1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::Legalize method. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/CodeGen/ISDOpcodes.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineMemOperand.h" 24 #include "llvm/CodeGen/RuntimeLibcalls.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/SelectionDAGNodes.h" 27 #include "llvm/CodeGen/TargetFrameLowering.h" 28 #include "llvm/CodeGen/TargetLowering.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/Compiler.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/MachineValueType.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetOptions.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <cstdint> 50 #include <tuple> 51 #include <utility> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "legalizedag" 56 57 namespace { 58 59 /// Keeps track of state when getting the sign of a floating-point value as an 60 /// integer. 61 struct FloatSignAsInt { 62 EVT FloatVT; 63 SDValue Chain; 64 SDValue FloatPtr; 65 SDValue IntPtr; 66 MachinePointerInfo IntPointerInfo; 67 MachinePointerInfo FloatPointerInfo; 68 SDValue IntValue; 69 APInt SignMask; 70 uint8_t SignBit; 71 }; 72 73 //===----------------------------------------------------------------------===// 74 /// This takes an arbitrary SelectionDAG as input and 75 /// hacks on it until the target machine can handle it. This involves 76 /// eliminating value sizes the machine cannot handle (promoting small sizes to 77 /// large sizes or splitting up large values into small values) as well as 78 /// eliminating operations the machine cannot handle. 79 /// 80 /// This code also does a small amount of optimization and recognition of idioms 81 /// as part of its processing. For example, if a target does not support a 82 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 83 /// will attempt merge setcc and brc instructions into brcc's. 84 class SelectionDAGLegalize { 85 const TargetMachine &TM; 86 const TargetLowering &TLI; 87 SelectionDAG &DAG; 88 89 /// The set of nodes which have already been legalized. We hold a 90 /// reference to it in order to update as necessary on node deletion. 91 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 92 93 /// A set of all the nodes updated during legalization. 94 SmallSetVector<SDNode *, 16> *UpdatedNodes; 95 96 EVT getSetCCResultType(EVT VT) const { 97 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 98 } 99 100 // Libcall insertion helpers. 101 102 public: 103 SelectionDAGLegalize(SelectionDAG &DAG, 104 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 105 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 106 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 107 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 108 109 /// Legalizes the given operation. 110 void LegalizeOp(SDNode *Node); 111 112 private: 113 SDValue OptimizeFloatStore(StoreSDNode *ST); 114 115 void LegalizeLoadOps(SDNode *Node); 116 void LegalizeStoreOps(SDNode *Node); 117 118 /// Some targets cannot handle a variable 119 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 120 /// is necessary to spill the vector being inserted into to memory, perform 121 /// the insert there, and then read the result back. 122 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 123 const SDLoc &dl); 124 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 125 const SDLoc &dl); 126 127 /// Return a vector shuffle operation which 128 /// performs the same shuffe in terms of order or result bytes, but on a type 129 /// whose vector element type is narrower than the original shuffle type. 130 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 131 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 132 SDValue N1, SDValue N2, 133 ArrayRef<int> Mask) const; 134 135 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 136 bool &NeedInvert, const SDLoc &dl); 137 138 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 139 140 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC, 141 SDNode *Node, bool isSigned); 142 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 143 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 144 RTLIB::Libcall Call_F128, 145 RTLIB::Libcall Call_PPCF128); 146 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 147 RTLIB::Libcall Call_I8, 148 RTLIB::Libcall Call_I16, 149 RTLIB::Libcall Call_I32, 150 RTLIB::Libcall Call_I64, 151 RTLIB::Libcall Call_I128); 152 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 153 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 154 155 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 156 const SDLoc &dl); 157 SDValue ExpandBUILD_VECTOR(SDNode *Node); 158 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 159 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 160 SmallVectorImpl<SDValue> &Results); 161 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 162 SDValue Value) const; 163 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 164 SDValue NewIntValue) const; 165 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 166 SDValue ExpandFABS(SDNode *Node) const; 167 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0, EVT DestVT, 168 const SDLoc &dl); 169 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, 170 const SDLoc &dl); 171 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, 172 const SDLoc &dl); 173 174 SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl); 175 SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl); 176 177 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 178 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 179 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 180 181 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 182 SDValue ExpandConstant(ConstantSDNode *CP); 183 184 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 185 bool ExpandNode(SDNode *Node); 186 void ConvertNodeToLibcall(SDNode *Node); 187 void PromoteNode(SDNode *Node); 188 189 public: 190 // Node replacement helpers 191 192 void ReplacedNode(SDNode *N) { 193 LegalizedNodes.erase(N); 194 if (UpdatedNodes) 195 UpdatedNodes->insert(N); 196 } 197 198 void ReplaceNode(SDNode *Old, SDNode *New) { 199 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 200 dbgs() << " with: "; New->dump(&DAG)); 201 202 assert(Old->getNumValues() == New->getNumValues() && 203 "Replacing one node with another that produces a different number " 204 "of values!"); 205 DAG.ReplaceAllUsesWith(Old, New); 206 if (UpdatedNodes) 207 UpdatedNodes->insert(New); 208 ReplacedNode(Old); 209 } 210 211 void ReplaceNode(SDValue Old, SDValue New) { 212 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 213 dbgs() << " with: "; New->dump(&DAG)); 214 215 DAG.ReplaceAllUsesWith(Old, New); 216 if (UpdatedNodes) 217 UpdatedNodes->insert(New.getNode()); 218 ReplacedNode(Old.getNode()); 219 } 220 221 void ReplaceNode(SDNode *Old, const SDValue *New) { 222 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 223 224 DAG.ReplaceAllUsesWith(Old, New); 225 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 226 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); 227 New[i]->dump(&DAG)); 228 if (UpdatedNodes) 229 UpdatedNodes->insert(New[i].getNode()); 230 } 231 ReplacedNode(Old); 232 } 233 }; 234 235 } // end anonymous namespace 236 237 /// Return a vector shuffle operation which 238 /// performs the same shuffle in terms of order or result bytes, but on a type 239 /// whose vector element type is narrower than the original shuffle type. 240 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 241 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 242 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 243 ArrayRef<int> Mask) const { 244 unsigned NumMaskElts = VT.getVectorNumElements(); 245 unsigned NumDestElts = NVT.getVectorNumElements(); 246 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 247 248 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 249 250 if (NumEltsGrowth == 1) 251 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 252 253 SmallVector<int, 8> NewMask; 254 for (unsigned i = 0; i != NumMaskElts; ++i) { 255 int Idx = Mask[i]; 256 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 257 if (Idx < 0) 258 NewMask.push_back(-1); 259 else 260 NewMask.push_back(Idx * NumEltsGrowth + j); 261 } 262 } 263 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 264 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 265 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 266 } 267 268 /// Expands the ConstantFP node to an integer constant or 269 /// a load from the constant pool. 270 SDValue 271 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 272 bool Extend = false; 273 SDLoc dl(CFP); 274 275 // If a FP immediate is precise when represented as a float and if the 276 // target can do an extending load from float to double, we put it into 277 // the constant pool as a float, even if it's is statically typed as a 278 // double. This shrinks FP constants and canonicalizes them for targets where 279 // an FP extending load is the same cost as a normal load (such as on the x87 280 // fp stack or PPC FP unit). 281 EVT VT = CFP->getValueType(0); 282 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 283 if (!UseCP) { 284 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 285 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 286 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 287 } 288 289 APFloat APF = CFP->getValueAPF(); 290 EVT OrigVT = VT; 291 EVT SVT = VT; 292 293 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 294 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 295 if (!APF.isSignaling()) { 296 while (SVT != MVT::f32 && SVT != MVT::f16) { 297 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 298 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 299 // Only do this if the target has a native EXTLOAD instruction from 300 // smaller type. 301 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 302 TLI.ShouldShrinkFPConstant(OrigVT)) { 303 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 304 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 305 VT = SVT; 306 Extend = true; 307 } 308 } 309 } 310 311 SDValue CPIdx = 312 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 313 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 314 if (Extend) { 315 SDValue Result = DAG.getExtLoad( 316 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 317 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 318 Alignment); 319 return Result; 320 } 321 SDValue Result = DAG.getLoad( 322 OrigVT, dl, DAG.getEntryNode(), CPIdx, 323 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 324 return Result; 325 } 326 327 /// Expands the Constant node to a load from the constant pool. 328 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 329 SDLoc dl(CP); 330 EVT VT = CP->getValueType(0); 331 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 332 TLI.getPointerTy(DAG.getDataLayout())); 333 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 334 SDValue Result = DAG.getLoad( 335 VT, dl, DAG.getEntryNode(), CPIdx, 336 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 337 return Result; 338 } 339 340 /// Some target cannot handle a variable insertion index for the 341 /// INSERT_VECTOR_ELT instruction. In this case, it 342 /// is necessary to spill the vector being inserted into to memory, perform 343 /// the insert there, and then read the result back. 344 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 345 SDValue Val, 346 SDValue Idx, 347 const SDLoc &dl) { 348 SDValue Tmp1 = Vec; 349 SDValue Tmp2 = Val; 350 SDValue Tmp3 = Idx; 351 352 // If the target doesn't support this, we have to spill the input vector 353 // to a temporary stack slot, update the element, then reload it. This is 354 // badness. We could also load the value into a vector register (either 355 // with a "move to register" or "extload into register" instruction, then 356 // permute it into place, if the idx is a constant and if the idx is 357 // supported by the target. 358 EVT VT = Tmp1.getValueType(); 359 EVT EltVT = VT.getVectorElementType(); 360 SDValue StackPtr = DAG.CreateStackTemporary(VT); 361 362 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 363 364 // Store the vector. 365 SDValue Ch = DAG.getStore( 366 DAG.getEntryNode(), dl, Tmp1, StackPtr, 367 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 368 369 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 370 371 // Store the scalar value. 372 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT); 373 // Load the updated vector. 374 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 375 DAG.getMachineFunction(), SPFI)); 376 } 377 378 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 379 SDValue Idx, 380 const SDLoc &dl) { 381 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 382 // SCALAR_TO_VECTOR requires that the type of the value being inserted 383 // match the element type of the vector being created, except for 384 // integers in which case the inserted value can be over width. 385 EVT EltVT = Vec.getValueType().getVectorElementType(); 386 if (Val.getValueType() == EltVT || 387 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 388 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 389 Vec.getValueType(), Val); 390 391 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 392 // We generate a shuffle of InVec and ScVec, so the shuffle mask 393 // should be 0,1,2,3,4,5... with the appropriate element replaced with 394 // elt 0 of the RHS. 395 SmallVector<int, 8> ShufOps; 396 for (unsigned i = 0; i != NumElts; ++i) 397 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 398 399 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 400 } 401 } 402 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 403 } 404 405 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 406 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); 407 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 408 // FIXME: We shouldn't do this for TargetConstantFP's. 409 // FIXME: move this to the DAG Combiner! Note that we can't regress due 410 // to phase ordering between legalized code and the dag combiner. This 411 // probably means that we need to integrate dag combiner and legalizer 412 // together. 413 // We generally can't do this one for long doubles. 414 SDValue Chain = ST->getChain(); 415 SDValue Ptr = ST->getBasePtr(); 416 unsigned Alignment = ST->getAlignment(); 417 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 418 AAMDNodes AAInfo = ST->getAAInfo(); 419 SDLoc dl(ST); 420 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 421 if (CFP->getValueType(0) == MVT::f32 && 422 TLI.isTypeLegal(MVT::i32)) { 423 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 424 bitcastToAPInt().zextOrTrunc(32), 425 SDLoc(CFP), MVT::i32); 426 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), Alignment, 427 MMOFlags, AAInfo); 428 } 429 430 if (CFP->getValueType(0) == MVT::f64) { 431 // If this target supports 64-bit registers, do a single 64-bit store. 432 if (TLI.isTypeLegal(MVT::i64)) { 433 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 434 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 435 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 436 Alignment, MMOFlags, AAInfo); 437 } 438 439 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 440 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 441 // stores. If the target supports neither 32- nor 64-bits, this 442 // xform is certainly not worth it. 443 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 444 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 445 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 446 if (DAG.getDataLayout().isBigEndian()) 447 std::swap(Lo, Hi); 448 449 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), Alignment, 450 MMOFlags, AAInfo); 451 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 452 DAG.getConstant(4, dl, Ptr.getValueType())); 453 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 454 ST->getPointerInfo().getWithOffset(4), 455 MinAlign(Alignment, 4U), MMOFlags, AAInfo); 456 457 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 458 } 459 } 460 } 461 return SDValue(nullptr, 0); 462 } 463 464 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 465 StoreSDNode *ST = cast<StoreSDNode>(Node); 466 SDValue Chain = ST->getChain(); 467 SDValue Ptr = ST->getBasePtr(); 468 SDLoc dl(Node); 469 470 unsigned Alignment = ST->getAlignment(); 471 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 472 AAMDNodes AAInfo = ST->getAAInfo(); 473 474 if (!ST->isTruncatingStore()) { 475 LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); 476 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 477 ReplaceNode(ST, OptStore); 478 return; 479 } 480 481 SDValue Value = ST->getValue(); 482 MVT VT = Value.getSimpleValueType(); 483 switch (TLI.getOperationAction(ISD::STORE, VT)) { 484 default: llvm_unreachable("This action is not supported yet!"); 485 case TargetLowering::Legal: { 486 // If this is an unaligned store and the target doesn't support it, 487 // expand it. 488 EVT MemVT = ST->getMemoryVT(); 489 unsigned AS = ST->getAddressSpace(); 490 unsigned Align = ST->getAlignment(); 491 const DataLayout &DL = DAG.getDataLayout(); 492 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 493 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 494 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 495 ReplaceNode(SDValue(ST, 0), Result); 496 } else 497 LLVM_DEBUG(dbgs() << "Legal store\n"); 498 break; 499 } 500 case TargetLowering::Custom: { 501 LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); 502 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 503 if (Res && Res != SDValue(Node, 0)) 504 ReplaceNode(SDValue(Node, 0), Res); 505 return; 506 } 507 case TargetLowering::Promote: { 508 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 509 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 510 "Can only promote stores to same size type"); 511 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 512 SDValue Result = 513 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 514 Alignment, MMOFlags, AAInfo); 515 ReplaceNode(SDValue(Node, 0), Result); 516 break; 517 } 518 } 519 return; 520 } 521 522 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); 523 SDValue Value = ST->getValue(); 524 EVT StVT = ST->getMemoryVT(); 525 unsigned StWidth = StVT.getSizeInBits(); 526 auto &DL = DAG.getDataLayout(); 527 528 if (StWidth != StVT.getStoreSizeInBits()) { 529 // Promote to a byte-sized store with upper bits zero if not 530 // storing an integral number of bytes. For example, promote 531 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 532 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), 533 StVT.getStoreSizeInBits()); 534 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 535 SDValue Result = 536 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 537 Alignment, MMOFlags, AAInfo); 538 ReplaceNode(SDValue(Node, 0), Result); 539 } else if (StWidth & (StWidth - 1)) { 540 // If not storing a power-of-2 number of bits, expand as two stores. 541 assert(!StVT.isVector() && "Unsupported truncstore!"); 542 unsigned RoundWidth = 1 << Log2_32(StWidth); 543 assert(RoundWidth < StWidth); 544 unsigned ExtraWidth = StWidth - RoundWidth; 545 assert(ExtraWidth < RoundWidth); 546 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 547 "Store size not an integral number of bytes!"); 548 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 549 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 550 SDValue Lo, Hi; 551 unsigned IncrementSize; 552 553 if (DL.isLittleEndian()) { 554 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 555 // Store the bottom RoundWidth bits. 556 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 557 RoundVT, Alignment, MMOFlags, AAInfo); 558 559 // Store the remaining ExtraWidth bits. 560 IncrementSize = RoundWidth / 8; 561 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 562 DAG.getConstant(IncrementSize, dl, 563 Ptr.getValueType())); 564 Hi = DAG.getNode( 565 ISD::SRL, dl, Value.getValueType(), Value, 566 DAG.getConstant(RoundWidth, dl, 567 TLI.getShiftAmountTy(Value.getValueType(), DL))); 568 Hi = DAG.getTruncStore( 569 Chain, dl, Hi, Ptr, 570 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, 571 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); 572 } else { 573 // Big endian - avoid unaligned stores. 