1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::Legalize method. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/CodeGen/ISDOpcodes.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/RuntimeLibcalls.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/SelectionDAGNodes.h" 28 #include "llvm/CodeGen/TargetFrameLowering.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/CodeGen/ValueTypes.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstdint> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "legalizedag" 57 58 namespace { 59 60 /// Keeps track of state when getting the sign of a floating-point value as an 61 /// integer. 62 struct FloatSignAsInt { 63 EVT FloatVT; 64 SDValue Chain; 65 SDValue FloatPtr; 66 SDValue IntPtr; 67 MachinePointerInfo IntPointerInfo; 68 MachinePointerInfo FloatPointerInfo; 69 SDValue IntValue; 70 APInt SignMask; 71 uint8_t SignBit; 72 }; 73 74 //===----------------------------------------------------------------------===// 75 /// This takes an arbitrary SelectionDAG as input and 76 /// hacks on it until the target machine can handle it. This involves 77 /// eliminating value sizes the machine cannot handle (promoting small sizes to 78 /// large sizes or splitting up large values into small values) as well as 79 /// eliminating operations the machine cannot handle. 80 /// 81 /// This code also does a small amount of optimization and recognition of idioms 82 /// as part of its processing. For example, if a target does not support a 83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 84 /// will attempt merge setcc and brc instructions into brcc's. 85 class SelectionDAGLegalize { 86 const TargetMachine &TM; 87 const TargetLowering &TLI; 88 SelectionDAG &DAG; 89 90 /// The set of nodes which have already been legalized. We hold a 91 /// reference to it in order to update as necessary on node deletion. 92 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 93 94 /// A set of all the nodes updated during legalization. 95 SmallSetVector<SDNode *, 16> *UpdatedNodes; 96 97 EVT getSetCCResultType(EVT VT) const { 98 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 99 } 100 101 // Libcall insertion helpers. 102 103 public: 104 SelectionDAGLegalize(SelectionDAG &DAG, 105 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 106 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 107 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 108 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 109 110 /// Legalizes the given operation. 111 void LegalizeOp(SDNode *Node); 112 113 private: 114 SDValue OptimizeFloatStore(StoreSDNode *ST); 115 116 void LegalizeLoadOps(SDNode *Node); 117 void LegalizeStoreOps(SDNode *Node); 118 119 /// Some targets cannot handle a variable 120 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 121 /// is necessary to spill the vector being inserted into to memory, perform 122 /// the insert there, and then read the result back. 123 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 124 const SDLoc &dl); 125 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 126 const SDLoc &dl); 127 128 /// Return a vector shuffle operation which 129 /// performs the same shuffe in terms of order or result bytes, but on a type 130 /// whose vector element type is narrower than the original shuffle type. 131 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 132 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 133 SDValue N1, SDValue N2, 134 ArrayRef<int> Mask) const; 135 136 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 137 138 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall LC, 139 SmallVectorImpl<SDValue> &Results); 140 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 141 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 142 RTLIB::Libcall Call_F128, 143 RTLIB::Libcall Call_PPCF128, 144 SmallVectorImpl<SDValue> &Results); 145 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 146 RTLIB::Libcall Call_I8, 147 RTLIB::Libcall Call_I16, 148 RTLIB::Libcall Call_I32, 149 RTLIB::Libcall Call_I64, 150 RTLIB::Libcall Call_I128); 151 void ExpandArgFPLibCall(SDNode *Node, 152 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, 153 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, 154 RTLIB::Libcall Call_PPCF128, 155 SmallVectorImpl<SDValue> &Results); 156 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 157 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 158 159 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 160 const SDLoc &dl); 161 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 162 const SDLoc &dl, SDValue ChainIn); 163 SDValue ExpandBUILD_VECTOR(SDNode *Node); 164 SDValue ExpandSPLAT_VECTOR(SDNode *Node); 165 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 166 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 167 SmallVectorImpl<SDValue> &Results); 168 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 169 SDValue Value) const; 170 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 171 SDValue NewIntValue) const; 172 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 173 SDValue ExpandFABS(SDNode *Node) const; 174 SDValue ExpandFNEG(SDNode *Node) const; 175 SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain); 176 void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl, 177 SmallVectorImpl<SDValue> &Results); 178 void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 179 SmallVectorImpl<SDValue> &Results); 180 SDValue PromoteLegalFP_TO_INT_SAT(SDNode *Node, const SDLoc &dl); 181 182 SDValue ExpandPARITY(SDValue Op, const SDLoc &dl); 183 184 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 185 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 186 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 187 188 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 189 SDValue ExpandConstant(ConstantSDNode *CP); 190 191 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 192 bool ExpandNode(SDNode *Node); 193 void ConvertNodeToLibcall(SDNode *Node); 194 void PromoteNode(SDNode *Node); 195 196 public: 197 // Node replacement helpers 198 199 void ReplacedNode(SDNode *N) { 200 LegalizedNodes.erase(N); 201 if (UpdatedNodes) 202 UpdatedNodes->insert(N); 203 } 204 205 void ReplaceNode(SDNode *Old, SDNode *New) { 206 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 207 dbgs() << " with: "; New->dump(&DAG)); 208 209 assert(Old->getNumValues() == New->getNumValues() && 210 "Replacing one node with another that produces a different number " 211 "of values!"); 212 DAG.ReplaceAllUsesWith(Old, New); 213 if (UpdatedNodes) 214 UpdatedNodes->insert(New); 215 ReplacedNode(Old); 216 } 217 218 void ReplaceNode(SDValue Old, SDValue New) { 219 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 220 dbgs() << " with: "; New->dump(&DAG)); 221 222 DAG.ReplaceAllUsesWith(Old, New); 223 if (UpdatedNodes) 224 UpdatedNodes->insert(New.getNode()); 225 ReplacedNode(Old.getNode()); 226 } 227 228 void ReplaceNode(SDNode *Old, const SDValue *New) { 229 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 230 231 DAG.ReplaceAllUsesWith(Old, New); 232 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 233 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); 234 New[i]->dump(&DAG)); 235 if (UpdatedNodes) 236 UpdatedNodes->insert(New[i].getNode()); 237 } 238 ReplacedNode(Old); 239 } 240 241 void ReplaceNodeWithValue(SDValue Old, SDValue New) { 242 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 243 dbgs() << " with: "; New->dump(&DAG)); 244 245 DAG.ReplaceAllUsesOfValueWith(Old, New); 246 if (UpdatedNodes) 247 UpdatedNodes->insert(New.getNode()); 248 ReplacedNode(Old.getNode()); 249 } 250 }; 251 252 } // end anonymous namespace 253 254 /// Return a vector shuffle operation which 255 /// performs the same shuffle in terms of order or result bytes, but on a type 256 /// whose vector element type is narrower than the original shuffle type. 257 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 258 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 259 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 260 ArrayRef<int> Mask) const { 261 unsigned NumMaskElts = VT.getVectorNumElements(); 262 unsigned NumDestElts = NVT.getVectorNumElements(); 263 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 264 265 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 266 267 if (NumEltsGrowth == 1) 268 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 269 270 SmallVector<int, 8> NewMask; 271 for (unsigned i = 0; i != NumMaskElts; ++i) { 272 int Idx = Mask[i]; 273 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 274 if (Idx < 0) 275 NewMask.push_back(-1); 276 else 277 NewMask.push_back(Idx * NumEltsGrowth + j); 278 } 279 } 280 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 281 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 282 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 283 } 284 285 /// Expands the ConstantFP node to an integer constant or 286 /// a load from the constant pool. 287 SDValue 288 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 289 bool Extend = false; 290 SDLoc dl(CFP); 291 292 // If a FP immediate is precise when represented as a float and if the 293 // target can do an extending load from float to double, we put it into 294 // the constant pool as a float, even if it's is statically typed as a 295 // double. This shrinks FP constants and canonicalizes them for targets where 296 // an FP extending load is the same cost as a normal load (such as on the x87 297 // fp stack or PPC FP unit). 298 EVT VT = CFP->getValueType(0); 299 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 300 if (!UseCP) { 301 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 302 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 303 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 304 } 305 306 APFloat APF = CFP->getValueAPF(); 307 EVT OrigVT = VT; 308 EVT SVT = VT; 309 310 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 311 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 312 if (!APF.isSignaling()) { 313 while (SVT != MVT::f32 && SVT != MVT::f16) { 314 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 315 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 316 // Only do this if the target has a native EXTLOAD instruction from 317 // smaller type. 318 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 319 TLI.ShouldShrinkFPConstant(OrigVT)) { 320 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 321 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 322 VT = SVT; 323 Extend = true; 324 } 325 } 326 } 327 328 SDValue CPIdx = 329 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 330 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 331 if (Extend) { 332 SDValue Result = DAG.getExtLoad( 333 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 334 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 335 Alignment); 336 return Result; 337 } 338 SDValue Result = DAG.getLoad( 339 OrigVT, dl, DAG.getEntryNode(), CPIdx, 340 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 341 return Result; 342 } 343 344 /// Expands the Constant node to a load from the constant pool. 345 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 346 SDLoc dl(CP); 347 EVT VT = CP->getValueType(0); 348 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 349 TLI.getPointerTy(DAG.getDataLayout())); 350 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 351 SDValue Result = DAG.getLoad( 352 VT, dl, DAG.getEntryNode(), CPIdx, 353 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 354 return Result; 355 } 356 357 /// Some target cannot handle a variable insertion index for the 358 /// INSERT_VECTOR_ELT instruction. In this case, it 359 /// is necessary to spill the vector being inserted into to memory, perform 360 /// the insert there, and then read the result back. 361 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 362 SDValue Val, 363 SDValue Idx, 364 const SDLoc &dl) { 365 SDValue Tmp1 = Vec; 366 SDValue Tmp2 = Val; 367 SDValue Tmp3 = Idx; 368 369 // If the target doesn't support this, we have to spill the input vector 370 // to a temporary stack slot, update the element, then reload it. This is 371 // badness. We could also load the value into a vector register (either 372 // with a "move to register" or "extload into register" instruction, then 373 // permute it into place, if the idx is a constant and if the idx is 374 // supported by the target. 375 EVT VT = Tmp1.getValueType(); 376 EVT EltVT = VT.getVectorElementType(); 377 SDValue StackPtr = DAG.CreateStackTemporary(VT); 378 379 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 380 381 // Store the vector. 382 SDValue Ch = DAG.getStore( 383 DAG.getEntryNode(), dl, Tmp1, StackPtr, 384 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 385 386 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 387 388 // Store the scalar value. 389 Ch = DAG.getTruncStore( 390 Ch, dl, Tmp2, StackPtr2, 391 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT); 392 // Load the updated vector. 393 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 394 DAG.getMachineFunction(), SPFI)); 395 } 396 397 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 398 SDValue Idx, 399 const SDLoc &dl) { 400 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 401 // SCALAR_TO_VECTOR requires that the type of the value being inserted 402 // match the element type of the vector being created, except for 403 // integers in which case the inserted value can be over width. 404 EVT EltVT = Vec.getValueType().getVectorElementType(); 405 if (Val.getValueType() == EltVT || 406 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 407 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 408 Vec.getValueType(), Val); 409 410 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 411 // We generate a shuffle of InVec and ScVec, so the shuffle mask 412 // should be 0,1,2,3,4,5... with the appropriate element replaced with 413 // elt 0 of the RHS. 414 SmallVector<int, 8> ShufOps; 415 for (unsigned i = 0; i != NumElts; ++i) 416 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 417 418 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 419 } 420 } 421 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 422 } 423 424 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 425 if (!ISD::isNormalStore(ST)) 426 return SDValue(); 427 428 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); 429 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 430 // FIXME: move this to the DAG Combiner! Note that we can't regress due 431 // to phase ordering between legalized code and the dag combiner. This 432 // probably means that we need to integrate dag combiner and legalizer 433 // together. 434 // We generally can't do this one for long doubles. 435 SDValue Chain = ST->getChain(); 436 SDValue Ptr = ST->getBasePtr(); 437 SDValue Value = ST->getValue(); 438 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 439 AAMDNodes AAInfo = ST->getAAInfo(); 440 SDLoc dl(ST); 441 442 // Don't optimise TargetConstantFP 443 if (Value.getOpcode() == ISD::TargetConstantFP) 444 return SDValue(); 445 446 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) { 447 if (CFP->getValueType(0) == MVT::f32 && 448 TLI.isTypeLegal(MVT::i32)) { 449 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 450 bitcastToAPInt().zextOrTrunc(32), 451 SDLoc(CFP), MVT::i32); 452 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 453 ST->getOriginalAlign(), MMOFlags, AAInfo); 454 } 455 456 if (CFP->getValueType(0) == MVT::f64) { 457 // If this target supports 64-bit registers, do a single 64-bit store. 458 if (TLI.isTypeLegal(MVT::i64)) { 459 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 460 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 461 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 462 ST->getOriginalAlign(), MMOFlags, AAInfo); 463 } 464 465 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 466 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 467 // stores. If the target supports neither 32- nor 64-bits, this 468 // xform is certainly not worth it. 469 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 470 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 471 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 472 if (DAG.getDataLayout().isBigEndian()) 473 std::swap(Lo, Hi); 474 475 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), 476 ST->getOriginalAlign(), MMOFlags, AAInfo); 477 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), dl); 478 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 479 ST->getPointerInfo().getWithOffset(4), 480 ST->getOriginalAlign(), MMOFlags, AAInfo); 481 482 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 483 } 484 } 485 } 486 return SDValue(); 487 } 488 489 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 490 StoreSDNode *ST = cast<StoreSDNode>(Node); 491 SDValue Chain = ST->getChain(); 492 SDValue Ptr = ST->getBasePtr(); 493 SDLoc dl(Node); 494 495 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 496 AAMDNodes AAInfo = ST->getAAInfo(); 497 498 if (!ST->isTruncatingStore()) { 499 LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); 500 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 501 ReplaceNode(ST, OptStore); 502 return; 503 } 504 505 SDValue Value = ST->getValue(); 506 MVT VT = Value.getSimpleValueType(); 507 switch (TLI.getOperationAction(ISD::STORE, VT)) { 508 default: llvm_unreachable("This action is not supported yet!"); 509 case TargetLowering::Legal: { 510 // If this is an unaligned store and the target doesn't support it, 511 // expand it. 512 EVT MemVT = ST->getMemoryVT(); 513 const DataLayout &DL = DAG.getDataLayout(); 514 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 515 *ST->getMemOperand())) { 516 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 517 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 518 ReplaceNode(SDValue(ST, 0), Result); 519 } else 520 LLVM_DEBUG(dbgs() << "Legal store\n"); 521 break; 522 } 523 case TargetLowering::Custom: { 524 LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); 525 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 526 if (Res && Res != SDValue(Node, 0)) 527 ReplaceNode(SDValue(Node, 0), Res); 528 return; 529 } 530 case TargetLowering::Promote: { 531 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 532 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 533 "Can only promote stores to same size type"); 534 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 535 SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 536 ST->getOriginalAlign(), MMOFlags, AAInfo); 537 ReplaceNode(SDValue(Node, 0), Result); 538 break; 539 } 540 } 541 return; 542 } 543 544 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); 545 SDValue Value = ST->getValue(); 546 EVT StVT = ST->getMemoryVT(); 547 TypeSize StWidth = StVT.getSizeInBits(); 548 TypeSize StSize = StVT.getStoreSizeInBits(); 549 auto &DL = DAG.getDataLayout(); 550 551 if (StWidth != StSize) { 552 // Promote to a byte-sized store with upper bits zero if not 553 // storing an integral number of bytes. For example, promote 554 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 555 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StSize.getFixedSize()); 556 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 557 SDValue Result = 558 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 559 ST->getOriginalAlign(), MMOFlags, AAInfo); 560 ReplaceNode(SDValue(Node, 0), Result); 561 } else if (!StVT.isVector() && !isPowerOf2_64(StWidth.getFixedSize())) { 562 // If not storing a power-of-2 number of bits, expand as two stores. 563 assert(!StVT.isVector() && "Unsupported truncstore!"); 564 unsigned StWidthBits = StWidth.getFixedSize(); 565 unsigned LogStWidth = Log2_32(StWidthBits); 566 assert(LogStWidth < 32); 567 unsigned RoundWidth = 1 << LogStWidth; 568 assert(RoundWidth < StWidthBits); 569 unsigned ExtraWidth = StWidthBits - RoundWidth; 570 assert(ExtraWidth < RoundWidth); 571 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 572 "Store size not an integral number of bytes!"); 573 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 574 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 575 SDValue Lo, Hi; 576 unsigned IncrementSize; 577 578 if (DL.isLittleEndian()) { 579 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 580 // Store the bottom RoundWidth bits. 581 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 582 RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 583 584 // Store the remaining ExtraWidth bits. 585 IncrementSize = RoundWidth / 8; 586 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 587 Hi = DAG.getNode( 588 ISD::SRL, dl, Value.getValueType(), Value, 589 DAG.getConstant(RoundWidth, dl, 590 TLI.getShiftAmountTy(Value.getValueType(), DL))); 591 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, 592 ST->getPointerInfo().getWithOffset(IncrementSize), 593 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 594 } else { 595 // Big endian - avoid unaligned stores. 596 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 597 // Store the top RoundWidth bits. 598 Hi = DAG.getNode( 599 ISD::SRL, dl, Value.getValueType(), Value, 600 DAG.getConstant(ExtraWidth, dl, 601 TLI.getShiftAmountTy(Value.getValueType(), DL))); 602 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT, 603 ST->getOriginalAlign(), MMOFlags, AAInfo); 604 605 // Store the remaining ExtraWidth bits. 606 IncrementSize = RoundWidth / 8; 607 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 608 DAG.getConstant(IncrementSize, dl, 609 Ptr.getValueType())); 610 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, 611 ST->getPointerInfo().getWithOffset(IncrementSize), 612 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 613 } 614 615 // The order of the stores doesn't matter. 616 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 617 ReplaceNode(SDValue(Node, 0), Result); 618 } else { 619 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 620 default: llvm_unreachable("This action is not supported yet!"); 621 case TargetLowering::Legal: { 622 EVT MemVT = ST->getMemoryVT(); 623 // If this is an unaligned store and the target doesn't support it, 624 // expand it. 625 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 626 *ST->getMemOperand())) { 627 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 628 ReplaceNode(SDValue(ST, 0), Result); 629 } 630 break; 631 } 632 case TargetLowering::Custom: { 633 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 634 if (Res && Res != SDValue(Node, 0)) 635 ReplaceNode(SDValue(Node, 0), Res); 636 return; 637 } 638 case TargetLowering::Expand: 639 assert(!StVT.isVector() && 640 "Vector Stores are handled in LegalizeVectorOps"); 641 642 SDValue Result; 643 644 // TRUNCSTORE:i16 i32 -> STORE i16 645 if (TLI.isTypeLegal(StVT)) { 646 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 647 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 648 ST->getOriginalAlign(), MMOFlags, AAInfo); 649 } else { 650 // The in-memory type isn't legal. Truncate to the type it would promote 651 // to, and then do a truncstore. 