't match, EltVT is not legal and the
1952           // element values have been promoted/truncated earlier.  Undo this;
1953           // we don't want a v16i8 to become a v16i32 for example.
1954           const ConstantInt *CI = V->getConstantIntValue();
1955           CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1956                                         CI->getZExtValue()));
1957         }
1958       } else {
1959         assert(Node->getOperand(i).isUndef());
1960         Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1961         CV.push_back(UndefValue::get(OpNTy));
1962       }
1963     }
1964     Constant *CP = ConstantVector::get(CV);
1965     SDValue CPIdx =
1966         DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout()));
1967     Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
1968     return DAG.getLoad(
1969         VT, dl, DAG.getEntryNode(), CPIdx,
1970         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
1971         Alignment);
1972   }
1973 
1974   SmallSet<SDValue, 16> DefinedValues;
1975   for (unsigned i = 0; i < NumElems; ++i) {
1976     if (Node->getOperand(i).isUndef())
1977       continue;
1978     DefinedValues.insert(Node->getOperand(i));
1979   }
1980 
1981   if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) {
1982     if (!MoreThanTwoValues) {
1983       SmallVector<int, 8> ShuffleVec(NumElems, -1);
1984       for (unsigned i = 0; i < NumElems; ++i) {
1985         SDValue V = Node->getOperand(i);
1986         if (V.isUndef())
1987           continue;
1988         ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1989       }
1990       if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1991         // Get the splatted value into the low element of a vector register.
1992         SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1993         SDValue Vec2;
1994         if (Value2.getNode())
1995           Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1996         else
1997           Vec2 = DAG.getUNDEF(VT);
1998 
1999         // Return shuffle(LowValVec, undef, <0,0,0,0>)
2000         return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
2001       }
2002     } else {
2003       SDValue Res;
2004       if (ExpandBVWithShuffles(Node, DAG, TLI, Res))
2005         return Res;
2006     }
2007   }
2008 
2009   // Otherwise, we can't handle this case efficiently.
2010   return ExpandVectorBuildThroughStack(Node);
2011 }
2012 
2013 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) {
2014   SDLoc DL(Node);
2015   EVT VT = Node->getValueType(0);
2016   SDValue SplatVal = Node->getOperand(0);
2017 
2018   return DAG.getSplatBuildVector(VT, DL, SplatVal);
2019 }
2020 
2021 // Expand a node into a call to a libcall.  If the result value
2022 // does not fit into a register, return the lo part and set the hi part to the
2023 // by-reg argument.  If it does fit into a single register, return the result
2024 // and leave the Hi part unset.
2025 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
2026                                             bool isSigned) {
2027   TargetLowering::ArgListTy Args;
2028   TargetLowering::ArgListEntry Entry;
2029   for (const SDValue &Op : Node->op_values()) {
2030     EVT ArgVT = Op.getValueType();
2031     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2032     Entry.Node = Op;
2033     Entry.Ty = ArgTy;
2034     Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
2035     Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
2036     Args.push_back(Entry);
2037   }
2038   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2039                                          TLI.getPointerTy(DAG.getDataLayout()));
2040 
2041   EVT RetVT = Node->getValueType(0);
2042   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2043 
2044   // By default, the input chain to this libcall is the entry node of the
2045   // function. If the libcall is going to be emitted as a tail call then
2046   // TLI.isUsedByReturnOnly will change it to the right chain if the return
2047   // node which is being folded has a non-entry input chain.
2048   SDValue InChain = DAG.getEntryNode();
2049 
2050   // isTailCall may be true since the callee does not reference caller stack
2051   // frame. Check if it's in the right position and that the return types match.
2052   SDValue TCChain = InChain;
2053   const Function &F = DAG.getMachineFunction().getFunction();
2054   bool isTailCall =
2055       TLI.isInTailCallPosition(DAG, Node, TCChain) &&
2056       (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy());
2057   if (isTailCall)
2058     InChain = TCChain;
2059 
2060   TargetLowering::CallLoweringInfo CLI(DAG);
2061   bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned);
2062   CLI.setDebugLoc(SDLoc(Node))
2063       .setChain(InChain)
2064       .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2065                     std::move(Args))
2066       .setTailCall(isTailCall)
2067       .setSExtResult(signExtend)
2068       .setZExtResult(!signExtend)
2069       .setIsPostTypeLegalization(true);
2070 
2071   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2072 
2073   if (!CallInfo.second.getNode()) {
2074     LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG));
2075     // It's a tailcall, return the chain (which is the DAG root).
2076     return DAG.getRoot();
2077   }
2078 
2079   LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG));
2080   return CallInfo.first;
2081 }
2082 
2083 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2084                                            RTLIB::Libcall Call_F32,
2085                                            RTLIB::Libcall Call_F64,
2086                                            RTLIB::Libcall Call_F80,
2087                                            RTLIB::Libcall Call_F128,
2088                                            RTLIB::Libcall Call_PPCF128,
2089                                            SmallVectorImpl<SDValue> &Results) {
2090   RTLIB::Libcall LC;
2091   switch (Node->getSimpleValueType(0).SimpleTy) {
2092   default: llvm_unreachable("Unexpected request for libcall!");
2093   case MVT::f32: LC = Call_F32; break;
2094   case MVT::f64: LC = Call_F64; break;
2095   case MVT::f80: LC = Call_F80; break;
2096   case MVT::f128: LC = Call_F128; break;
2097   case MVT::ppcf128: LC = Call_PPCF128; break;
2098   }
2099 
2100   if (Node->isStrictFPOpcode()) {
2101     EVT RetVT = Node->getValueType(0);
2102     SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end());
2103     TargetLowering::MakeLibCallOptions CallOptions;
2104     // FIXME: This doesn't support tail calls.
2105     std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
2106                                                       Ops, CallOptions,
2107                                                       SDLoc(Node),
2108                                                       Node->getOperand(0));
2109     Results.push_back(Tmp.first);
2110     Results.push_back(Tmp.second);
2111   } else {
2112     SDValue Tmp = ExpandLibCall(LC, Node, false);
2113     Results.push_back(Tmp);
2114   }
2115 }
2116 
2117 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2118                                                RTLIB::Libcall Call_I8,
2119                                                RTLIB::Libcall Call_I16,
2120                                                RTLIB::Libcall Call_I32,
2121                                                RTLIB::Libcall Call_I64,
2122                                                RTLIB::Libcall Call_I128) {
2123   RTLIB::Libcall LC;
2124   switch (Node->getSimpleValueType(0).SimpleTy) {
2125   default: llvm_unreachable("Unexpected request for libcall!");
2126   case MVT::i8:   LC = Call_I8; break;
2127   case MVT::i16:  LC = Call_I16; break;
2128   case MVT::i32:  LC = Call_I32; break;
2129   case MVT::i64:  LC = Call_I64; break;
2130   case MVT::i128: LC = Call_I128; break;
2131   }
2132   return ExpandLibCall(LC, Node, isSigned);
2133 }
2134 
2135 /// Expand the node to a libcall based on first argument type (for instance
2136 /// lround and its variant).
2137 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node,
2138                                             RTLIB::Libcall Call_F32,
2139                                             RTLIB::Libcall Call_F64,
2140                                             RTLIB::Libcall Call_F80,
2141                                             RTLIB::Libcall Call_F128,
2142                                             RTLIB::Libcall Call_PPCF128,
2143                                             SmallVectorImpl<SDValue> &Results) {
2144   EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType();
2145 
2146   RTLIB::Libcall LC;
2147   switch (InVT.getSimpleVT().SimpleTy) {
2148   default: llvm_unreachable("Unexpected request for libcall!");
2149   case MVT::f32:     LC = Call_F32; break;
2150   case MVT::f64:     LC = Call_F64; break;
2151   case MVT::f80:     LC = Call_F80; break;
2152   case MVT::f128:    LC = Call_F128; break;
2153   case MVT::ppcf128: LC = Call_PPCF128; break;
2154   }
2155 
2156   if (Node->isStrictFPOpcode()) {
2157     EVT RetVT = Node->getValueType(0);
2158     SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end());
2159     TargetLowering::MakeLibCallOptions CallOptions;
2160     // FIXME: This doesn't support tail calls.
2161     std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
2162                                                       Ops, CallOptions,
2163                                                       SDLoc(Node),
2164                                                       Node->getOperand(0));
2165     Results.push_back(Tmp.first);
2166     Results.push_back(Tmp.second);
2167   } else {
2168     SDValue Tmp = ExpandLibCall(LC, Node, false);
2169     Results.push_back(Tmp);
2170   }
2171 }
2172 
2173 /// Issue libcalls to __{u}divmod to compute div / rem pairs.
2174 void
2175 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2176                                           SmallVectorImpl<SDValue> &Results) {
2177   unsigned Opcode = Node->getOpcode();
2178   bool isSigned = Opcode == ISD::SDIVREM;
2179 
2180   RTLIB::Libcall LC;
2181   switch (Node->getSimpleValueType(0).SimpleTy) {
2182   default: llvm_unreachable("Unexpected request for libcall!");
2183   case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2184   case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2185   case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2186   case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2187   case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2188   }
2189 
2190   // The input chain to this libcall is the entry node of the function.
2191   // Legalizing the call will automatically add the previous call to the
2192   // dependence.
2193   SDValue InChain = DAG.getEntryNode();
2194 
2195   EVT RetVT = Node->getValueType(0);
2196   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2197 
2198   TargetLowering::ArgListTy Args;
2199   TargetLowering::ArgListEntry Entry;
2200   for (const SDValue &Op : Node->op_values()) {
2201     EVT ArgVT = Op.getValueType();
2202     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2203     Entry.Node = Op;
2204     Entry.Ty = ArgTy;
2205     Entry.IsSExt = isSigned;
2206     Entry.IsZExt = !isSigned;
2207     Args.push_back(Entry);
2208   }
2209 
2210   // Also pass the return address of the remainder.
2211   SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2212   Entry.Node = FIPtr;
2213   Entry.Ty = RetTy->getPointerTo();
2214   Entry.IsSExt = isSigned;
2215   Entry.IsZExt = !isSigned;
2216   Args.push_back(Entry);
2217 
2218   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2219                                          TLI.getPointerTy(DAG.getDataLayout()));
2220 
2221   SDLoc dl(Node);
2222   TargetLowering::CallLoweringInfo CLI(DAG);
2223   CLI.setDebugLoc(dl)
2224       .setChain(InChain)
2225       .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2226                     std::move(Args))
2227       .setSExtResult(isSigned)
2228       .setZExtResult(!isSigned);
2229 
2230   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2231 
2232   // Remainder is loaded back from the stack frame.
2233   SDValue Rem =
2234       DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo());
2235   Results.push_back(CallInfo.first);
2236   Results.push_back(Rem);
2237 }
2238 
2239 /// Return true if sincos libcall is available.
2240 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
2241   RTLIB::Libcall LC;
2242   switch (Node->getSimpleValueType(0).SimpleTy) {
2243   default: llvm_unreachable("Unexpected request for libcall!");
2244   case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
2245   case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
2246   case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
2247   case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
2248   case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2249   }
2250   return TLI.getLibcallName(LC) != nullptr;
2251 }
2252 
2253 /// Only issue sincos libcall if both sin and cos are needed.
2254 static bool useSinCos(SDNode *Node) {
2255   unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
2256     ? ISD::FCOS : ISD::FSIN;
2257 
2258   SDValue Op0 = Node->getOperand(0);
2259   for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2260        UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2261     SDNode *User = *UI;
2262     if (User == Node)
2263       continue;
2264     // The other user might have been turned into sincos already.
2265     if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
2266       return true;
2267   }
2268   return false;
2269 }
2270 
2271 /// Issue libcalls to sincos to compute sin / cos pairs.
2272 void
2273 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
2274                                           SmallVectorImpl<SDValue> &Results) {
2275   RTLIB::Libcall LC;
2276   switch (Node->getSimpleValueType(0).SimpleTy) {
2277   default: llvm_unreachable("Unexpected request for libcall!");
2278   case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
2279   case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
2280   case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
2281   case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
2282   case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2283   }
2284 
2285   // The input chain to this libcall is the entry node of the function.
2286   // Legalizing the call will automatically add the previous call to the
2287   // dependence.
2288   SDValue InChain = DAG.getEntryNode();
2289 
2290   EVT RetVT = Node->getValueType(0);
2291   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2292 
2293   TargetLowering::ArgListTy Args;
2294   TargetLowering::ArgListEntry Entry;
2295 
2296   // Pass the argument.
2297   Entry.Node = Node->getOperand(0);
2298   Entry.Ty = RetTy;
2299   Entry.IsSExt = false;
2300   Entry.IsZExt = false;
2301   Args.push_back(Entry);
2302 
2303   // Pass the return address of sin.
2304   SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
2305   Entry.Node = SinPtr;
2306   Entry.Ty = RetTy->getPointerTo();
2307   Entry.IsSExt = false;
2308   Entry.IsZExt = false;
2309   Args.push_back(Entry);
2310 
2311   // Also pass the return address of the cos.
