1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::Legalize method.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/ISDOpcodes.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineMemOperand.h"
24 #include "llvm/CodeGen/RuntimeLibcalls.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/CodeGen/SelectionDAGNodes.h"
27 #include "llvm/CodeGen/TargetFrameLowering.h"
28 #include "llvm/CodeGen/TargetLowering.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/Compiler.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/MachineValueType.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetOptions.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstdint>
50 #include <tuple>
51 #include <utility>
52 
53 using namespace llvm;
54 
55 #define DEBUG_TYPE "legalizedag"
56 
57 namespace {
58 
59 /// Keeps track of state when getting the sign of a floating-point value as an
60 /// integer.
61 struct FloatSignAsInt {
62   EVT FloatVT;
63   SDValue Chain;
64   SDValue FloatPtr;
65   SDValue IntPtr;
66   MachinePointerInfo IntPointerInfo;
67   MachinePointerInfo FloatPointerInfo;
68   SDValue IntValue;
69   APInt SignMask;
70   uint8_t SignBit;
71 };
72 
73 //===----------------------------------------------------------------------===//
74 /// This takes an arbitrary SelectionDAG as input and
75 /// hacks on it until the target machine can handle it.  This involves
76 /// eliminating value sizes the machine cannot handle (promoting small sizes to
77 /// large sizes or splitting up large values into small values) as well as
78 /// eliminating operations the machine cannot handle.
79 ///
80 /// This code also does a small amount of optimization and recognition of idioms
81 /// as part of its processing.  For example, if a target does not support a
82 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
83 /// will attempt merge setcc and brc instructions into brcc's.
84 class SelectionDAGLegalize {
85   const TargetMachine &TM;
86   const TargetLowering &TLI;
87   SelectionDAG &DAG;
88 
89   /// The set of nodes which have already been legalized. We hold a
90   /// reference to it in order to update as necessary on node deletion.
91   SmallPtrSetImpl<SDNode *> &LegalizedNodes;
92 
93   /// A set of all the nodes updated during legalization.
94   SmallSetVector<SDNode *, 16> *UpdatedNodes;
95 
96   EVT getSetCCResultType(EVT VT) const {
97     return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
98   }
99 
100   // Libcall insertion helpers.
101 
102 public:
103   SelectionDAGLegalize(SelectionDAG &DAG,
104                        SmallPtrSetImpl<SDNode *> &LegalizedNodes,
105                        SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr)
106       : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG),
107         LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {}
108 
109   /// Legalizes the given operation.
110   void LegalizeOp(SDNode *Node);
111 
112 private:
113   SDValue OptimizeFloatStore(StoreSDNode *ST);
114 
115   void LegalizeLoadOps(SDNode *Node);
116   void LegalizeStoreOps(SDNode *Node);
117 
118   /// Some targets cannot handle a variable
119   /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
120   /// is necessary to spill the vector being inserted into to memory, perform
121   /// the insert there, and then read the result back.
122   SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
123                                          const SDLoc &dl);
124   SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx,
125                                   const SDLoc &dl);
126 
127   /// Return a vector shuffle operation which
128   /// performs the same shuffe in terms of order or result bytes, but on a type
129   /// whose vector element type is narrower than the original shuffle type.
130   /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
131   SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl,
132                                      SDValue N1, SDValue N2,
133                                      ArrayRef<int> Mask) const;
134 
135   bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
136                              bool &NeedInvert, const SDLoc &dl);
137 
138   SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
139 
140   std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
141                                                  SDNode *Node, bool isSigned);
142   SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
143                           RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
144                           RTLIB::Libcall Call_F128,
145                           RTLIB::Libcall Call_PPCF128);
146   SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
147                            RTLIB::Libcall Call_I8,
148                            RTLIB::Libcall Call_I16,
149                            RTLIB::Libcall Call_I32,
150                            RTLIB::Libcall Call_I64,
151                            RTLIB::Libcall Call_I128);
152   void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
153   void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
154 
155   SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
156                            const SDLoc &dl);
157   SDValue ExpandBUILD_VECTOR(SDNode *Node);
158   SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
159   void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
160                                 SmallVectorImpl<SDValue> &Results);
161   void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL,
162                          SDValue Value) const;
163   SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL,
164                           SDValue NewIntValue) const;
165   SDValue ExpandFCOPYSIGN(SDNode *Node) const;
166   SDValue ExpandFABS(SDNode *Node) const;
167   SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0, EVT DestVT,
168                                const SDLoc &dl);
169   SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
170                                 const SDLoc &dl);
171   SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
172                                 const SDLoc &dl);
173 
174   SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl);
175   SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl);
176 
177   SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
178   SDValue ExpandInsertToVectorThroughStack(SDValue Op);
179   SDValue ExpandVectorBuildThroughStack(SDNode* Node);
180 
181   SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
182   SDValue ExpandConstant(ConstantSDNode *CP);
183 
184   // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall
185   bool ExpandNode(SDNode *Node);
186   void ConvertNodeToLibcall(SDNode *Node);
187   void PromoteNode(SDNode *Node);
188 
189 public:
190   // Node replacement helpers
191 
192   void ReplacedNode(SDNode *N) {
193     LegalizedNodes.erase(N);
194     if (UpdatedNodes)
195       UpdatedNodes->insert(N);
196   }
197 
198   void ReplaceNode(SDNode *Old, SDNode *New) {
199     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
200                dbgs() << "     with:      "; New->dump(&DAG));
201 
202     assert(Old->getNumValues() == New->getNumValues() &&
203            "Replacing one node with another that produces a different number "
204            "of values!");
205     DAG.ReplaceAllUsesWith(Old, New);
206     if (UpdatedNodes)
207       UpdatedNodes->insert(New);
208     ReplacedNode(Old);
209   }
210 
211   void ReplaceNode(SDValue Old, SDValue New) {
212     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
213                dbgs() << "     with:      "; New->dump(&DAG));
214 
215     DAG.ReplaceAllUsesWith(Old, New);
216     if (UpdatedNodes)
217       UpdatedNodes->insert(New.getNode());
218     ReplacedNode(Old.getNode());
219   }
220 
221   void ReplaceNode(SDNode *Old, const SDValue *New) {
222     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG));
223 
224     DAG.ReplaceAllUsesWith(Old, New);
225     for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
226       LLVM_DEBUG(dbgs() << (i == 0 ? "     with:      " : "      and:      ");
227                  New[i]->dump(&DAG));
228       if (UpdatedNodes)
229         UpdatedNodes->insert(New[i].getNode());
230     }
231     ReplacedNode(Old);
232   }
233 };
234 
235 } // end anonymous namespace
236 
237 /// Return a vector shuffle operation which
238 /// performs the same shuffle in terms of order or result bytes, but on a type
239 /// whose vector element type is narrower than the original shuffle type.
240 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
241 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType(
242     EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
243     ArrayRef<int> Mask) const {
244   unsigned NumMaskElts = VT.getVectorNumElements();
245   unsigned NumDestElts = NVT.getVectorNumElements();
246   unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
247 
248   assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
249 
250   if (NumEltsGrowth == 1)
251     return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask);
252 
253   SmallVector<int, 8> NewMask;
254   for (unsigned i = 0; i != NumMaskElts; ++i) {
255     int Idx = Mask[i];
256     for (unsigned j = 0; j != NumEltsGrowth; ++j) {
257       if (Idx < 0)
258         NewMask.push_back(-1);
259       else
260         NewMask.push_back(Idx * NumEltsGrowth + j);
261     }
262   }
263   assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
264   assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
265   return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask);
266 }
267 
268 /// Expands the ConstantFP node to an integer constant or
269 /// a load from the constant pool.
270 SDValue
271 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
272   bool Extend = false;
273   SDLoc dl(CFP);
274 
275   // If a FP immediate is precise when represented as a float and if the
276   // target can do an extending load from float to double, we put it into
277   // the constant pool as a float, even if it's is statically typed as a
278   // double.  This shrinks FP constants and canonicalizes them for targets where
279   // an FP extending load is the same cost as a normal load (such as on the x87
280   // fp stack or PPC FP unit).
281   EVT VT = CFP->getValueType(0);
282   ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
283   if (!UseCP) {
284     assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
285     return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl,
286                            (VT == MVT::f64) ? MVT::i64 : MVT::i32);
287   }
288 
289   APFloat APF = CFP->getValueAPF();
290   EVT OrigVT = VT;
291   EVT SVT = VT;
292 
293   // We don't want to shrink SNaNs. Converting the SNaN back to its real type
294   // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ).
295   if (!APF.isSignaling()) {
296     while (SVT != MVT::f32 && SVT != MVT::f16) {
297       SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
298       if (ConstantFPSDNode::isValueValidForType(SVT, APF) &&
299           // Only do this if the target has a native EXTLOAD instruction from
300           // smaller type.
301           TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) &&
302           TLI.ShouldShrinkFPConstant(OrigVT)) {
303         Type *SType = SVT.getTypeForEVT(*DAG.getContext());
304         LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
305         VT = SVT;
306         Extend = true;
307       }
308     }
309   }
310 
311   SDValue CPIdx =
312       DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout()));
313   unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
314   if (Extend) {
315     SDValue Result = DAG.getExtLoad(
316         ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx,
317         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT,
318         Alignment);
319     return Result;
320   }
321   SDValue Result = DAG.getLoad(
322       OrigVT, dl, DAG.getEntryNode(), CPIdx,
323       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
324   return Result;
325 }
326 
327 /// Expands the Constant node to a load from the constant pool.
328 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) {
329   SDLoc dl(CP);
330   EVT VT = CP->getValueType(0);
331   SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(),
332                                       TLI.getPointerTy(DAG.getDataLayout()));
333   unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
334   SDValue Result = DAG.getLoad(
335       VT, dl, DAG.getEntryNode(), CPIdx,
336       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
337   return Result;
338 }
339 
340 /// Some target cannot handle a variable insertion index for the
341 /// INSERT_VECTOR_ELT instruction.  In this case, it
342 /// is necessary to spill the vector being inserted into to memory, perform
343 /// the insert there, and then read the result back.
344 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec,
345                                                              SDValue Val,
346                                                              SDValue Idx,
347                                                              const SDLoc &dl) {
348   SDValue Tmp1 = Vec;
349   SDValue Tmp2 = Val;
350   SDValue Tmp3 = Idx;
351 
352   // If the target doesn't support this, we have to spill the input vector
353   // to a temporary stack slot, update the element, then reload it.  This is
354   // badness.  We could also load the value into a vector register (either
355   // with a "move to register" or "extload into register" instruction, then
356   // permute it into place, if the idx is a constant and if the idx is
357   // supported by the target.
358   EVT VT    = Tmp1.getValueType();
359   EVT EltVT = VT.getVectorElementType();
360   SDValue StackPtr = DAG.CreateStackTemporary(VT);
361 
362   int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
363 
364   // Store the vector.
365   SDValue Ch = DAG.getStore(
366       DAG.getEntryNode(), dl, Tmp1, StackPtr,
367       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
368 
369   SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3);
370 
371   // Store the scalar value.
372   Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT);
373   // Load the updated vector.
374   return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack(
375                                                DAG.getMachineFunction(), SPFI));
376 }
377 
378 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
379                                                       SDValue Idx,
380                                                       const SDLoc &dl) {
381   if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
382     // SCALAR_TO_VECTOR requires that the type of the value being inserted
383     // match the element type of the vector being created, except for
384     // integers in which case the inserted value can be over width.
385     EVT EltVT = Vec.getValueType().getVectorElementType();
386     if (Val.getValueType() == EltVT ||
387         (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
388       SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
389                                   Vec.getValueType(), Val);
390 
391       unsigned NumElts = Vec.getValueType().getVectorNumElements();
392       // We generate a shuffle of InVec and ScVec, so the shuffle mask
393       // should be 0,1,2,3,4,5... with the appropriate element replaced with
394       // elt 0 of the RHS.
395       SmallVector<int, 8> ShufOps;
396       for (unsigned i = 0; i != NumElts; ++i)
397         ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
398 
399       return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps);
400     }
401   }
402   return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
403 }
404 
405 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
406   LLVM_DEBUG(dbgs() << "Optimizing float store operations\n");
407   // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
408   // FIXME: We shouldn't do this for TargetConstantFP's.
409   // FIXME: move this to the DAG Combiner!  Note that we can't regress due
410   // to phase ordering between legalized code and the dag combiner.  This
411   // probably means that we need to integrate dag combiner and legalizer
412   // together.
413   // We generally can't do this one for long doubles.
414   SDValue Chain = ST->getChain();
415   SDValue Ptr = ST->getBasePtr();
416   unsigned Alignment = ST->getAlignment();
417   MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
418   AAMDNodes AAInfo = ST->getAAInfo();
419   SDLoc dl(ST);
420   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
421     if (CFP->getValueType(0) == MVT::f32 &&
422         TLI.isTypeLegal(MVT::i32)) {
423       SDValue Con = DAG.getConstant(CFP->getValueAPF().
424                                       bitcastToAPInt().zextOrTrunc(32),
425                                     SDLoc(CFP), MVT::i32);
426       return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), Alignment,
427                           MMOFlags, AAInfo);
428     }
429 
430     if (CFP->getValueType(0) == MVT::f64) {
431       // If this target supports 64-bit registers, do a single 64-bit store.
432       if (TLI.isTypeLegal(MVT::i64)) {
433         SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
434                                       zextOrTrunc(64), SDLoc(CFP), MVT::i64);
435         return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
436                             Alignment, MMOFlags, AAInfo);
437       }
438 
439       if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
440         // Otherwise, if the target supports 32-bit registers, use 2 32-bit
441         // stores.  If the target supports neither 32- nor 64-bits, this
442         // xform is certainly not worth it.
443         const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt();
444         SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32);
445         SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32);
446         if (DAG.getDataLayout().isBigEndian())
447           std::swap(Lo, Hi);
448 
449         Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), Alignment,
450                           MMOFlags, AAInfo);
451         Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
452                           DAG.getConstant(4, dl, Ptr.getValueType()));
453         Hi = DAG.getStore(Chain, dl, Hi, Ptr,
454                           ST->getPointerInfo().getWithOffset(4),
455                           MinAlign(Alignment, 4U), MMOFlags, AAInfo);
456 
457         return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
458       }
459     }
460   }
461   return SDValue(nullptr, 0);
462 }
463 
464 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
465   StoreSDNode *ST = cast<StoreSDNode>(Node);
466   SDValue Chain = ST->getChain();
467   SDValue Ptr = ST->getBasePtr();
468   SDLoc dl(Node);
469 
470   unsigned Alignment = ST->getAlignment();
471   MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
472   AAMDNodes AAInfo = ST->getAAInfo();
473 
474   if (!ST->isTruncatingStore()) {
475     LLVM_DEBUG(dbgs() << "Legalizing store operation\n");
476     if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
477       ReplaceNode(ST, OptStore);
478       return;
479     }
480 
481     SDValue Value = ST->getValue();
482     MVT VT = Value.getSimpleValueType();
483     switch (TLI.getOperationAction(ISD::STORE, VT)) {
484     default: llvm_unreachable("This action is not supported yet!");
485     case TargetLowering::Legal: {
486       // If this is an unaligned store and the target doesn't support it,
487       // expand it.
488       EVT MemVT = ST->getMemoryVT();
489       unsigned AS = ST->getAddressSpace();
490       unsigned Align = ST->getAlignment();
491       const DataLayout &DL = DAG.getDataLayout();
492       if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) {
493         LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n");
494         SDValue Result = TLI.expandUnalignedStore(ST, DAG);
495         ReplaceNode(SDValue(ST, 0), Result);
496       } else
497         LLVM_DEBUG(dbgs() << "Legal store\n");
498       break;
499     }
500     case TargetLowering::Custom: {
501       LLVM_DEBUG(dbgs() << "Trying custom lowering\n");
502       SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
503       if (Res && Res != SDValue(Node, 0))
504         ReplaceNode(SDValue(Node, 0), Res);
505       return;
506     }
507     case TargetLowering::Promote: {
508       MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
509       assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
510              "Can only promote stores to same size type");
511       Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
512       SDValue Result =
513           DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
514                        Alignment, MMOFlags, AAInfo);
515       ReplaceNode(SDValue(Node, 0), Result);
516       break;
517     }
518     }
519     return;
520   }
521 
522   LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n");
523   SDValue Value = ST->getValue();
524   EVT StVT = ST->getMemoryVT();
525   unsigned StWidth = StVT.getSizeInBits();
526   auto &DL = DAG.getDataLayout();
527 
528   if (StWidth != StVT.getStoreSizeInBits()) {
529     // Promote to a byte-sized store with upper bits zero if not
530     // storing an integral number of bytes.  For example, promote
531     // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
532     EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
533                                 StVT.getStoreSizeInBits());
534     Value = DAG.getZeroExtendInReg(Value, dl, StVT);
535     SDValue Result =
536         DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT,
537                           Alignment, MMOFlags, AAInfo);
538     ReplaceNode(SDValue(Node, 0), Result);
539   } else if (StWidth & (StWidth - 1)) {
540     // If not storing a power-of-2 number of bits, expand as two stores.
541     assert(!StVT.isVector() && "Unsupported truncstore!");
542     unsigned RoundWidth = 1 << Log2_32(StWidth);
543     assert(RoundWidth < StWidth);
544     unsigned ExtraWidth = StWidth - RoundWidth;
545     assert(ExtraWidth < RoundWidth);
546     assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
547            "Store size not an integral number of bytes!");
548     EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
549     EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
550     SDValue Lo, Hi;
551     unsigned IncrementSize;
552 
553     if (DL.isLittleEndian()) {
554       // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
555       // Store the bottom RoundWidth bits.
556       Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
557                              RoundVT, Alignment, MMOFlags, AAInfo);
558 
559       // Store the remaining ExtraWidth bits.
560       IncrementSize = RoundWidth / 8;
561       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
562                         DAG.getConstant(IncrementSize, dl,
563                                         Ptr.getValueType()));
564       Hi = DAG.getNode(
565           ISD::SRL, dl, Value.getValueType(), Value,
566           DAG.getConstant(RoundWidth, dl,
567                           TLI.getShiftAmountTy(Value.getValueType(), DL)));
568       Hi = DAG.getTruncStore(
569           Chain, dl, Hi, Ptr,
570           ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT,
571           MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo);
572     } else {
573       // Big endian - avoid unaligned stores.
574       // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
575       // Store the top RoundWidth bits.
576       Hi = DAG.getNode(
577           ISD::SRL, dl, Value.getValueType(), Value,
578           DAG.getConstant(ExtraWidth, dl,
579                           TLI.getShiftAmountTy(Value.getValueType(), DL)));
580       Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(),
581                              RoundVT, Alignment, MMOFlags, AAInfo);
582 
583       // Store the remaining ExtraWidth bits.
584       IncrementSize = RoundWidth / 8;
585       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
586                         DAG.getConstant(IncrementSize, dl,
587                                         Ptr.getValueType()));
588       Lo = DAG.getTruncStore(
589           Chain, dl, Value, Ptr,
590           ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT,
591           MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo);
592     }
593 
594     // The order of the stores doesn't matter.
595     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
596     ReplaceNode(SDValue(Node, 0), Result);
597   } else {
598     switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
599     default: llvm_unreachable("This action is not supported yet!");
600     case TargetLowering::Legal: {
601       EVT MemVT = ST->getMemoryVT();
602       unsigned AS = ST->getAddressSpace();
603       unsigned Align = ST->getAlignment();
604       // If this is an unaligned store and the target doesn't support it,
605       // expand it.