574 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 575 // Store the top RoundWidth bits. 576 Hi = DAG.getNode( 577 ISD::SRL, dl, Value.getValueType(), Value, 578 DAG.getConstant(ExtraWidth, dl, 579 TLI.getShiftAmountTy(Value.getValueType(), DL))); 580 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), 581 RoundVT, Alignment, MMOFlags, AAInfo); 582 583 // Store the remaining ExtraWidth bits. 584 IncrementSize = RoundWidth / 8; 585 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 586 DAG.getConstant(IncrementSize, dl, 587 Ptr.getValueType())); 588 Lo = DAG.getTruncStore( 589 Chain, dl, Value, Ptr, 590 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, 591 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); 592 } 593 594 // The order of the stores doesn't matter. 595 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 596 ReplaceNode(SDValue(Node, 0), Result); 597 } else { 598 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 599 default: llvm_unreachable("This action is not supported yet!"); 600 case TargetLowering::Legal: { 601 EVT MemVT = ST->getMemoryVT(); 602 unsigned AS = ST->getAddressSpace(); 603 unsigned Align = ST->getAlignment(); 604 // If this is an unaligned store and the target doesn't support it, 605 // expand it. 606 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 607 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 608 ReplaceNode(SDValue(ST, 0), Result); 609 } 610 break; 611 } 612 case TargetLowering::Custom: { 613 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 614 if (Res && Res != SDValue(Node, 0)) 615 ReplaceNode(SDValue(Node, 0), Res); 616 return; 617 } 618 case TargetLowering::Expand: 619 assert(!StVT.isVector() && 620 "Vector Stores are handled in LegalizeVectorOps"); 621 622 SDValue Result; 623 624 // TRUNCSTORE:i16 i32 -> STORE i16 625 if (TLI.isTypeLegal(StVT)) { 626 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 627 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 628 Alignment, MMOFlags, AAInfo); 629 } else { 630 // The in-memory type isn't legal. Truncate to the type it would promote 631 // to, and then do a truncstore. 632 Value = DAG.getNode(ISD::TRUNCATE, dl, 633 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 634 Value); 635 Result = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 636 StVT, Alignment, MMOFlags, AAInfo); 637 } 638 639 ReplaceNode(SDValue(Node, 0), Result); 640 break; 641 } 642 } 643 } 644 645 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 646 LoadSDNode *LD = cast<LoadSDNode>(Node); 647 SDValue Chain = LD->getChain(); // The chain. 648 SDValue Ptr = LD->getBasePtr(); // The base pointer. 649 SDValue Value; // The value returned by the load op. 650 SDLoc dl(Node); 651 652 ISD::LoadExtType ExtType = LD->getExtensionType(); 653 if (ExtType == ISD::NON_EXTLOAD) { 654 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 655 MVT VT = Node->getSimpleValueType(0); 656 SDValue RVal = SDValue(Node, 0); 657 SDValue RChain = SDValue(Node, 1); 658 659 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 660 default: llvm_unreachable("This action is not supported yet!"); 661 case TargetLowering::Legal: { 662 EVT MemVT = LD->getMemoryVT(); 663 unsigned AS = LD->getAddressSpace(); 664 unsigned Align = LD->getAlignment(); 665 const DataLayout &DL = DAG.getDataLayout(); 666 // If this is an unaligned load and the target doesn't support it, 667 // expand it. 668 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 669 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 670 } 671 break; 672 } 673 case TargetLowering::Custom: 674 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 675 RVal = Res; 676 RChain = Res.getValue(1); 677 } 678 break; 679 680 case TargetLowering::Promote: { 681 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 682 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 683 "Can only promote loads to same size type"); 684 685 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 686 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 687 RChain = Res.getValue(1); 688 break; 689 } 690 } 691 if (RChain.getNode() != Node) { 692 assert(RVal.getNode() != Node && "Load must be completely replaced"); 693 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 694 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 695 if (UpdatedNodes) { 696 UpdatedNodes->insert(RVal.getNode()); 697 UpdatedNodes->insert(RChain.getNode()); 698 } 699 ReplacedNode(Node); 700 } 701 return; 702 } 703 704 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); 705 EVT SrcVT = LD->getMemoryVT(); 706 unsigned SrcWidth = SrcVT.getSizeInBits(); 707 unsigned Alignment = LD->getAlignment(); 708 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 709 AAMDNodes AAInfo = LD->getAAInfo(); 710 711 if (SrcWidth != SrcVT.getStoreSizeInBits() && 712 // Some targets pretend to have an i1 loading operation, and actually 713 // load an i8. This trick is correct for ZEXTLOAD because the top 7 714 // bits are guaranteed to be zero; it helps the optimizers understand 715 // that these bits are zero. It is also useful for EXTLOAD, since it 716 // tells the optimizers that those bits are undefined. It would be 717 // nice to have an effective generic way of getting these benefits... 718 // Until such a way is found, don't insist on promoting i1 here. 719 (SrcVT != MVT::i1 || 720 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 721 TargetLowering::Promote)) { 722 // Promote to a byte-sized load if not loading an integral number of 723 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 724 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 725 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 726 SDValue Ch; 727 728 // The extra bits are guaranteed to be zero, since we stored them that 729 // way. A zext load from NVT thus automatically gives zext from SrcVT. 730 731 ISD::LoadExtType NewExtType = 732 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 733 734 SDValue Result = 735 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), Chain, Ptr, 736 LD->getPointerInfo(), NVT, Alignment, MMOFlags, AAInfo); 737 738 Ch = Result.getValue(1); // The chain. 739 740 if (ExtType == ISD::SEXTLOAD) 741 // Having the top bits zero doesn't help when sign extending. 742 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 743 Result.getValueType(), 744 Result, DAG.getValueType(SrcVT)); 745 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 746 // All the top bits are guaranteed to be zero - inform the optimizers. 747 Result = DAG.getNode(ISD::AssertZext, dl, 748 Result.getValueType(), Result, 749 DAG.getValueType(SrcVT)); 750 751 Value = Result; 752 Chain = Ch; 753 } else if (SrcWidth & (SrcWidth - 1)) { 754 // If not loading a power-of-2 number of bits, expand as two loads. 755 assert(!SrcVT.isVector() && "Unsupported extload!"); 756 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 757 assert(RoundWidth < SrcWidth); 758 unsigned ExtraWidth = SrcWidth - RoundWidth; 759 assert(ExtraWidth < RoundWidth); 760 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 761 "Load size not an integral number of bytes!"); 762 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 763 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 764 SDValue Lo, Hi, Ch; 765 unsigned IncrementSize; 766 auto &DL = DAG.getDataLayout(); 767 768 if (DL.isLittleEndian()) { 769 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 770 // Load the bottom RoundWidth bits. 771 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 772 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, 773 AAInfo); 774 775 // Load the remaining ExtraWidth bits. 776 IncrementSize = RoundWidth / 8; 777 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 778 DAG.getConstant(IncrementSize, dl, 779 Ptr.getValueType())); 780 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 781 LD->getPointerInfo().getWithOffset(IncrementSize), 782 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, 783 AAInfo); 784 785 // Build a factor node to remember that this load is independent of 786 // the other one. 787 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 788 Hi.getValue(1)); 789 790 // Move the top bits to the right place. 791 Hi = DAG.getNode( 792 ISD::SHL, dl, Hi.getValueType(), Hi, 793 DAG.getConstant(RoundWidth, dl, 794 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 795 796 // Join the hi and lo parts. 797 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 798 } else { 799 // Big endian - avoid unaligned loads. 800 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 801 // Load the top RoundWidth bits. 802 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 803 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, 804 AAInfo); 805 806 // Load the remaining ExtraWidth bits. 807 IncrementSize = RoundWidth / 8; 808 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 809 DAG.getConstant(IncrementSize, dl, 810 Ptr.getValueType())); 811 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 812 LD->getPointerInfo().getWithOffset(IncrementSize), 813 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, 814 AAInfo); 815 816 // Build a factor node to remember that this load is independent of 817 // the other one. 818 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 819 Hi.getValue(1)); 820 821 // Move the top bits to the right place. 822 Hi = DAG.getNode( 823 ISD::SHL, dl, Hi.getValueType(), Hi, 824 DAG.getConstant(ExtraWidth, dl, 825 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 826 827 // Join the hi and lo parts. 828 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 829 } 830 831 Chain = Ch; 832 } else { 833 bool isCustom = false; 834 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 835 SrcVT.getSimpleVT())) { 836 default: llvm_unreachable("This action is not supported yet!"); 837 case TargetLowering::Custom: 838 isCustom = true; 839 LLVM_FALLTHROUGH; 840 case TargetLowering::Legal: 841 Value = SDValue(Node, 0); 842 Chain = SDValue(Node, 1); 843 844 if (isCustom) { 845 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 846 Value = Res; 847 Chain = Res.getValue(1); 848 } 849 } else { 850 // If this is an unaligned load and the target doesn't support it, 851 // expand it. 852 EVT MemVT = LD->getMemoryVT(); 853 unsigned AS = LD->getAddressSpace(); 854 unsigned Align = LD->getAlignment(); 855 const DataLayout &DL = DAG.getDataLayout(); 856 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 857 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 858 } 859 } 860 break; 861 862 case TargetLowering::Expand: { 863 EVT DestVT = Node->getValueType(0); 864 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 865 // If the source type is not legal, see if there is a legal extload to 866 // an intermediate type that we can then extend further. 867 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 868 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 869 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 870 // If we are loading a legal type, this is a non-extload followed by a 871 // full extend. 872 ISD::LoadExtType MidExtType = 873 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 874 875 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 876 SrcVT, LD->getMemOperand()); 877 unsigned ExtendOp = 878 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 879 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 880 Chain = Load.getValue(1); 881 break; 882 } 883 884 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 885 // normal undefined upper bits behavior to allow using an in-reg extend 886 // with the illegal FP type, so load as an integer and do the 887 // from-integer conversion. 888 if (SrcVT.getScalarType() == MVT::f16) { 889 EVT ISrcVT = SrcVT.changeTypeToInteger(); 890 EVT IDestVT = DestVT.changeTypeToInteger(); 891 EVT LoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 892 893 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, LoadVT, 894 Chain, Ptr, ISrcVT, 895 LD->getMemOperand()); 896 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 897 Chain = Result.getValue(1); 898 break; 899 } 900 } 901 902 assert(!SrcVT.isVector() && 903 "Vector Loads are handled in LegalizeVectorOps"); 904 905 // FIXME: This does not work for vectors on most targets. Sign- 906 // and zero-extend operations are currently folded into extending 907 // loads, whether they are legal or not, and then we end up here 908 // without any support for legalizing them. 909 assert(ExtType != ISD::EXTLOAD && 910 "EXTLOAD should always be supported!"); 911 // Turn the unsupported load into an EXTLOAD followed by an 912 // explicit zero/sign extend inreg. 913 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 914 Node->getValueType(0), 915 Chain, Ptr, SrcVT, 916 LD->getMemOperand()); 917 SDValue ValRes; 918 if (ExtType == ISD::SEXTLOAD) 919 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 920 Result.getValueType(), 921 Result, DAG.getValueType(SrcVT)); 922 else 923 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); 924 Value = ValRes; 925 Chain = Result.getValue(1); 926 break; 927 } 928 } 929 } 930 931 // Since loads produce two values, make sure to remember that we legalized 932 // both of them. 933 if (Chain.getNode() != Node) { 934 assert(Value.getNode() != Node && "Load must be completely replaced"); 935 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 936 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 937 if (UpdatedNodes) { 938 UpdatedNodes->insert(Value.getNode()); 939 UpdatedNodes->insert(Chain.getNode()); 940 } 941 ReplacedNode(Node); 942 } 943 } 944 945 /// Return a legal replacement for the given operation, with all legal operands. 946 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 947 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 948 949 // Allow illegal target nodes and illegal registers. 950 if (Node->getOpcode() == ISD::TargetConstant || 951 Node->getOpcode() == ISD::Register) 952 return; 953 954 #ifndef NDEBUG 955 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 956 assert((TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 957 TargetLowering::TypeLegal || 958 TLI.isTypeLegal(Node->getValueType(i))) && 959 "Unexpected illegal type!"); 960 961 for (const SDValue &Op : Node->op_values()) 962 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 963 TargetLowering::TypeLegal || 964 TLI.isTypeLegal(Op.getValueType()) || 965 Op.getOpcode() == ISD::TargetConstant || 966 Op.getOpcode() == ISD::Register) && 967 "Unexpected illegal type!"); 968 #endif 969 970 // Figure out the correct action; the way to query this varies by opcode 971 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 972 bool SimpleFinishLegalizing = true; 973 switch (Node->getOpcode()) { 974 case ISD::INTRINSIC_W_CHAIN: 975 case ISD::INTRINSIC_WO_CHAIN: 976 case ISD::INTRINSIC_VOID: 977 case ISD::STACKSAVE: 978 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 979 break; 980 case ISD::GET_DYNAMIC_AREA_OFFSET: 981 Action = TLI.getOperationAction(Node->getOpcode(), 982 Node->getValueType(0)); 983 break; 984 case ISD::VAARG: 985 Action = TLI.getOperationAction(Node->getOpcode(), 986 Node->getValueType(0)); 987 if (Action != TargetLowering::Promote) 988 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 989 break; 990 case ISD::FP_TO_FP16: 991 case ISD::SINT_TO_FP: 992 case ISD::UINT_TO_FP: 993 case ISD::EXTRACT_VECTOR_ELT: 994 Action = TLI.getOperationAction(Node->getOpcode(), 995 Node->getOperand(0).getValueType()); 996 break; 997 case ISD::FP_ROUND_INREG: 998 case ISD::SIGN_EXTEND_INREG: { 999 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1000 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1001 break; 1002 } 1003 case ISD::ATOMIC_STORE: 1004 Action = TLI.getOperationAction(Node->getOpcode(), 1005 Node->getOperand(2).getValueType()); 1006 break; 1007 case ISD::SELECT_CC: 1008 case ISD::SETCC: 1009 case ISD::BR_CC: { 1010 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 1011 Node->getOpcode() == ISD::SETCC ? 2 : 1; 1012 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; 1013 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1014 ISD::CondCode CCCode = 1015 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1016 Action = TLI.getCondCodeAction(CCCode, OpVT); 1017 if (Action == TargetLowering::Legal) { 1018 if (Node->getOpcode() == ISD::SELECT_CC) 1019 Action = TLI.getOperationAction(Node->getOpcode(), 1020 Node->getValueType(0)); 1021 else 1022 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1023 } 1024 break; 1025 } 1026 case ISD::LOAD: 1027 case ISD::STORE: 1028 // FIXME: Model these properly. LOAD and STORE are complicated, and 1029 // STORE expects the unlegalized operand in some cases. 1030 SimpleFinishLegalizing = false; 1031 break; 1032 case ISD::CALLSEQ_START: 1033 case ISD::CALLSEQ_END: 1034 // FIXME: This shouldn't be necessary. These nodes have special properties 1035 // dealing with the recursive nature of legalization. Removing this 1036 // special case should be done as part of making LegalizeDAG non-recursive. 1037 SimpleFinishLegalizing = false; 1038 break; 1039 case ISD::EXTRACT_ELEMENT: 1040 case ISD::FLT_ROUNDS_: 1041 case ISD::MERGE_VALUES: 1042 case ISD::EH_RETURN: 1043 case ISD::FRAME_TO_ARGS_OFFSET: 1044 case ISD::EH_DWARF_CFA: 1045 case ISD::EH_SJLJ_SETJMP: 1046 case ISD::EH_SJLJ_LONGJMP: 1047 case ISD::EH_SJLJ_SETUP_DISPATCH: 1048 // These operations lie about being legal: when they claim to be legal, 1049 // they should actually be expanded. 1050 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1051 if (Action == TargetLowering::Legal) 1052 Action = TargetLowering::Expand; 1053 break; 1054 case ISD::INIT_TRAMPOLINE: 1055 case ISD::ADJUST_TRAMPOLINE: 1056 case ISD::FRAMEADDR: 1057 case ISD::RETURNADDR: 1058 case ISD::ADDROFRETURNADDR: 1059 case ISD::SPONENTRY: 1060 // These operations lie about being legal: when they claim to be legal, 1061 // they should actually be custom-lowered. 1062 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1063 if (Action == TargetLowering::Legal) 1064 Action = TargetLowering::Custom; 1065 break; 1066 case ISD::READCYCLECOUNTER: 1067 // READCYCLECOUNTER returns an i64, even if type legalization might have 1068 // expanded that to several smaller types. 1069 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1070 break; 1071 case ISD::READ_REGISTER: 1072 case ISD::WRITE_REGISTER: 1073 // Named register is legal in the DAG, but blocked by register name 1074 // selection if not implemented by target (to chose the correct register) 1075 // They'll be converted to Copy(To/From)Reg. 1076 Action = TargetLowering::Legal; 1077 break; 1078 case ISD::DEBUGTRAP: 1079 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1080 if (Action == TargetLowering::Expand) { 1081 // replace ISD::DEBUGTRAP with ISD::TRAP 1082 SDValue NewVal; 1083 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1084 Node->getOperand(0)); 1085 ReplaceNode(Node, NewVal.getNode()); 1086 LegalizeOp(NewVal.getNode()); 1087 return; 1088 } 1089 break; 1090 case ISD::STRICT_FADD: 1091 case ISD::STRICT_FSUB: 1092 case ISD::STRICT_FMUL: 1093 case ISD::STRICT_FDIV: 1094 case ISD::STRICT_FREM: 1095 case ISD::STRICT_FSQRT: 1096 case ISD::STRICT_FMA: 1097 case ISD::STRICT_FPOW: 1098 case ISD::STRICT_FPOWI: 1099 case ISD::STRICT_FSIN: 1100 case ISD::STRICT_FCOS: 1101 case ISD::STRICT_FEXP: 1102 case ISD::STRICT_FEXP2: 1103 case ISD::STRICT_FLOG: 1104 case ISD::STRICT_FLOG10: 1105 case ISD::STRICT_FLOG2: 1106 case ISD::STRICT_FRINT: 1107 case ISD::STRICT_FNEARBYINT: 1108 case ISD::STRICT_FMAXNUM: 1109 case ISD::STRICT_FMINNUM: 1110 case ISD::STRICT_FCEIL: 1111 case ISD::STRICT_FFLOOR: 1112 case ISD::STRICT_FROUND: 1113 case ISD::STRICT_FTRUNC: 1114 // These pseudo-ops get legalized as if they were their non-strict 1115 // equivalent. For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT 1116 // is also legal, but if ISD::FSQRT requires expansion then so does 1117 // ISD::STRICT_FSQRT. 