1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::Legalize method.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/CodeGen/ISDOpcodes.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/RuntimeLibcalls.h"
26 #include "llvm/CodeGen/SelectionDAG.h"
27 #include "llvm/CodeGen/SelectionDAGNodes.h"
28 #include "llvm/CodeGen/TargetFrameLowering.h"
29 #include "llvm/CodeGen/TargetLowering.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/CodeGen/ValueTypes.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstdint>
51 #include <tuple>
52 #include <utility>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "legalizedag"
57 
58 namespace {
59 
60 /// Keeps track of state when getting the sign of a floating-point value as an
61 /// integer.
62 struct FloatSignAsInt {
63   EVT FloatVT;
64   SDValue Chain;
65   SDValue FloatPtr;
66   SDValue IntPtr;
67   MachinePointerInfo IntPointerInfo;
68   MachinePointerInfo FloatPointerInfo;
69   SDValue IntValue;
70   APInt SignMask;
71   uint8_t SignBit;
72 };
73 
74 //===----------------------------------------------------------------------===//
75 /// This takes an arbitrary SelectionDAG as input and
76 /// hacks on it until the target machine can handle it.  This involves
77 /// eliminating value sizes the machine cannot handle (promoting small sizes to
78 /// large sizes or splitting up large values into small values) as well as
79 /// eliminating operations the machine cannot handle.
80 ///
81 /// This code also does a small amount of optimization and recognition of idioms
82 /// as part of its processing.  For example, if a target does not support a
83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
84 /// will attempt merge setcc and brc instructions into brcc's.
85 class SelectionDAGLegalize {
86   const TargetMachine &TM;
87   const TargetLowering &TLI;
88   SelectionDAG &DAG;
89 
90   /// The set of nodes which have already been legalized. We hold a
91   /// reference to it in order to update as necessary on node deletion.
92   SmallPtrSetImpl<SDNode *> &LegalizedNodes;
93 
94   /// A set of all the nodes updated during legalization.
95   SmallSetVector<SDNode *, 16> *UpdatedNodes;
96 
97   EVT getSetCCResultType(EVT VT) const {
98     return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
99   }
100 
101   // Libcall insertion helpers.
102 
103 public:
104   SelectionDAGLegalize(SelectionDAG &DAG,
105                        SmallPtrSetImpl<SDNode *> &LegalizedNodes,
106                        SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr)
107       : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG),
108         LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {}
109 
110   /// Legalizes the given operation.
111   void LegalizeOp(SDNode *Node);
112 
113 private:
114   SDValue OptimizeFloatStore(StoreSDNode *ST);
115 
116   void LegalizeLoadOps(SDNode *Node);
117   void LegalizeStoreOps(SDNode *Node);
118 
119   /// Some targets cannot handle a variable
120   /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
121   /// is necessary to spill the vector being inserted into to memory, perform
122   /// the insert there, and then read the result back.
123   SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
124                                          const SDLoc &dl);
125   SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx,
126                                   const SDLoc &dl);
127 
128   /// Return a vector shuffle operation which
129   /// performs the same shuffe in terms of order or result bytes, but on a type
130   /// whose vector element type is narrower than the original shuffle type.
131   /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
132   SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl,
133                                      SDValue N1, SDValue N2,
134                                      ArrayRef<int> Mask) const;
135 
136   SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
137 
138   void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall LC,
139                        SmallVectorImpl<SDValue> &Results);
140   void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
141                        RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
142                        RTLIB::Libcall Call_F128,
143                        RTLIB::Libcall Call_PPCF128,
144                        SmallVectorImpl<SDValue> &Results);
145   SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
146                            RTLIB::Libcall Call_I8,
147                            RTLIB::Libcall Call_I16,
148                            RTLIB::Libcall Call_I32,
149                            RTLIB::Libcall Call_I64,
150                            RTLIB::Libcall Call_I128);
151   void ExpandArgFPLibCall(SDNode *Node,
152                           RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64,
153                           RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128,
154                           RTLIB::Libcall Call_PPCF128,
155                           SmallVectorImpl<SDValue> &Results);
156   void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
157   void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
158 
159   SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
160                            const SDLoc &dl);
161   SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
162                            const SDLoc &dl, SDValue ChainIn);
163   SDValue ExpandBUILD_VECTOR(SDNode *Node);
164   SDValue ExpandSPLAT_VECTOR(SDNode *Node);
165   SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
166   void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
167                                 SmallVectorImpl<SDValue> &Results);
168   void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL,
169                          SDValue Value) const;
170   SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL,
171                           SDValue NewIntValue) const;
172   SDValue ExpandFCOPYSIGN(SDNode *Node) const;
173   SDValue ExpandFABS(SDNode *Node) const;
174   SDValue ExpandFNEG(SDNode *Node) const;
175   SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain);
176   void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl,
177                              SmallVectorImpl<SDValue> &Results);
178   void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl,
179                              SmallVectorImpl<SDValue> &Results);
180   SDValue PromoteLegalFP_TO_INT_SAT(SDNode *Node, const SDLoc &dl);
181 
182   SDValue ExpandPARITY(SDValue Op, const SDLoc &dl);
183 
184   SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
185   SDValue ExpandInsertToVectorThroughStack(SDValue Op);
186   SDValue ExpandVectorBuildThroughStack(SDNode* Node);
187 
188   SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
189   SDValue ExpandConstant(ConstantSDNode *CP);
190 
191   // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall
192   bool ExpandNode(SDNode *Node);
193   void ConvertNodeToLibcall(SDNode *Node);
194   void PromoteNode(SDNode *Node);
195 
196 public:
197   // Node replacement helpers
198 
199   void ReplacedNode(SDNode *N) {
200     LegalizedNodes.erase(N);
201     if (UpdatedNodes)
202       UpdatedNodes->insert(N);
203   }
204 
205   void ReplaceNode(SDNode *Old, SDNode *New) {
206     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
207                dbgs() << "     with:      "; New->dump(&DAG));
208 
209     assert(Old->getNumValues() == New->getNumValues() &&
210            "Replacing one node with another that produces a different number "
211            "of values!");
212     DAG.ReplaceAllUsesWith(Old, New);
213     if (UpdatedNodes)
214       UpdatedNodes->insert(New);
215     ReplacedNode(Old);
216   }
217 
218   void ReplaceNode(SDValue Old, SDValue New) {
219     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
220                dbgs() << "     with:      "; New->dump(&DAG));
221 
222     DAG.ReplaceAllUsesWith(Old, New);
223     if (UpdatedNodes)
224       UpdatedNodes->insert(New.getNode());
225     ReplacedNode(Old.getNode());
226   }
227 
228   void ReplaceNode(SDNode *Old, const SDValue *New) {
229     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG));
230 
231     DAG.ReplaceAllUsesWith(Old, New);
232     for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
233       LLVM_DEBUG(dbgs() << (i == 0 ? "     with:      " : "      and:      ");
234                  New[i]->dump(&DAG));
235       if (UpdatedNodes)
236         UpdatedNodes->insert(New[i].getNode());
237     }
238     ReplacedNode(Old);
239   }
240 
241   void ReplaceNodeWithValue(SDValue Old, SDValue New) {
242     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
243                dbgs() << "     with:      "; New->dump(&DAG));
244 
245     DAG.ReplaceAllUsesOfValueWith(Old, New);
246     if (UpdatedNodes)
247       UpdatedNodes->insert(New.getNode());
248     ReplacedNode(Old.getNode());
249   }
250 };
251 
252 } // end anonymous namespace
253 
254 /// Return a vector shuffle operation which
255 /// performs the same shuffle in terms of order or result bytes, but on a type
256 /// whose vector element type is narrower than the original shuffle type.
257 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
258 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType(
259     EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
260     ArrayRef<int> Mask) const {
261   unsigned NumMaskElts = VT.getVectorNumElements();
262   unsigned NumDestElts = NVT.getVectorNumElements();
263   unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
264 
265   assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
266 
267   if (NumEltsGrowth == 1)
268     return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask);
269 
270   SmallVector<int, 8> NewMask;
271   for (unsigned i = 0; i != NumMaskElts; ++i) {
272     int Idx = Mask[i];
273     for (unsigned j = 0; j != NumEltsGrowth; ++j) {
274       if (Idx < 0)
275         NewMask.push_back(-1);
276       else
277         NewMask.push_back(Idx * NumEltsGrowth + j);
278     }
279   }
280   assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
281   assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
282   return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask);
283 }
284 
285 /// Expands the ConstantFP node to an integer constant or
286 /// a load from the constant pool.
287 SDValue
288 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
289   bool Extend = false;
290   SDLoc dl(CFP);
291 
292   // If a FP immediate is precise when represented as a float and if the
293   // target can do an extending load from float to double, we put it into
294   // the constant pool as a float, even if it's is statically typed as a
295   // double.  This shrinks FP constants and canonicalizes them for targets where
296   // an FP extending load is the same cost as a normal load (such as on the x87
297   // fp stack or PPC FP unit).
298   EVT VT = CFP->getValueType(0);
299   ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
300   if (!UseCP) {
301     assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
302     return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl,
303                            (VT == MVT::f64) ? MVT::i64 : MVT::i32);
304   }
305 
306   APFloat APF = CFP->getValueAPF();
307   EVT OrigVT = VT;
308   EVT SVT = VT;
309 
310   // We don't want to shrink SNaNs. Converting the SNaN back to its real type
311   // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ).
312   if (!APF.isSignaling()) {
313     while (SVT != MVT::f32 && SVT != MVT::f16) {
314       SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
315       if (ConstantFPSDNode::isValueValidForType(SVT, APF) &&
316           // Only do this if the target has a native EXTLOAD instruction from
317           // smaller type.
318           TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) &&
319           TLI.ShouldShrinkFPConstant(OrigVT)) {
320         Type *SType = SVT.getTypeForEVT(*DAG.getContext());
321         LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
322         VT = SVT;
323         Extend = true;
324       }
325     }
326   }
327 
328   SDValue CPIdx =
329       DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout()));
330   Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
331   if (Extend) {
332     SDValue Result = DAG.getExtLoad(
333         ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx,
334         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT,
335         Alignment);
336     return Result;
337   }
338   SDValue Result = DAG.getLoad(
339       OrigVT, dl, DAG.getEntryNode(), CPIdx,
340       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
341   return Result;
342 }
343 
344 /// Expands the Constant node to a load from the constant pool.
345 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) {
346   SDLoc dl(CP);
347   EVT VT = CP->getValueType(0);
348   SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(),
349                                       TLI.getPointerTy(DAG.getDataLayout()));
350   Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
351   SDValue Result = DAG.getLoad(
352       VT, dl, DAG.getEntryNode(), CPIdx,
353       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
354   return Result;
355 }
356 
357 /// Some target cannot handle a variable insertion index for the
358 /// INSERT_VECTOR_ELT instruction.  In this case, it
359 /// is necessary to spill the vector being inserted into to memory, perform
360 /// the insert there, and then read the result back.
361 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec,
362                                                              SDValue Val,
363                                                              SDValue Idx,
364                                                              const SDLoc &dl) {
365   SDValue Tmp1 = Vec;
366   SDValue Tmp2 = Val;
367   SDValue Tmp3 = Idx;
368 
369   // If the target doesn't support this, we have to spill the input vector
370   // to a temporary stack slot, update the element, then reload it.  This is
371   // badness.  We could also load the value into a vector register (either
372   // with a "move to register" or "extload into register" instruction, then
373   // permute it into place, if the idx is a constant and if the idx is
374   // supported by the target.
375   EVT VT    = Tmp1.getValueType();
376   EVT EltVT = VT.getVectorElementType();
377   SDValue StackPtr = DAG.CreateStackTemporary(VT);
378 
379   int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
380 
381   // Store the vector.
382   SDValue Ch = DAG.getStore(
383       DAG.getEntryNode(), dl, Tmp1, StackPtr,
384       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
385 
386   SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3);
387 
388   // Store the scalar value.
389   Ch = DAG.getTruncStore(
390       Ch, dl, Tmp2, StackPtr2,
391       MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT);
392   // Load the updated vector.
393   return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack(
394                                                DAG.getMachineFunction(), SPFI));
395 }
396 
397 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
398                                                       SDValue Idx,
399                                                       const SDLoc &dl) {
400   if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
401     // SCALAR_TO_VECTOR requires that the type of the value being inserted
402     // match the element type of the vector being created, except for
403     // integers in which case the inserted value can be over width.
404     EVT EltVT = Vec.getValueType().getVectorElementType();
405     if (Val.getValueType() == EltVT ||
406         (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
407       SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
408                                   Vec.getValueType(), Val);
409 
410       unsigned NumElts = Vec.getValueType().getVectorNumElements();
411       // We generate a shuffle of InVec and ScVec, so the shuffle mask
412       // should be 0,1,2,3,4,5... with the appropriate element replaced with
413       // elt 0 of the RHS.
414       SmallVector<int, 8> ShufOps;
415       for (unsigned i = 0; i != NumElts; ++i)
416         ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
417 
418       return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps);
419     }
420   }
421   return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
422 }
423 
424 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
425   if (!ISD::isNormalStore(ST))
426     return SDValue();
427 
428   LLVM_DEBUG(dbgs() << "Optimizing float store operations\n");
429   // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
430   // FIXME: move this to the DAG Combiner!  Note that we can't regress due
431   // to phase ordering between legalized code and the dag combiner.  This
432   // probably means that we need to integrate dag combiner and legalizer
433   // together.
434   // We generally can't do this one for long doubles.
435   SDValue Chain = ST->getChain();
436   SDValue Ptr = ST->getBasePtr();
437   SDValue Value = ST->getValue();
438   MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
439   AAMDNodes AAInfo = ST->getAAInfo();
440   SDLoc dl(ST);
441 
442   // Don't optimise TargetConstantFP
443   if (Value.getOpcode() == ISD::TargetConstantFP)
444     return SDValue();
445 
446   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
447     if (CFP->getValueType(0) == MVT::f32 &&
448         TLI.isTypeLegal(MVT::i32)) {
449       SDValue Con = DAG.getConstant(CFP->getValueAPF().
450                                       bitcastToAPInt().zextOrTrunc(32),
451                                     SDLoc(CFP), MVT::i32);
452       return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
453                           ST->getOriginalAlign(), MMOFlags, AAInfo);
454     }
455 
456     if (CFP->getValueType(0) == MVT::f64) {
457       // If this target supports 64-bit registers, do a single 64-bit store.
458       if (TLI.isTypeLegal(MVT::i64)) {
459         SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
460                                       zextOrTrunc(64), SDLoc(CFP), MVT::i64);
461         return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
462                             ST->getOriginalAlign(), MMOFlags, AAInfo);
463       }
464 
465       if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
466         // Otherwise, if the target supports 32-bit registers, use 2 32-bit
467         // stores.  If the target supports neither 32- nor 64-bits, this
468         // xform is certainly not worth it.
469         const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt();
470         SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32);
471         SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32);
472         if (DAG.getDataLayout().isBigEndian())
473           std::swap(Lo, Hi);
474 
475         Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(),
476                           ST->getOriginalAlign(), MMOFlags, AAInfo);
477         Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), dl);
478         Hi = DAG.getStore(Chain, dl, Hi, Ptr,
479                           ST->getPointerInfo().getWithOffset(4),
480                           ST->getOriginalAlign(), MMOFlags, AAInfo);
481 
482         return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
483       }
484     }
485   }
486   return SDValue();
487 }
488 
489 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
490   StoreSDNode *ST = cast<StoreSDNode>(Node);
491   SDValue Chain = ST->getChain();
492   SDValue Ptr = ST->getBasePtr();
493   SDLoc dl(Node);
494 
495   MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
496   AAMDNodes AAInfo = ST->getAAInfo();
497 
498   if (!ST->isTruncatingStore()) {
499     LLVM_DEBUG(dbgs() << "Legalizing store operation\n");
500     if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
501       ReplaceNode(ST, OptStore);
502       return;
503     }
504 
505     SDValue Value = ST->getValue();
506     MVT VT = Value.getSimpleValueType();
507     switch (TLI.getOperationAction(ISD::STORE, VT)) {
508     default: llvm_unreachable("This action is not supported yet!");
509     case TargetLowering::Legal: {
510       // If this is an unaligned store and the target doesn't support it,
511       // expand it.
512       EVT MemVT = ST->getMemoryVT();
513       const DataLayout &DL = DAG.getDataLayout();
514       if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
515                                               *ST->getMemOperand())) {
516         LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n");
517         SDValue Result = TLI.expandUnalignedStore(ST, DAG);
518         ReplaceNode(SDValue(ST, 0), Result);
519       } else
520         LLVM_DEBUG(dbgs() << "Legal store\n");
521       break;
522     }
523     case TargetLowering::Custom: {
524       LLVM_DEBUG(dbgs() << "Trying custom lowering\n");
525       SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
526       if (Res && Res != SDValue(Node, 0))
527         ReplaceNode(SDValue(Node, 0), Res);
528       return;
529     }
530     case TargetLowering::Promote: {
531       MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
532       assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
533              "Can only promote stores to same size type");
534       Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
535       SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
536                                     ST->getOriginalAlign(), MMOFlags, AAInfo);
537       ReplaceNode(SDValue(Node, 0), Result);
538       break;
539     }
540     }
541     return;
542   }
543 
544   LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n");
545   SDValue Value = ST->getValue();
546   EVT StVT = ST->getMemoryVT();
547   TypeSize StWidth = StVT.getSizeInBits();
548   TypeSize StSize = StVT.getStoreSizeInBits();
549   auto &DL = DAG.getDataLayout();
550 
551   if (StWidth != StSize) {
552     // Promote to a byte-sized store with upper bits zero if not
553     // storing an integral number of bytes.  For example, promote
554     // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
555     EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StSize.getFixedSize());
556     Value = DAG.getZeroExtendInReg(Value, dl, StVT);
557     SDValue Result =
558         DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT,
559                           ST->getOriginalAlign(), MMOFlags, AAInfo);
560     ReplaceNode(SDValue(Node, 0), Result);
561   } else if (!StVT.isVector() && !isPowerOf2_64(StWidth.getFixedSize())) {
562     // If not storing a power-of-2 number of bits, expand as two stores.
563     assert(!StVT.isVector() && "Unsupported truncstore!");
564     unsigned StWidthBits = StWidth.getFixedSize();
565     unsigned LogStWidth = Log2_32(StWidthBits);
566     assert(LogStWidth < 32);
567     unsigned RoundWidth = 1 << LogStWidth;
568     assert(RoundWidth < StWidthBits);
569     unsigned ExtraWidth = StWidthBits - RoundWidth;
570     assert(ExtraWidth < RoundWidth);
571     assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
572            "Store size not an integral number of bytes!");
573     EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
574     EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
575     SDValue Lo, Hi;
576     unsigned IncrementSize;
577 
578     if (DL.isLittleEndian()) {
579       // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
580       // Store the bottom RoundWidth bits.
581       Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
582                              RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
583 
584       // Store the remaining ExtraWidth bits.
585       IncrementSize = RoundWidth / 8;
586       Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl);
587       Hi = DAG.getNode(
588           ISD::SRL, dl, Value.getValueType(), Value,
589           DAG.getConstant(RoundWidth, dl,
590                           TLI.getShiftAmountTy(Value.getValueType(), DL)));
591       Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
592                              ST->getPointerInfo().getWithOffset(IncrementSize),
593                              ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
594     } else {
595       // Big endian - avoid unaligned stores.
596       // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
597       // Store the top RoundWidth bits.
598       Hi = DAG.getNode(
599           ISD::SRL, dl, Value.getValueType(), Value,
600           DAG.getConstant(ExtraWidth, dl,
601                           TLI.getShiftAmountTy(Value.getValueType(), DL)));
602       Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT,
603                              ST->getOriginalAlign(), MMOFlags, AAInfo);
604 
605       // Store the remaining ExtraWidth bits.
606       IncrementSize = RoundWidth / 8;
607       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
608                         DAG.getConstant(IncrementSize, dl,
609                                         Ptr.getValueType()));
610       Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
611                              ST->getPointerInfo().getWithOffset(IncrementSize),
612                              ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
613     }
614 
615     // The order of the stores doesn't matter.
616     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
617     ReplaceNode(SDValue(Node, 0), Result);
618   } else {
619     switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
620     default: llvm_unreachable("This action is not supported yet!");
621     case TargetLowering::Legal: {
622       EVT MemVT = ST->getMemoryVT();
623       // If this is an unaligned store and the target doesn't support it,
624       // expand it.
625       if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
626                                               *ST->getMemOperand())) {
627         SDValue Result = TLI.expandUnalignedStore(ST, DAG);
628         ReplaceNode(SDValue(ST, 0), Result);
629       }
630       break;
631     }
632     case TargetLowering::Custom: {
633       SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
634       if (Res && Res != SDValue(Node, 0))
635         ReplaceNode(SDValue(Node, 0), Res);
636       return;
637     }
638     case TargetLowering::Expand:
639       assert(!StVT.isVector() &&
640              "Vector Stores are handled in LegalizeVectorOps");
641 
642       SDValue Result;
643 
644       // TRUNCSTORE:i16 i32 -> STORE i16
645       if (TLI.isTypeLegal(StVT)) {
646         Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
647         Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
648                               ST->getOriginalAlign(), MMOFlags, AAInfo);
649       } else {
650         // The in-memory type isn't legal. Truncate to the type it would promote
651         // to, and then do a truncstore.