606       if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) {
607         SDValue Result = TLI.expandUnalignedStore(ST, DAG);
608         ReplaceNode(SDValue(ST, 0), Result);
609       }
610       break;
611     }
612     case TargetLowering::Custom: {
613       SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
614       if (Res && Res != SDValue(Node, 0))
615         ReplaceNode(SDValue(Node, 0), Res);
616       return;
617     }
618     case TargetLowering::Expand:
619       assert(!StVT.isVector() &&
620              "Vector Stores are handled in LegalizeVectorOps");
621 
622       SDValue Result;
623 
624       // TRUNCSTORE:i16 i32 -> STORE i16
625       if (TLI.isTypeLegal(StVT)) {
626         Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
627         Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
628                               Alignment, MMOFlags, AAInfo);
629       } else {
630         // The in-memory type isn't legal. Truncate to the type it would promote
631         // to, and then do a truncstore.
632         Value = DAG.getNode(ISD::TRUNCATE, dl,
633                             TLI.getTypeToTransformTo(*DAG.getContext(), StVT),
634                             Value);
635         Result = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
636                                    StVT, Alignment, MMOFlags, AAInfo);
637       }
638 
639       ReplaceNode(SDValue(Node, 0), Result);
640       break;
641     }
642   }
643 }
644 
645 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
646   LoadSDNode *LD = cast<LoadSDNode>(Node);
647   SDValue Chain = LD->getChain();  // The chain.
648   SDValue Ptr = LD->getBasePtr();  // The base pointer.
649   SDValue Value;                   // The value returned by the load op.
650   SDLoc dl(Node);
651 
652   ISD::LoadExtType ExtType = LD->getExtensionType();
653   if (ExtType == ISD::NON_EXTLOAD) {
654     LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n");
655     MVT VT = Node->getSimpleValueType(0);
656     SDValue RVal = SDValue(Node, 0);
657     SDValue RChain = SDValue(Node, 1);
658 
659     switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
660     default: llvm_unreachable("This action is not supported yet!");
661     case TargetLowering::Legal: {
662       EVT MemVT = LD->getMemoryVT();
663       unsigned AS = LD->getAddressSpace();
664       unsigned Align = LD->getAlignment();
665       const DataLayout &DL = DAG.getDataLayout();
666       // If this is an unaligned load and the target doesn't support it,
667       // expand it.
668       if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) {
669         std::tie(RVal, RChain) =  TLI.expandUnalignedLoad(LD, DAG);
670       }
671       break;
672     }
673     case TargetLowering::Custom:
674       if (SDValue Res = TLI.LowerOperation(RVal, DAG)) {
675         RVal = Res;
676         RChain = Res.getValue(1);
677       }
678       break;
679 
680     case TargetLowering::Promote: {
681       MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
682       assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
683              "Can only promote loads to same size type");
684 
685       SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand());
686       RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
687       RChain = Res.getValue(1);
688       break;
689     }
690     }
691     if (RChain.getNode() != Node) {
692       assert(RVal.getNode() != Node && "Load must be completely replaced");
693       DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
694       DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
695       if (UpdatedNodes) {
696         UpdatedNodes->insert(RVal.getNode());
697         UpdatedNodes->insert(RChain.getNode());
698       }
699       ReplacedNode(Node);
700     }
701     return;
702   }
703 
704   LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n");
705   EVT SrcVT = LD->getMemoryVT();
706   unsigned SrcWidth = SrcVT.getSizeInBits();
707   unsigned Alignment = LD->getAlignment();
708   MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
709   AAMDNodes AAInfo = LD->getAAInfo();
710 
711   if (SrcWidth != SrcVT.getStoreSizeInBits() &&
712       // Some targets pretend to have an i1 loading operation, and actually
713       // load an i8.  This trick is correct for ZEXTLOAD because the top 7
714       // bits are guaranteed to be zero; it helps the optimizers understand
715       // that these bits are zero.  It is also useful for EXTLOAD, since it
716       // tells the optimizers that those bits are undefined.  It would be
717       // nice to have an effective generic way of getting these benefits...
718       // Until such a way is found, don't insist on promoting i1 here.
719       (SrcVT != MVT::i1 ||
720        TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) ==
721          TargetLowering::Promote)) {
722     // Promote to a byte-sized load if not loading an integral number of
723     // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
724     unsigned NewWidth = SrcVT.getStoreSizeInBits();
725     EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
726     SDValue Ch;
727 
728     // The extra bits are guaranteed to be zero, since we stored them that
729     // way.  A zext load from NVT thus automatically gives zext from SrcVT.
730 
731     ISD::LoadExtType NewExtType =
732       ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
733 
734     SDValue Result =
735         DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), Chain, Ptr,
736                        LD->getPointerInfo(), NVT, Alignment, MMOFlags, AAInfo);
737 
738     Ch = Result.getValue(1); // The chain.
739 
740     if (ExtType == ISD::SEXTLOAD)
741       // Having the top bits zero doesn't help when sign extending.
742       Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
743                            Result.getValueType(),
744                            Result, DAG.getValueType(SrcVT));
745     else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
746       // All the top bits are guaranteed to be zero - inform the optimizers.
747       Result = DAG.getNode(ISD::AssertZext, dl,
748                            Result.getValueType(), Result,
749                            DAG.getValueType(SrcVT));
750 
751     Value = Result;
752     Chain = Ch;
753   } else if (SrcWidth & (SrcWidth - 1)) {
754     // If not loading a power-of-2 number of bits, expand as two loads.
755     assert(!SrcVT.isVector() && "Unsupported extload!");
756     unsigned RoundWidth = 1 << Log2_32(SrcWidth);
757     assert(RoundWidth < SrcWidth);
758     unsigned ExtraWidth = SrcWidth - RoundWidth;
759     assert(ExtraWidth < RoundWidth);
760     assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
761            "Load size not an integral number of bytes!");
762     EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
763     EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
764     SDValue Lo, Hi, Ch;
765     unsigned IncrementSize;
766     auto &DL = DAG.getDataLayout();
767 
768     if (DL.isLittleEndian()) {
769       // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
770       // Load the bottom RoundWidth bits.
771       Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
772                           LD->getPointerInfo(), RoundVT, Alignment, MMOFlags,
773                           AAInfo);
774 
775       // Load the remaining ExtraWidth bits.
776       IncrementSize = RoundWidth / 8;
777       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
778                          DAG.getConstant(IncrementSize, dl,
779                                          Ptr.getValueType()));
780       Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
781                           LD->getPointerInfo().getWithOffset(IncrementSize),
782                           ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags,
783                           AAInfo);
784 
785       // Build a factor node to remember that this load is independent of
786       // the other one.
787       Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
788                        Hi.getValue(1));
789 
790       // Move the top bits to the right place.
791       Hi = DAG.getNode(
792           ISD::SHL, dl, Hi.getValueType(), Hi,
793           DAG.getConstant(RoundWidth, dl,
794                           TLI.getShiftAmountTy(Hi.getValueType(), DL)));
795 
796       // Join the hi and lo parts.
797       Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
798     } else {
799       // Big endian - avoid unaligned loads.
800       // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
801       // Load the top RoundWidth bits.
802       Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
803                           LD->getPointerInfo(), RoundVT, Alignment, MMOFlags,
804                           AAInfo);
805 
806       // Load the remaining ExtraWidth bits.
807       IncrementSize = RoundWidth / 8;
808       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
809                          DAG.getConstant(IncrementSize, dl,
810                                          Ptr.getValueType()));
811       Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
812                           LD->getPointerInfo().getWithOffset(IncrementSize),
813                           ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags,
814                           AAInfo);
815 
816       // Build a factor node to remember that this load is independent of
817       // the other one.
818       Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
819                        Hi.getValue(1));
820 
821       // Move the top bits to the right place.
822       Hi = DAG.getNode(
823           ISD::SHL, dl, Hi.getValueType(), Hi,
824           DAG.getConstant(ExtraWidth, dl,
825                           TLI.getShiftAmountTy(Hi.getValueType(), DL)));
826 
827       // Join the hi and lo parts.
828       Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
829     }
830 
831     Chain = Ch;
832   } else {
833     bool isCustom = false;
834     switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0),
835                                  SrcVT.getSimpleVT())) {
836     default: llvm_unreachable("This action is not supported yet!");
837     case TargetLowering::Custom:
838       isCustom = true;
839       LLVM_FALLTHROUGH;
840     case TargetLowering::Legal:
841       Value = SDValue(Node, 0);
842       Chain = SDValue(Node, 1);
843 
844       if (isCustom) {
845         if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
846           Value = Res;
847           Chain = Res.getValue(1);
848         }
849       } else {
850         // If this is an unaligned load and the target doesn't support it,
851         // expand it.
852         EVT MemVT = LD->getMemoryVT();
853         unsigned AS = LD->getAddressSpace();
854         unsigned Align = LD->getAlignment();
855         const DataLayout &DL = DAG.getDataLayout();
856         if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) {
857           std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG);
858         }
859       }
860       break;
861 
862     case TargetLowering::Expand: {
863       EVT DestVT = Node->getValueType(0);
864       if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) {
865         // If the source type is not legal, see if there is a legal extload to
866         // an intermediate type that we can then extend further.
867         EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT());
868         if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT?
869             TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) {
870           // If we are loading a legal type, this is a non-extload followed by a
871           // full extend.
872           ISD::LoadExtType MidExtType =
873               (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType;
874 
875           SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr,
876                                         SrcVT, LD->getMemOperand());
877           unsigned ExtendOp =
878               ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType);
879           Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
880           Chain = Load.getValue(1);
881           break;
882         }
883 
884         // Handle the special case of fp16 extloads. EXTLOAD doesn't have the
885         // normal undefined upper bits behavior to allow using an in-reg extend
886         // with the illegal FP type, so load as an integer and do the
887         // from-integer conversion.
888         if (SrcVT.getScalarType() == MVT::f16) {
889           EVT ISrcVT = SrcVT.changeTypeToInteger();
890           EVT IDestVT = DestVT.changeTypeToInteger();
891           EVT LoadVT = TLI.getRegisterType(IDestVT.getSimpleVT());
892 
893           SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, LoadVT,
894                                           Chain, Ptr, ISrcVT,
895                                           LD->getMemOperand());
896           Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result);
897           Chain = Result.getValue(1);
898           break;
899         }
900       }
901 
902       assert(!SrcVT.isVector() &&
903              "Vector Loads are handled in LegalizeVectorOps");
904 
905       // FIXME: This does not work for vectors on most targets.  Sign-
906       // and zero-extend operations are currently folded into extending
907       // loads, whether they are legal or not, and then we end up here
908       // without any support for legalizing them.
909       assert(ExtType != ISD::EXTLOAD &&
910              "EXTLOAD should always be supported!");
911       // Turn the unsupported load into an EXTLOAD followed by an
912       // explicit zero/sign extend inreg.
913       SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl,
914                                       Node->getValueType(0),
915                                       Chain, Ptr, SrcVT,
916                                       LD->getMemOperand());
917       SDValue ValRes;
918       if (ExtType == ISD::SEXTLOAD)
919         ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
920                              Result.getValueType(),
921                              Result, DAG.getValueType(SrcVT));
922       else
923         ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
924       Value = ValRes;
925       Chain = Result.getValue(1);
926       break;
927     }
928     }
929   }
930 
931   // Since loads produce two values, make sure to remember that we legalized
932   // both of them.
933   if (Chain.getNode() != Node) {
934     assert(Value.getNode() != Node && "Load must be completely replaced");
935     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
936     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
937     if (UpdatedNodes) {
938       UpdatedNodes->insert(Value.getNode());
939       UpdatedNodes->insert(Chain.getNode());
940     }
941     ReplacedNode(Node);
942   }
943 }
944 
945 /// Return a legal replacement for the given operation, with all legal operands.
946 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
947   LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG));
948 
949   // Allow illegal target nodes and illegal registers.
950   if (Node->getOpcode() == ISD::TargetConstant ||
951       Node->getOpcode() == ISD::Register)
952     return;
953 
954 #ifndef NDEBUG
955   for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
956     assert((TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
957               TargetLowering::TypeLegal ||
958             TLI.isTypeLegal(Node->getValueType(i))) &&
959            "Unexpected illegal type!");
960 
961   for (const SDValue &Op : Node->op_values())
962     assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) ==
963               TargetLowering::TypeLegal ||
964             TLI.isTypeLegal(Op.getValueType()) ||
965             Op.getOpcode() == ISD::TargetConstant ||
966             Op.getOpcode() == ISD::Register) &&
967             "Unexpected illegal type!");
968 #endif
969 
970   // Figure out the correct action; the way to query this varies by opcode
971   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
972   bool SimpleFinishLegalizing = true;
973   switch (Node->getOpcode()) {
974   case ISD::INTRINSIC_W_CHAIN:
975   case ISD::INTRINSIC_WO_CHAIN:
976   case ISD::INTRINSIC_VOID:
977   case ISD::STACKSAVE:
978     Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
979     break;
980   case ISD::GET_DYNAMIC_AREA_OFFSET:
981     Action = TLI.getOperationAction(Node->getOpcode(),
982                                     Node->getValueType(0));
983     break;
984   case ISD::VAARG:
985     Action = TLI.getOperationAction(Node->getOpcode(),
986                                     Node->getValueType(0));
987     if (Action != TargetLowering::Promote)
988       Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
989     break;
990   case ISD::FP_TO_FP16:
991   case ISD::SINT_TO_FP:
992   case ISD::UINT_TO_FP:
993   case ISD::EXTRACT_VECTOR_ELT:
994     Action = TLI.getOperationAction(Node->getOpcode(),
995                                     Node->getOperand(0).getValueType());
996     break;
997   case ISD::FP_ROUND_INREG:
998   case ISD::SIGN_EXTEND_INREG: {
999     EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
1000     Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
1001     break;
1002   }
1003   case ISD::ATOMIC_STORE:
1004     Action = TLI.getOperationAction(Node->getOpcode(),
1005                                     Node->getOperand(2).getValueType());
1006     break;
1007   case ISD::SELECT_CC:
1008   case ISD::SETCC:
1009   case ISD::BR_CC: {
1010     unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
1011                          Node->getOpcode() == ISD::SETCC ? 2 : 1;
1012     unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
1013     MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
1014     ISD::CondCode CCCode =
1015         cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
1016     Action = TLI.getCondCodeAction(CCCode, OpVT);
1017     if (Action == TargetLowering::Legal) {
1018       if (Node->getOpcode() == ISD::SELECT_CC)
1019         Action = TLI.getOperationAction(Node->getOpcode(),
1020                                         Node->getValueType(0));
1021       else
1022         Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
1023     }
1024     break;
1025   }
1026   case ISD::LOAD:
1027   case ISD::STORE:
1028     // FIXME: Model these properly.  LOAD and STORE are complicated, and
1029     // STORE expects the unlegalized operand in some cases.
1030     SimpleFinishLegalizing = false;
1031     break;
1032   case ISD::CALLSEQ_START:
1033   case ISD::CALLSEQ_END:
1034     // FIXME: This shouldn't be necessary.  These nodes have special properties
1035     // dealing with the recursive nature of legalization.  Removing this
1036     // special case should be done as part of making LegalizeDAG non-recursive.
1037     SimpleFinishLegalizing = false;
1038     break;
1039   case ISD::EXTRACT_ELEMENT:
1040   case ISD::FLT_ROUNDS_:
1041   case ISD::MERGE_VALUES:
1042   case ISD::EH_RETURN:
1043   case ISD::FRAME_TO_ARGS_OFFSET:
1044   case ISD::EH_DWARF_CFA:
1045   case ISD::EH_SJLJ_SETJMP:
1046   case ISD::EH_SJLJ_LONGJMP:
1047   case ISD::EH_SJLJ_SETUP_DISPATCH:
1048     // These operations lie about being legal: when they claim to be legal,
1049     // they should actually be expanded.
1050     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1051     if (Action == TargetLowering::Legal)
1052       Action = TargetLowering::Expand;
1053     break;
1054   case ISD::INIT_TRAMPOLINE:
1055   case ISD::ADJUST_TRAMPOLINE:
1056   case ISD::FRAMEADDR:
1057   case ISD::RETURNADDR:
1058   case ISD::ADDROFRETURNADDR:
1059   case ISD::SPONENTRY:
1060     // These operations lie about being legal: when they claim to be legal,
1061     // they should actually be custom-lowered.
1062     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1063     if (Action == TargetLowering::Legal)
1064       Action = TargetLowering::Custom;
1065     break;
1066   case ISD::READCYCLECOUNTER:
1067     // READCYCLECOUNTER returns an i64, even if type legalization might have
1068     // expanded that to several smaller types.
1069     Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64);
1070     break;
1071   case ISD::READ_REGISTER:
1072   case ISD::WRITE_REGISTER:
1073     // Named register is legal in the DAG, but blocked by register name
1074     // selection if not implemented by target (to chose the correct register)
1075     // They'll be converted to Copy(To/From)Reg.
1076     Action = TargetLowering::Legal;
1077     break;
1078   case ISD::DEBUGTRAP:
1079     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1080     if (Action == TargetLowering::Expand) {
1081       // replace ISD::DEBUGTRAP with ISD::TRAP
1082       SDValue NewVal;
1083       NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
1084                            Node->getOperand(0));
1085       ReplaceNode(Node, NewVal.getNode());
1086       LegalizeOp(NewVal.getNode());
1087       return;
1088     }
1089     break;
1090   case ISD::STRICT_FADD:
1091   case ISD::STRICT_FSUB:
1092   case ISD::STRICT_FMUL:
1093   case ISD::STRICT_FDIV:
1094   case ISD::STRICT_FREM:
1095   case ISD::STRICT_FSQRT:
1096   case ISD::STRICT_FMA:
1097   case ISD::STRICT_FPOW:
1098   case ISD::STRICT_FPOWI:
1099   case ISD::STRICT_FSIN:
1100   case ISD::STRICT_FCOS:
1101   case ISD::STRICT_FEXP:
1102   case ISD::STRICT_FEXP2:
1103   case ISD::STRICT_FLOG:
1104   case ISD::STRICT_FLOG10:
1105   case ISD::STRICT_FLOG2:
1106   case ISD::STRICT_FRINT:
1107   case ISD::STRICT_FNEARBYINT:
1108   case ISD::STRICT_FMAXNUM:
1109   case ISD::STRICT_FMINNUM:
1110   case ISD::STRICT_FCEIL:
1111   case ISD::STRICT_FFLOOR:
1112   case ISD::STRICT_FROUND:
1113   case ISD::STRICT_FTRUNC:
1114     // These pseudo-ops get legalized as if they were their non-strict
1115     // equivalent.  For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT
1116     // is also legal, but if ISD::FSQRT requires expansion then so does
1117     // ISD::STRICT_FSQRT.