1118 Action = TLI.getStrictFPOperationAction(Node->getOpcode(), 1119 Node->getValueType(0)); 1120 break; 1121 case ISD::SADDSAT: 1122 case ISD::UADDSAT: 1123 case ISD::SSUBSAT: 1124 case ISD::USUBSAT: { 1125 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1126 break; 1127 } 1128 case ISD::SMULFIX: 1129 case ISD::UMULFIX: { 1130 unsigned Scale = Node->getConstantOperandVal(2); 1131 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 1132 Node->getValueType(0), Scale); 1133 break; 1134 } 1135 case ISD::MSCATTER: 1136 Action = TLI.getOperationAction(Node->getOpcode(), 1137 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 1138 break; 1139 case ISD::MSTORE: 1140 Action = TLI.getOperationAction(Node->getOpcode(), 1141 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 1142 break; 1143 case ISD::VECREDUCE_FADD: 1144 case ISD::VECREDUCE_FMUL: 1145 case ISD::VECREDUCE_ADD: 1146 case ISD::VECREDUCE_MUL: 1147 case ISD::VECREDUCE_AND: 1148 case ISD::VECREDUCE_OR: 1149 case ISD::VECREDUCE_XOR: 1150 case ISD::VECREDUCE_SMAX: 1151 case ISD::VECREDUCE_SMIN: 1152 case ISD::VECREDUCE_UMAX: 1153 case ISD::VECREDUCE_UMIN: 1154 case ISD::VECREDUCE_FMAX: 1155 case ISD::VECREDUCE_FMIN: 1156 Action = TLI.getOperationAction( 1157 Node->getOpcode(), Node->getOperand(0).getValueType()); 1158 break; 1159 default: 1160 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1161 Action = TargetLowering::Legal; 1162 } else { 1163 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1164 } 1165 break; 1166 } 1167 1168 if (SimpleFinishLegalizing) { 1169 SDNode *NewNode = Node; 1170 switch (Node->getOpcode()) { 1171 default: break; 1172 case ISD::SHL: 1173 case ISD::SRL: 1174 case ISD::SRA: 1175 case ISD::ROTL: 1176 case ISD::ROTR: { 1177 // Legalizing shifts/rotates requires adjusting the shift amount 1178 // to the appropriate width. 1179 SDValue Op0 = Node->getOperand(0); 1180 SDValue Op1 = Node->getOperand(1); 1181 if (!Op1.getValueType().isVector()) { 1182 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1183 // The getShiftAmountOperand() may create a new operand node or 1184 // return the existing one. If new operand is created we need 1185 // to update the parent node. 1186 // Do not try to legalize SAO here! It will be automatically legalized 1187 // in the next round. 1188 if (SAO != Op1) 1189 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1190 } 1191 } 1192 break; 1193 case ISD::FSHL: 1194 case ISD::FSHR: 1195 case ISD::SRL_PARTS: 1196 case ISD::SRA_PARTS: 1197 case ISD::SHL_PARTS: { 1198 // Legalizing shifts/rotates requires adjusting the shift amount 1199 // to the appropriate width. 1200 SDValue Op0 = Node->getOperand(0); 1201 SDValue Op1 = Node->getOperand(1); 1202 SDValue Op2 = Node->getOperand(2); 1203 if (!Op2.getValueType().isVector()) { 1204 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1205 // The getShiftAmountOperand() may create a new operand node or 1206 // return the existing one. If new operand is created we need 1207 // to update the parent node. 1208 if (SAO != Op2) 1209 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1210 } 1211 break; 1212 } 1213 } 1214 1215 if (NewNode != Node) { 1216 ReplaceNode(Node, NewNode); 1217 Node = NewNode; 1218 } 1219 switch (Action) { 1220 case TargetLowering::Legal: 1221 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 1222 return; 1223 case TargetLowering::Custom: 1224 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 1225 // FIXME: The handling for custom lowering with multiple results is 1226 // a complete mess. 1227 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1228 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1229 return; 1230 1231 if (Node->getNumValues() == 1) { 1232 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1233 // We can just directly replace this node with the lowered value. 1234 ReplaceNode(SDValue(Node, 0), Res); 1235 return; 1236 } 1237 1238 SmallVector<SDValue, 8> ResultVals; 1239 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1240 ResultVals.push_back(Res.getValue(i)); 1241 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1242 ReplaceNode(Node, ResultVals.data()); 1243 return; 1244 } 1245 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 1246 LLVM_FALLTHROUGH; 1247 case TargetLowering::Expand: 1248 if (ExpandNode(Node)) 1249 return; 1250 LLVM_FALLTHROUGH; 1251 case TargetLowering::LibCall: 1252 ConvertNodeToLibcall(Node); 1253 return; 1254 case TargetLowering::Promote: 1255 PromoteNode(Node); 1256 return; 1257 } 1258 } 1259 1260 switch (Node->getOpcode()) { 1261 default: 1262 #ifndef NDEBUG 1263 dbgs() << "NODE: "; 1264 Node->dump( &DAG); 1265 dbgs() << "\n"; 1266 #endif 1267 llvm_unreachable("Do not know how to legalize this operator!"); 1268 1269 case ISD::CALLSEQ_START: 1270 case ISD::CALLSEQ_END: 1271 break; 1272 case ISD::LOAD: 1273 return LegalizeLoadOps(Node); 1274 case ISD::STORE: 1275 return LegalizeStoreOps(Node); 1276 } 1277 } 1278 1279 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1280 SDValue Vec = Op.getOperand(0); 1281 SDValue Idx = Op.getOperand(1); 1282 SDLoc dl(Op); 1283 1284 // Before we generate a new store to a temporary stack slot, see if there is 1285 // already one that we can use. There often is because when we scalarize 1286 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1287 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1288 // the vector. If all are expanded here, we don't want one store per vector 1289 // element. 1290 1291 // Caches for hasPredecessorHelper 1292 SmallPtrSet<const SDNode *, 32> Visited; 1293 SmallVector<const SDNode *, 16> Worklist; 1294 Visited.insert(Op.getNode()); 1295 Worklist.push_back(Idx.getNode()); 1296 SDValue StackPtr, Ch; 1297 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), 1298 UE = Vec.getNode()->use_end(); UI != UE; ++UI) { 1299 SDNode *User = *UI; 1300 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1301 if (ST->isIndexed() || ST->isTruncatingStore() || 1302 ST->getValue() != Vec) 1303 continue; 1304 1305 // Make sure that nothing else could have stored into the destination of 1306 // this store. 1307 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1308 continue; 1309 1310 // If the index is dependent on the store we will introduce a cycle when 1311 // creating the load (the load uses the index, and by replacing the chain 1312 // we will make the index dependent on the load). Also, the store might be 1313 // dependent on the extractelement and introduce a cycle when creating 1314 // the load. 1315 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1316 ST->hasPredecessor(Op.getNode())) 1317 continue; 1318 1319 StackPtr = ST->getBasePtr(); 1320 Ch = SDValue(ST, 0); 1321 break; 1322 } 1323 } 1324 1325 EVT VecVT = Vec.getValueType(); 1326 1327 if (!Ch.getNode()) { 1328 // Store the value to a temporary stack slot, then LOAD the returned part. 1329 StackPtr = DAG.CreateStackTemporary(VecVT); 1330 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1331 MachinePointerInfo()); 1332 } 1333 1334 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1335 1336 SDValue NewLoad; 1337 1338 if (Op.getValueType().isVector()) 1339 NewLoad = 1340 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); 1341 else 1342 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1343 MachinePointerInfo(), 1344 VecVT.getVectorElementType()); 1345 1346 // Replace the chain going out of the store, by the one out of the load. 1347 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1348 1349 // We introduced a cycle though, so update the loads operands, making sure 1350 // to use the original store's chain as an incoming chain. 1351 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1352 NewLoad->op_end()); 1353 NewLoadOperands[0] = Ch; 1354 NewLoad = 1355 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1356 return NewLoad; 1357 } 1358 1359 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1360 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1361 1362 SDValue Vec = Op.getOperand(0); 1363 SDValue Part = Op.getOperand(1); 1364 SDValue Idx = Op.getOperand(2); 1365 SDLoc dl(Op); 1366 1367 // Store the value to a temporary stack slot, then LOAD the returned part. 1368 EVT VecVT = Vec.getValueType(); 1369 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1370 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1371 MachinePointerInfo PtrInfo = 1372 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1373 1374 // First store the whole vector. 1375 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1376 1377 // Then store the inserted part. 1378 SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1379 1380 // Store the subvector. 1381 Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, MachinePointerInfo()); 1382 1383 // Finally, load the updated vector. 1384 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1385 } 1386 1387 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1388 // We can't handle this case efficiently. Allocate a sufficiently 1389 // aligned object on the stack, store each element into it, then load 1390 // the result as a vector. 1391 // Create the stack frame object. 1392 EVT VT = Node->getValueType(0); 1393 EVT EltVT = VT.getVectorElementType(); 1394 SDLoc dl(Node); 1395 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1396 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1397 MachinePointerInfo PtrInfo = 1398 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1399 1400 // Emit a store of each element to the stack slot. 1401 SmallVector<SDValue, 8> Stores; 1402 unsigned TypeByteSize = EltVT.getSizeInBits() / 8; 1403 // Store (in the right endianness) the elements to memory. 1404 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1405 // Ignore undef elements. 1406 if (Node->getOperand(i).isUndef()) continue; 1407 1408 unsigned Offset = TypeByteSize*i; 1409 1410 SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType()); 1411 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); 1412 1413 // If the destination vector element type is narrower than the source 1414 // element type, only store the bits necessary. 1415 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { 1416 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1417 Node->getOperand(i), Idx, 1418 PtrInfo.getWithOffset(Offset), EltVT)); 1419 } else 1420 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1421 Idx, PtrInfo.getWithOffset(Offset))); 1422 } 1423 1424 SDValue StoreChain; 1425 if (!Stores.empty()) // Not all undef elements? 1426 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1427 else 1428 StoreChain = DAG.getEntryNode(); 1429 1430 // Result is a load from the stack slot. 1431 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1432 } 1433 1434 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1435 /// containing the sign bit if the target has no integer value capable of 1436 /// holding all bits of the floating-point value. 1437 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1438 const SDLoc &DL, 1439 SDValue Value) const { 1440 EVT FloatVT = Value.getValueType(); 1441 unsigned NumBits = FloatVT.getSizeInBits(); 1442 State.FloatVT = FloatVT; 1443 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1444 // Convert to an integer of the same size. 1445 if (TLI.isTypeLegal(IVT)) { 1446 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1447 State.SignMask = APInt::getSignMask(NumBits); 1448 State.SignBit = NumBits - 1; 1449 return; 1450 } 1451 1452 auto &DataLayout = DAG.getDataLayout(); 1453 // Store the float to memory, then load the sign part out as an integer. 1454 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1455 // First create a temporary that is aligned for both the load and store. 1456 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1457 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1458 // Then store the float to it. 1459 State.FloatPtr = StackPtr; 1460 MachineFunction &MF = DAG.getMachineFunction(); 1461 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1462 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1463 State.FloatPointerInfo); 1464 1465 SDValue IntPtr; 1466 if (DataLayout.isBigEndian()) { 1467 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1468 // Load out a legal integer with the same sign bit as the float. 1469 IntPtr = StackPtr; 1470 State.IntPointerInfo = State.FloatPointerInfo; 1471 } else { 1472 // Advance the pointer so that the loaded byte will contain the sign bit. 1473 unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1; 1474 IntPtr = DAG.getNode(ISD::ADD, DL, StackPtr.getValueType(), StackPtr, 1475 DAG.getConstant(ByteOffset, DL, StackPtr.getValueType())); 1476 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1477 ByteOffset); 1478 } 1479 1480 State.IntPtr = IntPtr; 1481 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1482 State.IntPointerInfo, MVT::i8); 1483 State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7); 1484 State.SignBit = 7; 1485 } 1486 1487 /// Replace the integer value produced by getSignAsIntValue() with a new value 1488 /// and cast the result back to a floating-point type. 1489 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1490 const SDLoc &DL, 1491 SDValue NewIntValue) const { 1492 if (!State.Chain) 1493 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1494 1495 // Override the part containing the sign bit in the value stored on the stack. 1496 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1497 State.IntPointerInfo, MVT::i8); 1498 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1499 State.FloatPointerInfo); 1500 } 1501 1502 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1503 SDLoc DL(Node); 1504 SDValue Mag = Node->getOperand(0); 1505 SDValue Sign = Node->getOperand(1); 1506 1507 // Get sign bit into an integer value. 1508 FloatSignAsInt SignAsInt; 1509 getSignAsIntValue(SignAsInt, DL, Sign); 1510 1511 EVT IntVT = SignAsInt.IntValue.getValueType(); 1512 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1513 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1514 SignMask); 1515 1516 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1517 EVT FloatVT = Mag.getValueType(); 1518 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1519 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1520 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1521 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1522 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1523 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1524 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1525 } 1526 1527 // Transform Mag value to integer, and clear the sign bit. 1528 FloatSignAsInt MagAsInt; 1529 getSignAsIntValue(MagAsInt, DL, Mag); 1530 EVT MagVT = MagAsInt.IntValue.getValueType(); 1531 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1532 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1533 ClearSignMask); 1534 1535 // Get the signbit at the right position for MagAsInt. 1536 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1537 EVT ShiftVT = IntVT; 1538 if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) { 1539 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1540 ShiftVT = MagVT; 1541 } 1542 if (ShiftAmount > 0) { 1543 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); 1544 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); 1545 } else if (ShiftAmount < 0) { 1546 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); 1547 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); 1548 } 1549 if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) { 1550 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1551 } 1552 1553 // Store the part with the modified sign and convert back to float. 1554 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1555 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1556 } 1557 1558 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1559 SDLoc DL(Node); 1560 SDValue Value = Node->getOperand(0); 1561 1562 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1563 EVT FloatVT = Value.getValueType(); 1564 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1565 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1566 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1567 } 1568 1569 // Transform value to integer, clear the sign bit and transform back. 1570 FloatSignAsInt ValueAsInt; 1571 getSignAsIntValue(ValueAsInt, DL, Value); 1572 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1573 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1574 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1575 ClearSignMask); 1576 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1577 } 1578 1579 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1580 SmallVectorImpl<SDValue> &Results) { 1581 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1582 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1583 " not tell us which reg is the stack pointer!"); 1584 SDLoc dl(Node); 1585 EVT VT = Node->getValueType(0); 1586 SDValue Tmp1 = SDValue(Node, 0); 1587 SDValue Tmp2 = SDValue(Node, 1); 1588 SDValue Tmp3 = Node->getOperand(2); 1589 SDValue Chain = Tmp1.getOperand(0); 1590 1591 // Chain the dynamic stack allocation so that it doesn't modify the stack 1592 // pointer when other instructions are using the stack. 1593 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1594 1595 SDValue Size = Tmp2.getOperand(1); 1596 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1597 Chain = SP.getValue(1); 1598 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1599 unsigned StackAlign = 1600 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 1601 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 1602 if (Align > StackAlign) 1603 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1604 DAG.getConstant(-(uint64_t)Align, dl, VT)); 1605 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1606 1607 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1608 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1609 1610 Results.push_back(Tmp1); 1611 Results.push_back(Tmp2); 1612 } 1613 1614 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current 1615 /// target. 1616 /// 1617 /// If the SETCC has been legalized using AND / OR, then the legalized node 1618 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert 1619 /// will be set to false. 1620 /// 1621 /// If the SETCC has been legalized by using getSetCCSwappedOperands(), 1622 /// then the values of LHS and RHS will be swapped, CC will be set to the 1623 /// new condition, and NeedInvert will be set to false. 1624 /// 1625 /// If the SETCC has been legalized using the inverse condcode, then LHS and 1626 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert 1627 /// will be set to true. The caller must invert the result of the SETCC with 1628 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect 1629 /// of a true/false result. 1630 /// 1631 /// \returns true if the SetCC has been legalized, false if it hasn't. 1632 bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, SDValue &LHS, 1633 SDValue &RHS, SDValue &CC, 1634 bool &NeedInvert, 1635 const SDLoc &dl) { 1636 MVT OpVT = LHS.getSimpleValueType(); 1637 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1638 NeedInvert = false; 1639 bool NeedSwap = false; 1640 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1641 default: llvm_unreachable("Unknown condition code action!"); 1642 case TargetLowering::Legal: 1643 // Nothing to do. 1644 break; 1645 case TargetLowering::Expand: { 1646 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 1647 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1648 std::swap(LHS, RHS); 1649 CC = DAG.getCondCode(InvCC); 1650 return true; 1651 } 1652 // Swapping operands didn't work. Try inverting the condition. 1653 InvCC = getSetCCInverse(CCCode, OpVT.isInteger()); 1654 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1655 // If inverting the condition is not enough, try swapping operands 1656 // on top of it. 1657 InvCC = ISD::getSetCCSwappedOperands(InvCC); 1658 NeedSwap = true; 1659 } 1660 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1661 CC = DAG.getCondCode(InvCC); 1662 NeedInvert = true; 1663 if (NeedSwap) 1664 std::swap(LHS, RHS); 1665 return true; 1666 } 1667 1668 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1669 unsigned Opc = 0; 1670 switch (CCCode) { 1671 default: llvm_unreachable("Don't know how to expand this condition!"); 1672 case ISD::SETO: 1673 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) 1674 && "If SETO is expanded, SETOEQ must be legal!"); 1675 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; 1676 case ISD::SETUO: 1677 assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT) 1678 && "If SETUO is expanded, SETUNE must be legal!"); 1679 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break; 1680 case ISD::SETOEQ: 1681 case ISD::SETOGT: 1682 case ISD::SETOGE: 1683 case ISD::SETOLT: 1684 case ISD::SETOLE: 1685 case ISD::SETONE: 1686 case ISD::SETUEQ: 1687 case ISD::SETUNE: 1688 case ISD::SETUGT: 1689 case ISD::SETUGE: 1690 case ISD::SETULT: 1691 case ISD::SETULE: 1692 // If we are floating point, assign and break, otherwise fall through. 