2312   SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
2313   Entry.Node = CosPtr;
2314   Entry.Ty = RetTy->getPointerTo();
2315   Entry.IsSExt = false;
2316   Entry.IsZExt = false;
2317   Args.push_back(Entry);
2318 
2319   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2320                                          TLI.getPointerTy(DAG.getDataLayout()));
2321 
2322   SDLoc dl(Node);
2323   TargetLowering::CallLoweringInfo CLI(DAG);
2324   CLI.setDebugLoc(dl).setChain(InChain).setLibCallee(
2325       TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee,
2326       std::move(Args));
2327 
2328   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2329 
2330   Results.push_back(
2331       DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo()));
2332   Results.push_back(
2333       DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo()));
2334 }
2335 
2336 /// This function is responsible for legalizing a
2337 /// INT_TO_FP operation of the specified operand when the target requests that
2338 /// we expand it.  At this point, we know that the result and operand types are
2339 /// legal for the target.
2340 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node,
2341                                                    SDValue &Chain) {
2342   bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP ||
2343                    Node->getOpcode() == ISD::SINT_TO_FP);
2344   EVT DestVT = Node->getValueType(0);
2345   SDLoc dl(Node);
2346   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
2347   SDValue Op0 = Node->getOperand(OpNo);
2348   EVT SrcVT = Op0.getValueType();
2349 
2350   // TODO: Should any fast-math-flags be set for the created nodes?
2351   LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n");
2352   if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
2353     LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double "
2354                          "expansion\n");
2355 
2356     // Get the stack frame index of a 8 byte buffer.
2357     SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2358 
2359     // word offset constant for Hi/Lo address computation
2360     SDValue WordOff = DAG.getConstant(sizeof(int), dl,
2361                                       StackSlot.getValueType());
2362     // set up Hi and Lo (into buffer) address based on endian
2363     SDValue Hi = StackSlot;
2364     SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(),
2365                              StackSlot, WordOff);
2366     if (DAG.getDataLayout().isLittleEndian())
2367       std::swap(Hi, Lo);
2368 
2369     // if signed map to unsigned space
2370     SDValue Op0Mapped;
2371     if (isSigned) {
2372       // constant used to invert sign bit (signed to unsigned mapping)
2373       SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32);
2374       Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2375     } else {
2376       Op0Mapped = Op0;
2377     }
2378     // store the lo of the constructed double - based on integer input
2379     SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo,
2380                                   MachinePointerInfo());
2381     // initial hi portion of constructed double
2382     SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32);
2383     // store the hi of the constructed double - biased exponent
2384     SDValue Store2 =
2385         DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo());
2386     // load the constructed double
2387     SDValue Load =
2388         DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo());
2389     // FP constant to bias correct the final result
2390     SDValue Bias = DAG.getConstantFP(isSigned ?
2391                                      BitsToDouble(0x4330000080000000ULL) :
2392                                      BitsToDouble(0x4330000000000000ULL),
2393                                      dl, MVT::f64);
2394     // Subtract the bias and get the final result.
2395     SDValue Sub;
2396     SDValue Result;
2397     if (Node->isStrictFPOpcode()) {
2398       Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other},
2399                         {Node->getOperand(0), Load, Bias});
2400       Chain = Sub.getValue(1);
2401       if (DestVT != Sub.getValueType()) {
2402         std::pair<SDValue, SDValue> ResultPair;
2403         ResultPair =
2404             DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT);
2405         Result = ResultPair.first;
2406         Chain = ResultPair.second;
2407       }
2408       else
2409         Result = Sub;
2410     } else {
2411       Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2412       Result = DAG.getFPExtendOrRound(Sub, dl, DestVT);
2413     }
2414     return Result;
2415   }
2416   // Code below here assumes !isSigned without checking again.
2417   assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2418 
2419   // TODO: Generalize this for use with other types.
2420   if ((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) {
2421     LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32\n");
2422     // For unsigned conversions, convert them to signed conversions using the
2423     // algorithm from the x86_64 __floatundisf in compiler_rt. That method
2424     // should be valid for i32->f32 as well.
2425 
2426     // TODO: This really should be implemented using a branch rather than a
2427     // select.  We happen to get lucky and machinesink does the right
2428     // thing most of the time.  This would be a good candidate for a
2429     // pseudo-op, or, even better, for whole-function isel.
2430     EVT SetCCVT = getSetCCResultType(SrcVT);
2431 
2432     SDValue SignBitTest = DAG.getSetCC(
2433         dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
2434 
2435     EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout());
2436     SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
2437     SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst);
2438     SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
2439     SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst);
2440     SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
2441 
2442     SDValue Slow, Fast;
2443     if (Node->isStrictFPOpcode()) {
2444       // In strict mode, we must avoid spurious exceptions, and therefore
2445       // must make sure to only emit a single STRICT_SINT_TO_FP.
2446       SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0);
2447       Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other },
2448                          { Node->getOperand(0), InCvt });
2449       Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other },
2450                          { Fast.getValue(1), Fast, Fast });
2451       Chain = Slow.getValue(1);
2452       // The STRICT_SINT_TO_FP inherits the exception mode from the
2453       // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can
2454       // never raise any exception.
2455       SDNodeFlags Flags;
2456       Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept());
2457       Fast->setFlags(Flags);
2458       Flags.setNoFPExcept(true);
2459       Slow->setFlags(Flags);
2460     } else {
2461       SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or);
2462       Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt);
2463       Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2464     }
2465 
2466     return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast);
2467   }
2468 
2469   // The following optimization is valid only if every value in SrcVT (when
2470   // treated as signed) is representable in DestVT.  Check that the mantissa
2471   // size of DestVT is >= than the number of bits in SrcVT -1.
2472   assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >=
2473              SrcVT.getSizeInBits() - 1 &&
2474          "Cannot perform lossless SINT_TO_FP!");
2475 
2476   SDValue Tmp1;
2477   if (Node->isStrictFPOpcode()) {
2478     Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other },
2479                        { Node->getOperand(0), Op0 });
2480   } else
2481     Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2482 
2483   SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0,
2484                                  DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
2485   SDValue Zero = DAG.getIntPtrConstant(0, dl),
2486           Four = DAG.getIntPtrConstant(4, dl);
2487   SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(),
2488                                     SignSet, Four, Zero);
2489 
2490   // If the sign bit of the integer is set, the large number will be treated
2491   // as a negative number.  To counteract this, the dynamic code adds an
2492   // offset depending on the data type.
2493   uint64_t FF;
2494   switch (SrcVT.getSimpleVT().SimpleTy) {
2495   default: llvm_unreachable("Unsupported integer type!");
2496   case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2497   case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2498   case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2499   case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2500   }
2501   if (DAG.getDataLayout().isLittleEndian())
2502     FF <<= 32;
2503   Constant *FudgeFactor = ConstantInt::get(
2504                                        Type::getInt64Ty(*DAG.getContext()), FF);
2505 
2506   SDValue CPIdx =
2507       DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout()));
2508   Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
2509   CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset);
2510   Alignment = commonAlignment(Alignment, 4);
2511   SDValue FudgeInReg;
2512   if (DestVT == MVT::f32)
2513     FudgeInReg = DAG.getLoad(
2514         MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2515         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
2516         Alignment);
2517   else {
2518     SDValue Load = DAG.getExtLoad(
2519         ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx,
2520         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
2521         Alignment);
2522     HandleSDNode Handle(Load);
2523     LegalizeOp(Load.getNode());
2524     FudgeInReg = Handle.getValue();
2525   }
2526 
2527   if (Node->isStrictFPOpcode()) {
2528     SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other },
2529                                  { Tmp1.getValue(1), Tmp1, FudgeInReg });
2530     Chain = Result.getValue(1);
2531     return Result;
2532   }
2533 
2534   return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2535 }
2536 
2537 /// This function is responsible for legalizing a
2538 /// *INT_TO_FP operation of the specified operand when the target requests that
2539 /// we promote it.  At this point, we know that the result and operand types are
2540 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2541 /// operation that takes a larger input.
2542 void SelectionDAGLegalize::PromoteLegalINT_TO_FP(
2543     SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) {
2544   bool IsStrict = N->isStrictFPOpcode();
2545   bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP ||
2546                   N->getOpcode() == ISD::STRICT_SINT_TO_FP;
2547   EVT DestVT = N->getValueType(0);
2548   SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0);
2549   unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP;
2550   unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP;
2551 
2552   // First step, figure out the appropriate *INT_TO_FP operation to use.
2553   EVT NewInTy = LegalOp.getValueType();
2554 
2555   unsigned OpToUse = 0;
2556 
2557   // Scan for the appropriate larger type to use.
2558   while (true) {
2559     NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2560     assert(NewInTy.isInteger() && "Ran out of possibilities!");
2561 
2562     // If the target supports SINT_TO_FP of this type, use it.
2563     if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) {
2564       OpToUse = SIntOp;
2565       break;
2566     }
2567     if (IsSigned)
2568       continue;
2569 
2570     // If the target supports UINT_TO_FP of this type, use it.
2571     if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) {
2572       OpToUse = UIntOp;
2573       break;
2574     }
2575 
2576     // Otherwise, try a larger type.
2577   }
2578 
2579   // Okay, we found the operation and type to use.  Zero extend our input to the
2580   // desired type then run the operation on it.
2581   if (IsStrict) {
2582     SDValue Res =
2583         DAG.getNode(OpToUse, dl, {DestVT, MVT::Other},
2584                     {N->getOperand(0),
2585                      DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2586                                  dl, NewInTy, LegalOp)});
2587     Results.push_back(Res);
2588     Results.push_back(Res.getValue(1));
2589     return;
2590   }
2591 
2592   Results.push_back(
2593       DAG.getNode(OpToUse, dl, DestVT,
2594                   DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2595                               dl, NewInTy, LegalOp)));
2596 }
2597 
2598 /// This function is responsible for legalizing a
2599 /// FP_TO_*INT operation of the specified operand when the target requests that
2600 /// we promote it.  At this point, we know that the result and operand types are
2601 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2602 /// operation that returns a larger result.
2603 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl,
2604                                                  SmallVectorImpl<SDValue> &Results) {
2605   bool IsStrict = N->isStrictFPOpcode();
2606   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
2607                   N->getOpcode() == ISD::STRICT_FP_TO_SINT;
2608   EVT DestVT = N->getValueType(0);
2609   SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0);
2610   // First step, figure out the appropriate FP_TO*INT operation to use.
2611   EVT NewOutTy = DestVT;
2612 
2613   unsigned OpToUse = 0;
2614 
2615   // Scan for the appropriate larger type to use.
2616   while (true) {
2617     NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2618     assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2619 
2620     // A larger signed type can hold all unsigned values of the requested type,
2621     // so using FP_TO_SINT is valid
2622     OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT;
2623     if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy))
2624       break;
2625 
2626     // However, if the value may be < 0.0, we *must* use some FP_TO_SINT.
2627     OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT;
2628     if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy))
2629       break;
2630 
2631     // Otherwise, try a larger type.
2632   }
2633 
2634   // Okay, we found the operation and type to use.
2635   SDValue Operation;
2636   if (IsStrict) {
2637     SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other);
2638     Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp);
2639   } else
2640     Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2641 
2642   // Truncate the result of the extended FP_TO_*INT operation to the desired
2643   // size.
2644   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2645   Results.push_back(Trunc);
2646   if (IsStrict)
2647     Results.push_back(Operation.getValue(1));
2648 }
2649 
2650 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts.
2651 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) {
2652   EVT VT = Op.getValueType();
2653   EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2654   unsigned Sz = VT.getScalarSizeInBits();
2655 
2656   SDValue Tmp, Tmp2, Tmp3;
2657 
2658   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
2659   // and finally the i1 pairs.
2660   // TODO: We can easily support i4/i2 legal types if any target ever does.
2661   if (Sz >= 8 && isPowerOf2_32(Sz)) {
2662     // Create the masks - repeating the pattern every byte.
2663     APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0));
2664     APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC));
2665     APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA));
2666     APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F));
2667     APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33));
2668     APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55));
2669 
2670     // BSWAP if the type is wider than a single byte.
2671     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
2672 
2673     // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4)
2674     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT));
2675     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT));
2676     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT));
2677     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
2678     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2679 
2680     // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2)
2681     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT));
2682     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT));
2683     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT));
2684     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
2685     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2686 
2687     // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1)
2688     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT));
2689     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT));
2690     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT));
2691     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
2692     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2693     return Tmp;
2694   }
2695 
2696   Tmp = DAG.getConstant(0, dl, VT);
2697   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
2698     if (I < J)
2699       Tmp2 =
2700           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
2701     else
2702       Tmp2 =
2703           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
2704 
2705     APInt Shift(Sz, 1);
2706     Shift <<= J;
2707     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
2708     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
2709   }
2710 
2711   return Tmp;
2712 }
2713 
2714 /// Open code the operations for BSWAP of the specified operation.
2715 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) {
2716   EVT VT = Op.getValueType();
2717   EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2718   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2719   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
2720   default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2721   case MVT::i16:
2722     // Use a rotate by 8. This can be further expanded if necessary.