1118     Action = TLI.getStrictFPOperationAction(Node->getOpcode(),
1119                                             Node->getValueType(0));
1120     break;
1121   case ISD::SADDSAT:
1122   case ISD::UADDSAT:
1123   case ISD::SSUBSAT:
1124   case ISD::USUBSAT: {
1125     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1126     break;
1127   }
1128   case ISD::SMULFIX:
1129   case ISD::UMULFIX: {
1130     unsigned Scale = Node->getConstantOperandVal(2);
1131     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
1132                                               Node->getValueType(0), Scale);
1133     break;
1134   }
1135   case ISD::MSCATTER:
1136     Action = TLI.getOperationAction(Node->getOpcode(),
1137                     cast<MaskedScatterSDNode>(Node)->getValue().getValueType());
1138     break;
1139   case ISD::MSTORE:
1140     Action = TLI.getOperationAction(Node->getOpcode(),
1141                     cast<MaskedStoreSDNode>(Node)->getValue().getValueType());
1142     break;
1143   case ISD::VECREDUCE_FADD:
1144   case ISD::VECREDUCE_FMUL:
1145   case ISD::VECREDUCE_ADD:
1146   case ISD::VECREDUCE_MUL:
1147   case ISD::VECREDUCE_AND:
1148   case ISD::VECREDUCE_OR:
1149   case ISD::VECREDUCE_XOR:
1150   case ISD::VECREDUCE_SMAX:
1151   case ISD::VECREDUCE_SMIN:
1152   case ISD::VECREDUCE_UMAX:
1153   case ISD::VECREDUCE_UMIN:
1154   case ISD::VECREDUCE_FMAX:
1155   case ISD::VECREDUCE_FMIN:
1156     Action = TLI.getOperationAction(
1157         Node->getOpcode(), Node->getOperand(0).getValueType());
1158     break;
1159   default:
1160     if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1161       Action = TargetLowering::Legal;
1162     } else {
1163       Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1164     }
1165     break;
1166   }
1167 
1168   if (SimpleFinishLegalizing) {
1169     SDNode *NewNode = Node;
1170     switch (Node->getOpcode()) {
1171     default: break;
1172     case ISD::SHL:
1173     case ISD::SRL:
1174     case ISD::SRA:
1175     case ISD::ROTL:
1176     case ISD::ROTR: {
1177       // Legalizing shifts/rotates requires adjusting the shift amount
1178       // to the appropriate width.
1179       SDValue Op0 = Node->getOperand(0);
1180       SDValue Op1 = Node->getOperand(1);
1181       if (!Op1.getValueType().isVector()) {
1182         SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1);
1183         // The getShiftAmountOperand() may create a new operand node or
1184         // return the existing one. If new operand is created we need
1185         // to update the parent node.
1186         // Do not try to legalize SAO here! It will be automatically legalized
1187         // in the next round.
1188         if (SAO != Op1)
1189           NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO);
1190       }
1191     }
1192     break;
1193     case ISD::FSHL:
1194     case ISD::FSHR:
1195     case ISD::SRL_PARTS:
1196     case ISD::SRA_PARTS:
1197     case ISD::SHL_PARTS: {
1198       // Legalizing shifts/rotates requires adjusting the shift amount
1199       // to the appropriate width.
1200       SDValue Op0 = Node->getOperand(0);
1201       SDValue Op1 = Node->getOperand(1);
1202       SDValue Op2 = Node->getOperand(2);
1203       if (!Op2.getValueType().isVector()) {
1204         SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2);
1205         // The getShiftAmountOperand() may create a new operand node or
1206         // return the existing one. If new operand is created we need
1207         // to update the parent node.
1208         if (SAO != Op2)
1209           NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO);
1210       }
1211       break;
1212     }
1213     }
1214 
1215     if (NewNode != Node) {
1216       ReplaceNode(Node, NewNode);
1217       Node = NewNode;
1218     }
1219     switch (Action) {
1220     case TargetLowering::Legal:
1221       LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
1222       return;
1223     case TargetLowering::Custom:
1224       LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
1225       // FIXME: The handling for custom lowering with multiple results is
1226       // a complete mess.
1227       if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
1228         if (!(Res.getNode() != Node || Res.getResNo() != 0))
1229           return;
1230 
1231         if (Node->getNumValues() == 1) {
1232           LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1233           // We can just directly replace this node with the lowered value.
1234           ReplaceNode(SDValue(Node, 0), Res);
1235           return;
1236         }
1237 
1238         SmallVector<SDValue, 8> ResultVals;
1239         for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1240           ResultVals.push_back(Res.getValue(i));
1241         LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1242         ReplaceNode(Node, ResultVals.data());
1243         return;
1244       }
1245       LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
1246       LLVM_FALLTHROUGH;
1247     case TargetLowering::Expand:
1248       if (ExpandNode(Node))
1249         return;
1250       LLVM_FALLTHROUGH;
1251     case TargetLowering::LibCall:
1252       ConvertNodeToLibcall(Node);
1253       return;
1254     case TargetLowering::Promote:
1255       PromoteNode(Node);
1256       return;
1257     }
1258   }
1259 
1260   switch (Node->getOpcode()) {
1261   default:
1262 #ifndef NDEBUG
1263     dbgs() << "NODE: ";
1264     Node->dump( &DAG);
1265     dbgs() << "\n";
1266 #endif
1267     llvm_unreachable("Do not know how to legalize this operator!");
1268 
1269   case ISD::CALLSEQ_START:
1270   case ISD::CALLSEQ_END:
1271     break;
1272   case ISD::LOAD:
1273     return LegalizeLoadOps(Node);
1274   case ISD::STORE:
1275     return LegalizeStoreOps(Node);
1276   }
1277 }
1278 
1279 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1280   SDValue Vec = Op.getOperand(0);
1281   SDValue Idx = Op.getOperand(1);
1282   SDLoc dl(Op);
1283 
1284   // Before we generate a new store to a temporary stack slot, see if there is
1285   // already one that we can use. There often is because when we scalarize
1286   // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole
1287   // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in
1288   // the vector. If all are expanded here, we don't want one store per vector
1289   // element.
1290 
1291   // Caches for hasPredecessorHelper
1292   SmallPtrSet<const SDNode *, 32> Visited;
1293   SmallVector<const SDNode *, 16> Worklist;
1294   Visited.insert(Op.getNode());
1295   Worklist.push_back(Idx.getNode());
1296   SDValue StackPtr, Ch;
1297   for (SDNode::use_iterator UI = Vec.getNode()->use_begin(),
1298        UE = Vec.getNode()->use_end(); UI != UE; ++UI) {
1299     SDNode *User = *UI;
1300     if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) {
1301       if (ST->isIndexed() || ST->isTruncatingStore() ||
1302           ST->getValue() != Vec)
1303         continue;
1304 
1305       // Make sure that nothing else could have stored into the destination of
1306       // this store.
1307       if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode()))
1308         continue;
1309 
1310       // If the index is dependent on the store we will introduce a cycle when
1311       // creating the load (the load uses the index, and by replacing the chain
1312       // we will make the index dependent on the load). Also, the store might be
1313       // dependent on the extractelement and introduce a cycle when creating
1314       // the load.
1315       if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) ||
1316           ST->hasPredecessor(Op.getNode()))
1317         continue;
1318 
1319       StackPtr = ST->getBasePtr();
1320       Ch = SDValue(ST, 0);
1321       break;
1322     }
1323   }
1324 
1325   EVT VecVT = Vec.getValueType();
1326 
1327   if (!Ch.getNode()) {
1328     // Store the value to a temporary stack slot, then LOAD the returned part.
1329     StackPtr = DAG.CreateStackTemporary(VecVT);
1330     Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1331                       MachinePointerInfo());
1332   }
1333 
1334   StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1335 
1336   SDValue NewLoad;
1337 
1338   if (Op.getValueType().isVector())
1339     NewLoad =
1340         DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo());
1341   else
1342     NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1343                              MachinePointerInfo(),
1344                              VecVT.getVectorElementType());
1345 
1346   // Replace the chain going out of the store, by the one out of the load.
1347   DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1));
1348 
1349   // We introduced a cycle though, so update the loads operands, making sure
1350   // to use the original store's chain as an incoming chain.
1351   SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(),
1352                                           NewLoad->op_end());
1353   NewLoadOperands[0] = Ch;
1354   NewLoad =
1355       SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0);
1356   return NewLoad;
1357 }
1358 
1359 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1360   assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1361 
1362   SDValue Vec  = Op.getOperand(0);
1363   SDValue Part = Op.getOperand(1);
1364   SDValue Idx  = Op.getOperand(2);
1365   SDLoc dl(Op);
1366 
1367   // Store the value to a temporary stack slot, then LOAD the returned part.
1368   EVT VecVT = Vec.getValueType();
1369   SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
1370   int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1371   MachinePointerInfo PtrInfo =
1372       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1373 
1374   // First store the whole vector.
1375   SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo);
1376 
1377   // Then store the inserted part.
1378   SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1379 
1380   // Store the subvector.
1381   Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, MachinePointerInfo());
1382 
1383   // Finally, load the updated vector.
1384   return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo);
1385 }
1386 
1387 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1388   // We can't handle this case efficiently.  Allocate a sufficiently
1389   // aligned object on the stack, store each element into it, then load
1390   // the result as a vector.
1391   // Create the stack frame object.
1392   EVT VT = Node->getValueType(0);
1393   EVT EltVT = VT.getVectorElementType();
1394   SDLoc dl(Node);
1395   SDValue FIPtr = DAG.CreateStackTemporary(VT);
1396   int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1397   MachinePointerInfo PtrInfo =
1398       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1399 
1400   // Emit a store of each element to the stack slot.
1401   SmallVector<SDValue, 8> Stores;
1402   unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1403   // Store (in the right endianness) the elements to memory.
1404   for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1405     // Ignore undef elements.
1406     if (Node->getOperand(i).isUndef()) continue;
1407 
1408     unsigned Offset = TypeByteSize*i;
1409 
1410     SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType());
1411     Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1412 
1413     // If the destination vector element type is narrower than the source
1414     // element type, only store the bits necessary.
1415     if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1416       Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1417                                          Node->getOperand(i), Idx,
1418                                          PtrInfo.getWithOffset(Offset), EltVT));
1419     } else
1420       Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1421                                     Idx, PtrInfo.getWithOffset(Offset)));
1422   }
1423 
1424   SDValue StoreChain;
1425   if (!Stores.empty())    // Not all undef elements?
1426     StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
1427   else
1428     StoreChain = DAG.getEntryNode();
1429 
1430   // Result is a load from the stack slot.
1431   return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo);
1432 }
1433 
1434 /// Bitcast a floating-point value to an integer value. Only bitcast the part
1435 /// containing the sign bit if the target has no integer value capable of
1436 /// holding all bits of the floating-point value.
1437 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State,
1438                                              const SDLoc &DL,
1439                                              SDValue Value) const {
1440   EVT FloatVT = Value.getValueType();
1441   unsigned NumBits = FloatVT.getSizeInBits();
1442   State.FloatVT = FloatVT;
1443   EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
1444   // Convert to an integer of the same size.
1445   if (TLI.isTypeLegal(IVT)) {
1446     State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value);
1447     State.SignMask = APInt::getSignMask(NumBits);
1448     State.SignBit = NumBits - 1;
1449     return;
1450   }
1451 
1452   auto &DataLayout = DAG.getDataLayout();
1453   // Store the float to memory, then load the sign part out as an integer.
1454   MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8);
1455   // First create a temporary that is aligned for both the load and store.
1456   SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1457   int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1458   // Then store the float to it.
1459   State.FloatPtr = StackPtr;
1460   MachineFunction &MF = DAG.getMachineFunction();
1461   State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI);
1462   State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr,
1463                              State.FloatPointerInfo);
1464 
1465   SDValue IntPtr;
1466   if (DataLayout.isBigEndian()) {
1467     assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1468     // Load out a legal integer with the same sign bit as the float.
1469     IntPtr = StackPtr;
1470     State.IntPointerInfo = State.FloatPointerInfo;
1471   } else {
1472     // Advance the pointer so that the loaded byte will contain the sign bit.
1473     unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1;
1474     IntPtr = DAG.getNode(ISD::ADD, DL, StackPtr.getValueType(), StackPtr,
1475                       DAG.getConstant(ByteOffset, DL, StackPtr.getValueType()));
1476     State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI,
1477                                                              ByteOffset);
1478   }
1479 
1480   State.IntPtr = IntPtr;
1481   State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr,
1482                                   State.IntPointerInfo, MVT::i8);
1483   State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7);
1484   State.SignBit = 7;
1485 }
1486 
1487 /// Replace the integer value produced by getSignAsIntValue() with a new value
1488 /// and cast the result back to a floating-point type.
1489 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State,
1490                                               const SDLoc &DL,
1491                                               SDValue NewIntValue) const {
1492   if (!State.Chain)
1493     return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue);
1494 
1495   // Override the part containing the sign bit in the value stored on the stack.
1496   SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr,
1497                                     State.IntPointerInfo, MVT::i8);
1498   return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr,
1499                      State.FloatPointerInfo);
1500 }
1501 
1502 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const {
1503   SDLoc DL(Node);
1504   SDValue Mag = Node->getOperand(0);
1505   SDValue Sign = Node->getOperand(1);
1506 
1507   // Get sign bit into an integer value.
1508   FloatSignAsInt SignAsInt;
1509   getSignAsIntValue(SignAsInt, DL, Sign);
1510 
1511   EVT IntVT = SignAsInt.IntValue.getValueType();
1512   SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT);
1513   SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue,
1514                                 SignMask);
1515 
1516   // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X)
1517   EVT FloatVT = Mag.getValueType();
1518   if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) &&
1519       TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) {
1520     SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag);
1521     SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue);
1522     SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit,
1523                                 DAG.getConstant(0, DL, IntVT), ISD::SETNE);
1524     return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue);
1525   }
1526 
1527   // Transform Mag value to integer, and clear the sign bit.
1528   FloatSignAsInt MagAsInt;
1529   getSignAsIntValue(MagAsInt, DL, Mag);
1530   EVT MagVT = MagAsInt.IntValue.getValueType();
1531   SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT);
1532   SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue,
1533                                     ClearSignMask);
1534 
1535   // Get the signbit at the right position for MagAsInt.
1536   int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit;
1537   EVT ShiftVT = IntVT;
1538   if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) {
1539     SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit);
1540     ShiftVT = MagVT;
1541   }
1542   if (ShiftAmount > 0) {
1543     SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT);
1544     SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst);
1545   } else if (ShiftAmount < 0) {
1546     SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT);
1547     SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst);
1548   }
1549   if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) {
1550     SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit);
1551   }
1552 
1553   // Store the part with the modified sign and convert back to float.
1554   SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit);
1555   return modifySignAsInt(MagAsInt, DL, CopiedSign);
1556 }
1557 
1558 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const {
1559   SDLoc DL(Node);
1560   SDValue Value = Node->getOperand(0);
1561 
1562   // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal.
1563   EVT FloatVT = Value.getValueType();
1564   if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) {
1565     SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT);
1566     return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero);
1567   }
1568 
1569   // Transform value to integer, clear the sign bit and transform back.
1570   FloatSignAsInt ValueAsInt;
1571   getSignAsIntValue(ValueAsInt, DL, Value);
1572   EVT IntVT = ValueAsInt.IntValue.getValueType();
1573   SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT);
1574   SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue,
1575                                     ClearSignMask);
1576   return modifySignAsInt(ValueAsInt, DL, ClearedSign);
1577 }
1578 
1579 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1580                                            SmallVectorImpl<SDValue> &Results) {
1581   unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1582   assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1583           " not tell us which reg is the stack pointer!");
1584   SDLoc dl(Node);
1585   EVT VT = Node->getValueType(0);
1586   SDValue Tmp1 = SDValue(Node, 0);
1587   SDValue Tmp2 = SDValue(Node, 1);
1588   SDValue Tmp3 = Node->getOperand(2);
1589   SDValue Chain = Tmp1.getOperand(0);
1590 
1591   // Chain the dynamic stack allocation so that it doesn't modify the stack
1592   // pointer when other instructions are using the stack.
1593   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
1594 
1595   SDValue Size  = Tmp2.getOperand(1);
1596   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1597   Chain = SP.getValue(1);
1598   unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1599   unsigned StackAlign =
1600       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
1601   Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1602   if (Align > StackAlign)
1603     Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
1604                        DAG.getConstant(-(uint64_t)Align, dl, VT));
1605   Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1606 
1607   Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
1608                             DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
1609 
1610   Results.push_back(Tmp1);
1611   Results.push_back(Tmp2);
1612 }
1613 
1614 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current
1615 /// target.
1616 ///
1617 /// If the SETCC has been legalized using AND / OR, then the legalized node
1618 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
1619 /// will be set to false.
1620 ///
1621 /// If the SETCC has been legalized by using getSetCCSwappedOperands(),
1622 /// then the values of LHS and RHS will be swapped, CC will be set to the
1623 /// new condition, and NeedInvert will be set to false.
1624 ///
1625 /// If the SETCC has been legalized using the inverse condcode, then LHS and
1626 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert
1627 /// will be set to true. The caller must invert the result of the SETCC with
1628 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect
1629 /// of a true/false result.
1630 ///
1631 /// \returns true if the SetCC has been legalized, false if it hasn't.
1632 bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, SDValue &LHS,
1633                                                  SDValue &RHS, SDValue &CC,
1634                                                  bool &NeedInvert,
1635                                                  const SDLoc &dl) {
1636   MVT OpVT = LHS.getSimpleValueType();
1637   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1638   NeedInvert = false;
1639   bool NeedSwap = false;
1640   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1641   default: llvm_unreachable("Unknown condition code action!");
1642   case TargetLowering::Legal:
1643     // Nothing to do.
1644     break;
1645   case TargetLowering::Expand: {
1646     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
1647     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1648       std::swap(LHS, RHS);
1649       CC = DAG.getCondCode(InvCC);
1650       return true;
1651     }
1652     // Swapping operands didn't work. Try inverting the condition.
1653     InvCC = getSetCCInverse(CCCode, OpVT.isInteger());
1654     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1655       // If inverting the condition is not enough, try swapping operands
1656       // on top of it.
1657       InvCC = ISD::getSetCCSwappedOperands(InvCC);
1658       NeedSwap = true;
1659     }
1660     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1661       CC = DAG.getCondCode(InvCC);
1662       NeedInvert = true;
1663       if (NeedSwap)
1664         std::swap(LHS, RHS);
1665       return true;
1666     }
1667 
1668     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1669     unsigned Opc = 0;
1670     switch (CCCode) {
1671     default: llvm_unreachable("Don't know how to expand this condition!");
1672     case ISD::SETO:
1673         assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT)
1674             && "If SETO is expanded, SETOEQ must be legal!");
1675         CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
1676     case ISD::SETUO:
1677         assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT)
1678             && "If SETUO is expanded, SETUNE must be legal!");
1679         CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR;  break;
1680     case ISD::SETOEQ:
1681     case ISD::SETOGT:
1682     case ISD::SETOGE:
1683     case ISD::SETOLT:
1684     case ISD::SETOLE:
1685     case ISD::SETONE:
1686     case ISD::SETUEQ:
1687     case ISD::SETUNE:
1688     case ISD::SETUGT:
1689     case ISD::SETUGE:
1690     case ISD::SETULT:
1691     case ISD::SETULE:
1692         // If we are floating point, assign and break, otherwise fall through.
1693         if (!OpVT.isInteger()) {
1694           // We can use the 4th bit to tell if we are the unordered
1695           // or ordered version of the opcode.
1696           CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
1697           Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
1698           CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
1699           break;
1700         }
1701         // Fallthrough if we are unsigned integer.
1702         LLVM_FALLTHROUGH;
1703     case ISD::SETLE:
1704     case ISD::SETGT:
1705     case ISD::SETGE:
1706     case ISD::SETLT:
1707     case ISD::SETNE:
1708     case ISD::SETEQ:
1709       // If all combinations of inverting the condition and swapping operands
1710       // didn't work then we have no means to expand the condition.