1693 if (!OpVT.isInteger()) { 1694 // We can use the 4th bit to tell if we are the unordered 1695 // or ordered version of the opcode. 1696 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 1697 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 1698 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 1699 break; 1700 } 1701 // Fallthrough if we are unsigned integer. 1702 LLVM_FALLTHROUGH; 1703 case ISD::SETLE: 1704 case ISD::SETGT: 1705 case ISD::SETGE: 1706 case ISD::SETLT: 1707 case ISD::SETNE: 1708 case ISD::SETEQ: 1709 // If all combinations of inverting the condition and swapping operands 1710 // didn't work then we have no means to expand the condition. 1711 llvm_unreachable("Don't know how to expand this condition!"); 1712 } 1713 1714 SDValue SetCC1, SetCC2; 1715 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 1716 // If we aren't the ordered or unorder operation, 1717 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 1718 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); 1719 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); 1720 } else { 1721 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 1722 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1); 1723 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2); 1724 } 1725 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1726 RHS = SDValue(); 1727 CC = SDValue(); 1728 return true; 1729 } 1730 } 1731 return false; 1732 } 1733 1734 /// Emit a store/load combination to the stack. This stores 1735 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1736 /// a load from the stack slot to DestVT, extending it if needed. 1737 /// The resultant code need not be legal. 1738 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1739 EVT DestVT, const SDLoc &dl) { 1740 // Create the stack frame object. 1741 unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment( 1742 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1743 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 1744 1745 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1746 int SPFI = StackPtrFI->getIndex(); 1747 MachinePointerInfo PtrInfo = 1748 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1749 1750 unsigned SrcSize = SrcOp.getValueSizeInBits(); 1751 unsigned SlotSize = SlotVT.getSizeInBits(); 1752 unsigned DestSize = DestVT.getSizeInBits(); 1753 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1754 unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType); 1755 1756 // Emit a store to the stack slot. Use a truncstore if the input value is 1757 // later than DestVT. 1758 SDValue Store; 1759 1760 if (SrcSize > SlotSize) 1761 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, PtrInfo, 1762 SlotVT, SrcAlign); 1763 else { 1764 assert(SrcSize == SlotSize && "Invalid store"); 1765 Store = 1766 DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1767 } 1768 1769 // Result is a load from the stack slot. 1770 if (SlotSize == DestSize) 1771 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1772 1773 assert(SlotSize < DestSize && "Unknown extension!"); 1774 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1775 DestAlign); 1776 } 1777 1778 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1779 SDLoc dl(Node); 1780 // Create a vector sized/aligned stack slot, store the value to element #0, 1781 // then load the whole vector back out. 1782 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1783 1784 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1785 int SPFI = StackPtrFI->getIndex(); 1786 1787 SDValue Ch = DAG.getTruncStore( 1788 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1789 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1790 Node->getValueType(0).getVectorElementType()); 1791 return DAG.getLoad( 1792 Node->getValueType(0), dl, Ch, StackPtr, 1793 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1794 } 1795 1796 static bool 1797 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1798 const TargetLowering &TLI, SDValue &Res) { 1799 unsigned NumElems = Node->getNumOperands(); 1800 SDLoc dl(Node); 1801 EVT VT = Node->getValueType(0); 1802 1803 // Try to group the scalars into pairs, shuffle the pairs together, then 1804 // shuffle the pairs of pairs together, etc. until the vector has 1805 // been built. This will work only if all of the necessary shuffle masks 1806 // are legal. 1807 1808 // We do this in two phases; first to check the legality of the shuffles, 1809 // and next, assuming that all shuffles are legal, to create the new nodes. 1810 for (int Phase = 0; Phase < 2; ++Phase) { 1811 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1812 NewIntermedVals; 1813 for (unsigned i = 0; i < NumElems; ++i) { 1814 SDValue V = Node->getOperand(i); 1815 if (V.isUndef()) 1816 continue; 1817 1818 SDValue Vec; 1819 if (Phase) 1820 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1821 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1822 } 1823 1824 while (IntermedVals.size() > 2) { 1825 NewIntermedVals.clear(); 1826 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1827 // This vector and the next vector are shuffled together (simply to 1828 // append the one to the other). 1829 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1830 1831 SmallVector<int, 16> FinalIndices; 1832 FinalIndices.reserve(IntermedVals[i].second.size() + 1833 IntermedVals[i+1].second.size()); 1834 1835 int k = 0; 1836 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1837 ++j, ++k) { 1838 ShuffleVec[k] = j; 1839 FinalIndices.push_back(IntermedVals[i].second[j]); 1840 } 1841 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1842 ++j, ++k) { 1843 ShuffleVec[k] = NumElems + j; 1844 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1845 } 1846 1847 SDValue Shuffle; 1848 if (Phase) 1849 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1850 IntermedVals[i+1].first, 1851 ShuffleVec); 1852 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1853 return false; 1854 NewIntermedVals.push_back( 1855 std::make_pair(Shuffle, std::move(FinalIndices))); 1856 } 1857 1858 // If we had an odd number of defined values, then append the last 1859 // element to the array of new vectors. 1860 if ((IntermedVals.size() & 1) != 0) 1861 NewIntermedVals.push_back(IntermedVals.back()); 1862 1863 IntermedVals.swap(NewIntermedVals); 1864 } 1865 1866 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1867 "Invalid number of intermediate vectors"); 1868 SDValue Vec1 = IntermedVals[0].first; 1869 SDValue Vec2; 1870 if (IntermedVals.size() > 1) 1871 Vec2 = IntermedVals[1].first; 1872 else if (Phase) 1873 Vec2 = DAG.getUNDEF(VT); 1874 1875 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1876 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1877 ShuffleVec[IntermedVals[0].second[i]] = i; 1878 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1879 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1880 1881 if (Phase) 1882 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1883 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1884 return false; 1885 } 1886 1887 return true; 1888 } 1889 1890 /// Expand a BUILD_VECTOR node on targets that don't 1891 /// support the operation, but do support the resultant vector type. 1892 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1893 unsigned NumElems = Node->getNumOperands(); 1894 SDValue Value1, Value2; 1895 SDLoc dl(Node); 1896 EVT VT = Node->getValueType(0); 1897 EVT OpVT = Node->getOperand(0).getValueType(); 1898 EVT EltVT = VT.getVectorElementType(); 1899 1900 // If the only non-undef value is the low element, turn this into a 1901 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1902 bool isOnlyLowElement = true; 1903 bool MoreThanTwoValues = false; 1904 bool isConstant = true; 1905 for (unsigned i = 0; i < NumElems; ++i) { 1906 SDValue V = Node->getOperand(i); 1907 if (V.isUndef()) 1908 continue; 1909 if (i > 0) 1910 isOnlyLowElement = false; 1911 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1912 isConstant = false; 1913 1914 if (!Value1.getNode()) { 1915 Value1 = V; 1916 } else if (!Value2.getNode()) { 1917 if (V != Value1) 1918 Value2 = V; 1919 } else if (V != Value1 && V != Value2) { 1920 MoreThanTwoValues = true; 1921 } 1922 } 1923 1924 if (!Value1.getNode()) 1925 return DAG.getUNDEF(VT); 1926 1927 if (isOnlyLowElement) 1928 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1929 1930 // If all elements are constants, create a load from the constant pool. 1931 if (isConstant) { 1932 SmallVector<Constant*, 16> CV; 1933 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1934 if (ConstantFPSDNode *V = 1935 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1936 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1937 } else if (ConstantSDNode *V = 1938 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1939 if (OpVT==EltVT) 1940 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1941 else { 1942 // If OpVT and EltVT don't match, EltVT is not legal and the 1943 // element values have been promoted/truncated earlier. Undo this; 1944 // we don't want a v16i8 to become a v16i32 for example. 1945 const ConstantInt *CI = V->getConstantIntValue(); 1946 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1947 CI->getZExtValue())); 1948 } 1949 } else { 1950 assert(Node->getOperand(i).isUndef()); 1951 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1952 CV.push_back(UndefValue::get(OpNTy)); 1953 } 1954 } 1955 Constant *CP = ConstantVector::get(CV); 1956 SDValue CPIdx = 1957 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 1958 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 1959 return DAG.getLoad( 1960 VT, dl, DAG.getEntryNode(), CPIdx, 1961 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 1962 Alignment); 1963 } 1964 1965 SmallSet<SDValue, 16> DefinedValues; 1966 for (unsigned i = 0; i < NumElems; ++i) { 1967 if (Node->getOperand(i).isUndef()) 1968 continue; 1969 DefinedValues.insert(Node->getOperand(i)); 1970 } 1971 1972 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 1973 if (!MoreThanTwoValues) { 1974 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1975 for (unsigned i = 0; i < NumElems; ++i) { 1976 SDValue V = Node->getOperand(i); 1977 if (V.isUndef()) 1978 continue; 1979 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1980 } 1981 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1982 // Get the splatted value into the low element of a vector register. 1983 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1984 SDValue Vec2; 1985 if (Value2.getNode()) 1986 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 1987 else 1988 Vec2 = DAG.getUNDEF(VT); 1989 1990 // Return shuffle(LowValVec, undef, <0,0,0,0>) 1991 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1992 } 1993 } else { 1994 SDValue Res; 1995 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 1996 return Res; 1997 } 1998 } 1999 2000 // Otherwise, we can't handle this case efficiently. 2001 return ExpandVectorBuildThroughStack(Node); 2002 } 2003 2004 // Expand a node into a call to a libcall. If the result value 2005 // does not fit into a register, return the lo part and set the hi part to the 2006 // by-reg argument. If it does fit into a single register, return the result 2007 // and leave the Hi part unset. 2008 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2009 bool isSigned) { 2010 TargetLowering::ArgListTy Args; 2011 TargetLowering::ArgListEntry Entry; 2012 for (const SDValue &Op : Node->op_values()) { 2013 EVT ArgVT = Op.getValueType(); 2014 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2015 Entry.Node = Op; 2016 Entry.Ty = ArgTy; 2017 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2018 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2019 Args.push_back(Entry); 2020 } 2021 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2022 TLI.getPointerTy(DAG.getDataLayout())); 2023 2024 EVT RetVT = Node->getValueType(0); 2025 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2026 2027 // By default, the input chain to this libcall is the entry node of the 2028 // function. If the libcall is going to be emitted as a tail call then 2029 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2030 // node which is being folded has a non-entry input chain. 2031 SDValue InChain = DAG.getEntryNode(); 2032 2033 // isTailCall may be true since the callee does not reference caller stack 2034 // frame. Check if it's in the right position and that the return types match. 2035 SDValue TCChain = InChain; 2036 const Function &F = DAG.getMachineFunction().getFunction(); 2037 bool isTailCall = 2038 TLI.isInTailCallPosition(DAG, Node, TCChain) && 2039 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 2040 if (isTailCall) 2041 InChain = TCChain; 2042 2043 TargetLowering::CallLoweringInfo CLI(DAG); 2044 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2045 CLI.setDebugLoc(SDLoc(Node)) 2046 .setChain(InChain) 2047 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2048 std::move(Args)) 2049 .setTailCall(isTailCall) 2050 .setSExtResult(signExtend) 2051 .setZExtResult(!signExtend) 2052 .setIsPostTypeLegalization(true); 2053 2054 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2055 2056 if (!CallInfo.second.getNode()) { 2057 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump()); 2058 // It's a tailcall, return the chain (which is the DAG root). 2059 return DAG.getRoot(); 2060 } 2061 2062 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump()); 2063 return CallInfo.first; 2064 } 2065 2066 // Expand a node into a call to a libcall. Similar to 2067 // ExpandLibCall except that the first operand is the in-chain. 2068 std::pair<SDValue, SDValue> 2069 SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC, 2070 SDNode *Node, 2071 bool isSigned) { 2072 SDValue InChain = Node->getOperand(0); 2073 2074 TargetLowering::ArgListTy Args; 2075 TargetLowering::ArgListEntry Entry; 2076 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { 2077 EVT ArgVT = Node->getOperand(i).getValueType(); 2078 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2079 Entry.Node = Node->getOperand(i); 2080 Entry.Ty = ArgTy; 2081 Entry.IsSExt = isSigned; 2082 Entry.IsZExt = !isSigned; 2083 Args.push_back(Entry); 2084 } 2085 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2086 TLI.getPointerTy(DAG.getDataLayout())); 2087 2088 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 2089 2090 TargetLowering::CallLoweringInfo CLI(DAG); 2091 CLI.setDebugLoc(SDLoc(Node)) 2092 .setChain(InChain) 2093 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2094 std::move(Args)) 2095 .setSExtResult(isSigned) 2096 .setZExtResult(!isSigned); 2097 2098 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2099 2100 return CallInfo; 2101 } 2102 2103 SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2104 RTLIB::Libcall Call_F32, 2105 RTLIB::Libcall Call_F64, 2106 RTLIB::Libcall Call_F80, 2107 RTLIB::Libcall Call_F128, 2108 RTLIB::Libcall Call_PPCF128) { 2109 if (Node->isStrictFPOpcode()) 2110 Node = DAG.mutateStrictFPToFP(Node); 2111 2112 RTLIB::Libcall LC; 2113 switch (Node->getSimpleValueType(0).SimpleTy) { 2114 default: llvm_unreachable("Unexpected request for libcall!"); 2115 case MVT::f32: LC = Call_F32; break; 2116 case MVT::f64: LC = Call_F64; break; 2117 case MVT::f80: LC = Call_F80; break; 2118 case MVT::f128: LC = Call_F128; break; 2119 case MVT::ppcf128: LC = Call_PPCF128; break; 2120 } 2121 return ExpandLibCall(LC, Node, false); 2122 } 2123 2124 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2125 RTLIB::Libcall Call_I8, 2126 RTLIB::Libcall Call_I16, 2127 RTLIB::Libcall Call_I32, 2128 RTLIB::Libcall Call_I64, 2129 RTLIB::Libcall Call_I128) { 2130 RTLIB::Libcall LC; 2131 switch (Node->getSimpleValueType(0).SimpleTy) { 2132 default: llvm_unreachable("Unexpected request for libcall!"); 2133 case MVT::i8: LC = Call_I8; break; 2134 case MVT::i16: LC = Call_I16; break; 2135 case MVT::i32: LC = Call_I32; break; 2136 case MVT::i64: LC = Call_I64; break; 2137 case MVT::i128: LC = Call_I128; break; 2138 } 2139 return ExpandLibCall(LC, Node, isSigned); 2140 } 2141 2142 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2143 void 2144 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2145 SmallVectorImpl<SDValue> &Results) { 2146 unsigned Opcode = Node->getOpcode(); 2147 bool isSigned = Opcode == ISD::SDIVREM; 2148 2149 RTLIB::Libcall LC; 2150 switch (Node->getSimpleValueType(0).SimpleTy) { 2151 default: llvm_unreachable("Unexpected request for libcall!"); 2152 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2153 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2154 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2155 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2156 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2157 } 2158 2159 // The input chain to this libcall is the entry node of the function. 2160 // Legalizing the call will automatically add the previous call to the 2161 // dependence. 2162 SDValue InChain = DAG.getEntryNode(); 2163 2164 EVT RetVT = Node->getValueType(0); 2165 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2166 2167 TargetLowering::ArgListTy Args; 2168 TargetLowering::ArgListEntry Entry; 2169 for (const SDValue &Op : Node->op_values()) { 2170 EVT ArgVT = Op.getValueType(); 2171 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2172 Entry.Node = Op; 2173 Entry.Ty = ArgTy; 2174 Entry.IsSExt = isSigned; 2175 Entry.IsZExt = !isSigned; 2176 Args.push_back(Entry); 2177 } 2178 2179 // Also pass the return address of the remainder. 2180 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2181 Entry.Node = FIPtr; 2182 Entry.Ty = RetTy->getPointerTo(); 2183 Entry.IsSExt = isSigned; 2184 Entry.IsZExt = !isSigned; 2185 Args.push_back(Entry); 2186 2187 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2188 TLI.getPointerTy(DAG.getDataLayout())); 2189 2190 SDLoc dl(Node); 2191 TargetLowering::CallLoweringInfo CLI(DAG); 2192 CLI.setDebugLoc(dl) 2193 .setChain(InChain) 2194 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2195 std::move(Args)) 2196 .setSExtResult(isSigned) 2197 .setZExtResult(!isSigned); 2198 2199 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2200 2201 // Remainder is loaded back from the stack frame. 2202 SDValue Rem = 2203 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2204 Results.push_back(CallInfo.first); 2205 Results.push_back(Rem); 2206 } 2207 2208 /// Return true if sincos libcall is available. 2209 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2210 RTLIB::Libcall LC; 2211 switch (Node->getSimpleValueType(0).SimpleTy) { 2212 default: llvm_unreachable("Unexpected request for libcall!"); 2213 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2214 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2215 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2216 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2217 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2218 } 2219 return TLI.getLibcallName(LC) != nullptr; 2220 } 2221 2222 /// Only issue sincos libcall if both sin and cos are needed. 2223 static bool useSinCos(SDNode *Node) { 2224 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2225 ? ISD::FCOS : ISD::FSIN; 2226 2227 SDValue Op0 = Node->getOperand(0); 2228 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2229 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2230 SDNode *User = *UI; 2231 if (User == Node) 2232 continue; 2233 // The other user might have been turned into sincos already. 2234 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2235 return true; 2236 } 2237 return false; 2238 } 2239 2240 /// Issue libcalls to sincos to compute sin / cos pairs. 2241 void 2242 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2243 SmallVectorImpl<SDValue> &Results) { 2244 RTLIB::Libcall LC; 2245 switch (Node->getSimpleValueType(0).SimpleTy) { 2246 default: llvm_unreachable("Unexpected request for libcall!"); 2247 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2248 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2249 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2250 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2251 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2252 } 2253 2254 // The input chain to this libcall is the entry node of the function. 