2723     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2724   case MVT::i32:
2725     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2726     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2727     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2728     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2729     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2730                        DAG.getConstant(0xFF0000, dl, VT));
2731     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
2732     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2733     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2734     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2735   case MVT::i64:
2736     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2737     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2738     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2739     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2740     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2741     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2742     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2743     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2744     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
2745                        DAG.getConstant(255ULL<<48, dl, VT));
2746     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
2747                        DAG.getConstant(255ULL<<40, dl, VT));
2748     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
2749                        DAG.getConstant(255ULL<<32, dl, VT));
2750     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
2751                        DAG.getConstant(255ULL<<24, dl, VT));
2752     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2753                        DAG.getConstant(255ULL<<16, dl, VT));
2754     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
2755                        DAG.getConstant(255ULL<<8 , dl, VT));
2756     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2757     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2758     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2759     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2760     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2761     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2762     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2763   }
2764 }
2765 
2766 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2767   LLVM_DEBUG(dbgs() << "Trying to expand node\n");
2768   SmallVector<SDValue, 8> Results;
2769   SDLoc dl(Node);
2770   SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2771   bool NeedInvert;
2772   switch (Node->getOpcode()) {
2773   case ISD::ABS:
2774     if (TLI.expandABS(Node, Tmp1, DAG))
2775       Results.push_back(Tmp1);
2776     break;
2777   case ISD::CTPOP:
2778     if (TLI.expandCTPOP(Node, Tmp1, DAG))
2779       Results.push_back(Tmp1);
2780     break;
2781   case ISD::CTLZ:
2782   case ISD::CTLZ_ZERO_UNDEF:
2783     if (TLI.expandCTLZ(Node, Tmp1, DAG))
2784       Results.push_back(Tmp1);
2785     break;
2786   case ISD::CTTZ:
2787   case ISD::CTTZ_ZERO_UNDEF:
2788     if (TLI.expandCTTZ(Node, Tmp1, DAG))
2789       Results.push_back(Tmp1);
2790     break;
2791   case ISD::BITREVERSE:
2792     Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl));
2793     break;
2794   case ISD::BSWAP:
2795     Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2796     break;
2797   case ISD::FRAMEADDR:
2798   case ISD::RETURNADDR:
2799   case ISD::FRAME_TO_ARGS_OFFSET:
2800     Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
2801     break;
2802   case ISD::EH_DWARF_CFA: {
2803     SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl,
2804                                         TLI.getPointerTy(DAG.getDataLayout()));
2805     SDValue Offset = DAG.getNode(ISD::ADD, dl,
2806                                  CfaArg.getValueType(),
2807                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
2808                                              CfaArg.getValueType()),
2809                                  CfaArg);
2810     SDValue FA = DAG.getNode(
2811         ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()),
2812         DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())));
2813     Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(),
2814                                   FA, Offset));
2815     break;
2816   }
2817   case ISD::FLT_ROUNDS_:
2818     Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0)));
2819     Results.push_back(Node->getOperand(0));
2820     break;
2821   case ISD::EH_RETURN:
2822   case ISD::EH_LABEL:
2823   case ISD::PREFETCH:
2824   case ISD::VAEND:
2825   case ISD::EH_SJLJ_LONGJMP:
2826     // If the target didn't expand these, there's nothing to do, so just
2827     // preserve the chain and be done.
2828     Results.push_back(Node->getOperand(0));
2829     break;
2830   case ISD::READCYCLECOUNTER:
2831     // If the target didn't expand this, just return 'zero' and preserve the
2832     // chain.
2833     Results.append(Node->getNumValues() - 1,
2834                    DAG.getConstant(0, dl, Node->getValueType(0)));
2835     Results.push_back(Node->getOperand(0));
2836     break;
2837   case ISD::EH_SJLJ_SETJMP:
2838     // If the target didn't expand this, just return 'zero' and preserve the
2839     // chain.
2840     Results.push_back(DAG.getConstant(0, dl, MVT::i32));
2841     Results.push_back(Node->getOperand(0));
2842     break;
2843   case ISD::ATOMIC_LOAD: {
2844     // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2845     SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0));
2846     SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2847     SDValue Swap = DAG.getAtomicCmpSwap(
2848         ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2849         Node->getOperand(0), Node->getOperand(1), Zero, Zero,
2850         cast<AtomicSDNode>(Node)->getMemOperand());
2851     Results.push_back(Swap.getValue(0));
2852     Results.push_back(Swap.getValue(1));
2853     break;
2854   }
2855   case ISD::ATOMIC_STORE: {
2856     // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2857     SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2858                                  cast<AtomicSDNode>(Node)->getMemoryVT(),
2859                                  Node->getOperand(0),
2860                                  Node->getOperand(1), Node->getOperand(2),
2861                                  cast<AtomicSDNode>(Node)->getMemOperand());
2862     Results.push_back(Swap.getValue(1));
2863     break;
2864   }
2865   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
2866     // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and
2867     // splits out the success value as a comparison. Expanding the resulting
2868     // ATOMIC_CMP_SWAP will produce a libcall.
2869     SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2870     SDValue Res = DAG.getAtomicCmpSwap(
2871         ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2872         Node->getOperand(0), Node->getOperand(1), Node->getOperand(2),
2873         Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand());
2874 
2875     SDValue ExtRes = Res;
2876     SDValue LHS = Res;
2877     SDValue RHS = Node->getOperand(1);
2878 
2879     EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT();
2880     EVT OuterType = Node->getValueType(0);
2881     switch (TLI.getExtendForAtomicOps()) {
2882     case ISD::SIGN_EXTEND:
2883       LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res,
2884                         DAG.getValueType(AtomicType));
2885       RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType,
2886                         Node->getOperand(2), DAG.getValueType(AtomicType));
2887       ExtRes = LHS;
2888       break;
2889     case ISD::ZERO_EXTEND:
2890       LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res,
2891                         DAG.getValueType(AtomicType));
2892       RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2893       ExtRes = LHS;
2894       break;
2895     case ISD::ANY_EXTEND:
2896       LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType);
2897       RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2898       break;
2899     default:
2900       llvm_unreachable("Invalid atomic op extension");
2901     }
2902 
2903     SDValue Success =
2904         DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ);
2905 
2906     Results.push_back(ExtRes.getValue(0));
2907     Results.push_back(Success);
2908     Results.push_back(Res.getValue(1));
2909     break;
2910   }
2911   case ISD::DYNAMIC_STACKALLOC:
2912     ExpandDYNAMIC_STACKALLOC(Node, Results);
2913     break;
2914   case ISD::MERGE_VALUES:
2915     for (unsigned i = 0; i < Node->getNumValues(); i++)
2916       Results.push_back(Node->getOperand(i));
2917     break;
2918   case ISD::UNDEF: {
2919     EVT VT = Node->getValueType(0);
2920     if (VT.isInteger())
2921       Results.push_back(DAG.getConstant(0, dl, VT));
2922     else {
2923       assert(VT.isFloatingPoint() && "Unknown value type!");
2924       Results.push_back(DAG.getConstantFP(0, dl, VT));
2925     }
2926     break;
2927   }
2928   case ISD::STRICT_FP_ROUND:
2929     // When strict mode is enforced we can't do expansion because it
2930     // does not honor the "strict" properties. Only libcall is allowed.
2931     if (TLI.isStrictFPEnabled())
2932       break;
2933     // We might as well mutate to FP_ROUND when FP_ROUND operation is legal
2934     // since this operation is more efficient than stack operation.
2935     if (TLI.getStrictFPOperationAction(Node->getOpcode(),
2936                                        Node->getValueType(0))
2937         == TargetLowering::Legal)
2938       break;
2939     // We fall back to use stack operation when the FP_ROUND operation
2940     // isn't available.
2941     Tmp1 = EmitStackConvert(Node->getOperand(1),
2942                             Node->getValueType(0),
2943                             Node->getValueType(0), dl, Node->getOperand(0));
2944     ReplaceNode(Node, Tmp1.getNode());
2945     LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n");
2946     return true;
2947   case ISD::FP_ROUND:
2948   case ISD::BITCAST:
2949     Tmp1 = EmitStackConvert(Node->getOperand(0),
2950                             Node->getValueType(0),
2951                             Node->getValueType(0), dl);
2952     Results.push_back(Tmp1);
2953     break;
2954   case ISD::STRICT_FP_EXTEND:
2955     // When strict mode is enforced we can't do expansion because it
2956     // does not honor the "strict" properties. Only libcall is allowed.
2957     if (TLI.isStrictFPEnabled())
2958       break;
2959     // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal
2960     // since this operation is more efficient than stack operation.
2961     if (TLI.getStrictFPOperationAction(Node->getOpcode(),
2962                                        Node->getValueType(0))
2963         == TargetLowering::Legal)
2964       break;
2965     // We fall back to use stack operation when the FP_EXTEND operation
2966     // isn't available.
2967     Tmp1 = EmitStackConvert(Node->getOperand(1),
2968                             Node->getOperand(1).getValueType(),
2969                             Node->getValueType(0), dl, Node->getOperand(0));
2970     ReplaceNode(Node, Tmp1.getNode());
2971     LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n");
2972     return true;
2973   case ISD::FP_EXTEND:
2974     Tmp1 = EmitStackConvert(Node->getOperand(0),
2975                             Node->getOperand(0).getValueType(),
2976                             Node->getValueType(0), dl);
2977     Results.push_back(Tmp1);
2978     break;
2979   case ISD::SIGN_EXTEND_INREG: {
2980     EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2981     EVT VT = Node->getValueType(0);
2982 
2983     // An in-register sign-extend of a boolean is a negation:
2984     // 'true' (1) sign-extended is -1.
2985     // 'false' (0) sign-extended is 0.
2986     // However, we must mask the high bits of the source operand because the
2987     // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero.
2988 
2989     // TODO: Do this for vectors too?
2990     if (ExtraVT.getSizeInBits() == 1) {
2991       SDValue One = DAG.getConstant(1, dl, VT);
2992       SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One);
2993       SDValue Zero = DAG.getConstant(0, dl, VT);
2994       SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And);
2995       Results.push_back(Neg);
2996       break;
2997     }
2998 
2999     // NOTE: we could fall back on load/store here too for targets without
3000     // SRA.  However, it is doubtful that any exist.
3001     EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
3002     unsigned BitsDiff = VT.getScalarSizeInBits() -
3003                         ExtraVT.getScalarSizeInBits();
3004     SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy);
3005     Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
3006                        Node->getOperand(0), ShiftCst);
3007     Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
3008     Results.push_back(Tmp1);
3009     break;
3010   }
3011   case ISD::UINT_TO_FP:
3012   case ISD::STRICT_UINT_TO_FP:
3013     if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) {
3014       Results.push_back(Tmp1);
3015       if (Node->isStrictFPOpcode())
3016         Results.push_back(Tmp2);
3017       break;
3018     }
3019     LLVM_FALLTHROUGH;
3020   case ISD::SINT_TO_FP:
3021   case ISD::STRICT_SINT_TO_FP:
3022     Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2);
3023     Results.push_back(Tmp1);
3024     if (Node->isStrictFPOpcode())
3025       Results.push_back(Tmp2);
3026     break;
3027   case ISD::FP_TO_SINT:
3028     if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG))
3029       Results.push_back(Tmp1);
3030     break;
3031   case ISD::STRICT_FP_TO_SINT:
3032     if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) {
3033       ReplaceNode(Node, Tmp1.getNode());
3034       LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n");
3035       return true;
3036     }
3037     break;
3038   case ISD::FP_TO_UINT:
3039     if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG))
3040       Results.push_back(Tmp1);
3041     break;
3042   case ISD::STRICT_FP_TO_UINT:
3043     if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) {
3044       // Relink the chain.
3045       DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2);
3046       // Replace the new UINT result.
3047       ReplaceNodeWithValue(SDValue(Node, 0), Tmp1);
3048       LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n");
3049       return true;
3050     }
3051     break;
3052   case ISD::VAARG:
3053     Results.push_back(DAG.expandVAArg(Node));
3054     Results.push_back(Results[0].getValue(1));
3055     break;
3056   case ISD::VACOPY:
3057     Results.push_back(DAG.expandVACopy(Node));
3058     break;
3059   case ISD::EXTRACT_VECTOR_ELT:
3060     if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
3061       // This must be an access of the only element.  Return it.
3062       Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
3063                          Node->getOperand(0));
3064     else
3065       Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
3066     Results.push_back(Tmp1);
3067     break;
3068   case ISD::EXTRACT_SUBVECTOR:
3069     Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
3070     break;
3071   case ISD::INSERT_SUBVECTOR:
3072     Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
3073     break;
3074   case ISD::CONCAT_VECTORS:
3075     Results.push_back(ExpandVectorBuildThroughStack(Node));
3076     break;
3077   case ISD::SCALAR_TO_VECTOR:
3078     Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
3079     break;
3080   case ISD::INSERT_VECTOR_ELT:
3081     Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
3082                                               Node->getOperand(1),
3083                                               Node->getOperand(2), dl));
3084     break;
3085   case ISD::VECTOR_SHUFFLE: {
3086     SmallVector<int, 32> NewMask;
3087     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
3088 
3089     EVT VT = Node->getValueType(0);
3090     EVT EltVT = VT.getVectorElementType();
3091     SDValue Op0 = Node->getOperand(0);
3092     SDValue Op1 = Node->getOperand(1);
3093     if (!TLI.isTypeLegal(EltVT)) {
3094       EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
3095 
3096       // BUILD_VECTOR operands are allowed to be wider than the element type.