652 Value = DAG.getNode(ISD::TRUNCATE, dl, 653 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 654 Value); 655 Result = 656 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT, 657 ST->getOriginalAlign(), MMOFlags, AAInfo); 658 } 659 660 ReplaceNode(SDValue(Node, 0), Result); 661 break; 662 } 663 } 664 } 665 666 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 667 LoadSDNode *LD = cast<LoadSDNode>(Node); 668 SDValue Chain = LD->getChain(); // The chain. 669 SDValue Ptr = LD->getBasePtr(); // The base pointer. 670 SDValue Value; // The value returned by the load op. 671 SDLoc dl(Node); 672 673 ISD::LoadExtType ExtType = LD->getExtensionType(); 674 if (ExtType == ISD::NON_EXTLOAD) { 675 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 676 MVT VT = Node->getSimpleValueType(0); 677 SDValue RVal = SDValue(Node, 0); 678 SDValue RChain = SDValue(Node, 1); 679 680 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 681 default: llvm_unreachable("This action is not supported yet!"); 682 case TargetLowering::Legal: { 683 EVT MemVT = LD->getMemoryVT(); 684 const DataLayout &DL = DAG.getDataLayout(); 685 // If this is an unaligned load and the target doesn't support it, 686 // expand it. 687 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 688 *LD->getMemOperand())) { 689 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 690 } 691 break; 692 } 693 case TargetLowering::Custom: 694 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 695 RVal = Res; 696 RChain = Res.getValue(1); 697 } 698 break; 699 700 case TargetLowering::Promote: { 701 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 702 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 703 "Can only promote loads to same size type"); 704 705 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 706 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 707 RChain = Res.getValue(1); 708 break; 709 } 710 } 711 if (RChain.getNode() != Node) { 712 assert(RVal.getNode() != Node && "Load must be completely replaced"); 713 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 714 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 715 if (UpdatedNodes) { 716 UpdatedNodes->insert(RVal.getNode()); 717 UpdatedNodes->insert(RChain.getNode()); 718 } 719 ReplacedNode(Node); 720 } 721 return; 722 } 723 724 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); 725 EVT SrcVT = LD->getMemoryVT(); 726 TypeSize SrcWidth = SrcVT.getSizeInBits(); 727 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 728 AAMDNodes AAInfo = LD->getAAInfo(); 729 730 if (SrcWidth != SrcVT.getStoreSizeInBits() && 731 // Some targets pretend to have an i1 loading operation, and actually 732 // load an i8. This trick is correct for ZEXTLOAD because the top 7 733 // bits are guaranteed to be zero; it helps the optimizers understand 734 // that these bits are zero. It is also useful for EXTLOAD, since it 735 // tells the optimizers that those bits are undefined. It would be 736 // nice to have an effective generic way of getting these benefits... 737 // Until such a way is found, don't insist on promoting i1 here. 738 (SrcVT != MVT::i1 || 739 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 740 TargetLowering::Promote)) { 741 // Promote to a byte-sized load if not loading an integral number of 742 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 743 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 744 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 745 SDValue Ch; 746 747 // The extra bits are guaranteed to be zero, since we stored them that 748 // way. A zext load from NVT thus automatically gives zext from SrcVT. 749 750 ISD::LoadExtType NewExtType = 751 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 752 753 SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 754 Chain, Ptr, LD->getPointerInfo(), NVT, 755 LD->getOriginalAlign(), MMOFlags, AAInfo); 756 757 Ch = Result.getValue(1); // The chain. 758 759 if (ExtType == ISD::SEXTLOAD) 760 // Having the top bits zero doesn't help when sign extending. 761 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 762 Result.getValueType(), 763 Result, DAG.getValueType(SrcVT)); 764 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 765 // All the top bits are guaranteed to be zero - inform the optimizers. 766 Result = DAG.getNode(ISD::AssertZext, dl, 767 Result.getValueType(), Result, 768 DAG.getValueType(SrcVT)); 769 770 Value = Result; 771 Chain = Ch; 772 } else if (!isPowerOf2_64(SrcWidth.getKnownMinSize())) { 773 // If not loading a power-of-2 number of bits, expand as two loads. 774 assert(!SrcVT.isVector() && "Unsupported extload!"); 775 unsigned SrcWidthBits = SrcWidth.getFixedSize(); 776 unsigned LogSrcWidth = Log2_32(SrcWidthBits); 777 assert(LogSrcWidth < 32); 778 unsigned RoundWidth = 1 << LogSrcWidth; 779 assert(RoundWidth < SrcWidthBits); 780 unsigned ExtraWidth = SrcWidthBits - RoundWidth; 781 assert(ExtraWidth < RoundWidth); 782 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 783 "Load size not an integral number of bytes!"); 784 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 785 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 786 SDValue Lo, Hi, Ch; 787 unsigned IncrementSize; 788 auto &DL = DAG.getDataLayout(); 789 790 if (DL.isLittleEndian()) { 791 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 792 // Load the bottom RoundWidth bits. 793 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 794 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 795 MMOFlags, AAInfo); 796 797 // Load the remaining ExtraWidth bits. 798 IncrementSize = RoundWidth / 8; 799 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 800 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 801 LD->getPointerInfo().getWithOffset(IncrementSize), 802 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 803 804 // Build a factor node to remember that this load is independent of 805 // the other one. 806 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 807 Hi.getValue(1)); 808 809 // Move the top bits to the right place. 810 Hi = DAG.getNode( 811 ISD::SHL, dl, Hi.getValueType(), Hi, 812 DAG.getConstant(RoundWidth, dl, 813 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 814 815 // Join the hi and lo parts. 816 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 817 } else { 818 // Big endian - avoid unaligned loads. 819 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 820 // Load the top RoundWidth bits. 821 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 822 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 823 MMOFlags, AAInfo); 824 825 // Load the remaining ExtraWidth bits. 826 IncrementSize = RoundWidth / 8; 827 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 828 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 829 LD->getPointerInfo().getWithOffset(IncrementSize), 830 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 831 832 // Build a factor node to remember that this load is independent of 833 // the other one. 834 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 835 Hi.getValue(1)); 836 837 // Move the top bits to the right place. 838 Hi = DAG.getNode( 839 ISD::SHL, dl, Hi.getValueType(), Hi, 840 DAG.getConstant(ExtraWidth, dl, 841 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 842 843 // Join the hi and lo parts. 844 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 845 } 846 847 Chain = Ch; 848 } else { 849 bool isCustom = false; 850 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 851 SrcVT.getSimpleVT())) { 852 default: llvm_unreachable("This action is not supported yet!"); 853 case TargetLowering::Custom: 854 isCustom = true; 855 LLVM_FALLTHROUGH; 856 case TargetLowering::Legal: 857 Value = SDValue(Node, 0); 858 Chain = SDValue(Node, 1); 859 860 if (isCustom) { 861 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 862 Value = Res; 863 Chain = Res.getValue(1); 864 } 865 } else { 866 // If this is an unaligned load and the target doesn't support it, 867 // expand it. 868 EVT MemVT = LD->getMemoryVT(); 869 const DataLayout &DL = DAG.getDataLayout(); 870 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, 871 *LD->getMemOperand())) { 872 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 873 } 874 } 875 break; 876 877 case TargetLowering::Expand: { 878 EVT DestVT = Node->getValueType(0); 879 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 880 // If the source type is not legal, see if there is a legal extload to 881 // an intermediate type that we can then extend further. 882 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 883 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 884 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 885 // If we are loading a legal type, this is a non-extload followed by a 886 // full extend. 887 ISD::LoadExtType MidExtType = 888 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 889 890 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 891 SrcVT, LD->getMemOperand()); 892 unsigned ExtendOp = 893 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 894 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 895 Chain = Load.getValue(1); 896 break; 897 } 898 899 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 900 // normal undefined upper bits behavior to allow using an in-reg extend 901 // with the illegal FP type, so load as an integer and do the 902 // from-integer conversion. 903 if (SrcVT.getScalarType() == MVT::f16) { 904 EVT ISrcVT = SrcVT.changeTypeToInteger(); 905 EVT IDestVT = DestVT.changeTypeToInteger(); 906 EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 907 908 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain, 909 Ptr, ISrcVT, LD->getMemOperand()); 910 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 911 Chain = Result.getValue(1); 912 break; 913 } 914 } 915 916 assert(!SrcVT.isVector() && 917 "Vector Loads are handled in LegalizeVectorOps"); 918 919 // FIXME: This does not work for vectors on most targets. Sign- 920 // and zero-extend operations are currently folded into extending 921 // loads, whether they are legal or not, and then we end up here 922 // without any support for legalizing them. 923 assert(ExtType != ISD::EXTLOAD && 924 "EXTLOAD should always be supported!"); 925 // Turn the unsupported load into an EXTLOAD followed by an 926 // explicit zero/sign extend inreg. 927 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 928 Node->getValueType(0), 929 Chain, Ptr, SrcVT, 930 LD->getMemOperand()); 931 SDValue ValRes; 932 if (ExtType == ISD::SEXTLOAD) 933 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 934 Result.getValueType(), 935 Result, DAG.getValueType(SrcVT)); 936 else 937 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT); 938 Value = ValRes; 939 Chain = Result.getValue(1); 940 break; 941 } 942 } 943 } 944 945 // Since loads produce two values, make sure to remember that we legalized 946 // both of them. 947 if (Chain.getNode() != Node) { 948 assert(Value.getNode() != Node && "Load must be completely replaced"); 949 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 950 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 951 if (UpdatedNodes) { 952 UpdatedNodes->insert(Value.getNode()); 953 UpdatedNodes->insert(Chain.getNode()); 954 } 955 ReplacedNode(Node); 956 } 957 } 958 959 /// Return a legal replacement for the given operation, with all legal operands. 960 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 961 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 962 963 // Allow illegal target nodes and illegal registers. 964 if (Node->getOpcode() == ISD::TargetConstant || 965 Node->getOpcode() == ISD::Register) 966 return; 967 968 #ifndef NDEBUG 969 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 970 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 971 TargetLowering::TypeLegal && 972 "Unexpected illegal type!"); 973 974 for (const SDValue &Op : Node->op_values()) 975 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 976 TargetLowering::TypeLegal || 977 Op.getOpcode() == ISD::TargetConstant || 978 Op.getOpcode() == ISD::Register) && 979 "Unexpected illegal type!"); 980 #endif 981 982 // Figure out the correct action; the way to query this varies by opcode 983 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 984 bool SimpleFinishLegalizing = true; 985 switch (Node->getOpcode()) { 986 case ISD::INTRINSIC_W_CHAIN: 987 case ISD::INTRINSIC_WO_CHAIN: 988 case ISD::INTRINSIC_VOID: 989 case ISD::STACKSAVE: 990 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 991 break; 992 case ISD::GET_DYNAMIC_AREA_OFFSET: 993 Action = TLI.getOperationAction(Node->getOpcode(), 994 Node->getValueType(0)); 995 break; 996 case ISD::VAARG: 997 Action = TLI.getOperationAction(Node->getOpcode(), 998 Node->getValueType(0)); 999 if (Action != TargetLowering::Promote) 1000 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 1001 break; 1002 case ISD::FP_TO_FP16: 1003 case ISD::SINT_TO_FP: 1004 case ISD::UINT_TO_FP: 1005 case ISD::EXTRACT_VECTOR_ELT: 1006 case ISD::LROUND: 1007 case ISD::LLROUND: 1008 case ISD::LRINT: 1009 case ISD::LLRINT: 1010 Action = TLI.getOperationAction(Node->getOpcode(), 1011 Node->getOperand(0).getValueType()); 1012 break; 1013 case ISD::STRICT_FP_TO_FP16: 1014 case ISD::STRICT_SINT_TO_FP: 1015 case ISD::STRICT_UINT_TO_FP: 1016 case ISD::STRICT_LRINT: 1017 case ISD::STRICT_LLRINT: 1018 case ISD::STRICT_LROUND: 1019 case ISD::STRICT_LLROUND: 1020 // These pseudo-ops are the same as the other STRICT_ ops except 1021 // they are registered with setOperationAction() using the input type 1022 // instead of the output type. 1023 Action = TLI.getOperationAction(Node->getOpcode(), 1024 Node->getOperand(1).getValueType()); 1025 break; 1026 case ISD::SIGN_EXTEND_INREG: { 1027 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1028 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1029 break; 1030 } 1031 case ISD::ATOMIC_STORE: 1032 Action = TLI.getOperationAction(Node->getOpcode(), 1033 Node->getOperand(2).getValueType()); 1034 break; 1035 case ISD::SELECT_CC: 1036 case ISD::STRICT_FSETCC: 1037 case ISD::STRICT_FSETCCS: 1038 case ISD::SETCC: 1039 case ISD::BR_CC: { 1040 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 1041 Node->getOpcode() == ISD::STRICT_FSETCC ? 3 : 1042 Node->getOpcode() == ISD::STRICT_FSETCCS ? 3 : 1043 Node->getOpcode() == ISD::SETCC ? 2 : 1; 1044 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 1045 Node->getOpcode() == ISD::STRICT_FSETCC ? 1 : 1046 Node->getOpcode() == ISD::STRICT_FSETCCS ? 1 : 0; 1047 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1048 ISD::CondCode CCCode = 1049 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1050 Action = TLI.getCondCodeAction(CCCode, OpVT); 1051 if (Action == TargetLowering::Legal) { 1052 if (Node->getOpcode() == ISD::SELECT_CC) 1053 Action = TLI.getOperationAction(Node->getOpcode(), 1054 Node->getValueType(0)); 1055 else 1056 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1057 } 1058 break; 1059 } 1060 case ISD::LOAD: 1061 case ISD::STORE: 1062 // FIXME: Model these properly. LOAD and STORE are complicated, and 1063 // STORE expects the unlegalized operand in some cases. 1064 SimpleFinishLegalizing = false; 1065 break; 1066 case ISD::CALLSEQ_START: 1067 case ISD::CALLSEQ_END: 1068 // FIXME: This shouldn't be necessary. These nodes have special properties 1069 // dealing with the recursive nature of legalization. Removing this 1070 // special case should be done as part of making LegalizeDAG non-recursive. 1071 SimpleFinishLegalizing = false; 1072 break; 1073 case ISD::EXTRACT_ELEMENT: 1074 case ISD::FLT_ROUNDS_: 1075 case ISD::MERGE_VALUES: 1076 case ISD::EH_RETURN: 1077 case ISD::FRAME_TO_ARGS_OFFSET: 1078 case ISD::EH_DWARF_CFA: 1079 case ISD::EH_SJLJ_SETJMP: 1080 case ISD::EH_SJLJ_LONGJMP: 1081 case ISD::EH_SJLJ_SETUP_DISPATCH: 1082 // These operations lie about being legal: when they claim to be legal, 1083 // they should actually be expanded. 1084 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1085 if (Action == TargetLowering::Legal) 1086 Action = TargetLowering::Expand; 1087 break; 1088 case ISD::INIT_TRAMPOLINE: 1089 case ISD::ADJUST_TRAMPOLINE: 1090 case ISD::FRAMEADDR: 1091 case ISD::RETURNADDR: 1092 case ISD::ADDROFRETURNADDR: 1093 case ISD::SPONENTRY: 1094 // These operations lie about being legal: when they claim to be legal, 1095 // they should actually be custom-lowered. 1096 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1097 if (Action == TargetLowering::Legal) 1098 Action = TargetLowering::Custom; 1099 break; 1100 case ISD::READCYCLECOUNTER: 1101 // READCYCLECOUNTER returns an i64, even if type legalization might have 1102 // expanded that to several smaller types. 1103 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1104 break; 1105 case ISD::READ_REGISTER: 1106 case ISD::WRITE_REGISTER: 1107 // Named register is legal in the DAG, but blocked by register name 1108 // selection if not implemented by target (to chose the correct register) 1109 // They'll be converted to Copy(To/From)Reg. 1110 Action = TargetLowering::Legal; 1111 break; 1112 case ISD::UBSANTRAP: 1113 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1114 if (Action == TargetLowering::Expand) { 1115 // replace ISD::UBSANTRAP with ISD::TRAP 1116 SDValue NewVal; 1117 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1118 Node->getOperand(0)); 1119 ReplaceNode(Node, NewVal.getNode()); 1120 LegalizeOp(NewVal.getNode()); 1121 return; 1122 } 1123 break; 1124 case ISD::DEBUGTRAP: 1125 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1126 if (Action == TargetLowering::Expand) { 1127 // replace ISD::DEBUGTRAP with ISD::TRAP 1128 SDValue NewVal; 1129 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1130 Node->getOperand(0)); 1131 ReplaceNode(Node, NewVal.getNode()); 1132 LegalizeOp(NewVal.getNode()); 1133 return; 1134 } 1135 break; 1136 case ISD::SADDSAT: 1137 case ISD::UADDSAT: 1138 case ISD::SSUBSAT: 1139 case ISD::USUBSAT: 1140 case ISD::SSHLSAT: 1141 case ISD::USHLSAT: 1142 case ISD::FP_TO_SINT_SAT: 1143 case ISD::FP_TO_UINT_SAT: 1144 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1145 break; 1146 case ISD::SMULFIX: 1147 case ISD::SMULFIXSAT: 1148 case ISD::UMULFIX: 1149 case ISD::UMULFIXSAT: 1150 case ISD::SDIVFIX: 1151 case ISD::SDIVFIXSAT: 1152 case ISD::UDIVFIX: 1153 case ISD::UDIVFIXSAT: { 1154 unsigned Scale = Node->getConstantOperandVal(2); 1155 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 1156 Node->getValueType(0), Scale); 1157 break; 1158 } 1159 case ISD::MSCATTER: 1160 Action = TLI.getOperationAction(Node->getOpcode(), 1161 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 1162 break; 1163 case ISD::MSTORE: 1164 Action = TLI.getOperationAction(Node->getOpcode(), 1165 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 1166 break; 1167 case ISD::VECREDUCE_FADD: 1168 case ISD::VECREDUCE_FMUL: 1169 case ISD::VECREDUCE_ADD: 1170 case ISD::VECREDUCE_MUL: 1171 case ISD::VECREDUCE_AND: 1172 case ISD::VECREDUCE_OR: 1173 case ISD::VECREDUCE_XOR: 1174 case ISD::VECREDUCE_SMAX: 1175 case ISD::VECREDUCE_SMIN: 1176 case ISD::VECREDUCE_UMAX: 1177 case ISD::VECREDUCE_UMIN: 1178 case ISD::VECREDUCE_FMAX: 1179 case ISD::VECREDUCE_FMIN: 1180 Action = TLI.getOperationAction( 1181 Node->getOpcode(), Node->getOperand(0).getValueType()); 1182 break; 1183 case ISD::VECREDUCE_SEQ_FADD: 1184 case ISD::VECREDUCE_SEQ_FMUL: 1185 Action = TLI.getOperationAction( 1186 Node->getOpcode(), Node->getOperand(1).getValueType()); 1187 break; 1188 default: 1189 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1190 Action = TargetLowering::Legal; 1191 } else { 1192 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1193 } 1194 break; 1195 } 1196 1197 if (SimpleFinishLegalizing) { 1198 SDNode *NewNode = Node; 1199 switch (Node->getOpcode()) { 1200 default: break; 1201 case ISD::SHL: 1202 case ISD::SRL: 1203 case ISD::SRA: 1204 case ISD::ROTL: 1205 case ISD::ROTR: { 1206 // Legalizing shifts/rotates requires adjusting the shift amount 1207 // to the appropriate width. 1208 SDValue Op0 = Node->getOperand(0); 1209 SDValue Op1 = Node->getOperand(1); 1210 if (!Op1.getValueType().isVector()) { 1211 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1212 // The getShiftAmountOperand() may create a new operand node or 1213 // return the existing one. If new operand is created we need 1214 // to update the parent node. 1215 // Do not try to legalize SAO here! It will be automatically legalized 1216 // in the next round. 1217 if (SAO != Op1) 1218 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1219 } 1220 } 1221 break; 1222 case ISD::FSHL: 1223 case ISD::FSHR: 1224 case ISD::SRL_PARTS: 1225 case ISD::SRA_PARTS: 1226 case ISD::SHL_PARTS: { 1227 // Legalizing shifts/rotates requires adjusting the shift amount 1228 // to the appropriate width. 1229 SDValue Op0 = Node->getOperand(0); 1230 SDValue Op1 = Node->getOperand(1); 1231 SDValue Op2 = Node->getOperand(2); 1232 if (!Op2.getValueType().isVector()) { 1233 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1234 // The getShiftAmountOperand() may create a new operand node or 1235 // return the existing one. If new operand is created we need 1236 // to update the parent node. 1237 if (SAO != Op2) 1238 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1239 } 1240 break; 1241 } 1242 } 1243 1244 if (NewNode != Node) { 1245 ReplaceNode(Node, NewNode); 1246 Node = NewNode; 1247 } 1248 switch (Action) { 1249 case TargetLowering::Legal: 1250 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 1251 return; 1252 case TargetLowering::Custom: 1253 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 1254 // FIXME: The handling for custom lowering with multiple results is 1255 // a complete mess. 1256 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1257 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1258 return; 1259 1260 if (Node->getNumValues() == 1) { 1261 // Verify the new types match the original. Glue is waived because 1262 // ISD::ADDC can be legalized by replacing Glue with an integer type. 1263 assert((Res.getValueType() == Node->getValueType(0) || 1264 Node->getValueType(0) == MVT::Glue) && 1265 "Type mismatch for custom legalized operation"); 1266 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1267 // We can just directly replace this node with the lowered value. 