1711       llvm_unreachable("Don't know how to expand this condition!");
1712     }
1713 
1714     SDValue SetCC1, SetCC2;
1715     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
1716       // If we aren't the ordered or unorder operation,
1717       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
1718       SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1719       SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1720     } else {
1721       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
1722       SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1);
1723       SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2);
1724     }
1725     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1726     RHS = SDValue();
1727     CC  = SDValue();
1728     return true;
1729   }
1730   }
1731   return false;
1732 }
1733 
1734 /// Emit a store/load combination to the stack.  This stores
1735 /// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1736 /// a load from the stack slot to DestVT, extending it if needed.
1737 /// The resultant code need not be legal.
1738 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1739                                                EVT DestVT, const SDLoc &dl) {
1740   // Create the stack frame object.
1741   unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment(
1742       SrcOp.getValueType().getTypeForEVT(*DAG.getContext()));
1743   SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1744 
1745   FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1746   int SPFI = StackPtrFI->getIndex();
1747   MachinePointerInfo PtrInfo =
1748       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
1749 
1750   unsigned SrcSize = SrcOp.getValueSizeInBits();
1751   unsigned SlotSize = SlotVT.getSizeInBits();
1752   unsigned DestSize = DestVT.getSizeInBits();
1753   Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1754   unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType);
1755 
1756   // Emit a store to the stack slot.  Use a truncstore if the input value is
1757   // later than DestVT.
1758   SDValue Store;
1759 
1760   if (SrcSize > SlotSize)
1761     Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, PtrInfo,
1762                               SlotVT, SrcAlign);
1763   else {
1764     assert(SrcSize == SlotSize && "Invalid store");
1765     Store =
1766         DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, PtrInfo, SrcAlign);
1767   }
1768 
1769   // Result is a load from the stack slot.
1770   if (SlotSize == DestSize)
1771     return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign);
1772 
1773   assert(SlotSize < DestSize && "Unknown extension!");
1774   return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT,
1775                         DestAlign);
1776 }
1777 
1778 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1779   SDLoc dl(Node);
1780   // Create a vector sized/aligned stack slot, store the value to element #0,
1781   // then load the whole vector back out.
1782   SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1783 
1784   FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1785   int SPFI = StackPtrFI->getIndex();
1786 
1787   SDValue Ch = DAG.getTruncStore(
1788       DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr,
1789       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI),
1790       Node->getValueType(0).getVectorElementType());
1791   return DAG.getLoad(
1792       Node->getValueType(0), dl, Ch, StackPtr,
1793       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
1794 }
1795 
1796 static bool
1797 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG,
1798                      const TargetLowering &TLI, SDValue &Res) {
1799   unsigned NumElems = Node->getNumOperands();
1800   SDLoc dl(Node);
1801   EVT VT = Node->getValueType(0);
1802 
1803   // Try to group the scalars into pairs, shuffle the pairs together, then
1804   // shuffle the pairs of pairs together, etc. until the vector has
1805   // been built. This will work only if all of the necessary shuffle masks
1806   // are legal.
1807 
1808   // We do this in two phases; first to check the legality of the shuffles,
1809   // and next, assuming that all shuffles are legal, to create the new nodes.
1810   for (int Phase = 0; Phase < 2; ++Phase) {
1811     SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals,
1812                                                               NewIntermedVals;
1813     for (unsigned i = 0; i < NumElems; ++i) {
1814       SDValue V = Node->getOperand(i);
1815       if (V.isUndef())
1816         continue;
1817 
1818       SDValue Vec;
1819       if (Phase)
1820         Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V);
1821       IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i)));
1822     }
1823 
1824     while (IntermedVals.size() > 2) {
1825       NewIntermedVals.clear();
1826       for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) {
1827         // This vector and the next vector are shuffled together (simply to
1828         // append the one to the other).
1829         SmallVector<int, 16> ShuffleVec(NumElems, -1);
1830 
1831         SmallVector<int, 16> FinalIndices;
1832         FinalIndices.reserve(IntermedVals[i].second.size() +
1833                              IntermedVals[i+1].second.size());
1834 
1835         int k = 0;
1836         for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f;
1837              ++j, ++k) {
1838           ShuffleVec[k] = j;
1839           FinalIndices.push_back(IntermedVals[i].second[j]);
1840         }
1841         for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f;
1842              ++j, ++k) {
1843           ShuffleVec[k] = NumElems + j;
1844           FinalIndices.push_back(IntermedVals[i+1].second[j]);
1845         }
1846 
1847         SDValue Shuffle;
1848         if (Phase)
1849           Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first,
1850                                          IntermedVals[i+1].first,
1851                                          ShuffleVec);
1852         else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1853           return false;
1854         NewIntermedVals.push_back(
1855             std::make_pair(Shuffle, std::move(FinalIndices)));
1856       }
1857 
1858       // If we had an odd number of defined values, then append the last
1859       // element to the array of new vectors.
1860       if ((IntermedVals.size() & 1) != 0)
1861         NewIntermedVals.push_back(IntermedVals.back());
1862 
1863       IntermedVals.swap(NewIntermedVals);
1864     }
1865 
1866     assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 &&
1867            "Invalid number of intermediate vectors");
1868     SDValue Vec1 = IntermedVals[0].first;
1869     SDValue Vec2;
1870     if (IntermedVals.size() > 1)
1871       Vec2 = IntermedVals[1].first;
1872     else if (Phase)
1873       Vec2 = DAG.getUNDEF(VT);
1874 
1875     SmallVector<int, 16> ShuffleVec(NumElems, -1);
1876     for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i)
1877       ShuffleVec[IntermedVals[0].second[i]] = i;
1878     for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i)
1879       ShuffleVec[IntermedVals[1].second[i]] = NumElems + i;
1880 
1881     if (Phase)
1882       Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
1883     else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1884       return false;
1885   }
1886 
1887   return true;
1888 }
1889 
1890 /// Expand a BUILD_VECTOR node on targets that don't
1891 /// support the operation, but do support the resultant vector type.
1892 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1893   unsigned NumElems = Node->getNumOperands();
1894   SDValue Value1, Value2;
1895   SDLoc dl(Node);
1896   EVT VT = Node->getValueType(0);
1897   EVT OpVT = Node->getOperand(0).getValueType();
1898   EVT EltVT = VT.getVectorElementType();
1899 
1900   // If the only non-undef value is the low element, turn this into a
1901   // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1902   bool isOnlyLowElement = true;
1903   bool MoreThanTwoValues = false;
1904   bool isConstant = true;
1905   for (unsigned i = 0; i < NumElems; ++i) {
1906     SDValue V = Node->getOperand(i);
1907     if (V.isUndef())
1908       continue;
1909     if (i > 0)
1910       isOnlyLowElement = false;
1911     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1912       isConstant = false;
1913 
1914     if (!Value1.getNode()) {
1915       Value1 = V;
1916     } else if (!Value2.getNode()) {
1917       if (V != Value1)
1918         Value2 = V;
1919     } else if (V != Value1 && V != Value2) {
1920       MoreThanTwoValues = true;
1921     }
1922   }
1923 
1924   if (!Value1.getNode())
1925     return DAG.getUNDEF(VT);
1926 
1927   if (isOnlyLowElement)
1928     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1929 
1930   // If all elements are constants, create a load from the constant pool.
1931   if (isConstant) {
1932     SmallVector<Constant*, 16> CV;
1933     for (unsigned i = 0, e = NumElems; i != e; ++i) {
1934       if (ConstantFPSDNode *V =
1935           dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1936         CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1937       } else if (ConstantSDNode *V =
1938                  dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1939         if (OpVT==EltVT)
1940           CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1941         else {
1942           // If OpVT and EltVT don't match, EltVT is not legal and the
1943           // element values have been promoted/truncated earlier.  Undo this;
1944           // we don't want a v16i8 to become a v16i32 for example.
1945           const ConstantInt *CI = V->getConstantIntValue();
1946           CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1947                                         CI->getZExtValue()));
1948         }
1949       } else {
1950         assert(Node->getOperand(i).isUndef());
1951         Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1952         CV.push_back(UndefValue::get(OpNTy));
1953       }
1954     }
1955     Constant *CP = ConstantVector::get(CV);
1956     SDValue CPIdx =
1957         DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout()));
1958     unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1959     return DAG.getLoad(
1960         VT, dl, DAG.getEntryNode(), CPIdx,
1961         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
1962         Alignment);
1963   }
1964 
1965   SmallSet<SDValue, 16> DefinedValues;
1966   for (unsigned i = 0; i < NumElems; ++i) {
1967     if (Node->getOperand(i).isUndef())
1968       continue;
1969     DefinedValues.insert(Node->getOperand(i));
1970   }
1971 
1972   if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) {
1973     if (!MoreThanTwoValues) {
1974       SmallVector<int, 8> ShuffleVec(NumElems, -1);
1975       for (unsigned i = 0; i < NumElems; ++i) {
1976         SDValue V = Node->getOperand(i);
1977         if (V.isUndef())
1978           continue;
1979         ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1980       }
1981       if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1982         // Get the splatted value into the low element of a vector register.
1983         SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1984         SDValue Vec2;
1985         if (Value2.getNode())
1986           Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1987         else
1988           Vec2 = DAG.getUNDEF(VT);
1989 
1990         // Return shuffle(LowValVec, undef, <0,0,0,0>)
1991         return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
1992       }
1993     } else {
1994       SDValue Res;
1995       if (ExpandBVWithShuffles(Node, DAG, TLI, Res))
1996         return Res;
1997     }
1998   }
1999 
2000   // Otherwise, we can't handle this case efficiently.
2001   return ExpandVectorBuildThroughStack(Node);
2002 }
2003 
2004 // Expand a node into a call to a libcall.  If the result value
2005 // does not fit into a register, return the lo part and set the hi part to the
2006 // by-reg argument.  If it does fit into a single register, return the result
2007 // and leave the Hi part unset.
2008 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
2009                                             bool isSigned) {
2010   TargetLowering::ArgListTy Args;
2011   TargetLowering::ArgListEntry Entry;
2012   for (const SDValue &Op : Node->op_values()) {
2013     EVT ArgVT = Op.getValueType();
2014     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2015     Entry.Node = Op;
2016     Entry.Ty = ArgTy;
2017     Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
2018     Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
2019     Args.push_back(Entry);
2020   }
2021   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2022                                          TLI.getPointerTy(DAG.getDataLayout()));
2023 
2024   EVT RetVT = Node->getValueType(0);
2025   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2026 
2027   // By default, the input chain to this libcall is the entry node of the
2028   // function. If the libcall is going to be emitted as a tail call then
2029   // TLI.isUsedByReturnOnly will change it to the right chain if the return
2030   // node which is being folded has a non-entry input chain.
2031   SDValue InChain = DAG.getEntryNode();
2032 
2033   // isTailCall may be true since the callee does not reference caller stack
2034   // frame. Check if it's in the right position and that the return types match.
2035   SDValue TCChain = InChain;
2036   const Function &F = DAG.getMachineFunction().getFunction();
2037   bool isTailCall =
2038       TLI.isInTailCallPosition(DAG, Node, TCChain) &&
2039       (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy());
2040   if (isTailCall)
2041     InChain = TCChain;
2042 
2043   TargetLowering::CallLoweringInfo CLI(DAG);
2044   bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned);
2045   CLI.setDebugLoc(SDLoc(Node))
2046       .setChain(InChain)
2047       .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2048                     std::move(Args))
2049       .setTailCall(isTailCall)
2050       .setSExtResult(signExtend)
2051       .setZExtResult(!signExtend)
2052       .setIsPostTypeLegalization(true);
2053 
2054   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2055 
2056   if (!CallInfo.second.getNode()) {
2057     LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump());
2058     // It's a tailcall, return the chain (which is the DAG root).
2059     return DAG.getRoot();
2060   }
2061 
2062   LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump());
2063   return CallInfo.first;
2064 }
2065 
2066 // Expand a node into a call to a libcall. Similar to
2067 // ExpandLibCall except that the first operand is the in-chain.
2068 std::pair<SDValue, SDValue>
2069 SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
2070                                          SDNode *Node,
2071                                          bool isSigned) {
2072   SDValue InChain = Node->getOperand(0);
2073 
2074   TargetLowering::ArgListTy Args;
2075   TargetLowering::ArgListEntry Entry;
2076   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
2077     EVT ArgVT = Node->getOperand(i).getValueType();
2078     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2079     Entry.Node = Node->getOperand(i);
2080     Entry.Ty = ArgTy;
2081     Entry.IsSExt = isSigned;
2082     Entry.IsZExt = !isSigned;
2083     Args.push_back(Entry);
2084   }
2085   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2086                                          TLI.getPointerTy(DAG.getDataLayout()));
2087 
2088   Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
2089 
2090   TargetLowering::CallLoweringInfo CLI(DAG);
2091   CLI.setDebugLoc(SDLoc(Node))
2092       .setChain(InChain)
2093       .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2094                     std::move(Args))
2095       .setSExtResult(isSigned)
2096       .setZExtResult(!isSigned);
2097 
2098   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2099 
2100   return CallInfo;
2101 }
2102 
2103 SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2104                                               RTLIB::Libcall Call_F32,
2105                                               RTLIB::Libcall Call_F64,
2106                                               RTLIB::Libcall Call_F80,
2107                                               RTLIB::Libcall Call_F128,
2108                                               RTLIB::Libcall Call_PPCF128) {
2109   if (Node->isStrictFPOpcode())
2110     Node = DAG.mutateStrictFPToFP(Node);
2111 
2112   RTLIB::Libcall LC;
2113   switch (Node->getSimpleValueType(0).SimpleTy) {
2114   default: llvm_unreachable("Unexpected request for libcall!");
2115   case MVT::f32: LC = Call_F32; break;
2116   case MVT::f64: LC = Call_F64; break;
2117   case MVT::f80: LC = Call_F80; break;
2118   case MVT::f128: LC = Call_F128; break;
2119   case MVT::ppcf128: LC = Call_PPCF128; break;
2120   }
2121   return ExpandLibCall(LC, Node, false);
2122 }
2123 
2124 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2125                                                RTLIB::Libcall Call_I8,
2126                                                RTLIB::Libcall Call_I16,
2127                                                RTLIB::Libcall Call_I32,
2128                                                RTLIB::Libcall Call_I64,
2129                                                RTLIB::Libcall Call_I128) {
2130   RTLIB::Libcall LC;
2131   switch (Node->getSimpleValueType(0).SimpleTy) {
2132   default: llvm_unreachable("Unexpected request for libcall!");
2133   case MVT::i8:   LC = Call_I8; break;
2134   case MVT::i16:  LC = Call_I16; break;
2135   case MVT::i32:  LC = Call_I32; break;
2136   case MVT::i64:  LC = Call_I64; break;
2137   case MVT::i128: LC = Call_I128; break;
2138   }
2139   return ExpandLibCall(LC, Node, isSigned);
2140 }
2141 
2142 /// Issue libcalls to __{u}divmod to compute div / rem pairs.
2143 void
2144 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2145                                           SmallVectorImpl<SDValue> &Results) {
2146   unsigned Opcode = Node->getOpcode();
2147   bool isSigned = Opcode == ISD::SDIVREM;
2148 
2149   RTLIB::Libcall LC;
2150   switch (Node->getSimpleValueType(0).SimpleTy) {
2151   default: llvm_unreachable("Unexpected request for libcall!");
2152   case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2153   case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2154   case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2155   case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2156   case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2157   }
2158 
2159   // The input chain to this libcall is the entry node of the function.
2160   // Legalizing the call will automatically add the previous call to the
2161   // dependence.
2162   SDValue InChain = DAG.getEntryNode();
2163 
2164   EVT RetVT = Node->getValueType(0);
2165   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2166 
2167   TargetLowering::ArgListTy Args;
2168   TargetLowering::ArgListEntry Entry;
2169   for (const SDValue &Op : Node->op_values()) {
2170     EVT ArgVT = Op.getValueType();
2171     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2172     Entry.Node = Op;
2173     Entry.Ty = ArgTy;
2174     Entry.IsSExt = isSigned;
2175     Entry.IsZExt = !isSigned;
2176     Args.push_back(Entry);
2177   }
2178 
2179   // Also pass the return address of the remainder.
2180   SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2181   Entry.Node = FIPtr;
2182   Entry.Ty = RetTy->getPointerTo();
2183   Entry.IsSExt = isSigned;
2184   Entry.IsZExt = !isSigned;
2185   Args.push_back(Entry);
2186 
2187   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2188                                          TLI.getPointerTy(DAG.getDataLayout()));
2189 
2190   SDLoc dl(Node);
2191   TargetLowering::CallLoweringInfo CLI(DAG);
2192   CLI.setDebugLoc(dl)
2193       .setChain(InChain)
2194       .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2195                     std::move(Args))
2196       .setSExtResult(isSigned)
2197       .setZExtResult(!isSigned);
2198 
2199   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2200 
2201   // Remainder is loaded back from the stack frame.
2202   SDValue Rem =
2203       DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo());
2204   Results.push_back(CallInfo.first);
2205   Results.push_back(Rem);
2206 }
2207 
2208 /// Return true if sincos libcall is available.
2209 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
2210   RTLIB::Libcall LC;
2211   switch (Node->getSimpleValueType(0).SimpleTy) {
2212   default: llvm_unreachable("Unexpected request for libcall!");
2213   case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
2214   case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
2215   case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
2216   case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
2217   case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2218   }
2219   return TLI.getLibcallName(LC) != nullptr;
2220 }
2221 
2222 /// Only issue sincos libcall if both sin and cos are needed.
2223 static bool useSinCos(SDNode *Node) {
2224   unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
2225     ? ISD::FCOS : ISD::FSIN;
2226 
2227   SDValue Op0 = Node->getOperand(0);
2228   for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2229        UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2230     SDNode *User = *UI;
2231     if (User == Node)
2232       continue;
2233     // The other user might have been turned into sincos already.
2234     if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
2235       return true;
2236   }
2237   return false;
2238 }
2239 
2240 /// Issue libcalls to sincos to compute sin / cos pairs.
2241 void
2242 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
2243                                           SmallVectorImpl<SDValue> &Results) {
2244   RTLIB::Libcall LC;
2245   switch (Node->getSimpleValueType(0).SimpleTy) {
2246   default: llvm_unreachable("Unexpected request for libcall!");
2247   case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
2248   case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
2249   case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
2250   case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
2251   case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2252   }
2253 
2254   // The input chain to this libcall is the entry node of the function.
2255   // Legalizing the call will automatically add the previous call to the
2256   // dependence.
2257   SDValue InChain = DAG.getEntryNode();
2258 
2259   EVT RetVT = Node->getValueType(0);
2260   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2261 
2262   TargetLowering::ArgListTy Args;
2263   TargetLowering::ArgListEntry Entry;
2264 
2265   // Pass the argument.
2266   Entry.Node = Node->getOperand(0);
2267   Entry.Ty = RetTy;
2268   Entry.IsSExt = false;
2269   Entry.IsZExt = false;
2270   Args.push_back(Entry);
2271 
2272   // Pass the return address of sin.
2273   SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
2274   Entry.Node = SinPtr;
2275   Entry.Ty = RetTy->getPointerTo();
2276   Entry.IsSExt = false;
2277   Entry.IsZExt = false;
2278   Args.push_back(Entry);
2279 
2280   // Also pass the return address of the cos.