3097       // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept
3098       // it.
3099       if (NewEltVT.bitsLT(EltVT)) {
3100         // Convert shuffle node.
3101         // If original node was v4i64 and the new EltVT is i32,
3102         // cast operands to v8i32 and re-build the mask.
3103 
3104         // Calculate new VT, the size of the new VT should be equal to original.
3105         EVT NewVT =
3106             EVT::getVectorVT(*DAG.getContext(), NewEltVT,
3107                              VT.getSizeInBits() / NewEltVT.getSizeInBits());
3108         assert(NewVT.bitsEq(VT));
3109 
3110         // cast operands to new VT
3111         Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
3112         Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
3113 
3114         // Convert the shuffle mask
3115         unsigned int factor =
3116                          NewVT.getVectorNumElements()/VT.getVectorNumElements();
3117 
3118         // EltVT gets smaller
3119         assert(factor > 0);
3120 
3121         for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
3122           if (Mask[i] < 0) {
3123             for (unsigned fi = 0; fi < factor; ++fi)
3124               NewMask.push_back(Mask[i]);
3125           }
3126           else {
3127             for (unsigned fi = 0; fi < factor; ++fi)
3128               NewMask.push_back(Mask[i]*factor+fi);
3129           }
3130         }
3131         Mask = NewMask;
3132         VT = NewVT;
3133       }
3134       EltVT = NewEltVT;
3135     }
3136     unsigned NumElems = VT.getVectorNumElements();
3137     SmallVector<SDValue, 16> Ops;
3138     for (unsigned i = 0; i != NumElems; ++i) {
3139       if (Mask[i] < 0) {
3140         Ops.push_back(DAG.getUNDEF(EltVT));
3141         continue;
3142       }
3143       unsigned Idx = Mask[i];
3144       if (Idx < NumElems)
3145         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
3146                                   DAG.getVectorIdxConstant(Idx, dl)));
3147       else
3148         Ops.push_back(
3149             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1,
3150                         DAG.getVectorIdxConstant(Idx - NumElems, dl)));
3151     }
3152 
3153     Tmp1 = DAG.getBuildVector(VT, dl, Ops);
3154     // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
3155     Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
3156     Results.push_back(Tmp1);
3157     break;
3158   }
3159   case ISD::EXTRACT_ELEMENT: {
3160     EVT OpTy = Node->getOperand(0).getValueType();
3161     if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3162       // 1 -> Hi
3163       Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3164                          DAG.getConstant(OpTy.getSizeInBits() / 2, dl,
3165                                          TLI.getShiftAmountTy(
3166                                              Node->getOperand(0).getValueType(),
3167                                              DAG.getDataLayout())));
3168       Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3169     } else {
3170       // 0 -> Lo
3171       Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3172                          Node->getOperand(0));
3173     }
3174     Results.push_back(Tmp1);
3175     break;
3176   }
3177   case ISD::STACKSAVE:
3178     // Expand to CopyFromReg if the target set
3179     // StackPointerRegisterToSaveRestore.
3180     if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3181       Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3182                                            Node->getValueType(0)));
3183       Results.push_back(Results[0].getValue(1));
3184     } else {
3185       Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3186       Results.push_back(Node->getOperand(0));
3187     }
3188     break;
3189   case ISD::STACKRESTORE:
3190     // Expand to CopyToReg if the target set
3191     // StackPointerRegisterToSaveRestore.
3192     if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3193       Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3194                                          Node->getOperand(1)));
3195     } else {
3196       Results.push_back(Node->getOperand(0));
3197     }
3198     break;
3199   case ISD::GET_DYNAMIC_AREA_OFFSET:
3200     Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
3201     Results.push_back(Results[0].getValue(0));
3202     break;
3203   case ISD::FCOPYSIGN:
3204     Results.push_back(ExpandFCOPYSIGN(Node));
3205     break;
3206   case ISD::FNEG:
3207     // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
3208     Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0));
3209     // TODO: If FNEG has fast-math-flags, propagate them to the FSUB.
3210     Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3211                        Node->getOperand(0));
3212     Results.push_back(Tmp1);
3213     break;
3214   case ISD::FABS:
3215     Results.push_back(ExpandFABS(Node));
3216     break;
3217   case ISD::SMIN:
3218   case ISD::SMAX:
3219   case ISD::UMIN:
3220   case ISD::UMAX: {
3221     // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
3222     ISD::CondCode Pred;
3223     switch (Node->getOpcode()) {
3224     default: llvm_unreachable("How did we get here?");
3225     case ISD::SMAX: Pred = ISD::SETGT; break;
3226     case ISD::SMIN: Pred = ISD::SETLT; break;
3227     case ISD::UMAX: Pred = ISD::SETUGT; break;
3228     case ISD::UMIN: Pred = ISD::SETULT; break;
3229     }
3230     Tmp1 = Node->getOperand(0);
3231     Tmp2 = Node->getOperand(1);
3232     Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred);
3233     Results.push_back(Tmp1);
3234     break;
3235   }
3236   case ISD::FMINNUM:
3237   case ISD::FMAXNUM: {
3238     if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG))
3239       Results.push_back(Expanded);
3240     break;
3241   }
3242   case ISD::FSIN:
3243   case ISD::FCOS: {
3244     EVT VT = Node->getValueType(0);
3245     // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
3246     // fcos which share the same operand and both are used.
3247     if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
3248          isSinCosLibcallAvailable(Node, TLI))
3249         && useSinCos(Node)) {
3250       SDVTList VTs = DAG.getVTList(VT, VT);
3251       Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
3252       if (Node->getOpcode() == ISD::FCOS)
3253         Tmp1 = Tmp1.getValue(1);
3254       Results.push_back(Tmp1);
3255     }
3256     break;
3257   }
3258   case ISD::FMAD:
3259     llvm_unreachable("Illegal fmad should never be formed");
3260 
3261   case ISD::FP16_TO_FP:
3262     if (Node->getValueType(0) != MVT::f32) {
3263       // We can extend to types bigger than f32 in two steps without changing
3264       // the result. Since "f16 -> f32" is much more commonly available, give
3265       // CodeGen the option of emitting that before resorting to a libcall.
3266       SDValue Res =
3267           DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0));
3268       Results.push_back(
3269           DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res));
3270     }
3271     break;
3272   case ISD::STRICT_FP16_TO_FP:
3273     if (Node->getValueType(0) != MVT::f32) {
3274       // We can extend to types bigger than f32 in two steps without changing
3275       // the result. Since "f16 -> f32" is much more commonly available, give
3276       // CodeGen the option of emitting that before resorting to a libcall.
3277       SDValue Res =
3278           DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other},
3279                       {Node->getOperand(0), Node->getOperand(1)});
3280       Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
3281                         {Node->getValueType(0), MVT::Other},
3282                         {Res.getValue(1), Res});
3283       Results.push_back(Res);
3284       Results.push_back(Res.getValue(1));
3285     }
3286     break;
3287   case ISD::FP_TO_FP16:
3288     LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n");
3289     if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) {
3290       SDValue Op = Node->getOperand(0);
3291       MVT SVT = Op.getSimpleValueType();
3292       if ((SVT == MVT::f64 || SVT == MVT::f80) &&
3293           TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) {
3294         // Under fastmath, we can expand this node into a fround followed by
3295         // a float-half conversion.
3296         SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op,
3297                                        DAG.getIntPtrConstant(0, dl));
3298         Results.push_back(
3299             DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal));
3300       }
3301     }
3302     break;
3303   case ISD::ConstantFP: {
3304     ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3305     // Check to see if this FP immediate is already legal.
3306     // If this is a legal constant, turn it into a TargetConstantFP node.
3307     if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0),
3308                           DAG.getMachineFunction().getFunction().hasOptSize()))
3309       Results.push_back(ExpandConstantFP(CFP, true));
3310     break;
3311   }
3312   case ISD::Constant: {
3313     ConstantSDNode *CP = cast<ConstantSDNode>(Node);
3314     Results.push_back(ExpandConstant(CP));
3315     break;
3316   }
3317   case ISD::FSUB: {
3318     EVT VT = Node->getValueType(0);
3319     if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3320         TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) {
3321       const SDNodeFlags Flags = Node->getFlags();
3322       Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3323       Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags);
3324       Results.push_back(Tmp1);
3325     }
3326     break;
3327   }
3328   case ISD::SUB: {
3329     EVT VT = Node->getValueType(0);
3330     assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3331            TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3332            "Don't know how to expand this subtraction!");
3333     Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3334                DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
3335                                VT));
3336     Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT));
3337     Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3338     break;
3339   }
3340   case ISD::UREM:
3341   case ISD::SREM: {
3342     EVT VT = Node->getValueType(0);
3343     bool isSigned = Node->getOpcode() == ISD::SREM;
3344     unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3345     unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3346     Tmp2 = Node->getOperand(0);
3347     Tmp3 = Node->getOperand(1);
3348     if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3349       SDVTList VTs = DAG.getVTList(VT, VT);
3350       Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3351       Results.push_back(Tmp1);
3352     } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3353       // X % Y -> X-X/Y*Y
3354       Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3355       Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3356       Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3357       Results.push_back(Tmp1);
3358     }
3359     break;
3360   }
3361   case ISD::UDIV:
3362   case ISD::SDIV: {
3363     bool isSigned = Node->getOpcode() == ISD::SDIV;
3364     unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3365     EVT VT = Node->getValueType(0);
3366     if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3367       SDVTList VTs = DAG.getVTList(VT, VT);
3368       Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3369                          Node->getOperand(1));
3370       Results.push_back(Tmp1);
3371     }
3372     break;
3373   }
3374   case ISD::MULHU:
3375   case ISD::MULHS: {
3376     unsigned ExpandOpcode =
3377         Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI;
3378     EVT VT = Node->getValueType(0);
3379     SDVTList VTs = DAG.getVTList(VT, VT);
3380 
3381     Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3382                        Node->getOperand(1));
3383     Results.push_back(Tmp1.getValue(1));
3384     break;
3385   }
3386   case ISD::UMUL_LOHI:
3387   case ISD::SMUL_LOHI: {
3388     SDValue LHS = Node->getOperand(0);
3389     SDValue RHS = Node->getOperand(1);
3390     MVT VT = LHS.getSimpleValueType();
3391     unsigned MULHOpcode =
3392         Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS;
3393 
3394     if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) {
3395       Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS));
3396       Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS));
3397       break;
3398     }
3399 
3400     SmallVector<SDValue, 4> Halves;
3401     EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext());
3402     assert(TLI.isTypeLegal(HalfType));
3403     if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves,
3404                            HalfType, DAG,
3405                            TargetLowering::MulExpansionKind::Always)) {
3406       for (unsigned i = 0; i < 2; ++i) {
3407         SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]);
3408         SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]);
3409         SDValue Shift = DAG.getConstant(
3410             HalfType.getScalarSizeInBits(), dl,
3411             TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3412         Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3413         Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3414       }
3415       break;
3416     }
3417     break;
3418   }
3419   case ISD::MUL: {
3420     EVT VT = Node->getValueType(0);
3421     SDVTList VTs = DAG.getVTList(VT, VT);
3422     // See if multiply or divide can be lowered using two-result operations.
3423     // We just need the low half of the multiply; try both the signed
3424     // and unsigned forms. If the target supports both SMUL_LOHI and
3425     // UMUL_LOHI, form a preference by checking which forms of plain
3426     // MULH it supports.
3427     bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3428     bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3429     bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3430     bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3431     unsigned OpToUse = 0;
3432     if (HasSMUL_LOHI && !HasMULHS) {
3433       OpToUse = ISD::SMUL_LOHI;
3434     } else if (HasUMUL_LOHI && !HasMULHU) {
3435       OpToUse = ISD::UMUL_LOHI;
3436     } else if (HasSMUL_LOHI) {
3437       OpToUse = ISD::SMUL_LOHI;
3438     } else if (HasUMUL_LOHI) {
3439       OpToUse = ISD::UMUL_LOHI;
3440     }
3441     if (OpToUse) {
3442       Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3443                                     Node->getOperand(1)));
3444       break;
3445     }
3446 
3447     SDValue Lo, Hi;
3448     EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext());
3449     if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) &&
3450         TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) &&
3451         TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
3452         TLI.isOperationLegalOrCustom(ISD::OR, VT) &&
3453         TLI.expandMUL(Node, Lo, Hi, HalfType, DAG,
3454                       TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) {
3455       Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3456       Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi);
3457       SDValue Shift =
3458           DAG.getConstant(HalfType.getSizeInBits(), dl,
3459                           TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3460       Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3461       Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3462     }
3463     break;
3464   }
3465   case ISD::FSHL:
3466   case ISD::FSHR:
3467     if (TLI.expandFunnelShift(Node, Tmp1, DAG))
3468       Results.push_back(Tmp1);
3469     break;
3470   case ISD::ROTL:
3471   case ISD::ROTR:
3472     if (TLI.expandROT(Node, Tmp1, DAG))
3473       Results.push_back(Tmp1);
3474     break;
3475   case ISD::SADDSAT:
3476   case ISD::UADDSAT:
3477   case ISD::SSUBSAT:
3478   case ISD::USUBSAT:
3479     Results.push_back(TLI.expandAddSubSat(Node, DAG));
3480     break;
3481   case ISD::SMULFIX:
3482   case ISD::SMULFIXSAT:
3483   case ISD::UMULFIX:
3484   case ISD::UMULFIXSAT:
3485     Results.push_back(TLI.expandFixedPointMul(Node, DAG));
3486     break;
3487   case ISD::SDIVFIX:
3488   case ISD::SDIVFIXSAT:
3489   case ISD::UDIVFIX:
3490   case ISD::UDIVFIXSAT:
3491     if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node),
3492                                             Node->getOperand(0),
3493                                             Node->getOperand(1),
3494                                             Node->getConstantOperandVal(2),
3495                                             DAG)) {
3496       Results.push_back(V);
3497       break;
3498     }
3499     // FIXME: We might want to retry here with a wider type if we fail, if that
3500     // type is legal.