652         Value = DAG.getNode(ISD::TRUNCATE, dl,
653                             TLI.getTypeToTransformTo(*DAG.getContext(), StVT),
654                             Value);
655         Result =
656             DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT,
657                               ST->getOriginalAlign(), MMOFlags, AAInfo);
658       }
659 
660       ReplaceNode(SDValue(Node, 0), Result);
661       break;
662     }
663   }
664 }
665 
666 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
667   LoadSDNode *LD = cast<LoadSDNode>(Node);
668   SDValue Chain = LD->getChain();  // The chain.
669   SDValue Ptr = LD->getBasePtr();  // The base pointer.
670   SDValue Value;                   // The value returned by the load op.
671   SDLoc dl(Node);
672 
673   ISD::LoadExtType ExtType = LD->getExtensionType();
674   if (ExtType == ISD::NON_EXTLOAD) {
675     LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n");
676     MVT VT = Node->getSimpleValueType(0);
677     SDValue RVal = SDValue(Node, 0);
678     SDValue RChain = SDValue(Node, 1);
679 
680     switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
681     default: llvm_unreachable("This action is not supported yet!");
682     case TargetLowering::Legal: {
683       EVT MemVT = LD->getMemoryVT();
684       const DataLayout &DL = DAG.getDataLayout();
685       // If this is an unaligned load and the target doesn't support it,
686       // expand it.
687       if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
688                                               *LD->getMemOperand())) {
689         std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG);
690       }
691       break;
692     }
693     case TargetLowering::Custom:
694       if (SDValue Res = TLI.LowerOperation(RVal, DAG)) {
695         RVal = Res;
696         RChain = Res.getValue(1);
697       }
698       break;
699 
700     case TargetLowering::Promote: {
701       MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
702       assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
703              "Can only promote loads to same size type");
704 
705       SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand());
706       RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
707       RChain = Res.getValue(1);
708       break;
709     }
710     }
711     if (RChain.getNode() != Node) {
712       assert(RVal.getNode() != Node && "Load must be completely replaced");
713       DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
714       DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
715       if (UpdatedNodes) {
716         UpdatedNodes->insert(RVal.getNode());
717         UpdatedNodes->insert(RChain.getNode());
718       }
719       ReplacedNode(Node);
720     }
721     return;
722   }
723 
724   LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n");
725   EVT SrcVT = LD->getMemoryVT();
726   TypeSize SrcWidth = SrcVT.getSizeInBits();
727   MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
728   AAMDNodes AAInfo = LD->getAAInfo();
729 
730   if (SrcWidth != SrcVT.getStoreSizeInBits() &&
731       // Some targets pretend to have an i1 loading operation, and actually
732       // load an i8.  This trick is correct for ZEXTLOAD because the top 7
733       // bits are guaranteed to be zero; it helps the optimizers understand
734       // that these bits are zero.  It is also useful for EXTLOAD, since it
735       // tells the optimizers that those bits are undefined.  It would be
736       // nice to have an effective generic way of getting these benefits...
737       // Until such a way is found, don't insist on promoting i1 here.
738       (SrcVT != MVT::i1 ||
739        TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) ==
740          TargetLowering::Promote)) {
741     // Promote to a byte-sized load if not loading an integral number of
742     // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
743     unsigned NewWidth = SrcVT.getStoreSizeInBits();
744     EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
745     SDValue Ch;
746 
747     // The extra bits are guaranteed to be zero, since we stored them that
748     // way.  A zext load from NVT thus automatically gives zext from SrcVT.
749 
750     ISD::LoadExtType NewExtType =
751       ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
752 
753     SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
754                                     Chain, Ptr, LD->getPointerInfo(), NVT,
755                                     LD->getOriginalAlign(), MMOFlags, AAInfo);
756 
757     Ch = Result.getValue(1); // The chain.
758 
759     if (ExtType == ISD::SEXTLOAD)
760       // Having the top bits zero doesn't help when sign extending.
761       Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
762                            Result.getValueType(),
763                            Result, DAG.getValueType(SrcVT));
764     else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
765       // All the top bits are guaranteed to be zero - inform the optimizers.
766       Result = DAG.getNode(ISD::AssertZext, dl,
767                            Result.getValueType(), Result,
768                            DAG.getValueType(SrcVT));
769 
770     Value = Result;
771     Chain = Ch;
772   } else if (!isPowerOf2_64(SrcWidth.getKnownMinSize())) {
773     // If not loading a power-of-2 number of bits, expand as two loads.
774     assert(!SrcVT.isVector() && "Unsupported extload!");
775     unsigned SrcWidthBits = SrcWidth.getFixedSize();
776     unsigned LogSrcWidth = Log2_32(SrcWidthBits);
777     assert(LogSrcWidth < 32);
778     unsigned RoundWidth = 1 << LogSrcWidth;
779     assert(RoundWidth < SrcWidthBits);
780     unsigned ExtraWidth = SrcWidthBits - RoundWidth;
781     assert(ExtraWidth < RoundWidth);
782     assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
783            "Load size not an integral number of bytes!");
784     EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
785     EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
786     SDValue Lo, Hi, Ch;
787     unsigned IncrementSize;
788     auto &DL = DAG.getDataLayout();
789 
790     if (DL.isLittleEndian()) {
791       // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
792       // Load the bottom RoundWidth bits.
793       Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
794                           LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(),
795                           MMOFlags, AAInfo);
796 
797       // Load the remaining ExtraWidth bits.
798       IncrementSize = RoundWidth / 8;
799       Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl);
800       Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
801                           LD->getPointerInfo().getWithOffset(IncrementSize),
802                           ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo);
803 
804       // Build a factor node to remember that this load is independent of
805       // the other one.
806       Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
807                        Hi.getValue(1));
808 
809       // Move the top bits to the right place.
810       Hi = DAG.getNode(
811           ISD::SHL, dl, Hi.getValueType(), Hi,
812           DAG.getConstant(RoundWidth, dl,
813                           TLI.getShiftAmountTy(Hi.getValueType(), DL)));
814 
815       // Join the hi and lo parts.
816       Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
817     } else {
818       // Big endian - avoid unaligned loads.
819       // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
820       // Load the top RoundWidth bits.
821       Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
822                           LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(),
823                           MMOFlags, AAInfo);
824 
825       // Load the remaining ExtraWidth bits.
826       IncrementSize = RoundWidth / 8;
827       Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl);
828       Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
829                           LD->getPointerInfo().getWithOffset(IncrementSize),
830                           ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo);
831 
832       // Build a factor node to remember that this load is independent of
833       // the other one.
834       Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
835                        Hi.getValue(1));
836 
837       // Move the top bits to the right place.
838       Hi = DAG.getNode(
839           ISD::SHL, dl, Hi.getValueType(), Hi,
840           DAG.getConstant(ExtraWidth, dl,
841                           TLI.getShiftAmountTy(Hi.getValueType(), DL)));
842 
843       // Join the hi and lo parts.
844       Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
845     }
846 
847     Chain = Ch;
848   } else {
849     bool isCustom = false;
850     switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0),
851                                  SrcVT.getSimpleVT())) {
852     default: llvm_unreachable("This action is not supported yet!");
853     case TargetLowering::Custom:
854       isCustom = true;
855       LLVM_FALLTHROUGH;
856     case TargetLowering::Legal:
857       Value = SDValue(Node, 0);
858       Chain = SDValue(Node, 1);
859 
860       if (isCustom) {
861         if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
862           Value = Res;
863           Chain = Res.getValue(1);
864         }
865       } else {
866         // If this is an unaligned load and the target doesn't support it,
867         // expand it.
868         EVT MemVT = LD->getMemoryVT();
869         const DataLayout &DL = DAG.getDataLayout();
870         if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT,
871                                     *LD->getMemOperand())) {
872           std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG);
873         }
874       }
875       break;
876 
877     case TargetLowering::Expand: {
878       EVT DestVT = Node->getValueType(0);
879       if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) {
880         // If the source type is not legal, see if there is a legal extload to
881         // an intermediate type that we can then extend further.
882         EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT());
883         if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT?
884             TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) {
885           // If we are loading a legal type, this is a non-extload followed by a
886           // full extend.
887           ISD::LoadExtType MidExtType =
888               (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType;
889 
890           SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr,
891                                         SrcVT, LD->getMemOperand());
892           unsigned ExtendOp =
893               ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType);
894           Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
895           Chain = Load.getValue(1);
896           break;
897         }
898 
899         // Handle the special case of fp16 extloads. EXTLOAD doesn't have the
900         // normal undefined upper bits behavior to allow using an in-reg extend
901         // with the illegal FP type, so load as an integer and do the
902         // from-integer conversion.
903         if (SrcVT.getScalarType() == MVT::f16) {
904           EVT ISrcVT = SrcVT.changeTypeToInteger();
905           EVT IDestVT = DestVT.changeTypeToInteger();
906           EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT());
907 
908           SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain,
909                                           Ptr, ISrcVT, LD->getMemOperand());
910           Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result);
911           Chain = Result.getValue(1);
912           break;
913         }
914       }
915 
916       assert(!SrcVT.isVector() &&
917              "Vector Loads are handled in LegalizeVectorOps");
918 
919       // FIXME: This does not work for vectors on most targets.  Sign-
920       // and zero-extend operations are currently folded into extending
921       // loads, whether they are legal or not, and then we end up here
922       // without any support for legalizing them.
923       assert(ExtType != ISD::EXTLOAD &&
924              "EXTLOAD should always be supported!");
925       // Turn the unsupported load into an EXTLOAD followed by an
926       // explicit zero/sign extend inreg.
927       SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl,
928                                       Node->getValueType(0),
929                                       Chain, Ptr, SrcVT,
930                                       LD->getMemOperand());
931       SDValue ValRes;
932       if (ExtType == ISD::SEXTLOAD)
933         ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
934                              Result.getValueType(),
935                              Result, DAG.getValueType(SrcVT));
936       else
937         ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
938       Value = ValRes;
939       Chain = Result.getValue(1);
940       break;
941     }
942     }
943   }
944 
945   // Since loads produce two values, make sure to remember that we legalized
946   // both of them.
947   if (Chain.getNode() != Node) {
948     assert(Value.getNode() != Node && "Load must be completely replaced");
949     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
950     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
951     if (UpdatedNodes) {
952       UpdatedNodes->insert(Value.getNode());
953       UpdatedNodes->insert(Chain.getNode());
954     }
955     ReplacedNode(Node);
956   }
957 }
958 
959 /// Return a legal replacement for the given operation, with all legal operands.
960 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
961   LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG));
962 
963   // Allow illegal target nodes and illegal registers.
964   if (Node->getOpcode() == ISD::TargetConstant ||
965       Node->getOpcode() == ISD::Register)
966     return;
967 
968 #ifndef NDEBUG
969   for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
970     assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
971              TargetLowering::TypeLegal &&
972            "Unexpected illegal type!");
973 
974   for (const SDValue &Op : Node->op_values())
975     assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) ==
976               TargetLowering::TypeLegal ||
977             Op.getOpcode() == ISD::TargetConstant ||
978             Op.getOpcode() == ISD::Register) &&
979             "Unexpected illegal type!");
980 #endif
981 
982   // Figure out the correct action; the way to query this varies by opcode
983   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
984   bool SimpleFinishLegalizing = true;
985   switch (Node->getOpcode()) {
986   case ISD::INTRINSIC_W_CHAIN:
987   case ISD::INTRINSIC_WO_CHAIN:
988   case ISD::INTRINSIC_VOID:
989   case ISD::STACKSAVE:
990     Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
991     break;
992   case ISD::GET_DYNAMIC_AREA_OFFSET:
993     Action = TLI.getOperationAction(Node->getOpcode(),
994                                     Node->getValueType(0));
995     break;
996   case ISD::VAARG:
997     Action = TLI.getOperationAction(Node->getOpcode(),
998                                     Node->getValueType(0));
999     if (Action != TargetLowering::Promote)
1000       Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1001     break;
1002   case ISD::FP_TO_FP16:
1003   case ISD::SINT_TO_FP:
1004   case ISD::UINT_TO_FP:
1005   case ISD::EXTRACT_VECTOR_ELT:
1006   case ISD::LROUND:
1007   case ISD::LLROUND:
1008   case ISD::LRINT:
1009   case ISD::LLRINT:
1010     Action = TLI.getOperationAction(Node->getOpcode(),
1011                                     Node->getOperand(0).getValueType());
1012     break;
1013   case ISD::STRICT_FP_TO_FP16:
1014   case ISD::STRICT_SINT_TO_FP:
1015   case ISD::STRICT_UINT_TO_FP:
1016   case ISD::STRICT_LRINT:
1017   case ISD::STRICT_LLRINT:
1018   case ISD::STRICT_LROUND:
1019   case ISD::STRICT_LLROUND:
1020     // These pseudo-ops are the same as the other STRICT_ ops except
1021     // they are registered with setOperationAction() using the input type
1022     // instead of the output type.
1023     Action = TLI.getOperationAction(Node->getOpcode(),
1024                                     Node->getOperand(1).getValueType());
1025     break;
1026   case ISD::SIGN_EXTEND_INREG: {
1027     EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
1028     Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
1029     break;
1030   }
1031   case ISD::ATOMIC_STORE:
1032     Action = TLI.getOperationAction(Node->getOpcode(),
1033                                     Node->getOperand(2).getValueType());
1034     break;
1035   case ISD::SELECT_CC:
1036   case ISD::STRICT_FSETCC:
1037   case ISD::STRICT_FSETCCS:
1038   case ISD::SETCC:
1039   case ISD::BR_CC: {
1040     unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
1041                          Node->getOpcode() == ISD::STRICT_FSETCC ? 3 :
1042                          Node->getOpcode() == ISD::STRICT_FSETCCS ? 3 :
1043                          Node->getOpcode() == ISD::SETCC ? 2 : 1;
1044     unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 :
1045                               Node->getOpcode() == ISD::STRICT_FSETCC ? 1 :
1046                               Node->getOpcode() == ISD::STRICT_FSETCCS ? 1 : 0;
1047     MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
1048     ISD::CondCode CCCode =
1049         cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
1050     Action = TLI.getCondCodeAction(CCCode, OpVT);
1051     if (Action == TargetLowering::Legal) {
1052       if (Node->getOpcode() == ISD::SELECT_CC)
1053         Action = TLI.getOperationAction(Node->getOpcode(),
1054                                         Node->getValueType(0));
1055       else
1056         Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
1057     }
1058     break;
1059   }
1060   case ISD::LOAD:
1061   case ISD::STORE:
1062     // FIXME: Model these properly.  LOAD and STORE are complicated, and
1063     // STORE expects the unlegalized operand in some cases.
1064     SimpleFinishLegalizing = false;
1065     break;
1066   case ISD::CALLSEQ_START:
1067   case ISD::CALLSEQ_END:
1068     // FIXME: This shouldn't be necessary.  These nodes have special properties
1069     // dealing with the recursive nature of legalization.  Removing this
1070     // special case should be done as part of making LegalizeDAG non-recursive.
1071     SimpleFinishLegalizing = false;
1072     break;
1073   case ISD::EXTRACT_ELEMENT:
1074   case ISD::FLT_ROUNDS_:
1075   case ISD::MERGE_VALUES:
1076   case ISD::EH_RETURN:
1077   case ISD::FRAME_TO_ARGS_OFFSET:
1078   case ISD::EH_DWARF_CFA:
1079   case ISD::EH_SJLJ_SETJMP:
1080   case ISD::EH_SJLJ_LONGJMP:
1081   case ISD::EH_SJLJ_SETUP_DISPATCH:
1082     // These operations lie about being legal: when they claim to be legal,
1083     // they should actually be expanded.
1084     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1085     if (Action == TargetLowering::Legal)
1086       Action = TargetLowering::Expand;
1087     break;
1088   case ISD::INIT_TRAMPOLINE:
1089   case ISD::ADJUST_TRAMPOLINE:
1090   case ISD::FRAMEADDR:
1091   case ISD::RETURNADDR:
1092   case ISD::ADDROFRETURNADDR:
1093   case ISD::SPONENTRY:
1094     // These operations lie about being legal: when they claim to be legal,
1095     // they should actually be custom-lowered.
1096     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1097     if (Action == TargetLowering::Legal)
1098       Action = TargetLowering::Custom;
1099     break;
1100   case ISD::READCYCLECOUNTER:
1101     // READCYCLECOUNTER returns an i64, even if type legalization might have
1102     // expanded that to several smaller types.
1103     Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64);
1104     break;
1105   case ISD::READ_REGISTER:
1106   case ISD::WRITE_REGISTER:
1107     // Named register is legal in the DAG, but blocked by register name
1108     // selection if not implemented by target (to chose the correct register)
1109     // They'll be converted to Copy(To/From)Reg.
1110     Action = TargetLowering::Legal;
1111     break;
1112   case ISD::UBSANTRAP:
1113     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1114     if (Action == TargetLowering::Expand) {
1115       // replace ISD::UBSANTRAP with ISD::TRAP
1116       SDValue NewVal;
1117       NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
1118                            Node->getOperand(0));
1119       ReplaceNode(Node, NewVal.getNode());
1120       LegalizeOp(NewVal.getNode());
1121       return;
1122     }
1123     break;
1124   case ISD::DEBUGTRAP:
1125     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1126     if (Action == TargetLowering::Expand) {
1127       // replace ISD::DEBUGTRAP with ISD::TRAP
1128       SDValue NewVal;
1129       NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
1130                            Node->getOperand(0));
1131       ReplaceNode(Node, NewVal.getNode());
1132       LegalizeOp(NewVal.getNode());
1133       return;
1134     }
1135     break;
1136   case ISD::SADDSAT:
1137   case ISD::UADDSAT:
1138   case ISD::SSUBSAT:
1139   case ISD::USUBSAT:
1140   case ISD::SSHLSAT:
1141   case ISD::USHLSAT:
1142   case ISD::FP_TO_SINT_SAT:
1143   case ISD::FP_TO_UINT_SAT:
1144     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1145     break;
1146   case ISD::SMULFIX:
1147   case ISD::SMULFIXSAT:
1148   case ISD::UMULFIX:
1149   case ISD::UMULFIXSAT:
1150   case ISD::SDIVFIX:
1151   case ISD::SDIVFIXSAT:
1152   case ISD::UDIVFIX:
1153   case ISD::UDIVFIXSAT: {
1154     unsigned Scale = Node->getConstantOperandVal(2);
1155     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
1156                                               Node->getValueType(0), Scale);
1157     break;
1158   }
1159   case ISD::MSCATTER:
1160     Action = TLI.getOperationAction(Node->getOpcode(),
1161                     cast<MaskedScatterSDNode>(Node)->getValue().getValueType());
1162     break;
1163   case ISD::MSTORE:
1164     Action = TLI.getOperationAction(Node->getOpcode(),
1165                     cast<MaskedStoreSDNode>(Node)->getValue().getValueType());
1166     break;
1167   case ISD::VECREDUCE_FADD:
1168   case ISD::VECREDUCE_FMUL:
1169   case ISD::VECREDUCE_ADD:
1170   case ISD::VECREDUCE_MUL:
1171   case ISD::VECREDUCE_AND:
1172   case ISD::VECREDUCE_OR:
1173   case ISD::VECREDUCE_XOR:
1174   case ISD::VECREDUCE_SMAX:
1175   case ISD::VECREDUCE_SMIN:
1176   case ISD::VECREDUCE_UMAX:
1177   case ISD::VECREDUCE_UMIN:
1178   case ISD::VECREDUCE_FMAX:
1179   case ISD::VECREDUCE_FMIN:
1180     Action = TLI.getOperationAction(
1181         Node->getOpcode(), Node->getOperand(0).getValueType());
1182     break;
1183   case ISD::VECREDUCE_SEQ_FADD:
1184   case ISD::VECREDUCE_SEQ_FMUL:
1185     Action = TLI.getOperationAction(
1186         Node->getOpcode(), Node->getOperand(1).getValueType());
1187     break;
1188   default:
1189     if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1190       Action = TargetLowering::Legal;
1191     } else {
1192       Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1193     }
1194     break;
1195   }
1196 
1197   if (SimpleFinishLegalizing) {
1198     SDNode *NewNode = Node;
1199     switch (Node->getOpcode()) {
1200     default: break;
1201     case ISD::SHL:
1202     case ISD::SRL:
1203     case ISD::SRA:
1204     case ISD::ROTL:
1205     case ISD::ROTR: {
1206       // Legalizing shifts/rotates requires adjusting the shift amount
1207       // to the appropriate width.
1208       SDValue Op0 = Node->getOperand(0);
1209       SDValue Op1 = Node->getOperand(1);
1210       if (!Op1.getValueType().isVector()) {
1211         SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1);
1212         // The getShiftAmountOperand() may create a new operand node or
1213         // return the existing one. If new operand is created we need
1214         // to update the parent node.
1215         // Do not try to legalize SAO here! It will be automatically legalized
1216         // in the next round.
1217         if (SAO != Op1)
1218           NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO);
1219       }
1220     }
1221     break;
1222     case ISD::FSHL:
1223     case ISD::FSHR:
1224     case ISD::SRL_PARTS:
1225     case ISD::SRA_PARTS:
1226     case ISD::SHL_PARTS: {
1227       // Legalizing shifts/rotates requires adjusting the shift amount
1228       // to the appropriate width.
1229       SDValue Op0 = Node->getOperand(0);
1230       SDValue Op1 = Node->getOperand(1);
1231       SDValue Op2 = Node->getOperand(2);
1232       if (!Op2.getValueType().isVector()) {
1233         SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2);
1234         // The getShiftAmountOperand() may create a new operand node or
1235         // return the existing one. If new operand is created we need
1236         // to update the parent node.