2255 // Legalizing the call will automatically add the previous call to the 2256 // dependence. 2257 SDValue InChain = DAG.getEntryNode(); 2258 2259 EVT RetVT = Node->getValueType(0); 2260 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2261 2262 TargetLowering::ArgListTy Args; 2263 TargetLowering::ArgListEntry Entry; 2264 2265 // Pass the argument. 2266 Entry.Node = Node->getOperand(0); 2267 Entry.Ty = RetTy; 2268 Entry.IsSExt = false; 2269 Entry.IsZExt = false; 2270 Args.push_back(Entry); 2271 2272 // Pass the return address of sin. 2273 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2274 Entry.Node = SinPtr; 2275 Entry.Ty = RetTy->getPointerTo(); 2276 Entry.IsSExt = false; 2277 Entry.IsZExt = false; 2278 Args.push_back(Entry); 2279 2280 // Also pass the return address of the cos. 2281 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2282 Entry.Node = CosPtr; 2283 Entry.Ty = RetTy->getPointerTo(); 2284 Entry.IsSExt = false; 2285 Entry.IsZExt = false; 2286 Args.push_back(Entry); 2287 2288 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2289 TLI.getPointerTy(DAG.getDataLayout())); 2290 2291 SDLoc dl(Node); 2292 TargetLowering::CallLoweringInfo CLI(DAG); 2293 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2294 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2295 std::move(Args)); 2296 2297 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2298 2299 Results.push_back( 2300 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2301 Results.push_back( 2302 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2303 } 2304 2305 /// This function is responsible for legalizing a 2306 /// INT_TO_FP operation of the specified operand when the target requests that 2307 /// we expand it. At this point, we know that the result and operand types are 2308 /// legal for the target. 2309 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0, 2310 EVT DestVT, 2311 const SDLoc &dl) { 2312 EVT SrcVT = Op0.getValueType(); 2313 2314 // TODO: Should any fast-math-flags be set for the created nodes? 2315 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2316 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { 2317 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2318 "expansion\n"); 2319 2320 // Get the stack frame index of a 8 byte buffer. 2321 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2322 2323 // word offset constant for Hi/Lo address computation 2324 SDValue WordOff = DAG.getConstant(sizeof(int), dl, 2325 StackSlot.getValueType()); 2326 // set up Hi and Lo (into buffer) address based on endian 2327 SDValue Hi = StackSlot; 2328 SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(), 2329 StackSlot, WordOff); 2330 if (DAG.getDataLayout().isLittleEndian()) 2331 std::swap(Hi, Lo); 2332 2333 // if signed map to unsigned space 2334 SDValue Op0Mapped; 2335 if (isSigned) { 2336 // constant used to invert sign bit (signed to unsigned mapping) 2337 SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32); 2338 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); 2339 } else { 2340 Op0Mapped = Op0; 2341 } 2342 // store the lo of the constructed double - based on integer input 2343 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo, 2344 MachinePointerInfo()); 2345 // initial hi portion of constructed double 2346 SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2347 // store the hi of the constructed double - biased exponent 2348 SDValue Store2 = 2349 DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo()); 2350 // load the constructed double 2351 SDValue Load = 2352 DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo()); 2353 // FP constant to bias correct the final result 2354 SDValue Bias = DAG.getConstantFP(isSigned ? 2355 BitsToDouble(0x4330000080000000ULL) : 2356 BitsToDouble(0x4330000000000000ULL), 2357 dl, MVT::f64); 2358 // subtract the bias 2359 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2360 // final result 2361 SDValue Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); 2362 return Result; 2363 } 2364 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2365 // Code below here assumes !isSigned without checking again. 2366 2367 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2368 2369 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, 2370 DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2371 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2372 Four = DAG.getIntPtrConstant(4, dl); 2373 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2374 SignSet, Four, Zero); 2375 2376 // If the sign bit of the integer is set, the large number will be treated 2377 // as a negative number. To counteract this, the dynamic code adds an 2378 // offset depending on the data type. 2379 uint64_t FF; 2380 switch (SrcVT.getSimpleVT().SimpleTy) { 2381 default: llvm_unreachable("Unsupported integer type!"); 2382 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2383 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2384 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2385 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2386 } 2387 if (DAG.getDataLayout().isLittleEndian()) 2388 FF <<= 32; 2389 Constant *FudgeFactor = ConstantInt::get( 2390 Type::getInt64Ty(*DAG.getContext()), FF); 2391 2392 SDValue CPIdx = 2393 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2394 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2395 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2396 Alignment = std::min(Alignment, 4u); 2397 SDValue FudgeInReg; 2398 if (DestVT == MVT::f32) 2399 FudgeInReg = DAG.getLoad( 2400 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2401 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2402 Alignment); 2403 else { 2404 SDValue Load = DAG.getExtLoad( 2405 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2406 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2407 Alignment); 2408 HandleSDNode Handle(Load); 2409 LegalizeOp(Load.getNode()); 2410 FudgeInReg = Handle.getValue(); 2411 } 2412 2413 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2414 } 2415 2416 /// This function is responsible for legalizing a 2417 /// *INT_TO_FP operation of the specified operand when the target requests that 2418 /// we promote it. At this point, we know that the result and operand types are 2419 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2420 /// operation that takes a larger input. 2421 SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, 2422 bool isSigned, 2423 const SDLoc &dl) { 2424 // First step, figure out the appropriate *INT_TO_FP operation to use. 2425 EVT NewInTy = LegalOp.getValueType(); 2426 2427 unsigned OpToUse = 0; 2428 2429 // Scan for the appropriate larger type to use. 2430 while (true) { 2431 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2432 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2433 2434 // If the target supports SINT_TO_FP of this type, use it. 2435 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { 2436 OpToUse = ISD::SINT_TO_FP; 2437 break; 2438 } 2439 if (isSigned) continue; 2440 2441 // If the target supports UINT_TO_FP of this type, use it. 2442 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { 2443 OpToUse = ISD::UINT_TO_FP; 2444 break; 2445 } 2446 2447 // Otherwise, try a larger type. 2448 } 2449 2450 // Okay, we found the operation and type to use. Zero extend our input to the 2451 // desired type then run the operation on it. 2452 return DAG.getNode(OpToUse, dl, DestVT, 2453 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2454 dl, NewInTy, LegalOp)); 2455 } 2456 2457 /// This function is responsible for legalizing a 2458 /// FP_TO_*INT operation of the specified operand when the target requests that 2459 /// we promote it. At this point, we know that the result and operand types are 2460 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2461 /// operation that returns a larger result. 2462 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, 2463 bool isSigned, 2464 const SDLoc &dl) { 2465 // First step, figure out the appropriate FP_TO*INT operation to use. 2466 EVT NewOutTy = DestVT; 2467 2468 unsigned OpToUse = 0; 2469 2470 // Scan for the appropriate larger type to use. 2471 while (true) { 2472 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2473 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2474 2475 // A larger signed type can hold all unsigned values of the requested type, 2476 // so using FP_TO_SINT is valid 2477 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { 2478 OpToUse = ISD::FP_TO_SINT; 2479 break; 2480 } 2481 2482 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2483 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { 2484 OpToUse = ISD::FP_TO_UINT; 2485 break; 2486 } 2487 2488 // Otherwise, try a larger type. 2489 } 2490 2491 // Okay, we found the operation and type to use. 2492 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2493 2494 // Truncate the result of the extended FP_TO_*INT operation to the desired 2495 // size. 2496 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2497 } 2498 2499 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts. 2500 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) { 2501 EVT VT = Op.getValueType(); 2502 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2503 unsigned Sz = VT.getScalarSizeInBits(); 2504 2505 SDValue Tmp, Tmp2, Tmp3; 2506 2507 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 2508 // and finally the i1 pairs. 2509 // TODO: We can easily support i4/i2 legal types if any target ever does. 2510 if (Sz >= 8 && isPowerOf2_32(Sz)) { 2511 // Create the masks - repeating the pattern every byte. 2512 APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0)); 2513 APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC)); 2514 APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA)); 2515 APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 2516 APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33)); 2517 APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55)); 2518 2519 // BSWAP if the type is wider than a single byte. 2520 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 2521 2522 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) 2523 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); 2524 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); 2525 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT)); 2526 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 2527 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2528 2529 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) 2530 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); 2531 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); 2532 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT)); 2533 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 2534 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2535 2536 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) 2537 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); 2538 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); 2539 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT)); 2540 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 2541 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2542 return Tmp; 2543 } 2544 2545 Tmp = DAG.getConstant(0, dl, VT); 2546 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 2547 if (I < J) 2548 Tmp2 = 2549 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 2550 else 2551 Tmp2 = 2552 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 2553 2554 APInt Shift(Sz, 1); 2555 Shift <<= J; 2556 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 2557 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 2558 } 2559 2560 return Tmp; 2561 } 2562 2563 /// Open code the operations for BSWAP of the specified operation. 2564 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) { 2565 EVT VT = Op.getValueType(); 2566 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2567 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2568 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 2569 default: llvm_unreachable("Unhandled Expand type in BSWAP!"); 2570 case MVT::i16: 2571 // Use a rotate by 8. This can be further expanded if necessary. 2572 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2573 case MVT::i32: 2574 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2575 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2576 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2577 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2578 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2579 DAG.getConstant(0xFF0000, dl, VT)); 2580 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 2581 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2582 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2583 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2584 case MVT::i64: 2585 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2586 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2587 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2588 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2589 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2590 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2591 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2592 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2593 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 2594 DAG.getConstant(255ULL<<48, dl, VT)); 2595 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 2596 DAG.getConstant(255ULL<<40, dl, VT)); 2597 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 2598 DAG.getConstant(255ULL<<32, dl, VT)); 2599 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 2600 DAG.getConstant(255ULL<<24, dl, VT)); 2601 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2602 DAG.getConstant(255ULL<<16, dl, VT)); 2603 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 2604 DAG.getConstant(255ULL<<8 , dl, VT)); 2605 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2606 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2607 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2608 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2609 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2610 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2611 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2612 } 2613 } 2614 2615 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2616 LLVM_DEBUG(dbgs() << "Trying to expand node\n"); 2617 SmallVector<SDValue, 8> Results; 2618 SDLoc dl(Node); 2619 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2620 bool NeedInvert; 2621 switch (Node->getOpcode()) { 2622 case ISD::ABS: 2623 if (TLI.expandABS(Node, Tmp1, DAG)) 2624 Results.push_back(Tmp1); 2625 break; 2626 case ISD::CTPOP: 2627 if (TLI.expandCTPOP(Node, Tmp1, DAG)) 2628 Results.push_back(Tmp1); 2629 break; 2630 case ISD::CTLZ: 2631 case ISD::CTLZ_ZERO_UNDEF: 2632 if (TLI.expandCTLZ(Node, Tmp1, DAG)) 2633 Results.push_back(Tmp1); 2634 break; 2635 case ISD::CTTZ: 2636 case ISD::CTTZ_ZERO_UNDEF: 2637 if (TLI.expandCTTZ(Node, Tmp1, DAG)) 2638 Results.push_back(Tmp1); 2639 break; 2640 case ISD::BITREVERSE: 2641 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl)); 2642 break; 2643 case ISD::BSWAP: 2644 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2645 break; 2646 case ISD::FRAMEADDR: 2647 case ISD::RETURNADDR: 2648 case ISD::FRAME_TO_ARGS_OFFSET: 2649 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2650 break; 2651 case ISD::EH_DWARF_CFA: { 2652 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 2653 TLI.getPointerTy(DAG.getDataLayout())); 2654 SDValue Offset = DAG.getNode(ISD::ADD, dl, 2655 CfaArg.getValueType(), 2656 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 2657 CfaArg.getValueType()), 2658 CfaArg); 2659 SDValue FA = DAG.getNode( 2660 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 2661 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2662 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 2663 FA, Offset)); 2664 break; 2665 } 2666 case ISD::FLT_ROUNDS_: 2667 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2668 break; 2669 case ISD::EH_RETURN: 2670 case ISD::EH_LABEL: 2671 case ISD::PREFETCH: 2672 case ISD::VAEND: 2673 case ISD::EH_SJLJ_LONGJMP: 2674 // If the target didn't expand these, there's nothing to do, so just 2675 // preserve the chain and be done. 2676 Results.push_back(Node->getOperand(0)); 2677 break; 2678 case ISD::READCYCLECOUNTER: 2679 // If the target didn't expand this, just return 'zero' and preserve the 2680 // chain. 2681 Results.append(Node->getNumValues() - 1, 2682 DAG.getConstant(0, dl, Node->getValueType(0))); 2683 Results.push_back(Node->getOperand(0)); 2684 break; 2685 case ISD::EH_SJLJ_SETJMP: 2686 // If the target didn't expand this, just return 'zero' and preserve the 2687 // chain. 2688 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2689 Results.push_back(Node->getOperand(0)); 2690 break; 2691 case ISD::ATOMIC_LOAD: { 2692 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2693 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2694 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2695 SDValue Swap = DAG.getAtomicCmpSwap( 2696 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2697 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2698 cast<AtomicSDNode>(Node)->getMemOperand()); 2699 Results.push_back(Swap.getValue(0)); 2700 Results.push_back(Swap.getValue(1)); 2701 break; 2702 } 2703 case ISD::ATOMIC_STORE: { 2704 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2705 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2706 cast<AtomicSDNode>(Node)->getMemoryVT(), 2707 Node->getOperand(0), 2708 Node->getOperand(1), Node->getOperand(2), 2709 cast<AtomicSDNode>(Node)->getMemOperand()); 2710 Results.push_back(Swap.getValue(1)); 2711 break; 2712 } 2713 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 2714 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 2715 // splits out the success value as a comparison. Expanding the resulting 2716 // ATOMIC_CMP_SWAP will produce a libcall. 2717 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2718 SDValue Res = DAG.getAtomicCmpSwap( 2719 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2720 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 2721 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 2722 2723 SDValue ExtRes = Res; 2724 SDValue LHS = Res; 2725 SDValue RHS = Node->getOperand(1); 2726 2727 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 2728 EVT OuterType = Node->getValueType(0); 2729 switch (TLI.getExtendForAtomicOps()) { 2730 case ISD::SIGN_EXTEND: 2731 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 2732 DAG.getValueType(AtomicType)); 2733 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 2734 Node->getOperand(2), DAG.getValueType(AtomicType)); 2735 ExtRes = LHS; 2736 break; 2737 case ISD::ZERO_EXTEND: 2738 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 2739 DAG.getValueType(AtomicType)); 2740 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2741 ExtRes = LHS; 2742 break; 2743 case ISD::ANY_EXTEND: 2744 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 2745 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2746 break; 2747 default: 2748 llvm_unreachable("Invalid atomic op extension"); 2749 } 2750 2751 SDValue Success = 2752 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 2753 2754 Results.push_back(ExtRes.getValue(0)); 2755 Results.push_back(Success); 2756 Results.push_back(Res.getValue(1)); 2757 break; 2758 } 2759 case ISD::DYNAMIC_STACKALLOC: 2760 ExpandDYNAMIC_STACKALLOC(Node, Results); 2761 break; 2762 case ISD::MERGE_VALUES: 2763 for (unsigned i = 0; i < Node->getNumValues(); i++) 2764 Results.push_back(Node->getOperand(i)); 2765 break; 2766 case ISD::UNDEF: { 2767 EVT VT = Node->getValueType(0); 2768 if (VT.isInteger()) 2769 Results.push_back(DAG.getConstant(0, dl, VT)); 2770 else { 2771 assert(VT.isFloatingPoint() && "Unknown value type!"); 2772 Results.push_back(DAG.getConstantFP(0, dl, VT)); 2773 } 2774 break; 2775 } 2776 case ISD::FP_ROUND: 2777 case ISD::BITCAST: 2778 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 2779 Node->getValueType(0), dl); 2780 Results.push_back(Tmp1); 2781 break; 2782 case ISD::FP_EXTEND: 2783 Tmp1 = EmitStackConvert(Node->getOperand(0), 2784 Node->getOperand(0).getValueType(), 2785 Node->getValueType(0), dl); 2786 Results.push_back(Tmp1); 2787 break; 2788 case ISD::SIGN_EXTEND_INREG: { 2789 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2790 EVT VT = Node->getValueType(0); 2791 2792 // An in-register sign-extend of a boolean is a negation: 2793 // 'true' (1) sign-extended is -1. 