1268 ReplaceNode(SDValue(Node, 0), Res); 1269 return; 1270 } 1271 1272 SmallVector<SDValue, 8> ResultVals; 1273 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 1274 // Verify the new types match the original. Glue is waived because 1275 // ISD::ADDC can be legalized by replacing Glue with an integer type. 1276 assert((Res->getValueType(i) == Node->getValueType(i) || 1277 Node->getValueType(i) == MVT::Glue) && 1278 "Type mismatch for custom legalized operation"); 1279 ResultVals.push_back(Res.getValue(i)); 1280 } 1281 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1282 ReplaceNode(Node, ResultVals.data()); 1283 return; 1284 } 1285 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 1286 LLVM_FALLTHROUGH; 1287 case TargetLowering::Expand: 1288 if (ExpandNode(Node)) 1289 return; 1290 LLVM_FALLTHROUGH; 1291 case TargetLowering::LibCall: 1292 ConvertNodeToLibcall(Node); 1293 return; 1294 case TargetLowering::Promote: 1295 PromoteNode(Node); 1296 return; 1297 } 1298 } 1299 1300 switch (Node->getOpcode()) { 1301 default: 1302 #ifndef NDEBUG 1303 dbgs() << "NODE: "; 1304 Node->dump( &DAG); 1305 dbgs() << "\n"; 1306 #endif 1307 llvm_unreachable("Do not know how to legalize this operator!"); 1308 1309 case ISD::CALLSEQ_START: 1310 case ISD::CALLSEQ_END: 1311 break; 1312 case ISD::LOAD: 1313 return LegalizeLoadOps(Node); 1314 case ISD::STORE: 1315 return LegalizeStoreOps(Node); 1316 } 1317 } 1318 1319 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1320 SDValue Vec = Op.getOperand(0); 1321 SDValue Idx = Op.getOperand(1); 1322 SDLoc dl(Op); 1323 1324 // Before we generate a new store to a temporary stack slot, see if there is 1325 // already one that we can use. There often is because when we scalarize 1326 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1327 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1328 // the vector. If all are expanded here, we don't want one store per vector 1329 // element. 1330 1331 // Caches for hasPredecessorHelper 1332 SmallPtrSet<const SDNode *, 32> Visited; 1333 SmallVector<const SDNode *, 16> Worklist; 1334 Visited.insert(Op.getNode()); 1335 Worklist.push_back(Idx.getNode()); 1336 SDValue StackPtr, Ch; 1337 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), 1338 UE = Vec.getNode()->use_end(); UI != UE; ++UI) { 1339 SDNode *User = *UI; 1340 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1341 if (ST->isIndexed() || ST->isTruncatingStore() || 1342 ST->getValue() != Vec) 1343 continue; 1344 1345 // Make sure that nothing else could have stored into the destination of 1346 // this store. 1347 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1348 continue; 1349 1350 // If the index is dependent on the store we will introduce a cycle when 1351 // creating the load (the load uses the index, and by replacing the chain 1352 // we will make the index dependent on the load). Also, the store might be 1353 // dependent on the extractelement and introduce a cycle when creating 1354 // the load. 1355 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1356 ST->hasPredecessor(Op.getNode())) 1357 continue; 1358 1359 StackPtr = ST->getBasePtr(); 1360 Ch = SDValue(ST, 0); 1361 break; 1362 } 1363 } 1364 1365 EVT VecVT = Vec.getValueType(); 1366 1367 if (!Ch.getNode()) { 1368 // Store the value to a temporary stack slot, then LOAD the returned part. 1369 StackPtr = DAG.CreateStackTemporary(VecVT); 1370 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1371 MachinePointerInfo()); 1372 } 1373 1374 SDValue NewLoad; 1375 1376 if (Op.getValueType().isVector()) { 1377 StackPtr = TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, 1378 Op.getValueType(), Idx); 1379 NewLoad = 1380 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); 1381 } else { 1382 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1383 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1384 MachinePointerInfo(), 1385 VecVT.getVectorElementType()); 1386 } 1387 1388 // Replace the chain going out of the store, by the one out of the load. 1389 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1390 1391 // We introduced a cycle though, so update the loads operands, making sure 1392 // to use the original store's chain as an incoming chain. 1393 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1394 NewLoad->op_end()); 1395 NewLoadOperands[0] = Ch; 1396 NewLoad = 1397 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1398 return NewLoad; 1399 } 1400 1401 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1402 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1403 1404 SDValue Vec = Op.getOperand(0); 1405 SDValue Part = Op.getOperand(1); 1406 SDValue Idx = Op.getOperand(2); 1407 SDLoc dl(Op); 1408 1409 // Store the value to a temporary stack slot, then LOAD the returned part. 1410 EVT VecVT = Vec.getValueType(); 1411 EVT SubVecVT = Part.getValueType(); 1412 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1413 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1414 MachinePointerInfo PtrInfo = 1415 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1416 1417 // First store the whole vector. 1418 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1419 1420 // Then store the inserted part. 1421 SDValue SubStackPtr = 1422 TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, SubVecVT, Idx); 1423 1424 // Store the subvector. 1425 Ch = DAG.getStore( 1426 Ch, dl, Part, SubStackPtr, 1427 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1428 1429 // Finally, load the updated vector. 1430 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1431 } 1432 1433 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1434 assert((Node->getOpcode() == ISD::BUILD_VECTOR || 1435 Node->getOpcode() == ISD::CONCAT_VECTORS) && 1436 "Unexpected opcode!"); 1437 1438 // We can't handle this case efficiently. Allocate a sufficiently 1439 // aligned object on the stack, store each operand into it, then load 1440 // the result as a vector. 1441 // Create the stack frame object. 1442 EVT VT = Node->getValueType(0); 1443 EVT MemVT = isa<BuildVectorSDNode>(Node) ? VT.getVectorElementType() 1444 : Node->getOperand(0).getValueType(); 1445 SDLoc dl(Node); 1446 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1447 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1448 MachinePointerInfo PtrInfo = 1449 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1450 1451 // Emit a store of each element to the stack slot. 1452 SmallVector<SDValue, 8> Stores; 1453 unsigned TypeByteSize = MemVT.getSizeInBits() / 8; 1454 assert(TypeByteSize > 0 && "Vector element type too small for stack store!"); 1455 1456 // If the destination vector element type of a BUILD_VECTOR is narrower than 1457 // the source element type, only store the bits necessary. 1458 bool Truncate = isa<BuildVectorSDNode>(Node) && 1459 MemVT.bitsLT(Node->getOperand(0).getValueType()); 1460 1461 // Store (in the right endianness) the elements to memory. 1462 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1463 // Ignore undef elements. 1464 if (Node->getOperand(i).isUndef()) continue; 1465 1466 unsigned Offset = TypeByteSize*i; 1467 1468 SDValue Idx = DAG.getMemBasePlusOffset(FIPtr, TypeSize::Fixed(Offset), dl); 1469 1470 if (Truncate) 1471 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1472 Node->getOperand(i), Idx, 1473 PtrInfo.getWithOffset(Offset), MemVT)); 1474 else 1475 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1476 Idx, PtrInfo.getWithOffset(Offset))); 1477 } 1478 1479 SDValue StoreChain; 1480 if (!Stores.empty()) // Not all undef elements? 1481 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1482 else 1483 StoreChain = DAG.getEntryNode(); 1484 1485 // Result is a load from the stack slot. 1486 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1487 } 1488 1489 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1490 /// containing the sign bit if the target has no integer value capable of 1491 /// holding all bits of the floating-point value. 1492 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1493 const SDLoc &DL, 1494 SDValue Value) const { 1495 EVT FloatVT = Value.getValueType(); 1496 unsigned NumBits = FloatVT.getScalarSizeInBits(); 1497 State.FloatVT = FloatVT; 1498 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1499 // Convert to an integer of the same size. 1500 if (TLI.isTypeLegal(IVT)) { 1501 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1502 State.SignMask = APInt::getSignMask(NumBits); 1503 State.SignBit = NumBits - 1; 1504 return; 1505 } 1506 1507 auto &DataLayout = DAG.getDataLayout(); 1508 // Store the float to memory, then load the sign part out as an integer. 1509 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1510 // First create a temporary that is aligned for both the load and store. 1511 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1512 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1513 // Then store the float to it. 1514 State.FloatPtr = StackPtr; 1515 MachineFunction &MF = DAG.getMachineFunction(); 1516 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1517 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1518 State.FloatPointerInfo); 1519 1520 SDValue IntPtr; 1521 if (DataLayout.isBigEndian()) { 1522 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1523 // Load out a legal integer with the same sign bit as the float. 1524 IntPtr = StackPtr; 1525 State.IntPointerInfo = State.FloatPointerInfo; 1526 } else { 1527 // Advance the pointer so that the loaded byte will contain the sign bit. 1528 unsigned ByteOffset = (NumBits / 8) - 1; 1529 IntPtr = 1530 DAG.getMemBasePlusOffset(StackPtr, TypeSize::Fixed(ByteOffset), DL); 1531 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1532 ByteOffset); 1533 } 1534 1535 State.IntPtr = IntPtr; 1536 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1537 State.IntPointerInfo, MVT::i8); 1538 State.SignMask = APInt::getOneBitSet(LoadTy.getScalarSizeInBits(), 7); 1539 State.SignBit = 7; 1540 } 1541 1542 /// Replace the integer value produced by getSignAsIntValue() with a new value 1543 /// and cast the result back to a floating-point type. 1544 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1545 const SDLoc &DL, 1546 SDValue NewIntValue) const { 1547 if (!State.Chain) 1548 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1549 1550 // Override the part containing the sign bit in the value stored on the stack. 1551 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1552 State.IntPointerInfo, MVT::i8); 1553 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1554 State.FloatPointerInfo); 1555 } 1556 1557 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1558 SDLoc DL(Node); 1559 SDValue Mag = Node->getOperand(0); 1560 SDValue Sign = Node->getOperand(1); 1561 1562 // Get sign bit into an integer value. 1563 FloatSignAsInt SignAsInt; 1564 getSignAsIntValue(SignAsInt, DL, Sign); 1565 1566 EVT IntVT = SignAsInt.IntValue.getValueType(); 1567 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1568 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1569 SignMask); 1570 1571 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1572 EVT FloatVT = Mag.getValueType(); 1573 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1574 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1575 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1576 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1577 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1578 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1579 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1580 } 1581 1582 // Transform Mag value to integer, and clear the sign bit. 1583 FloatSignAsInt MagAsInt; 1584 getSignAsIntValue(MagAsInt, DL, Mag); 1585 EVT MagVT = MagAsInt.IntValue.getValueType(); 1586 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1587 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1588 ClearSignMask); 1589 1590 // Get the signbit at the right position for MagAsInt. 1591 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1592 EVT ShiftVT = IntVT; 1593 if (SignBit.getScalarValueSizeInBits() < 1594 ClearedSign.getScalarValueSizeInBits()) { 1595 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1596 ShiftVT = MagVT; 1597 } 1598 if (ShiftAmount > 0) { 1599 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); 1600 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); 1601 } else if (ShiftAmount < 0) { 1602 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); 1603 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); 1604 } 1605 if (SignBit.getScalarValueSizeInBits() > 1606 ClearedSign.getScalarValueSizeInBits()) { 1607 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1608 } 1609 1610 // Store the part with the modified sign and convert back to float. 1611 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1612 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1613 } 1614 1615 SDValue SelectionDAGLegalize::ExpandFNEG(SDNode *Node) const { 1616 // Get the sign bit as an integer. 1617 SDLoc DL(Node); 1618 FloatSignAsInt SignAsInt; 1619 getSignAsIntValue(SignAsInt, DL, Node->getOperand(0)); 1620 EVT IntVT = SignAsInt.IntValue.getValueType(); 1621 1622 // Flip the sign. 1623 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1624 SDValue SignFlip = 1625 DAG.getNode(ISD::XOR, DL, IntVT, SignAsInt.IntValue, SignMask); 1626 1627 // Convert back to float. 1628 return modifySignAsInt(SignAsInt, DL, SignFlip); 1629 } 1630 1631 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1632 SDLoc DL(Node); 1633 SDValue Value = Node->getOperand(0); 1634 1635 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1636 EVT FloatVT = Value.getValueType(); 1637 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1638 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1639 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1640 } 1641 1642 // Transform value to integer, clear the sign bit and transform back. 1643 FloatSignAsInt ValueAsInt; 1644 getSignAsIntValue(ValueAsInt, DL, Value); 1645 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1646 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1647 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1648 ClearSignMask); 1649 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1650 } 1651 1652 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1653 SmallVectorImpl<SDValue> &Results) { 1654 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1655 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1656 " not tell us which reg is the stack pointer!"); 1657 SDLoc dl(Node); 1658 EVT VT = Node->getValueType(0); 1659 SDValue Tmp1 = SDValue(Node, 0); 1660 SDValue Tmp2 = SDValue(Node, 1); 1661 SDValue Tmp3 = Node->getOperand(2); 1662 SDValue Chain = Tmp1.getOperand(0); 1663 1664 // Chain the dynamic stack allocation so that it doesn't modify the stack 1665 // pointer when other instructions are using the stack. 1666 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1667 1668 SDValue Size = Tmp2.getOperand(1); 1669 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1670 Chain = SP.getValue(1); 1671 Align Alignment = cast<ConstantSDNode>(Tmp3)->getAlignValue(); 1672 const TargetFrameLowering *TFL = DAG.getSubtarget().getFrameLowering(); 1673 unsigned Opc = 1674 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 1675 ISD::ADD : ISD::SUB; 1676 1677 Align StackAlign = TFL->getStackAlign(); 1678 Tmp1 = DAG.getNode(Opc, dl, VT, SP, Size); // Value 1679 if (Alignment > StackAlign) 1680 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1681 DAG.getConstant(-Alignment.value(), dl, VT)); 1682 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1683 1684 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1685 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1686 1687 Results.push_back(Tmp1); 1688 Results.push_back(Tmp2); 1689 } 1690 1691 /// Emit a store/load combination to the stack. This stores 1692 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1693 /// a load from the stack slot to DestVT, extending it if needed. 1694 /// The resultant code need not be legal. 1695 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1696 EVT DestVT, const SDLoc &dl) { 1697 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode()); 1698 } 1699 1700 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1701 EVT DestVT, const SDLoc &dl, 1702 SDValue Chain) { 1703 unsigned SrcSize = SrcOp.getValueSizeInBits(); 1704 unsigned SlotSize = SlotVT.getSizeInBits(); 1705 unsigned DestSize = DestVT.getSizeInBits(); 1706 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1707 Align DestAlign = DAG.getDataLayout().getPrefTypeAlign(DestType); 1708 1709 // Don't convert with stack if the load/store is expensive. 1710 if ((SrcSize > SlotSize && 1711 !TLI.isTruncStoreLegalOrCustom(SrcOp.getValueType(), SlotVT)) || 1712 (SlotSize < DestSize && 1713 !TLI.isLoadExtLegalOrCustom(ISD::EXTLOAD, DestVT, SlotVT))) 1714 return SDValue(); 1715 1716 // Create the stack frame object. 1717 Align SrcAlign = DAG.getDataLayout().getPrefTypeAlign( 1718 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1719 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT.getStoreSize(), SrcAlign); 1720 1721 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1722 int SPFI = StackPtrFI->getIndex(); 1723 MachinePointerInfo PtrInfo = 1724 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1725 1726 // Emit a store to the stack slot. Use a truncstore if the input value is 1727 // later than DestVT. 1728 SDValue Store; 1729 1730 if (SrcSize > SlotSize) 1731 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo, 1732 SlotVT, SrcAlign); 1733 else { 1734 assert(SrcSize == SlotSize && "Invalid store"); 1735 Store = 1736 DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1737 } 1738 1739 // Result is a load from the stack slot. 1740 if (SlotSize == DestSize) 1741 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1742 1743 assert(SlotSize < DestSize && "Unknown extension!"); 1744 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1745 DestAlign); 1746 } 1747 1748 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1749 SDLoc dl(Node); 1750 // Create a vector sized/aligned stack slot, store the value to element #0, 1751 // then load the whole vector back out. 1752 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1753 1754 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1755 int SPFI = StackPtrFI->getIndex(); 1756 1757 SDValue Ch = DAG.getTruncStore( 1758 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1759 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1760 Node->getValueType(0).getVectorElementType()); 1761 return DAG.getLoad( 1762 Node->getValueType(0), dl, Ch, StackPtr, 1763 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1764 } 1765 1766 static bool 1767 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1768 const TargetLowering &TLI, SDValue &Res) { 1769 unsigned NumElems = Node->getNumOperands(); 1770 SDLoc dl(Node); 1771 EVT VT = Node->getValueType(0); 1772 1773 // Try to group the scalars into pairs, shuffle the pairs together, then 1774 // shuffle the pairs of pairs together, etc. until the vector has 1775 // been built. This will work only if all of the necessary shuffle masks 1776 // are legal. 1777 1778 // We do this in two phases; first to check the legality of the shuffles, 1779 // and next, assuming that all shuffles are legal, to create the new nodes. 1780 for (int Phase = 0; Phase < 2; ++Phase) { 1781 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1782 NewIntermedVals; 1783 for (unsigned i = 0; i < NumElems; ++i) { 1784 SDValue V = Node->getOperand(i); 1785 if (V.isUndef()) 1786 continue; 1787 1788 SDValue Vec; 1789 if (Phase) 1790 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1791 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1792 } 1793 1794 while (IntermedVals.size() > 2) { 1795 NewIntermedVals.clear(); 1796 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1797 // This vector and the next vector are shuffled together (simply to 1798 // append the one to the other). 1799 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1800 1801 SmallVector<int, 16> FinalIndices; 1802 FinalIndices.reserve(IntermedVals[i].second.size() + 1803 IntermedVals[i+1].second.size()); 1804 1805 int k = 0; 1806 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1807 ++j, ++k) { 1808 ShuffleVec[k] = j; 1809 FinalIndices.push_back(IntermedVals[i].second[j]); 1810 } 1811 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1812 ++j, ++k) { 1813 ShuffleVec[k] = NumElems + j; 1814 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1815 } 1816 1817 SDValue Shuffle; 1818 if (Phase) 1819 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1820 IntermedVals[i+1].first, 1821 ShuffleVec); 1822 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1823 return false; 1824 NewIntermedVals.push_back( 1825 std::make_pair(Shuffle, std::move(FinalIndices))); 1826 } 1827 1828 // If we had an odd number of defined values, then append the last 1829 // element to the array of new vectors. 