2281   SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
2282   Entry.Node = CosPtr;
2283   Entry.Ty = RetTy->getPointerTo();
2284   Entry.IsSExt = false;
2285   Entry.IsZExt = false;
2286   Args.push_back(Entry);
2287 
2288   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2289                                          TLI.getPointerTy(DAG.getDataLayout()));
2290 
2291   SDLoc dl(Node);
2292   TargetLowering::CallLoweringInfo CLI(DAG);
2293   CLI.setDebugLoc(dl).setChain(InChain).setLibCallee(
2294       TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee,
2295       std::move(Args));
2296 
2297   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2298 
2299   Results.push_back(
2300       DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo()));
2301   Results.push_back(
2302       DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo()));
2303 }
2304 
2305 /// This function is responsible for legalizing a
2306 /// INT_TO_FP operation of the specified operand when the target requests that
2307 /// we expand it.  At this point, we know that the result and operand types are
2308 /// legal for the target.
2309 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0,
2310                                                    EVT DestVT,
2311                                                    const SDLoc &dl) {
2312   EVT SrcVT = Op0.getValueType();
2313 
2314   // TODO: Should any fast-math-flags be set for the created nodes?
2315   LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n");
2316   if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
2317     LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double "
2318                          "expansion\n");
2319 
2320     // Get the stack frame index of a 8 byte buffer.
2321     SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2322 
2323     // word offset constant for Hi/Lo address computation
2324     SDValue WordOff = DAG.getConstant(sizeof(int), dl,
2325                                       StackSlot.getValueType());
2326     // set up Hi and Lo (into buffer) address based on endian
2327     SDValue Hi = StackSlot;
2328     SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(),
2329                              StackSlot, WordOff);
2330     if (DAG.getDataLayout().isLittleEndian())
2331       std::swap(Hi, Lo);
2332 
2333     // if signed map to unsigned space
2334     SDValue Op0Mapped;
2335     if (isSigned) {
2336       // constant used to invert sign bit (signed to unsigned mapping)
2337       SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32);
2338       Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2339     } else {
2340       Op0Mapped = Op0;
2341     }
2342     // store the lo of the constructed double - based on integer input
2343     SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo,
2344                                   MachinePointerInfo());
2345     // initial hi portion of constructed double
2346     SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32);
2347     // store the hi of the constructed double - biased exponent
2348     SDValue Store2 =
2349         DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo());
2350     // load the constructed double
2351     SDValue Load =
2352         DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo());
2353     // FP constant to bias correct the final result
2354     SDValue Bias = DAG.getConstantFP(isSigned ?
2355                                      BitsToDouble(0x4330000080000000ULL) :
2356                                      BitsToDouble(0x4330000000000000ULL),
2357                                      dl, MVT::f64);
2358     // subtract the bias
2359     SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2360     // final result
2361     SDValue Result = DAG.getFPExtendOrRound(Sub, dl, DestVT);
2362     return Result;
2363   }
2364   assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2365   // Code below here assumes !isSigned without checking again.
2366 
2367   SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2368 
2369   SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0,
2370                                  DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
2371   SDValue Zero = DAG.getIntPtrConstant(0, dl),
2372           Four = DAG.getIntPtrConstant(4, dl);
2373   SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(),
2374                                     SignSet, Four, Zero);
2375 
2376   // If the sign bit of the integer is set, the large number will be treated
2377   // as a negative number.  To counteract this, the dynamic code adds an
2378   // offset depending on the data type.
2379   uint64_t FF;
2380   switch (SrcVT.getSimpleVT().SimpleTy) {
2381   default: llvm_unreachable("Unsupported integer type!");
2382   case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2383   case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2384   case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2385   case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2386   }
2387   if (DAG.getDataLayout().isLittleEndian())
2388     FF <<= 32;
2389   Constant *FudgeFactor = ConstantInt::get(
2390                                        Type::getInt64Ty(*DAG.getContext()), FF);
2391 
2392   SDValue CPIdx =
2393       DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout()));
2394   unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2395   CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset);
2396   Alignment = std::min(Alignment, 4u);
2397   SDValue FudgeInReg;
2398   if (DestVT == MVT::f32)
2399     FudgeInReg = DAG.getLoad(
2400         MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2401         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
2402         Alignment);
2403   else {
2404     SDValue Load = DAG.getExtLoad(
2405         ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx,
2406         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
2407         Alignment);
2408     HandleSDNode Handle(Load);
2409     LegalizeOp(Load.getNode());
2410     FudgeInReg = Handle.getValue();
2411   }
2412 
2413   return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2414 }
2415 
2416 /// This function is responsible for legalizing a
2417 /// *INT_TO_FP operation of the specified operand when the target requests that
2418 /// we promote it.  At this point, we know that the result and operand types are
2419 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2420 /// operation that takes a larger input.
2421 SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT,
2422                                                     bool isSigned,
2423                                                     const SDLoc &dl) {
2424   // First step, figure out the appropriate *INT_TO_FP operation to use.
2425   EVT NewInTy = LegalOp.getValueType();
2426 
2427   unsigned OpToUse = 0;
2428 
2429   // Scan for the appropriate larger type to use.
2430   while (true) {
2431     NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2432     assert(NewInTy.isInteger() && "Ran out of possibilities!");
2433 
2434     // If the target supports SINT_TO_FP of this type, use it.
2435     if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2436       OpToUse = ISD::SINT_TO_FP;
2437       break;
2438     }
2439     if (isSigned) continue;
2440 
2441     // If the target supports UINT_TO_FP of this type, use it.
2442     if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2443       OpToUse = ISD::UINT_TO_FP;
2444       break;
2445     }
2446 
2447     // Otherwise, try a larger type.
2448   }
2449 
2450   // Okay, we found the operation and type to use.  Zero extend our input to the
2451   // desired type then run the operation on it.
2452   return DAG.getNode(OpToUse, dl, DestVT,
2453                      DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2454                                  dl, NewInTy, LegalOp));
2455 }
2456 
2457 /// This function is responsible for legalizing a
2458 /// FP_TO_*INT operation of the specified operand when the target requests that
2459 /// we promote it.  At this point, we know that the result and operand types are
2460 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2461 /// operation that returns a larger result.
2462 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT,
2463                                                     bool isSigned,
2464                                                     const SDLoc &dl) {
2465   // First step, figure out the appropriate FP_TO*INT operation to use.
2466   EVT NewOutTy = DestVT;
2467 
2468   unsigned OpToUse = 0;
2469 
2470   // Scan for the appropriate larger type to use.
2471   while (true) {
2472     NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2473     assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2474 
2475     // A larger signed type can hold all unsigned values of the requested type,
2476     // so using FP_TO_SINT is valid
2477     if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2478       OpToUse = ISD::FP_TO_SINT;
2479       break;
2480     }
2481 
2482     // However, if the value may be < 0.0, we *must* use some FP_TO_SINT.
2483     if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2484       OpToUse = ISD::FP_TO_UINT;
2485       break;
2486     }
2487 
2488     // Otherwise, try a larger type.
2489   }
2490 
2491   // Okay, we found the operation and type to use.
2492   SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2493 
2494   // Truncate the result of the extended FP_TO_*INT operation to the desired
2495   // size.
2496   return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2497 }
2498 
2499 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts.
2500 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) {
2501   EVT VT = Op.getValueType();
2502   EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2503   unsigned Sz = VT.getScalarSizeInBits();
2504 
2505   SDValue Tmp, Tmp2, Tmp3;
2506 
2507   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
2508   // and finally the i1 pairs.
2509   // TODO: We can easily support i4/i2 legal types if any target ever does.
2510   if (Sz >= 8 && isPowerOf2_32(Sz)) {
2511     // Create the masks - repeating the pattern every byte.
2512     APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0));
2513     APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC));
2514     APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA));
2515     APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F));
2516     APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33));
2517     APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55));
2518 
2519     // BSWAP if the type is wider than a single byte.
2520     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
2521 
2522     // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4)
2523     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT));
2524     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT));
2525     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT));
2526     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
2527     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2528 
2529     // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2)
2530     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT));
2531     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT));
2532     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT));
2533     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
2534     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2535 
2536     // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1)
2537     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT));
2538     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT));
2539     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT));
2540     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
2541     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2542     return Tmp;
2543   }
2544 
2545   Tmp = DAG.getConstant(0, dl, VT);
2546   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
2547     if (I < J)
2548       Tmp2 =
2549           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
2550     else
2551       Tmp2 =
2552           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
2553 
2554     APInt Shift(Sz, 1);
2555     Shift <<= J;
2556     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
2557     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
2558   }
2559 
2560   return Tmp;
2561 }
2562 
2563 /// Open code the operations for BSWAP of the specified operation.
2564 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) {
2565   EVT VT = Op.getValueType();
2566   EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2567   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2568   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
2569   default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2570   case MVT::i16:
2571     // Use a rotate by 8. This can be further expanded if necessary.
2572     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2573   case MVT::i32:
2574     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2575     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2576     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2577     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2578     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2579                        DAG.getConstant(0xFF0000, dl, VT));
2580     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
2581     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2582     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2583     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2584   case MVT::i64:
2585     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2586     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2587     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2588     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2589     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2590     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2591     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2592     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2593     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
2594                        DAG.getConstant(255ULL<<48, dl, VT));
2595     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
2596                        DAG.getConstant(255ULL<<40, dl, VT));
2597     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
2598                        DAG.getConstant(255ULL<<32, dl, VT));
2599     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
2600                        DAG.getConstant(255ULL<<24, dl, VT));
2601     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2602                        DAG.getConstant(255ULL<<16, dl, VT));
2603     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
2604                        DAG.getConstant(255ULL<<8 , dl, VT));
2605     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2606     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2607     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2608     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2609     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2610     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2611     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2612   }
2613 }
2614 
2615 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2616   LLVM_DEBUG(dbgs() << "Trying to expand node\n");
2617   SmallVector<SDValue, 8> Results;
2618   SDLoc dl(Node);
2619   SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2620   bool NeedInvert;
2621   switch (Node->getOpcode()) {
2622   case ISD::ABS:
2623     if (TLI.expandABS(Node, Tmp1, DAG))
2624       Results.push_back(Tmp1);
2625     break;
2626   case ISD::CTPOP:
2627     if (TLI.expandCTPOP(Node, Tmp1, DAG))
2628       Results.push_back(Tmp1);
2629     break;
2630   case ISD::CTLZ:
2631   case ISD::CTLZ_ZERO_UNDEF:
2632     if (TLI.expandCTLZ(Node, Tmp1, DAG))
2633       Results.push_back(Tmp1);
2634     break;
2635   case ISD::CTTZ:
2636   case ISD::CTTZ_ZERO_UNDEF:
2637     if (TLI.expandCTTZ(Node, Tmp1, DAG))
2638       Results.push_back(Tmp1);
2639     break;
2640   case ISD::BITREVERSE:
2641     Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl));
2642     break;
2643   case ISD::BSWAP:
2644     Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2645     break;
2646   case ISD::FRAMEADDR:
2647   case ISD::RETURNADDR:
2648   case ISD::FRAME_TO_ARGS_OFFSET:
2649     Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
2650     break;
2651   case ISD::EH_DWARF_CFA: {
2652     SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl,
2653                                         TLI.getPointerTy(DAG.getDataLayout()));
2654     SDValue Offset = DAG.getNode(ISD::ADD, dl,
2655                                  CfaArg.getValueType(),
2656                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
2657                                              CfaArg.getValueType()),
2658                                  CfaArg);
2659     SDValue FA = DAG.getNode(
2660         ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()),
2661         DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())));
2662     Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(),
2663                                   FA, Offset));
2664     break;
2665   }
2666   case ISD::FLT_ROUNDS_:
2667     Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0)));
2668     break;
2669   case ISD::EH_RETURN:
2670   case ISD::EH_LABEL:
2671   case ISD::PREFETCH:
2672   case ISD::VAEND:
2673   case ISD::EH_SJLJ_LONGJMP:
2674     // If the target didn't expand these, there's nothing to do, so just
2675     // preserve the chain and be done.
2676     Results.push_back(Node->getOperand(0));
2677     break;
2678   case ISD::READCYCLECOUNTER:
2679     // If the target didn't expand this, just return 'zero' and preserve the
2680     // chain.
2681     Results.append(Node->getNumValues() - 1,
2682                    DAG.getConstant(0, dl, Node->getValueType(0)));
2683     Results.push_back(Node->getOperand(0));
2684     break;
2685   case ISD::EH_SJLJ_SETJMP:
2686     // If the target didn't expand this, just return 'zero' and preserve the
2687     // chain.
2688     Results.push_back(DAG.getConstant(0, dl, MVT::i32));
2689     Results.push_back(Node->getOperand(0));
2690     break;
2691   case ISD::ATOMIC_LOAD: {
2692     // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2693     SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0));
2694     SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2695     SDValue Swap = DAG.getAtomicCmpSwap(
2696         ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2697         Node->getOperand(0), Node->getOperand(1), Zero, Zero,
2698         cast<AtomicSDNode>(Node)->getMemOperand());
2699     Results.push_back(Swap.getValue(0));
2700     Results.push_back(Swap.getValue(1));
2701     break;
2702   }
2703   case ISD::ATOMIC_STORE: {
2704     // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2705     SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2706                                  cast<AtomicSDNode>(Node)->getMemoryVT(),
2707                                  Node->getOperand(0),
2708                                  Node->getOperand(1), Node->getOperand(2),
2709                                  cast<AtomicSDNode>(Node)->getMemOperand());
2710     Results.push_back(Swap.getValue(1));
2711     break;
2712   }
2713   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
2714     // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and
2715     // splits out the success value as a comparison. Expanding the resulting
2716     // ATOMIC_CMP_SWAP will produce a libcall.
2717     SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2718     SDValue Res = DAG.getAtomicCmpSwap(
2719         ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2720         Node->getOperand(0), Node->getOperand(1), Node->getOperand(2),
2721         Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand());
2722 
2723     SDValue ExtRes = Res;
2724     SDValue LHS = Res;
2725     SDValue RHS = Node->getOperand(1);
2726 
2727     EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT();
2728     EVT OuterType = Node->getValueType(0);
2729     switch (TLI.getExtendForAtomicOps()) {
2730     case ISD::SIGN_EXTEND:
2731       LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res,
2732                         DAG.getValueType(AtomicType));
2733       RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType,
2734                         Node->getOperand(2), DAG.getValueType(AtomicType));
2735       ExtRes = LHS;
2736       break;
2737     case ISD::ZERO_EXTEND:
2738       LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res,
2739                         DAG.getValueType(AtomicType));
2740       RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2741       ExtRes = LHS;
2742       break;
2743     case ISD::ANY_EXTEND:
2744       LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType);
2745       RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2746       break;
2747     default:
2748       llvm_unreachable("Invalid atomic op extension");
2749     }
2750 
2751     SDValue Success =
2752         DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ);
2753 
2754     Results.push_back(ExtRes.getValue(0));
2755     Results.push_back(Success);
2756     Results.push_back(Res.getValue(1));
2757     break;
2758   }
2759   case ISD::DYNAMIC_STACKALLOC:
2760     ExpandDYNAMIC_STACKALLOC(Node, Results);
2761     break;
2762   case ISD::MERGE_VALUES:
2763     for (unsigned i = 0; i < Node->getNumValues(); i++)
2764       Results.push_back(Node->getOperand(i));
2765     break;
2766   case ISD::UNDEF: {
2767     EVT VT = Node->getValueType(0);
2768     if (VT.isInteger())
2769       Results.push_back(DAG.getConstant(0, dl, VT));
2770     else {
2771       assert(VT.isFloatingPoint() && "Unknown value type!");
2772       Results.push_back(DAG.getConstantFP(0, dl, VT));
2773     }
2774     break;
2775   }
2776   case ISD::FP_ROUND:
2777   case ISD::BITCAST:
2778     Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2779                             Node->getValueType(0), dl);
2780     Results.push_back(Tmp1);
2781     break;
2782   case ISD::FP_EXTEND:
2783     Tmp1 = EmitStackConvert(Node->getOperand(0),
2784                             Node->getOperand(0).getValueType(),
2785                             Node->getValueType(0), dl);
2786     Results.push_back(Tmp1);
2787     break;
2788   case ISD::SIGN_EXTEND_INREG: {
2789     EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2790     EVT VT = Node->getValueType(0);
2791 
2792     // An in-register sign-extend of a boolean is a negation:
2793     // 'true' (1) sign-extended is -1.
2794     // 'false' (0) sign-extended is 0.
2795     // However, we must mask the high bits of the source operand because the
2796     // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero.
2797 
2798     // TODO: Do this for vectors too?
2799     if (ExtraVT.getSizeInBits() == 1) {
2800       SDValue One = DAG.getConstant(1, dl, VT);
2801       SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One);
2802       SDValue Zero = DAG.getConstant(0, dl, VT);
2803       SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And);
2804       Results.push_back(Neg);
2805       break;
2806     }
2807 
2808     // NOTE: we could fall back on load/store here too for targets without
2809     // SRA.  However, it is doubtful that any exist.
2810     EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2811     unsigned BitsDiff = VT.getScalarSizeInBits() -
2812                         ExtraVT.getScalarSizeInBits();
2813     SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy);
2814     Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2815                        Node->getOperand(0), ShiftCst);
2816     Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2817     Results.push_back(Tmp1);
2818     break;
2819   }
2820   case ISD::FP_ROUND_INREG: {
2821     // The only way we can lower this is to turn it into a TRUNCSTORE,
2822     // EXTLOAD pair, targeting a temporary location (a stack slot).
2823 
2824     // NOTE: there is a choice here between constantly creating new stack
2825     // slots and always reusing the same one.  We currently always create
2826     // new ones, as reuse may inhibit scheduling.
2827     EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2828     Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2829                             Node->getValueType(0), dl);
2830     Results.push_back(Tmp1);
2831     break;
2832   }
2833   case ISD::UINT_TO_FP:
2834     if (TLI.expandUINT_TO_FP(Node, Tmp1, DAG)) {
2835       Results.push_back(Tmp1);
2836       break;
2837     }
2838     LLVM_FALLTHROUGH;
2839   case ISD::SINT_TO_FP:
2840     Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2841                                 Node->getOperand(0), Node->getValueType(0), dl);
2842     Results.push_back(Tmp1);
2843     break;
2844   case ISD::FP_TO_SINT:
2845     if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG))
2846       Results.push_back(Tmp1);
2847     break;
2848   case ISD::FP_TO_UINT:
2849     if (TLI.expandFP_TO_UINT(Node, Tmp1, DAG))
2850       Results.push_back(Tmp1);
2851     break;
2852   case ISD::VAARG:
2853     Results.push_back(DAG.expandVAArg(Node));
2854     Results.push_back(Results[0].getValue(1));
2855     break;
2856   case ISD::VACOPY:
2857     Results.push_back(DAG.expandVACopy(Node));
2858     break;
2859   case ISD::EXTRACT_VECTOR_ELT:
2860     if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2861       // This must be an access of the only element.  Return it.
2862       Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
2863                          Node->getOperand(0));
2864     else
2865       Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2866     Results.push_back(Tmp1);
2867     break;
2868   case ISD::EXTRACT_SUBVECTOR:
2869     Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2870     break;
2871   case ISD::INSERT_SUBVECTOR:
2872     Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
2873     break;
2874   case ISD::CONCAT_VECTORS:
2875     Results.push_back(ExpandVectorBuildThroughStack(Node));
2876     break;
2877   case ISD::SCALAR_TO_VECTOR:
2878     Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2879     break;
2880   case ISD::INSERT_VECTOR_ELT:
2881     Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2882                                               Node->getOperand(1),
2883                                               Node->getOperand(2), dl));
2884     break;
2885   case ISD::VECTOR_SHUFFLE: {
2886     SmallVector<int, 32> NewMask;
2887     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
2888 
2889     EVT VT = Node->getValueType(0);
2890     EVT EltVT = VT.getVectorElementType();
2891     SDValue Op0 = Node->getOperand(0);
2892     SDValue Op1 = Node->getOperand(1);
2893     if (!TLI.isTypeLegal(EltVT)) {
2894       EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2895 
2896       // BUILD_VECTOR operands are allowed to be wider than the element type.