2794 // 'false' (0) sign-extended is 0. 2795 // However, we must mask the high bits of the source operand because the 2796 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 2797 2798 // TODO: Do this for vectors too? 2799 if (ExtraVT.getSizeInBits() == 1) { 2800 SDValue One = DAG.getConstant(1, dl, VT); 2801 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 2802 SDValue Zero = DAG.getConstant(0, dl, VT); 2803 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 2804 Results.push_back(Neg); 2805 break; 2806 } 2807 2808 // NOTE: we could fall back on load/store here too for targets without 2809 // SRA. However, it is doubtful that any exist. 2810 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2811 unsigned BitsDiff = VT.getScalarSizeInBits() - 2812 ExtraVT.getScalarSizeInBits(); 2813 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 2814 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 2815 Node->getOperand(0), ShiftCst); 2816 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 2817 Results.push_back(Tmp1); 2818 break; 2819 } 2820 case ISD::FP_ROUND_INREG: { 2821 // The only way we can lower this is to turn it into a TRUNCSTORE, 2822 // EXTLOAD pair, targeting a temporary location (a stack slot). 2823 2824 // NOTE: there is a choice here between constantly creating new stack 2825 // slots and always reusing the same one. We currently always create 2826 // new ones, as reuse may inhibit scheduling. 2827 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2828 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT, 2829 Node->getValueType(0), dl); 2830 Results.push_back(Tmp1); 2831 break; 2832 } 2833 case ISD::UINT_TO_FP: 2834 if (TLI.expandUINT_TO_FP(Node, Tmp1, DAG)) { 2835 Results.push_back(Tmp1); 2836 break; 2837 } 2838 LLVM_FALLTHROUGH; 2839 case ISD::SINT_TO_FP: 2840 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, 2841 Node->getOperand(0), Node->getValueType(0), dl); 2842 Results.push_back(Tmp1); 2843 break; 2844 case ISD::FP_TO_SINT: 2845 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 2846 Results.push_back(Tmp1); 2847 break; 2848 case ISD::FP_TO_UINT: 2849 if (TLI.expandFP_TO_UINT(Node, Tmp1, DAG)) 2850 Results.push_back(Tmp1); 2851 break; 2852 case ISD::VAARG: 2853 Results.push_back(DAG.expandVAArg(Node)); 2854 Results.push_back(Results[0].getValue(1)); 2855 break; 2856 case ISD::VACOPY: 2857 Results.push_back(DAG.expandVACopy(Node)); 2858 break; 2859 case ISD::EXTRACT_VECTOR_ELT: 2860 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 2861 // This must be an access of the only element. Return it. 2862 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 2863 Node->getOperand(0)); 2864 else 2865 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 2866 Results.push_back(Tmp1); 2867 break; 2868 case ISD::EXTRACT_SUBVECTOR: 2869 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 2870 break; 2871 case ISD::INSERT_SUBVECTOR: 2872 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 2873 break; 2874 case ISD::CONCAT_VECTORS: 2875 Results.push_back(ExpandVectorBuildThroughStack(Node)); 2876 break; 2877 case ISD::SCALAR_TO_VECTOR: 2878 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 2879 break; 2880 case ISD::INSERT_VECTOR_ELT: 2881 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 2882 Node->getOperand(1), 2883 Node->getOperand(2), dl)); 2884 break; 2885 case ISD::VECTOR_SHUFFLE: { 2886 SmallVector<int, 32> NewMask; 2887 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 2888 2889 EVT VT = Node->getValueType(0); 2890 EVT EltVT = VT.getVectorElementType(); 2891 SDValue Op0 = Node->getOperand(0); 2892 SDValue Op1 = Node->getOperand(1); 2893 if (!TLI.isTypeLegal(EltVT)) { 2894 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 2895 2896 // BUILD_VECTOR operands are allowed to be wider than the element type. 2897 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 2898 // it. 2899 if (NewEltVT.bitsLT(EltVT)) { 2900 // Convert shuffle node. 2901 // If original node was v4i64 and the new EltVT is i32, 2902 // cast operands to v8i32 and re-build the mask. 2903 2904 // Calculate new VT, the size of the new VT should be equal to original. 2905 EVT NewVT = 2906 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 2907 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 2908 assert(NewVT.bitsEq(VT)); 2909 2910 // cast operands to new VT 2911 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 2912 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 2913 2914 // Convert the shuffle mask 2915 unsigned int factor = 2916 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 2917 2918 // EltVT gets smaller 2919 assert(factor > 0); 2920 2921 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 2922 if (Mask[i] < 0) { 2923 for (unsigned fi = 0; fi < factor; ++fi) 2924 NewMask.push_back(Mask[i]); 2925 } 2926 else { 2927 for (unsigned fi = 0; fi < factor; ++fi) 2928 NewMask.push_back(Mask[i]*factor+fi); 2929 } 2930 } 2931 Mask = NewMask; 2932 VT = NewVT; 2933 } 2934 EltVT = NewEltVT; 2935 } 2936 unsigned NumElems = VT.getVectorNumElements(); 2937 SmallVector<SDValue, 16> Ops; 2938 for (unsigned i = 0; i != NumElems; ++i) { 2939 if (Mask[i] < 0) { 2940 Ops.push_back(DAG.getUNDEF(EltVT)); 2941 continue; 2942 } 2943 unsigned Idx = Mask[i]; 2944 if (Idx < NumElems) 2945 Ops.push_back(DAG.getNode( 2946 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 2947 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())))); 2948 else 2949 Ops.push_back(DAG.getNode( 2950 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 2951 DAG.getConstant(Idx - NumElems, dl, 2952 TLI.getVectorIdxTy(DAG.getDataLayout())))); 2953 } 2954 2955 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 2956 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 2957 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 2958 Results.push_back(Tmp1); 2959 break; 2960 } 2961 case ISD::EXTRACT_ELEMENT: { 2962 EVT OpTy = Node->getOperand(0).getValueType(); 2963 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 2964 // 1 -> Hi 2965 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 2966 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 2967 TLI.getShiftAmountTy( 2968 Node->getOperand(0).getValueType(), 2969 DAG.getDataLayout()))); 2970 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 2971 } else { 2972 // 0 -> Lo 2973 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 2974 Node->getOperand(0)); 2975 } 2976 Results.push_back(Tmp1); 2977 break; 2978 } 2979 case ISD::STACKSAVE: 2980 // Expand to CopyFromReg if the target set 2981 // StackPointerRegisterToSaveRestore. 2982 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2983 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 2984 Node->getValueType(0))); 2985 Results.push_back(Results[0].getValue(1)); 2986 } else { 2987 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 2988 Results.push_back(Node->getOperand(0)); 2989 } 2990 break; 2991 case ISD::STACKRESTORE: 2992 // Expand to CopyToReg if the target set 2993 // StackPointerRegisterToSaveRestore. 2994 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2995 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 2996 Node->getOperand(1))); 2997 } else { 2998 Results.push_back(Node->getOperand(0)); 2999 } 3000 break; 3001 case ISD::GET_DYNAMIC_AREA_OFFSET: 3002 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3003 Results.push_back(Results[0].getValue(0)); 3004 break; 3005 case ISD::FCOPYSIGN: 3006 Results.push_back(ExpandFCOPYSIGN(Node)); 3007 break; 3008 case ISD::FNEG: 3009 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3010 Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0)); 3011 // TODO: If FNEG has fast-math-flags, propagate them to the FSUB. 3012 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, 3013 Node->getOperand(0)); 3014 Results.push_back(Tmp1); 3015 break; 3016 case ISD::FABS: 3017 Results.push_back(ExpandFABS(Node)); 3018 break; 3019 case ISD::SMIN: 3020 case ISD::SMAX: 3021 case ISD::UMIN: 3022 case ISD::UMAX: { 3023 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3024 ISD::CondCode Pred; 3025 switch (Node->getOpcode()) { 3026 default: llvm_unreachable("How did we get here?"); 3027 case ISD::SMAX: Pred = ISD::SETGT; break; 3028 case ISD::SMIN: Pred = ISD::SETLT; break; 3029 case ISD::UMAX: Pred = ISD::SETUGT; break; 3030 case ISD::UMIN: Pred = ISD::SETULT; break; 3031 } 3032 Tmp1 = Node->getOperand(0); 3033 Tmp2 = Node->getOperand(1); 3034 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3035 Results.push_back(Tmp1); 3036 break; 3037 } 3038 case ISD::FMINNUM: 3039 case ISD::FMAXNUM: { 3040 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) 3041 Results.push_back(Expanded); 3042 break; 3043 } 3044 case ISD::FSIN: 3045 case ISD::FCOS: { 3046 EVT VT = Node->getValueType(0); 3047 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3048 // fcos which share the same operand and both are used. 3049 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3050 isSinCosLibcallAvailable(Node, TLI)) 3051 && useSinCos(Node)) { 3052 SDVTList VTs = DAG.getVTList(VT, VT); 3053 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3054 if (Node->getOpcode() == ISD::FCOS) 3055 Tmp1 = Tmp1.getValue(1); 3056 Results.push_back(Tmp1); 3057 } 3058 break; 3059 } 3060 case ISD::FMAD: 3061 llvm_unreachable("Illegal fmad should never be formed"); 3062 3063 case ISD::FP16_TO_FP: 3064 if (Node->getValueType(0) != MVT::f32) { 3065 // We can extend to types bigger than f32 in two steps without changing 3066 // the result. Since "f16 -> f32" is much more commonly available, give 3067 // CodeGen the option of emitting that before resorting to a libcall. 3068 SDValue Res = 3069 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3070 Results.push_back( 3071 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3072 } 3073 break; 3074 case ISD::FP_TO_FP16: 3075 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3076 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3077 SDValue Op = Node->getOperand(0); 3078 MVT SVT = Op.getSimpleValueType(); 3079 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3080 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3081 // Under fastmath, we can expand this node into a fround followed by 3082 // a float-half conversion. 3083 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3084 DAG.getIntPtrConstant(0, dl)); 3085 Results.push_back( 3086 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3087 } 3088 } 3089 break; 3090 case ISD::ConstantFP: { 3091 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3092 // Check to see if this FP immediate is already legal. 3093 // If this is a legal constant, turn it into a TargetConstantFP node. 3094 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0), 3095 DAG.getMachineFunction().getFunction().hasOptSize())) 3096 Results.push_back(ExpandConstantFP(CFP, true)); 3097 break; 3098 } 3099 case ISD::Constant: { 3100 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3101 Results.push_back(ExpandConstant(CP)); 3102 break; 3103 } 3104 case ISD::FSUB: { 3105 EVT VT = Node->getValueType(0); 3106 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3107 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3108 const SDNodeFlags Flags = Node->getFlags(); 3109 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3110 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3111 Results.push_back(Tmp1); 3112 } 3113 break; 3114 } 3115 case ISD::SUB: { 3116 EVT VT = Node->getValueType(0); 3117 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3118 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3119 "Don't know how to expand this subtraction!"); 3120 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3121 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, 3122 VT)); 3123 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3124 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3125 break; 3126 } 3127 case ISD::UREM: 3128 case ISD::SREM: { 3129 EVT VT = Node->getValueType(0); 3130 bool isSigned = Node->getOpcode() == ISD::SREM; 3131 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 3132 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3133 Tmp2 = Node->getOperand(0); 3134 Tmp3 = Node->getOperand(1); 3135 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3136 SDVTList VTs = DAG.getVTList(VT, VT); 3137 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); 3138 Results.push_back(Tmp1); 3139 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { 3140 // X % Y -> X-X/Y*Y 3141 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); 3142 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); 3143 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); 3144 Results.push_back(Tmp1); 3145 } 3146 break; 3147 } 3148 case ISD::UDIV: 3149 case ISD::SDIV: { 3150 bool isSigned = Node->getOpcode() == ISD::SDIV; 3151 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3152 EVT VT = Node->getValueType(0); 3153 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3154 SDVTList VTs = DAG.getVTList(VT, VT); 3155 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3156 Node->getOperand(1)); 3157 Results.push_back(Tmp1); 3158 } 3159 break; 3160 } 3161 case ISD::MULHU: 3162 case ISD::MULHS: { 3163 unsigned ExpandOpcode = 3164 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3165 EVT VT = Node->getValueType(0); 3166 SDVTList VTs = DAG.getVTList(VT, VT); 3167 3168 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3169 Node->getOperand(1)); 3170 Results.push_back(Tmp1.getValue(1)); 3171 break; 3172 } 3173 case ISD::UMUL_LOHI: 3174 case ISD::SMUL_LOHI: { 3175 SDValue LHS = Node->getOperand(0); 3176 SDValue RHS = Node->getOperand(1); 3177 MVT VT = LHS.getSimpleValueType(); 3178 unsigned MULHOpcode = 3179 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3180 3181 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3182 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3183 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3184 break; 3185 } 3186 3187 SmallVector<SDValue, 4> Halves; 3188 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3189 assert(TLI.isTypeLegal(HalfType)); 3190 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves, 3191 HalfType, DAG, 3192 TargetLowering::MulExpansionKind::Always)) { 3193 for (unsigned i = 0; i < 2; ++i) { 3194 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3195 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3196 SDValue Shift = DAG.getConstant( 3197 HalfType.getScalarSizeInBits(), dl, 3198 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3199 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3200 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3201 } 3202 break; 3203 } 3204 break; 3205 } 3206 case ISD::MUL: { 3207 EVT VT = Node->getValueType(0); 3208 SDVTList VTs = DAG.getVTList(VT, VT); 3209 // See if multiply or divide can be lowered using two-result operations. 3210 // We just need the low half of the multiply; try both the signed 3211 // and unsigned forms. If the target supports both SMUL_LOHI and 3212 // UMUL_LOHI, form a preference by checking which forms of plain 3213 // MULH it supports. 3214 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3215 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3216 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3217 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3218 unsigned OpToUse = 0; 3219 if (HasSMUL_LOHI && !HasMULHS) { 3220 OpToUse = ISD::SMUL_LOHI; 3221 } else if (HasUMUL_LOHI && !HasMULHU) { 3222 OpToUse = ISD::UMUL_LOHI; 3223 } else if (HasSMUL_LOHI) { 3224 OpToUse = ISD::SMUL_LOHI; 3225 } else if (HasUMUL_LOHI) { 3226 OpToUse = ISD::UMUL_LOHI; 3227 } 3228 if (OpToUse) { 3229 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3230 Node->getOperand(1))); 3231 break; 3232 } 3233 3234 SDValue Lo, Hi; 3235 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3236 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3237 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3238 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3239 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3240 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3241 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3242 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3243 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3244 SDValue Shift = 3245 DAG.getConstant(HalfType.getSizeInBits(), dl, 3246 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3247 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3248 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3249 } 3250 break; 3251 } 3252 case ISD::FSHL: 3253 case ISD::FSHR: 3254 if (TLI.expandFunnelShift(Node, Tmp1, DAG)) 3255 Results.push_back(Tmp1); 3256 break; 3257 case ISD::ROTL: 3258 case ISD::ROTR: 3259 if (TLI.expandROT(Node, Tmp1, DAG)) 3260 Results.push_back(Tmp1); 3261 break; 3262 case ISD::SADDSAT: 3263 case ISD::UADDSAT: 3264 case ISD::SSUBSAT: 3265 case ISD::USUBSAT: 3266 Results.push_back(TLI.expandAddSubSat(Node, DAG)); 3267 break; 3268 case ISD::SMULFIX: 3269 case ISD::UMULFIX: 3270 Results.push_back(TLI.expandFixedPointMul(Node, DAG)); 3271 break; 3272 case ISD::SADDO: 3273 case ISD::SSUBO: { 3274 SDValue LHS = Node->getOperand(0); 3275 SDValue RHS = Node->getOperand(1); 3276 bool IsAdd = Node->getOpcode() == ISD::SADDO; 3277 3278 SDValue Sum = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 3279 LHS.getValueType(), LHS, RHS); 3280 Results.push_back(Sum); 3281 3282 EVT ResultType = Node->getValueType(1); 3283 EVT OType = getSetCCResultType(Node->getValueType(0)); 3284 3285 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 3286 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 3287 if (TLI.isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 3288 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 3289 SDValue SetCC = DAG.getSetCC(dl, OType, Sum, Sat, ISD::SETNE); 3290 Results.push_back( 3291 DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType)); 3292 break; 3293 } 3294 3295 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 3296 3297 // LHSSign -> LHS >= 0 3298 // RHSSign -> RHS >= 0 3299 // SumSign -> Sum >= 0 3300 // 3301 // Add: 3302 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 3303 // Sub: 3304 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 3305 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 3306 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 3307 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 3308 IsAdd ? ISD::SETEQ : ISD::SETNE); 3309 3310 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); 3311 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 3312 3313 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 3314 Results.push_back(DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType)); 3315 break; 3316 } 3317 case ISD::UADDO: 3318 case ISD::USUBO: { 3319 SDValue LHS = Node->getOperand(0); 3320 SDValue RHS = Node->getOperand(1); 3321 bool IsAdd = Node->getOpcode() == ISD::UADDO; 3322 3323 // If ADD/SUBCARRY is legal, use that instead. 