3501     // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is
3502     // <= 128 (which is the case for all of the default Embedded-C types),
3503     // we will only get here with types and scales that we could always expand
3504     // if we were allowed to generate libcalls to division functions of illegal
3505     // type. But we cannot do that.
3506     llvm_unreachable("Cannot expand DIVFIX!");
3507   case ISD::ADDCARRY:
3508   case ISD::SUBCARRY: {
3509     SDValue LHS = Node->getOperand(0);
3510     SDValue RHS = Node->getOperand(1);
3511     SDValue Carry = Node->getOperand(2);
3512 
3513     bool IsAdd = Node->getOpcode() == ISD::ADDCARRY;
3514 
3515     // Initial add of the 2 operands.
3516     unsigned Op = IsAdd ? ISD::ADD : ISD::SUB;
3517     EVT VT = LHS.getValueType();
3518     SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS);
3519 
3520     // Initial check for overflow.
3521     EVT CarryType = Node->getValueType(1);
3522     EVT SetCCType = getSetCCResultType(Node->getValueType(0));
3523     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
3524     SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC);
3525 
3526     // Add of the sum and the carry.
3527     SDValue One = DAG.getConstant(1, dl, VT);
3528     SDValue CarryExt =
3529         DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One);
3530     SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt);
3531 
3532     // Second check for overflow. If we are adding, we can only overflow if the
3533     // initial sum is all 1s ang the carry is set, resulting in a new sum of 0.
3534     // If we are subtracting, we can only overflow if the initial sum is 0 and
3535     // the carry is set, resulting in a new sum of all 1s.
3536     SDValue Zero = DAG.getConstant(0, dl, VT);
3537     SDValue Overflow2 =
3538         IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ)
3539               : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ);
3540     Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2,
3541                             DAG.getZExtOrTrunc(Carry, dl, SetCCType));
3542 
3543     SDValue ResultCarry =
3544         DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2);
3545 
3546     Results.push_back(Sum2);
3547     Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT));
3548     break;
3549   }
3550   case ISD::SADDO:
3551   case ISD::SSUBO: {
3552     SDValue Result, Overflow;
3553     TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
3554     Results.push_back(Result);
3555     Results.push_back(Overflow);
3556     break;
3557   }
3558   case ISD::UADDO:
3559   case ISD::USUBO: {
3560     SDValue Result, Overflow;
3561     TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
3562     Results.push_back(Result);
3563     Results.push_back(Overflow);
3564     break;
3565   }
3566   case ISD::UMULO:
3567   case ISD::SMULO: {
3568     SDValue Result, Overflow;
3569     if (TLI.expandMULO(Node, Result, Overflow, DAG)) {
3570       Results.push_back(Result);
3571       Results.push_back(Overflow);
3572     }
3573     break;
3574   }
3575   case ISD::BUILD_PAIR: {
3576     EVT PairTy = Node->getValueType(0);
3577     Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3578     Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3579     Tmp2 = DAG.getNode(
3580         ISD::SHL, dl, PairTy, Tmp2,
3581         DAG.getConstant(PairTy.getSizeInBits() / 2, dl,
3582                         TLI.getShiftAmountTy(PairTy, DAG.getDataLayout())));
3583     Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3584     break;
3585   }
3586   case ISD::SELECT:
3587     Tmp1 = Node->getOperand(0);
3588     Tmp2 = Node->getOperand(1);
3589     Tmp3 = Node->getOperand(2);
3590     if (Tmp1.getOpcode() == ISD::SETCC) {
3591       Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3592                              Tmp2, Tmp3,
3593                              cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3594     } else {
3595       Tmp1 = DAG.getSelectCC(dl, Tmp1,
3596                              DAG.getConstant(0, dl, Tmp1.getValueType()),
3597                              Tmp2, Tmp3, ISD::SETNE);
3598     }
3599     Tmp1->setFlags(Node->getFlags());
3600     Results.push_back(Tmp1);
3601     break;
3602   case ISD::BR_JT: {
3603     SDValue Chain = Node->getOperand(0);
3604     SDValue Table = Node->getOperand(1);
3605     SDValue Index = Node->getOperand(2);
3606 
3607     const DataLayout &TD = DAG.getDataLayout();
3608     EVT PTy = TLI.getPointerTy(TD);
3609 
3610     unsigned EntrySize =
3611       DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3612 
3613     // For power-of-two jumptable entry sizes convert multiplication to a shift.
3614     // This transformation needs to be done here since otherwise the MIPS
3615     // backend will end up emitting a three instruction multiply sequence
3616     // instead of a single shift and MSP430 will call a runtime function.
3617     if (llvm::isPowerOf2_32(EntrySize))
3618       Index = DAG.getNode(
3619           ISD::SHL, dl, Index.getValueType(), Index,
3620           DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType()));
3621     else
3622       Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
3623                           DAG.getConstant(EntrySize, dl, Index.getValueType()));
3624     SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(),
3625                                Index, Table);
3626 
3627     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3628     SDValue LD = DAG.getExtLoad(
3629         ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3630         MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT);
3631     Addr = LD;
3632     if (TLI.isJumpTableRelative()) {
3633       // For PIC, the sequence is:
3634       // BRIND(load(Jumptable + index) + RelocBase)
3635       // RelocBase can be JumpTable, GOT or some sort of global base.
3636       Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3637                           TLI.getPICJumpTableRelocBase(Table, DAG));
3638     }
3639 
3640     Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG);
3641     Results.push_back(Tmp1);
3642     break;
3643   }
3644   case ISD::BRCOND:
3645     // Expand brcond's setcc into its constituent parts and create a BR_CC
3646     // Node.
3647     Tmp1 = Node->getOperand(0);
3648     Tmp2 = Node->getOperand(1);
3649     if (Tmp2.getOpcode() == ISD::SETCC) {
3650       Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3651                          Tmp1, Tmp2.getOperand(2),
3652                          Tmp2.getOperand(0), Tmp2.getOperand(1),
3653                          Node->getOperand(2));
3654     } else {
3655       // We test only the i1 bit.  Skip the AND if UNDEF or another AND.
3656       if (Tmp2.isUndef() ||
3657           (Tmp2.getOpcode() == ISD::AND &&
3658            isa<ConstantSDNode>(Tmp2.getOperand(1)) &&
3659            cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1))
3660         Tmp3 = Tmp2;
3661       else
3662         Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3663                            DAG.getConstant(1, dl, Tmp2.getValueType()));
3664       Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3665                          DAG.getCondCode(ISD::SETNE), Tmp3,
3666                          DAG.getConstant(0, dl, Tmp3.getValueType()),
3667                          Node->getOperand(2));
3668     }
3669     Results.push_back(Tmp1);
3670     break;
3671   case ISD::SETCC:
3672   case ISD::STRICT_FSETCC:
3673   case ISD::STRICT_FSETCCS: {
3674     bool IsStrict = Node->getOpcode() != ISD::SETCC;
3675     bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS;
3676     SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
3677     unsigned Offset = IsStrict ? 1 : 0;
3678     Tmp1 = Node->getOperand(0 + Offset);
3679     Tmp2 = Node->getOperand(1 + Offset);
3680     Tmp3 = Node->getOperand(2 + Offset);
3681     bool Legalized =
3682         LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3,
3683                               NeedInvert, dl, Chain, IsSignaling);
3684 
3685     if (Legalized) {
3686       // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3687       // condition code, create a new SETCC node.
3688       if (Tmp3.getNode())
3689         Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3690                            Tmp1, Tmp2, Tmp3, Node->getFlags());
3691 
3692       // If we expanded the SETCC by inverting the condition code, then wrap
3693       // the existing SETCC in a NOT to restore the intended condition.
3694       if (NeedInvert)
3695         Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0));
3696 
3697       Results.push_back(Tmp1);
3698       if (IsStrict)
3699         Results.push_back(Chain);
3700 
3701       break;
3702     }
3703 
3704     // FIXME: It seems Legalized is false iff CCCode is Legal. I don't
3705     // understand if this code is useful for strict nodes.
3706     assert(!IsStrict && "Don't know how to expand for strict nodes.");
3707 
3708     // Otherwise, SETCC for the given comparison type must be completely
3709     // illegal; expand it into a SELECT_CC.
3710     EVT VT = Node->getValueType(0);
3711     int TrueValue;
3712     switch (TLI.getBooleanContents(Tmp1.getValueType())) {
3713     case TargetLowering::ZeroOrOneBooleanContent:
3714     case TargetLowering::UndefinedBooleanContent:
3715       TrueValue = 1;
3716       break;
3717     case TargetLowering::ZeroOrNegativeOneBooleanContent:
3718       TrueValue = -1;
3719       break;
3720     }
3721     Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3722                        DAG.getConstant(TrueValue, dl, VT),
3723                        DAG.getConstant(0, dl, VT),
3724                        Tmp3);
3725     Tmp1->setFlags(Node->getFlags());
3726     Results.push_back(Tmp1);
3727     break;
3728   }
3729   case ISD::SELECT_CC: {
3730     // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS
3731     Tmp1 = Node->getOperand(0);   // LHS
3732     Tmp2 = Node->getOperand(1);   // RHS
3733     Tmp3 = Node->getOperand(2);   // True
3734     Tmp4 = Node->getOperand(3);   // False
3735     EVT VT = Node->getValueType(0);
3736     SDValue Chain;
3737     SDValue CC = Node->getOperand(4);
3738     ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get();
3739 
3740     if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) {
3741       // If the condition code is legal, then we need to expand this
3742       // node using SETCC and SELECT.
3743       EVT CmpVT = Tmp1.getValueType();
3744       assert(!TLI.isOperationExpand(ISD::SELECT, VT) &&
3745              "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
3746              "expanded.");
3747       EVT CCVT = getSetCCResultType(CmpVT);
3748       SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags());
3749       Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4));
3750       break;
3751     }
3752 
3753     // SELECT_CC is legal, so the condition code must not be.
3754     bool Legalized = false;
3755     // Try to legalize by inverting the condition.  This is for targets that
3756     // might support an ordered version of a condition, but not the unordered
3757     // version (or vice versa).
3758     ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType());
3759     if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) {
3760       // Use the new condition code and swap true and false
3761       Legalized = true;
3762       Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC);
3763       Tmp1->setFlags(Node->getFlags());
3764     } else {
3765       // If The inverse is not legal, then try to swap the arguments using
3766       // the inverse condition code.
3767       ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC);
3768       if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) {
3769         // The swapped inverse condition is legal, so swap true and false,
3770         // lhs and rhs.
3771         Legalized = true;
3772         Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC);
3773         Tmp1->setFlags(Node->getFlags());
3774       }
3775     }
3776 
3777     if (!Legalized) {
3778       Legalized = LegalizeSetCCCondCode(getSetCCResultType(Tmp1.getValueType()),
3779                                         Tmp1, Tmp2, CC, NeedInvert, dl, Chain);
3780 
3781       assert(Legalized && "Can't legalize SELECT_CC with legal condition!");
3782 
3783       // If we expanded the SETCC by inverting the condition code, then swap
3784       // the True/False operands to match.
3785       if (NeedInvert)
3786         std::swap(Tmp3, Tmp4);
3787 
3788       // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3789       // condition code, create a new SELECT_CC node.
3790       if (CC.getNode()) {
3791         Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0),
3792                            Tmp1, Tmp2, Tmp3, Tmp4, CC);
3793       } else {
3794         Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType());
3795         CC = DAG.getCondCode(ISD::SETNE);
3796         Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1,
3797                            Tmp2, Tmp3, Tmp4, CC);
3798       }
3799       Tmp1->setFlags(Node->getFlags());
3800     }
3801     Results.push_back(Tmp1);
3802     break;
3803   }
3804   case ISD::BR_CC: {
3805     // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS
3806     SDValue Chain;
3807     Tmp1 = Node->getOperand(0);              // Chain
3808     Tmp2 = Node->getOperand(2);              // LHS
3809     Tmp3 = Node->getOperand(3);              // RHS
3810     Tmp4 = Node->getOperand(1);              // CC
3811 
3812     bool Legalized =
3813         LegalizeSetCCCondCode(getSetCCResultType(Tmp2.getValueType()), Tmp2,
3814                               Tmp3, Tmp4, NeedInvert, dl, Chain);
3815     (void)Legalized;
3816     assert(Legalized && "Can't legalize BR_CC with legal condition!");
3817 
3818     assert(!NeedInvert && "Don't know how to invert BR_CC!");
3819 
3820     // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
3821     // node.