2897       // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept
2898       // it.
2899       if (NewEltVT.bitsLT(EltVT)) {
2900         // Convert shuffle node.
2901         // If original node was v4i64 and the new EltVT is i32,
2902         // cast operands to v8i32 and re-build the mask.
2903 
2904         // Calculate new VT, the size of the new VT should be equal to original.
2905         EVT NewVT =
2906             EVT::getVectorVT(*DAG.getContext(), NewEltVT,
2907                              VT.getSizeInBits() / NewEltVT.getSizeInBits());
2908         assert(NewVT.bitsEq(VT));
2909 
2910         // cast operands to new VT
2911         Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
2912         Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
2913 
2914         // Convert the shuffle mask
2915         unsigned int factor =
2916                          NewVT.getVectorNumElements()/VT.getVectorNumElements();
2917 
2918         // EltVT gets smaller
2919         assert(factor > 0);
2920 
2921         for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
2922           if (Mask[i] < 0) {
2923             for (unsigned fi = 0; fi < factor; ++fi)
2924               NewMask.push_back(Mask[i]);
2925           }
2926           else {
2927             for (unsigned fi = 0; fi < factor; ++fi)
2928               NewMask.push_back(Mask[i]*factor+fi);
2929           }
2930         }
2931         Mask = NewMask;
2932         VT = NewVT;
2933       }
2934       EltVT = NewEltVT;
2935     }
2936     unsigned NumElems = VT.getVectorNumElements();
2937     SmallVector<SDValue, 16> Ops;
2938     for (unsigned i = 0; i != NumElems; ++i) {
2939       if (Mask[i] < 0) {
2940         Ops.push_back(DAG.getUNDEF(EltVT));
2941         continue;
2942       }
2943       unsigned Idx = Mask[i];
2944       if (Idx < NumElems)
2945         Ops.push_back(DAG.getNode(
2946             ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
2947             DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))));
2948       else
2949         Ops.push_back(DAG.getNode(
2950             ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1,
2951             DAG.getConstant(Idx - NumElems, dl,
2952                             TLI.getVectorIdxTy(DAG.getDataLayout()))));
2953     }
2954 
2955     Tmp1 = DAG.getBuildVector(VT, dl, Ops);
2956     // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
2957     Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
2958     Results.push_back(Tmp1);
2959     break;
2960   }
2961   case ISD::EXTRACT_ELEMENT: {
2962     EVT OpTy = Node->getOperand(0).getValueType();
2963     if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2964       // 1 -> Hi
2965       Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2966                          DAG.getConstant(OpTy.getSizeInBits() / 2, dl,
2967                                          TLI.getShiftAmountTy(
2968                                              Node->getOperand(0).getValueType(),
2969                                              DAG.getDataLayout())));
2970       Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2971     } else {
2972       // 0 -> Lo
2973       Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2974                          Node->getOperand(0));
2975     }
2976     Results.push_back(Tmp1);
2977     break;
2978   }
2979   case ISD::STACKSAVE:
2980     // Expand to CopyFromReg if the target set
2981     // StackPointerRegisterToSaveRestore.
2982     if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2983       Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2984                                            Node->getValueType(0)));
2985       Results.push_back(Results[0].getValue(1));
2986     } else {
2987       Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2988       Results.push_back(Node->getOperand(0));
2989     }
2990     break;
2991   case ISD::STACKRESTORE:
2992     // Expand to CopyToReg if the target set
2993     // StackPointerRegisterToSaveRestore.
2994     if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2995       Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2996                                          Node->getOperand(1)));
2997     } else {
2998       Results.push_back(Node->getOperand(0));
2999     }
3000     break;
3001   case ISD::GET_DYNAMIC_AREA_OFFSET:
3002     Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
3003     Results.push_back(Results[0].getValue(0));
3004     break;
3005   case ISD::FCOPYSIGN:
3006     Results.push_back(ExpandFCOPYSIGN(Node));
3007     break;
3008   case ISD::FNEG:
3009     // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
3010     Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0));
3011     // TODO: If FNEG has fast-math-flags, propagate them to the FSUB.
3012     Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3013                        Node->getOperand(0));
3014     Results.push_back(Tmp1);
3015     break;
3016   case ISD::FABS:
3017     Results.push_back(ExpandFABS(Node));
3018     break;
3019   case ISD::SMIN:
3020   case ISD::SMAX:
3021   case ISD::UMIN:
3022   case ISD::UMAX: {
3023     // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
3024     ISD::CondCode Pred;
3025     switch (Node->getOpcode()) {
3026     default: llvm_unreachable("How did we get here?");
3027     case ISD::SMAX: Pred = ISD::SETGT; break;
3028     case ISD::SMIN: Pred = ISD::SETLT; break;
3029     case ISD::UMAX: Pred = ISD::SETUGT; break;
3030     case ISD::UMIN: Pred = ISD::SETULT; break;
3031     }
3032     Tmp1 = Node->getOperand(0);
3033     Tmp2 = Node->getOperand(1);
3034     Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred);
3035     Results.push_back(Tmp1);
3036     break;
3037   }
3038   case ISD::FMINNUM:
3039   case ISD::FMAXNUM: {
3040     if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG))
3041       Results.push_back(Expanded);
3042     break;
3043   }
3044   case ISD::FSIN:
3045   case ISD::FCOS: {
3046     EVT VT = Node->getValueType(0);
3047     // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
3048     // fcos which share the same operand and both are used.
3049     if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
3050          isSinCosLibcallAvailable(Node, TLI))
3051         && useSinCos(Node)) {
3052       SDVTList VTs = DAG.getVTList(VT, VT);
3053       Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
3054       if (Node->getOpcode() == ISD::FCOS)
3055         Tmp1 = Tmp1.getValue(1);
3056       Results.push_back(Tmp1);
3057     }
3058     break;
3059   }
3060   case ISD::FMAD:
3061     llvm_unreachable("Illegal fmad should never be formed");
3062 
3063   case ISD::FP16_TO_FP:
3064     if (Node->getValueType(0) != MVT::f32) {
3065       // We can extend to types bigger than f32 in two steps without changing
3066       // the result. Since "f16 -> f32" is much more commonly available, give
3067       // CodeGen the option of emitting that before resorting to a libcall.
3068       SDValue Res =
3069           DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0));
3070       Results.push_back(
3071           DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res));
3072     }
3073     break;
3074   case ISD::FP_TO_FP16:
3075     LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n");
3076     if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) {
3077       SDValue Op = Node->getOperand(0);
3078       MVT SVT = Op.getSimpleValueType();
3079       if ((SVT == MVT::f64 || SVT == MVT::f80) &&
3080           TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) {
3081         // Under fastmath, we can expand this node into a fround followed by
3082         // a float-half conversion.
3083         SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op,
3084                                        DAG.getIntPtrConstant(0, dl));
3085         Results.push_back(
3086             DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal));
3087       }
3088     }
3089     break;
3090   case ISD::ConstantFP: {
3091     ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3092     // Check to see if this FP immediate is already legal.
3093     // If this is a legal constant, turn it into a TargetConstantFP node.
3094     if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0),
3095                           DAG.getMachineFunction().getFunction().hasOptSize()))
3096       Results.push_back(ExpandConstantFP(CFP, true));
3097     break;
3098   }
3099   case ISD::Constant: {
3100     ConstantSDNode *CP = cast<ConstantSDNode>(Node);
3101     Results.push_back(ExpandConstant(CP));
3102     break;
3103   }
3104   case ISD::FSUB: {
3105     EVT VT = Node->getValueType(0);
3106     if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3107         TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) {
3108       const SDNodeFlags Flags = Node->getFlags();
3109       Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3110       Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags);
3111       Results.push_back(Tmp1);
3112     }
3113     break;
3114   }
3115   case ISD::SUB: {
3116     EVT VT = Node->getValueType(0);
3117     assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3118            TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3119            "Don't know how to expand this subtraction!");
3120     Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3121                DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
3122                                VT));
3123     Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT));
3124     Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3125     break;
3126   }
3127   case ISD::UREM:
3128   case ISD::SREM: {
3129     EVT VT = Node->getValueType(0);
3130     bool isSigned = Node->getOpcode() == ISD::SREM;
3131     unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3132     unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3133     Tmp2 = Node->getOperand(0);
3134     Tmp3 = Node->getOperand(1);
3135     if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3136       SDVTList VTs = DAG.getVTList(VT, VT);
3137       Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3138       Results.push_back(Tmp1);
3139     } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3140       // X % Y -> X-X/Y*Y
3141       Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3142       Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3143       Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3144       Results.push_back(Tmp1);
3145     }
3146     break;
3147   }
3148   case ISD::UDIV:
3149   case ISD::SDIV: {
3150     bool isSigned = Node->getOpcode() == ISD::SDIV;
3151     unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3152     EVT VT = Node->getValueType(0);
3153     if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3154       SDVTList VTs = DAG.getVTList(VT, VT);
3155       Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3156                          Node->getOperand(1));
3157       Results.push_back(Tmp1);
3158     }
3159     break;
3160   }
3161   case ISD::MULHU:
3162   case ISD::MULHS: {
3163     unsigned ExpandOpcode =
3164         Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI;
3165     EVT VT = Node->getValueType(0);
3166     SDVTList VTs = DAG.getVTList(VT, VT);
3167 
3168     Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3169                        Node->getOperand(1));
3170     Results.push_back(Tmp1.getValue(1));
3171     break;
3172   }
3173   case ISD::UMUL_LOHI:
3174   case ISD::SMUL_LOHI: {
3175     SDValue LHS = Node->getOperand(0);
3176     SDValue RHS = Node->getOperand(1);
3177     MVT VT = LHS.getSimpleValueType();
3178     unsigned MULHOpcode =
3179         Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS;
3180 
3181     if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) {
3182       Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS));
3183       Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS));
3184       break;
3185     }
3186 
3187     SmallVector<SDValue, 4> Halves;
3188     EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext());
3189     assert(TLI.isTypeLegal(HalfType));
3190     if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves,
3191                            HalfType, DAG,
3192                            TargetLowering::MulExpansionKind::Always)) {
3193       for (unsigned i = 0; i < 2; ++i) {
3194         SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]);
3195         SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]);
3196         SDValue Shift = DAG.getConstant(
3197             HalfType.getScalarSizeInBits(), dl,
3198             TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3199         Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3200         Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3201       }
3202       break;
3203     }
3204     break;
3205   }
3206   case ISD::MUL: {
3207     EVT VT = Node->getValueType(0);
3208     SDVTList VTs = DAG.getVTList(VT, VT);
3209     // See if multiply or divide can be lowered using two-result operations.
3210     // We just need the low half of the multiply; try both the signed
3211     // and unsigned forms. If the target supports both SMUL_LOHI and
3212     // UMUL_LOHI, form a preference by checking which forms of plain
3213     // MULH it supports.
3214     bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3215     bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3216     bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3217     bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3218     unsigned OpToUse = 0;
3219     if (HasSMUL_LOHI && !HasMULHS) {
3220       OpToUse = ISD::SMUL_LOHI;
3221     } else if (HasUMUL_LOHI && !HasMULHU) {
3222       OpToUse = ISD::UMUL_LOHI;
3223     } else if (HasSMUL_LOHI) {
3224       OpToUse = ISD::SMUL_LOHI;
3225     } else if (HasUMUL_LOHI) {
3226       OpToUse = ISD::UMUL_LOHI;
3227     }
3228     if (OpToUse) {
3229       Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3230                                     Node->getOperand(1)));
3231       break;
3232     }
3233 
3234     SDValue Lo, Hi;
3235     EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext());
3236     if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) &&
3237         TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) &&
3238         TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
3239         TLI.isOperationLegalOrCustom(ISD::OR, VT) &&
3240         TLI.expandMUL(Node, Lo, Hi, HalfType, DAG,
3241                       TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) {
3242       Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3243       Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi);
3244       SDValue Shift =
3245           DAG.getConstant(HalfType.getSizeInBits(), dl,
3246                           TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3247       Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3248       Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3249     }
3250     break;
3251   }
3252   case ISD::FSHL:
3253   case ISD::FSHR:
3254     if (TLI.expandFunnelShift(Node, Tmp1, DAG))
3255       Results.push_back(Tmp1);
3256     break;
3257   case ISD::ROTL:
3258   case ISD::ROTR:
3259     if (TLI.expandROT(Node, Tmp1, DAG))
3260       Results.push_back(Tmp1);
3261     break;
3262   case ISD::SADDSAT:
3263   case ISD::UADDSAT:
3264   case ISD::SSUBSAT:
3265   case ISD::USUBSAT:
3266     Results.push_back(TLI.expandAddSubSat(Node, DAG));
3267     break;
3268   case ISD::SMULFIX:
3269   case ISD::UMULFIX:
3270     Results.push_back(TLI.expandFixedPointMul(Node, DAG));
3271     break;
3272   case ISD::SADDO:
3273   case ISD::SSUBO: {
3274     SDValue LHS = Node->getOperand(0);
3275     SDValue RHS = Node->getOperand(1);
3276     bool IsAdd = Node->getOpcode() == ISD::SADDO;
3277 
3278     SDValue Sum = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
3279                               LHS.getValueType(), LHS, RHS);
3280     Results.push_back(Sum);
3281 
3282     EVT ResultType = Node->getValueType(1);
3283     EVT OType = getSetCCResultType(Node->getValueType(0));
3284 
3285     // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
3286     unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
3287     if (TLI.isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
3288       SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
3289       SDValue SetCC = DAG.getSetCC(dl, OType, Sum, Sat, ISD::SETNE);
3290       Results.push_back(
3291           DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType));
3292       break;
3293     }
3294 
3295     SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
3296 
3297     //   LHSSign -> LHS >= 0
3298     //   RHSSign -> RHS >= 0
3299     //   SumSign -> Sum >= 0
3300     //
3301     //   Add:
3302     //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3303     //   Sub:
3304     //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3305     SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3306     SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3307     SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3308                                       IsAdd ? ISD::SETEQ : ISD::SETNE);
3309 
3310     SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3311     SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3312 
3313     SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3314     Results.push_back(DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType));
3315     break;
3316   }
3317   case ISD::UADDO:
3318   case ISD::USUBO: {
3319     SDValue LHS = Node->getOperand(0);
3320     SDValue RHS = Node->getOperand(1);
3321     bool IsAdd = Node->getOpcode() == ISD::UADDO;
3322 
3323     // If ADD/SUBCARRY is legal, use that instead.
3324     unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
3325     if (TLI.isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
3326       SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
3327       SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
3328                                       { LHS, RHS, CarryIn });
3329       Results.push_back(SDValue(NodeCarry.getNode(), 0));
3330       Results.push_back(SDValue(NodeCarry.getNode(), 1));
3331       break;
3332     }
3333 
3334     SDValue Sum = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
3335                               LHS.getValueType(), LHS, RHS);
3336     Results.push_back(Sum);
3337 
3338     EVT ResultType = Node->getValueType(1);
3339     EVT SetCCType = getSetCCResultType(Node->getValueType(0));
3340     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
3341     SDValue SetCC = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC);
3342 
3343     Results.push_back(DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType));
3344     break;
3345   }
3346   case ISD::UMULO:
3347   case ISD::SMULO: {
3348     SDValue Result, Overflow;
3349     if (TLI.expandMULO(Node, Result, Overflow, DAG)) {
3350       Results.push_back(Result);
3351       Results.push_back(Overflow);
3352     }
3353     break;
3354   }
3355   case ISD::BUILD_PAIR: {
3356     EVT PairTy = Node->getValueType(0);
3357     Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3358     Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3359     Tmp2 = DAG.getNode(
3360         ISD::SHL, dl, PairTy, Tmp2,
3361         DAG.getConstant(PairTy.getSizeInBits() / 2, dl,
3362                         TLI.getShiftAmountTy(PairTy, DAG.getDataLayout())));
3363     Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3364     break;
3365   }
3366   case ISD::SELECT:
3367     Tmp1 = Node->getOperand(0);
3368     Tmp2 = Node->getOperand(1);
3369     Tmp3 = Node->getOperand(2);
3370     if (Tmp1.getOpcode() == ISD::SETCC) {
3371       Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3372                              Tmp2, Tmp3,
3373                              cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3374     } else {
3375       Tmp1 = DAG.getSelectCC(dl, Tmp1,
3376                              DAG.getConstant(0, dl, Tmp1.getValueType()),
3377                              Tmp2, Tmp3, ISD::SETNE);
3378     }
3379     Results.push_back(Tmp1);
3380     break;
3381   case ISD::BR_JT: {
3382     SDValue Chain = Node->getOperand(0);
3383     SDValue Table = Node->getOperand(1);
3384     SDValue Index = Node->getOperand(2);
3385 
3386     const DataLayout &TD = DAG.getDataLayout();
3387     EVT PTy = TLI.getPointerTy(TD);
3388 
3389     unsigned EntrySize =
3390       DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3391 
3392     // For power-of-two jumptable entry sizes convert multiplication to a shift.
3393     // This transformation needs to be done here since otherwise the MIPS
3394     // backend will end up emitting a three instruction multiply sequence
3395     // instead of a single shift and MSP430 will call a runtime function.
3396     if (llvm::isPowerOf2_32(EntrySize))
3397       Index = DAG.getNode(
3398           ISD::SHL, dl, Index.getValueType(), Index,
3399           DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType()));
3400     else
3401       Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
3402                           DAG.getConstant(EntrySize, dl, Index.getValueType()));
3403     SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(),
3404                                Index, Table);
3405 
3406     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3407     SDValue LD = DAG.getExtLoad(
3408         ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3409         MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT);
3410     Addr = LD;
3411     if (TLI.isJumpTableRelative()) {
3412       // For PIC, the sequence is:
3413       // BRIND(load(Jumptable + index) + RelocBase)
3414       // RelocBase can be JumpTable, GOT or some sort of global base.
3415       Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3416                           TLI.getPICJumpTableRelocBase(Table, DAG));
3417     }
3418 
3419     Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG);
3420     Results.push_back(Tmp1);
3421     break;
3422   }
3423   case ISD::BRCOND:
3424     // Expand brcond's setcc into its constituent parts and create a BR_CC
3425     // Node.
3426     Tmp1 = Node->getOperand(0);
3427     Tmp2 = Node->getOperand(1);
3428     if (Tmp2.getOpcode() == ISD::SETCC) {
3429       Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3430                          Tmp1, Tmp2.getOperand(2),
3431                          Tmp2.getOperand(0), Tmp2.getOperand(1),
3432                          Node->getOperand(2));
3433     } else {
3434       // We test only the i1 bit.  Skip the AND if UNDEF or another AND.
3435       if (Tmp2.isUndef() ||
3436           (Tmp2.getOpcode() == ISD::AND &&
3437            isa<ConstantSDNode>(Tmp2.getOperand(1)) &&
3438            cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1))
3439         Tmp3 = Tmp2;
3440       else
3441         Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3442                            DAG.getConstant(1, dl, Tmp2.getValueType()));
3443       Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3444                          DAG.getCondCode(ISD::SETNE), Tmp3,
3445                          DAG.getConstant(0, dl, Tmp3.getValueType()),
3446                          Node->getOperand(2));
3447     }
3448     Results.push_back(Tmp1);
3449     break;
3450   case ISD::SETCC: {
3451     Tmp1 = Node->getOperand(0);
3452     Tmp2 = Node->getOperand(1);
3453     Tmp3 = Node->getOperand(2);
3454     bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2,
3455                                            Tmp3, NeedInvert, dl);
3456 
3457     if (Legalized) {
3458       // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3459       // condition code, create a new SETCC node.