3324 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 3325 if (TLI.isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 3326 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 3327 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 3328 { LHS, RHS, CarryIn }); 3329 Results.push_back(SDValue(NodeCarry.getNode(), 0)); 3330 Results.push_back(SDValue(NodeCarry.getNode(), 1)); 3331 break; 3332 } 3333 3334 SDValue Sum = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 3335 LHS.getValueType(), LHS, RHS); 3336 Results.push_back(Sum); 3337 3338 EVT ResultType = Node->getValueType(1); 3339 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3340 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 3341 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3342 3343 Results.push_back(DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType)); 3344 break; 3345 } 3346 case ISD::UMULO: 3347 case ISD::SMULO: { 3348 SDValue Result, Overflow; 3349 if (TLI.expandMULO(Node, Result, Overflow, DAG)) { 3350 Results.push_back(Result); 3351 Results.push_back(Overflow); 3352 } 3353 break; 3354 } 3355 case ISD::BUILD_PAIR: { 3356 EVT PairTy = Node->getValueType(0); 3357 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3358 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3359 Tmp2 = DAG.getNode( 3360 ISD::SHL, dl, PairTy, Tmp2, 3361 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3362 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3363 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3364 break; 3365 } 3366 case ISD::SELECT: 3367 Tmp1 = Node->getOperand(0); 3368 Tmp2 = Node->getOperand(1); 3369 Tmp3 = Node->getOperand(2); 3370 if (Tmp1.getOpcode() == ISD::SETCC) { 3371 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3372 Tmp2, Tmp3, 3373 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3374 } else { 3375 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3376 DAG.getConstant(0, dl, Tmp1.getValueType()), 3377 Tmp2, Tmp3, ISD::SETNE); 3378 } 3379 Results.push_back(Tmp1); 3380 break; 3381 case ISD::BR_JT: { 3382 SDValue Chain = Node->getOperand(0); 3383 SDValue Table = Node->getOperand(1); 3384 SDValue Index = Node->getOperand(2); 3385 3386 const DataLayout &TD = DAG.getDataLayout(); 3387 EVT PTy = TLI.getPointerTy(TD); 3388 3389 unsigned EntrySize = 3390 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3391 3392 // For power-of-two jumptable entry sizes convert multiplication to a shift. 3393 // This transformation needs to be done here since otherwise the MIPS 3394 // backend will end up emitting a three instruction multiply sequence 3395 // instead of a single shift and MSP430 will call a runtime function. 3396 if (llvm::isPowerOf2_32(EntrySize)) 3397 Index = DAG.getNode( 3398 ISD::SHL, dl, Index.getValueType(), Index, 3399 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); 3400 else 3401 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3402 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3403 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3404 Index, Table); 3405 3406 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3407 SDValue LD = DAG.getExtLoad( 3408 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3409 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3410 Addr = LD; 3411 if (TLI.isJumpTableRelative()) { 3412 // For PIC, the sequence is: 3413 // BRIND(load(Jumptable + index) + RelocBase) 3414 // RelocBase can be JumpTable, GOT or some sort of global base. 3415 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3416 TLI.getPICJumpTableRelocBase(Table, DAG)); 3417 } 3418 3419 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); 3420 Results.push_back(Tmp1); 3421 break; 3422 } 3423 case ISD::BRCOND: 3424 // Expand brcond's setcc into its constituent parts and create a BR_CC 3425 // Node. 3426 Tmp1 = Node->getOperand(0); 3427 Tmp2 = Node->getOperand(1); 3428 if (Tmp2.getOpcode() == ISD::SETCC) { 3429 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3430 Tmp1, Tmp2.getOperand(2), 3431 Tmp2.getOperand(0), Tmp2.getOperand(1), 3432 Node->getOperand(2)); 3433 } else { 3434 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 3435 if (Tmp2.isUndef() || 3436 (Tmp2.getOpcode() == ISD::AND && 3437 isa<ConstantSDNode>(Tmp2.getOperand(1)) && 3438 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) 3439 Tmp3 = Tmp2; 3440 else 3441 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3442 DAG.getConstant(1, dl, Tmp2.getValueType())); 3443 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3444 DAG.getCondCode(ISD::SETNE), Tmp3, 3445 DAG.getConstant(0, dl, Tmp3.getValueType()), 3446 Node->getOperand(2)); 3447 } 3448 Results.push_back(Tmp1); 3449 break; 3450 case ISD::SETCC: { 3451 Tmp1 = Node->getOperand(0); 3452 Tmp2 = Node->getOperand(1); 3453 Tmp3 = Node->getOperand(2); 3454 bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, 3455 Tmp3, NeedInvert, dl); 3456 3457 if (Legalized) { 3458 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3459 // condition code, create a new SETCC node. 3460 if (Tmp3.getNode()) 3461 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3462 Tmp1, Tmp2, Tmp3); 3463 3464 // If we expanded the SETCC by inverting the condition code, then wrap 3465 // the existing SETCC in a NOT to restore the intended condition. 3466 if (NeedInvert) 3467 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3468 3469 Results.push_back(Tmp1); 3470 break; 3471 } 3472 3473 // Otherwise, SETCC for the given comparison type must be completely 3474 // illegal; expand it into a SELECT_CC. 3475 EVT VT = Node->getValueType(0); 3476 int TrueValue; 3477 switch (TLI.getBooleanContents(Tmp1.getValueType())) { 3478 case TargetLowering::ZeroOrOneBooleanContent: 3479 case TargetLowering::UndefinedBooleanContent: 3480 TrueValue = 1; 3481 break; 3482 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3483 TrueValue = -1; 3484 break; 3485 } 3486 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3487 DAG.getConstant(TrueValue, dl, VT), 3488 DAG.getConstant(0, dl, VT), 3489 Tmp3); 3490 Results.push_back(Tmp1); 3491 break; 3492 } 3493 case ISD::SELECT_CC: { 3494 Tmp1 = Node->getOperand(0); // LHS 3495 Tmp2 = Node->getOperand(1); // RHS 3496 Tmp3 = Node->getOperand(2); // True 3497 Tmp4 = Node->getOperand(3); // False 3498 EVT VT = Node->getValueType(0); 3499 SDValue CC = Node->getOperand(4); 3500 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3501 3502 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 3503 // If the condition code is legal, then we need to expand this 3504 // node using SETCC and SELECT. 3505 EVT CmpVT = Tmp1.getValueType(); 3506 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3507 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3508 "expanded."); 3509 EVT CCVT = 3510 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT); 3511 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC); 3512 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3513 break; 3514 } 3515 3516 // SELECT_CC is legal, so the condition code must not be. 3517 bool Legalized = false; 3518 // Try to legalize by inverting the condition. This is for targets that 3519 // might support an ordered version of a condition, but not the unordered 3520 // version (or vice versa). 3521 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, 3522 Tmp1.getValueType().isInteger()); 3523 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 3524 // Use the new condition code and swap true and false 3525 Legalized = true; 3526 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3527 } else { 3528 // If The inverse is not legal, then try to swap the arguments using 3529 // the inverse condition code. 3530 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3531 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 3532 // The swapped inverse condition is legal, so swap true and false, 3533 // lhs and rhs. 3534 Legalized = true; 3535 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3536 } 3537 } 3538 3539 if (!Legalized) { 3540 Legalized = LegalizeSetCCCondCode( 3541 getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert, 3542 dl); 3543 3544 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3545 3546 // If we expanded the SETCC by inverting the condition code, then swap 3547 // the True/False operands to match. 3548 if (NeedInvert) 3549 std::swap(Tmp3, Tmp4); 3550 3551 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3552 // condition code, create a new SELECT_CC node. 3553 if (CC.getNode()) { 3554 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3555 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3556 } else { 3557 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3558 CC = DAG.getCondCode(ISD::SETNE); 3559 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3560 Tmp2, Tmp3, Tmp4, CC); 3561 } 3562 } 3563 Results.push_back(Tmp1); 3564 break; 3565 } 3566 case ISD::BR_CC: { 3567 Tmp1 = Node->getOperand(0); // Chain 3568 Tmp2 = Node->getOperand(2); // LHS 3569 Tmp3 = Node->getOperand(3); // RHS 3570 Tmp4 = Node->getOperand(1); // CC 3571 3572 bool Legalized = LegalizeSetCCCondCode(getSetCCResultType( 3573 Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl); 3574 (void)Legalized; 3575 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3576 3577 assert(!NeedInvert && "Don't know how to invert BR_CC!"); 3578 3579 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3580 // node. 3581 if (Tmp4.getNode()) { 3582 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3583 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3584 } else { 3585 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3586 Tmp4 = DAG.getCondCode(ISD::SETNE); 3587 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3588 Tmp2, Tmp3, Node->getOperand(4)); 3589 } 3590 Results.push_back(Tmp1); 3591 break; 3592 } 3593 case ISD::BUILD_VECTOR: 3594 Results.push_back(ExpandBUILD_VECTOR(Node)); 3595 break; 3596 case ISD::SRA: 3597 case ISD::SRL: 3598 case ISD::SHL: { 3599 // Scalarize vector SRA/SRL/SHL. 3600 EVT VT = Node->getValueType(0); 3601 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3602 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3603 unsigned NumElem = VT.getVectorNumElements(); 3604 3605 SmallVector<SDValue, 8> Scalars; 3606 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3607 SDValue Ex = DAG.getNode( 3608 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0), 3609 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3610 SDValue Sh = DAG.getNode( 3611 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1), 3612 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3613 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3614 VT.getScalarType(), Ex, Sh)); 3615 } 3616 3617 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 3618 ReplaceNode(SDValue(Node, 0), Result); 3619 break; 3620 } 3621 case ISD::VECREDUCE_FADD: 3622 case ISD::VECREDUCE_FMUL: 3623 case ISD::VECREDUCE_ADD: 3624 case ISD::VECREDUCE_MUL: 3625 case ISD::VECREDUCE_AND: 3626 case ISD::VECREDUCE_OR: 3627 case ISD::VECREDUCE_XOR: 3628 case ISD::VECREDUCE_SMAX: 3629 case ISD::VECREDUCE_SMIN: 3630 case ISD::VECREDUCE_UMAX: 3631 case ISD::VECREDUCE_UMIN: 3632 case ISD::VECREDUCE_FMAX: 3633 case ISD::VECREDUCE_FMIN: 3634 Results.push_back(TLI.expandVecReduce(Node, DAG)); 3635 break; 3636 case ISD::GLOBAL_OFFSET_TABLE: 3637 case ISD::GlobalAddress: 3638 case ISD::GlobalTLSAddress: 3639 case ISD::ExternalSymbol: 3640 case ISD::ConstantPool: 3641 case ISD::JumpTable: 3642 case ISD::INTRINSIC_W_CHAIN: 3643 case ISD::INTRINSIC_WO_CHAIN: 3644 case ISD::INTRINSIC_VOID: 3645 // FIXME: Custom lowering for these operations shouldn't return null! 3646 break; 3647 } 3648 3649 // Replace the original node with the legalized result. 3650 if (Results.empty()) { 3651 LLVM_DEBUG(dbgs() << "Cannot expand node\n"); 3652 return false; 3653 } 3654 3655 LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); 3656 ReplaceNode(Node, Results.data()); 3657 return true; 3658 } 3659 3660 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 3661 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); 3662 SmallVector<SDValue, 8> Results; 3663 SDLoc dl(Node); 3664 // FIXME: Check flags on the node to see if we can use a finite call. 3665 bool CanUseFiniteLibCall = TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath; 3666 unsigned Opc = Node->getOpcode(); 3667 switch (Opc) { 3668 case ISD::ATOMIC_FENCE: { 3669 // If the target didn't lower this, lower it to '__sync_synchronize()' call 3670 // FIXME: handle "fence singlethread" more efficiently. 3671 TargetLowering::ArgListTy Args; 3672 3673 TargetLowering::CallLoweringInfo CLI(DAG); 3674 CLI.setDebugLoc(dl) 3675 .setChain(Node->getOperand(0)) 3676 .setLibCallee( 3677 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3678 DAG.getExternalSymbol("__sync_synchronize", 3679 TLI.getPointerTy(DAG.getDataLayout())), 3680 std::move(Args)); 3681 3682 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3683 3684 Results.push_back(CallResult.second); 3685 break; 3686 } 3687 // By default, atomic intrinsics are marked Legal and lowered. Targets 3688 // which don't support them directly, however, may want libcalls, in which 3689 // case they mark them Expand, and we get here. 3690 case ISD::ATOMIC_SWAP: 3691 case ISD::ATOMIC_LOAD_ADD: 3692 case ISD::ATOMIC_LOAD_SUB: 3693 case ISD::ATOMIC_LOAD_AND: 3694 case ISD::ATOMIC_LOAD_CLR: 3695 case ISD::ATOMIC_LOAD_OR: 3696 case ISD::ATOMIC_LOAD_XOR: 3697 case ISD::ATOMIC_LOAD_NAND: 3698 case ISD::ATOMIC_LOAD_MIN: 3699 case ISD::ATOMIC_LOAD_MAX: 3700 case ISD::ATOMIC_LOAD_UMIN: 3701 case ISD::ATOMIC_LOAD_UMAX: 3702 case ISD::ATOMIC_CMP_SWAP: { 3703 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 3704 RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT); 3705 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!"); 3706 3707 std::pair<SDValue, SDValue> Tmp = ExpandChainLibCall(LC, Node, false); 3708 Results.push_back(Tmp.first); 3709 Results.push_back(Tmp.second); 3710 break; 3711 } 3712 case ISD::TRAP: { 3713 // If this operation is not supported, lower it to 'abort()' call 3714 TargetLowering::ArgListTy Args; 3715 TargetLowering::CallLoweringInfo CLI(DAG); 3716 CLI.setDebugLoc(dl) 3717 .setChain(Node->getOperand(0)) 3718 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3719 DAG.getExternalSymbol( 3720 "abort", TLI.getPointerTy(DAG.getDataLayout())), 3721 std::move(Args)); 3722 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3723 3724 Results.push_back(CallResult.second); 3725 break; 3726 } 3727 case ISD::FMINNUM: 3728 case ISD::STRICT_FMINNUM: 3729 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 3730 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 3731 RTLIB::FMIN_PPCF128)); 3732 break; 3733 case ISD::FMAXNUM: 3734 case ISD::STRICT_FMAXNUM: 3735 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 3736 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 3737 RTLIB::FMAX_PPCF128)); 3738 break; 3739 case ISD::FSQRT: 3740 case ISD::STRICT_FSQRT: 3741 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3742 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 3743 RTLIB::SQRT_PPCF128)); 3744 break; 3745 case ISD::FCBRT: 3746 Results.push_back(ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, 3747 RTLIB::CBRT_F80, RTLIB::CBRT_F128, 3748 RTLIB::CBRT_PPCF128)); 3749 break; 3750 case ISD::FSIN: 3751 case ISD::STRICT_FSIN: 3752 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 3753 RTLIB::SIN_F80, RTLIB::SIN_F128, 3754 RTLIB::SIN_PPCF128)); 3755 break; 3756 case ISD::FCOS: 3757 case ISD::STRICT_FCOS: 3758 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 3759 RTLIB::COS_F80, RTLIB::COS_F128, 3760 RTLIB::COS_PPCF128)); 3761 break; 3762 case ISD::FSINCOS: 3763 // Expand into sincos libcall. 3764 ExpandSinCosLibCall(Node, Results); 3765 break; 3766 case ISD::FLOG: 3767 case ISD::STRICT_FLOG: 3768 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log_finite)) 3769 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_FINITE_F32, 3770 RTLIB::LOG_FINITE_F64, 3771 RTLIB::LOG_FINITE_F80, 3772 RTLIB::LOG_FINITE_F128, 3773 RTLIB::LOG_FINITE_PPCF128)); 3774 else 3775 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, 3776 RTLIB::LOG_F80, RTLIB::LOG_F128, 3777 RTLIB::LOG_PPCF128)); 3778 break; 3779 case ISD::FLOG2: 3780 case ISD::STRICT_FLOG2: 3781 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log2_finite)) 3782 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_FINITE_F32, 3783 RTLIB::LOG2_FINITE_F64, 3784 RTLIB::LOG2_FINITE_F80, 3785 RTLIB::LOG2_FINITE_F128, 3786 RTLIB::LOG2_FINITE_PPCF128)); 3787 else 3788 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 3789 RTLIB::LOG2_F80, RTLIB::LOG2_F128, 3790 RTLIB::LOG2_PPCF128)); 3791 break; 3792 case ISD::FLOG10: 3793 case ISD::STRICT_FLOG10: 3794 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log10_finite)) 3795 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_FINITE_F32, 3796 RTLIB::LOG10_FINITE_F64, 3797 RTLIB::LOG10_FINITE_F80, 3798 RTLIB::LOG10_FINITE_F128, 3799 RTLIB::LOG10_FINITE_PPCF128)); 3800 else 3801 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 3802 RTLIB::LOG10_F80, RTLIB::LOG10_F128, 3803 RTLIB::LOG10_PPCF128)); 3804 break; 3805 case ISD::FEXP: 3806 case ISD::STRICT_FEXP: 3807 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp_finite)) 3808 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_FINITE_F32, 3809 RTLIB::EXP_FINITE_F64, 3810 RTLIB::EXP_FINITE_F80, 3811 RTLIB::EXP_FINITE_F128, 3812 RTLIB::EXP_FINITE_PPCF128)); 3813 else 3814 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, 3815 RTLIB::EXP_F80, RTLIB::EXP_F128, 3816 RTLIB::EXP_PPCF128)); 3817 break; 3818 case ISD::FEXP2: 3819 case ISD::STRICT_FEXP2: 3820 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp2_finite)) 3821 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_FINITE_F32, 3822 RTLIB::EXP2_FINITE_F64, 3823 RTLIB::EXP2_FINITE_F80, 3824 RTLIB::EXP2_FINITE_F128, 3825 RTLIB::EXP2_FINITE_PPCF128)); 3826 else 3827 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 3828 RTLIB::EXP2_F80, RTLIB::EXP2_F128, 3829 RTLIB::EXP2_PPCF128)); 3830 break; 3831 case ISD::FTRUNC: 3832 case ISD::STRICT_FTRUNC: 3833 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 3834 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 3835 RTLIB::TRUNC_PPCF128)); 3836 break; 3837 case ISD::FFLOOR: 3838 case ISD::STRICT_FFLOOR: 3839 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 3840 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 3841 RTLIB::FLOOR_PPCF128)); 3842 break; 3843 case ISD::FCEIL: 3844 case ISD::STRICT_FCEIL: 3845 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 3846 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 3847 RTLIB::CEIL_PPCF128)); 3848 break; 3849 case ISD::FRINT: 3850 case ISD::STRICT_FRINT: 3851 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 3852 RTLIB::RINT_F80, RTLIB::RINT_F128, 3853 RTLIB::RINT_PPCF128)); 3854 break; 3855 case ISD::FNEARBYINT: 3856 case ISD::STRICT_FNEARBYINT: 3857 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 3858 RTLIB::NEARBYINT_F64, 3859 RTLIB::NEARBYINT_F80, 3860 RTLIB::NEARBYINT_F128, 3861 RTLIB::NEARBYINT_PPCF128)); 3862 break; 3863 case ISD::FROUND: 3864 case ISD::STRICT_FROUND: 3865 Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32, 3866 RTLIB::ROUND_F64, 3867 RTLIB::ROUND_F80, 3868 RTLIB::ROUND_F128, 3869 RTLIB::ROUND_PPCF128)); 3870 break; 3871 case ISD::FPOWI: 3872 case ISD::STRICT_FPOWI: 3873 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 3874 RTLIB::POWI_F80, RTLIB::POWI_F128, 3875 RTLIB::POWI_PPCF128)); 3876 break; 3877 case ISD::FPOW: 3878 case ISD::STRICT_FPOW: 3879 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_pow_finite)) 3880 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_FINITE_F32, 3881 RTLIB::POW_FINITE_F64, 3882 RTLIB::POW_FINITE_F80, 3883 RTLIB::POW_FINITE_F128, 3884 RTLIB::POW_FINITE_PPCF128)); 3885 else 3886 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, 3887 RTLIB::POW_F80, RTLIB::POW_F128, 3888 RTLIB::POW_PPCF128)); 3889 break; 3890 case ISD::FDIV: 3891 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 3892 RTLIB::DIV_F80, RTLIB::DIV_F128, 3893 RTLIB::DIV_PPCF128)); 3894 break; 3895 case ISD::FREM: 3896 case ISD::STRICT_FREM: 3897 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 3898 RTLIB::REM_F80, RTLIB::REM_F128, 3899 RTLIB::REM_PPCF128)); 3900 break; 3901 case ISD::FMA: 3902 case ISD::STRICT_FMA: 3903 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 3904 RTLIB::FMA_F80, RTLIB::FMA_F128, 3905 RTLIB::FMA_PPCF128)); 3906 break; 3907 case ISD::FADD: 3908 Results.push_back(ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 3909 RTLIB::ADD_F80, RTLIB::ADD_F128, 3910 RTLIB::ADD_PPCF128)); 3911 break; 3912 case ISD::FMUL: 3913 Results.push_back(ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 3914 RTLIB::MUL_F80, RTLIB::MUL_F128, 3915 RTLIB::MUL_PPCF128)); 3916 break; 3917 case ISD::FP16_TO_FP: 3918 if (Node->getValueType(0) == MVT::f32) { 3919 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 3920 } 3921 break; 3922 case ISD::FP_TO_FP16: { 3923 RTLIB::Libcall LC = 3924 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 3925 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 3926 Results.push_back(ExpandLibCall(LC, Node, false)); 3927 break; 3928 } 3929 case ISD::FSUB: 3930 Results.push_back(ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 3931 RTLIB::SUB_F80, RTLIB::SUB_F128, 3932 RTLIB::SUB_PPCF128)); 3933 break; 3934 case ISD::SREM: 3935 Results.push_back(ExpandIntLibCall(Node, true, 3936 RTLIB::SREM_I8, 3937 RTLIB::SREM_I16, RTLIB::SREM_I32, 3938 RTLIB::SREM_I64, RTLIB::SREM_I128)); 3939 break; 3940 case ISD::UREM: 3941 Results.push_back(ExpandIntLibCall(Node, false, 3942 RTLIB::UREM_I8, 3943 RTLIB::UREM_I16, RTLIB::UREM_I32, 3944 RTLIB::UREM_I64, RTLIB::UREM_I128)); 3945 break; 3946 case ISD::SDIV: 3947 Results.push_back(ExpandIntLibCall(Node, true, 3948 RTLIB::SDIV_I8, 3949 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 3950 RTLIB::SDIV_I64, RTLIB::SDIV_I128)); 3951 break; 3952 case ISD::UDIV: 3953 Results.push_back(ExpandIntLibCall(Node, false, 3954 RTLIB::UDIV_I8, 3955 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 3956 RTLIB::UDIV_I64, RTLIB::UDIV_I128)); 3957 break; 3958 case ISD::SDIVREM: 3959 case ISD::UDIVREM: 3960 // Expand into divrem libcall 3961 ExpandDivRemLibCall(Node, Results); 3962 break; 3963 case ISD::MUL: 3964 Results.push_back(ExpandIntLibCall(Node, false, 3965 RTLIB::MUL_I8, 3966 RTLIB::MUL_I16, RTLIB::MUL_I32, 3967 RTLIB::MUL_I64, RTLIB::MUL_I128)); 3968 break; 3969 case ISD::CTLZ_ZERO_UNDEF: 3970 switch (Node->getSimpleValueType(0).SimpleTy) { 3971 default: 3972 llvm_unreachable("LibCall explicitly requested, but not available"); 3973 case MVT::i32: 3974 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false)); 3975 break; 3976 case MVT::i64: 3977 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false)); 3978 break; 3979 case MVT::i128: 3980 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false)); 3981 break; 3982 } 3983 break; 3984 } 3985 3986 // Replace the original node with the legalized result. 