1237         if (SAO != Op2)
1238           NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO);
1239       }
1240       break;
1241     }
1242     }
1243 
1244     if (NewNode != Node) {
1245       ReplaceNode(Node, NewNode);
1246       Node = NewNode;
1247     }
1248     switch (Action) {
1249     case TargetLowering::Legal:
1250       LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
1251       return;
1252     case TargetLowering::Custom:
1253       LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
1254       // FIXME: The handling for custom lowering with multiple results is
1255       // a complete mess.
1256       if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
1257         if (!(Res.getNode() != Node || Res.getResNo() != 0))
1258           return;
1259 
1260         if (Node->getNumValues() == 1) {
1261           // Verify the new types match the original. Glue is waived because
1262           // ISD::ADDC can be legalized by replacing Glue with an integer type.
1263           assert((Res.getValueType() == Node->getValueType(0) ||
1264                   Node->getValueType(0) == MVT::Glue) &&
1265                  "Type mismatch for custom legalized operation");
1266           LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1267           // We can just directly replace this node with the lowered value.
1268           ReplaceNode(SDValue(Node, 0), Res);
1269           return;
1270         }
1271 
1272         SmallVector<SDValue, 8> ResultVals;
1273         for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
1274           // Verify the new types match the original. Glue is waived because
1275           // ISD::ADDC can be legalized by replacing Glue with an integer type.
1276           assert((Res->getValueType(i) == Node->getValueType(i) ||
1277                   Node->getValueType(i) == MVT::Glue) &&
1278                  "Type mismatch for custom legalized operation");
1279           ResultVals.push_back(Res.getValue(i));
1280         }
1281         LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1282         ReplaceNode(Node, ResultVals.data());
1283         return;
1284       }
1285       LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
1286       LLVM_FALLTHROUGH;
1287     case TargetLowering::Expand:
1288       if (ExpandNode(Node))
1289         return;
1290       LLVM_FALLTHROUGH;
1291     case TargetLowering::LibCall:
1292       ConvertNodeToLibcall(Node);
1293       return;
1294     case TargetLowering::Promote:
1295       PromoteNode(Node);
1296       return;
1297     }
1298   }
1299 
1300   switch (Node->getOpcode()) {
1301   default:
1302 #ifndef NDEBUG
1303     dbgs() << "NODE: ";
1304     Node->dump( &DAG);
1305     dbgs() << "\n";
1306 #endif
1307     llvm_unreachable("Do not know how to legalize this operator!");
1308 
1309   case ISD::CALLSEQ_START:
1310   case ISD::CALLSEQ_END:
1311     break;
1312   case ISD::LOAD:
1313     return LegalizeLoadOps(Node);
1314   case ISD::STORE:
1315     return LegalizeStoreOps(Node);
1316   }
1317 }
1318 
1319 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1320   SDValue Vec = Op.getOperand(0);
1321   SDValue Idx = Op.getOperand(1);
1322   SDLoc dl(Op);
1323 
1324   // Before we generate a new store to a temporary stack slot, see if there is
1325   // already one that we can use. There often is because when we scalarize
1326   // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole
1327   // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in
1328   // the vector. If all are expanded here, we don't want one store per vector
1329   // element.
1330 
1331   // Caches for hasPredecessorHelper
1332   SmallPtrSet<const SDNode *, 32> Visited;
1333   SmallVector<const SDNode *, 16> Worklist;
1334   Visited.insert(Op.getNode());
1335   Worklist.push_back(Idx.getNode());
1336   SDValue StackPtr, Ch;
1337   for (SDNode::use_iterator UI = Vec.getNode()->use_begin(),
1338        UE = Vec.getNode()->use_end(); UI != UE; ++UI) {
1339     SDNode *User = *UI;
1340     if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) {
1341       if (ST->isIndexed() || ST->isTruncatingStore() ||
1342           ST->getValue() != Vec)
1343         continue;
1344 
1345       // Make sure that nothing else could have stored into the destination of
1346       // this store.
1347       if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode()))
1348         continue;
1349 
1350       // If the index is dependent on the store we will introduce a cycle when
1351       // creating the load (the load uses the index, and by replacing the chain
1352       // we will make the index dependent on the load). Also, the store might be
1353       // dependent on the extractelement and introduce a cycle when creating
1354       // the load.
1355       if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) ||
1356           ST->hasPredecessor(Op.getNode()))
1357         continue;
1358 
1359       StackPtr = ST->getBasePtr();
1360       Ch = SDValue(ST, 0);
1361       break;
1362     }
1363   }
1364 
1365   EVT VecVT = Vec.getValueType();
1366 
1367   if (!Ch.getNode()) {
1368     // Store the value to a temporary stack slot, then LOAD the returned part.
1369     StackPtr = DAG.CreateStackTemporary(VecVT);
1370     Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1371                       MachinePointerInfo());
1372   }
1373 
1374   SDValue NewLoad;
1375 
1376   if (Op.getValueType().isVector()) {
1377     StackPtr = TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT,
1378                                           Op.getValueType(), Idx);
1379     NewLoad =
1380         DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo());
1381   } else {
1382     StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1383     NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1384                              MachinePointerInfo(),
1385                              VecVT.getVectorElementType());
1386   }
1387 
1388   // Replace the chain going out of the store, by the one out of the load.
1389   DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1));
1390 
1391   // We introduced a cycle though, so update the loads operands, making sure
1392   // to use the original store's chain as an incoming chain.
1393   SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(),
1394                                           NewLoad->op_end());
1395   NewLoadOperands[0] = Ch;
1396   NewLoad =
1397       SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0);
1398   return NewLoad;
1399 }
1400 
1401 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1402   assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1403 
1404   SDValue Vec  = Op.getOperand(0);
1405   SDValue Part = Op.getOperand(1);
1406   SDValue Idx  = Op.getOperand(2);
1407   SDLoc dl(Op);
1408 
1409   // Store the value to a temporary stack slot, then LOAD the returned part.
1410   EVT VecVT = Vec.getValueType();
1411   EVT SubVecVT = Part.getValueType();
1412   SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
1413   int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1414   MachinePointerInfo PtrInfo =
1415       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1416 
1417   // First store the whole vector.
1418   SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo);
1419 
1420   // Then store the inserted part.
1421   SDValue SubStackPtr =
1422       TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, SubVecVT, Idx);
1423 
1424   // Store the subvector.
1425   Ch = DAG.getStore(
1426       Ch, dl, Part, SubStackPtr,
1427       MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1428 
1429   // Finally, load the updated vector.
1430   return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo);
1431 }
1432 
1433 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1434   assert((Node->getOpcode() == ISD::BUILD_VECTOR ||
1435           Node->getOpcode() == ISD::CONCAT_VECTORS) &&
1436          "Unexpected opcode!");
1437 
1438   // We can't handle this case efficiently.  Allocate a sufficiently
1439   // aligned object on the stack, store each operand into it, then load
1440   // the result as a vector.
1441   // Create the stack frame object.
1442   EVT VT = Node->getValueType(0);
1443   EVT MemVT = isa<BuildVectorSDNode>(Node) ? VT.getVectorElementType()
1444                                            : Node->getOperand(0).getValueType();
1445   SDLoc dl(Node);
1446   SDValue FIPtr = DAG.CreateStackTemporary(VT);
1447   int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1448   MachinePointerInfo PtrInfo =
1449       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1450 
1451   // Emit a store of each element to the stack slot.
1452   SmallVector<SDValue, 8> Stores;
1453   unsigned TypeByteSize = MemVT.getSizeInBits() / 8;
1454   assert(TypeByteSize > 0 && "Vector element type too small for stack store!");
1455 
1456   // If the destination vector element type of a BUILD_VECTOR is narrower than
1457   // the source element type, only store the bits necessary.
1458   bool Truncate = isa<BuildVectorSDNode>(Node) &&
1459                   MemVT.bitsLT(Node->getOperand(0).getValueType());
1460 
1461   // Store (in the right endianness) the elements to memory.
1462   for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1463     // Ignore undef elements.
1464     if (Node->getOperand(i).isUndef()) continue;
1465 
1466     unsigned Offset = TypeByteSize*i;
1467 
1468     SDValue Idx = DAG.getMemBasePlusOffset(FIPtr, TypeSize::Fixed(Offset), dl);
1469 
1470     if (Truncate)
1471       Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1472                                          Node->getOperand(i), Idx,
1473                                          PtrInfo.getWithOffset(Offset), MemVT));
1474     else
1475       Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1476                                     Idx, PtrInfo.getWithOffset(Offset)));
1477   }
1478 
1479   SDValue StoreChain;
1480   if (!Stores.empty())    // Not all undef elements?
1481     StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
1482   else
1483     StoreChain = DAG.getEntryNode();
1484 
1485   // Result is a load from the stack slot.
1486   return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo);
1487 }
1488 
1489 /// Bitcast a floating-point value to an integer value. Only bitcast the part
1490 /// containing the sign bit if the target has no integer value capable of
1491 /// holding all bits of the floating-point value.
1492 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State,
1493                                              const SDLoc &DL,
1494                                              SDValue Value) const {
1495   EVT FloatVT = Value.getValueType();
1496   unsigned NumBits = FloatVT.getScalarSizeInBits();
1497   State.FloatVT = FloatVT;
1498   EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
1499   // Convert to an integer of the same size.
1500   if (TLI.isTypeLegal(IVT)) {
1501     State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value);
1502     State.SignMask = APInt::getSignMask(NumBits);
1503     State.SignBit = NumBits - 1;
1504     return;
1505   }
1506 
1507   auto &DataLayout = DAG.getDataLayout();
1508   // Store the float to memory, then load the sign part out as an integer.
1509   MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8);
1510   // First create a temporary that is aligned for both the load and store.
1511   SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1512   int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1513   // Then store the float to it.
1514   State.FloatPtr = StackPtr;
1515   MachineFunction &MF = DAG.getMachineFunction();
1516   State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI);
1517   State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr,
1518                              State.FloatPointerInfo);
1519 
1520   SDValue IntPtr;
1521   if (DataLayout.isBigEndian()) {
1522     assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1523     // Load out a legal integer with the same sign bit as the float.
1524     IntPtr = StackPtr;
1525     State.IntPointerInfo = State.FloatPointerInfo;
1526   } else {
1527     // Advance the pointer so that the loaded byte will contain the sign bit.
1528     unsigned ByteOffset = (NumBits / 8) - 1;
1529     IntPtr =
1530         DAG.getMemBasePlusOffset(StackPtr, TypeSize::Fixed(ByteOffset), DL);
1531     State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI,
1532                                                              ByteOffset);
1533   }
1534 
1535   State.IntPtr = IntPtr;
1536   State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr,
1537                                   State.IntPointerInfo, MVT::i8);
1538   State.SignMask = APInt::getOneBitSet(LoadTy.getScalarSizeInBits(), 7);
1539   State.SignBit = 7;
1540 }
1541 
1542 /// Replace the integer value produced by getSignAsIntValue() with a new value
1543 /// and cast the result back to a floating-point type.
1544 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State,
1545                                               const SDLoc &DL,
1546                                               SDValue NewIntValue) const {
1547   if (!State.Chain)
1548     return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue);
1549 
1550   // Override the part containing the sign bit in the value stored on the stack.
1551   SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr,
1552                                     State.IntPointerInfo, MVT::i8);
1553   return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr,
1554                      State.FloatPointerInfo);
1555 }
1556 
1557 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const {
1558   SDLoc DL(Node);
1559   SDValue Mag = Node->getOperand(0);
1560   SDValue Sign = Node->getOperand(1);
1561 
1562   // Get sign bit into an integer value.
1563   FloatSignAsInt SignAsInt;
1564   getSignAsIntValue(SignAsInt, DL, Sign);
1565 
1566   EVT IntVT = SignAsInt.IntValue.getValueType();
1567   SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT);
1568   SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue,
1569                                 SignMask);
1570 
1571   // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X)
1572   EVT FloatVT = Mag.getValueType();
1573   if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) &&
1574       TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) {
1575     SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag);
1576     SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue);
1577     SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit,
1578                                 DAG.getConstant(0, DL, IntVT), ISD::SETNE);
1579     return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue);
1580   }
1581 
1582   // Transform Mag value to integer, and clear the sign bit.
1583   FloatSignAsInt MagAsInt;
1584   getSignAsIntValue(MagAsInt, DL, Mag);
1585   EVT MagVT = MagAsInt.IntValue.getValueType();
1586   SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT);
1587   SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue,
1588                                     ClearSignMask);
1589 
1590   // Get the signbit at the right position for MagAsInt.
1591   int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit;
1592   EVT ShiftVT = IntVT;
1593   if (SignBit.getScalarValueSizeInBits() <
1594       ClearedSign.getScalarValueSizeInBits()) {
1595     SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit);
1596     ShiftVT = MagVT;
1597   }
1598   if (ShiftAmount > 0) {
1599     SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT);
1600     SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst);
1601   } else if (ShiftAmount < 0) {
1602     SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT);
1603     SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst);
1604   }
1605   if (SignBit.getScalarValueSizeInBits() >
1606       ClearedSign.getScalarValueSizeInBits()) {
1607     SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit);
1608   }
1609 
1610   // Store the part with the modified sign and convert back to float.
1611   SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit);
1612   return modifySignAsInt(MagAsInt, DL, CopiedSign);
1613 }
1614 
1615 SDValue SelectionDAGLegalize::ExpandFNEG(SDNode *Node) const {
1616   // Get the sign bit as an integer.
1617   SDLoc DL(Node);
1618   FloatSignAsInt SignAsInt;
1619   getSignAsIntValue(SignAsInt, DL, Node->getOperand(0));
1620   EVT IntVT = SignAsInt.IntValue.getValueType();
1621 
1622   // Flip the sign.
1623   SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT);
1624   SDValue SignFlip =
1625       DAG.getNode(ISD::XOR, DL, IntVT, SignAsInt.IntValue, SignMask);
1626 
1627   // Convert back to float.
1628   return modifySignAsInt(SignAsInt, DL, SignFlip);
1629 }
1630 
1631 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const {
1632   SDLoc DL(Node);
1633   SDValue Value = Node->getOperand(0);
1634 
1635   // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal.
1636   EVT FloatVT = Value.getValueType();
1637   if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) {
1638     SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT);
1639     return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero);
1640   }
1641 
1642   // Transform value to integer, clear the sign bit and transform back.
1643   FloatSignAsInt ValueAsInt;
1644   getSignAsIntValue(ValueAsInt, DL, Value);
1645   EVT IntVT = ValueAsInt.IntValue.getValueType();
1646   SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT);
1647   SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue,
1648                                     ClearSignMask);
1649   return modifySignAsInt(ValueAsInt, DL, ClearedSign);
1650 }
1651 
1652 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1653                                            SmallVectorImpl<SDValue> &Results) {
1654   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
1655   assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1656           " not tell us which reg is the stack pointer!");
1657   SDLoc dl(Node);
1658   EVT VT = Node->getValueType(0);
1659   SDValue Tmp1 = SDValue(Node, 0);
1660   SDValue Tmp2 = SDValue(Node, 1);
1661   SDValue Tmp3 = Node->getOperand(2);
1662   SDValue Chain = Tmp1.getOperand(0);
1663 
1664   // Chain the dynamic stack allocation so that it doesn't modify the stack
1665   // pointer when other instructions are using the stack.
1666   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
1667 
1668   SDValue Size  = Tmp2.getOperand(1);
1669   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1670   Chain = SP.getValue(1);
1671   Align Alignment = cast<ConstantSDNode>(Tmp3)->getAlignValue();
1672   const TargetFrameLowering *TFL = DAG.getSubtarget().getFrameLowering();
1673   unsigned Opc =
1674     TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
1675     ISD::ADD : ISD::SUB;
1676 
1677   Align StackAlign = TFL->getStackAlign();
1678   Tmp1 = DAG.getNode(Opc, dl, VT, SP, Size);       // Value
1679   if (Alignment > StackAlign)
1680     Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
1681                        DAG.getConstant(-Alignment.value(), dl, VT));
1682   Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1683 
1684   Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
1685                             DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
1686 
1687   Results.push_back(Tmp1);
1688   Results.push_back(Tmp2);
1689 }
1690 
1691 /// Emit a store/load combination to the stack.  This stores
1692 /// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1693 /// a load from the stack slot to DestVT, extending it if needed.
1694 /// The resultant code need not be legal.
1695 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1696                                                EVT DestVT, const SDLoc &dl) {
1697   return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode());
1698 }
1699 
1700 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1701                                                EVT DestVT, const SDLoc &dl,
1702                                                SDValue Chain) {
1703   unsigned SrcSize = SrcOp.getValueSizeInBits();
1704   unsigned SlotSize = SlotVT.getSizeInBits();
1705   unsigned DestSize = DestVT.getSizeInBits();
1706   Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1707   Align DestAlign = DAG.getDataLayout().getPrefTypeAlign(DestType);
1708 
1709   // Don't convert with stack if the load/store is expensive.
1710   if ((SrcSize > SlotSize &&
1711        !TLI.isTruncStoreLegalOrCustom(SrcOp.getValueType(), SlotVT)) ||
1712       (SlotSize < DestSize &&
1713        !TLI.isLoadExtLegalOrCustom(ISD::EXTLOAD, DestVT, SlotVT)))
1714     return SDValue();
1715 
1716   // Create the stack frame object.
1717   Align SrcAlign = DAG.getDataLayout().getPrefTypeAlign(
1718       SrcOp.getValueType().getTypeForEVT(*DAG.getContext()));
1719   SDValue FIPtr = DAG.CreateStackTemporary(SlotVT.getStoreSize(), SrcAlign);
1720 
1721   FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1722   int SPFI = StackPtrFI->getIndex();
1723   MachinePointerInfo PtrInfo =
1724       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
1725 
1726   // Emit a store to the stack slot.  Use a truncstore if the input value is
1727   // later than DestVT.
1728   SDValue Store;
1729 
1730   if (SrcSize > SlotSize)
1731     Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo,
1732                               SlotVT, SrcAlign);
1733   else {
1734     assert(SrcSize == SlotSize && "Invalid store");
1735     Store =
1736         DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign);
1737   }
1738 
1739   // Result is a load from the stack slot.
1740   if (SlotSize == DestSize)
1741     return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign);
1742 
1743   assert(SlotSize < DestSize && "Unknown extension!");
1744   return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT,
1745                         DestAlign);
1746 }
1747 
1748 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1749   SDLoc dl(Node);
1750   // Create a vector sized/aligned stack slot, store the value to element #0,
1751   // then load the whole vector back out.
1752   SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1753 
1754   FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1755   int SPFI = StackPtrFI->getIndex();
1756 
1757   SDValue Ch = DAG.getTruncStore(
1758       DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr,
1759       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI),
1760       Node->getValueType(0).getVectorElementType());
1761   return DAG.getLoad(
1762       Node->getValueType(0), dl, Ch, StackPtr,
1763       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
1764 }
1765 
1766 static bool
1767 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG,
1768                      const TargetLowering &TLI, SDValue &Res) {
1769   unsigned NumElems = Node->getNumOperands();
1770   SDLoc dl(Node);
1771   EVT VT = Node->getValueType(0);
1772 
1773   // Try to group the scalars into pairs, shuffle the pairs together, then
1774   // shuffle the pairs of pairs together, etc. until the vector has
1775   // been built. This will work only if all of the necessary shuffle masks
1776   // are legal.
1777 
1778   // We do this in two phases; first to check the legality of the shuffles,
1779   // and next, assuming that all shuffles are legal, to create the new nodes.
1780   for (int Phase = 0; Phase < 2; ++Phase) {
1781     SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals,
1782                                                               NewIntermedVals;
1783     for (unsigned i = 0; i < NumElems; ++i) {
1784       SDValue V = Node->getOperand(i);
1785       if (V.isUndef())
1786         continue;
1787 
1788       SDValue Vec;
1789       if (Phase)
1790         Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V);
1791       IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i)));
1792     }
1793 
1794     while (IntermedVals.size() > 2) {
1795       NewIntermedVals.clear();
1796       for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) {
1797         // This vector and the next vector are shuffled together (simply to
1798         // append the one to the other).
1799         SmallVector<int, 16> ShuffleVec(NumElems, -1);
1800 
1801         SmallVector<int, 16> FinalIndices;
1802         FinalIndices.reserve(IntermedVals[i].second.size() +
1803                              IntermedVals[i+1].second.size());
1804 
1805         int k = 0;
1806         for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f;
1807              ++j, ++k) {
1808           ShuffleVec[k] = j;
1809           FinalIndices.push_back(IntermedVals[i].second[j]);
1810         }
1811         for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f;
1812              ++j, ++k) {
1813           ShuffleVec[k] = NumElems + j;
1814           FinalIndices.push_back(IntermedVals[i+1].second[j]);
1815         }
1816 
1817         SDValue Shuffle;
1818         if (Phase)
1819           Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first,
1820                                          IntermedVals[i+1].first,
1821                                          ShuffleVec);
1822         else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1823           return false;
1824         NewIntermedVals.push_back(
1825             std::make_pair(Shuffle, std::move(FinalIndices)));
1826       }
1827 
1828       // If we had an odd number of defined values, then append the last
1829       // element to the array of new vectors.