1830 if ((IntermedVals.size() & 1) != 0) 1831 NewIntermedVals.push_back(IntermedVals.back()); 1832 1833 IntermedVals.swap(NewIntermedVals); 1834 } 1835 1836 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1837 "Invalid number of intermediate vectors"); 1838 SDValue Vec1 = IntermedVals[0].first; 1839 SDValue Vec2; 1840 if (IntermedVals.size() > 1) 1841 Vec2 = IntermedVals[1].first; 1842 else if (Phase) 1843 Vec2 = DAG.getUNDEF(VT); 1844 1845 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1846 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1847 ShuffleVec[IntermedVals[0].second[i]] = i; 1848 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1849 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1850 1851 if (Phase) 1852 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1853 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1854 return false; 1855 } 1856 1857 return true; 1858 } 1859 1860 /// Expand a BUILD_VECTOR node on targets that don't 1861 /// support the operation, but do support the resultant vector type. 1862 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1863 unsigned NumElems = Node->getNumOperands(); 1864 SDValue Value1, Value2; 1865 SDLoc dl(Node); 1866 EVT VT = Node->getValueType(0); 1867 EVT OpVT = Node->getOperand(0).getValueType(); 1868 EVT EltVT = VT.getVectorElementType(); 1869 1870 // If the only non-undef value is the low element, turn this into a 1871 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1872 bool isOnlyLowElement = true; 1873 bool MoreThanTwoValues = false; 1874 bool isConstant = true; 1875 for (unsigned i = 0; i < NumElems; ++i) { 1876 SDValue V = Node->getOperand(i); 1877 if (V.isUndef()) 1878 continue; 1879 if (i > 0) 1880 isOnlyLowElement = false; 1881 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1882 isConstant = false; 1883 1884 if (!Value1.getNode()) { 1885 Value1 = V; 1886 } else if (!Value2.getNode()) { 1887 if (V != Value1) 1888 Value2 = V; 1889 } else if (V != Value1 && V != Value2) { 1890 MoreThanTwoValues = true; 1891 } 1892 } 1893 1894 if (!Value1.getNode()) 1895 return DAG.getUNDEF(VT); 1896 1897 if (isOnlyLowElement) 1898 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1899 1900 // If all elements are constants, create a load from the constant pool. 1901 if (isConstant) { 1902 SmallVector<Constant*, 16> CV; 1903 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1904 if (ConstantFPSDNode *V = 1905 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1906 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1907 } else if (ConstantSDNode *V = 1908 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1909 if (OpVT==EltVT) 1910 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1911 else { 1912 // If OpVT and EltVT don't match, EltVT is not legal and the 1913 // element values have been promoted/truncated earlier. Undo this; 1914 // we don't want a v16i8 to become a v16i32 for example. 1915 const ConstantInt *CI = V->getConstantIntValue(); 1916 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1917 CI->getZExtValue())); 1918 } 1919 } else { 1920 assert(Node->getOperand(i).isUndef()); 1921 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1922 CV.push_back(UndefValue::get(OpNTy)); 1923 } 1924 } 1925 Constant *CP = ConstantVector::get(CV); 1926 SDValue CPIdx = 1927 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 1928 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 1929 return DAG.getLoad( 1930 VT, dl, DAG.getEntryNode(), CPIdx, 1931 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 1932 Alignment); 1933 } 1934 1935 SmallSet<SDValue, 16> DefinedValues; 1936 for (unsigned i = 0; i < NumElems; ++i) { 1937 if (Node->getOperand(i).isUndef()) 1938 continue; 1939 DefinedValues.insert(Node->getOperand(i)); 1940 } 1941 1942 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 1943 if (!MoreThanTwoValues) { 1944 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1945 for (unsigned i = 0; i < NumElems; ++i) { 1946 SDValue V = Node->getOperand(i); 1947 if (V.isUndef()) 1948 continue; 1949 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1950 } 1951 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1952 // Get the splatted value into the low element of a vector register. 1953 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1954 SDValue Vec2; 1955 if (Value2.getNode()) 1956 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 1957 else 1958 Vec2 = DAG.getUNDEF(VT); 1959 1960 // Return shuffle(LowValVec, undef, <0,0,0,0>) 1961 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1962 } 1963 } else { 1964 SDValue Res; 1965 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 1966 return Res; 1967 } 1968 } 1969 1970 // Otherwise, we can't handle this case efficiently. 1971 return ExpandVectorBuildThroughStack(Node); 1972 } 1973 1974 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) { 1975 SDLoc DL(Node); 1976 EVT VT = Node->getValueType(0); 1977 SDValue SplatVal = Node->getOperand(0); 1978 1979 return DAG.getSplatBuildVector(VT, DL, SplatVal); 1980 } 1981 1982 // Expand a node into a call to a libcall. If the result value 1983 // does not fit into a register, return the lo part and set the hi part to the 1984 // by-reg argument. If it does fit into a single register, return the result 1985 // and leave the Hi part unset. 1986 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 1987 bool isSigned) { 1988 TargetLowering::ArgListTy Args; 1989 TargetLowering::ArgListEntry Entry; 1990 for (const SDValue &Op : Node->op_values()) { 1991 EVT ArgVT = Op.getValueType(); 1992 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 1993 Entry.Node = Op; 1994 Entry.Ty = ArgTy; 1995 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 1996 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 1997 Args.push_back(Entry); 1998 } 1999 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2000 TLI.getPointerTy(DAG.getDataLayout())); 2001 2002 EVT RetVT = Node->getValueType(0); 2003 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2004 2005 // By default, the input chain to this libcall is the entry node of the 2006 // function. If the libcall is going to be emitted as a tail call then 2007 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2008 // node which is being folded has a non-entry input chain. 2009 SDValue InChain = DAG.getEntryNode(); 2010 2011 // isTailCall may be true since the callee does not reference caller stack 2012 // frame. Check if it's in the right position and that the return types match. 2013 SDValue TCChain = InChain; 2014 const Function &F = DAG.getMachineFunction().getFunction(); 2015 bool isTailCall = 2016 TLI.isInTailCallPosition(DAG, Node, TCChain) && 2017 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 2018 if (isTailCall) 2019 InChain = TCChain; 2020 2021 TargetLowering::CallLoweringInfo CLI(DAG); 2022 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2023 CLI.setDebugLoc(SDLoc(Node)) 2024 .setChain(InChain) 2025 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2026 std::move(Args)) 2027 .setTailCall(isTailCall) 2028 .setSExtResult(signExtend) 2029 .setZExtResult(!signExtend) 2030 .setIsPostTypeLegalization(true); 2031 2032 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2033 2034 if (!CallInfo.second.getNode()) { 2035 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG)); 2036 // It's a tailcall, return the chain (which is the DAG root). 2037 return DAG.getRoot(); 2038 } 2039 2040 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG)); 2041 return CallInfo.first; 2042 } 2043 2044 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2045 RTLIB::Libcall LC, 2046 SmallVectorImpl<SDValue> &Results) { 2047 if (LC == RTLIB::UNKNOWN_LIBCALL) 2048 llvm_unreachable("Can't create an unknown libcall!"); 2049 2050 if (Node->isStrictFPOpcode()) { 2051 EVT RetVT = Node->getValueType(0); 2052 SmallVector<SDValue, 4> Ops(drop_begin(Node->ops())); 2053 TargetLowering::MakeLibCallOptions CallOptions; 2054 // FIXME: This doesn't support tail calls. 2055 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2056 Ops, CallOptions, 2057 SDLoc(Node), 2058 Node->getOperand(0)); 2059 Results.push_back(Tmp.first); 2060 Results.push_back(Tmp.second); 2061 } else { 2062 SDValue Tmp = ExpandLibCall(LC, Node, false); 2063 Results.push_back(Tmp); 2064 } 2065 } 2066 2067 /// Expand the node to a libcall based on the result type. 2068 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2069 RTLIB::Libcall Call_F32, 2070 RTLIB::Libcall Call_F64, 2071 RTLIB::Libcall Call_F80, 2072 RTLIB::Libcall Call_F128, 2073 RTLIB::Libcall Call_PPCF128, 2074 SmallVectorImpl<SDValue> &Results) { 2075 RTLIB::Libcall LC = RTLIB::getFPLibCall(Node->getSimpleValueType(0), 2076 Call_F32, Call_F64, Call_F80, 2077 Call_F128, Call_PPCF128); 2078 ExpandFPLibCall(Node, LC, Results); 2079 } 2080 2081 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2082 RTLIB::Libcall Call_I8, 2083 RTLIB::Libcall Call_I16, 2084 RTLIB::Libcall Call_I32, 2085 RTLIB::Libcall Call_I64, 2086 RTLIB::Libcall Call_I128) { 2087 RTLIB::Libcall LC; 2088 switch (Node->getSimpleValueType(0).SimpleTy) { 2089 default: llvm_unreachable("Unexpected request for libcall!"); 2090 case MVT::i8: LC = Call_I8; break; 2091 case MVT::i16: LC = Call_I16; break; 2092 case MVT::i32: LC = Call_I32; break; 2093 case MVT::i64: LC = Call_I64; break; 2094 case MVT::i128: LC = Call_I128; break; 2095 } 2096 return ExpandLibCall(LC, Node, isSigned); 2097 } 2098 2099 /// Expand the node to a libcall based on first argument type (for instance 2100 /// lround and its variant). 2101 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node, 2102 RTLIB::Libcall Call_F32, 2103 RTLIB::Libcall Call_F64, 2104 RTLIB::Libcall Call_F80, 2105 RTLIB::Libcall Call_F128, 2106 RTLIB::Libcall Call_PPCF128, 2107 SmallVectorImpl<SDValue> &Results) { 2108 EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType(); 2109 RTLIB::Libcall LC = RTLIB::getFPLibCall(InVT.getSimpleVT(), 2110 Call_F32, Call_F64, Call_F80, 2111 Call_F128, Call_PPCF128); 2112 ExpandFPLibCall(Node, LC, Results); 2113 } 2114 2115 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2116 void 2117 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2118 SmallVectorImpl<SDValue> &Results) { 2119 unsigned Opcode = Node->getOpcode(); 2120 bool isSigned = Opcode == ISD::SDIVREM; 2121 2122 RTLIB::Libcall LC; 2123 switch (Node->getSimpleValueType(0).SimpleTy) { 2124 default: llvm_unreachable("Unexpected request for libcall!"); 2125 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2126 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2127 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2128 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2129 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2130 } 2131 2132 // The input chain to this libcall is the entry node of the function. 2133 // Legalizing the call will automatically add the previous call to the 2134 // dependence. 2135 SDValue InChain = DAG.getEntryNode(); 2136 2137 EVT RetVT = Node->getValueType(0); 2138 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2139 2140 TargetLowering::ArgListTy Args; 2141 TargetLowering::ArgListEntry Entry; 2142 for (const SDValue &Op : Node->op_values()) { 2143 EVT ArgVT = Op.getValueType(); 2144 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2145 Entry.Node = Op; 2146 Entry.Ty = ArgTy; 2147 Entry.IsSExt = isSigned; 2148 Entry.IsZExt = !isSigned; 2149 Args.push_back(Entry); 2150 } 2151 2152 // Also pass the return address of the remainder. 2153 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2154 Entry.Node = FIPtr; 2155 Entry.Ty = RetTy->getPointerTo(); 2156 Entry.IsSExt = isSigned; 2157 Entry.IsZExt = !isSigned; 2158 Args.push_back(Entry); 2159 2160 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2161 TLI.getPointerTy(DAG.getDataLayout())); 2162 2163 SDLoc dl(Node); 2164 TargetLowering::CallLoweringInfo CLI(DAG); 2165 CLI.setDebugLoc(dl) 2166 .setChain(InChain) 2167 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2168 std::move(Args)) 2169 .setSExtResult(isSigned) 2170 .setZExtResult(!isSigned); 2171 2172 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2173 2174 // Remainder is loaded back from the stack frame. 2175 SDValue Rem = 2176 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2177 Results.push_back(CallInfo.first); 2178 Results.push_back(Rem); 2179 } 2180 2181 /// Return true if sincos libcall is available. 2182 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2183 RTLIB::Libcall LC; 2184 switch (Node->getSimpleValueType(0).SimpleTy) { 2185 default: llvm_unreachable("Unexpected request for libcall!"); 2186 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2187 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2188 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2189 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2190 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2191 } 2192 return TLI.getLibcallName(LC) != nullptr; 2193 } 2194 2195 /// Only issue sincos libcall if both sin and cos are needed. 2196 static bool useSinCos(SDNode *Node) { 2197 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2198 ? ISD::FCOS : ISD::FSIN; 2199 2200 SDValue Op0 = Node->getOperand(0); 2201 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2202 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2203 SDNode *User = *UI; 2204 if (User == Node) 2205 continue; 2206 // The other user might have been turned into sincos already. 2207 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2208 return true; 2209 } 2210 return false; 2211 } 2212 2213 /// Issue libcalls to sincos to compute sin / cos pairs. 2214 void 2215 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2216 SmallVectorImpl<SDValue> &Results) { 2217 RTLIB::Libcall LC; 2218 switch (Node->getSimpleValueType(0).SimpleTy) { 2219 default: llvm_unreachable("Unexpected request for libcall!"); 2220 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2221 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2222 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2223 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2224 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2225 } 2226 2227 // The input chain to this libcall is the entry node of the function. 2228 // Legalizing the call will automatically add the previous call to the 2229 // dependence. 2230 SDValue InChain = DAG.getEntryNode(); 2231 2232 EVT RetVT = Node->getValueType(0); 2233 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2234 2235 TargetLowering::ArgListTy Args; 2236 TargetLowering::ArgListEntry Entry; 2237 2238 // Pass the argument. 2239 Entry.Node = Node->getOperand(0); 2240 Entry.Ty = RetTy; 2241 Entry.IsSExt = false; 2242 Entry.IsZExt = false; 2243 Args.push_back(Entry); 2244 2245 // Pass the return address of sin. 2246 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2247 Entry.Node = SinPtr; 2248 Entry.Ty = RetTy->getPointerTo(); 2249 Entry.IsSExt = false; 2250 Entry.IsZExt = false; 2251 Args.push_back(Entry); 2252 2253 // Also pass the return address of the cos. 2254 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2255 Entry.Node = CosPtr; 2256 Entry.Ty = RetTy->getPointerTo(); 2257 Entry.IsSExt = false; 2258 Entry.IsZExt = false; 2259 Args.push_back(Entry); 2260 2261 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2262 TLI.getPointerTy(DAG.getDataLayout())); 2263 2264 SDLoc dl(Node); 2265 TargetLowering::CallLoweringInfo CLI(DAG); 2266 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2267 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2268 std::move(Args)); 2269 2270 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2271 2272 Results.push_back( 2273 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2274 Results.push_back( 2275 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2276 } 2277 2278 /// This function is responsible for legalizing a 2279 /// INT_TO_FP operation of the specified operand when the target requests that 2280 /// we expand it. At this point, we know that the result and operand types are 2281 /// legal for the target. 2282 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node, 2283 SDValue &Chain) { 2284 bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 2285 Node->getOpcode() == ISD::SINT_TO_FP); 2286 EVT DestVT = Node->getValueType(0); 2287 SDLoc dl(Node); 2288 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 2289 SDValue Op0 = Node->getOperand(OpNo); 2290 EVT SrcVT = Op0.getValueType(); 2291 2292 // TODO: Should any fast-math-flags be set for the created nodes? 2293 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2294 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64) && 2295 (DestVT.bitsLE(MVT::f64) || 2296 TLI.isOperationLegal(Node->isStrictFPOpcode() ? ISD::STRICT_FP_EXTEND 2297 : ISD::FP_EXTEND, 2298 DestVT))) { 2299 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2300 "expansion\n"); 2301 2302 // Get the stack frame index of a 8 byte buffer. 2303 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2304 2305 SDValue Lo = Op0; 2306 // if signed map to unsigned space 2307 if (isSigned) { 2308 // Invert sign bit (signed to unsigned mapping). 2309 Lo = DAG.getNode(ISD::XOR, dl, MVT::i32, Lo, 2310 DAG.getConstant(0x80000000u, dl, MVT::i32)); 2311 } 2312 // Initial hi portion of constructed double. 2313 SDValue Hi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2314 2315 // If this a big endian target, swap the lo and high data. 2316 if (DAG.getDataLayout().isBigEndian()) 2317 std::swap(Lo, Hi); 2318 2319 SDValue MemChain = DAG.getEntryNode(); 2320 2321 // Store the lo of the constructed double. 2322 SDValue Store1 = DAG.getStore(MemChain, dl, Lo, StackSlot, 2323 MachinePointerInfo()); 2324 // Store the hi of the constructed double. 2325 SDValue HiPtr = DAG.getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), dl); 2326 SDValue Store2 = 2327 DAG.getStore(MemChain, dl, Hi, HiPtr, MachinePointerInfo()); 2328 MemChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 2329 2330 // load the constructed double 2331 SDValue Load = 2332 DAG.getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo()); 2333 // FP constant to bias correct the final result 2334 SDValue Bias = DAG.getConstantFP(isSigned ? 2335 BitsToDouble(0x4330000080000000ULL) : 2336 BitsToDouble(0x4330000000000000ULL), 2337 dl, MVT::f64); 2338 // Subtract the bias and get the final result. 2339 SDValue Sub; 2340 SDValue Result; 2341 if (Node->isStrictFPOpcode()) { 2342 Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other}, 2343 {Node->getOperand(0), Load, Bias}); 2344 Chain = Sub.getValue(1); 2345 if (DestVT != Sub.getValueType()) { 2346 std::pair<SDValue, SDValue> ResultPair; 2347 ResultPair = 2348 DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT); 2349 Result = ResultPair.first; 2350 Chain = ResultPair.second; 2351 } 2352 else 2353 Result = Sub; 2354 } else { 2355 Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2356 Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); 2357 } 2358 return Result; 2359 } 2360 2361 if (isSigned) 2362 return SDValue(); 2363 2364 // TODO: Generalize this for use with other types. 2365 if (((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) || 2366 (SrcVT == MVT::i64 && DestVT == MVT::f64)) { 2367 LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32/f64\n"); 2368 // For unsigned conversions, convert them to signed conversions using the 2369 // algorithm from the x86_64 __floatundisf in compiler_rt. That method 2370 // should be valid for i32->f32 as well. 2371 2372 // More generally this transform should be valid if there are 3 more bits 2373 // in the integer type than the significand. Rounding uses the first bit 2374 // after the width of the significand and the OR of all bits after that. So 2375 // we need to be able to OR the shifted out bit into one of the bits that 2376 // participate in the OR. 2377 2378 // TODO: This really should be implemented using a branch rather than a 2379 // select. We happen to get lucky and machinesink does the right 2380 // thing most of the time. This would be a good candidate for a 2381 // pseudo-op, or, even better, for whole-function isel. 2382 EVT SetCCVT = getSetCCResultType(SrcVT); 2383 2384 SDValue SignBitTest = DAG.getSetCC( 2385 dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2386 2387 EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout()); 2388 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 2389 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst); 2390 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 2391 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst); 2392 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 2393 2394 SDValue Slow, Fast; 2395 if (Node->isStrictFPOpcode()) { 2396 // In strict mode, we must avoid spurious exceptions, and therefore 2397 // must make sure to only emit a single STRICT_SINT_TO_FP. 2398 SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0); 2399 Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2400 { Node->getOperand(0), InCvt }); 2401 Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2402 { Fast.getValue(1), Fast, Fast }); 2403 Chain = Slow.getValue(1); 2404 // The STRICT_SINT_TO_FP inherits the exception mode from the 2405 // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can 2406 // never raise any exception. 2407 SDNodeFlags Flags; 2408 Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept()); 2409 Fast->setFlags(Flags); 2410 Flags.setNoFPExcept(true); 2411 Slow->setFlags(Flags); 2412 } else { 2413 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or); 2414 Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt); 2415 Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2416 } 2417 2418 return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast); 2419 } 2420 2421 // Don't expand it if there isn't cheap fadd. 2422 if (!TLI.isOperationLegalOrCustom( 2423 Node->isStrictFPOpcode() ? ISD::STRICT_FADD : ISD::FADD, DestVT)) 2424 return SDValue(); 2425 2426 // The following optimization is valid only if every value in SrcVT (when 2427 // treated as signed) is representable in DestVT. Check that the mantissa 2428 // size of DestVT is >= than the number of bits in SrcVT -1. 2429 assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >= 2430 SrcVT.getSizeInBits() - 1 && 2431 "Cannot perform lossless SINT_TO_FP!"); 2432 2433 SDValue Tmp1; 2434 if (Node->isStrictFPOpcode()) { 2435 Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2436 { Node->getOperand(0), Op0 }); 2437 } else 2438 Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2439 2440 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, 2441 DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2442 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2443 Four = DAG.getIntPtrConstant(4, dl); 2444 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2445 SignSet, Four, Zero); 2446 2447 // If the sign bit of the integer is set, the large number will be treated 2448 // as a negative number. To counteract this, the dynamic code adds an 2449 // offset depending on the data type. 2450 uint64_t FF; 2451 switch (SrcVT.getSimpleVT().SimpleTy) { 2452 default: 2453 return SDValue(); 2454 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2455 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2456 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2457 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2458 } 2459 if (DAG.getDataLayout().isLittleEndian()) 2460 FF <<= 32; 2461 Constant *FudgeFactor = ConstantInt::get( 2462 Type::getInt64Ty(*DAG.getContext()), FF); 2463 2464 SDValue CPIdx = 2465 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2466 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 2467 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2468 Alignment = commonAlignment(Alignment, 4); 2469 SDValue FudgeInReg; 2470 if (DestVT == MVT::f32) 2471 FudgeInReg = DAG.getLoad( 2472 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2473 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2474 Alignment); 2475 else { 2476 SDValue Load = DAG.getExtLoad( 2477 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2478 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2479 Alignment); 2480 HandleSDNode Handle(Load); 2481 LegalizeOp(Load.getNode()); 2482 FudgeInReg = Handle.getValue(); 2483 } 2484 2485 if (Node->isStrictFPOpcode()) { 2486 SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2487 { Tmp1.getValue(1), Tmp1, FudgeInReg }); 2488 Chain = Result.getValue(1); 2489 return Result; 2490 } 2491 2492 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2493 } 2494 2495 /// This function is responsible for legalizing a 2496 /// *INT_TO_FP operation of the specified operand when the target requests that 2497 /// we promote it. At this point, we know that the result and operand types are 2498 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2499 /// operation that takes a larger input. 