3987 if (!Results.empty()) { 3988 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); 3989 ReplaceNode(Node, Results.data()); 3990 } else 3991 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); 3992 } 3993 3994 // Determine the vector type to use in place of an original scalar element when 3995 // promoting equally sized vectors. 3996 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 3997 MVT EltVT, MVT NewEltVT) { 3998 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 3999 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4000 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4001 return MidVT; 4002 } 4003 4004 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4005 LLVM_DEBUG(dbgs() << "Trying to promote node\n"); 4006 SmallVector<SDValue, 8> Results; 4007 MVT OVT = Node->getSimpleValueType(0); 4008 if (Node->getOpcode() == ISD::UINT_TO_FP || 4009 Node->getOpcode() == ISD::SINT_TO_FP || 4010 Node->getOpcode() == ISD::SETCC || 4011 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4012 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4013 OVT = Node->getOperand(0).getSimpleValueType(); 4014 } 4015 if (Node->getOpcode() == ISD::BR_CC) 4016 OVT = Node->getOperand(2).getSimpleValueType(); 4017 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4018 SDLoc dl(Node); 4019 SDValue Tmp1, Tmp2, Tmp3; 4020 switch (Node->getOpcode()) { 4021 case ISD::CTTZ: 4022 case ISD::CTTZ_ZERO_UNDEF: 4023 case ISD::CTLZ: 4024 case ISD::CTLZ_ZERO_UNDEF: 4025 case ISD::CTPOP: 4026 // Zero extend the argument. 4027 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4028 if (Node->getOpcode() == ISD::CTTZ) { 4029 // The count is the same in the promoted type except if the original 4030 // value was zero. This can be handled by setting the bit just off 4031 // the top of the original type. 4032 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4033 OVT.getSizeInBits()); 4034 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4035 DAG.getConstant(TopBit, dl, NVT)); 4036 } 4037 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4038 // already the correct result. 4039 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4040 if (Node->getOpcode() == ISD::CTLZ || 4041 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4042 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4043 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4044 DAG.getConstant(NVT.getSizeInBits() - 4045 OVT.getSizeInBits(), dl, NVT)); 4046 } 4047 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4048 break; 4049 case ISD::BITREVERSE: 4050 case ISD::BSWAP: { 4051 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4052 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4053 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4054 Tmp1 = DAG.getNode( 4055 ISD::SRL, dl, NVT, Tmp1, 4056 DAG.getConstant(DiffBits, dl, 4057 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4058 4059 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4060 break; 4061 } 4062 case ISD::FP_TO_UINT: 4063 case ISD::FP_TO_SINT: 4064 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), 4065 Node->getOpcode() == ISD::FP_TO_SINT, dl); 4066 Results.push_back(Tmp1); 4067 break; 4068 case ISD::UINT_TO_FP: 4069 case ISD::SINT_TO_FP: 4070 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), 4071 Node->getOpcode() == ISD::SINT_TO_FP, dl); 4072 Results.push_back(Tmp1); 4073 break; 4074 case ISD::VAARG: { 4075 SDValue Chain = Node->getOperand(0); // Get the chain. 4076 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4077 4078 unsigned TruncOp; 4079 if (OVT.isVector()) { 4080 TruncOp = ISD::BITCAST; 4081 } else { 4082 assert(OVT.isInteger() 4083 && "VAARG promotion is supported only for vectors or integer types"); 4084 TruncOp = ISD::TRUNCATE; 4085 } 4086 4087 // Perform the larger operation, then convert back 4088 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4089 Node->getConstantOperandVal(3)); 4090 Chain = Tmp1.getValue(1); 4091 4092 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4093 4094 // Modified the chain result - switch anything that used the old chain to 4095 // use the new one. 4096 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4097 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4098 if (UpdatedNodes) { 4099 UpdatedNodes->insert(Tmp2.getNode()); 4100 UpdatedNodes->insert(Chain.getNode()); 4101 } 4102 ReplacedNode(Node); 4103 break; 4104 } 4105 case ISD::MUL: 4106 case ISD::SDIV: 4107 case ISD::SREM: 4108 case ISD::UDIV: 4109 case ISD::UREM: 4110 case ISD::AND: 4111 case ISD::OR: 4112 case ISD::XOR: { 4113 unsigned ExtOp, TruncOp; 4114 if (OVT.isVector()) { 4115 ExtOp = ISD::BITCAST; 4116 TruncOp = ISD::BITCAST; 4117 } else { 4118 assert(OVT.isInteger() && "Cannot promote logic operation"); 4119 4120 switch (Node->getOpcode()) { 4121 default: 4122 ExtOp = ISD::ANY_EXTEND; 4123 break; 4124 case ISD::SDIV: 4125 case ISD::SREM: 4126 ExtOp = ISD::SIGN_EXTEND; 4127 break; 4128 case ISD::UDIV: 4129 case ISD::UREM: 4130 ExtOp = ISD::ZERO_EXTEND; 4131 break; 4132 } 4133 TruncOp = ISD::TRUNCATE; 4134 } 4135 // Promote each of the values to the new type. 4136 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4137 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4138 // Perform the larger operation, then convert back 4139 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4140 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4141 break; 4142 } 4143 case ISD::UMUL_LOHI: 4144 case ISD::SMUL_LOHI: { 4145 // Promote to a multiply in a wider integer type. 4146 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 4147 : ISD::SIGN_EXTEND; 4148 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4149 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4150 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 4151 4152 auto &DL = DAG.getDataLayout(); 4153 unsigned OriginalSize = OVT.getScalarSizeInBits(); 4154 Tmp2 = DAG.getNode( 4155 ISD::SRL, dl, NVT, Tmp1, 4156 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 4157 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4158 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 4159 break; 4160 } 4161 case ISD::SELECT: { 4162 unsigned ExtOp, TruncOp; 4163 if (Node->getValueType(0).isVector() || 4164 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4165 ExtOp = ISD::BITCAST; 4166 TruncOp = ISD::BITCAST; 4167 } else if (Node->getValueType(0).isInteger()) { 4168 ExtOp = ISD::ANY_EXTEND; 4169 TruncOp = ISD::TRUNCATE; 4170 } else { 4171 ExtOp = ISD::FP_EXTEND; 4172 TruncOp = ISD::FP_ROUND; 4173 } 4174 Tmp1 = Node->getOperand(0); 4175 // Promote each of the values to the new type. 4176 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4177 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4178 // Perform the larger operation, then round down. 4179 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4180 if (TruncOp != ISD::FP_ROUND) 4181 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4182 else 4183 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4184 DAG.getIntPtrConstant(0, dl)); 4185 Results.push_back(Tmp1); 4186 break; 4187 } 4188 case ISD::VECTOR_SHUFFLE: { 4189 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4190 4191 // Cast the two input vectors. 4192 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4193 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4194 4195 // Convert the shuffle mask to the right # elements. 4196 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4197 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4198 Results.push_back(Tmp1); 4199 break; 4200 } 4201 case ISD::SETCC: { 4202 unsigned ExtOp = ISD::FP_EXTEND; 4203 if (NVT.isInteger()) { 4204 ISD::CondCode CCCode = 4205 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4206 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4207 } 4208 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4209 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4210 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 4211 Tmp1, Tmp2, Node->getOperand(2))); 4212 break; 4213 } 4214 case ISD::BR_CC: { 4215 unsigned ExtOp = ISD::FP_EXTEND; 4216 if (NVT.isInteger()) { 4217 ISD::CondCode CCCode = 4218 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4219 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4220 } 4221 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4222 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4223 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4224 Node->getOperand(0), Node->getOperand(1), 4225 Tmp1, Tmp2, Node->getOperand(4))); 4226 break; 4227 } 4228 case ISD::FADD: 4229 case ISD::FSUB: 4230 case ISD::FMUL: 4231 case ISD::FDIV: 4232 case ISD::FREM: 4233 case ISD::FMINNUM: 4234 case ISD::FMAXNUM: 4235 case ISD::FPOW: 4236 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4237 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4238 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4239 Node->getFlags()); 4240 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4241 Tmp3, DAG.getIntPtrConstant(0, dl))); 4242 break; 4243 case ISD::FMA: 4244 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4245 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4246 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4247 Results.push_back( 4248 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4249 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4250 DAG.getIntPtrConstant(0, dl))); 4251 break; 4252 case ISD::FCOPYSIGN: 4253 case ISD::FPOWI: { 4254 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4255 Tmp2 = Node->getOperand(1); 4256 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4257 4258 // fcopysign doesn't change anything but the sign bit, so 4259 // (fp_round (fcopysign (fpext a), b)) 4260 // is as precise as 4261 // (fp_round (fpext a)) 4262 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4263 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4264 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4265 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4266 break; 4267 } 4268 case ISD::FFLOOR: 4269 case ISD::FCEIL: 4270 case ISD::FRINT: 4271 case ISD::FNEARBYINT: 4272 case ISD::FROUND: 4273 case ISD::FTRUNC: 4274 case ISD::FNEG: 4275 case ISD::FSQRT: 4276 case ISD::FSIN: 4277 case ISD::FCOS: 4278 case ISD::FLOG: 4279 case ISD::FLOG2: 4280 case ISD::FLOG10: 4281 case ISD::FABS: 4282 case ISD::FEXP: 4283 case ISD::FEXP2: 4284 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4285 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4286 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4287 Tmp2, DAG.getIntPtrConstant(0, dl))); 4288 break; 4289 case ISD::BUILD_VECTOR: { 4290 MVT EltVT = OVT.getVectorElementType(); 4291 MVT NewEltVT = NVT.getVectorElementType(); 4292 4293 // Handle bitcasts to a different vector type with the same total bit size 4294 // 4295 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4296 // => 4297 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4298 4299 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4300 "Invalid promote type for build_vector"); 4301 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4302 4303 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4304 4305 SmallVector<SDValue, 8> NewOps; 4306 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4307 SDValue Op = Node->getOperand(I); 4308 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4309 } 4310 4311 SDLoc SL(Node); 4312 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4313 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4314 Results.push_back(CvtVec); 4315 break; 4316 } 4317 case ISD::EXTRACT_VECTOR_ELT: { 4318 MVT EltVT = OVT.getVectorElementType(); 4319 MVT NewEltVT = NVT.getVectorElementType(); 4320 4321 // Handle bitcasts to a different vector type with the same total bit size. 4322 // 4323 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4324 // => 4325 // v4i32:castx = bitcast x:v2i64 4326 // 4327 // i64 = bitcast 4328 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4329 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4330 // 4331 4332 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4333 "Invalid promote type for extract_vector_elt"); 4334 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4335 4336 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4337 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4338 4339 SDValue Idx = Node->getOperand(1); 4340 EVT IdxVT = Idx.getValueType(); 4341 SDLoc SL(Node); 4342 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4343 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4344 4345 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4346 4347 SmallVector<SDValue, 8> NewOps; 4348 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4349 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4350 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4351 4352 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4353 CastVec, TmpIdx); 4354 NewOps.push_back(Elt); 4355 } 4356 4357 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 4358 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4359 break; 4360 } 4361 case ISD::INSERT_VECTOR_ELT: { 4362 MVT EltVT = OVT.getVectorElementType(); 4363 MVT NewEltVT = NVT.getVectorElementType(); 4364 4365 // Handle bitcasts to a different vector type with the same total bit size 4366 // 4367 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4368 // => 4369 // v4i32:castx = bitcast x:v2i64 4370 // v2i32:casty = bitcast y:i64 4371 // 4372 // v2i64 = bitcast 4373 // (v4i32 insert_vector_elt 4374 // (v4i32 insert_vector_elt v4i32:castx, 4375 // (extract_vector_elt casty, 0), 2 * z), 4376 // (extract_vector_elt casty, 1), (2 * z + 1)) 4377 4378 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4379 "Invalid promote type for insert_vector_elt"); 4380 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4381 4382 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4383 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4384 4385 SDValue Val = Node->getOperand(1); 4386 SDValue Idx = Node->getOperand(2); 4387 EVT IdxVT = Idx.getValueType(); 4388 SDLoc SL(Node); 4389 4390 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 4391 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4392 4393 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4394 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4395 4396 SDValue NewVec = CastVec; 4397 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4398 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4399 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4400 4401 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4402 CastVal, IdxOffset); 4403 4404 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 4405 NewVec, Elt, InEltIdx); 4406 } 4407 4408 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 4409 break; 4410 } 4411 case ISD::SCALAR_TO_VECTOR: { 4412 MVT EltVT = OVT.getVectorElementType(); 4413 MVT NewEltVT = NVT.getVectorElementType(); 4414 4415 // Handle bitcasts to different vector type with the same total bit size. 4416 // 4417 // e.g. v2i64 = scalar_to_vector x:i64 4418 // => 4419 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 4420 // 4421 4422 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4423 SDValue Val = Node->getOperand(0); 4424 SDLoc SL(Node); 4425 4426 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4427 SDValue Undef = DAG.getUNDEF(MidVT); 4428 4429 SmallVector<SDValue, 8> NewElts; 4430 NewElts.push_back(CastVal); 4431 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 4432 NewElts.push_back(Undef); 4433 4434 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 4435 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4436 Results.push_back(CvtVec); 4437 break; 4438 } 4439 case ISD::ATOMIC_SWAP: { 4440 AtomicSDNode *AM = cast<AtomicSDNode>(Node); 4441 SDLoc SL(Node); 4442 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal()); 4443 assert(NVT.getSizeInBits() == OVT.getSizeInBits() && 4444 "unexpected promotion type"); 4445 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && 4446 "unexpected atomic_swap with illegal type"); 4447 4448 SDValue NewAtomic 4449 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT, 4450 DAG.getVTList(NVT, MVT::Other), 4451 { AM->getChain(), AM->getBasePtr(), CastVal }, 4452 AM->getMemOperand()); 4453 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); 4454 Results.push_back(NewAtomic.getValue(1)); 4455 break; 4456 } 4457 } 4458 4459 // Replace the original node with the legalized result. 4460 if (!Results.empty()) { 4461 LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); 4462 ReplaceNode(Node, Results.data()); 4463 } else 4464 LLVM_DEBUG(dbgs() << "Could not promote node\n"); 4465 } 4466 4467 /// This is the entry point for the file. 4468 void SelectionDAG::Legalize() { 4469 AssignTopologicalOrder(); 4470 4471 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4472 // Use a delete listener to remove nodes which were deleted during 4473 // legalization from LegalizeNodes. This is needed to handle the situation 4474 // where a new node is allocated by the object pool to the same address of a 4475 // previously deleted node. 4476 DAGNodeDeletedListener DeleteListener( 4477 *this, 4478 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 4479 4480 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 4481 4482 // Visit all the nodes. We start in topological order, so that we see 4483 // nodes with their original operands intact. Legalization can produce 4484 // new nodes which may themselves need to be legalized. Iterate until all 4485 // nodes have been legalized. 4486 while (true) { 4487 bool AnyLegalized = false; 4488 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 4489 --NI; 4490 4491 SDNode *N = &*NI; 4492 if (N->use_empty() && N != getRoot().getNode()) { 4493 ++NI; 4494 DeleteNode(N); 4495 continue; 4496 } 4497 4498 if (LegalizedNodes.insert(N).second) { 4499 AnyLegalized = true; 4500 Legalizer.LegalizeOp(N); 4501 4502 if (N->use_empty() && N != getRoot().getNode()) { 4503 ++NI; 4504 DeleteNode(N); 4505 } 4506 } 4507 } 4508 if (!AnyLegalized) 4509 break; 4510 4511 } 4512 4513 // Remove dead nodes now. 4514 RemoveDeadNodes(); 4515 } 4516 4517 bool SelectionDAG::LegalizeOp(SDNode *N, 4518 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 4519 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4520 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 4521 4522 // Directly insert the node in question, and legalize it. This will recurse 4523 // as needed through operands. 4524 LegalizedNodes.insert(N); 4525 Legalizer.LegalizeOp(N); 4526 4527 return LegalizedNodes.count(N); 4528 } 4529