1830       if ((IntermedVals.size() & 1) != 0)
1831         NewIntermedVals.push_back(IntermedVals.back());
1832 
1833       IntermedVals.swap(NewIntermedVals);
1834     }
1835 
1836     assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 &&
1837            "Invalid number of intermediate vectors");
1838     SDValue Vec1 = IntermedVals[0].first;
1839     SDValue Vec2;
1840     if (IntermedVals.size() > 1)
1841       Vec2 = IntermedVals[1].first;
1842     else if (Phase)
1843       Vec2 = DAG.getUNDEF(VT);
1844 
1845     SmallVector<int, 16> ShuffleVec(NumElems, -1);
1846     for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i)
1847       ShuffleVec[IntermedVals[0].second[i]] = i;
1848     for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i)
1849       ShuffleVec[IntermedVals[1].second[i]] = NumElems + i;
1850 
1851     if (Phase)
1852       Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
1853     else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1854       return false;
1855   }
1856 
1857   return true;
1858 }
1859 
1860 /// Expand a BUILD_VECTOR node on targets that don't
1861 /// support the operation, but do support the resultant vector type.
1862 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1863   unsigned NumElems = Node->getNumOperands();
1864   SDValue Value1, Value2;
1865   SDLoc dl(Node);
1866   EVT VT = Node->getValueType(0);
1867   EVT OpVT = Node->getOperand(0).getValueType();
1868   EVT EltVT = VT.getVectorElementType();
1869 
1870   // If the only non-undef value is the low element, turn this into a
1871   // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1872   bool isOnlyLowElement = true;
1873   bool MoreThanTwoValues = false;
1874   bool isConstant = true;
1875   for (unsigned i = 0; i < NumElems; ++i) {
1876     SDValue V = Node->getOperand(i);
1877     if (V.isUndef())
1878       continue;
1879     if (i > 0)
1880       isOnlyLowElement = false;
1881     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1882       isConstant = false;
1883 
1884     if (!Value1.getNode()) {
1885       Value1 = V;
1886     } else if (!Value2.getNode()) {
1887       if (V != Value1)
1888         Value2 = V;
1889     } else if (V != Value1 && V != Value2) {
1890       MoreThanTwoValues = true;
1891     }
1892   }
1893 
1894   if (!Value1.getNode())
1895     return DAG.getUNDEF(VT);
1896 
1897   if (isOnlyLowElement)
1898     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1899 
1900   // If all elements are constants, create a load from the constant pool.
1901   if (isConstant) {
1902     SmallVector<Constant*, 16> CV;
1903     for (unsigned i = 0, e = NumElems; i != e; ++i) {
1904       if (ConstantFPSDNode *V =
1905           dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1906         CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1907       } else if (ConstantSDNode *V =
1908                  dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1909         if (OpVT==EltVT)
1910           CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1911         else {
1912           // If OpVT and EltVT don't match, EltVT is not legal and the
1913           // element values have been promoted/truncated earlier.  Undo this;
1914           // we don't want a v16i8 to become a v16i32 for example.
1915           const ConstantInt *CI = V->getConstantIntValue();
1916           CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1917                                         CI->getZExtValue()));
1918         }
1919       } else {
1920         assert(Node->getOperand(i).isUndef());
1921         Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1922         CV.push_back(UndefValue::get(OpNTy));
1923       }
1924     }
1925     Constant *CP = ConstantVector::get(CV);
1926     SDValue CPIdx =
1927         DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout()));
1928     Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
1929     return DAG.getLoad(
1930         VT, dl, DAG.getEntryNode(), CPIdx,
1931         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
1932         Alignment);
1933   }
1934 
1935   SmallSet<SDValue, 16> DefinedValues;
1936   for (unsigned i = 0; i < NumElems; ++i) {
1937     if (Node->getOperand(i).isUndef())
1938       continue;
1939     DefinedValues.insert(Node->getOperand(i));
1940   }
1941 
1942   if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) {
1943     if (!MoreThanTwoValues) {
1944       SmallVector<int, 8> ShuffleVec(NumElems, -1);
1945       for (unsigned i = 0; i < NumElems; ++i) {
1946         SDValue V = Node->getOperand(i);
1947         if (V.isUndef())
1948           continue;
1949         ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1950       }
1951       if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1952         // Get the splatted value into the low element of a vector register.
1953         SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1954         SDValue Vec2;
1955         if (Value2.getNode())
1956           Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1957         else
1958           Vec2 = DAG.getUNDEF(VT);
1959 
1960         // Return shuffle(LowValVec, undef, <0,0,0,0>)
1961         return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
1962       }
1963     } else {
1964       SDValue Res;
1965       if (ExpandBVWithShuffles(Node, DAG, TLI, Res))
1966         return Res;
1967     }
1968   }
1969 
1970   // Otherwise, we can't handle this case efficiently.
1971   return ExpandVectorBuildThroughStack(Node);
1972 }
1973 
1974 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) {
1975   SDLoc DL(Node);
1976   EVT VT = Node->getValueType(0);
1977   SDValue SplatVal = Node->getOperand(0);
1978 
1979   return DAG.getSplatBuildVector(VT, DL, SplatVal);
1980 }
1981 
1982 // Expand a node into a call to a libcall.  If the result value
1983 // does not fit into a register, return the lo part and set the hi part to the
1984 // by-reg argument.  If it does fit into a single register, return the result
1985 // and leave the Hi part unset.
1986 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1987                                             bool isSigned) {
1988   TargetLowering::ArgListTy Args;
1989   TargetLowering::ArgListEntry Entry;
1990   for (const SDValue &Op : Node->op_values()) {
1991     EVT ArgVT = Op.getValueType();
1992     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1993     Entry.Node = Op;
1994     Entry.Ty = ArgTy;
1995     Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
1996     Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
1997     Args.push_back(Entry);
1998   }
1999   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2000                                          TLI.getPointerTy(DAG.getDataLayout()));
2001 
2002   EVT RetVT = Node->getValueType(0);
2003   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2004 
2005   // By default, the input chain to this libcall is the entry node of the
2006   // function. If the libcall is going to be emitted as a tail call then
2007   // TLI.isUsedByReturnOnly will change it to the right chain if the return
2008   // node which is being folded has a non-entry input chain.
2009   SDValue InChain = DAG.getEntryNode();
2010 
2011   // isTailCall may be true since the callee does not reference caller stack
2012   // frame. Check if it's in the right position and that the return types match.
2013   SDValue TCChain = InChain;
2014   const Function &F = DAG.getMachineFunction().getFunction();
2015   bool isTailCall =
2016       TLI.isInTailCallPosition(DAG, Node, TCChain) &&
2017       (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy());
2018   if (isTailCall)
2019     InChain = TCChain;
2020 
2021   TargetLowering::CallLoweringInfo CLI(DAG);
2022   bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned);
2023   CLI.setDebugLoc(SDLoc(Node))
2024       .setChain(InChain)
2025       .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2026                     std::move(Args))
2027       .setTailCall(isTailCall)
2028       .setSExtResult(signExtend)
2029       .setZExtResult(!signExtend)
2030       .setIsPostTypeLegalization(true);
2031 
2032   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2033 
2034   if (!CallInfo.second.getNode()) {
2035     LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG));
2036     // It's a tailcall, return the chain (which is the DAG root).
2037     return DAG.getRoot();
2038   }
2039 
2040   LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG));
2041   return CallInfo.first;
2042 }
2043 
2044 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2045                                            RTLIB::Libcall LC,
2046                                            SmallVectorImpl<SDValue> &Results) {
2047   if (LC == RTLIB::UNKNOWN_LIBCALL)
2048     llvm_unreachable("Can't create an unknown libcall!");
2049 
2050   if (Node->isStrictFPOpcode()) {
2051     EVT RetVT = Node->getValueType(0);
2052     SmallVector<SDValue, 4> Ops(drop_begin(Node->ops()));
2053     TargetLowering::MakeLibCallOptions CallOptions;
2054     // FIXME: This doesn't support tail calls.
2055     std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
2056                                                       Ops, CallOptions,
2057                                                       SDLoc(Node),
2058                                                       Node->getOperand(0));
2059     Results.push_back(Tmp.first);
2060     Results.push_back(Tmp.second);
2061   } else {
2062     SDValue Tmp = ExpandLibCall(LC, Node, false);
2063     Results.push_back(Tmp);
2064   }
2065 }
2066 
2067 /// Expand the node to a libcall based on the result type.
2068 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2069                                            RTLIB::Libcall Call_F32,
2070                                            RTLIB::Libcall Call_F64,
2071                                            RTLIB::Libcall Call_F80,
2072                                            RTLIB::Libcall Call_F128,
2073                                            RTLIB::Libcall Call_PPCF128,
2074                                            SmallVectorImpl<SDValue> &Results) {
2075   RTLIB::Libcall LC = RTLIB::getFPLibCall(Node->getSimpleValueType(0),
2076                                           Call_F32, Call_F64, Call_F80,
2077                                           Call_F128, Call_PPCF128);
2078   ExpandFPLibCall(Node, LC, Results);
2079 }
2080 
2081 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2082                                                RTLIB::Libcall Call_I8,
2083                                                RTLIB::Libcall Call_I16,
2084                                                RTLIB::Libcall Call_I32,
2085                                                RTLIB::Libcall Call_I64,
2086                                                RTLIB::Libcall Call_I128) {
2087   RTLIB::Libcall LC;
2088   switch (Node->getSimpleValueType(0).SimpleTy) {
2089   default: llvm_unreachable("Unexpected request for libcall!");
2090   case MVT::i8:   LC = Call_I8; break;
2091   case MVT::i16:  LC = Call_I16; break;
2092   case MVT::i32:  LC = Call_I32; break;
2093   case MVT::i64:  LC = Call_I64; break;
2094   case MVT::i128: LC = Call_I128; break;
2095   }
2096   return ExpandLibCall(LC, Node, isSigned);
2097 }
2098 
2099 /// Expand the node to a libcall based on first argument type (for instance
2100 /// lround and its variant).
2101 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node,
2102                                             RTLIB::Libcall Call_F32,
2103                                             RTLIB::Libcall Call_F64,
2104                                             RTLIB::Libcall Call_F80,
2105                                             RTLIB::Libcall Call_F128,
2106                                             RTLIB::Libcall Call_PPCF128,
2107                                             SmallVectorImpl<SDValue> &Results) {
2108   EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType();
2109   RTLIB::Libcall LC = RTLIB::getFPLibCall(InVT.getSimpleVT(),
2110                                           Call_F32, Call_F64, Call_F80,
2111                                           Call_F128, Call_PPCF128);
2112   ExpandFPLibCall(Node, LC, Results);
2113 }
2114 
2115 /// Issue libcalls to __{u}divmod to compute div / rem pairs.
2116 void
2117 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2118                                           SmallVectorImpl<SDValue> &Results) {
2119   unsigned Opcode = Node->getOpcode();
2120   bool isSigned = Opcode == ISD::SDIVREM;
2121 
2122   RTLIB::Libcall LC;
2123   switch (Node->getSimpleValueType(0).SimpleTy) {
2124   default: llvm_unreachable("Unexpected request for libcall!");
2125   case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2126   case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2127   case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2128   case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2129   case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2130   }
2131 
2132   // The input chain to this libcall is the entry node of the function.
2133   // Legalizing the call will automatically add the previous call to the
2134   // dependence.
2135   SDValue InChain = DAG.getEntryNode();
2136 
2137   EVT RetVT = Node->getValueType(0);
2138   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2139 
2140   TargetLowering::ArgListTy Args;
2141   TargetLowering::ArgListEntry Entry;
2142   for (const SDValue &Op : Node->op_values()) {
2143     EVT ArgVT = Op.getValueType();
2144     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2145     Entry.Node = Op;
2146     Entry.Ty = ArgTy;
2147     Entry.IsSExt = isSigned;
2148     Entry.IsZExt = !isSigned;
2149     Args.push_back(Entry);
2150   }
2151 
2152   // Also pass the return address of the remainder.
2153   SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2154   Entry.Node = FIPtr;
2155   Entry.Ty = RetTy->getPointerTo();
2156   Entry.IsSExt = isSigned;
2157   Entry.IsZExt = !isSigned;
2158   Args.push_back(Entry);
2159 
2160   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2161                                          TLI.getPointerTy(DAG.getDataLayout()));
2162 
2163   SDLoc dl(Node);
2164   TargetLowering::CallLoweringInfo CLI(DAG);
2165   CLI.setDebugLoc(dl)
2166       .setChain(InChain)
2167       .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2168                     std::move(Args))
2169       .setSExtResult(isSigned)
2170       .setZExtResult(!isSigned);
2171 
2172   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2173 
2174   // Remainder is loaded back from the stack frame.
2175   SDValue Rem =
2176       DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo());
2177   Results.push_back(CallInfo.first);
2178   Results.push_back(Rem);
2179 }
2180 
2181 /// Return true if sincos libcall is available.
2182 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
2183   RTLIB::Libcall LC;
2184   switch (Node->getSimpleValueType(0).SimpleTy) {
2185   default: llvm_unreachable("Unexpected request for libcall!");
2186   case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
2187   case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
2188   case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
2189   case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
2190   case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2191   }
2192   return TLI.getLibcallName(LC) != nullptr;
2193 }
2194 
2195 /// Only issue sincos libcall if both sin and cos are needed.
2196 static bool useSinCos(SDNode *Node) {
2197   unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
2198     ? ISD::FCOS : ISD::FSIN;
2199 
2200   SDValue Op0 = Node->getOperand(0);
2201   for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2202        UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2203     SDNode *User = *UI;
2204     if (User == Node)
2205       continue;
2206     // The other user might have been turned into sincos already.
2207     if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
2208       return true;
2209   }
2210   return false;
2211 }
2212 
2213 /// Issue libcalls to sincos to compute sin / cos pairs.
2214 void
2215 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
2216                                           SmallVectorImpl<SDValue> &Results) {
2217   RTLIB::Libcall LC;
2218   switch (Node->getSimpleValueType(0).SimpleTy) {
2219   default: llvm_unreachable("Unexpected request for libcall!");
2220   case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
2221   case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
2222   case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
2223   case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
2224   case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2225   }
2226 
2227   // The input chain to this libcall is the entry node of the function.
2228   // Legalizing the call will automatically add the previous call to the
2229   // dependence.
2230   SDValue InChain = DAG.getEntryNode();
2231 
2232   EVT RetVT = Node->getValueType(0);
2233   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2234 
2235   TargetLowering::ArgListTy Args;
2236   TargetLowering::ArgListEntry Entry;
2237 
2238   // Pass the argument.
2239   Entry.Node = Node->getOperand(0);
2240   Entry.Ty = RetTy;
2241   Entry.IsSExt = false;
2242   Entry.IsZExt = false;
2243   Args.push_back(Entry);
2244 
2245   // Pass the return address of sin.
2246   SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
2247   Entry.Node = SinPtr;
2248   Entry.Ty = RetTy->getPointerTo();
2249   Entry.IsSExt = false;
2250   Entry.IsZExt = false;
2251   Args.push_back(Entry);
2252 
2253   // Also pass the return address of the cos.
2254   SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
2255   Entry.Node = CosPtr;
2256   Entry.Ty = RetTy->getPointerTo();
2257   Entry.IsSExt = false;
2258   Entry.IsZExt = false;
2259   Args.push_back(Entry);
2260 
2261   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2262                                          TLI.getPointerTy(DAG.getDataLayout()));
2263 
2264   SDLoc dl(Node);
2265   TargetLowering::CallLoweringInfo CLI(DAG);
2266   CLI.setDebugLoc(dl).setChain(InChain).setLibCallee(
2267       TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee,
2268       std::move(Args));
2269 
2270   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2271 
2272   Results.push_back(
2273       DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo()));
2274   Results.push_back(
2275       DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo()));
2276 }
2277 
2278 /// This function is responsible for legalizing a
2279 /// INT_TO_FP operation of the specified operand when the target requests that
2280 /// we expand it.  At this point, we know that the result and operand types are
2281 /// legal for the target.
2282 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node,
2283                                                    SDValue &Chain) {
2284   bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP ||
2285                    Node->getOpcode() == ISD::SINT_TO_FP);
2286   EVT DestVT = Node->getValueType(0);
2287   SDLoc dl(Node);
2288   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
2289   SDValue Op0 = Node->getOperand(OpNo);
2290   EVT SrcVT = Op0.getValueType();
2291 
2292   // TODO: Should any fast-math-flags be set for the created nodes?
2293   LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n");
2294   if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64) &&
2295       (DestVT.bitsLE(MVT::f64) ||
2296        TLI.isOperationLegal(Node->isStrictFPOpcode() ? ISD::STRICT_FP_EXTEND
2297                                                      : ISD::FP_EXTEND,
2298                             DestVT))) {
2299     LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double "
2300                          "expansion\n");
2301 
2302     // Get the stack frame index of a 8 byte buffer.
2303     SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2304 
2305     SDValue Lo = Op0;
2306     // if signed map to unsigned space
2307     if (isSigned) {
2308       // Invert sign bit (signed to unsigned mapping).
2309       Lo = DAG.getNode(ISD::XOR, dl, MVT::i32, Lo,
2310                        DAG.getConstant(0x80000000u, dl, MVT::i32));
2311     }
2312     // Initial hi portion of constructed double.
2313     SDValue Hi = DAG.getConstant(0x43300000u, dl, MVT::i32);
2314 
2315     // If this a big endian target, swap the lo and high data.
2316     if (DAG.getDataLayout().isBigEndian())
2317       std::swap(Lo, Hi);
2318 
2319     SDValue MemChain = DAG.getEntryNode();
2320 
2321     // Store the lo of the constructed double.
2322     SDValue Store1 = DAG.getStore(MemChain, dl, Lo, StackSlot,
2323                                   MachinePointerInfo());
2324     // Store the hi of the constructed double.
2325     SDValue HiPtr = DAG.getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), dl);
2326     SDValue Store2 =
2327         DAG.getStore(MemChain, dl, Hi, HiPtr, MachinePointerInfo());
2328     MemChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
2329 
2330     // load the constructed double
2331     SDValue Load =
2332         DAG.getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo());
2333     // FP constant to bias correct the final result
2334     SDValue Bias = DAG.getConstantFP(isSigned ?
2335                                      BitsToDouble(0x4330000080000000ULL) :
2336                                      BitsToDouble(0x4330000000000000ULL),
2337                                      dl, MVT::f64);
2338     // Subtract the bias and get the final result.
2339     SDValue Sub;
2340     SDValue Result;
2341     if (Node->isStrictFPOpcode()) {
2342       Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other},
2343                         {Node->getOperand(0), Load, Bias});
2344       Chain = Sub.getValue(1);
2345       if (DestVT != Sub.getValueType()) {
2346         std::pair<SDValue, SDValue> ResultPair;
2347         ResultPair =
2348             DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT);
2349         Result = ResultPair.first;
2350         Chain = ResultPair.second;
2351       }
2352       else
2353         Result = Sub;
2354     } else {
2355       Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2356       Result = DAG.getFPExtendOrRound(Sub, dl, DestVT);
2357     }
2358     return Result;
2359   }
2360 
2361   if (isSigned)
2362     return SDValue();
2363 
2364   // TODO: Generalize this for use with other types.
2365   if (((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) ||
2366       (SrcVT == MVT::i64 && DestVT == MVT::f64)) {
2367     LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32/f64\n");
2368     // For unsigned conversions, convert them to signed conversions using the
2369     // algorithm from the x86_64 __floatundisf in compiler_rt. That method
2370     // should be valid for i32->f32 as well.
2371 
2372     // More generally this transform should be valid if there are 3 more bits
2373     // in the integer type than the significand. Rounding uses the first bit
2374     // after the width of the significand and the OR of all bits after that. So
2375     // we need to be able to OR the shifted out bit into one of the bits that
2376     // participate in the OR.
2377 
2378     // TODO: This really should be implemented using a branch rather than a
2379     // select.  We happen to get lucky and machinesink does the right
2380     // thing most of the time.  This would be a good candidate for a
2381     // pseudo-op, or, even better, for whole-function isel.
2382     EVT SetCCVT = getSetCCResultType(SrcVT);
2383 
2384     SDValue SignBitTest = DAG.getSetCC(
2385         dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
2386 
2387     EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout());
2388     SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
2389     SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst);
2390     SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
2391     SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst);
2392     SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
2393 
2394     SDValue Slow, Fast;
2395     if (Node->isStrictFPOpcode()) {
2396       // In strict mode, we must avoid spurious exceptions, and therefore
2397       // must make sure to only emit a single STRICT_SINT_TO_FP.
2398       SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0);
2399       Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other },
2400                          { Node->getOperand(0), InCvt });
2401       Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other },
2402                          { Fast.getValue(1), Fast, Fast });
2403       Chain = Slow.getValue(1);
2404       // The STRICT_SINT_TO_FP inherits the exception mode from the
2405       // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can
2406       // never raise any exception.
2407       SDNodeFlags Flags;
2408       Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept());
2409       Fast->setFlags(Flags);
2410       Flags.setNoFPExcept(true);
2411       Slow->setFlags(Flags);
2412     } else {
2413       SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or);
2414       Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt);
2415       Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2416     }
2417 
2418     return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast);
2419   }
2420 
2421   // Don't expand it if there isn't cheap fadd.
2422   if (!TLI.isOperationLegalOrCustom(
2423           Node->isStrictFPOpcode() ? ISD::STRICT_FADD : ISD::FADD, DestVT))
2424     return SDValue();
2425 
2426   // The following optimization is valid only if every value in SrcVT (when
2427   // treated as signed) is representable in DestVT.  Check that the mantissa
2428   // size of DestVT is >= than the number of bits in SrcVT -1.