3822     if (Tmp4.getNode()) {
3823       Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1,
3824                          Tmp4, Tmp2, Tmp3, Node->getOperand(4));
3825     } else {
3826       Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType());
3827       Tmp4 = DAG.getCondCode(ISD::SETNE);
3828       Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4,
3829                          Tmp2, Tmp3, Node->getOperand(4));
3830     }
3831     Results.push_back(Tmp1);
3832     break;
3833   }
3834   case ISD::BUILD_VECTOR:
3835     Results.push_back(ExpandBUILD_VECTOR(Node));
3836     break;
3837   case ISD::SPLAT_VECTOR:
3838     Results.push_back(ExpandSPLAT_VECTOR(Node));
3839     break;
3840   case ISD::SRA:
3841   case ISD::SRL:
3842   case ISD::SHL: {
3843     // Scalarize vector SRA/SRL/SHL.
3844     EVT VT = Node->getValueType(0);
3845     assert(VT.isVector() && "Unable to legalize non-vector shift");
3846     assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3847     unsigned NumElem = VT.getVectorNumElements();
3848 
3849     SmallVector<SDValue, 8> Scalars;
3850     for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3851       SDValue Ex =
3852           DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(),
3853                       Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl));
3854       SDValue Sh =
3855           DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(),
3856                       Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl));
3857       Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3858                                     VT.getScalarType(), Ex, Sh));
3859     }
3860 
3861     SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars);
3862     Results.push_back(Result);
3863     break;
3864   }
3865   case ISD::VECREDUCE_FADD:
3866   case ISD::VECREDUCE_FMUL:
3867   case ISD::VECREDUCE_ADD:
3868   case ISD::VECREDUCE_MUL:
3869   case ISD::VECREDUCE_AND:
3870   case ISD::VECREDUCE_OR:
3871   case ISD::VECREDUCE_XOR:
3872   case ISD::VECREDUCE_SMAX:
3873   case ISD::VECREDUCE_SMIN:
3874   case ISD::VECREDUCE_UMAX:
3875   case ISD::VECREDUCE_UMIN:
3876   case ISD::VECREDUCE_FMAX:
3877   case ISD::VECREDUCE_FMIN:
3878     Results.push_back(TLI.expandVecReduce(Node, DAG));
3879     break;
3880   case ISD::GLOBAL_OFFSET_TABLE:
3881   case ISD::GlobalAddress:
3882   case ISD::GlobalTLSAddress:
3883   case ISD::ExternalSymbol:
3884   case ISD::ConstantPool:
3885   case ISD::JumpTable:
3886   case ISD::INTRINSIC_W_CHAIN:
3887   case ISD::INTRINSIC_WO_CHAIN:
3888   case ISD::INTRINSIC_VOID:
3889     // FIXME: Custom lowering for these operations shouldn't return null!
3890     // Return true so that we don't call ConvertNodeToLibcall which also won't
3891     // do anything.
3892     return true;
3893   }
3894 
3895   if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) {
3896     // FIXME: We were asked to expand a strict floating-point operation,
3897     // but there is currently no expansion implemented that would preserve
3898     // the "strict" properties.  For now, we just fall back to the non-strict
3899     // version if that is legal on the target.  The actual mutation of the
3900     // operation will happen in SelectionDAGISel::DoInstructionSelection.
3901     switch (Node->getOpcode()) {
3902     default:
3903       if (TLI.getStrictFPOperationAction(Node->getOpcode(),
3904                                          Node->getValueType(0))
3905           == TargetLowering::Legal)
3906         return true;
3907       break;
3908     case ISD::STRICT_LRINT:
3909     case ISD::STRICT_LLRINT:
3910     case ISD::STRICT_LROUND:
3911     case ISD::STRICT_LLROUND:
3912       // These are registered by the operand type instead of the value
3913       // type. Reflect that here.
3914       if (TLI.getStrictFPOperationAction(Node->getOpcode(),
3915                                          Node->getOperand(1).getValueType())
3916           == TargetLowering::Legal)
3917         return true;
3918       break;
3919     }
3920   }
3921 
3922   // Replace the original node with the legalized result.
3923   if (Results.empty()) {
3924     LLVM_DEBUG(dbgs() << "Cannot expand node\n");
3925     return false;
3926   }
3927 
3928   LLVM_DEBUG(dbgs() << "Successfully expanded node\n");
3929   ReplaceNode(Node, Results.data());
3930   return true;
3931 }
3932 
3933 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) {
3934   LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n");
3935   SmallVector<SDValue, 8> Results;
3936   SDLoc dl(Node);
3937   // FIXME: Check flags on the node to see if we can use a finite call.
3938   unsigned Opc = Node->getOpcode();
3939   switch (Opc) {
3940   case ISD::ATOMIC_FENCE: {
3941     // If the target didn't lower this, lower it to '__sync_synchronize()' call
3942     // FIXME: handle "fence singlethread" more efficiently.
3943     TargetLowering::ArgListTy Args;
3944 
3945     TargetLowering::CallLoweringInfo CLI(DAG);
3946     CLI.setDebugLoc(dl)
3947         .setChain(Node->getOperand(0))
3948         .setLibCallee(
3949             CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3950             DAG.getExternalSymbol("__sync_synchronize",
3951                                   TLI.getPointerTy(DAG.getDataLayout())),
3952             std::move(Args));
3953 
3954     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3955 
3956     Results.push_back(CallResult.second);
3957     break;
3958   }
3959   // By default, atomic intrinsics are marked Legal and lowered. Targets
3960   // which don't support them directly, however, may want libcalls, in which
3961   // case they mark them Expand, and we get here.
3962   case ISD::ATOMIC_SWAP:
3963   case ISD::ATOMIC_LOAD_ADD:
3964   case ISD::ATOMIC_LOAD_SUB:
3965   case ISD::ATOMIC_LOAD_AND:
3966   case ISD::ATOMIC_LOAD_CLR:
3967   case ISD::ATOMIC_LOAD_OR:
3968   case ISD::ATOMIC_LOAD_XOR:
3969   case ISD::ATOMIC_LOAD_NAND:
3970   case ISD::ATOMIC_LOAD_MIN:
3971   case ISD::ATOMIC_LOAD_MAX:
3972   case ISD::ATOMIC_LOAD_UMIN:
3973   case ISD::ATOMIC_LOAD_UMAX:
3974   case ISD::ATOMIC_CMP_SWAP: {
3975     MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
3976     RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT);
3977     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!");
3978 
3979     EVT RetVT = Node->getValueType(0);
3980     SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end());
3981     TargetLowering::MakeLibCallOptions CallOptions;
3982     std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
3983                                                       Ops, CallOptions,
3984                                                       SDLoc(Node),
3985                                                       Node->getOperand(0));
3986     Results.push_back(Tmp.first);
3987     Results.push_back(Tmp.second);
3988     break;
3989   }
3990   case ISD::TRAP: {
3991     // If this operation is not supported, lower it to 'abort()' call
3992     TargetLowering::ArgListTy Args;
3993     TargetLowering::CallLoweringInfo CLI(DAG);
3994     CLI.setDebugLoc(dl)
3995         .setChain(Node->getOperand(0))
3996         .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3997                       DAG.getExternalSymbol(
3998                           "abort", TLI.getPointerTy(DAG.getDataLayout())),
3999                       std::move(Args));
4000     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
4001 
4002     Results.push_back(CallResult.second);
4003     break;
4004   }
4005   case ISD::FMINNUM:
4006   case ISD::STRICT_FMINNUM:
4007     ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64,
4008                     RTLIB::FMIN_F80, RTLIB::FMIN_F128,
4009                     RTLIB::FMIN_PPCF128, Results);
4010     break;
4011   case ISD::FMAXNUM:
4012   case ISD::STRICT_FMAXNUM:
4013     ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64,
4014                     RTLIB::FMAX_F80, RTLIB::FMAX_F128,
4015                     RTLIB::FMAX_PPCF128, Results);
4016     break;
4017   case ISD::FSQRT:
4018   case ISD::STRICT_FSQRT:
4019     ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
4020                     RTLIB::SQRT_F80, RTLIB::SQRT_F128,
4021                     RTLIB::SQRT_PPCF128, Results);
4022     break;
4023   case ISD::FCBRT:
4024     ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64,
4025                     RTLIB::CBRT_F80, RTLIB::CBRT_F128,
4026                     RTLIB::CBRT_PPCF128, Results);
4027     break;
4028   case ISD::FSIN:
4029   case ISD::STRICT_FSIN:
4030     ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
4031                     RTLIB::SIN_F80, RTLIB::SIN_F128,
4032                     RTLIB::SIN_PPCF128, Results);
4033     break;
4034   case ISD::FCOS:
4035   case ISD::STRICT_FCOS:
4036     ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
4037                     RTLIB::COS_F80, RTLIB::COS_F128,
4038                     RTLIB::COS_PPCF128, Results);
4039     break;
4040   case ISD::FSINCOS:
4041     // Expand into sincos libcall.
4042     ExpandSinCosLibCall(Node, Results);
4043     break;
4044   case ISD::FLOG:
4045   case ISD::STRICT_FLOG:
4046     ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80,
4047                     RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results);
4048     break;
4049   case ISD::FLOG2:
4050   case ISD::STRICT_FLOG2:
4051     ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80,
4052                     RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results);
4053     break;
4054   case ISD::FLOG10:
4055   case ISD::STRICT_FLOG10:
4056     ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80,
4057                     RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results);
4058     break;
4059   case ISD::FEXP:
4060   case ISD::STRICT_FEXP:
4061     ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80,
4062                     RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results);
4063     break;
4064   case ISD::FEXP2:
4065   case ISD::STRICT_FEXP2:
4066     ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80,
4067                     RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results);
4068     break;
4069   case ISD::FTRUNC:
4070   case ISD::STRICT_FTRUNC:
4071     ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
4072                     RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
4073                     RTLIB::TRUNC_PPCF128, Results);
4074     break;
4075   case ISD::FFLOOR:
4076   case ISD::STRICT_FFLOOR:
4077     ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
4078                     RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
4079                     RTLIB::FLOOR_PPCF128, Results);
4080     break;
4081   case ISD::FCEIL:
4082   case ISD::STRICT_FCEIL:
4083     ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
4084                     RTLIB::CEIL_F80, RTLIB::CEIL_F128,
4085                     RTLIB::CEIL_PPCF128, Results);
4086     break;
4087   case ISD::FRINT:
4088   case ISD::STRICT_FRINT:
4089     ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
4090                     RTLIB::RINT_F80, RTLIB::RINT_F128,
4091                     RTLIB::RINT_PPCF128, Results);
4092     break;
4093   case ISD::FNEARBYINT:
4094   case ISD::STRICT_FNEARBYINT:
4095     ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
4096                     RTLIB::NEARBYINT_F64,
4097                     RTLIB::NEARBYINT_F80,
4098                     RTLIB::NEARBYINT_F128,
4099                     RTLIB::NEARBYINT_PPCF128, Results);
4100     break;
4101   case ISD::FROUND:
4102   case ISD::STRICT_FROUND:
4103     ExpandFPLibCall(Node, RTLIB::ROUND_F32,
4104                     RTLIB::ROUND_F64,
4105                     RTLIB::ROUND_F80,
4106                     RTLIB::ROUND_F128,
4107                     RTLIB::ROUND_PPCF128, Results);
4108     break;
4109   case ISD::FPOWI:
4110   case ISD::STRICT_FPOWI: {
4111     RTLIB::Libcall LC;
4112     switch (Node->getSimpleValueType(0).SimpleTy) {
4113     default: llvm_unreachable("Unexpected request for libcall!");
4114     case MVT::f32: LC = RTLIB::POWI_F32; break;
4115     case MVT::f64: LC = RTLIB::POWI_F64; break;
4116     case MVT::f80: LC = RTLIB::POWI_F80; break;
4117     case MVT::f128: LC = RTLIB::POWI_F128; break;
4118     case MVT::ppcf128: LC = RTLIB::POWI_PPCF128; break;
4119     }
4120     if (!TLI.getLibcallName(LC)) {
4121       // Some targets don't have a powi libcall; use pow instead.