2500 void SelectionDAGLegalize::PromoteLegalINT_TO_FP( 2501 SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) { 2502 bool IsStrict = N->isStrictFPOpcode(); 2503 bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP || 2504 N->getOpcode() == ISD::STRICT_SINT_TO_FP; 2505 EVT DestVT = N->getValueType(0); 2506 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2507 unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP; 2508 unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP; 2509 2510 // First step, figure out the appropriate *INT_TO_FP operation to use. 2511 EVT NewInTy = LegalOp.getValueType(); 2512 2513 unsigned OpToUse = 0; 2514 2515 // Scan for the appropriate larger type to use. 2516 while (true) { 2517 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2518 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2519 2520 // If the target supports SINT_TO_FP of this type, use it. 2521 if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) { 2522 OpToUse = SIntOp; 2523 break; 2524 } 2525 if (IsSigned) 2526 continue; 2527 2528 // If the target supports UINT_TO_FP of this type, use it. 2529 if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) { 2530 OpToUse = UIntOp; 2531 break; 2532 } 2533 2534 // Otherwise, try a larger type. 2535 } 2536 2537 // Okay, we found the operation and type to use. Zero extend our input to the 2538 // desired type then run the operation on it. 2539 if (IsStrict) { 2540 SDValue Res = 2541 DAG.getNode(OpToUse, dl, {DestVT, MVT::Other}, 2542 {N->getOperand(0), 2543 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2544 dl, NewInTy, LegalOp)}); 2545 Results.push_back(Res); 2546 Results.push_back(Res.getValue(1)); 2547 return; 2548 } 2549 2550 Results.push_back( 2551 DAG.getNode(OpToUse, dl, DestVT, 2552 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2553 dl, NewInTy, LegalOp))); 2554 } 2555 2556 /// This function is responsible for legalizing a 2557 /// FP_TO_*INT operation of the specified operand when the target requests that 2558 /// we promote it. At this point, we know that the result and operand types are 2559 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2560 /// operation that returns a larger result. 2561 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 2562 SmallVectorImpl<SDValue> &Results) { 2563 bool IsStrict = N->isStrictFPOpcode(); 2564 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 2565 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 2566 EVT DestVT = N->getValueType(0); 2567 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2568 // First step, figure out the appropriate FP_TO*INT operation to use. 2569 EVT NewOutTy = DestVT; 2570 2571 unsigned OpToUse = 0; 2572 2573 // Scan for the appropriate larger type to use. 2574 while (true) { 2575 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2576 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2577 2578 // A larger signed type can hold all unsigned values of the requested type, 2579 // so using FP_TO_SINT is valid 2580 OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT; 2581 if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2582 break; 2583 2584 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2585 OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT; 2586 if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2587 break; 2588 2589 // Otherwise, try a larger type. 2590 } 2591 2592 // Okay, we found the operation and type to use. 2593 SDValue Operation; 2594 if (IsStrict) { 2595 SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other); 2596 Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp); 2597 } else 2598 Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2599 2600 // Truncate the result of the extended FP_TO_*INT operation to the desired 2601 // size. 2602 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2603 Results.push_back(Trunc); 2604 if (IsStrict) 2605 Results.push_back(Operation.getValue(1)); 2606 } 2607 2608 /// Promote FP_TO_*INT_SAT operation to a larger result type. At this point 2609 /// the result and operand types are legal and there must be a legal 2610 /// FP_TO_*INT_SAT operation for a larger result type. 2611 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT_SAT(SDNode *Node, 2612 const SDLoc &dl) { 2613 unsigned Opcode = Node->getOpcode(); 2614 2615 // Scan for the appropriate larger type to use. 2616 EVT NewOutTy = Node->getValueType(0); 2617 while (true) { 2618 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy + 1); 2619 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2620 2621 if (TLI.isOperationLegalOrCustom(Opcode, NewOutTy)) 2622 break; 2623 } 2624 2625 // Saturation width is determined by second operand, so we don't have to 2626 // perform any fixup and can directly truncate the result. 2627 SDValue Result = DAG.getNode(Opcode, dl, NewOutTy, Node->getOperand(0), 2628 Node->getOperand(1)); 2629 return DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Result); 2630 } 2631 2632 /// Open code the operations for PARITY of the specified operation. 2633 SDValue SelectionDAGLegalize::ExpandPARITY(SDValue Op, const SDLoc &dl) { 2634 EVT VT = Op.getValueType(); 2635 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2636 unsigned Sz = VT.getScalarSizeInBits(); 2637 2638 // If CTPOP is legal, use it. Otherwise use shifts and xor. 2639 SDValue Result; 2640 if (TLI.isOperationLegal(ISD::CTPOP, VT)) { 2641 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 2642 } else { 2643 Result = Op; 2644 for (unsigned i = Log2_32_Ceil(Sz); i != 0;) { 2645 SDValue Shift = DAG.getNode(ISD::SRL, dl, VT, Result, 2646 DAG.getConstant(1ULL << (--i), dl, ShVT)); 2647 Result = DAG.getNode(ISD::XOR, dl, VT, Result, Shift); 2648 } 2649 } 2650 2651 return DAG.getNode(ISD::AND, dl, VT, Result, DAG.getConstant(1, dl, VT)); 2652 } 2653 2654 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2655 LLVM_DEBUG(dbgs() << "Trying to expand node\n"); 2656 SmallVector<SDValue, 8> Results; 2657 SDLoc dl(Node); 2658 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2659 bool NeedInvert; 2660 switch (Node->getOpcode()) { 2661 case ISD::ABS: 2662 if (TLI.expandABS(Node, Tmp1, DAG)) 2663 Results.push_back(Tmp1); 2664 break; 2665 case ISD::CTPOP: 2666 if (TLI.expandCTPOP(Node, Tmp1, DAG)) 2667 Results.push_back(Tmp1); 2668 break; 2669 case ISD::CTLZ: 2670 case ISD::CTLZ_ZERO_UNDEF: 2671 if (TLI.expandCTLZ(Node, Tmp1, DAG)) 2672 Results.push_back(Tmp1); 2673 break; 2674 case ISD::CTTZ: 2675 case ISD::CTTZ_ZERO_UNDEF: 2676 if (TLI.expandCTTZ(Node, Tmp1, DAG)) 2677 Results.push_back(Tmp1); 2678 break; 2679 case ISD::BITREVERSE: 2680 if ((Tmp1 = TLI.expandBITREVERSE(Node, DAG))) 2681 Results.push_back(Tmp1); 2682 break; 2683 case ISD::BSWAP: 2684 if ((Tmp1 = TLI.expandBSWAP(Node, DAG))) 2685 Results.push_back(Tmp1); 2686 break; 2687 case ISD::PARITY: 2688 Results.push_back(ExpandPARITY(Node->getOperand(0), dl)); 2689 break; 2690 case ISD::FRAMEADDR: 2691 case ISD::RETURNADDR: 2692 case ISD::FRAME_TO_ARGS_OFFSET: 2693 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2694 break; 2695 case ISD::EH_DWARF_CFA: { 2696 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 2697 TLI.getPointerTy(DAG.getDataLayout())); 2698 SDValue Offset = DAG.getNode(ISD::ADD, dl, 2699 CfaArg.getValueType(), 2700 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 2701 CfaArg.getValueType()), 2702 CfaArg); 2703 SDValue FA = DAG.getNode( 2704 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 2705 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2706 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 2707 FA, Offset)); 2708 break; 2709 } 2710 case ISD::FLT_ROUNDS_: 2711 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2712 Results.push_back(Node->getOperand(0)); 2713 break; 2714 case ISD::EH_RETURN: 2715 case ISD::EH_LABEL: 2716 case ISD::PREFETCH: 2717 case ISD::VAEND: 2718 case ISD::EH_SJLJ_LONGJMP: 2719 // If the target didn't expand these, there's nothing to do, so just 2720 // preserve the chain and be done. 2721 Results.push_back(Node->getOperand(0)); 2722 break; 2723 case ISD::READCYCLECOUNTER: 2724 // If the target didn't expand this, just return 'zero' and preserve the 2725 // chain. 2726 Results.append(Node->getNumValues() - 1, 2727 DAG.getConstant(0, dl, Node->getValueType(0))); 2728 Results.push_back(Node->getOperand(0)); 2729 break; 2730 case ISD::EH_SJLJ_SETJMP: 2731 // If the target didn't expand this, just return 'zero' and preserve the 2732 // chain. 2733 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2734 Results.push_back(Node->getOperand(0)); 2735 break; 2736 case ISD::ATOMIC_LOAD: { 2737 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2738 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2739 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2740 SDValue Swap = DAG.getAtomicCmpSwap( 2741 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2742 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2743 cast<AtomicSDNode>(Node)->getMemOperand()); 2744 Results.push_back(Swap.getValue(0)); 2745 Results.push_back(Swap.getValue(1)); 2746 break; 2747 } 2748 case ISD::ATOMIC_STORE: { 2749 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2750 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2751 cast<AtomicSDNode>(Node)->getMemoryVT(), 2752 Node->getOperand(0), 2753 Node->getOperand(1), Node->getOperand(2), 2754 cast<AtomicSDNode>(Node)->getMemOperand()); 2755 Results.push_back(Swap.getValue(1)); 2756 break; 2757 } 2758 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 2759 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 2760 // splits out the success value as a comparison. Expanding the resulting 2761 // ATOMIC_CMP_SWAP will produce a libcall. 2762 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2763 SDValue Res = DAG.getAtomicCmpSwap( 2764 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2765 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 2766 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 2767 2768 SDValue ExtRes = Res; 2769 SDValue LHS = Res; 2770 SDValue RHS = Node->getOperand(1); 2771 2772 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 2773 EVT OuterType = Node->getValueType(0); 2774 switch (TLI.getExtendForAtomicOps()) { 2775 case ISD::SIGN_EXTEND: 2776 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 2777 DAG.getValueType(AtomicType)); 2778 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 2779 Node->getOperand(2), DAG.getValueType(AtomicType)); 2780 ExtRes = LHS; 2781 break; 2782 case ISD::ZERO_EXTEND: 2783 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 2784 DAG.getValueType(AtomicType)); 2785 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2786 ExtRes = LHS; 2787 break; 2788 case ISD::ANY_EXTEND: 2789 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 2790 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2791 break; 2792 default: 2793 llvm_unreachable("Invalid atomic op extension"); 2794 } 2795 2796 SDValue Success = 2797 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 2798 2799 Results.push_back(ExtRes.getValue(0)); 2800 Results.push_back(Success); 2801 Results.push_back(Res.getValue(1)); 2802 break; 2803 } 2804 case ISD::DYNAMIC_STACKALLOC: 2805 ExpandDYNAMIC_STACKALLOC(Node, Results); 2806 break; 2807 case ISD::MERGE_VALUES: 2808 for (unsigned i = 0; i < Node->getNumValues(); i++) 2809 Results.push_back(Node->getOperand(i)); 2810 break; 2811 case ISD::UNDEF: { 2812 EVT VT = Node->getValueType(0); 2813 if (VT.isInteger()) 2814 Results.push_back(DAG.getConstant(0, dl, VT)); 2815 else { 2816 assert(VT.isFloatingPoint() && "Unknown value type!"); 2817 Results.push_back(DAG.getConstantFP(0, dl, VT)); 2818 } 2819 break; 2820 } 2821 case ISD::STRICT_FP_ROUND: 2822 // When strict mode is enforced we can't do expansion because it 2823 // does not honor the "strict" properties. Only libcall is allowed. 2824 if (TLI.isStrictFPEnabled()) 2825 break; 2826 // We might as well mutate to FP_ROUND when FP_ROUND operation is legal 2827 // since this operation is more efficient than stack operation. 2828 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2829 Node->getValueType(0)) 2830 == TargetLowering::Legal) 2831 break; 2832 // We fall back to use stack operation when the FP_ROUND operation 2833 // isn't available. 2834 if ((Tmp1 = EmitStackConvert(Node->getOperand(1), Node->getValueType(0), 2835 Node->getValueType(0), dl, 2836 Node->getOperand(0)))) { 2837 ReplaceNode(Node, Tmp1.getNode()); 2838 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n"); 2839 return true; 2840 } 2841 break; 2842 case ISD::FP_ROUND: 2843 case ISD::BITCAST: 2844 if ((Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 2845 Node->getValueType(0), dl))) 2846 Results.push_back(Tmp1); 2847 break; 2848 case ISD::STRICT_FP_EXTEND: 2849 // When strict mode is enforced we can't do expansion because it 2850 // does not honor the "strict" properties. Only libcall is allowed. 2851 if (TLI.isStrictFPEnabled()) 2852 break; 2853 // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal 2854 // since this operation is more efficient than stack operation. 2855 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2856 Node->getValueType(0)) 2857 == TargetLowering::Legal) 2858 break; 2859 // We fall back to use stack operation when the FP_EXTEND operation 2860 // isn't available. 2861 if ((Tmp1 = EmitStackConvert( 2862 Node->getOperand(1), Node->getOperand(1).getValueType(), 2863 Node->getValueType(0), dl, Node->getOperand(0)))) { 2864 ReplaceNode(Node, Tmp1.getNode()); 2865 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n"); 2866 return true; 2867 } 2868 break; 2869 case ISD::FP_EXTEND: 2870 if ((Tmp1 = EmitStackConvert(Node->getOperand(0), 2871 Node->getOperand(0).getValueType(), 2872 Node->getValueType(0), dl))) 2873 Results.push_back(Tmp1); 2874 break; 2875 case ISD::SIGN_EXTEND_INREG: { 2876 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2877 EVT VT = Node->getValueType(0); 2878 2879 // An in-register sign-extend of a boolean is a negation: 2880 // 'true' (1) sign-extended is -1. 2881 // 'false' (0) sign-extended is 0. 2882 // However, we must mask the high bits of the source operand because the 2883 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 2884 2885 // TODO: Do this for vectors too? 2886 if (ExtraVT.getSizeInBits() == 1) { 2887 SDValue One = DAG.getConstant(1, dl, VT); 2888 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 2889 SDValue Zero = DAG.getConstant(0, dl, VT); 2890 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 2891 Results.push_back(Neg); 2892 break; 2893 } 2894 2895 // NOTE: we could fall back on load/store here too for targets without 2896 // SRA. However, it is doubtful that any exist. 2897 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2898 unsigned BitsDiff = VT.getScalarSizeInBits() - 2899 ExtraVT.getScalarSizeInBits(); 2900 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 2901 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 2902 Node->getOperand(0), ShiftCst); 2903 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 2904 Results.push_back(Tmp1); 2905 break; 2906 } 2907 case ISD::UINT_TO_FP: 2908 case ISD::STRICT_UINT_TO_FP: 2909 if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) { 2910 Results.push_back(Tmp1); 2911 if (Node->isStrictFPOpcode()) 2912 Results.push_back(Tmp2); 2913 break; 2914 } 2915 LLVM_FALLTHROUGH; 2916 case ISD::SINT_TO_FP: 2917 case ISD::STRICT_SINT_TO_FP: 2918 if ((Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2))) { 2919 Results.push_back(Tmp1); 2920 if (Node->isStrictFPOpcode()) 2921 Results.push_back(Tmp2); 2922 } 2923 break; 2924 case ISD::FP_TO_SINT: 2925 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 2926 Results.push_back(Tmp1); 2927 break; 2928 case ISD::STRICT_FP_TO_SINT: 2929 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) { 2930 ReplaceNode(Node, Tmp1.getNode()); 2931 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n"); 2932 return true; 2933 } 2934 break; 2935 case ISD::FP_TO_UINT: 2936 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) 2937 Results.push_back(Tmp1); 2938 break; 2939 case ISD::STRICT_FP_TO_UINT: 2940 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) { 2941 // Relink the chain. 2942 DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2); 2943 // Replace the new UINT result. 2944 ReplaceNodeWithValue(SDValue(Node, 0), Tmp1); 2945 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n"); 2946 return true; 2947 } 2948 break; 2949 case ISD::FP_TO_SINT_SAT: 2950 case ISD::FP_TO_UINT_SAT: 2951 Results.push_back(TLI.expandFP_TO_INT_SAT(Node, DAG)); 2952 break; 2953 case ISD::VAARG: 2954 Results.push_back(DAG.expandVAArg(Node)); 2955 Results.push_back(Results[0].getValue(1)); 2956 break; 2957 case ISD::VACOPY: 2958 Results.push_back(DAG.expandVACopy(Node)); 2959 break; 2960 case ISD::EXTRACT_VECTOR_ELT: 2961 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 2962 // This must be an access of the only element. Return it. 2963 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 2964 Node->getOperand(0)); 2965 else 2966 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 2967 Results.push_back(Tmp1); 2968 break; 2969 case ISD::EXTRACT_SUBVECTOR: 2970 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 2971 break; 2972 case ISD::INSERT_SUBVECTOR: 2973 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 2974 break; 2975 case ISD::CONCAT_VECTORS: 2976 Results.push_back(ExpandVectorBuildThroughStack(Node)); 2977 break; 2978 case ISD::SCALAR_TO_VECTOR: 2979 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 2980 break; 2981 case ISD::INSERT_VECTOR_ELT: 2982 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 2983 Node->getOperand(1), 2984 Node->getOperand(2), dl)); 2985 break; 2986 case ISD::VECTOR_SHUFFLE: { 2987 SmallVector<int, 32> NewMask; 2988 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 2989 2990 EVT VT = Node->getValueType(0); 2991 EVT EltVT = VT.getVectorElementType(); 2992 SDValue Op0 = Node->getOperand(0); 2993 SDValue Op1 = Node->getOperand(1); 2994 if (!TLI.isTypeLegal(EltVT)) { 2995 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 2996 2997 // BUILD_VECTOR operands are allowed to be wider than the element type. 2998 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 2999 // it. 3000 if (NewEltVT.bitsLT(EltVT)) { 3001 // Convert shuffle node. 3002 // If original node was v4i64 and the new EltVT is i32, 3003 // cast operands to v8i32 and re-build the mask. 3004 3005 // Calculate new VT, the size of the new VT should be equal to original. 3006 EVT NewVT = 3007 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3008 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 3009 assert(NewVT.bitsEq(VT)); 3010 3011 // cast operands to new VT 3012 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3013 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3014 3015 // Convert the shuffle mask 3016 unsigned int factor = 3017 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3018 3019 // EltVT gets smaller 3020 assert(factor > 0); 3021 3022 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3023 if (Mask[i] < 0) { 3024 for (unsigned fi = 0; fi < factor; ++fi) 3025 NewMask.push_back(Mask[i]); 3026 } 3027 else { 3028 for (unsigned fi = 0; fi < factor; ++fi) 3029 NewMask.push_back(Mask[i]*factor+fi); 3030 } 3031 } 3032 Mask = NewMask; 3033 VT = NewVT; 3034 } 3035 EltVT = NewEltVT; 3036 } 3037 unsigned NumElems = VT.getVectorNumElements(); 3038 SmallVector<SDValue, 16> Ops; 3039 for (unsigned i = 0; i != NumElems; ++i) { 3040 if (Mask[i] < 0) { 3041 Ops.push_back(DAG.getUNDEF(EltVT)); 3042 continue; 3043 } 3044 unsigned Idx = Mask[i]; 3045 if (Idx < NumElems) 3046 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3047 DAG.getVectorIdxConstant(Idx, dl))); 3048 else 3049 Ops.push_back( 3050 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3051 DAG.getVectorIdxConstant(Idx - NumElems, dl))); 3052 } 3053 3054 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 3055 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3056 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3057 Results.push_back(Tmp1); 3058 break; 3059 } 3060 case ISD::VECTOR_SPLICE: { 3061 Results.push_back(TLI.expandVectorSplice(Node, DAG)); 3062 break; 3063 } 3064 case ISD::EXTRACT_ELEMENT: { 3065 EVT OpTy = Node->getOperand(0).getValueType(); 3066 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3067 // 1 -> Hi 3068 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3069 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3070 TLI.getShiftAmountTy( 3071 Node->getOperand(0).getValueType(), 3072 DAG.getDataLayout()))); 3073 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3074 } else { 3075 // 0 -> Lo 3076 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3077 Node->getOperand(0)); 3078 } 3079 Results.push_back(Tmp1); 3080 break; 3081 } 3082 case ISD::STACKSAVE: 3083 // Expand to CopyFromReg if the target set 3084 // StackPointerRegisterToSaveRestore. 3085 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { 3086 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3087 Node->getValueType(0))); 3088 Results.push_back(Results[0].getValue(1)); 3089 } else { 3090 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3091 Results.push_back(Node->getOperand(0)); 3092 } 3093 break; 3094 case ISD::STACKRESTORE: 3095 // Expand to CopyToReg if the target set 3096 // StackPointerRegisterToSaveRestore. 