2429   assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >=
2430              SrcVT.getSizeInBits() - 1 &&
2431          "Cannot perform lossless SINT_TO_FP!");
2432 
2433   SDValue Tmp1;
2434   if (Node->isStrictFPOpcode()) {
2435     Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other },
2436                        { Node->getOperand(0), Op0 });
2437   } else
2438     Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2439 
2440   SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0,
2441                                  DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
2442   SDValue Zero = DAG.getIntPtrConstant(0, dl),
2443           Four = DAG.getIntPtrConstant(4, dl);
2444   SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(),
2445                                     SignSet, Four, Zero);
2446 
2447   // If the sign bit of the integer is set, the large number will be treated
2448   // as a negative number.  To counteract this, the dynamic code adds an
2449   // offset depending on the data type.
2450   uint64_t FF;
2451   switch (SrcVT.getSimpleVT().SimpleTy) {
2452   default:
2453     return SDValue();
2454   case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2455   case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2456   case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2457   case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2458   }
2459   if (DAG.getDataLayout().isLittleEndian())
2460     FF <<= 32;
2461   Constant *FudgeFactor = ConstantInt::get(
2462                                        Type::getInt64Ty(*DAG.getContext()), FF);
2463 
2464   SDValue CPIdx =
2465       DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout()));
2466   Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
2467   CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset);
2468   Alignment = commonAlignment(Alignment, 4);
2469   SDValue FudgeInReg;
2470   if (DestVT == MVT::f32)
2471     FudgeInReg = DAG.getLoad(
2472         MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2473         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
2474         Alignment);
2475   else {
2476     SDValue Load = DAG.getExtLoad(
2477         ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx,
2478         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
2479         Alignment);
2480     HandleSDNode Handle(Load);
2481     LegalizeOp(Load.getNode());
2482     FudgeInReg = Handle.getValue();
2483   }
2484 
2485   if (Node->isStrictFPOpcode()) {
2486     SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other },
2487                                  { Tmp1.getValue(1), Tmp1, FudgeInReg });
2488     Chain = Result.getValue(1);
2489     return Result;
2490   }
2491 
2492   return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2493 }
2494 
2495 /// This function is responsible for legalizing a
2496 /// *INT_TO_FP operation of the specified operand when the target requests that
2497 /// we promote it.  At this point, we know that the result and operand types are
2498 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2499 /// operation that takes a larger input.
2500 void SelectionDAGLegalize::PromoteLegalINT_TO_FP(
2501     SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) {
2502   bool IsStrict = N->isStrictFPOpcode();
2503   bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP ||
2504                   N->getOpcode() == ISD::STRICT_SINT_TO_FP;
2505   EVT DestVT = N->getValueType(0);
2506   SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0);
2507   unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP;
2508   unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP;
2509 
2510   // First step, figure out the appropriate *INT_TO_FP operation to use.
2511   EVT NewInTy = LegalOp.getValueType();
2512 
2513   unsigned OpToUse = 0;
2514 
2515   // Scan for the appropriate larger type to use.
2516   while (true) {
2517     NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2518     assert(NewInTy.isInteger() && "Ran out of possibilities!");
2519 
2520     // If the target supports SINT_TO_FP of this type, use it.
2521     if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) {
2522       OpToUse = SIntOp;
2523       break;
2524     }
2525     if (IsSigned)
2526       continue;
2527 
2528     // If the target supports UINT_TO_FP of this type, use it.
2529     if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) {
2530       OpToUse = UIntOp;
2531       break;
2532     }
2533 
2534     // Otherwise, try a larger type.
2535   }
2536 
2537   // Okay, we found the operation and type to use.  Zero extend our input to the
2538   // desired type then run the operation on it.
2539   if (IsStrict) {
2540     SDValue Res =
2541         DAG.getNode(OpToUse, dl, {DestVT, MVT::Other},
2542                     {N->getOperand(0),
2543                      DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2544                                  dl, NewInTy, LegalOp)});
2545     Results.push_back(Res);
2546     Results.push_back(Res.getValue(1));
2547     return;
2548   }
2549 
2550   Results.push_back(
2551       DAG.getNode(OpToUse, dl, DestVT,
2552                   DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2553                               dl, NewInTy, LegalOp)));
2554 }
2555 
2556 /// This function is responsible for legalizing a
2557 /// FP_TO_*INT operation of the specified operand when the target requests that
2558 /// we promote it.  At this point, we know that the result and operand types are
2559 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2560 /// operation that returns a larger result.
2561 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl,
2562                                                  SmallVectorImpl<SDValue> &Results) {
2563   bool IsStrict = N->isStrictFPOpcode();
2564   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
2565                   N->getOpcode() == ISD::STRICT_FP_TO_SINT;
2566   EVT DestVT = N->getValueType(0);
2567   SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0);
2568   // First step, figure out the appropriate FP_TO*INT operation to use.
2569   EVT NewOutTy = DestVT;
2570 
2571   unsigned OpToUse = 0;
2572 
2573   // Scan for the appropriate larger type to use.
2574   while (true) {
2575     NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2576     assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2577 
2578     // A larger signed type can hold all unsigned values of the requested type,
2579     // so using FP_TO_SINT is valid
2580     OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT;
2581     if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy))
2582       break;
2583 
2584     // However, if the value may be < 0.0, we *must* use some FP_TO_SINT.
2585     OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT;
2586     if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy))
2587       break;
2588 
2589     // Otherwise, try a larger type.
2590   }
2591 
2592   // Okay, we found the operation and type to use.
2593   SDValue Operation;
2594   if (IsStrict) {
2595     SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other);
2596     Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp);
2597   } else
2598     Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2599 
2600   // Truncate the result of the extended FP_TO_*INT operation to the desired
2601   // size.
2602   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2603   Results.push_back(Trunc);
2604   if (IsStrict)
2605     Results.push_back(Operation.getValue(1));
2606 }
2607 
2608 /// Promote FP_TO_*INT_SAT operation to a larger result type. At this point
2609 /// the result and operand types are legal and there must be a legal
2610 /// FP_TO_*INT_SAT operation for a larger result type.
2611 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT_SAT(SDNode *Node,
2612                                                         const SDLoc &dl) {
2613   unsigned Opcode = Node->getOpcode();
2614 
2615   // Scan for the appropriate larger type to use.
2616   EVT NewOutTy = Node->getValueType(0);
2617   while (true) {
2618     NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy + 1);
2619     assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2620 
2621     if (TLI.isOperationLegalOrCustom(Opcode, NewOutTy))
2622       break;
2623   }
2624 
2625   // Saturation width is determined by second operand, so we don't have to
2626   // perform any fixup and can directly truncate the result.
2627   SDValue Result = DAG.getNode(Opcode, dl, NewOutTy, Node->getOperand(0),
2628                                Node->getOperand(1));
2629   return DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Result);
2630 }
2631 
2632 /// Open code the operations for PARITY of the specified operation.
2633 SDValue SelectionDAGLegalize::ExpandPARITY(SDValue Op, const SDLoc &dl) {
2634   EVT VT = Op.getValueType();
2635   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2636   unsigned Sz = VT.getScalarSizeInBits();
2637 
2638   // If CTPOP is legal, use it. Otherwise use shifts and xor.
2639   SDValue Result;
2640   if (TLI.isOperationLegal(ISD::CTPOP, VT)) {
2641     Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
2642   } else {
2643     Result = Op;
2644     for (unsigned i = Log2_32_Ceil(Sz); i != 0;) {
2645       SDValue Shift = DAG.getNode(ISD::SRL, dl, VT, Result,
2646                                   DAG.getConstant(1ULL << (--i), dl, ShVT));
2647       Result = DAG.getNode(ISD::XOR, dl, VT, Result, Shift);
2648     }
2649   }
2650 
2651   return DAG.getNode(ISD::AND, dl, VT, Result, DAG.getConstant(1, dl, VT));
2652 }
2653 
2654 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2655   LLVM_DEBUG(dbgs() << "Trying to expand node\n");
2656   SmallVector<SDValue, 8> Results;
2657   SDLoc dl(Node);
2658   SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2659   bool NeedInvert;
2660   switch (Node->getOpcode()) {
2661   case ISD::ABS:
2662     if (TLI.expandABS(Node, Tmp1, DAG))
2663       Results.push_back(Tmp1);
2664     break;
2665   case ISD::CTPOP:
2666     if (TLI.expandCTPOP(Node, Tmp1, DAG))
2667       Results.push_back(Tmp1);
2668     break;
2669   case ISD::CTLZ:
2670   case ISD::CTLZ_ZERO_UNDEF:
2671     if (TLI.expandCTLZ(Node, Tmp1, DAG))
2672       Results.push_back(Tmp1);
2673     break;
2674   case ISD::CTTZ:
2675   case ISD::CTTZ_ZERO_UNDEF:
2676     if (TLI.expandCTTZ(Node, Tmp1, DAG))
2677       Results.push_back(Tmp1);
2678     break;
2679   case ISD::BITREVERSE:
2680     if ((Tmp1 = TLI.expandBITREVERSE(Node, DAG)))
2681       Results.push_back(Tmp1);
2682     break;
2683   case ISD::BSWAP:
2684     if ((Tmp1 = TLI.expandBSWAP(Node, DAG)))
2685       Results.push_back(Tmp1);
2686     break;
2687   case ISD::PARITY:
2688     Results.push_back(ExpandPARITY(Node->getOperand(0), dl));
2689     break;
2690   case ISD::FRAMEADDR:
2691   case ISD::RETURNADDR:
2692   case ISD::FRAME_TO_ARGS_OFFSET:
2693     Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
2694     break;
2695   case ISD::EH_DWARF_CFA: {
2696     SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl,
2697                                         TLI.getPointerTy(DAG.getDataLayout()));
2698     SDValue Offset = DAG.getNode(ISD::ADD, dl,
2699                                  CfaArg.getValueType(),
2700                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
2701                                              CfaArg.getValueType()),
2702                                  CfaArg);
2703     SDValue FA = DAG.getNode(
2704         ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()),
2705         DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())));
2706     Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(),
2707                                   FA, Offset));
2708     break;
2709   }
2710   case ISD::FLT_ROUNDS_:
2711     Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0)));
2712     Results.push_back(Node->getOperand(0));
2713     break;
2714   case ISD::EH_RETURN:
2715   case ISD::EH_LABEL:
2716   case ISD::PREFETCH:
2717   case ISD::VAEND:
2718   case ISD::EH_SJLJ_LONGJMP:
2719     // If the target didn't expand these, there's nothing to do, so just
2720     // preserve the chain and be done.
2721     Results.push_back(Node->getOperand(0));
2722     break;
2723   case ISD::READCYCLECOUNTER:
2724     // If the target didn't expand this, just return 'zero' and preserve the
2725     // chain.
2726     Results.append(Node->getNumValues() - 1,
2727                    DAG.getConstant(0, dl, Node->getValueType(0)));
2728     Results.push_back(Node->getOperand(0));
2729     break;
2730   case ISD::EH_SJLJ_SETJMP:
2731     // If the target didn't expand this, just return 'zero' and preserve the
2732     // chain.
2733     Results.push_back(DAG.getConstant(0, dl, MVT::i32));
2734     Results.push_back(Node->getOperand(0));
2735     break;
2736   case ISD::ATOMIC_LOAD: {
2737     // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2738     SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0));
2739     SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2740     SDValue Swap = DAG.getAtomicCmpSwap(
2741         ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2742         Node->getOperand(0), Node->getOperand(1), Zero, Zero,
2743         cast<AtomicSDNode>(Node)->getMemOperand());
2744     Results.push_back(Swap.getValue(0));
2745     Results.push_back(Swap.getValue(1));
2746     break;
2747   }
2748   case ISD::ATOMIC_STORE: {
2749     // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2750     SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2751                                  cast<AtomicSDNode>(Node)->getMemoryVT(),
2752                                  Node->getOperand(0),
2753                                  Node->getOperand(1), Node->getOperand(2),
2754                                  cast<AtomicSDNode>(Node)->getMemOperand());
2755     Results.push_back(Swap.getValue(1));
2756     break;
2757   }
2758   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
2759     // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and
2760     // splits out the success value as a comparison. Expanding the resulting
2761     // ATOMIC_CMP_SWAP will produce a libcall.
2762     SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2763     SDValue Res = DAG.getAtomicCmpSwap(
2764         ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2765         Node->getOperand(0), Node->getOperand(1), Node->getOperand(2),
2766         Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand());
2767 
2768     SDValue ExtRes = Res;
2769     SDValue LHS = Res;
2770     SDValue RHS = Node->getOperand(1);
2771 
2772     EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT();
2773     EVT OuterType = Node->getValueType(0);
2774     switch (TLI.getExtendForAtomicOps()) {
2775     case ISD::SIGN_EXTEND:
2776       LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res,
2777                         DAG.getValueType(AtomicType));
2778       RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType,
2779                         Node->getOperand(2), DAG.getValueType(AtomicType));
2780       ExtRes = LHS;
2781       break;
2782     case ISD::ZERO_EXTEND:
2783       LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res,
2784                         DAG.getValueType(AtomicType));
2785       RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2786       ExtRes = LHS;
2787       break;
2788     case ISD::ANY_EXTEND:
2789       LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType);
2790       RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2791       break;
2792     default:
2793       llvm_unreachable("Invalid atomic op extension");
2794     }
2795 
2796     SDValue Success =
2797         DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ);
2798 
2799     Results.push_back(ExtRes.getValue(0));
2800     Results.push_back(Success);
2801     Results.push_back(Res.getValue(1));
2802     break;
2803   }
2804   case ISD::DYNAMIC_STACKALLOC:
2805     ExpandDYNAMIC_STACKALLOC(Node, Results);
2806     break;
2807   case ISD::MERGE_VALUES:
2808     for (unsigned i = 0; i < Node->getNumValues(); i++)
2809       Results.push_back(Node->getOperand(i));
2810     break;
2811   case ISD::UNDEF: {
2812     EVT VT = Node->getValueType(0);
2813     if (VT.isInteger())
2814       Results.push_back(DAG.getConstant(0, dl, VT));
2815     else {
2816       assert(VT.isFloatingPoint() && "Unknown value type!");
2817       Results.push_back(DAG.getConstantFP(0, dl, VT));
2818     }
2819     break;
2820   }
2821   case ISD::STRICT_FP_ROUND:
2822     // When strict mode is enforced we can't do expansion because it
2823     // does not honor the "strict" properties. Only libcall is allowed.
2824     if (TLI.isStrictFPEnabled())
2825       break;
2826     // We might as well mutate to FP_ROUND when FP_ROUND operation is legal
2827     // since this operation is more efficient than stack operation.
2828     if (TLI.getStrictFPOperationAction(Node->getOpcode(),
2829                                        Node->getValueType(0))
2830         == TargetLowering::Legal)
2831       break;
2832     // We fall back to use stack operation when the FP_ROUND operation
2833     // isn't available.
2834     if ((Tmp1 = EmitStackConvert(Node->getOperand(1), Node->getValueType(0),
2835                                  Node->getValueType(0), dl,
2836                                  Node->getOperand(0)))) {
2837       ReplaceNode(Node, Tmp1.getNode());
2838       LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n");
2839       return true;
2840     }
2841     break;
2842   case ISD::FP_ROUND:
2843   case ISD::BITCAST:
2844     if ((Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2845                                  Node->getValueType(0), dl)))
2846       Results.push_back(Tmp1);
2847     break;
2848   case ISD::STRICT_FP_EXTEND:
2849     // When strict mode is enforced we can't do expansion because it
2850     // does not honor the "strict" properties. Only libcall is allowed.
2851     if (TLI.isStrictFPEnabled())
2852       break;
2853     // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal
2854     // since this operation is more efficient than stack operation.
2855     if (TLI.getStrictFPOperationAction(Node->getOpcode(),
2856                                        Node->getValueType(0))
2857         == TargetLowering::Legal)
2858       break;
2859     // We fall back to use stack operation when the FP_EXTEND operation
2860     // isn't available.
2861     if ((Tmp1 = EmitStackConvert(
2862              Node->getOperand(1), Node->getOperand(1).getValueType(),
2863              Node->getValueType(0), dl, Node->getOperand(0)))) {
2864       ReplaceNode(Node, Tmp1.getNode());
2865       LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n");
2866       return true;
2867     }
2868     break;
2869   case ISD::FP_EXTEND:
2870     if ((Tmp1 = EmitStackConvert(Node->getOperand(0),
2871                                  Node->getOperand(0).getValueType(),
2872                                  Node->getValueType(0), dl)))
2873       Results.push_back(Tmp1);
2874     break;
2875   case ISD::SIGN_EXTEND_INREG: {
2876     EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2877     EVT VT = Node->getValueType(0);
2878 
2879     // An in-register sign-extend of a boolean is a negation:
2880     // 'true' (1) sign-extended is -1.
2881     // 'false' (0) sign-extended is 0.
2882     // However, we must mask the high bits of the source operand because the
2883     // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero.
2884 
2885     // TODO: Do this for vectors too?
2886     if (ExtraVT.getSizeInBits() == 1) {
2887       SDValue One = DAG.getConstant(1, dl, VT);
2888       SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One);
2889       SDValue Zero = DAG.getConstant(0, dl, VT);
2890       SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And);
2891       Results.push_back(Neg);
2892       break;
2893     }
2894 
2895     // NOTE: we could fall back on load/store here too for targets without
2896     // SRA.  However, it is doubtful that any exist.
2897     EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2898     unsigned BitsDiff = VT.getScalarSizeInBits() -
2899                         ExtraVT.getScalarSizeInBits();
2900     SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy);
2901     Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2902                        Node->getOperand(0), ShiftCst);
2903     Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2904     Results.push_back(Tmp1);
2905     break;
2906   }
2907   case ISD::UINT_TO_FP:
2908   case ISD::STRICT_UINT_TO_FP:
2909     if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) {
2910       Results.push_back(Tmp1);
2911       if (Node->isStrictFPOpcode())
2912         Results.push_back(Tmp2);
2913       break;
2914     }
2915     LLVM_FALLTHROUGH;
2916   case ISD::SINT_TO_FP:
2917   case ISD::STRICT_SINT_TO_FP:
2918     if ((Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2))) {
2919       Results.push_back(Tmp1);
2920       if (Node->isStrictFPOpcode())
2921         Results.push_back(Tmp2);
2922     }
2923     break;
2924   case ISD::FP_TO_SINT:
2925     if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG))
2926       Results.push_back(Tmp1);
2927     break;
2928   case ISD::STRICT_FP_TO_SINT:
2929     if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) {
2930       ReplaceNode(Node, Tmp1.getNode());
2931       LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n");
2932       return true;
2933     }
2934     break;
2935   case ISD::FP_TO_UINT:
2936     if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG))
2937       Results.push_back(Tmp1);
2938     break;
2939   case ISD::STRICT_FP_TO_UINT:
2940     if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) {
2941       // Relink the chain.
2942       DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2);
2943       // Replace the new UINT result.
2944       ReplaceNodeWithValue(SDValue(Node, 0), Tmp1);
2945       LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n");
2946       return true;
2947     }
2948     break;
2949   case ISD::FP_TO_SINT_SAT:
2950   case ISD::FP_TO_UINT_SAT:
2951     Results.push_back(TLI.expandFP_TO_INT_SAT(Node, DAG));
2952     break;
2953   case ISD::VAARG:
2954     Results.push_back(DAG.expandVAArg(Node));
2955     Results.push_back(Results[0].getValue(1));
2956     break;
2957   case ISD::VACOPY:
2958     Results.push_back(DAG.expandVACopy(Node));
2959     break;
2960   case ISD::EXTRACT_VECTOR_ELT:
2961     if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2962       // This must be an access of the only element.  Return it.
2963       Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
2964                          Node->getOperand(0));
2965     else
2966       Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2967     Results.push_back(Tmp1);
2968     break;
2969   case ISD::EXTRACT_SUBVECTOR:
2970     Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2971     break;
2972   case ISD::INSERT_SUBVECTOR:
2973     Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
2974     break;
2975   case ISD::CONCAT_VECTORS:
2976     Results.push_back(ExpandVectorBuildThroughStack(Node));
2977     break;
2978   case ISD::SCALAR_TO_VECTOR:
2979     Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2980     break;
2981   case ISD::INSERT_VECTOR_ELT:
2982     Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2983                                               Node->getOperand(1),
2984                                               Node->getOperand(2), dl));
2985     break;
2986   case ISD::VECTOR_SHUFFLE: {
2987     SmallVector<int, 32> NewMask;
2988     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
2989 
2990     EVT VT = Node->getValueType(0);
2991     EVT EltVT = VT.getVectorElementType();
2992     SDValue Op0 = Node->getOperand(0);
2993     SDValue Op1 = Node->getOperand(1);
2994     if (!TLI.isTypeLegal(EltVT)) {
2995       EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2996 
2997       // BUILD_VECTOR operands are allowed to be wider than the element type.
2998       // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept
2999       // it.
3000       if (NewEltVT.bitsLT(EltVT)) {
3001         // Convert shuffle node.
3002         // If original node was v4i64 and the new EltVT is i32,
3003         // cast operands to v8i32 and re-build the mask.
3004 
3005         // Calculate new VT, the size of the new VT should be equal to original.