3460       if (Tmp3.getNode())
3461         Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3462                            Tmp1, Tmp2, Tmp3);
3463 
3464       // If we expanded the SETCC by inverting the condition code, then wrap
3465       // the existing SETCC in a NOT to restore the intended condition.
3466       if (NeedInvert)
3467         Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0));
3468 
3469       Results.push_back(Tmp1);
3470       break;
3471     }
3472 
3473     // Otherwise, SETCC for the given comparison type must be completely
3474     // illegal; expand it into a SELECT_CC.
3475     EVT VT = Node->getValueType(0);
3476     int TrueValue;
3477     switch (TLI.getBooleanContents(Tmp1.getValueType())) {
3478     case TargetLowering::ZeroOrOneBooleanContent:
3479     case TargetLowering::UndefinedBooleanContent:
3480       TrueValue = 1;
3481       break;
3482     case TargetLowering::ZeroOrNegativeOneBooleanContent:
3483       TrueValue = -1;
3484       break;
3485     }
3486     Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3487                        DAG.getConstant(TrueValue, dl, VT),
3488                        DAG.getConstant(0, dl, VT),
3489                        Tmp3);
3490     Results.push_back(Tmp1);
3491     break;
3492   }
3493   case ISD::SELECT_CC: {
3494     Tmp1 = Node->getOperand(0);   // LHS
3495     Tmp2 = Node->getOperand(1);   // RHS
3496     Tmp3 = Node->getOperand(2);   // True
3497     Tmp4 = Node->getOperand(3);   // False
3498     EVT VT = Node->getValueType(0);
3499     SDValue CC = Node->getOperand(4);
3500     ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get();
3501 
3502     if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) {
3503       // If the condition code is legal, then we need to expand this
3504       // node using SETCC and SELECT.
3505       EVT CmpVT = Tmp1.getValueType();
3506       assert(!TLI.isOperationExpand(ISD::SELECT, VT) &&
3507              "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
3508              "expanded.");
3509       EVT CCVT =
3510           TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT);
3511       SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC);
3512       Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4));
3513       break;
3514     }
3515 
3516     // SELECT_CC is legal, so the condition code must not be.
3517     bool Legalized = false;
3518     // Try to legalize by inverting the condition.  This is for targets that
3519     // might support an ordered version of a condition, but not the unordered
3520     // version (or vice versa).
3521     ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp,
3522                                                Tmp1.getValueType().isInteger());
3523     if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) {
3524       // Use the new condition code and swap true and false
3525       Legalized = true;
3526       Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC);
3527     } else {
3528       // If The inverse is not legal, then try to swap the arguments using
3529       // the inverse condition code.
3530       ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC);
3531       if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) {
3532         // The swapped inverse condition is legal, so swap true and false,
3533         // lhs and rhs.
3534         Legalized = true;
3535         Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC);
3536       }
3537     }
3538 
3539     if (!Legalized) {
3540       Legalized = LegalizeSetCCCondCode(
3541           getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert,
3542           dl);
3543 
3544       assert(Legalized && "Can't legalize SELECT_CC with legal condition!");
3545 
3546       // If we expanded the SETCC by inverting the condition code, then swap
3547       // the True/False operands to match.
3548       if (NeedInvert)
3549         std::swap(Tmp3, Tmp4);
3550 
3551       // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3552       // condition code, create a new SELECT_CC node.
3553       if (CC.getNode()) {
3554         Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0),
3555                            Tmp1, Tmp2, Tmp3, Tmp4, CC);
3556       } else {
3557         Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType());
3558         CC = DAG.getCondCode(ISD::SETNE);
3559         Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1,
3560                            Tmp2, Tmp3, Tmp4, CC);
3561       }
3562     }
3563     Results.push_back(Tmp1);
3564     break;
3565   }
3566   case ISD::BR_CC: {
3567     Tmp1 = Node->getOperand(0);              // Chain
3568     Tmp2 = Node->getOperand(2);              // LHS
3569     Tmp3 = Node->getOperand(3);              // RHS
3570     Tmp4 = Node->getOperand(1);              // CC
3571 
3572     bool Legalized = LegalizeSetCCCondCode(getSetCCResultType(
3573         Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl);
3574     (void)Legalized;
3575     assert(Legalized && "Can't legalize BR_CC with legal condition!");
3576 
3577     assert(!NeedInvert && "Don't know how to invert BR_CC!");
3578 
3579     // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
3580     // node.
3581     if (Tmp4.getNode()) {
3582       Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1,
3583                          Tmp4, Tmp2, Tmp3, Node->getOperand(4));
3584     } else {
3585       Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType());
3586       Tmp4 = DAG.getCondCode(ISD::SETNE);
3587       Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4,
3588                          Tmp2, Tmp3, Node->getOperand(4));
3589     }
3590     Results.push_back(Tmp1);
3591     break;
3592   }
3593   case ISD::BUILD_VECTOR:
3594     Results.push_back(ExpandBUILD_VECTOR(Node));
3595     break;
3596   case ISD::SRA:
3597   case ISD::SRL:
3598   case ISD::SHL: {
3599     // Scalarize vector SRA/SRL/SHL.
3600     EVT VT = Node->getValueType(0);
3601     assert(VT.isVector() && "Unable to legalize non-vector shift");
3602     assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3603     unsigned NumElem = VT.getVectorNumElements();
3604 
3605     SmallVector<SDValue, 8> Scalars;
3606     for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3607       SDValue Ex = DAG.getNode(
3608           ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0),
3609           DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3610       SDValue Sh = DAG.getNode(
3611           ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1),
3612           DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3613       Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3614                                     VT.getScalarType(), Ex, Sh));
3615     }
3616 
3617     SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars);
3618     ReplaceNode(SDValue(Node, 0), Result);
3619     break;
3620   }
3621   case ISD::VECREDUCE_FADD:
3622   case ISD::VECREDUCE_FMUL:
3623   case ISD::VECREDUCE_ADD:
3624   case ISD::VECREDUCE_MUL:
3625   case ISD::VECREDUCE_AND:
3626   case ISD::VECREDUCE_OR:
3627   case ISD::VECREDUCE_XOR:
3628   case ISD::VECREDUCE_SMAX:
3629   case ISD::VECREDUCE_SMIN:
3630   case ISD::VECREDUCE_UMAX:
3631   case ISD::VECREDUCE_UMIN:
3632   case ISD::VECREDUCE_FMAX:
3633   case ISD::VECREDUCE_FMIN:
3634     Results.push_back(TLI.expandVecReduce(Node, DAG));
3635     break;
3636   case ISD::GLOBAL_OFFSET_TABLE:
3637   case ISD::GlobalAddress:
3638   case ISD::GlobalTLSAddress:
3639   case ISD::ExternalSymbol:
3640   case ISD::ConstantPool:
3641   case ISD::JumpTable:
3642   case ISD::INTRINSIC_W_CHAIN:
3643   case ISD::INTRINSIC_WO_CHAIN:
3644   case ISD::INTRINSIC_VOID:
3645     // FIXME: Custom lowering for these operations shouldn't return null!
3646     break;
3647   }
3648 
3649   // Replace the original node with the legalized result.
3650   if (Results.empty()) {
3651     LLVM_DEBUG(dbgs() << "Cannot expand node\n");
3652     return false;
3653   }
3654 
3655   LLVM_DEBUG(dbgs() << "Successfully expanded node\n");
3656   ReplaceNode(Node, Results.data());
3657   return true;
3658 }
3659 
3660 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) {
3661   LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n");
3662   SmallVector<SDValue, 8> Results;
3663   SDLoc dl(Node);
3664   // FIXME: Check flags on the node to see if we can use a finite call.
3665   bool CanUseFiniteLibCall = TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath;
3666   unsigned Opc = Node->getOpcode();
3667   switch (Opc) {
3668   case ISD::ATOMIC_FENCE: {
3669     // If the target didn't lower this, lower it to '__sync_synchronize()' call
3670     // FIXME: handle "fence singlethread" more efficiently.
3671     TargetLowering::ArgListTy Args;
3672 
3673     TargetLowering::CallLoweringInfo CLI(DAG);
3674     CLI.setDebugLoc(dl)
3675         .setChain(Node->getOperand(0))
3676         .setLibCallee(
3677             CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3678             DAG.getExternalSymbol("__sync_synchronize",
3679                                   TLI.getPointerTy(DAG.getDataLayout())),
3680             std::move(Args));
3681 
3682     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3683 
3684     Results.push_back(CallResult.second);
3685     break;
3686   }
3687   // By default, atomic intrinsics are marked Legal and lowered. Targets
3688   // which don't support them directly, however, may want libcalls, in which
3689   // case they mark them Expand, and we get here.
3690   case ISD::ATOMIC_SWAP:
3691   case ISD::ATOMIC_LOAD_ADD:
3692   case ISD::ATOMIC_LOAD_SUB:
3693   case ISD::ATOMIC_LOAD_AND:
3694   case ISD::ATOMIC_LOAD_CLR:
3695   case ISD::ATOMIC_LOAD_OR:
3696   case ISD::ATOMIC_LOAD_XOR:
3697   case ISD::ATOMIC_LOAD_NAND:
3698   case ISD::ATOMIC_LOAD_MIN:
3699   case ISD::ATOMIC_LOAD_MAX:
3700   case ISD::ATOMIC_LOAD_UMIN:
3701   case ISD::ATOMIC_LOAD_UMAX:
3702   case ISD::ATOMIC_CMP_SWAP: {
3703     MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
3704     RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT);
3705     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!");
3706 
3707     std::pair<SDValue, SDValue> Tmp = ExpandChainLibCall(LC, Node, false);
3708     Results.push_back(Tmp.first);
3709     Results.push_back(Tmp.second);
3710     break;
3711   }
3712   case ISD::TRAP: {
3713     // If this operation is not supported, lower it to 'abort()' call
3714     TargetLowering::ArgListTy Args;
3715     TargetLowering::CallLoweringInfo CLI(DAG);
3716     CLI.setDebugLoc(dl)
3717         .setChain(Node->getOperand(0))
3718         .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3719                       DAG.getExternalSymbol(
3720                           "abort", TLI.getPointerTy(DAG.getDataLayout())),
3721                       std::move(Args));
3722     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3723 
3724     Results.push_back(CallResult.second);
3725     break;
3726   }
3727   case ISD::FMINNUM:
3728   case ISD::STRICT_FMINNUM:
3729     Results.push_back(ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64,
3730                                       RTLIB::FMIN_F80, RTLIB::FMIN_F128,
3731                                       RTLIB::FMIN_PPCF128));
3732     break;
3733   case ISD::FMAXNUM:
3734   case ISD::STRICT_FMAXNUM:
3735     Results.push_back(ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64,
3736                                       RTLIB::FMAX_F80, RTLIB::FMAX_F128,
3737                                       RTLIB::FMAX_PPCF128));
3738     break;
3739   case ISD::FSQRT:
3740   case ISD::STRICT_FSQRT:
3741     Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
3742                                       RTLIB::SQRT_F80, RTLIB::SQRT_F128,
3743                                       RTLIB::SQRT_PPCF128));
3744     break;
3745   case ISD::FCBRT:
3746     Results.push_back(ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64,
3747                                       RTLIB::CBRT_F80, RTLIB::CBRT_F128,
3748                                       RTLIB::CBRT_PPCF128));
3749     break;
3750   case ISD::FSIN:
3751   case ISD::STRICT_FSIN:
3752     Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
3753                                       RTLIB::SIN_F80, RTLIB::SIN_F128,
3754                                       RTLIB::SIN_PPCF128));
3755     break;
3756   case ISD::FCOS:
3757   case ISD::STRICT_FCOS:
3758     Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
3759                                       RTLIB::COS_F80, RTLIB::COS_F128,
3760                                       RTLIB::COS_PPCF128));
3761     break;
3762   case ISD::FSINCOS:
3763     // Expand into sincos libcall.
3764     ExpandSinCosLibCall(Node, Results);
3765     break;
3766   case ISD::FLOG:
3767   case ISD::STRICT_FLOG:
3768     if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log_finite))
3769       Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_FINITE_F32,
3770                                         RTLIB::LOG_FINITE_F64,
3771                                         RTLIB::LOG_FINITE_F80,
3772                                         RTLIB::LOG_FINITE_F128,
3773                                         RTLIB::LOG_FINITE_PPCF128));
3774     else
3775       Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
3776                                         RTLIB::LOG_F80, RTLIB::LOG_F128,
3777                                         RTLIB::LOG_PPCF128));
3778     break;
3779   case ISD::FLOG2:
3780   case ISD::STRICT_FLOG2:
3781     if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log2_finite))
3782       Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_FINITE_F32,
3783                                         RTLIB::LOG2_FINITE_F64,
3784                                         RTLIB::LOG2_FINITE_F80,
3785                                         RTLIB::LOG2_FINITE_F128,
3786                                         RTLIB::LOG2_FINITE_PPCF128));
3787     else
3788       Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
3789                                         RTLIB::LOG2_F80, RTLIB::LOG2_F128,
3790                                         RTLIB::LOG2_PPCF128));
3791     break;
3792   case ISD::FLOG10:
3793   case ISD::STRICT_FLOG10:
3794     if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log10_finite))
3795       Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_FINITE_F32,
3796                                         RTLIB::LOG10_FINITE_F64,
3797                                         RTLIB::LOG10_FINITE_F80,
3798                                         RTLIB::LOG10_FINITE_F128,
3799                                         RTLIB::LOG10_FINITE_PPCF128));
3800     else
3801       Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
3802                                         RTLIB::LOG10_F80, RTLIB::LOG10_F128,
3803                                         RTLIB::LOG10_PPCF128));
3804     break;
3805   case ISD::FEXP:
3806   case ISD::STRICT_FEXP:
3807     if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp_finite))
3808       Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_FINITE_F32,
3809                                         RTLIB::EXP_FINITE_F64,
3810                                         RTLIB::EXP_FINITE_F80,
3811                                         RTLIB::EXP_FINITE_F128,
3812                                         RTLIB::EXP_FINITE_PPCF128));
3813     else
3814       Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
3815                                         RTLIB::EXP_F80, RTLIB::EXP_F128,
3816                                         RTLIB::EXP_PPCF128));
3817     break;
3818   case ISD::FEXP2:
3819   case ISD::STRICT_FEXP2:
3820     if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp2_finite))
3821       Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_FINITE_F32,
3822                                         RTLIB::EXP2_FINITE_F64,
3823                                         RTLIB::EXP2_FINITE_F80,
3824                                         RTLIB::EXP2_FINITE_F128,
3825                                         RTLIB::EXP2_FINITE_PPCF128));
3826     else
3827       Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
3828                                         RTLIB::EXP2_F80, RTLIB::EXP2_F128,
3829                                         RTLIB::EXP2_PPCF128));
3830     break;
3831   case ISD::FTRUNC:
3832   case ISD::STRICT_FTRUNC:
3833     Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
3834                                       RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
3835                                       RTLIB::TRUNC_PPCF128));
3836     break;
3837   case ISD::FFLOOR:
3838   case ISD::STRICT_FFLOOR:
3839     Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
3840                                       RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
3841                                       RTLIB::FLOOR_PPCF128));
3842     break;
3843   case ISD::FCEIL:
3844   case ISD::STRICT_FCEIL:
3845     Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
3846                                       RTLIB::CEIL_F80, RTLIB::CEIL_F128,
3847                                       RTLIB::CEIL_PPCF128));
3848     break;
3849   case ISD::FRINT:
3850   case ISD::STRICT_FRINT:
3851     Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
3852                                       RTLIB::RINT_F80, RTLIB::RINT_F128,
3853                                       RTLIB::RINT_PPCF128));
3854     break;
3855   case ISD::FNEARBYINT:
3856   case ISD::STRICT_FNEARBYINT:
3857     Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
3858                                       RTLIB::NEARBYINT_F64,
3859                                       RTLIB::NEARBYINT_F80,
3860                                       RTLIB::NEARBYINT_F128,
3861                                       RTLIB::NEARBYINT_PPCF128));
3862     break;
3863   case ISD::FROUND:
3864   case ISD::STRICT_FROUND:
3865     Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32,
3866                                       RTLIB::ROUND_F64,
3867                                       RTLIB::ROUND_F80,
3868                                       RTLIB::ROUND_F128,
3869                                       RTLIB::ROUND_PPCF128));
3870     break;
3871   case ISD::FPOWI:
3872   case ISD::STRICT_FPOWI:
3873     Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
3874                                       RTLIB::POWI_F80, RTLIB::POWI_F128,
3875                                       RTLIB::POWI_PPCF128));
3876     break;
3877   case ISD::FPOW:
3878   case ISD::STRICT_FPOW:
3879     if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_pow_finite))
3880       Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_FINITE_F32,
3881                                         RTLIB::POW_FINITE_F64,
3882                                         RTLIB::POW_FINITE_F80,
3883                                         RTLIB::POW_FINITE_F128,
3884                                         RTLIB::POW_FINITE_PPCF128));
3885     else
3886       Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
3887                                         RTLIB::POW_F80, RTLIB::POW_F128,
3888                                         RTLIB::POW_PPCF128));
3889     break;
3890   case ISD::FDIV:
3891     Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
3892                                       RTLIB::DIV_F80, RTLIB::DIV_F128,
3893                                       RTLIB::DIV_PPCF128));
3894     break;
3895   case ISD::FREM:
3896   case ISD::STRICT_FREM:
3897     Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
3898                                       RTLIB::REM_F80, RTLIB::REM_F128,
3899                                       RTLIB::REM_PPCF128));
3900     break;
3901   case ISD::FMA:
3902   case ISD::STRICT_FMA:
3903     Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
3904                                       RTLIB::FMA_F80, RTLIB::FMA_F128,
3905                                       RTLIB::FMA_PPCF128));
3906     break;
3907   case ISD::FADD:
3908     Results.push_back(ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64,
3909                                       RTLIB::ADD_F80, RTLIB::ADD_F128,
3910                                       RTLIB::ADD_PPCF128));
3911     break;
3912   case ISD::FMUL:
3913     Results.push_back(ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64,
3914                                       RTLIB::MUL_F80, RTLIB::MUL_F128,
3915                                       RTLIB::MUL_PPCF128));
3916     break;
3917   case ISD::FP16_TO_FP:
3918     if (Node->getValueType(0) == MVT::f32) {
3919       Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
3920     }
3921     break;
3922   case ISD::FP_TO_FP16: {
3923     RTLIB::Libcall LC =
3924         RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16);
3925     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16");
3926     Results.push_back(ExpandLibCall(LC, Node, false));
3927     break;
3928   }
3929   case ISD::FSUB:
3930     Results.push_back(ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64,
3931                                       RTLIB::SUB_F80, RTLIB::SUB_F128,
3932                                       RTLIB::SUB_PPCF128));
3933     break;
3934   case ISD::SREM:
3935     Results.push_back(ExpandIntLibCall(Node, true,
3936                                        RTLIB::SREM_I8,
3937                                        RTLIB::SREM_I16, RTLIB::SREM_I32,
3938                                        RTLIB::SREM_I64, RTLIB::SREM_I128));
3939     break;
3940   case ISD::UREM:
3941     Results.push_back(ExpandIntLibCall(Node, false,
3942                                        RTLIB::UREM_I8,
3943                                        RTLIB::UREM_I16, RTLIB::UREM_I32,
3944                                        RTLIB::UREM_I64, RTLIB::UREM_I128));
3945     break;
3946   case ISD::SDIV:
3947     Results.push_back(ExpandIntLibCall(Node, true,
3948                                        RTLIB::SDIV_I8,
3949                                        RTLIB::SDIV_I16, RTLIB::SDIV_I32,
3950                                        RTLIB::SDIV_I64, RTLIB::SDIV_I128));
3951     break;
3952   case ISD::UDIV:
3953     Results.push_back(ExpandIntLibCall(Node, false,
3954                                        RTLIB::UDIV_I8,
3955                                        RTLIB::UDIV_I16, RTLIB::UDIV_I32,
3956                                        RTLIB::UDIV_I64, RTLIB::UDIV_I128));
3957     break;
3958   case ISD::SDIVREM:
3959   case ISD::UDIVREM:
3960     // Expand into divrem libcall
3961     ExpandDivRemLibCall(Node, Results);
3962     break;
3963   case ISD::MUL:
3964     Results.push_back(ExpandIntLibCall(Node, false,
3965                                        RTLIB::MUL_I8,
3966                                        RTLIB::MUL_I16, RTLIB::MUL_I32,
3967                                        RTLIB::MUL_I64, RTLIB::MUL_I128));
3968     break;
3969   case ISD::CTLZ_ZERO_UNDEF:
3970     switch (Node->getSimpleValueType(0).SimpleTy) {
3971     default:
3972       llvm_unreachable("LibCall explicitly requested, but not available");
3973     case MVT::i32:
3974       Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false));
3975       break;
3976     case MVT::i64:
3977       Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false));
3978       break;
3979     case MVT::i128:
3980       Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false));
3981       break;
3982     }
3983     break;
3984   }
3985 
3986   // Replace the original node with the legalized result.