3097 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { 3098 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3099 Node->getOperand(1))); 3100 } else { 3101 Results.push_back(Node->getOperand(0)); 3102 } 3103 break; 3104 case ISD::GET_DYNAMIC_AREA_OFFSET: 3105 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3106 Results.push_back(Results[0].getValue(0)); 3107 break; 3108 case ISD::FCOPYSIGN: 3109 Results.push_back(ExpandFCOPYSIGN(Node)); 3110 break; 3111 case ISD::FNEG: 3112 Results.push_back(ExpandFNEG(Node)); 3113 break; 3114 case ISD::FABS: 3115 Results.push_back(ExpandFABS(Node)); 3116 break; 3117 case ISD::SMIN: 3118 case ISD::SMAX: 3119 case ISD::UMIN: 3120 case ISD::UMAX: { 3121 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3122 ISD::CondCode Pred; 3123 switch (Node->getOpcode()) { 3124 default: llvm_unreachable("How did we get here?"); 3125 case ISD::SMAX: Pred = ISD::SETGT; break; 3126 case ISD::SMIN: Pred = ISD::SETLT; break; 3127 case ISD::UMAX: Pred = ISD::SETUGT; break; 3128 case ISD::UMIN: Pred = ISD::SETULT; break; 3129 } 3130 Tmp1 = Node->getOperand(0); 3131 Tmp2 = Node->getOperand(1); 3132 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3133 Results.push_back(Tmp1); 3134 break; 3135 } 3136 case ISD::FMINNUM: 3137 case ISD::FMAXNUM: { 3138 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) 3139 Results.push_back(Expanded); 3140 break; 3141 } 3142 case ISD::FSIN: 3143 case ISD::FCOS: { 3144 EVT VT = Node->getValueType(0); 3145 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3146 // fcos which share the same operand and both are used. 3147 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3148 isSinCosLibcallAvailable(Node, TLI)) 3149 && useSinCos(Node)) { 3150 SDVTList VTs = DAG.getVTList(VT, VT); 3151 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3152 if (Node->getOpcode() == ISD::FCOS) 3153 Tmp1 = Tmp1.getValue(1); 3154 Results.push_back(Tmp1); 3155 } 3156 break; 3157 } 3158 case ISD::FMAD: 3159 llvm_unreachable("Illegal fmad should never be formed"); 3160 3161 case ISD::FP16_TO_FP: 3162 if (Node->getValueType(0) != MVT::f32) { 3163 // We can extend to types bigger than f32 in two steps without changing 3164 // the result. Since "f16 -> f32" is much more commonly available, give 3165 // CodeGen the option of emitting that before resorting to a libcall. 3166 SDValue Res = 3167 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3168 Results.push_back( 3169 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3170 } 3171 break; 3172 case ISD::STRICT_FP16_TO_FP: 3173 if (Node->getValueType(0) != MVT::f32) { 3174 // We can extend to types bigger than f32 in two steps without changing 3175 // the result. Since "f16 -> f32" is much more commonly available, give 3176 // CodeGen the option of emitting that before resorting to a libcall. 3177 SDValue Res = 3178 DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other}, 3179 {Node->getOperand(0), Node->getOperand(1)}); 3180 Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 3181 {Node->getValueType(0), MVT::Other}, 3182 {Res.getValue(1), Res}); 3183 Results.push_back(Res); 3184 Results.push_back(Res.getValue(1)); 3185 } 3186 break; 3187 case ISD::FP_TO_FP16: 3188 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3189 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3190 SDValue Op = Node->getOperand(0); 3191 MVT SVT = Op.getSimpleValueType(); 3192 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3193 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3194 // Under fastmath, we can expand this node into a fround followed by 3195 // a float-half conversion. 3196 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3197 DAG.getIntPtrConstant(0, dl)); 3198 Results.push_back( 3199 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3200 } 3201 } 3202 break; 3203 case ISD::ConstantFP: { 3204 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3205 // Check to see if this FP immediate is already legal. 3206 // If this is a legal constant, turn it into a TargetConstantFP node. 3207 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0), 3208 DAG.shouldOptForSize())) 3209 Results.push_back(ExpandConstantFP(CFP, true)); 3210 break; 3211 } 3212 case ISD::Constant: { 3213 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3214 Results.push_back(ExpandConstant(CP)); 3215 break; 3216 } 3217 case ISD::FSUB: { 3218 EVT VT = Node->getValueType(0); 3219 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3220 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3221 const SDNodeFlags Flags = Node->getFlags(); 3222 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3223 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3224 Results.push_back(Tmp1); 3225 } 3226 break; 3227 } 3228 case ISD::SUB: { 3229 EVT VT = Node->getValueType(0); 3230 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3231 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3232 "Don't know how to expand this subtraction!"); 3233 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3234 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, 3235 VT)); 3236 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3237 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3238 break; 3239 } 3240 case ISD::UREM: 3241 case ISD::SREM: 3242 if (TLI.expandREM(Node, Tmp1, DAG)) 3243 Results.push_back(Tmp1); 3244 break; 3245 case ISD::UDIV: 3246 case ISD::SDIV: { 3247 bool isSigned = Node->getOpcode() == ISD::SDIV; 3248 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3249 EVT VT = Node->getValueType(0); 3250 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3251 SDVTList VTs = DAG.getVTList(VT, VT); 3252 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3253 Node->getOperand(1)); 3254 Results.push_back(Tmp1); 3255 } 3256 break; 3257 } 3258 case ISD::MULHU: 3259 case ISD::MULHS: { 3260 unsigned ExpandOpcode = 3261 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3262 EVT VT = Node->getValueType(0); 3263 SDVTList VTs = DAG.getVTList(VT, VT); 3264 3265 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3266 Node->getOperand(1)); 3267 Results.push_back(Tmp1.getValue(1)); 3268 break; 3269 } 3270 case ISD::UMUL_LOHI: 3271 case ISD::SMUL_LOHI: { 3272 SDValue LHS = Node->getOperand(0); 3273 SDValue RHS = Node->getOperand(1); 3274 MVT VT = LHS.getSimpleValueType(); 3275 unsigned MULHOpcode = 3276 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3277 3278 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3279 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3280 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3281 break; 3282 } 3283 3284 SmallVector<SDValue, 4> Halves; 3285 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3286 assert(TLI.isTypeLegal(HalfType)); 3287 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, dl, LHS, RHS, Halves, 3288 HalfType, DAG, 3289 TargetLowering::MulExpansionKind::Always)) { 3290 for (unsigned i = 0; i < 2; ++i) { 3291 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3292 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3293 SDValue Shift = DAG.getConstant( 3294 HalfType.getScalarSizeInBits(), dl, 3295 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3296 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3297 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3298 } 3299 break; 3300 } 3301 break; 3302 } 3303 case ISD::MUL: { 3304 EVT VT = Node->getValueType(0); 3305 SDVTList VTs = DAG.getVTList(VT, VT); 3306 // See if multiply or divide can be lowered using two-result operations. 3307 // We just need the low half of the multiply; try both the signed 3308 // and unsigned forms. If the target supports both SMUL_LOHI and 3309 // UMUL_LOHI, form a preference by checking which forms of plain 3310 // MULH it supports. 3311 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3312 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3313 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3314 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3315 unsigned OpToUse = 0; 3316 if (HasSMUL_LOHI && !HasMULHS) { 3317 OpToUse = ISD::SMUL_LOHI; 3318 } else if (HasUMUL_LOHI && !HasMULHU) { 3319 OpToUse = ISD::UMUL_LOHI; 3320 } else if (HasSMUL_LOHI) { 3321 OpToUse = ISD::SMUL_LOHI; 3322 } else if (HasUMUL_LOHI) { 3323 OpToUse = ISD::UMUL_LOHI; 3324 } 3325 if (OpToUse) { 3326 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3327 Node->getOperand(1))); 3328 break; 3329 } 3330 3331 SDValue Lo, Hi; 3332 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3333 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3334 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3335 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3336 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3337 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3338 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3339 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3340 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3341 SDValue Shift = 3342 DAG.getConstant(HalfType.getSizeInBits(), dl, 3343 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3344 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3345 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3346 } 3347 break; 3348 } 3349 case ISD::FSHL: 3350 case ISD::FSHR: 3351 if (TLI.expandFunnelShift(Node, Tmp1, DAG)) 3352 Results.push_back(Tmp1); 3353 break; 3354 case ISD::ROTL: 3355 case ISD::ROTR: 3356 if (TLI.expandROT(Node, true /*AllowVectorOps*/, Tmp1, DAG)) 3357 Results.push_back(Tmp1); 3358 break; 3359 case ISD::SADDSAT: 3360 case ISD::UADDSAT: 3361 case ISD::SSUBSAT: 3362 case ISD::USUBSAT: 3363 Results.push_back(TLI.expandAddSubSat(Node, DAG)); 3364 break; 3365 case ISD::SSHLSAT: 3366 case ISD::USHLSAT: 3367 Results.push_back(TLI.expandShlSat(Node, DAG)); 3368 break; 3369 case ISD::SMULFIX: 3370 case ISD::SMULFIXSAT: 3371 case ISD::UMULFIX: 3372 case ISD::UMULFIXSAT: 3373 Results.push_back(TLI.expandFixedPointMul(Node, DAG)); 3374 break; 3375 case ISD::SDIVFIX: 3376 case ISD::SDIVFIXSAT: 3377 case ISD::UDIVFIX: 3378 case ISD::UDIVFIXSAT: 3379 if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node), 3380 Node->getOperand(0), 3381 Node->getOperand(1), 3382 Node->getConstantOperandVal(2), 3383 DAG)) { 3384 Results.push_back(V); 3385 break; 3386 } 3387 // FIXME: We might want to retry here with a wider type if we fail, if that 3388 // type is legal. 3389 // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is 3390 // <= 128 (which is the case for all of the default Embedded-C types), 3391 // we will only get here with types and scales that we could always expand 3392 // if we were allowed to generate libcalls to division functions of illegal 3393 // type. But we cannot do that. 3394 llvm_unreachable("Cannot expand DIVFIX!"); 3395 case ISD::ADDCARRY: 3396 case ISD::SUBCARRY: { 3397 SDValue LHS = Node->getOperand(0); 3398 SDValue RHS = Node->getOperand(1); 3399 SDValue Carry = Node->getOperand(2); 3400 3401 bool IsAdd = Node->getOpcode() == ISD::ADDCARRY; 3402 3403 // Initial add of the 2 operands. 3404 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB; 3405 EVT VT = LHS.getValueType(); 3406 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS); 3407 3408 // Initial check for overflow. 3409 EVT CarryType = Node->getValueType(1); 3410 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3411 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 3412 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3413 3414 // Add of the sum and the carry. 3415 SDValue One = DAG.getConstant(1, dl, VT); 3416 SDValue CarryExt = 3417 DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One); 3418 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt); 3419 3420 // Second check for overflow. If we are adding, we can only overflow if the 3421 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0. 3422 // If we are subtracting, we can only overflow if the initial sum is 0 and 3423 // the carry is set, resulting in a new sum of all 1s. 3424 SDValue Zero = DAG.getConstant(0, dl, VT); 3425 SDValue Overflow2 = 3426 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ) 3427 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ); 3428 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2, 3429 DAG.getZExtOrTrunc(Carry, dl, SetCCType)); 3430 3431 SDValue ResultCarry = 3432 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2); 3433 3434 Results.push_back(Sum2); 3435 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT)); 3436 break; 3437 } 3438 case ISD::SADDO: 3439 case ISD::SSUBO: { 3440 SDValue Result, Overflow; 3441 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 3442 Results.push_back(Result); 3443 Results.push_back(Overflow); 3444 break; 3445 } 3446 case ISD::UADDO: 3447 case ISD::USUBO: { 3448 SDValue Result, Overflow; 3449 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 3450 Results.push_back(Result); 3451 Results.push_back(Overflow); 3452 break; 3453 } 3454 case ISD::UMULO: 3455 case ISD::SMULO: { 3456 SDValue Result, Overflow; 3457 if (TLI.expandMULO(Node, Result, Overflow, DAG)) { 3458 Results.push_back(Result); 3459 Results.push_back(Overflow); 3460 } 3461 break; 3462 } 3463 case ISD::BUILD_PAIR: { 3464 EVT PairTy = Node->getValueType(0); 3465 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3466 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3467 Tmp2 = DAG.getNode( 3468 ISD::SHL, dl, PairTy, Tmp2, 3469 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3470 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3471 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3472 break; 3473 } 3474 case ISD::SELECT: 3475 Tmp1 = Node->getOperand(0); 3476 Tmp2 = Node->getOperand(1); 3477 Tmp3 = Node->getOperand(2); 3478 if (Tmp1.getOpcode() == ISD::SETCC) { 3479 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3480 Tmp2, Tmp3, 3481 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3482 } else { 3483 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3484 DAG.getConstant(0, dl, Tmp1.getValueType()), 3485 Tmp2, Tmp3, ISD::SETNE); 3486 } 3487 Tmp1->setFlags(Node->getFlags()); 3488 Results.push_back(Tmp1); 3489 break; 3490 case ISD::BR_JT: { 3491 SDValue Chain = Node->getOperand(0); 3492 SDValue Table = Node->getOperand(1); 3493 SDValue Index = Node->getOperand(2); 3494 3495 const DataLayout &TD = DAG.getDataLayout(); 3496 EVT PTy = TLI.getPointerTy(TD); 3497 3498 unsigned EntrySize = 3499 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3500 3501 // For power-of-two jumptable entry sizes convert multiplication to a shift. 3502 // This transformation needs to be done here since otherwise the MIPS 3503 // backend will end up emitting a three instruction multiply sequence 3504 // instead of a single shift and MSP430 will call a runtime function. 3505 if (llvm::isPowerOf2_32(EntrySize)) 3506 Index = DAG.getNode( 3507 ISD::SHL, dl, Index.getValueType(), Index, 3508 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); 3509 else 3510 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3511 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3512 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3513 Index, Table); 3514 3515 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3516 SDValue LD = DAG.getExtLoad( 3517 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3518 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3519 Addr = LD; 3520 if (TLI.isJumpTableRelative()) { 3521 // For PIC, the sequence is: 3522 // BRIND(load(Jumptable + index) + RelocBase) 3523 // RelocBase can be JumpTable, GOT or some sort of global base. 3524 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3525 TLI.getPICJumpTableRelocBase(Table, DAG)); 3526 } 3527 3528 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); 3529 Results.push_back(Tmp1); 3530 break; 3531 } 3532 case ISD::BRCOND: 3533 // Expand brcond's setcc into its constituent parts and create a BR_CC 3534 // Node. 3535 Tmp1 = Node->getOperand(0); 3536 Tmp2 = Node->getOperand(1); 3537 if (Tmp2.getOpcode() == ISD::SETCC) { 3538 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3539 Tmp1, Tmp2.getOperand(2), 3540 Tmp2.getOperand(0), Tmp2.getOperand(1), 3541 Node->getOperand(2)); 3542 } else { 3543 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 3544 if (Tmp2.isUndef() || 3545 (Tmp2.getOpcode() == ISD::AND && 3546 isa<ConstantSDNode>(Tmp2.getOperand(1)) && 3547 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) 3548 Tmp3 = Tmp2; 3549 else 3550 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3551 DAG.getConstant(1, dl, Tmp2.getValueType())); 3552 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3553 DAG.getCondCode(ISD::SETNE), Tmp3, 3554 DAG.getConstant(0, dl, Tmp3.getValueType()), 3555 Node->getOperand(2)); 3556 } 3557 Results.push_back(Tmp1); 3558 break; 3559 case ISD::SETCC: 3560 case ISD::STRICT_FSETCC: 3561 case ISD::STRICT_FSETCCS: { 3562 bool IsStrict = Node->getOpcode() != ISD::SETCC; 3563 bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS; 3564 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 3565 unsigned Offset = IsStrict ? 1 : 0; 3566 Tmp1 = Node->getOperand(0 + Offset); 3567 Tmp2 = Node->getOperand(1 + Offset); 3568 Tmp3 = Node->getOperand(2 + Offset); 3569 bool Legalized = 3570 TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), Tmp1, Tmp2, Tmp3, 3571 NeedInvert, dl, Chain, IsSignaling); 3572 3573 if (Legalized) { 3574 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3575 // condition code, create a new SETCC node. 3576 if (Tmp3.getNode()) 3577 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3578 Tmp1, Tmp2, Tmp3, Node->getFlags()); 3579 3580 // If we expanded the SETCC by inverting the condition code, then wrap 3581 // the existing SETCC in a NOT to restore the intended condition. 3582 if (NeedInvert) 3583 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3584 3585 Results.push_back(Tmp1); 3586 if (IsStrict) 3587 Results.push_back(Chain); 3588 3589 break; 3590 } 3591 3592 // FIXME: It seems Legalized is false iff CCCode is Legal. I don't 3593 // understand if this code is useful for strict nodes. 3594 assert(!IsStrict && "Don't know how to expand for strict nodes."); 3595 3596 // Otherwise, SETCC for the given comparison type must be completely 3597 // illegal; expand it into a SELECT_CC. 3598 EVT VT = Node->getValueType(0); 3599 int TrueValue; 3600 switch (TLI.getBooleanContents(Tmp1.getValueType())) { 3601 case TargetLowering::ZeroOrOneBooleanContent: 3602 case TargetLowering::UndefinedBooleanContent: 3603 TrueValue = 1; 3604 break; 3605 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3606 TrueValue = -1; 3607 break; 3608 } 3609 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3610 DAG.getConstant(TrueValue, dl, VT), 3611 DAG.getConstant(0, dl, VT), 3612 Tmp3); 3613 Tmp1->setFlags(Node->getFlags()); 3614 Results.push_back(Tmp1); 3615 break; 3616 } 3617 case ISD::SELECT_CC: { 3618 // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS 3619 Tmp1 = Node->getOperand(0); // LHS 3620 Tmp2 = Node->getOperand(1); // RHS 3621 Tmp3 = Node->getOperand(2); // True 3622 Tmp4 = Node->getOperand(3); // False 3623 EVT VT = Node->getValueType(0); 3624 SDValue Chain; 3625 SDValue CC = Node->getOperand(4); 3626 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3627 3628 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 3629 // If the condition code is legal, then we need to expand this 3630 // node using SETCC and SELECT. 3631 EVT CmpVT = Tmp1.getValueType(); 3632 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3633 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3634 "expanded."); 3635 EVT CCVT = getSetCCResultType(CmpVT); 3636 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags()); 3637 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3638 break; 3639 } 3640 3641 // SELECT_CC is legal, so the condition code must not be. 3642 bool Legalized = false; 3643 // Try to legalize by inverting the condition. This is for targets that 3644 // might support an ordered version of a condition, but not the unordered 3645 // version (or vice versa). 3646 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType()); 3647 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 3648 // Use the new condition code and swap true and false 3649 Legalized = true; 3650 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3651 Tmp1->setFlags(Node->getFlags()); 3652 } else { 3653 // If The inverse is not legal, then try to swap the arguments using 3654 // the inverse condition code. 3655 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3656 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 3657 // The swapped inverse condition is legal, so swap true and false, 3658 // lhs and rhs. 3659 Legalized = true; 3660 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3661 Tmp1->setFlags(Node->getFlags()); 3662 } 3663 } 3664 3665 if (!Legalized) { 3666 Legalized = TLI.LegalizeSetCCCondCode( 3667 DAG, getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, 3668 NeedInvert, dl, Chain); 3669 3670 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3671 3672 // If we expanded the SETCC by inverting the condition code, then swap 3673 // the True/False operands to match. 