3006         EVT NewVT =
3007             EVT::getVectorVT(*DAG.getContext(), NewEltVT,
3008                              VT.getSizeInBits() / NewEltVT.getSizeInBits());
3009         assert(NewVT.bitsEq(VT));
3010 
3011         // cast operands to new VT
3012         Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
3013         Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
3014 
3015         // Convert the shuffle mask
3016         unsigned int factor =
3017                          NewVT.getVectorNumElements()/VT.getVectorNumElements();
3018 
3019         // EltVT gets smaller
3020         assert(factor > 0);
3021 
3022         for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
3023           if (Mask[i] < 0) {
3024             for (unsigned fi = 0; fi < factor; ++fi)
3025               NewMask.push_back(Mask[i]);
3026           }
3027           else {
3028             for (unsigned fi = 0; fi < factor; ++fi)
3029               NewMask.push_back(Mask[i]*factor+fi);
3030           }
3031         }
3032         Mask = NewMask;
3033         VT = NewVT;
3034       }
3035       EltVT = NewEltVT;
3036     }
3037     unsigned NumElems = VT.getVectorNumElements();
3038     SmallVector<SDValue, 16> Ops;
3039     for (unsigned i = 0; i != NumElems; ++i) {
3040       if (Mask[i] < 0) {
3041         Ops.push_back(DAG.getUNDEF(EltVT));
3042         continue;
3043       }
3044       unsigned Idx = Mask[i];
3045       if (Idx < NumElems)
3046         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
3047                                   DAG.getVectorIdxConstant(Idx, dl)));
3048       else
3049         Ops.push_back(
3050             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1,
3051                         DAG.getVectorIdxConstant(Idx - NumElems, dl)));
3052     }
3053 
3054     Tmp1 = DAG.getBuildVector(VT, dl, Ops);
3055     // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
3056     Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
3057     Results.push_back(Tmp1);
3058     break;
3059   }
3060   case ISD::VECTOR_SPLICE: {
3061     Results.push_back(TLI.expandVectorSplice(Node, DAG));
3062     break;
3063   }
3064   case ISD::EXTRACT_ELEMENT: {
3065     EVT OpTy = Node->getOperand(0).getValueType();
3066     if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3067       // 1 -> Hi
3068       Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3069                          DAG.getConstant(OpTy.getSizeInBits() / 2, dl,
3070                                          TLI.getShiftAmountTy(
3071                                              Node->getOperand(0).getValueType(),
3072                                              DAG.getDataLayout())));
3073       Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3074     } else {
3075       // 0 -> Lo
3076       Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3077                          Node->getOperand(0));
3078     }
3079     Results.push_back(Tmp1);
3080     break;
3081   }
3082   case ISD::STACKSAVE:
3083     // Expand to CopyFromReg if the target set
3084     // StackPointerRegisterToSaveRestore.
3085     if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) {
3086       Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3087                                            Node->getValueType(0)));
3088       Results.push_back(Results[0].getValue(1));
3089     } else {
3090       Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3091       Results.push_back(Node->getOperand(0));
3092     }
3093     break;
3094   case ISD::STACKRESTORE:
3095     // Expand to CopyToReg if the target set
3096     // StackPointerRegisterToSaveRestore.
3097     if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) {
3098       Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3099                                          Node->getOperand(1)));
3100     } else {
3101       Results.push_back(Node->getOperand(0));
3102     }
3103     break;
3104   case ISD::GET_DYNAMIC_AREA_OFFSET:
3105     Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
3106     Results.push_back(Results[0].getValue(0));
3107     break;
3108   case ISD::FCOPYSIGN:
3109     Results.push_back(ExpandFCOPYSIGN(Node));
3110     break;
3111   case ISD::FNEG:
3112     Results.push_back(ExpandFNEG(Node));
3113     break;
3114   case ISD::FABS:
3115     Results.push_back(ExpandFABS(Node));
3116     break;
3117   case ISD::SMIN:
3118   case ISD::SMAX:
3119   case ISD::UMIN:
3120   case ISD::UMAX: {
3121     // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
3122     ISD::CondCode Pred;
3123     switch (Node->getOpcode()) {
3124     default: llvm_unreachable("How did we get here?");
3125     case ISD::SMAX: Pred = ISD::SETGT; break;
3126     case ISD::SMIN: Pred = ISD::SETLT; break;
3127     case ISD::UMAX: Pred = ISD::SETUGT; break;
3128     case ISD::UMIN: Pred = ISD::SETULT; break;
3129     }
3130     Tmp1 = Node->getOperand(0);
3131     Tmp2 = Node->getOperand(1);
3132     Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred);
3133     Results.push_back(Tmp1);
3134     break;
3135   }
3136   case ISD::FMINNUM:
3137   case ISD::FMAXNUM: {
3138     if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG))
3139       Results.push_back(Expanded);
3140     break;
3141   }
3142   case ISD::FSIN:
3143   case ISD::FCOS: {
3144     EVT VT = Node->getValueType(0);
3145     // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
3146     // fcos which share the same operand and both are used.
3147     if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
3148          isSinCosLibcallAvailable(Node, TLI))
3149         && useSinCos(Node)) {
3150       SDVTList VTs = DAG.getVTList(VT, VT);
3151       Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
3152       if (Node->getOpcode() == ISD::FCOS)
3153         Tmp1 = Tmp1.getValue(1);
3154       Results.push_back(Tmp1);
3155     }
3156     break;
3157   }
3158   case ISD::FMAD:
3159     llvm_unreachable("Illegal fmad should never be formed");
3160 
3161   case ISD::FP16_TO_FP:
3162     if (Node->getValueType(0) != MVT::f32) {
3163       // We can extend to types bigger than f32 in two steps without changing
3164       // the result. Since "f16 -> f32" is much more commonly available, give
3165       // CodeGen the option of emitting that before resorting to a libcall.
3166       SDValue Res =
3167           DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0));
3168       Results.push_back(
3169           DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res));
3170     }
3171     break;
3172   case ISD::STRICT_FP16_TO_FP:
3173     if (Node->getValueType(0) != MVT::f32) {
3174       // We can extend to types bigger than f32 in two steps without changing
3175       // the result. Since "f16 -> f32" is much more commonly available, give
3176       // CodeGen the option of emitting that before resorting to a libcall.
3177       SDValue Res =
3178           DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other},
3179                       {Node->getOperand(0), Node->getOperand(1)});
3180       Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
3181                         {Node->getValueType(0), MVT::Other},
3182                         {Res.getValue(1), Res});
3183       Results.push_back(Res);
3184       Results.push_back(Res.getValue(1));
3185     }
3186     break;
3187   case ISD::FP_TO_FP16:
3188     LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n");
3189     if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) {
3190       SDValue Op = Node->getOperand(0);
3191       MVT SVT = Op.getSimpleValueType();
3192       if ((SVT == MVT::f64 || SVT == MVT::f80) &&
3193           TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) {
3194         // Under fastmath, we can expand this node into a fround followed by
3195         // a float-half conversion.
3196         SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op,
3197                                        DAG.getIntPtrConstant(0, dl));
3198         Results.push_back(
3199             DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal));
3200       }
3201     }
3202     break;
3203   case ISD::ConstantFP: {
3204     ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3205     // Check to see if this FP immediate is already legal.
3206     // If this is a legal constant, turn it into a TargetConstantFP node.
3207     if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0),
3208                           DAG.shouldOptForSize()))
3209       Results.push_back(ExpandConstantFP(CFP, true));
3210     break;
3211   }
3212   case ISD::Constant: {
3213     ConstantSDNode *CP = cast<ConstantSDNode>(Node);
3214     Results.push_back(ExpandConstant(CP));
3215     break;
3216   }
3217   case ISD::FSUB: {
3218     EVT VT = Node->getValueType(0);
3219     if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3220         TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) {
3221       const SDNodeFlags Flags = Node->getFlags();
3222       Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3223       Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags);
3224       Results.push_back(Tmp1);
3225     }
3226     break;
3227   }
3228   case ISD::SUB: {
3229     EVT VT = Node->getValueType(0);
3230     assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3231            TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3232            "Don't know how to expand this subtraction!");
3233     Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3234                DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
3235                                VT));
3236     Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT));
3237     Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3238     break;
3239   }
3240   case ISD::UREM:
3241   case ISD::SREM:
3242     if (TLI.expandREM(Node, Tmp1, DAG))
3243       Results.push_back(Tmp1);
3244     break;
3245   case ISD::UDIV:
3246   case ISD::SDIV: {
3247     bool isSigned = Node->getOpcode() == ISD::SDIV;
3248     unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3249     EVT VT = Node->getValueType(0);
3250     if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3251       SDVTList VTs = DAG.getVTList(VT, VT);
3252       Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3253                          Node->getOperand(1));
3254       Results.push_back(Tmp1);
3255     }
3256     break;
3257   }
3258   case ISD::MULHU:
3259   case ISD::MULHS: {
3260     unsigned ExpandOpcode =
3261         Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI;
3262     EVT VT = Node->getValueType(0);
3263     SDVTList VTs = DAG.getVTList(VT, VT);
3264 
3265     Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3266                        Node->getOperand(1));
3267     Results.push_back(Tmp1.getValue(1));
3268     break;
3269   }
3270   case ISD::UMUL_LOHI:
3271   case ISD::SMUL_LOHI: {
3272     SDValue LHS = Node->getOperand(0);
3273     SDValue RHS = Node->getOperand(1);
3274     MVT VT = LHS.getSimpleValueType();
3275     unsigned MULHOpcode =
3276         Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS;
3277 
3278     if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) {
3279       Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS));
3280       Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS));
3281       break;
3282     }
3283 
3284     SmallVector<SDValue, 4> Halves;
3285     EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext());
3286     assert(TLI.isTypeLegal(HalfType));
3287     if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, dl, LHS, RHS, Halves,
3288                            HalfType, DAG,
3289                            TargetLowering::MulExpansionKind::Always)) {
3290       for (unsigned i = 0; i < 2; ++i) {
3291         SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]);
3292         SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]);
3293         SDValue Shift = DAG.getConstant(
3294             HalfType.getScalarSizeInBits(), dl,
3295             TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3296         Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3297         Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3298       }
3299       break;
3300     }
3301     break;
3302   }
3303   case ISD::MUL: {
3304     EVT VT = Node->getValueType(0);
3305     SDVTList VTs = DAG.getVTList(VT, VT);
3306     // See if multiply or divide can be lowered using two-result operations.
3307     // We just need the low half of the multiply; try both the signed
3308     // and unsigned forms. If the target supports both SMUL_LOHI and
3309     // UMUL_LOHI, form a preference by checking which forms of plain
3310     // MULH it supports.
3311     bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3312     bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3313     bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3314     bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3315     unsigned OpToUse = 0;
3316     if (HasSMUL_LOHI && !HasMULHS) {
3317       OpToUse = ISD::SMUL_LOHI;
3318     } else if (HasUMUL_LOHI && !HasMULHU) {
3319       OpToUse = ISD::UMUL_LOHI;
3320     } else if (HasSMUL_LOHI) {
3321       OpToUse = ISD::SMUL_LOHI;
3322     } else if (HasUMUL_LOHI) {
3323       OpToUse = ISD::UMUL_LOHI;
3324     }
3325     if (OpToUse) {
3326       Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3327                                     Node->getOperand(1)));
3328       break;
3329     }
3330 
3331     SDValue Lo, Hi;
3332     EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext());
3333     if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) &&
3334         TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) &&
3335         TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
3336         TLI.isOperationLegalOrCustom(ISD::OR, VT) &&
3337         TLI.expandMUL(Node, Lo, Hi, HalfType, DAG,
3338                       TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) {
3339       Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3340       Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi);
3341       SDValue Shift =
3342           DAG.getConstant(HalfType.getSizeInBits(), dl,
3343                           TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3344       Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3345       Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3346     }
3347     break;
3348   }
3349   case ISD::FSHL:
3350   case ISD::FSHR:
3351     if (TLI.expandFunnelShift(Node, Tmp1, DAG))
3352       Results.push_back(Tmp1);
3353     break;
3354   case ISD::ROTL:
3355   case ISD::ROTR:
3356     if (TLI.expandROT(Node, true /*AllowVectorOps*/, Tmp1, DAG))
3357       Results.push_back(Tmp1);
3358     break;
3359   case ISD::SADDSAT:
3360   case ISD::UADDSAT:
3361   case ISD::SSUBSAT:
3362   case ISD::USUBSAT:
3363     Results.push_back(TLI.expandAddSubSat(Node, DAG));
3364     break;
3365   case ISD::SSHLSAT:
3366   case ISD::USHLSAT:
3367     Results.push_back(TLI.expandShlSat(Node, DAG));
3368     break;
3369   case ISD::SMULFIX:
3370   case ISD::SMULFIXSAT:
3371   case ISD::UMULFIX:
3372   case ISD::UMULFIXSAT:
3373     Results.push_back(TLI.expandFixedPointMul(Node, DAG));
3374     break;
3375   case ISD::SDIVFIX:
3376   case ISD::SDIVFIXSAT:
3377   case ISD::UDIVFIX:
3378   case ISD::UDIVFIXSAT:
3379     if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node),
3380                                             Node->getOperand(0),
3381                                             Node->getOperand(1),
3382                                             Node->getConstantOperandVal(2),
3383                                             DAG)) {
3384       Results.push_back(V);
3385       break;
3386     }
3387     // FIXME: We might want to retry here with a wider type if we fail, if that
3388     // type is legal.
3389     // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is
3390     // <= 128 (which is the case for all of the default Embedded-C types),
3391     // we will only get here with types and scales that we could always expand
3392     // if we were allowed to generate libcalls to division functions of illegal
3393     // type. But we cannot do that.
3394     llvm_unreachable("Cannot expand DIVFIX!");
3395   case ISD::ADDCARRY:
3396   case ISD::SUBCARRY: {
3397     SDValue LHS = Node->getOperand(0);
3398     SDValue RHS = Node->getOperand(1);
3399     SDValue Carry = Node->getOperand(2);
3400 
3401     bool IsAdd = Node->getOpcode() == ISD::ADDCARRY;
3402 
3403     // Initial add of the 2 operands.
3404     unsigned Op = IsAdd ? ISD::ADD : ISD::SUB;
3405     EVT VT = LHS.getValueType();
3406     SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS);
3407 
3408     // Initial check for overflow.
3409     EVT CarryType = Node->getValueType(1);
3410     EVT SetCCType = getSetCCResultType(Node->getValueType(0));
3411     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
3412     SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC);
3413 
3414     // Add of the sum and the carry.
3415     SDValue One = DAG.getConstant(1, dl, VT);
3416     SDValue CarryExt =
3417         DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One);
3418     SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt);
3419 
3420     // Second check for overflow. If we are adding, we can only overflow if the
3421     // initial sum is all 1s ang the carry is set, resulting in a new sum of 0.
3422     // If we are subtracting, we can only overflow if the initial sum is 0 and
3423     // the carry is set, resulting in a new sum of all 1s.
3424     SDValue Zero = DAG.getConstant(0, dl, VT);
3425     SDValue Overflow2 =
3426         IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ)
3427               : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ);
3428     Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2,
3429                             DAG.getZExtOrTrunc(Carry, dl, SetCCType));
3430 
3431     SDValue ResultCarry =
3432         DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2);
3433 
3434     Results.push_back(Sum2);
3435     Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT));
3436     break;
3437   }
3438   case ISD::SADDO:
3439   case ISD::SSUBO: {
3440     SDValue Result, Overflow;
3441     TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
3442     Results.push_back(Result);
3443     Results.push_back(Overflow);
3444     break;
3445   }
3446   case ISD::UADDO:
3447   case ISD::USUBO: {
3448     SDValue Result, Overflow;
3449     TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
3450     Results.push_back(Result);
3451     Results.push_back(Overflow);
3452     break;
3453   }
3454   case ISD::UMULO:
3455   case ISD::SMULO: {
3456     SDValue Result, Overflow;
3457     if (TLI.expandMULO(Node, Result, Overflow, DAG)) {
3458       Results.push_back(Result);
3459       Results.push_back(Overflow);
3460     }
3461     break;
3462   }
3463   case ISD::BUILD_PAIR: {
3464     EVT PairTy = Node->getValueType(0);
3465     Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3466     Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3467     Tmp2 = DAG.getNode(
3468         ISD::SHL, dl, PairTy, Tmp2,
3469         DAG.getConstant(PairTy.getSizeInBits() / 2, dl,
3470                         TLI.getShiftAmountTy(PairTy, DAG.getDataLayout())));
3471     Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3472     break;
3473   }
3474   case ISD::SELECT:
3475     Tmp1 = Node->getOperand(0);
3476     Tmp2 = Node->getOperand(1);
3477     Tmp3 = Node->getOperand(2);
3478     if (Tmp1.getOpcode() == ISD::SETCC) {
3479       Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3480                              Tmp2, Tmp3,
3481                              cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3482     } else {
3483       Tmp1 = DAG.getSelectCC(dl, Tmp1,
3484                              DAG.getConstant(0, dl, Tmp1.getValueType()),
3485                              Tmp2, Tmp3, ISD::SETNE);
3486     }
3487     Tmp1->setFlags(Node->getFlags());
3488     Results.push_back(Tmp1);
3489     break;
3490   case ISD::BR_JT: {
3491     SDValue Chain = Node->getOperand(0);
3492     SDValue Table = Node->getOperand(1);
3493     SDValue Index = Node->getOperand(2);
3494 
3495     const DataLayout &TD = DAG.getDataLayout();
3496     EVT PTy = TLI.getPointerTy(TD);
3497 
3498     unsigned EntrySize =
3499       DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3500 
3501     // For power-of-two jumptable entry sizes convert multiplication to a shift.
3502     // This transformation needs to be done here since otherwise the MIPS
3503     // backend will end up emitting a three instruction multiply sequence
3504     // instead of a single shift and MSP430 will call a runtime function.
3505     if (llvm::isPowerOf2_32(EntrySize))
3506       Index = DAG.getNode(
3507           ISD::SHL, dl, Index.getValueType(), Index,
3508           DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType()));
3509     else
3510       Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
3511                           DAG.getConstant(EntrySize, dl, Index.getValueType()));
3512     SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(),
3513                                Index, Table);
3514 
3515     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3516     SDValue LD = DAG.getExtLoad(
3517         ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3518         MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT);
3519     Addr = LD;
3520     if (TLI.isJumpTableRelative()) {
3521       // For PIC, the sequence is:
3522       // BRIND(load(Jumptable + index) + RelocBase)
3523       // RelocBase can be JumpTable, GOT or some sort of global base.
3524       Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3525                           TLI.getPICJumpTableRelocBase(Table, DAG));
3526     }
3527 
3528     Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG);
3529     Results.push_back(Tmp1);
3530     break;
3531   }
3532   case ISD::BRCOND:
3533     // Expand brcond's setcc into its constituent parts and create a BR_CC
3534     // Node.
3535     Tmp1 = Node->getOperand(0);
3536     Tmp2 = Node->getOperand(1);
3537     if (Tmp2.getOpcode() == ISD::SETCC) {
3538       Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3539                          Tmp1, Tmp2.getOperand(2),
3540                          Tmp2.getOperand(0), Tmp2.getOperand(1),
3541                          Node->getOperand(2));
3542     } else {
3543       // We test only the i1 bit.  Skip the AND if UNDEF or another AND.
3544       if (Tmp2.isUndef() ||
3545           (Tmp2.getOpcode() == ISD::AND &&
3546            isa<ConstantSDNode>(Tmp2.getOperand(1)) &&
3547            cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1))
3548         Tmp3 = Tmp2;
3549       else
3550         Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3551                            DAG.getConstant(1, dl, Tmp2.getValueType()));
3552       Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3553                          DAG.getCondCode(ISD::SETNE), Tmp3,
3554                          DAG.getConstant(0, dl, Tmp3.getValueType()),
3555                          Node->getOperand(2));
3556     }
3557     Results.push_back(Tmp1);
3558     break;
3559   case ISD::SETCC:
3560   case ISD::STRICT_FSETCC:
3561   case ISD::STRICT_FSETCCS: {
3562     bool IsStrict = Node->getOpcode() != ISD::SETCC;
3563     bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS;
3564     SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
3565     unsigned Offset = IsStrict ? 1 : 0;
3566     Tmp1 = Node->getOperand(0 + Offset);
3567     Tmp2 = Node->getOperand(1 + Offset);
3568     Tmp3 = Node->getOperand(2 + Offset);
3569     bool Legalized =
3570         TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), Tmp1, Tmp2, Tmp3,
3571                                   NeedInvert, dl, Chain, IsSignaling);
3572 
3573     if (Legalized) {
3574       // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3575       // condition code, create a new SETCC node.
3576       if (Tmp3.getNode())
3577         Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3578                            Tmp1, Tmp2, Tmp3, Node->getFlags());
3579 
3580       // If we expanded the SETCC by inverting the condition code, then wrap
3581       // the existing SETCC in a NOT to restore the intended condition.
3582       if (NeedInvert)
3583         Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0));
3584 
3585       Results.push_back(Tmp1);
3586       if (IsStrict)
3587         Results.push_back(Chain);
3588 
3589       break;
3590     }
3591 
3592     // FIXME: It seems Legalized is false iff CCCode is Legal. I don't
3593     // understand if this code is useful for strict nodes.
3594     assert(!IsStrict && "Don't know how to expand for strict nodes.");
3595 
3596     // Otherwise, SETCC for the given comparison type must be completely
3597     // illegal; expand it into a SELECT_CC.
3598     EVT VT = Node->getValueType(0);
3599     int TrueValue;
3600     switch (TLI.getBooleanContents(Tmp1.getValueType())) {
3601     case TargetLowering::ZeroOrOneBooleanContent:
3602     case TargetLowering::UndefinedBooleanContent:
3603       TrueValue = 1;
3604       break;
3605     case TargetLowering::ZeroOrNegativeOneBooleanContent:
3606       TrueValue = -1;
3607       break;
3608     }
3609     Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3610                        DAG.getConstant(TrueValue, dl, VT),
3611                        DAG.getConstant(0, dl, VT),
3612                        Tmp3);
3613     Tmp1->setFlags(Node->getFlags());
3614     Results.push_back(Tmp1);
3615     break;
3616   }
3617   case ISD::SELECT_CC: {
3618     // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS
3619     Tmp1 = Node->getOperand(0);   // LHS
3620     Tmp2 = Node->getOperand(1);   // RHS
3621     Tmp3 = Node->getOperand(2);   // True
3622     Tmp4 = Node->getOperand(3);   // False
3623     EVT VT = Node->getValueType(0);
3624     SDValue Chain;
3625     SDValue CC = Node->getOperand(4);
3626     ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get();
3627 
3628     if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) {
3629       // If the condition code is legal, then we need to expand this
3630       // node using SETCC and SELECT.