3987   if (!Results.empty()) {
3988     LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n");
3989     ReplaceNode(Node, Results.data());
3990   } else
3991     LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n");
3992 }
3993 
3994 // Determine the vector type to use in place of an original scalar element when
3995 // promoting equally sized vectors.
3996 static MVT getPromotedVectorElementType(const TargetLowering &TLI,
3997                                         MVT EltVT, MVT NewEltVT) {
3998   unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits();
3999   MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt);
4000   assert(TLI.isTypeLegal(MidVT) && "unexpected");
4001   return MidVT;
4002 }
4003 
4004 void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
4005   LLVM_DEBUG(dbgs() << "Trying to promote node\n");
4006   SmallVector<SDValue, 8> Results;
4007   MVT OVT = Node->getSimpleValueType(0);
4008   if (Node->getOpcode() == ISD::UINT_TO_FP ||
4009       Node->getOpcode() == ISD::SINT_TO_FP ||
4010       Node->getOpcode() == ISD::SETCC ||
4011       Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
4012       Node->getOpcode() == ISD::INSERT_VECTOR_ELT) {
4013     OVT = Node->getOperand(0).getSimpleValueType();
4014   }
4015   if (Node->getOpcode() == ISD::BR_CC)
4016     OVT = Node->getOperand(2).getSimpleValueType();
4017   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
4018   SDLoc dl(Node);
4019   SDValue Tmp1, Tmp2, Tmp3;
4020   switch (Node->getOpcode()) {
4021   case ISD::CTTZ:
4022   case ISD::CTTZ_ZERO_UNDEF:
4023   case ISD::CTLZ:
4024   case ISD::CTLZ_ZERO_UNDEF:
4025   case ISD::CTPOP:
4026     // Zero extend the argument.
4027     Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4028     if (Node->getOpcode() == ISD::CTTZ) {
4029       // The count is the same in the promoted type except if the original
4030       // value was zero.  This can be handled by setting the bit just off
4031       // the top of the original type.
4032       auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(),
4033                                         OVT.getSizeInBits());
4034       Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1,
4035                          DAG.getConstant(TopBit, dl, NVT));
4036     }
4037     // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
4038     // already the correct result.
4039     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4040     if (Node->getOpcode() == ISD::CTLZ ||
4041         Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
4042       // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
4043       Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
4044                           DAG.getConstant(NVT.getSizeInBits() -
4045                                           OVT.getSizeInBits(), dl, NVT));
4046     }
4047     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4048     break;
4049   case ISD::BITREVERSE:
4050   case ISD::BSWAP: {
4051     unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
4052     Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4053     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4054     Tmp1 = DAG.getNode(
4055         ISD::SRL, dl, NVT, Tmp1,
4056         DAG.getConstant(DiffBits, dl,
4057                         TLI.getShiftAmountTy(NVT, DAG.getDataLayout())));
4058 
4059     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4060     break;
4061   }
4062   case ISD::FP_TO_UINT:
4063   case ISD::FP_TO_SINT:
4064     Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
4065                                  Node->getOpcode() == ISD::FP_TO_SINT, dl);
4066     Results.push_back(Tmp1);
4067     break;
4068   case ISD::UINT_TO_FP:
4069   case ISD::SINT_TO_FP:
4070     Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
4071                                  Node->getOpcode() == ISD::SINT_TO_FP, dl);
4072     Results.push_back(Tmp1);
4073     break;
4074   case ISD::VAARG: {
4075     SDValue Chain = Node->getOperand(0); // Get the chain.
4076     SDValue Ptr = Node->getOperand(1); // Get the pointer.
4077 
4078     unsigned TruncOp;
4079     if (OVT.isVector()) {
4080       TruncOp = ISD::BITCAST;
4081     } else {
4082       assert(OVT.isInteger()
4083         && "VAARG promotion is supported only for vectors or integer types");
4084       TruncOp = ISD::TRUNCATE;
4085     }
4086 
4087     // Perform the larger operation, then convert back
4088     Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
4089              Node->getConstantOperandVal(3));
4090     Chain = Tmp1.getValue(1);
4091 
4092     Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
4093 
4094     // Modified the chain result - switch anything that used the old chain to
4095     // use the new one.
4096     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
4097     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
4098     if (UpdatedNodes) {
4099       UpdatedNodes->insert(Tmp2.getNode());
4100       UpdatedNodes->insert(Chain.getNode());
4101     }
4102     ReplacedNode(Node);
4103     break;
4104   }
4105   case ISD::MUL:
4106   case ISD::SDIV:
4107   case ISD::SREM:
4108   case ISD::UDIV:
4109   case ISD::UREM:
4110   case ISD::AND:
4111   case ISD::OR:
4112   case ISD::XOR: {
4113     unsigned ExtOp, TruncOp;
4114     if (OVT.isVector()) {
4115       ExtOp   = ISD::BITCAST;
4116       TruncOp = ISD::BITCAST;
4117     } else {
4118       assert(OVT.isInteger() && "Cannot promote logic operation");
4119 
4120       switch (Node->getOpcode()) {
4121       default:
4122         ExtOp = ISD::ANY_EXTEND;
4123         break;
4124       case ISD::SDIV:
4125       case ISD::SREM:
4126         ExtOp = ISD::SIGN_EXTEND;
4127         break;
4128       case ISD::UDIV:
4129       case ISD::UREM:
4130         ExtOp = ISD::ZERO_EXTEND;
4131         break;
4132       }
4133       TruncOp = ISD::TRUNCATE;
4134     }
4135     // Promote each of the values to the new type.
4136     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4137     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4138     // Perform the larger operation, then convert back
4139     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4140     Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
4141     break;
4142   }
4143   case ISD::UMUL_LOHI:
4144   case ISD::SMUL_LOHI: {
4145     // Promote to a multiply in a wider integer type.
4146     unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND
4147                                                          : ISD::SIGN_EXTEND;
4148     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4149     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4150     Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2);
4151 
4152     auto &DL = DAG.getDataLayout();
4153     unsigned OriginalSize = OVT.getScalarSizeInBits();
4154     Tmp2 = DAG.getNode(
4155         ISD::SRL, dl, NVT, Tmp1,
4156         DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT)));
4157     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4158     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2));
4159     break;
4160   }
4161   case ISD::SELECT: {
4162     unsigned ExtOp, TruncOp;
4163     if (Node->getValueType(0).isVector() ||
4164         Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) {
4165       ExtOp   = ISD::BITCAST;
4166       TruncOp = ISD::BITCAST;
4167     } else if (Node->getValueType(0).isInteger()) {
4168       ExtOp   = ISD::ANY_EXTEND;
4169       TruncOp = ISD::TRUNCATE;
4170     } else {
4171       ExtOp   = ISD::FP_EXTEND;
4172       TruncOp = ISD::FP_ROUND;
4173     }
4174     Tmp1 = Node->getOperand(0);
4175     // Promote each of the values to the new type.
4176     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4177     Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4178     // Perform the larger operation, then round down.
4179     Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
4180     if (TruncOp != ISD::FP_ROUND)
4181       Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
4182     else
4183       Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
4184                          DAG.getIntPtrConstant(0, dl));
4185     Results.push_back(Tmp1);
4186     break;
4187   }
4188   case ISD::VECTOR_SHUFFLE: {
4189     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
4190 
4191     // Cast the two input vectors.
4192     Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
4193     Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
4194 
4195     // Convert the shuffle mask to the right # elements.
4196     Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
4197     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
4198     Results.push_back(Tmp1);
4199     break;
4200   }
4201   case ISD::SETCC: {
4202     unsigned ExtOp = ISD::FP_EXTEND;
4203     if (NVT.isInteger()) {
4204       ISD::CondCode CCCode =
4205         cast<CondCodeSDNode>(Node->getOperand(2))->get();
4206       ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4207     }
4208     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4209     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4210     Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
4211                                   Tmp1, Tmp2, Node->getOperand(2)));
4212     break;
4213   }
4214   case ISD::BR_CC: {
4215     unsigned ExtOp = ISD::FP_EXTEND;
4216     if (NVT.isInteger()) {
4217       ISD::CondCode CCCode =
4218         cast<CondCodeSDNode>(Node->getOperand(1))->get();
4219       ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4220     }
4221     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4222     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3));
4223     Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0),
4224                                   Node->getOperand(0), Node->getOperand(1),
4225                                   Tmp1, Tmp2, Node->getOperand(4)));
4226     break;
4227   }
4228   case ISD::FADD:
4229   case ISD::FSUB:
4230   case ISD::FMUL:
4231   case ISD::FDIV:
4232   case ISD::FREM:
4233   case ISD::FMINNUM:
4234   case ISD::FMAXNUM:
4235   case ISD::FPOW:
4236     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4237     Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4238     Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2,
4239                        Node->getFlags());
4240     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4241                                   Tmp3, DAG.getIntPtrConstant(0, dl)));
4242     break;
4243   case ISD::FMA:
4244     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4245     Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4246     Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2));
4247     Results.push_back(
4248         DAG.getNode(ISD::FP_ROUND, dl, OVT,
4249                     DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3),
4250                     DAG.getIntPtrConstant(0, dl)));
4251     break;
4252   case ISD::FCOPYSIGN:
4253   case ISD::FPOWI: {
4254     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4255     Tmp2 = Node->getOperand(1);
4256     Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4257 
4258     // fcopysign doesn't change anything but the sign bit, so
4259     //   (fp_round (fcopysign (fpext a), b))
4260     // is as precise as
4261     //   (fp_round (fpext a))
4262     // which is a no-op. Mark it as a TRUNCating FP_ROUND.
4263     const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN);
4264     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4265                                   Tmp3, DAG.getIntPtrConstant(isTrunc, dl)));
4266     break;
4267   }
4268   case ISD::FFLOOR:
4269   case ISD::FCEIL:
4270   case ISD::FRINT:
4271   case ISD::FNEARBYINT:
4272   case ISD::FROUND:
4273   case ISD::FTRUNC:
4274   case ISD::FNEG:
4275   case ISD::FSQRT:
4276   case ISD::FSIN:
4277   case ISD::FCOS:
4278   case ISD::FLOG:
4279   case ISD::FLOG2:
4280   case ISD::FLOG10:
4281   case ISD::FABS:
4282   case ISD::FEXP:
4283   case ISD::FEXP2:
4284     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4285     Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4286     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4287                                   Tmp2, DAG.getIntPtrConstant(0, dl)));
4288     break;
4289   case ISD::BUILD_VECTOR: {
4290     MVT EltVT = OVT.getVectorElementType();
4291     MVT NewEltVT = NVT.getVectorElementType();
4292 
4293     // Handle bitcasts to a different vector type with the same total bit size
4294     //
4295     // e.g. v2i64 = build_vector i64:x, i64:y => v4i32
4296     //  =>
4297     //  v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y))
4298 
4299     assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4300            "Invalid promote type for build_vector");
4301     assert(NewEltVT.bitsLT(EltVT) && "not handled");
4302 
4303     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4304 
4305     SmallVector<SDValue, 8> NewOps;
4306     for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) {
4307       SDValue Op = Node->getOperand(I);
4308       NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op));
4309     }
4310 
4311     SDLoc SL(Node);
4312     SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps);
4313     SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4314     Results.push_back(CvtVec);
4315     break;
4316   }
4317   case ISD::EXTRACT_VECTOR_ELT: {
4318     MVT EltVT = OVT.getVectorElementType();
4319     MVT NewEltVT = NVT.getVectorElementType();
4320 
4321     // Handle bitcasts to a different vector type with the same total bit size.
4322     //
4323     // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32
4324     //  =>
4325     //  v4i32:castx = bitcast x:v2i64
4326     //
4327     // i64 = bitcast
4328     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
4329     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
4330     //
4331 
4332     assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4333            "Invalid promote type for extract_vector_elt");
4334     assert(NewEltVT.bitsLT(EltVT) && "not handled");
4335 
4336     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4337     unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4338 
4339     SDValue Idx = Node->getOperand(1);
4340     EVT IdxVT = Idx.getValueType();
4341     SDLoc SL(Node);
4342     SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT);
4343     SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4344 
4345     SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4346 
4347     SmallVector<SDValue, 8> NewOps;
4348     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4349       SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4350       SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4351 
4352       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4353                                 CastVec, TmpIdx);
4354       NewOps.push_back(Elt);
4355     }
4356 
4357     SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps);
4358     Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec));
4359     break;
4360   }
4361   case ISD::INSERT_VECTOR_ELT: {
4362     MVT EltVT = OVT.getVectorElementType();
4363     MVT NewEltVT = NVT.getVectorElementType();
4364 
4365     // Handle bitcasts to a different vector type with the same total bit size
4366     //
4367     // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32
4368     //  =>
4369     //  v4i32:castx = bitcast x:v2i64
4370     //  v2i32:casty = bitcast y:i64
4371     //
4372     // v2i64 = bitcast
4373     //   (v4i32 insert_vector_elt
4374     //       (v4i32 insert_vector_elt v4i32:castx,
4375     //                                (extract_vector_elt casty, 0), 2 * z),
4376     //        (extract_vector_elt casty, 1), (2 * z + 1))
4377 
4378     assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4379            "Invalid promote type for insert_vector_elt");
4380     assert(NewEltVT.bitsLT(EltVT) && "not handled");
4381 
4382     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4383     unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4384 
4385     SDValue Val = Node->getOperand(1);
4386     SDValue Idx = Node->getOperand(2);
4387     EVT IdxVT = Idx.getValueType();
4388     SDLoc SL(Node);
4389 
4390     SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT);
4391     SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4392 
4393     SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4394     SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4395 
4396     SDValue NewVec = CastVec;
4397     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4398       SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4399       SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4400 
4401       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4402                                 CastVal, IdxOffset);
4403 
4404       NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT,
4405                            NewVec, Elt, InEltIdx);
4406     }
4407 
4408     Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec));
4409     break;
4410   }
4411   case ISD::SCALAR_TO_VECTOR: {
4412     MVT EltVT = OVT.getVectorElementType();
4413     MVT NewEltVT = NVT.getVectorElementType();
4414 
4415     // Handle bitcasts to different vector type with the same total bit size.
4416     //
4417     // e.g. v2i64 = scalar_to_vector x:i64
4418     //   =>
4419     //  concat_vectors (v2i32 bitcast x:i64), (v2i32 undef)
4420     //
4421 
4422     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4423     SDValue Val = Node->getOperand(0);
4424     SDLoc SL(Node);
4425 
4426     SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4427     SDValue Undef = DAG.getUNDEF(MidVT);
4428 
4429     SmallVector<SDValue, 8> NewElts;
4430     NewElts.push_back(CastVal);
4431     for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I)
4432       NewElts.push_back(Undef);
4433 
4434     SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts);
4435     SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4436     Results.push_back(CvtVec);
4437     break;
4438   }
4439   case ISD::ATOMIC_SWAP: {
4440     AtomicSDNode *AM = cast<AtomicSDNode>(Node);
4441     SDLoc SL(Node);
4442     SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal());
4443     assert(NVT.getSizeInBits() == OVT.getSizeInBits() &&
4444            "unexpected promotion type");
4445     assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() &&
4446            "unexpected atomic_swap with illegal type");
4447 
4448     SDValue NewAtomic
4449       = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT,
4450                       DAG.getVTList(NVT, MVT::Other),
4451                       { AM->getChain(), AM->getBasePtr(), CastVal },
4452                       AM->getMemOperand());
4453     Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic));
4454     Results.push_back(NewAtomic.getValue(1));
4455     break;
4456   }
4457   }
4458 
4459   // Replace the original node with the legalized result.
4460   if (!Results.empty()) {
4461     LLVM_DEBUG(dbgs() << "Successfully promoted node\n");
4462     ReplaceNode(Node, Results.data());
4463   } else
4464     LLVM_DEBUG(dbgs() << "Could not promote node\n");
4465 }
4466 
4467 /// This is the entry point for the file.
4468 void SelectionDAG::Legalize() {
4469   AssignTopologicalOrder();
4470 
4471   SmallPtrSet<SDNode *, 16> LegalizedNodes;
4472   // Use a delete listener to remove nodes which were deleted during
4473   // legalization from LegalizeNodes. This is needed to handle the situation
4474   // where a new node is allocated by the object pool to the same address of a
4475   // previously deleted node.
4476   DAGNodeDeletedListener DeleteListener(
4477       *this,
4478       [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); });
4479 
4480   SelectionDAGLegalize Legalizer(*this, LegalizedNodes);
4481 
4482   // Visit all the nodes. We start in topological order, so that we see
4483   // nodes with their original operands intact. Legalization can produce
4484   // new nodes which may themselves need to be legalized. Iterate until all
4485   // nodes have been legalized.
4486   while (true) {
4487     bool AnyLegalized = false;
4488     for (auto NI = allnodes_end(); NI != allnodes_begin();) {
4489       --NI;
4490 
4491       SDNode *N = &*NI;
4492       if (N->use_empty() && N != getRoot().getNode()) {
4493         ++NI;
4494         DeleteNode(N);
4495         continue;
4496       }
4497 
4498       if (LegalizedNodes.insert(N).second) {
4499         AnyLegalized = true;
4500         Legalizer.LegalizeOp(N);
4501 
4502         if (N->use_empty() && N != getRoot().getNode()) {
4503           ++NI;
4504           DeleteNode(N);
4505         }
4506       }
4507     }
4508     if (!AnyLegalized)
4509       break;
4510 
4511   }
4512 
4513   // Remove dead nodes now.
4514   RemoveDeadNodes();
4515 }
4516 
4517 bool SelectionDAG::LegalizeOp(SDNode *N,
4518                               SmallSetVector<SDNode *, 16> &UpdatedNodes) {
4519   SmallPtrSet<SDNode *, 16> LegalizedNodes;
4520   SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes);
4521 
4522   // Directly insert the node in question, and legalize it. This will recurse
4523   // as needed through operands.
4524   LegalizedNodes.insert(N);
4525   Legalizer.LegalizeOp(N);
4526 
4527   return LegalizedNodes.count(N);
4528 }
4529