4122       SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node),
4123                                      Node->getValueType(0),
4124                                      Node->getOperand(1));
4125       Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node),
4126                                     Node->getValueType(0), Node->getOperand(0),
4127                                     Exponent));
4128       break;
4129     }
4130     ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
4131                     RTLIB::POWI_F80, RTLIB::POWI_F128,
4132                     RTLIB::POWI_PPCF128, Results);
4133     break;
4134   }
4135   case ISD::FPOW:
4136   case ISD::STRICT_FPOW:
4137     ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80,
4138                     RTLIB::POW_F128, RTLIB::POW_PPCF128, Results);
4139     break;
4140   case ISD::LROUND:
4141   case ISD::STRICT_LROUND:
4142     ExpandArgFPLibCall(Node, RTLIB::LROUND_F32,
4143                        RTLIB::LROUND_F64, RTLIB::LROUND_F80,
4144                        RTLIB::LROUND_F128,
4145                        RTLIB::LROUND_PPCF128, Results);
4146     break;
4147   case ISD::LLROUND:
4148   case ISD::STRICT_LLROUND:
4149     ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32,
4150                        RTLIB::LLROUND_F64, RTLIB::LLROUND_F80,
4151                        RTLIB::LLROUND_F128,
4152                        RTLIB::LLROUND_PPCF128, Results);
4153     break;
4154   case ISD::LRINT:
4155   case ISD::STRICT_LRINT:
4156     ExpandArgFPLibCall(Node, RTLIB::LRINT_F32,
4157                        RTLIB::LRINT_F64, RTLIB::LRINT_F80,
4158                        RTLIB::LRINT_F128,
4159                        RTLIB::LRINT_PPCF128, Results);
4160     break;
4161   case ISD::LLRINT:
4162   case ISD::STRICT_LLRINT:
4163     ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32,
4164                        RTLIB::LLRINT_F64, RTLIB::LLRINT_F80,
4165                        RTLIB::LLRINT_F128,
4166                        RTLIB::LLRINT_PPCF128, Results);
4167     break;
4168   case ISD::FDIV:
4169   case ISD::STRICT_FDIV:
4170     ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
4171                     RTLIB::DIV_F80, RTLIB::DIV_F128,
4172                     RTLIB::DIV_PPCF128, Results);
4173     break;
4174   case ISD::FREM:
4175   case ISD::STRICT_FREM:
4176     ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
4177                     RTLIB::REM_F80, RTLIB::REM_F128,
4178                     RTLIB::REM_PPCF128, Results);
4179     break;
4180   case ISD::FMA:
4181   case ISD::STRICT_FMA:
4182     ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
4183                     RTLIB::FMA_F80, RTLIB::FMA_F128,
4184                     RTLIB::FMA_PPCF128, Results);
4185     break;
4186   case ISD::FADD:
4187   case ISD::STRICT_FADD:
4188     ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64,
4189                     RTLIB::ADD_F80, RTLIB::ADD_F128,
4190                     RTLIB::ADD_PPCF128, Results);
4191     break;
4192   case ISD::FMUL:
4193   case ISD::STRICT_FMUL:
4194     ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64,
4195                     RTLIB::MUL_F80, RTLIB::MUL_F128,
4196                     RTLIB::MUL_PPCF128, Results);
4197     break;
4198   case ISD::FP16_TO_FP:
4199     if (Node->getValueType(0) == MVT::f32) {
4200       Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
4201     }
4202     break;
4203   case ISD::STRICT_FP16_TO_FP: {
4204     if (Node->getValueType(0) == MVT::f32) {
4205       TargetLowering::MakeLibCallOptions CallOptions;
4206       std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(
4207           DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions,
4208           SDLoc(Node), Node->getOperand(0));
4209       Results.push_back(Tmp.first);
4210       Results.push_back(Tmp.second);
4211     }
4212     break;
4213   }
4214   case ISD::FP_TO_FP16: {
4215     RTLIB::Libcall LC =
4216         RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16);
4217     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16");
4218     Results.push_back(ExpandLibCall(LC, Node, false));
4219     break;
4220   }
4221   case ISD::STRICT_FP_TO_FP16: {
4222     RTLIB::Libcall LC =
4223         RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16);
4224     assert(LC != RTLIB::UNKNOWN_LIBCALL &&
4225            "Unable to expand strict_fp_to_fp16");
4226     TargetLowering::MakeLibCallOptions CallOptions;
4227     std::pair<SDValue, SDValue> Tmp =
4228         TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1),
4229                         CallOptions, SDLoc(Node), Node->getOperand(0));
4230     Results.push_back(Tmp.first);
4231     Results.push_back(Tmp.second);
4232     break;
4233   }
4234   case ISD::FSUB:
4235   case ISD::STRICT_FSUB:
4236     ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64,
4237                     RTLIB::SUB_F80, RTLIB::SUB_F128,
4238                     RTLIB::SUB_PPCF128, Results);
4239     break;
4240   case ISD::SREM:
4241     Results.push_back(ExpandIntLibCall(Node, true,
4242                                        RTLIB::SREM_I8,
4243                                        RTLIB::SREM_I16, RTLIB::SREM_I32,
4244                                        RTLIB::SREM_I64, RTLIB::SREM_I128));
4245     break;
4246   case ISD::UREM:
4247     Results.push_back(ExpandIntLibCall(Node, false,
4248                                        RTLIB::UREM_I8,
4249                                        RTLIB::UREM_I16, RTLIB::UREM_I32,
4250                                        RTLIB::UREM_I64, RTLIB::UREM_I128));
4251     break;
4252   case ISD::SDIV:
4253     Results.push_back(ExpandIntLibCall(Node, true,
4254                                        RTLIB::SDIV_I8,
4255                                        RTLIB::SDIV_I16, RTLIB::SDIV_I32,
4256                                        RTLIB::SDIV_I64, RTLIB::SDIV_I128));
4257     break;
4258   case ISD::UDIV:
4259     Results.push_back(ExpandIntLibCall(Node, false,
4260                                        RTLIB::UDIV_I8,
4261                                        RTLIB::UDIV_I16, RTLIB::UDIV_I32,
4262                                        RTLIB::UDIV_I64, RTLIB::UDIV_I128));
4263     break;
4264   case ISD::SDIVREM:
4265   case ISD::UDIVREM:
4266     // Expand into divrem libcall
4267     ExpandDivRemLibCall(Node, Results);
4268     break;
4269   case ISD::MUL:
4270     Results.push_back(ExpandIntLibCall(Node, false,
4271                                        RTLIB::MUL_I8,
4272                                        RTLIB::MUL_I16, RTLIB::MUL_I32,
4273                                        RTLIB::MUL_I64, RTLIB::MUL_I128));
4274     break;
4275   case ISD::CTLZ_ZERO_UNDEF:
4276     switch (Node->getSimpleValueType(0).SimpleTy) {
4277     default:
4278       llvm_unreachable("LibCall explicitly requested, but not available");
4279     case MVT::i32:
4280       Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false));
4281       break;
4282     case MVT::i64:
4283       Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false));
4284       break;
4285     case MVT::i128:
4286       Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false));
4287       break;
4288     }
4289     break;
4290   }
4291 
4292   // Replace the original node with the legalized result.
4293   if (!Results.empty()) {
4294     LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n");
4295     ReplaceNode(Node, Results.data());
4296   } else
4297     LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n");
4298 }
4299 
4300 // Determine the vector type to use in place of an original scalar element when
4301 // promoting equally sized vectors.
4302 static MVT getPromotedVectorElementType(const TargetLowering &TLI,
4303                                         MVT EltVT, MVT NewEltVT) {
4304   unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits();
4305   MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt);
4306   assert(TLI.isTypeLegal(MidVT) && "unexpected");
4307   return MidVT;
4308 }
4309 
4310 void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
4311   LLVM_DEBUG(dbgs() << "Trying to promote node\n");
4312   SmallVector<SDValue, 8> Results;
4313   MVT OVT = Node->getSimpleValueType(0);
4314   if (Node->getOpcode() == ISD::UINT_TO_FP ||
4315       Node->getOpcode() == ISD::SINT_TO_FP ||
4316       Node->getOpcode() == ISD::SETCC ||
4317       Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
4318       Node->getOpcode() == ISD::INSERT_VECTOR_ELT) {
4319     OVT = Node->getOperand(0).getSimpleValueType();
4320   }
4321   if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP ||
4322       Node->getOpcode() == ISD::STRICT_SINT_TO_FP)
4323     OVT = Node->getOperand(1).getSimpleValueType();
4324   if (Node->getOpcode() == ISD::BR_CC)
4325     OVT = Node->getOperand(2).getSimpleValueType();
4326   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
4327   SDLoc dl(Node);
4328   SDValue Tmp1, Tmp2, Tmp3;
4329   switch (Node->getOpcode()) {
4330   case ISD::CTTZ:
4331   case ISD::CTTZ_ZERO_UNDEF:
4332   case ISD::CTLZ:
4333   case ISD::CTLZ_ZERO_UNDEF:
4334   case ISD::CTPOP:
4335     // Zero extend the argument unless its cttz, then use any_extend.
4336     if (Node->getOpcode() == ISD::CTTZ ||
4337         Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF)
4338       Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0));
4339     else
4340       Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4341 
4342     if (Node->getOpcode() == ISD::CTTZ) {
4343       // The count is the same in the promoted type except if the original
4344       // value was zero.  This can be handled by setting the bit just off
4345       // the top of the original type.
4346       auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(),
4347                                         OVT.getSizeInBits());
4348       Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1,
4349                          DAG.getConstant(TopBit, dl, NVT));
4350     }
4351     // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
4352     // already the correct result.
4353     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4354     if (Node->getOpcode() == ISD::CTLZ ||
4355         Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
4356       // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
4357       Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
4358                           DAG.getConstant(NVT.getSizeInBits() -
4359                                           OVT.getSizeInBits(), dl, NVT));
4360     }
4361     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4362     break;
4363   case ISD::BITREVERSE:
4364   case ISD::BSWAP: {
4365     unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
4366     Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4367     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4368     Tmp1 = DAG.getNode(
4369         ISD::SRL, dl, NVT, Tmp1,
4370         DAG.getConstant(DiffBits, dl,
4371                         TLI.getShiftAmountTy(NVT, DAG.getDataLayout())));
4372 
4373     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4374     break;
4375   }
4376   case ISD::FP_TO_UINT:
4377   case ISD::STRICT_FP_TO_UINT:
4378   case ISD::FP_TO_SINT:
4379   case ISD::STRICT_FP_TO_SINT:
4380     PromoteLegalFP_TO_INT(Node, dl, Results);
4381     break;
4382   case ISD::UINT_TO_FP:
4383   case ISD::STRICT_UINT_TO_FP:
4384   case ISD::SINT_TO_FP:
4385   case ISD::STRICT_SINT_TO_FP:
4386     PromoteLegalINT_TO_FP(Node, dl, Results);
4387     break;
4388   case ISD::VAARG: {
4389     SDValue Chain = Node->getOperand(0); // Get the chain.
4390     SDValue Ptr = Node->getOperand(1); // Get the pointer.
4391 
4392     unsigned TruncOp;
4393     if (OVT.isVector()) {
4394       TruncOp = ISD::BITCAST;
4395     } else {
4396       assert(OVT.isInteger()
4397         && "VAARG promotion is supported only for vectors or integer types");
4398       TruncOp = ISD::TRUNCATE;
4399     }
4400 
4401     // Perform the larger operation, then convert back
4402     Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
4403              Node->getConstantOperandVal(3));
4404     Chain = Tmp1.getValue(1);
4405 
4406     Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
4407 
4408     // Modified the chain result - switch anything that used the old chain to
4409     // use the new one.
4410     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
4411     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
4412     if (UpdatedNodes) {
4413       UpdatedNodes->insert(Tmp2.getNode());
4414       UpdatedNodes->insert(Chain.getNode());
4415     }
4416     ReplacedNode(Node);
4417     break;
4418   }
4419   case ISD::MUL:
4420   case ISD::SDIV:
4421   case ISD::SREM:
4422   case ISD::UDIV:
4423   case ISD::UREM:
4424   case ISD::AND:
4425   case ISD::OR:
4426   case ISD::XOR: {
4427     unsigned ExtOp, TruncOp;
4428     if (OVT.isVector()) {
4429       ExtOp   = ISD::BITCAST;
4430       TruncOp = ISD::BITCAST;
4431     } else {
4432       assert(OVT.isInteger() && "Cannot promote logic operation");
4433 
4434       switch (Node->getOpcode()) {
4435       default:
4436         ExtOp = ISD::ANY_EXTEND;
4437         break;
4438       case ISD::SDIV:
4439       case ISD::SREM:
4440         ExtOp = ISD::SIGN_EXTEND;
4441         break;
4442       case ISD::UDIV:
4443       case ISD::UREM:
4444         ExtOp = ISD::ZERO_EXTEND;
4445         break;
4446       }
4447       TruncOp = ISD::TRUNCATE;
4448     }
4449     // Promote each of the values to the new type.
4450     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4451     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4452     // Perform the larger operation, then convert back
4453     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4454     Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
4455     break;
4456   }
4457   case ISD::UMUL_LOHI:
4458   case ISD::SMUL_LOHI: {
4459     // Promote to a multiply in a wider integer type.