3631       EVT CmpVT = Tmp1.getValueType();
3632       assert(!TLI.isOperationExpand(ISD::SELECT, VT) &&
3633              "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
3634              "expanded.");
3635       EVT CCVT = getSetCCResultType(CmpVT);
3636       SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags());
3637       Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4));
3638       break;
3639     }
3640 
3641     // SELECT_CC is legal, so the condition code must not be.
3642     bool Legalized = false;
3643     // Try to legalize by inverting the condition.  This is for targets that
3644     // might support an ordered version of a condition, but not the unordered
3645     // version (or vice versa).
3646     ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType());
3647     if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) {
3648       // Use the new condition code and swap true and false
3649       Legalized = true;
3650       Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC);
3651       Tmp1->setFlags(Node->getFlags());
3652     } else {
3653       // If The inverse is not legal, then try to swap the arguments using
3654       // the inverse condition code.
3655       ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC);
3656       if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) {
3657         // The swapped inverse condition is legal, so swap true and false,
3658         // lhs and rhs.
3659         Legalized = true;
3660         Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC);
3661         Tmp1->setFlags(Node->getFlags());
3662       }
3663     }
3664 
3665     if (!Legalized) {
3666       Legalized = TLI.LegalizeSetCCCondCode(
3667           DAG, getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC,
3668           NeedInvert, dl, Chain);
3669 
3670       assert(Legalized && "Can't legalize SELECT_CC with legal condition!");
3671 
3672       // If we expanded the SETCC by inverting the condition code, then swap
3673       // the True/False operands to match.
3674       if (NeedInvert)
3675         std::swap(Tmp3, Tmp4);
3676 
3677       // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3678       // condition code, create a new SELECT_CC node.
3679       if (CC.getNode()) {
3680         Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0),
3681                            Tmp1, Tmp2, Tmp3, Tmp4, CC);
3682       } else {
3683         Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType());
3684         CC = DAG.getCondCode(ISD::SETNE);
3685         Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1,
3686                            Tmp2, Tmp3, Tmp4, CC);
3687       }
3688       Tmp1->setFlags(Node->getFlags());
3689     }
3690     Results.push_back(Tmp1);
3691     break;
3692   }
3693   case ISD::BR_CC: {
3694     // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS
3695     SDValue Chain;
3696     Tmp1 = Node->getOperand(0);              // Chain
3697     Tmp2 = Node->getOperand(2);              // LHS
3698     Tmp3 = Node->getOperand(3);              // RHS
3699     Tmp4 = Node->getOperand(1);              // CC
3700 
3701     bool Legalized =
3702         TLI.LegalizeSetCCCondCode(DAG, getSetCCResultType(Tmp2.getValueType()),
3703                                   Tmp2, Tmp3, Tmp4, NeedInvert, dl, Chain);
3704     (void)Legalized;
3705     assert(Legalized && "Can't legalize BR_CC with legal condition!");
3706 
3707     // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
3708     // node.
3709     if (Tmp4.getNode()) {
3710       assert(!NeedInvert && "Don't know how to invert BR_CC!");
3711 
3712       Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1,
3713                          Tmp4, Tmp2, Tmp3, Node->getOperand(4));
3714     } else {
3715       Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType());
3716       Tmp4 = DAG.getCondCode(NeedInvert ? ISD::SETEQ : ISD::SETNE);
3717       Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4,
3718                          Tmp2, Tmp3, Node->getOperand(4));
3719     }
3720     Results.push_back(Tmp1);
3721     break;
3722   }
3723   case ISD::BUILD_VECTOR:
3724     Results.push_back(ExpandBUILD_VECTOR(Node));
3725     break;
3726   case ISD::SPLAT_VECTOR:
3727     Results.push_back(ExpandSPLAT_VECTOR(Node));
3728     break;
3729   case ISD::SRA:
3730   case ISD::SRL:
3731   case ISD::SHL: {
3732     // Scalarize vector SRA/SRL/SHL.
3733     EVT VT = Node->getValueType(0);
3734     assert(VT.isVector() && "Unable to legalize non-vector shift");
3735     assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3736     unsigned NumElem = VT.getVectorNumElements();
3737 
3738     SmallVector<SDValue, 8> Scalars;
3739     for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3740       SDValue Ex =
3741           DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(),
3742                       Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl));
3743       SDValue Sh =
3744           DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(),
3745                       Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl));
3746       Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3747                                     VT.getScalarType(), Ex, Sh));
3748     }
3749 
3750     SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars);
3751     Results.push_back(Result);
3752     break;
3753   }
3754   case ISD::VECREDUCE_FADD:
3755   case ISD::VECREDUCE_FMUL:
3756   case ISD::VECREDUCE_ADD:
3757   case ISD::VECREDUCE_MUL:
3758   case ISD::VECREDUCE_AND:
3759   case ISD::VECREDUCE_OR:
3760   case ISD::VECREDUCE_XOR:
3761   case ISD::VECREDUCE_SMAX:
3762   case ISD::VECREDUCE_SMIN:
3763   case ISD::VECREDUCE_UMAX:
3764   case ISD::VECREDUCE_UMIN:
3765   case ISD::VECREDUCE_FMAX:
3766   case ISD::VECREDUCE_FMIN:
3767     Results.push_back(TLI.expandVecReduce(Node, DAG));
3768     break;
3769   case ISD::GLOBAL_OFFSET_TABLE:
3770   case ISD::GlobalAddress:
3771   case ISD::GlobalTLSAddress:
3772   case ISD::ExternalSymbol:
3773   case ISD::ConstantPool:
3774   case ISD::JumpTable:
3775   case ISD::INTRINSIC_W_CHAIN:
3776   case ISD::INTRINSIC_WO_CHAIN:
3777   case ISD::INTRINSIC_VOID:
3778     // FIXME: Custom lowering for these operations shouldn't return null!
3779     // Return true so that we don't call ConvertNodeToLibcall which also won't
3780     // do anything.
3781     return true;
3782   }
3783 
3784   if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) {
3785     // FIXME: We were asked to expand a strict floating-point operation,
3786     // but there is currently no expansion implemented that would preserve
3787     // the "strict" properties.  For now, we just fall back to the non-strict
3788     // version if that is legal on the target.  The actual mutation of the
3789     // operation will happen in SelectionDAGISel::DoInstructionSelection.
3790     switch (Node->getOpcode()) {
3791     default:
3792       if (TLI.getStrictFPOperationAction(Node->getOpcode(),
3793                                          Node->getValueType(0))
3794           == TargetLowering::Legal)
3795         return true;
3796       break;
3797     case ISD::STRICT_FSUB: {
3798       if (TLI.getStrictFPOperationAction(
3799               ISD::STRICT_FSUB, Node->getValueType(0)) == TargetLowering::Legal)
3800         return true;
3801       if (TLI.getStrictFPOperationAction(
3802               ISD::STRICT_FADD, Node->getValueType(0)) != TargetLowering::Legal)
3803         break;
3804 
3805       EVT VT = Node->getValueType(0);
3806       const SDNodeFlags Flags = Node->getFlags();
3807       SDValue Neg = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(2), Flags);
3808       SDValue Fadd = DAG.getNode(ISD::STRICT_FADD, dl, Node->getVTList(),
3809                                  {Node->getOperand(0), Node->getOperand(1), Neg},
3810                          Flags);
3811 
3812       Results.push_back(Fadd);
3813       Results.push_back(Fadd.getValue(1));
3814       break;
3815     }
3816     case ISD::STRICT_SINT_TO_FP:
3817     case ISD::STRICT_UINT_TO_FP:
3818     case ISD::STRICT_LRINT:
3819     case ISD::STRICT_LLRINT:
3820     case ISD::STRICT_LROUND:
3821     case ISD::STRICT_LLROUND:
3822       // These are registered by the operand type instead of the value
3823       // type. Reflect that here.
3824       if (TLI.getStrictFPOperationAction(Node->getOpcode(),
3825                                          Node->getOperand(1).getValueType())
3826           == TargetLowering::Legal)
3827         return true;
3828       break;
3829     }
3830   }
3831 
3832   // Replace the original node with the legalized result.
3833   if (Results.empty()) {
3834     LLVM_DEBUG(dbgs() << "Cannot expand node\n");
3835     return false;
3836   }
3837 
3838   LLVM_DEBUG(dbgs() << "Successfully expanded node\n");
3839   ReplaceNode(Node, Results.data());
3840   return true;
3841 }
3842 
3843 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) {
3844   LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n");
3845   SmallVector<SDValue, 8> Results;
3846   SDLoc dl(Node);
3847   // FIXME: Check flags on the node to see if we can use a finite call.
3848   unsigned Opc = Node->getOpcode();
3849   switch (Opc) {
3850   case ISD::ATOMIC_FENCE: {
3851     // If the target didn't lower this, lower it to '__sync_synchronize()' call
3852     // FIXME: handle "fence singlethread" more efficiently.
3853     TargetLowering::ArgListTy Args;
3854 
3855     TargetLowering::CallLoweringInfo CLI(DAG);
3856     CLI.setDebugLoc(dl)
3857         .setChain(Node->getOperand(0))
3858         .setLibCallee(
3859             CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3860             DAG.getExternalSymbol("__sync_synchronize",
3861                                   TLI.getPointerTy(DAG.getDataLayout())),
3862             std::move(Args));
3863 
3864     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3865 
3866     Results.push_back(CallResult.second);
3867     break;
3868   }
3869   // By default, atomic intrinsics are marked Legal and lowered. Targets
3870   // which don't support them directly, however, may want libcalls, in which
3871   // case they mark them Expand, and we get here.
3872   case ISD::ATOMIC_SWAP:
3873   case ISD::ATOMIC_LOAD_ADD:
3874   case ISD::ATOMIC_LOAD_SUB:
3875   case ISD::ATOMIC_LOAD_AND:
3876   case ISD::ATOMIC_LOAD_CLR:
3877   case ISD::ATOMIC_LOAD_OR:
3878   case ISD::ATOMIC_LOAD_XOR:
3879   case ISD::ATOMIC_LOAD_NAND:
3880   case ISD::ATOMIC_LOAD_MIN:
3881   case ISD::ATOMIC_LOAD_MAX:
3882   case ISD::ATOMIC_LOAD_UMIN:
3883   case ISD::ATOMIC_LOAD_UMAX:
3884   case ISD::ATOMIC_CMP_SWAP: {
3885     MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
3886     AtomicOrdering Order = cast<AtomicSDNode>(Node)->getMergedOrdering();
3887     RTLIB::Libcall LC = RTLIB::getOUTLINE_ATOMIC(Opc, Order, VT);
3888     EVT RetVT = Node->getValueType(0);
3889     TargetLowering::MakeLibCallOptions CallOptions;
3890     SmallVector<SDValue, 4> Ops;
3891     if (TLI.getLibcallName(LC)) {
3892       // If outline atomic available, prepare its arguments and expand.
3893       Ops.append(Node->op_begin() + 2, Node->op_end());
3894       Ops.push_back(Node->getOperand(1));
3895 
3896     } else {
3897       LC = RTLIB::getSYNC(Opc, VT);
3898       assert(LC != RTLIB::UNKNOWN_LIBCALL &&
3899              "Unexpected atomic op or value type!");
3900       // Arguments for expansion to sync libcall
3901       Ops.append(Node->op_begin() + 1, Node->op_end());
3902     }
3903     std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
3904                                                       Ops, CallOptions,
3905                                                       SDLoc(Node),
3906                                                       Node->getOperand(0));
3907     Results.push_back(Tmp.first);
3908     Results.push_back(Tmp.second);
3909     break;
3910   }
3911   case ISD::TRAP: {
3912     // If this operation is not supported, lower it to 'abort()' call
3913     TargetLowering::ArgListTy Args;
3914     TargetLowering::CallLoweringInfo CLI(DAG);
3915     CLI.setDebugLoc(dl)
3916         .setChain(Node->getOperand(0))
3917         .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3918                       DAG.getExternalSymbol(
3919                           "abort", TLI.getPointerTy(DAG.getDataLayout())),
3920                       std::move(Args));
3921     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3922 
3923     Results.push_back(CallResult.second);
3924     break;
3925   }
3926   case ISD::FMINNUM:
3927   case ISD::STRICT_FMINNUM:
3928     ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64,
3929                     RTLIB::FMIN_F80, RTLIB::FMIN_F128,
3930                     RTLIB::FMIN_PPCF128, Results);
3931     break;
3932   case ISD::FMAXNUM:
3933   case ISD::STRICT_FMAXNUM:
3934     ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64,
3935                     RTLIB::FMAX_F80, RTLIB::FMAX_F128,
3936                     RTLIB::FMAX_PPCF128, Results);
3937     break;
3938   case ISD::FSQRT:
3939   case ISD::STRICT_FSQRT:
3940     ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
3941                     RTLIB::SQRT_F80, RTLIB::SQRT_F128,
3942                     RTLIB::SQRT_PPCF128, Results);
3943     break;
3944   case ISD::FCBRT:
3945     ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64,
3946                     RTLIB::CBRT_F80, RTLIB::CBRT_F128,
3947                     RTLIB::CBRT_PPCF128, Results);
3948     break;
3949   case ISD::FSIN:
3950   case ISD::STRICT_FSIN:
3951     ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
3952                     RTLIB::SIN_F80, RTLIB::SIN_F128,
3953                     RTLIB::SIN_PPCF128, Results);
3954     break;
3955   case ISD::FCOS:
3956   case ISD::STRICT_FCOS:
3957     ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
3958                     RTLIB::COS_F80, RTLIB::COS_F128,
3959                     RTLIB::COS_PPCF128, Results);
3960     break;
3961   case ISD::FSINCOS:
3962     // Expand into sincos libcall.
3963     ExpandSinCosLibCall(Node, Results);
3964     break;
3965   case ISD::FLOG:
3966   case ISD::STRICT_FLOG:
3967     ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80,
3968                     RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results);
3969     break;
3970   case ISD::FLOG2:
3971   case ISD::STRICT_FLOG2:
3972     ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80,
3973                     RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results);
3974     break;
3975   case ISD::FLOG10:
3976   case ISD::STRICT_FLOG10:
3977     ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80,
3978                     RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results);
3979     break;
3980   case ISD::FEXP:
3981   case ISD::STRICT_FEXP:
3982     ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80,
3983                     RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results);
3984     break;
3985   case ISD::FEXP2:
3986   case ISD::STRICT_FEXP2:
3987     ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80,
3988                     RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results);
3989     break;
3990   case ISD::FTRUNC:
3991   case ISD::STRICT_FTRUNC:
3992     ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
3993                     RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
3994                     RTLIB::TRUNC_PPCF128, Results);
3995     break;
3996   case ISD::FFLOOR:
3997   case ISD::STRICT_FFLOOR:
3998     ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
3999                     RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
4000                     RTLIB::FLOOR_PPCF128, Results);
4001     break;
4002   case ISD::FCEIL:
4003   case ISD::STRICT_FCEIL:
4004     ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
4005                     RTLIB::CEIL_F80, RTLIB::CEIL_F128,
4006                     RTLIB::CEIL_PPCF128, Results);
4007     break;
4008   case ISD::FRINT:
4009   case ISD::STRICT_FRINT:
4010     ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
4011                     RTLIB::RINT_F80, RTLIB::RINT_F128,
4012                     RTLIB::RINT_PPCF128, Results);
4013     break;
4014   case ISD::FNEARBYINT:
4015   case ISD::STRICT_FNEARBYINT:
4016     ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
4017                     RTLIB::NEARBYINT_F64,
4018                     RTLIB::NEARBYINT_F80,
4019                     RTLIB::NEARBYINT_F128,
4020                     RTLIB::NEARBYINT_PPCF128, Results);
4021     break;
4022   case ISD::FROUND:
4023   case ISD::STRICT_FROUND:
4024     ExpandFPLibCall(Node, RTLIB::ROUND_F32,
4025                     RTLIB::ROUND_F64,
4026                     RTLIB::ROUND_F80,
4027                     RTLIB::ROUND_F128,
4028                     RTLIB::ROUND_PPCF128, Results);
4029     break;
4030   case ISD::FROUNDEVEN:
4031   case ISD::STRICT_FROUNDEVEN:
4032     ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32,
4033                     RTLIB::ROUNDEVEN_F64,
4034                     RTLIB::ROUNDEVEN_F80,
4035                     RTLIB::ROUNDEVEN_F128,
4036                     RTLIB::ROUNDEVEN_PPCF128, Results);
4037     break;
4038   case ISD::FPOWI:
4039   case ISD::STRICT_FPOWI: {
4040     RTLIB::Libcall LC = RTLIB::getPOWI(Node->getSimpleValueType(0));
4041     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fpowi.");
4042     if (!TLI.getLibcallName(LC)) {
4043       // Some targets don't have a powi libcall; use pow instead.
4044       SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node),
4045                                      Node->getValueType(0),
4046                                      Node->getOperand(1));
4047       Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node),
4048                                     Node->getValueType(0), Node->getOperand(0),
4049                                     Exponent));
4050       break;
4051     }
4052     unsigned Offset = Node->isStrictFPOpcode() ? 1 : 0;
4053     bool ExponentHasSizeOfInt =
4054         DAG.getLibInfo().getIntSize() ==
4055         Node->getOperand(1 + Offset).getValueType().getSizeInBits();
4056     if (!ExponentHasSizeOfInt) {
4057       // If the exponent does not match with sizeof(int) a libcall to
4058       // RTLIB::POWI would use the wrong type for the argument.
4059       DAG.getContext()->emitError("POWI exponent does not match sizeof(int)");
4060       Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
4061       break;
4062     }
4063     ExpandFPLibCall(Node, LC, Results);
4064     break;
4065   }
4066   case ISD::FPOW:
4067   case ISD::STRICT_FPOW:
4068     ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80,
4069                     RTLIB::POW_F128, RTLIB::POW_PPCF128, Results);
4070     break;
4071   case ISD::LROUND:
4072   case ISD::STRICT_LROUND:
4073     ExpandArgFPLibCall(Node, RTLIB::LROUND_F32,
4074                        RTLIB::LROUND_F64, RTLIB::LROUND_F80,
4075                        RTLIB::LROUND_F128,
4076                        RTLIB::LROUND_PPCF128, Results);
4077     break;
4078   case ISD::LLROUND:
4079   case ISD::STRICT_LLROUND:
4080     ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32,
4081                        RTLIB::LLROUND_F64, RTLIB::LLROUND_F80,
4082                        RTLIB::LLROUND_F128,
4083                        RTLIB::LLROUND_PPCF128, Results);
4084     break;
4085   case ISD::LRINT:
4086   case ISD::STRICT_LRINT:
4087     ExpandArgFPLibCall(Node, RTLIB::LRINT_F32,
4088                        RTLIB::LRINT_F64, RTLIB::LRINT_F80,
4089                        RTLIB::LRINT_F128,
4090                        RTLIB::LRINT_PPCF128, Results);
4091     break;
4092   case ISD::LLRINT:
4093   case ISD::STRICT_LLRINT:
4094     ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32,
4095                        RTLIB::LLRINT_F64, RTLIB::LLRINT_F80,
4096                        RTLIB::LLRINT_F128,
4097                        RTLIB::LLRINT_PPCF128, Results);
4098     break;
4099   case ISD::FDIV:
4100   case ISD::STRICT_FDIV:
4101     ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
4102                     RTLIB::DIV_F80, RTLIB::DIV_F128,
4103                     RTLIB::DIV_PPCF128, Results);
4104     break;
4105   case ISD::FREM:
4106   case ISD::STRICT_FREM:
4107     ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
4108                     RTLIB::REM_F80, RTLIB::REM_F128,
4109                     RTLIB::REM_PPCF128, Results);
4110     break;
4111   case ISD::FMA:
4112   case ISD::STRICT_FMA:
4113     ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
4114                     RTLIB::FMA_F80, RTLIB::FMA_F128,
4115                     RTLIB::FMA_PPCF128, Results);
4116     break;
4117   case ISD::FADD:
4118   case ISD::STRICT_FADD:
4119     ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64,
4120                     RTLIB::ADD_F80, RTLIB::ADD_F128,
4121                     RTLIB::ADD_PPCF128, Results);
4122     break;
4123   case ISD::FMUL:
4124   case ISD::STRICT_FMUL:
4125     ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64,
4126                     RTLIB::MUL_F80, RTLIB::MUL_F128,
4127                     RTLIB::MUL_PPCF128, Results);
4128     break;
4129   case ISD::FP16_TO_FP:
4130     if (Node->getValueType(0) == MVT::f32) {
4131       Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
4132     }
4133     break;
4134   case ISD::STRICT_FP16_TO_FP: {
4135     if (Node->getValueType(0) == MVT::f32) {
4136       TargetLowering::MakeLibCallOptions CallOptions;
4137       std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(
4138           DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions,
4139           SDLoc(Node), Node->getOperand(0));
4140       Results.push_back(Tmp.first);
4141       Results.push_back(Tmp.second);
4142     }
4143     break;
4144   }
4145   case ISD::FP_TO_FP16: {
4146     RTLIB::Libcall LC =
4147         RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16);
4148     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16");
4149     Results.push_back(ExpandLibCall(LC, Node, false));
4150     break;
4151   }
4152   case ISD::STRICT_SINT_TO_FP:
4153   case ISD::STRICT_UINT_TO_FP:
4154   case ISD::SINT_TO_FP:
4155   case ISD::UINT_TO_FP: {
4156     // TODO - Common the code with DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP
4157     bool IsStrict = Node->isStrictFPOpcode();
4158     bool Signed = Node->getOpcode() == ISD::SINT_TO_FP ||
4159                   Node->getOpcode() == ISD::STRICT_SINT_TO_FP;
4160     EVT SVT = Node->getOperand(IsStrict ? 1 : 0).getValueType();
4161     EVT RVT = Node->getValueType(0);
4162     EVT NVT = EVT();
4163     SDLoc dl(Node);
4164 
4165     // Even if the input is legal, no libcall may exactly match, eg. we don't
4166     // have i1 -> fp conversions. So, it needs to be promoted to a larger type,
4167     // eg: i13 -> fp. Then, look for an appropriate libcall.