3674 if (NeedInvert) 3675 std::swap(Tmp3, Tmp4); 3676 3677 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3678 // condition code, create a new SELECT_CC node. 3679 if (CC.getNode()) { 3680 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3681 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3682 } else { 3683 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3684 CC = DAG.getCondCode(ISD::SETNE); 3685 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3686 Tmp2, Tmp3, Tmp4, CC); 3687 } 3688 Tmp1->setFlags(Node->getFlags()); 3689 } 3690 Results.push_back(Tmp1); 3691 break; 3692 } 3693 case ISD::BR_CC: { 3694 // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS 3695 SDValue Chain; 3696 Tmp1 = Node->getOperand(0); // Chain 3697 Tmp2 = Node->getOperand(2); // LHS 3698 Tmp3 = Node->getOperand(3); // RHS 3699 Tmp4 = Node->getOperand(1); // CC 3700 3701 bool Legalized = 3702 TLI.LegalizeSetCCCondCode(DAG, getSetCCResultType(Tmp2.getValueType()), 3703 Tmp2, Tmp3, Tmp4, NeedInvert, dl, Chain); 3704 (void)Legalized; 3705 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3706 3707 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3708 // node. 3709 if (Tmp4.getNode()) { 3710 assert(!NeedInvert && "Don't know how to invert BR_CC!"); 3711 3712 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3713 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3714 } else { 3715 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3716 Tmp4 = DAG.getCondCode(NeedInvert ? ISD::SETEQ : ISD::SETNE); 3717 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3718 Tmp2, Tmp3, Node->getOperand(4)); 3719 } 3720 Results.push_back(Tmp1); 3721 break; 3722 } 3723 case ISD::BUILD_VECTOR: 3724 Results.push_back(ExpandBUILD_VECTOR(Node)); 3725 break; 3726 case ISD::SPLAT_VECTOR: 3727 Results.push_back(ExpandSPLAT_VECTOR(Node)); 3728 break; 3729 case ISD::SRA: 3730 case ISD::SRL: 3731 case ISD::SHL: { 3732 // Scalarize vector SRA/SRL/SHL. 3733 EVT VT = Node->getValueType(0); 3734 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3735 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3736 unsigned NumElem = VT.getVectorNumElements(); 3737 3738 SmallVector<SDValue, 8> Scalars; 3739 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3740 SDValue Ex = 3741 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3742 Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl)); 3743 SDValue Sh = 3744 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3745 Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl)); 3746 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3747 VT.getScalarType(), Ex, Sh)); 3748 } 3749 3750 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 3751 Results.push_back(Result); 3752 break; 3753 } 3754 case ISD::VECREDUCE_FADD: 3755 case ISD::VECREDUCE_FMUL: 3756 case ISD::VECREDUCE_ADD: 3757 case ISD::VECREDUCE_MUL: 3758 case ISD::VECREDUCE_AND: 3759 case ISD::VECREDUCE_OR: 3760 case ISD::VECREDUCE_XOR: 3761 case ISD::VECREDUCE_SMAX: 3762 case ISD::VECREDUCE_SMIN: 3763 case ISD::VECREDUCE_UMAX: 3764 case ISD::VECREDUCE_UMIN: 3765 case ISD::VECREDUCE_FMAX: 3766 case ISD::VECREDUCE_FMIN: 3767 Results.push_back(TLI.expandVecReduce(Node, DAG)); 3768 break; 3769 case ISD::GLOBAL_OFFSET_TABLE: 3770 case ISD::GlobalAddress: 3771 case ISD::GlobalTLSAddress: 3772 case ISD::ExternalSymbol: 3773 case ISD::ConstantPool: 3774 case ISD::JumpTable: 3775 case ISD::INTRINSIC_W_CHAIN: 3776 case ISD::INTRINSIC_WO_CHAIN: 3777 case ISD::INTRINSIC_VOID: 3778 // FIXME: Custom lowering for these operations shouldn't return null! 3779 // Return true so that we don't call ConvertNodeToLibcall which also won't 3780 // do anything. 3781 return true; 3782 } 3783 3784 if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) { 3785 // FIXME: We were asked to expand a strict floating-point operation, 3786 // but there is currently no expansion implemented that would preserve 3787 // the "strict" properties. For now, we just fall back to the non-strict 3788 // version if that is legal on the target. The actual mutation of the 3789 // operation will happen in SelectionDAGISel::DoInstructionSelection. 3790 switch (Node->getOpcode()) { 3791 default: 3792 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3793 Node->getValueType(0)) 3794 == TargetLowering::Legal) 3795 return true; 3796 break; 3797 case ISD::STRICT_FSUB: { 3798 if (TLI.getStrictFPOperationAction( 3799 ISD::STRICT_FSUB, Node->getValueType(0)) == TargetLowering::Legal) 3800 return true; 3801 if (TLI.getStrictFPOperationAction( 3802 ISD::STRICT_FADD, Node->getValueType(0)) != TargetLowering::Legal) 3803 break; 3804 3805 EVT VT = Node->getValueType(0); 3806 const SDNodeFlags Flags = Node->getFlags(); 3807 SDValue Neg = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(2), Flags); 3808 SDValue Fadd = DAG.getNode(ISD::STRICT_FADD, dl, Node->getVTList(), 3809 {Node->getOperand(0), Node->getOperand(1), Neg}, 3810 Flags); 3811 3812 Results.push_back(Fadd); 3813 Results.push_back(Fadd.getValue(1)); 3814 break; 3815 } 3816 case ISD::STRICT_SINT_TO_FP: 3817 case ISD::STRICT_UINT_TO_FP: 3818 case ISD::STRICT_LRINT: 3819 case ISD::STRICT_LLRINT: 3820 case ISD::STRICT_LROUND: 3821 case ISD::STRICT_LLROUND: 3822 // These are registered by the operand type instead of the value 3823 // type. Reflect that here. 3824 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3825 Node->getOperand(1).getValueType()) 3826 == TargetLowering::Legal) 3827 return true; 3828 break; 3829 } 3830 } 3831 3832 // Replace the original node with the legalized result. 3833 if (Results.empty()) { 3834 LLVM_DEBUG(dbgs() << "Cannot expand node\n"); 3835 return false; 3836 } 3837 3838 LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); 3839 ReplaceNode(Node, Results.data()); 3840 return true; 3841 } 3842 3843 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 3844 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); 3845 SmallVector<SDValue, 8> Results; 3846 SDLoc dl(Node); 3847 // FIXME: Check flags on the node to see if we can use a finite call. 3848 unsigned Opc = Node->getOpcode(); 3849 switch (Opc) { 3850 case ISD::ATOMIC_FENCE: { 3851 // If the target didn't lower this, lower it to '__sync_synchronize()' call 3852 // FIXME: handle "fence singlethread" more efficiently. 3853 TargetLowering::ArgListTy Args; 3854 3855 TargetLowering::CallLoweringInfo CLI(DAG); 3856 CLI.setDebugLoc(dl) 3857 .setChain(Node->getOperand(0)) 3858 .setLibCallee( 3859 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3860 DAG.getExternalSymbol("__sync_synchronize", 3861 TLI.getPointerTy(DAG.getDataLayout())), 3862 std::move(Args)); 3863 3864 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3865 3866 Results.push_back(CallResult.second); 3867 break; 3868 } 3869 // By default, atomic intrinsics are marked Legal and lowered. Targets 3870 // which don't support them directly, however, may want libcalls, in which 3871 // case they mark them Expand, and we get here. 3872 case ISD::ATOMIC_SWAP: 3873 case ISD::ATOMIC_LOAD_ADD: 3874 case ISD::ATOMIC_LOAD_SUB: 3875 case ISD::ATOMIC_LOAD_AND: 3876 case ISD::ATOMIC_LOAD_CLR: 3877 case ISD::ATOMIC_LOAD_OR: 3878 case ISD::ATOMIC_LOAD_XOR: 3879 case ISD::ATOMIC_LOAD_NAND: 3880 case ISD::ATOMIC_LOAD_MIN: 3881 case ISD::ATOMIC_LOAD_MAX: 3882 case ISD::ATOMIC_LOAD_UMIN: 3883 case ISD::ATOMIC_LOAD_UMAX: 3884 case ISD::ATOMIC_CMP_SWAP: { 3885 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 3886 AtomicOrdering Order = cast<AtomicSDNode>(Node)->getMergedOrdering(); 3887 RTLIB::Libcall LC = RTLIB::getOUTLINE_ATOMIC(Opc, Order, VT); 3888 EVT RetVT = Node->getValueType(0); 3889 TargetLowering::MakeLibCallOptions CallOptions; 3890 SmallVector<SDValue, 4> Ops; 3891 if (TLI.getLibcallName(LC)) { 3892 // If outline atomic available, prepare its arguments and expand. 3893 Ops.append(Node->op_begin() + 2, Node->op_end()); 3894 Ops.push_back(Node->getOperand(1)); 3895 3896 } else { 3897 LC = RTLIB::getSYNC(Opc, VT); 3898 assert(LC != RTLIB::UNKNOWN_LIBCALL && 3899 "Unexpected atomic op or value type!"); 3900 // Arguments for expansion to sync libcall 3901 Ops.append(Node->op_begin() + 1, Node->op_end()); 3902 } 3903 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 3904 Ops, CallOptions, 3905 SDLoc(Node), 3906 Node->getOperand(0)); 3907 Results.push_back(Tmp.first); 3908 Results.push_back(Tmp.second); 3909 break; 3910 } 3911 case ISD::TRAP: { 3912 // If this operation is not supported, lower it to 'abort()' call 3913 TargetLowering::ArgListTy Args; 3914 TargetLowering::CallLoweringInfo CLI(DAG); 3915 CLI.setDebugLoc(dl) 3916 .setChain(Node->getOperand(0)) 3917 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3918 DAG.getExternalSymbol( 3919 "abort", TLI.getPointerTy(DAG.getDataLayout())), 3920 std::move(Args)); 3921 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3922 3923 Results.push_back(CallResult.second); 3924 break; 3925 } 3926 case ISD::FMINNUM: 3927 case ISD::STRICT_FMINNUM: 3928 ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 3929 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 3930 RTLIB::FMIN_PPCF128, Results); 3931 break; 3932 case ISD::FMAXNUM: 3933 case ISD::STRICT_FMAXNUM: 3934 ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 3935 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 3936 RTLIB::FMAX_PPCF128, Results); 3937 break; 3938 case ISD::FSQRT: 3939 case ISD::STRICT_FSQRT: 3940 ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3941 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 3942 RTLIB::SQRT_PPCF128, Results); 3943 break; 3944 case ISD::FCBRT: 3945 ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, 3946 RTLIB::CBRT_F80, RTLIB::CBRT_F128, 3947 RTLIB::CBRT_PPCF128, Results); 3948 break; 3949 case ISD::FSIN: 3950 case ISD::STRICT_FSIN: 3951 ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 3952 RTLIB::SIN_F80, RTLIB::SIN_F128, 3953 RTLIB::SIN_PPCF128, Results); 3954 break; 3955 case ISD::FCOS: 3956 case ISD::STRICT_FCOS: 3957 ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 3958 RTLIB::COS_F80, RTLIB::COS_F128, 3959 RTLIB::COS_PPCF128, Results); 3960 break; 3961 case ISD::FSINCOS: 3962 // Expand into sincos libcall. 3963 ExpandSinCosLibCall(Node, Results); 3964 break; 3965 case ISD::FLOG: 3966 case ISD::STRICT_FLOG: 3967 ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80, 3968 RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results); 3969 break; 3970 case ISD::FLOG2: 3971 case ISD::STRICT_FLOG2: 3972 ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80, 3973 RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results); 3974 break; 3975 case ISD::FLOG10: 3976 case ISD::STRICT_FLOG10: 3977 ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80, 3978 RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results); 3979 break; 3980 case ISD::FEXP: 3981 case ISD::STRICT_FEXP: 3982 ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80, 3983 RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results); 3984 break; 3985 case ISD::FEXP2: 3986 case ISD::STRICT_FEXP2: 3987 ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80, 3988 RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results); 3989 break; 3990 case ISD::FTRUNC: 3991 case ISD::STRICT_FTRUNC: 3992 ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 3993 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 3994 RTLIB::TRUNC_PPCF128, Results); 3995 break; 3996 case ISD::FFLOOR: 3997 case ISD::STRICT_FFLOOR: 3998 ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 3999 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 4000 RTLIB::FLOOR_PPCF128, Results); 4001 break; 4002 case ISD::FCEIL: 4003 case ISD::STRICT_FCEIL: 4004 ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 4005 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 4006 RTLIB::CEIL_PPCF128, Results); 4007 break; 4008 case ISD::FRINT: 4009 case ISD::STRICT_FRINT: 4010 ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 4011 RTLIB::RINT_F80, RTLIB::RINT_F128, 4012 RTLIB::RINT_PPCF128, Results); 4013 break; 4014 case ISD::FNEARBYINT: 4015 case ISD::STRICT_FNEARBYINT: 4016 ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 4017 RTLIB::NEARBYINT_F64, 4018 RTLIB::NEARBYINT_F80, 4019 RTLIB::NEARBYINT_F128, 4020 RTLIB::NEARBYINT_PPCF128, Results); 4021 break; 4022 case ISD::FROUND: 4023 case ISD::STRICT_FROUND: 4024 ExpandFPLibCall(Node, RTLIB::ROUND_F32, 4025 RTLIB::ROUND_F64, 4026 RTLIB::ROUND_F80, 4027 RTLIB::ROUND_F128, 4028 RTLIB::ROUND_PPCF128, Results); 4029 break; 4030 case ISD::FROUNDEVEN: 4031 case ISD::STRICT_FROUNDEVEN: 4032 ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32, 4033 RTLIB::ROUNDEVEN_F64, 4034 RTLIB::ROUNDEVEN_F80, 4035 RTLIB::ROUNDEVEN_F128, 4036 RTLIB::ROUNDEVEN_PPCF128, Results); 4037 break; 4038 case ISD::FPOWI: 4039 case ISD::STRICT_FPOWI: { 4040 RTLIB::Libcall LC = RTLIB::getPOWI(Node->getSimpleValueType(0)); 4041 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fpowi."); 4042 if (!TLI.getLibcallName(LC)) { 4043 // Some targets don't have a powi libcall; use pow instead. 4044 SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), 4045 Node->getValueType(0), 4046 Node->getOperand(1)); 4047 Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node), 4048 Node->getValueType(0), Node->getOperand(0), 4049 Exponent)); 4050 break; 4051 } 4052 unsigned Offset = Node->isStrictFPOpcode() ? 1 : 0; 4053 bool ExponentHasSizeOfInt = 4054 DAG.getLibInfo().getIntSize() == 4055 Node->getOperand(1 + Offset).getValueType().getSizeInBits(); 4056 if (!ExponentHasSizeOfInt) { 4057 // If the exponent does not match with sizeof(int) a libcall to 4058 // RTLIB::POWI would use the wrong type for the argument. 4059 DAG.getContext()->emitError("POWI exponent does not match sizeof(int)"); 4060 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 4061 break; 4062 } 4063 ExpandFPLibCall(Node, LC, Results); 4064 break; 4065 } 4066 case ISD::FPOW: 4067 case ISD::STRICT_FPOW: 4068 ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 4069 RTLIB::POW_F128, RTLIB::POW_PPCF128, Results); 4070 break; 4071 case ISD::LROUND: 4072 case ISD::STRICT_LROUND: 4073 ExpandArgFPLibCall(Node, RTLIB::LROUND_F32, 4074 RTLIB::LROUND_F64, RTLIB::LROUND_F80, 4075 RTLIB::LROUND_F128, 4076 RTLIB::LROUND_PPCF128, Results); 4077 break; 4078 case ISD::LLROUND: 4079 case ISD::STRICT_LLROUND: 4080 ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32, 4081 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, 4082 RTLIB::LLROUND_F128, 4083 RTLIB::LLROUND_PPCF128, Results); 4084 break; 4085 case ISD::LRINT: 4086 case ISD::STRICT_LRINT: 4087 ExpandArgFPLibCall(Node, RTLIB::LRINT_F32, 4088 RTLIB::LRINT_F64, RTLIB::LRINT_F80, 4089 RTLIB::LRINT_F128, 4090 RTLIB::LRINT_PPCF128, Results); 4091 break; 4092 case ISD::LLRINT: 4093 case ISD::STRICT_LLRINT: 4094 ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32, 4095 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80, 4096 RTLIB::LLRINT_F128, 4097 RTLIB::LLRINT_PPCF128, Results); 4098 break; 4099 case ISD::FDIV: 4100 case ISD::STRICT_FDIV: 4101 ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 4102 RTLIB::DIV_F80, RTLIB::DIV_F128, 4103 RTLIB::DIV_PPCF128, Results); 4104 break; 4105 case ISD::FREM: 4106 case ISD::STRICT_FREM: 4107 ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 4108 RTLIB::REM_F80, RTLIB::REM_F128, 4109 RTLIB::REM_PPCF128, Results); 4110 break; 4111 case ISD::FMA: 4112 case ISD::STRICT_FMA: 4113 ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 4114 RTLIB::FMA_F80, RTLIB::FMA_F128, 4115 RTLIB::FMA_PPCF128, Results); 4116 break; 4117 case ISD::FADD: 4118 case ISD::STRICT_FADD: 4119 ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 4120 RTLIB::ADD_F80, RTLIB::ADD_F128, 4121 RTLIB::ADD_PPCF128, Results); 4122 break; 4123 case ISD::FMUL: 4124 case ISD::STRICT_FMUL: 4125 ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 4126 RTLIB::MUL_F80, RTLIB::MUL_F128, 4127 RTLIB::MUL_PPCF128, Results); 4128 break; 4129 case ISD::FP16_TO_FP: 4130 if (Node->getValueType(0) == MVT::f32) { 4131 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 4132 } 4133 break; 4134 case ISD::STRICT_FP16_TO_FP: { 4135 if (Node->getValueType(0) == MVT::f32) { 4136 TargetLowering::MakeLibCallOptions CallOptions; 4137 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall( 4138 DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions, 4139 SDLoc(Node), Node->getOperand(0)); 4140 Results.push_back(Tmp.first); 4141 Results.push_back(Tmp.second); 4142 } 4143 break; 4144 } 4145 case ISD::FP_TO_FP16: { 4146 RTLIB::Libcall LC = 4147 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 4148 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 4149 Results.push_back(ExpandLibCall(LC, Node, false)); 4150 break; 4151 } 4152 case ISD::STRICT_SINT_TO_FP: 4153 case ISD::STRICT_UINT_TO_FP: 4154 case ISD::SINT_TO_FP: 4155 case ISD::UINT_TO_FP: { 4156 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP 4157 bool IsStrict = Node->isStrictFPOpcode(); 4158 bool Signed = Node->getOpcode() == ISD::SINT_TO_FP || 4159 Node->getOpcode() == ISD::STRICT_SINT_TO_FP; 4160 EVT SVT = Node->getOperand(IsStrict ? 1 : 0).getValueType(); 4161 EVT RVT = Node->getValueType(0); 4162 EVT NVT = EVT(); 4163 SDLoc dl(Node); 4164 4165 // Even if the input is legal, no libcall may exactly match, eg. we don't 4166 // have i1 -> fp conversions. So, it needs to be promoted to a larger type, 4167 // eg: i13 -> fp. Then, look for an appropriate libcall. 4168 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 4169 for (unsigned t = MVT::FIRST_INTEGER_VALUETYPE; 4170 t <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; 4171 ++t) { 4172 NVT = (MVT::SimpleValueType)t; 4173 // The source needs to big enough to hold the operand. 4174 if (NVT.bitsGE(SVT)) 4175 LC = Signed ? RTLIB::getSINTTOFP(NVT, RVT) 4176 : RTLIB::getUINTTOFP(NVT, RVT); 4177 } 4178 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4179 4180 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4181 // Sign/zero extend the argument if the libcall takes a larger type. 4182 SDValue Op = DAG.getNode(Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl, 4183 NVT, Node->getOperand(IsStrict ? 1 : 0)); 4184 TargetLowering::MakeLibCallOptions CallOptions; 4185 CallOptions.setSExt(Signed); 4186 std::pair<SDValue, SDValue> Tmp = 4187 TLI.makeLibCall(DAG, LC, RVT, Op, CallOptions, dl, Chain); 4188 Results.push_back(Tmp.first); 4189 if (IsStrict) 4190 Results.push_back(Tmp.second); 4191 break; 4192 } 4193 case ISD::FP_TO_SINT: 4194 case ISD::FP_TO_UINT: 4195 case ISD::STRICT_FP_TO_SINT: 4196 case ISD::STRICT_FP_TO_UINT: { 4197 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatOp_FP_TO_XINT. 4198 bool IsStrict = Node->isStrictFPOpcode(); 4199 bool Signed = Node->getOpcode() == ISD::FP_TO_SINT || 4200 Node->getOpcode() == ISD::STRICT_FP_TO_SINT; 4201 4202 SDValue Op = Node->getOperand(IsStrict ? 1 : 0); 4203 EVT SVT = Op.getValueType(); 4204 EVT RVT = Node->getValueType(0); 4205 EVT NVT = EVT(); 4206 SDLoc dl(Node); 4207 4208 // Even if the result is legal, no libcall may exactly match, eg. we don't 4209 // have fp -> i1 conversions. So, it needs to be promoted to a larger type, 4210 // eg: fp -> i32. Then, look for an appropriate libcall. 4211 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 4212 for (unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE; 4213 IntVT <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; 4214 ++IntVT) { 4215 NVT = (MVT::SimpleValueType)IntVT; 4216 // The type needs to big enough to hold the result. 4217 if (NVT.bitsGE(RVT)) 4218 LC = Signed ? RTLIB::getFPTOSINT(SVT, NVT) 4219 : RTLIB::getFPTOUINT(SVT, NVT); 4220 } 4221 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4222 4223 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4224 TargetLowering::MakeLibCallOptions CallOptions; 4225 std::pair<SDValue, SDValue> Tmp = 4226 TLI.makeLibCall(DAG, LC, NVT, Op, CallOptions, dl, Chain); 4227 4228 // Truncate the result if the libcall returns a larger type. 4229 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, RVT, Tmp.first)); 4230 if (IsStrict) 4231 Results.push_back(Tmp.second); 4232 break; 4233 } 4234 4235 case ISD::FP_ROUND: 4236 case ISD::STRICT_FP_ROUND: { 4237 // X = FP_ROUND(Y, TRUNC) 4238 // TRUNC is a flag, which is always an integer that is zero or one. 4239 // If TRUNC is 0, this is a normal rounding, if it is 1, this FP_ROUND 4240 // is known to not change the value of Y. 4241 // We can only expand it into libcall if the TRUNC is 0. 4242 bool IsStrict = Node->isStrictFPOpcode(); 4243 SDValue Op = Node->getOperand(IsStrict ? 1 : 0); 4244 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4245 EVT VT = Node->getValueType(0); 4246 assert(cast<ConstantSDNode>(Node->getOperand(IsStrict ? 2 : 1)) 4247 ->isNullValue() && 4248 "Unable to expand as libcall if it is not normal rounding"); 4249 4250 RTLIB::Libcall LC = RTLIB::getFPROUND(Op.getValueType(), VT); 4251 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4252 4253 TargetLowering::MakeLibCallOptions CallOptions; 4254 std::pair<SDValue, SDValue> Tmp = 4255 TLI.makeLibCall(DAG, LC, VT, Op, CallOptions, SDLoc(Node), Chain); 4256 Results.push_back(Tmp.first); 4257 if (IsStrict) 4258 Results.push_back(Tmp.second); 4259 break; 4260 } 4261 case ISD::FP_EXTEND: { 4262 Results.push_back( 4263 ExpandLibCall(RTLIB::getFPEXT(Node->getOperand(0).getValueType(), 4264 Node->getValueType(0)), 4265 Node, false)); 4266 break; 4267 } 4268 case ISD::STRICT_FP_EXTEND: 4269 case ISD::STRICT_FP_TO_FP16: { 4270 RTLIB::Libcall LC = 4271 Node->getOpcode() == ISD::STRICT_FP_TO_FP16 4272 ? RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16) 4273 : RTLIB::getFPEXT(Node->getOperand(1).getValueType(), 4274 Node->getValueType(0)); 4275 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4276 4277 TargetLowering::MakeLibCallOptions CallOptions; 4278 std::pair<SDValue, SDValue> Tmp = 4279 TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1), 4280 CallOptions, SDLoc(Node), Node->getOperand(0)); 4281 Results.push_back(Tmp.first); 4282 Results.push_back(Tmp.second); 4283 break; 4284 } 4285 case ISD::FSUB: 4286 case ISD::STRICT_FSUB: 4287 ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4288 RTLIB::SUB_F80, RTLIB::SUB_F128, 4289 RTLIB::SUB_PPCF128, Results); 4290 break; 4291 case ISD::SREM: 4292 Results.push_back(ExpandIntLibCall(Node, true, 4293 RTLIB::SREM_I8, 4294 RTLIB::SREM_I16, RTLIB::SREM_I32, 4295 RTLIB::SREM_I64, RTLIB::SREM_I128)); 4296 break; 4297 case ISD::UREM: 4298 Results.push_back(ExpandIntLibCall(Node, false, 4299 RTLIB::UREM_I8, 4300 RTLIB::UREM_I16, RTLIB::UREM_I32, 4301 RTLIB::UREM_I64, RTLIB::UREM_I128)); 4302 break; 4303 case ISD::SDIV: 4304 Results.push_back(ExpandIntLibCall(Node, true, 4305 RTLIB::SDIV_I8, 4306 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4307 RTLIB::SDIV_I64, RTLIB::SDIV_I128)); 4308 break; 4309 case ISD::UDIV: 4310 Results.push_back(ExpandIntLibCall(Node, false, 4311 RTLIB::UDIV_I8, 4312 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4313 RTLIB::UDIV_I64, RTLIB::UDIV_I128)); 4314 break; 4315 case ISD::SDIVREM: 4316 case ISD::UDIVREM: 4317 // Expand into divrem libcall 4318 ExpandDivRemLibCall(Node, Results); 4319 break; 4320 case ISD::MUL: 4321 Results.push_back(ExpandIntLibCall(Node, false, 4322 RTLIB::MUL_I8, 4323 RTLIB::MUL_I16, RTLIB::MUL_I32, 4324 RTLIB::MUL_I64, RTLIB::MUL_I128)); 4325 break; 4326 case ISD::CTLZ_ZERO_UNDEF: 4327 switch (Node->getSimpleValueType(0).SimpleTy) { 4328 default: 4329 llvm_unreachable("LibCall explicitly requested, but not available"); 4330 case MVT::i32: 4331 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false)); 4332 break; 4333 case MVT::i64: 4334 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false)); 4335 break; 4336 case MVT::i128: 4337 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false)); 4338 break; 4339 } 4340 break; 4341 } 4342 4343 // Replace the original node with the legalized result. 4344 if (!Results.empty()) { 4345 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); 4346 ReplaceNode(Node, Results.data()); 4347 } else 4348 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); 4349 } 4350 4351 // Determine the vector type to use in place of an original scalar element when 4352 // promoting equally sized vectors. 