4460     unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND
4461                                                          : ISD::SIGN_EXTEND;
4462     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4463     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4464     Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2);
4465 
4466     auto &DL = DAG.getDataLayout();
4467     unsigned OriginalSize = OVT.getScalarSizeInBits();
4468     Tmp2 = DAG.getNode(
4469         ISD::SRL, dl, NVT, Tmp1,
4470         DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT)));
4471     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4472     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2));
4473     break;
4474   }
4475   case ISD::SELECT: {
4476     unsigned ExtOp, TruncOp;
4477     if (Node->getValueType(0).isVector() ||
4478         Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) {
4479       ExtOp   = ISD::BITCAST;
4480       TruncOp = ISD::BITCAST;
4481     } else if (Node->getValueType(0).isInteger()) {
4482       ExtOp   = ISD::ANY_EXTEND;
4483       TruncOp = ISD::TRUNCATE;
4484     } else {
4485       ExtOp   = ISD::FP_EXTEND;
4486       TruncOp = ISD::FP_ROUND;
4487     }
4488     Tmp1 = Node->getOperand(0);
4489     // Promote each of the values to the new type.
4490     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4491     Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4492     // Perform the larger operation, then round down.
4493     Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
4494     Tmp1->setFlags(Node->getFlags());
4495     if (TruncOp != ISD::FP_ROUND)
4496       Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
4497     else
4498       Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
4499                          DAG.getIntPtrConstant(0, dl));
4500     Results.push_back(Tmp1);
4501     break;
4502   }
4503   case ISD::VECTOR_SHUFFLE: {
4504     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
4505 
4506     // Cast the two input vectors.
4507     Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
4508     Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
4509 
4510     // Convert the shuffle mask to the right # elements.
4511     Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
4512     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
4513     Results.push_back(Tmp1);
4514     break;
4515   }
4516   case ISD::SETCC: {
4517     unsigned ExtOp = ISD::FP_EXTEND;
4518     if (NVT.isInteger()) {
4519       ISD::CondCode CCCode =
4520         cast<CondCodeSDNode>(Node->getOperand(2))->get();
4521       ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4522     }
4523     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4524     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4525     Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1,
4526                                   Tmp2, Node->getOperand(2), Node->getFlags()));
4527     break;
4528   }
4529   case ISD::BR_CC: {
4530     unsigned ExtOp = ISD::FP_EXTEND;
4531     if (NVT.isInteger()) {
4532       ISD::CondCode CCCode =
4533         cast<CondCodeSDNode>(Node->getOperand(1))->get();
4534       ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4535     }
4536     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4537     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3));
4538     Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0),
4539                                   Node->getOperand(0), Node->getOperand(1),
4540                                   Tmp1, Tmp2, Node->getOperand(4)));
4541     break;
4542   }
4543   case ISD::FADD:
4544   case ISD::FSUB:
4545   case ISD::FMUL:
4546   case ISD::FDIV:
4547   case ISD::FREM:
4548   case ISD::FMINNUM:
4549   case ISD::FMAXNUM:
4550   case ISD::FPOW:
4551     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4552     Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4553     Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2,
4554                        Node->getFlags());
4555     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4556                                   Tmp3, DAG.getIntPtrConstant(0, dl)));
4557     break;
4558   case ISD::STRICT_FREM:
4559   case ISD::STRICT_FPOW:
4560     Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4561                        {Node->getOperand(0), Node->getOperand(1)});
4562     Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4563                        {Node->getOperand(0), Node->getOperand(2)});
4564     Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1),
4565                        Tmp2.getValue(1));
4566     Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other},
4567                        {Tmp3, Tmp1, Tmp2});
4568     Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other},
4569                        {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)});
4570     Results.push_back(Tmp1);
4571     Results.push_back(Tmp1.getValue(1));
4572     break;
4573   case ISD::FMA:
4574     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4575     Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4576     Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2));
4577     Results.push_back(
4578         DAG.getNode(ISD::FP_ROUND, dl, OVT,
4579                     DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3),
4580                     DAG.getIntPtrConstant(0, dl)));
4581     break;
4582   case ISD::FCOPYSIGN:
4583   case ISD::FPOWI: {
4584     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4585     Tmp2 = Node->getOperand(1);
4586     Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4587 
4588     // fcopysign doesn't change anything but the sign bit, so
4589     //   (fp_round (fcopysign (fpext a), b))
4590     // is as precise as
4591     //   (fp_round (fpext a))
4592     // which is a no-op. Mark it as a TRUNCating FP_ROUND.
4593     const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN);
4594     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4595                                   Tmp3, DAG.getIntPtrConstant(isTrunc, dl)));
4596     break;
4597   }
4598   case ISD::FFLOOR:
4599   case ISD::FCEIL:
4600   case ISD::FRINT:
4601   case ISD::FNEARBYINT:
4602   case ISD::FROUND:
4603   case ISD::FTRUNC:
4604   case ISD::FNEG:
4605   case ISD::FSQRT:
4606   case ISD::FSIN:
4607   case ISD::FCOS:
4608   case ISD::FLOG:
4609   case ISD::FLOG2:
4610   case ISD::FLOG10:
4611   case ISD::FABS:
4612   case ISD::FEXP:
4613   case ISD::FEXP2:
4614     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4615     Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4616     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4617                                   Tmp2, DAG.getIntPtrConstant(0, dl)));
4618     break;
4619   case ISD::STRICT_FFLOOR:
4620   case ISD::STRICT_FCEIL:
4621   case ISD::STRICT_FSIN:
4622   case ISD::STRICT_FCOS:
4623   case ISD::STRICT_FLOG:
4624   case ISD::STRICT_FLOG10:
4625   case ISD::STRICT_FEXP:
4626     Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4627                        {Node->getOperand(0), Node->getOperand(1)});
4628     Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other},
4629                        {Tmp1.getValue(1), Tmp1});
4630     Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other},
4631                        {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)});
4632     Results.push_back(Tmp3);
4633     Results.push_back(Tmp3.getValue(1));
4634     break;
4635   case ISD::BUILD_VECTOR: {
4636     MVT EltVT = OVT.getVectorElementType();
4637     MVT NewEltVT = NVT.getVectorElementType();
4638 
4639     // Handle bitcasts to a different vector type with the same total bit size
4640     //
4641     // e.g. v2i64 = build_vector i64:x, i64:y => v4i32
4642     //  =>
4643     //  v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y))
4644 
4645     assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4646            "Invalid promote type for build_vector");
4647     assert(NewEltVT.bitsLT(EltVT) && "not handled");
4648 
4649     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4650 
4651     SmallVector<SDValue, 8> NewOps;
4652     for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) {
4653       SDValue Op = Node->getOperand(I);
4654       NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op));
4655     }
4656 
4657     SDLoc SL(Node);
4658     SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps);
4659     SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4660     Results.push_back(CvtVec);
4661     break;
4662   }
4663   case ISD::EXTRACT_VECTOR_ELT: {
4664     MVT EltVT = OVT.getVectorElementType();
4665     MVT NewEltVT = NVT.getVectorElementType();
4666 
4667     // Handle bitcasts to a different vector type with the same total bit size.
4668     //
4669     // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32
4670     //  =>
4671     //  v4i32:castx = bitcast x:v2i64
4672     //
4673     // i64 = bitcast
4674     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
4675     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
4676     //
4677 
4678     assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4679            "Invalid promote type for extract_vector_elt");
4680     assert(NewEltVT.bitsLT(EltVT) && "not handled");
4681 
4682     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4683     unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4684 
4685     SDValue Idx = Node->getOperand(1);
4686     EVT IdxVT = Idx.getValueType();
4687     SDLoc SL(Node);
4688     SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT);
4689     SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4690 
4691     SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4692 
4693     SmallVector<SDValue, 8> NewOps;
4694     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4695       SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4696       SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4697 
4698       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4699                                 CastVec, TmpIdx);
4700       NewOps.push_back(Elt);
4701     }
4702 
4703     SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps);
4704     Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec));
4705     break;
4706   }
4707   case ISD::INSERT_VECTOR_ELT: {
4708     MVT EltVT = OVT.getVectorElementType();
4709     MVT NewEltVT = NVT.getVectorElementType();
4710 
4711     // Handle bitcasts to a different vector type with the same total bit size
4712     //
4713     // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32
4714     //  =>
4715     //  v4i32:castx = bitcast x:v2i64
4716     //  v2i32:casty = bitcast y:i64
4717     //
4718     // v2i64 = bitcast
4719     //   (v4i32 insert_vector_elt
4720     //       (v4i32 insert_vector_elt v4i32:castx,
4721     //                                (extract_vector_elt casty, 0), 2 * z),
4722     //        (extract_vector_elt casty, 1), (2 * z + 1))
4723 
4724     assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4725            "Invalid promote type for insert_vector_elt");
4726     assert(NewEltVT.bitsLT(EltVT) && "not handled");
4727 
4728     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4729     unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4730 
4731     SDValue Val = Node->getOperand(1);
4732     SDValue Idx = Node->getOperand(2);
4733     EVT IdxVT = Idx.getValueType();
4734     SDLoc SL(Node);
4735 
4736     SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT);
4737     SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4738 
4739     SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4740     SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4741 
4742     SDValue NewVec = CastVec;
4743     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4744       SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4745       SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4746 
4747       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4748                                 CastVal, IdxOffset);
4749 
4750       NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT,
4751                            NewVec, Elt, InEltIdx);
4752     }
4753 
4754     Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec));
4755     break;
4756   }
4757   case ISD::SCALAR_TO_VECTOR: {
4758     MVT EltVT = OVT.getVectorElementType();
4759     MVT NewEltVT = NVT.getVectorElementType();
4760 
4761     // Handle bitcasts to different vector type with the same total bit size.
4762     //
4763     // e.g. v2i64 = scalar_to_vector x:i64
4764     //   =>
4765     //  concat_vectors (v2i32 bitcast x:i64), (v2i32 undef)
4766     //
4767 
4768     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4769     SDValue Val = Node->getOperand(0);
4770     SDLoc SL(Node);
4771 
4772     SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4773     SDValue Undef = DAG.getUNDEF(MidVT);
4774 
4775     SmallVector<SDValue, 8> NewElts;
4776     NewElts.push_back(CastVal);
4777     for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I)
4778       NewElts.push_back(Undef);
4779 
4780     SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts);
4781     SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4782     Results.push_back(CvtVec);
4783     break;
4784   }
4785   case ISD::ATOMIC_SWAP: {
4786     AtomicSDNode *AM = cast<AtomicSDNode>(Node);
4787     SDLoc SL(Node);
4788     SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal());
4789     assert(NVT.getSizeInBits() == OVT.getSizeInBits() &&
4790            "unexpected promotion type");
4791     assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() &&
4792            "unexpected atomic_swap with illegal type");
4793 
4794     SDValue NewAtomic
4795       = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT,
4796                       DAG.getVTList(NVT, MVT::Other),
4797                       { AM->getChain(), AM->getBasePtr(), CastVal },
4798                       AM->getMemOperand());
4799     Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic));
4800     Results.push_back(NewAtomic.getValue(1));
4801     break;
4802   }
4803   }
4804 
4805   // Replace the original node with the legalized result.
4806   if (!Results.empty()) {
4807     LLVM_DEBUG(dbgs() << "Successfully promoted node\n");
4808     ReplaceNode(Node, Results.data());
4809   } else
4810     LLVM_DEBUG(dbgs() << "Could not promote node\n");
4811 }
4812 
4813 /// This is the entry point for the file.
4814 void SelectionDAG::Legalize() {
4815   AssignTopologicalOrder();
4816 
4817   SmallPtrSet<SDNode *, 16> LegalizedNodes;
4818   // Use a delete listener to remove nodes which were deleted during
4819   // legalization from LegalizeNodes. This is needed to handle the situation
4820   // where a new node is allocated by the object pool to the same address of a
4821   // previously deleted node.
4822   DAGNodeDeletedListener DeleteListener(
4823       *this,
4824       [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); });
4825 
4826   SelectionDAGLegalize Legalizer(*this, LegalizedNodes);
4827 
4828   // Visit all the nodes. We start in topological order, so that we see
4829   // nodes with their original operands intact. Legalization can produce
4830   // new nodes which may themselves need to be legalized. Iterate until all
4831   // nodes have been legalized.
4832   while (true) {
4833     bool AnyLegalized = false;
4834     for (auto NI = allnodes_end(); NI != allnodes_begin();) {
4835       --NI;
4836 
4837       SDNode *N = &*NI;
4838       if (N->use_empty() && N != getRoot().getNode()) {
4839         ++NI;
4840         DeleteNode(N);
4841         continue;
4842       }
4843 
4844       if (LegalizedNodes.insert(N).second) {
4845         AnyLegalized = true;
4846         Legalizer.LegalizeOp(N);
4847 
4848         if (N->use_empty() && N != getRoot().getNode()) {
4849           ++NI;
4850           DeleteNode(N);
4851         }
4852       }
4853     }
4854     if (!AnyLegalized)
4855       break;
4856 
4857   }
4858 
4859   // Remove dead nodes now.
4860   RemoveDeadNodes();
4861 }
4862 
4863 bool SelectionDAG::LegalizeOp(SDNode *N,
4864                               SmallSetVector<SDNode *, 16> &UpdatedNodes) {
4865   SmallPtrSet<SDNode *, 16> LegalizedNodes;
4866   SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes);
4867 
4868   // Directly insert the node in question, and legalize it. This will recurse
4869   // as needed through operands.
4870   LegalizedNodes.insert(N);
4871   Legalizer.LegalizeOp(N);
4872 
4873   return LegalizedNodes.count(N);
4874 }
4875