4353 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4354 MVT EltVT, MVT NewEltVT) { 4355 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4356 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4357 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4358 return MidVT; 4359 } 4360 4361 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4362 LLVM_DEBUG(dbgs() << "Trying to promote node\n"); 4363 SmallVector<SDValue, 8> Results; 4364 MVT OVT = Node->getSimpleValueType(0); 4365 if (Node->getOpcode() == ISD::UINT_TO_FP || 4366 Node->getOpcode() == ISD::SINT_TO_FP || 4367 Node->getOpcode() == ISD::SETCC || 4368 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4369 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4370 OVT = Node->getOperand(0).getSimpleValueType(); 4371 } 4372 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP || 4373 Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 4374 Node->getOpcode() == ISD::STRICT_FSETCC || 4375 Node->getOpcode() == ISD::STRICT_FSETCCS) 4376 OVT = Node->getOperand(1).getSimpleValueType(); 4377 if (Node->getOpcode() == ISD::BR_CC || 4378 Node->getOpcode() == ISD::SELECT_CC) 4379 OVT = Node->getOperand(2).getSimpleValueType(); 4380 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4381 SDLoc dl(Node); 4382 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 4383 switch (Node->getOpcode()) { 4384 case ISD::CTTZ: 4385 case ISD::CTTZ_ZERO_UNDEF: 4386 case ISD::CTLZ: 4387 case ISD::CTLZ_ZERO_UNDEF: 4388 case ISD::CTPOP: 4389 // Zero extend the argument unless its cttz, then use any_extend. 4390 if (Node->getOpcode() == ISD::CTTZ || 4391 Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 4392 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 4393 else 4394 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4395 4396 if (Node->getOpcode() == ISD::CTTZ) { 4397 // The count is the same in the promoted type except if the original 4398 // value was zero. This can be handled by setting the bit just off 4399 // the top of the original type. 4400 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4401 OVT.getSizeInBits()); 4402 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4403 DAG.getConstant(TopBit, dl, NVT)); 4404 } 4405 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4406 // already the correct result. 4407 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4408 if (Node->getOpcode() == ISD::CTLZ || 4409 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4410 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4411 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4412 DAG.getConstant(NVT.getSizeInBits() - 4413 OVT.getSizeInBits(), dl, NVT)); 4414 } 4415 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4416 break; 4417 case ISD::BITREVERSE: 4418 case ISD::BSWAP: { 4419 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4420 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4421 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4422 Tmp1 = DAG.getNode( 4423 ISD::SRL, dl, NVT, Tmp1, 4424 DAG.getConstant(DiffBits, dl, 4425 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4426 4427 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4428 break; 4429 } 4430 case ISD::FP_TO_UINT: 4431 case ISD::STRICT_FP_TO_UINT: 4432 case ISD::FP_TO_SINT: 4433 case ISD::STRICT_FP_TO_SINT: 4434 PromoteLegalFP_TO_INT(Node, dl, Results); 4435 break; 4436 case ISD::FP_TO_UINT_SAT: 4437 case ISD::FP_TO_SINT_SAT: 4438 Results.push_back(PromoteLegalFP_TO_INT_SAT(Node, dl)); 4439 break; 4440 case ISD::UINT_TO_FP: 4441 case ISD::STRICT_UINT_TO_FP: 4442 case ISD::SINT_TO_FP: 4443 case ISD::STRICT_SINT_TO_FP: 4444 PromoteLegalINT_TO_FP(Node, dl, Results); 4445 break; 4446 case ISD::VAARG: { 4447 SDValue Chain = Node->getOperand(0); // Get the chain. 4448 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4449 4450 unsigned TruncOp; 4451 if (OVT.isVector()) { 4452 TruncOp = ISD::BITCAST; 4453 } else { 4454 assert(OVT.isInteger() 4455 && "VAARG promotion is supported only for vectors or integer types"); 4456 TruncOp = ISD::TRUNCATE; 4457 } 4458 4459 // Perform the larger operation, then convert back 4460 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4461 Node->getConstantOperandVal(3)); 4462 Chain = Tmp1.getValue(1); 4463 4464 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4465 4466 // Modified the chain result - switch anything that used the old chain to 4467 // use the new one. 4468 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4469 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4470 if (UpdatedNodes) { 4471 UpdatedNodes->insert(Tmp2.getNode()); 4472 UpdatedNodes->insert(Chain.getNode()); 4473 } 4474 ReplacedNode(Node); 4475 break; 4476 } 4477 case ISD::MUL: 4478 case ISD::SDIV: 4479 case ISD::SREM: 4480 case ISD::UDIV: 4481 case ISD::UREM: 4482 case ISD::AND: 4483 case ISD::OR: 4484 case ISD::XOR: { 4485 unsigned ExtOp, TruncOp; 4486 if (OVT.isVector()) { 4487 ExtOp = ISD::BITCAST; 4488 TruncOp = ISD::BITCAST; 4489 } else { 4490 assert(OVT.isInteger() && "Cannot promote logic operation"); 4491 4492 switch (Node->getOpcode()) { 4493 default: 4494 ExtOp = ISD::ANY_EXTEND; 4495 break; 4496 case ISD::SDIV: 4497 case ISD::SREM: 4498 ExtOp = ISD::SIGN_EXTEND; 4499 break; 4500 case ISD::UDIV: 4501 case ISD::UREM: 4502 ExtOp = ISD::ZERO_EXTEND; 4503 break; 4504 } 4505 TruncOp = ISD::TRUNCATE; 4506 } 4507 // Promote each of the values to the new type. 4508 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4509 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4510 // Perform the larger operation, then convert back 4511 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4512 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4513 break; 4514 } 4515 case ISD::UMUL_LOHI: 4516 case ISD::SMUL_LOHI: { 4517 // Promote to a multiply in a wider integer type. 4518 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 4519 : ISD::SIGN_EXTEND; 4520 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4521 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4522 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 4523 4524 auto &DL = DAG.getDataLayout(); 4525 unsigned OriginalSize = OVT.getScalarSizeInBits(); 4526 Tmp2 = DAG.getNode( 4527 ISD::SRL, dl, NVT, Tmp1, 4528 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 4529 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4530 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 4531 break; 4532 } 4533 case ISD::SELECT: { 4534 unsigned ExtOp, TruncOp; 4535 if (Node->getValueType(0).isVector() || 4536 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4537 ExtOp = ISD::BITCAST; 4538 TruncOp = ISD::BITCAST; 4539 } else if (Node->getValueType(0).isInteger()) { 4540 ExtOp = ISD::ANY_EXTEND; 4541 TruncOp = ISD::TRUNCATE; 4542 } else { 4543 ExtOp = ISD::FP_EXTEND; 4544 TruncOp = ISD::FP_ROUND; 4545 } 4546 Tmp1 = Node->getOperand(0); 4547 // Promote each of the values to the new type. 4548 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4549 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4550 // Perform the larger operation, then round down. 4551 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4552 Tmp1->setFlags(Node->getFlags()); 4553 if (TruncOp != ISD::FP_ROUND) 4554 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4555 else 4556 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4557 DAG.getIntPtrConstant(0, dl)); 4558 Results.push_back(Tmp1); 4559 break; 4560 } 4561 case ISD::VECTOR_SHUFFLE: { 4562 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4563 4564 // Cast the two input vectors. 4565 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4566 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4567 4568 // Convert the shuffle mask to the right # elements. 4569 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4570 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4571 Results.push_back(Tmp1); 4572 break; 4573 } 4574 case ISD::VECTOR_SPLICE: { 4575 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 4576 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(1)); 4577 Tmp3 = DAG.getNode(ISD::VECTOR_SPLICE, dl, NVT, Tmp1, Tmp2, 4578 Node->getOperand(2)); 4579 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp3)); 4580 break; 4581 } 4582 case ISD::SELECT_CC: { 4583 SDValue Cond = Node->getOperand(4); 4584 ISD::CondCode CCCode = cast<CondCodeSDNode>(Cond)->get(); 4585 // Type of the comparison operands. 4586 MVT CVT = Node->getSimpleValueType(0); 4587 assert(CVT == OVT && "not handled"); 4588 4589 unsigned ExtOp = ISD::FP_EXTEND; 4590 if (NVT.isInteger()) { 4591 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4592 } 4593 4594 // Promote the comparison operands, if needed. 4595 if (TLI.isCondCodeLegal(CCCode, CVT)) { 4596 Tmp1 = Node->getOperand(0); 4597 Tmp2 = Node->getOperand(1); 4598 } else { 4599 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4600 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4601 } 4602 // Cast the true/false operands. 4603 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4604 Tmp4 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4605 4606 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, NVT, {Tmp1, Tmp2, Tmp3, Tmp4, Cond}, 4607 Node->getFlags()); 4608 4609 // Cast the result back to the original type. 4610 if (ExtOp != ISD::FP_EXTEND) 4611 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1); 4612 else 4613 Tmp1 = DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp1, 4614 DAG.getIntPtrConstant(0, dl)); 4615 4616 Results.push_back(Tmp1); 4617 break; 4618 } 4619 case ISD::SETCC: 4620 case ISD::STRICT_FSETCC: 4621 case ISD::STRICT_FSETCCS: { 4622 unsigned ExtOp = ISD::FP_EXTEND; 4623 if (NVT.isInteger()) { 4624 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4625 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4626 } 4627 if (Node->isStrictFPOpcode()) { 4628 SDValue InChain = Node->getOperand(0); 4629 std::tie(Tmp1, std::ignore) = 4630 DAG.getStrictFPExtendOrRound(Node->getOperand(1), InChain, dl, NVT); 4631 std::tie(Tmp2, std::ignore) = 4632 DAG.getStrictFPExtendOrRound(Node->getOperand(2), InChain, dl, NVT); 4633 SmallVector<SDValue, 2> TmpChains = {Tmp1.getValue(1), Tmp2.getValue(1)}; 4634 SDValue OutChain = DAG.getTokenFactor(dl, TmpChains); 4635 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 4636 Results.push_back(DAG.getNode(Node->getOpcode(), dl, VTs, 4637 {OutChain, Tmp1, Tmp2, Node->getOperand(3)}, 4638 Node->getFlags())); 4639 Results.push_back(Results.back().getValue(1)); 4640 break; 4641 } 4642 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4643 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4644 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, 4645 Tmp2, Node->getOperand(2), Node->getFlags())); 4646 break; 4647 } 4648 case ISD::BR_CC: { 4649 unsigned ExtOp = ISD::FP_EXTEND; 4650 if (NVT.isInteger()) { 4651 ISD::CondCode CCCode = 4652 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4653 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4654 } 4655 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4656 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4657 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4658 Node->getOperand(0), Node->getOperand(1), 4659 Tmp1, Tmp2, Node->getOperand(4))); 4660 break; 4661 } 4662 case ISD::FADD: 4663 case ISD::FSUB: 4664 case ISD::FMUL: 4665 case ISD::FDIV: 4666 case ISD::FREM: 4667 case ISD::FMINNUM: 4668 case ISD::FMAXNUM: 4669 case ISD::FPOW: 4670 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4671 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4672 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4673 Node->getFlags()); 4674 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4675 Tmp3, DAG.getIntPtrConstant(0, dl))); 4676 break; 4677 case ISD::STRICT_FREM: 4678 case ISD::STRICT_FPOW: 4679 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4680 {Node->getOperand(0), Node->getOperand(1)}); 4681 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4682 {Node->getOperand(0), Node->getOperand(2)}); 4683 Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 4684 Tmp2.getValue(1)); 4685 Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4686 {Tmp3, Tmp1, Tmp2}); 4687 Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4688 {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)}); 4689 Results.push_back(Tmp1); 4690 Results.push_back(Tmp1.getValue(1)); 4691 break; 4692 case ISD::FMA: 4693 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4694 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4695 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4696 Results.push_back( 4697 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4698 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4699 DAG.getIntPtrConstant(0, dl))); 4700 break; 4701 case ISD::FCOPYSIGN: 4702 case ISD::FPOWI: { 4703 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4704 Tmp2 = Node->getOperand(1); 4705 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4706 4707 // fcopysign doesn't change anything but the sign bit, so 4708 // (fp_round (fcopysign (fpext a), b)) 4709 // is as precise as 4710 // (fp_round (fpext a)) 4711 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4712 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4713 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4714 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4715 break; 4716 } 4717 case ISD::FFLOOR: 4718 case ISD::FCEIL: 4719 case ISD::FRINT: 4720 case ISD::FNEARBYINT: 4721 case ISD::FROUND: 4722 case ISD::FROUNDEVEN: 4723 case ISD::FTRUNC: 4724 case ISD::FNEG: 4725 case ISD::FSQRT: 4726 case ISD::FSIN: 4727 case ISD::FCOS: 4728 case ISD::FLOG: 4729 case ISD::FLOG2: 4730 case ISD::FLOG10: 4731 case ISD::FABS: 4732 case ISD::FEXP: 4733 case ISD::FEXP2: 4734 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4735 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4736 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4737 Tmp2, DAG.getIntPtrConstant(0, dl))); 4738 break; 4739 case ISD::STRICT_FFLOOR: 4740 case ISD::STRICT_FCEIL: 4741 case ISD::STRICT_FSIN: 4742 case ISD::STRICT_FCOS: 4743 case ISD::STRICT_FLOG: 4744 case ISD::STRICT_FLOG10: 4745 case ISD::STRICT_FEXP: 4746 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4747 {Node->getOperand(0), Node->getOperand(1)}); 4748 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4749 {Tmp1.getValue(1), Tmp1}); 4750 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4751 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 4752 Results.push_back(Tmp3); 4753 Results.push_back(Tmp3.getValue(1)); 4754 break; 4755 case ISD::BUILD_VECTOR: { 4756 MVT EltVT = OVT.getVectorElementType(); 4757 MVT NewEltVT = NVT.getVectorElementType(); 4758 4759 // Handle bitcasts to a different vector type with the same total bit size 4760 // 4761 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4762 // => 4763 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4764 4765 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4766 "Invalid promote type for build_vector"); 4767 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4768 4769 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4770 4771 SmallVector<SDValue, 8> NewOps; 4772 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4773 SDValue Op = Node->getOperand(I); 4774 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4775 } 4776 4777 SDLoc SL(Node); 4778 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4779 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4780 Results.push_back(CvtVec); 4781 break; 4782 } 4783 case ISD::EXTRACT_VECTOR_ELT: { 4784 MVT EltVT = OVT.getVectorElementType(); 4785 MVT NewEltVT = NVT.getVectorElementType(); 4786 4787 // Handle bitcasts to a different vector type with the same total bit size. 4788 // 4789 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4790 // => 4791 // v4i32:castx = bitcast x:v2i64 4792 // 4793 // i64 = bitcast 4794 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4795 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4796 // 4797 4798 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4799 "Invalid promote type for extract_vector_elt"); 4800 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4801 4802 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4803 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4804 4805 SDValue Idx = Node->getOperand(1); 4806 EVT IdxVT = Idx.getValueType(); 4807 SDLoc SL(Node); 4808 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4809 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4810 4811 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4812 4813 SmallVector<SDValue, 8> NewOps; 4814 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4815 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4816 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4817 4818 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4819 CastVec, TmpIdx); 4820 NewOps.push_back(Elt); 4821 } 4822 4823 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 4824 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4825 break; 4826 } 4827 case ISD::INSERT_VECTOR_ELT: { 4828 MVT EltVT = OVT.getVectorElementType(); 4829 MVT NewEltVT = NVT.getVectorElementType(); 4830 4831 // Handle bitcasts to a different vector type with the same total bit size 4832 // 4833 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4834 // => 4835 // v4i32:castx = bitcast x:v2i64 4836 // v2i32:casty = bitcast y:i64 4837 // 4838 // v2i64 = bitcast 4839 // (v4i32 insert_vector_elt 4840 // (v4i32 insert_vector_elt v4i32:castx, 4841 // (extract_vector_elt casty, 0), 2 * z), 4842 // (extract_vector_elt casty, 1), (2 * z + 1)) 4843 4844 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4845 "Invalid promote type for insert_vector_elt"); 4846 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4847 4848 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4849 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4850 4851 SDValue Val = Node->getOperand(1); 4852 SDValue Idx = Node->getOperand(2); 4853 EVT IdxVT = Idx.getValueType(); 4854 SDLoc SL(Node); 4855 4856 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 4857 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4858 4859 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4860 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4861 4862 SDValue NewVec = CastVec; 4863 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4864 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4865 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4866 4867 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4868 CastVal, IdxOffset); 4869 4870 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 4871 NewVec, Elt, InEltIdx); 4872 } 4873 4874 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 4875 break; 4876 } 4877 case ISD::SCALAR_TO_VECTOR: { 4878 MVT EltVT = OVT.getVectorElementType(); 4879 MVT NewEltVT = NVT.getVectorElementType(); 4880 4881 // Handle bitcasts to different vector type with the same total bit size. 4882 // 4883 // e.g. v2i64 = scalar_to_vector x:i64 4884 // => 4885 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 4886 // 4887 4888 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4889 SDValue Val = Node->getOperand(0); 4890 SDLoc SL(Node); 4891 4892 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4893 SDValue Undef = DAG.getUNDEF(MidVT); 4894 4895 SmallVector<SDValue, 8> NewElts; 4896 NewElts.push_back(CastVal); 4897 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 4898 NewElts.push_back(Undef); 4899 4900 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 4901 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4902 Results.push_back(CvtVec); 4903 break; 4904 } 4905 case ISD::ATOMIC_SWAP: { 4906 AtomicSDNode *AM = cast<AtomicSDNode>(Node); 4907 SDLoc SL(Node); 4908 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal()); 4909 assert(NVT.getSizeInBits() == OVT.getSizeInBits() && 4910 "unexpected promotion type"); 4911 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && 4912 "unexpected atomic_swap with illegal type"); 4913 4914 SDValue NewAtomic 4915 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT, 4916 DAG.getVTList(NVT, MVT::Other), 4917 { AM->getChain(), AM->getBasePtr(), CastVal }, 4918 AM->getMemOperand()); 4919 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); 4920 Results.push_back(NewAtomic.getValue(1)); 4921 break; 4922 } 4923 } 4924 4925 // Replace the original node with the legalized result. 4926 if (!Results.empty()) { 4927 LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); 4928 ReplaceNode(Node, Results.data()); 4929 } else 4930 LLVM_DEBUG(dbgs() << "Could not promote node\n"); 4931 } 4932 4933 /// This is the entry point for the file. 4934 void SelectionDAG::Legalize() { 4935 AssignTopologicalOrder(); 4936 4937 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4938 // Use a delete listener to remove nodes which were deleted during 4939 // legalization from LegalizeNodes. This is needed to handle the situation 4940 // where a new node is allocated by the object pool to the same address of a 4941 // previously deleted node. 4942 DAGNodeDeletedListener DeleteListener( 4943 *this, 4944 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 4945 4946 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 4947 4948 // Visit all the nodes. We start in topological order, so that we see 4949 // nodes with their original operands intact. Legalization can produce 4950 // new nodes which may themselves need to be legalized. Iterate until all 4951 // nodes have been legalized. 4952 while (true) { 4953 bool AnyLegalized = false; 4954 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 4955 --NI; 4956 4957 SDNode *N = &*NI; 4958 if (N->use_empty() && N != getRoot().getNode()) { 4959 ++NI; 4960 DeleteNode(N); 4961 continue; 4962 } 4963 4964 if (LegalizedNodes.insert(N).second) { 4965 AnyLegalized = true; 4966 Legalizer.LegalizeOp(N); 4967 4968 if (N->use_empty() && N != getRoot().getNode()) { 4969 ++NI; 4970 DeleteNode(N); 4971 } 4972 } 4973 } 4974 if (!AnyLegalized) 4975 break; 4976 4977 } 4978 4979 // Remove dead nodes now. 4980 RemoveDeadNodes(); 4981 } 4982 4983 bool SelectionDAG::LegalizeOp(SDNode *N, 4984 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 4985 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4986 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 4987 4988 // Directly insert the node in question, and legalize it. This will recurse 4989 // as needed through operands. 4990 LegalizedNodes.insert(N); 4991 Legalizer.LegalizeOp(N); 4992 4993 return LegalizedNodes.count(N); 4994 } 4995