4168     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
4169     for (unsigned t = MVT::FIRST_INTEGER_VALUETYPE;
4170          t <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL;
4171          ++t) {
4172       NVT = (MVT::SimpleValueType)t;
4173       // The source needs to big enough to hold the operand.
4174       if (NVT.bitsGE(SVT))
4175         LC = Signed ? RTLIB::getSINTTOFP(NVT, RVT)
4176                     : RTLIB::getUINTTOFP(NVT, RVT);
4177     }
4178     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall");
4179 
4180     SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
4181     // Sign/zero extend the argument if the libcall takes a larger type.
4182     SDValue Op = DAG.getNode(Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl,
4183                              NVT, Node->getOperand(IsStrict ? 1 : 0));
4184     TargetLowering::MakeLibCallOptions CallOptions;
4185     CallOptions.setSExt(Signed);
4186     std::pair<SDValue, SDValue> Tmp =
4187         TLI.makeLibCall(DAG, LC, RVT, Op, CallOptions, dl, Chain);
4188     Results.push_back(Tmp.first);
4189     if (IsStrict)
4190       Results.push_back(Tmp.second);
4191     break;
4192   }
4193   case ISD::FP_TO_SINT:
4194   case ISD::FP_TO_UINT:
4195   case ISD::STRICT_FP_TO_SINT:
4196   case ISD::STRICT_FP_TO_UINT: {
4197     // TODO - Common the code with DAGTypeLegalizer::SoftenFloatOp_FP_TO_XINT.
4198     bool IsStrict = Node->isStrictFPOpcode();
4199     bool Signed = Node->getOpcode() == ISD::FP_TO_SINT ||
4200                   Node->getOpcode() == ISD::STRICT_FP_TO_SINT;
4201 
4202     SDValue Op = Node->getOperand(IsStrict ? 1 : 0);
4203     EVT SVT = Op.getValueType();
4204     EVT RVT = Node->getValueType(0);
4205     EVT NVT = EVT();
4206     SDLoc dl(Node);
4207 
4208     // Even if the result is legal, no libcall may exactly match, eg. we don't
4209     // have fp -> i1 conversions. So, it needs to be promoted to a larger type,
4210     // eg: fp -> i32. Then, look for an appropriate libcall.
4211     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
4212     for (unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE;
4213          IntVT <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL;
4214          ++IntVT) {
4215       NVT = (MVT::SimpleValueType)IntVT;
4216       // The type needs to big enough to hold the result.
4217       if (NVT.bitsGE(RVT))
4218         LC = Signed ? RTLIB::getFPTOSINT(SVT, NVT)
4219                     : RTLIB::getFPTOUINT(SVT, NVT);
4220     }
4221     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall");
4222 
4223     SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
4224     TargetLowering::MakeLibCallOptions CallOptions;
4225     std::pair<SDValue, SDValue> Tmp =
4226         TLI.makeLibCall(DAG, LC, NVT, Op, CallOptions, dl, Chain);
4227 
4228     // Truncate the result if the libcall returns a larger type.
4229     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, RVT, Tmp.first));
4230     if (IsStrict)
4231       Results.push_back(Tmp.second);
4232     break;
4233   }
4234 
4235   case ISD::FP_ROUND:
4236   case ISD::STRICT_FP_ROUND: {
4237     // X = FP_ROUND(Y, TRUNC)
4238     // TRUNC is a flag, which is always an integer that is zero or one.
4239     // If TRUNC is 0, this is a normal rounding, if it is 1, this FP_ROUND
4240     // is known to not change the value of Y.
4241     // We can only expand it into libcall if the TRUNC is 0.
4242     bool IsStrict = Node->isStrictFPOpcode();
4243     SDValue Op = Node->getOperand(IsStrict ? 1 : 0);
4244     SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
4245     EVT VT = Node->getValueType(0);
4246     assert(cast<ConstantSDNode>(Node->getOperand(IsStrict ? 2 : 1))
4247                ->isNullValue() &&
4248            "Unable to expand as libcall if it is not normal rounding");
4249 
4250     RTLIB::Libcall LC = RTLIB::getFPROUND(Op.getValueType(), VT);
4251     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall");
4252 
4253     TargetLowering::MakeLibCallOptions CallOptions;
4254     std::pair<SDValue, SDValue> Tmp =
4255         TLI.makeLibCall(DAG, LC, VT, Op, CallOptions, SDLoc(Node), Chain);
4256     Results.push_back(Tmp.first);
4257     if (IsStrict)
4258       Results.push_back(Tmp.second);
4259     break;
4260   }
4261   case ISD::FP_EXTEND: {
4262     Results.push_back(
4263         ExpandLibCall(RTLIB::getFPEXT(Node->getOperand(0).getValueType(),
4264                                       Node->getValueType(0)),
4265                       Node, false));
4266     break;
4267   }
4268   case ISD::STRICT_FP_EXTEND:
4269   case ISD::STRICT_FP_TO_FP16: {
4270     RTLIB::Libcall LC =
4271         Node->getOpcode() == ISD::STRICT_FP_TO_FP16
4272             ? RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16)
4273             : RTLIB::getFPEXT(Node->getOperand(1).getValueType(),
4274                               Node->getValueType(0));
4275     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall");
4276 
4277     TargetLowering::MakeLibCallOptions CallOptions;
4278     std::pair<SDValue, SDValue> Tmp =
4279         TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1),
4280                         CallOptions, SDLoc(Node), Node->getOperand(0));
4281     Results.push_back(Tmp.first);
4282     Results.push_back(Tmp.second);
4283     break;
4284   }
4285   case ISD::FSUB:
4286   case ISD::STRICT_FSUB:
4287     ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64,
4288                     RTLIB::SUB_F80, RTLIB::SUB_F128,
4289                     RTLIB::SUB_PPCF128, Results);
4290     break;
4291   case ISD::SREM:
4292     Results.push_back(ExpandIntLibCall(Node, true,
4293                                        RTLIB::SREM_I8,
4294                                        RTLIB::SREM_I16, RTLIB::SREM_I32,
4295                                        RTLIB::SREM_I64, RTLIB::SREM_I128));
4296     break;
4297   case ISD::UREM:
4298     Results.push_back(ExpandIntLibCall(Node, false,
4299                                        RTLIB::UREM_I8,
4300                                        RTLIB::UREM_I16, RTLIB::UREM_I32,
4301                                        RTLIB::UREM_I64, RTLIB::UREM_I128));
4302     break;
4303   case ISD::SDIV:
4304     Results.push_back(ExpandIntLibCall(Node, true,
4305                                        RTLIB::SDIV_I8,
4306                                        RTLIB::SDIV_I16, RTLIB::SDIV_I32,
4307                                        RTLIB::SDIV_I64, RTLIB::SDIV_I128));
4308     break;
4309   case ISD::UDIV:
4310     Results.push_back(ExpandIntLibCall(Node, false,
4311                                        RTLIB::UDIV_I8,
4312                                        RTLIB::UDIV_I16, RTLIB::UDIV_I32,
4313                                        RTLIB::UDIV_I64, RTLIB::UDIV_I128));
4314     break;
4315   case ISD::SDIVREM:
4316   case ISD::UDIVREM:
4317     // Expand into divrem libcall
4318     ExpandDivRemLibCall(Node, Results);
4319     break;
4320   case ISD::MUL:
4321     Results.push_back(ExpandIntLibCall(Node, false,
4322                                        RTLIB::MUL_I8,
4323                                        RTLIB::MUL_I16, RTLIB::MUL_I32,
4324                                        RTLIB::MUL_I64, RTLIB::MUL_I128));
4325     break;
4326   case ISD::CTLZ_ZERO_UNDEF:
4327     switch (Node->getSimpleValueType(0).SimpleTy) {
4328     default:
4329       llvm_unreachable("LibCall explicitly requested, but not available");
4330     case MVT::i32:
4331       Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false));
4332       break;
4333     case MVT::i64:
4334       Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false));
4335       break;
4336     case MVT::i128:
4337       Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false));
4338       break;
4339     }
4340     break;
4341   }
4342 
4343   // Replace the original node with the legalized result.
4344   if (!Results.empty()) {
4345     LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n");
4346     ReplaceNode(Node, Results.data());
4347   } else
4348     LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n");
4349 }
4350 
4351 // Determine the vector type to use in place of an original scalar element when
4352 // promoting equally sized vectors.
4353 static MVT getPromotedVectorElementType(const TargetLowering &TLI,
4354                                         MVT EltVT, MVT NewEltVT) {
4355   unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits();
4356   MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt);
4357   assert(TLI.isTypeLegal(MidVT) && "unexpected");
4358   return MidVT;
4359 }
4360 
4361 void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
4362   LLVM_DEBUG(dbgs() << "Trying to promote node\n");
4363   SmallVector<SDValue, 8> Results;
4364   MVT OVT = Node->getSimpleValueType(0);
4365   if (Node->getOpcode() == ISD::UINT_TO_FP ||
4366       Node->getOpcode() == ISD::SINT_TO_FP ||
4367       Node->getOpcode() == ISD::SETCC ||
4368       Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
4369       Node->getOpcode() == ISD::INSERT_VECTOR_ELT) {
4370     OVT = Node->getOperand(0).getSimpleValueType();
4371   }
4372   if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP ||
4373       Node->getOpcode() == ISD::STRICT_SINT_TO_FP ||
4374       Node->getOpcode() == ISD::STRICT_FSETCC ||
4375       Node->getOpcode() == ISD::STRICT_FSETCCS)
4376     OVT = Node->getOperand(1).getSimpleValueType();
4377   if (Node->getOpcode() == ISD::BR_CC ||
4378       Node->getOpcode() == ISD::SELECT_CC)
4379     OVT = Node->getOperand(2).getSimpleValueType();
4380   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
4381   SDLoc dl(Node);
4382   SDValue Tmp1, Tmp2, Tmp3, Tmp4;
4383   switch (Node->getOpcode()) {
4384   case ISD::CTTZ:
4385   case ISD::CTTZ_ZERO_UNDEF:
4386   case ISD::CTLZ:
4387   case ISD::CTLZ_ZERO_UNDEF:
4388   case ISD::CTPOP:
4389     // Zero extend the argument unless its cttz, then use any_extend.
4390     if (Node->getOpcode() == ISD::CTTZ ||
4391         Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF)
4392       Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0));
4393     else
4394       Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4395 
4396     if (Node->getOpcode() == ISD::CTTZ) {
4397       // The count is the same in the promoted type except if the original
4398       // value was zero.  This can be handled by setting the bit just off
4399       // the top of the original type.
4400       auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(),
4401                                         OVT.getSizeInBits());
4402       Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1,
4403                          DAG.getConstant(TopBit, dl, NVT));
4404     }
4405     // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
4406     // already the correct result.
4407     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4408     if (Node->getOpcode() == ISD::CTLZ ||
4409         Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
4410       // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
4411       Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
4412                           DAG.getConstant(NVT.getSizeInBits() -
4413                                           OVT.getSizeInBits(), dl, NVT));
4414     }
4415     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4416     break;
4417   case ISD::BITREVERSE:
4418   case ISD::BSWAP: {
4419     unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
4420     Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4421     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4422     Tmp1 = DAG.getNode(
4423         ISD::SRL, dl, NVT, Tmp1,
4424         DAG.getConstant(DiffBits, dl,
4425                         TLI.getShiftAmountTy(NVT, DAG.getDataLayout())));
4426 
4427     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4428     break;
4429   }
4430   case ISD::FP_TO_UINT:
4431   case ISD::STRICT_FP_TO_UINT:
4432   case ISD::FP_TO_SINT:
4433   case ISD::STRICT_FP_TO_SINT:
4434     PromoteLegalFP_TO_INT(Node, dl, Results);
4435     break;
4436   case ISD::FP_TO_UINT_SAT:
4437   case ISD::FP_TO_SINT_SAT:
4438     Results.push_back(PromoteLegalFP_TO_INT_SAT(Node, dl));
4439     break;
4440   case ISD::UINT_TO_FP:
4441   case ISD::STRICT_UINT_TO_FP:
4442   case ISD::SINT_TO_FP:
4443   case ISD::STRICT_SINT_TO_FP:
4444     PromoteLegalINT_TO_FP(Node, dl, Results);
4445     break;
4446   case ISD::VAARG: {
4447     SDValue Chain = Node->getOperand(0); // Get the chain.
4448     SDValue Ptr = Node->getOperand(1); // Get the pointer.
4449 
4450     unsigned TruncOp;
4451     if (OVT.isVector()) {
4452       TruncOp = ISD::BITCAST;
4453     } else {
4454       assert(OVT.isInteger()
4455         && "VAARG promotion is supported only for vectors or integer types");
4456       TruncOp = ISD::TRUNCATE;
4457     }
4458 
4459     // Perform the larger operation, then convert back
4460     Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
4461              Node->getConstantOperandVal(3));
4462     Chain = Tmp1.getValue(1);
4463 
4464     Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
4465 
4466     // Modified the chain result - switch anything that used the old chain to
4467     // use the new one.
4468     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
4469     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
4470     if (UpdatedNodes) {
4471       UpdatedNodes->insert(Tmp2.getNode());
4472       UpdatedNodes->insert(Chain.getNode());
4473     }
4474     ReplacedNode(Node);
4475     break;
4476   }
4477   case ISD::MUL:
4478   case ISD::SDIV:
4479   case ISD::SREM:
4480   case ISD::UDIV:
4481   case ISD::UREM:
4482   case ISD::AND:
4483   case ISD::OR:
4484   case ISD::XOR: {
4485     unsigned ExtOp, TruncOp;
4486     if (OVT.isVector()) {
4487       ExtOp   = ISD::BITCAST;
4488       TruncOp = ISD::BITCAST;
4489     } else {
4490       assert(OVT.isInteger() && "Cannot promote logic operation");
4491 
4492       switch (Node->getOpcode()) {
4493       default:
4494         ExtOp = ISD::ANY_EXTEND;
4495         break;
4496       case ISD::SDIV:
4497       case ISD::SREM:
4498         ExtOp = ISD::SIGN_EXTEND;
4499         break;
4500       case ISD::UDIV:
4501       case ISD::UREM:
4502         ExtOp = ISD::ZERO_EXTEND;
4503         break;
4504       }
4505       TruncOp = ISD::TRUNCATE;
4506     }
4507     // Promote each of the values to the new type.
4508     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4509     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4510     // Perform the larger operation, then convert back
4511     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4512     Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
4513     break;
4514   }
4515   case ISD::UMUL_LOHI:
4516   case ISD::SMUL_LOHI: {
4517     // Promote to a multiply in a wider integer type.
4518     unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND
4519                                                          : ISD::SIGN_EXTEND;
4520     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4521     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4522     Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2);
4523 
4524     auto &DL = DAG.getDataLayout();
4525     unsigned OriginalSize = OVT.getScalarSizeInBits();
4526     Tmp2 = DAG.getNode(
4527         ISD::SRL, dl, NVT, Tmp1,
4528         DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT)));
4529     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4530     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2));
4531     break;
4532   }
4533   case ISD::SELECT: {
4534     unsigned ExtOp, TruncOp;
4535     if (Node->getValueType(0).isVector() ||
4536         Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) {
4537       ExtOp   = ISD::BITCAST;
4538       TruncOp = ISD::BITCAST;
4539     } else if (Node->getValueType(0).isInteger()) {
4540       ExtOp   = ISD::ANY_EXTEND;
4541       TruncOp = ISD::TRUNCATE;
4542     } else {
4543       ExtOp   = ISD::FP_EXTEND;
4544       TruncOp = ISD::FP_ROUND;
4545     }
4546     Tmp1 = Node->getOperand(0);
4547     // Promote each of the values to the new type.
4548     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4549     Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4550     // Perform the larger operation, then round down.
4551     Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
4552     Tmp1->setFlags(Node->getFlags());
4553     if (TruncOp != ISD::FP_ROUND)
4554       Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
4555     else
4556       Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
4557                          DAG.getIntPtrConstant(0, dl));
4558     Results.push_back(Tmp1);
4559     break;
4560   }
4561   case ISD::VECTOR_SHUFFLE: {
4562     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
4563 
4564     // Cast the two input vectors.
4565     Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
4566     Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
4567 
4568     // Convert the shuffle mask to the right # elements.
4569     Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
4570     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
4571     Results.push_back(Tmp1);
4572     break;
4573   }
4574   case ISD::VECTOR_SPLICE: {
4575     Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0));
4576     Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(1));
4577     Tmp3 = DAG.getNode(ISD::VECTOR_SPLICE, dl, NVT, Tmp1, Tmp2,
4578                        Node->getOperand(2));
4579     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp3));
4580     break;
4581   }
4582   case ISD::SELECT_CC: {
4583     SDValue Cond = Node->getOperand(4);
4584     ISD::CondCode CCCode = cast<CondCodeSDNode>(Cond)->get();
4585     // Type of the comparison operands.
4586     MVT CVT = Node->getSimpleValueType(0);
4587     assert(CVT == OVT && "not handled");
4588 
4589     unsigned ExtOp = ISD::FP_EXTEND;
4590     if (NVT.isInteger()) {
4591       ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4592     }
4593 
4594     // Promote the comparison operands, if needed.
4595     if (TLI.isCondCodeLegal(CCCode, CVT)) {
4596       Tmp1 = Node->getOperand(0);
4597       Tmp2 = Node->getOperand(1);
4598     } else {
4599       Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4600       Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4601     }
4602     // Cast the true/false operands.
4603     Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4604     Tmp4 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3));
4605 
4606     Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, NVT, {Tmp1, Tmp2, Tmp3, Tmp4, Cond},
4607                        Node->getFlags());
4608 
4609     // Cast the result back to the original type.
4610     if (ExtOp != ISD::FP_EXTEND)
4611       Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1);
4612     else
4613       Tmp1 = DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp1,
4614                          DAG.getIntPtrConstant(0, dl));
4615 
4616     Results.push_back(Tmp1);
4617     break;
4618   }
4619   case ISD::SETCC:
4620   case ISD::STRICT_FSETCC:
4621   case ISD::STRICT_FSETCCS: {
4622     unsigned ExtOp = ISD::FP_EXTEND;
4623     if (NVT.isInteger()) {
4624       ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get();
4625       ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4626     }
4627     if (Node->isStrictFPOpcode()) {
4628       SDValue InChain = Node->getOperand(0);
4629       std::tie(Tmp1, std::ignore) =
4630           DAG.getStrictFPExtendOrRound(Node->getOperand(1), InChain, dl, NVT);
4631       std::tie(Tmp2, std::ignore) =
4632           DAG.getStrictFPExtendOrRound(Node->getOperand(2), InChain, dl, NVT);
4633       SmallVector<SDValue, 2> TmpChains = {Tmp1.getValue(1), Tmp2.getValue(1)};
4634       SDValue OutChain = DAG.getTokenFactor(dl, TmpChains);
4635       SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
4636       Results.push_back(DAG.getNode(Node->getOpcode(), dl, VTs,
4637                                     {OutChain, Tmp1, Tmp2, Node->getOperand(3)},
4638                                     Node->getFlags()));
4639       Results.push_back(Results.back().getValue(1));
4640       break;
4641     }
4642     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4643     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4644     Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1,
4645                                   Tmp2, Node->getOperand(2), Node->getFlags()));
4646     break;
4647   }
4648   case ISD::BR_CC: {
4649     unsigned ExtOp = ISD::FP_EXTEND;
4650     if (NVT.isInteger()) {
4651       ISD::CondCode CCCode =
4652         cast<CondCodeSDNode>(Node->getOperand(1))->get();
4653       ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4654     }
4655     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4656     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3));
4657     Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0),
4658                                   Node->getOperand(0), Node->getOperand(1),
4659                                   Tmp1, Tmp2, Node->getOperand(4)));
4660     break;
4661   }
4662   case ISD::FADD:
4663   case ISD::FSUB:
4664   case ISD::FMUL:
4665   case ISD::FDIV:
4666   case ISD::FREM:
4667   case ISD::FMINNUM:
4668   case ISD::FMAXNUM:
4669   case ISD::FPOW:
4670     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4671     Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4672     Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2,
4673                        Node->getFlags());
4674     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4675                                   Tmp3, DAG.getIntPtrConstant(0, dl)));
4676     break;
4677   case ISD::STRICT_FREM:
4678   case ISD::STRICT_FPOW:
4679     Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4680                        {Node->getOperand(0), Node->getOperand(1)});
4681     Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4682                        {Node->getOperand(0), Node->getOperand(2)});
4683     Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1),
4684                        Tmp2.getValue(1));
4685     Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other},
4686                        {Tmp3, Tmp1, Tmp2});
4687     Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other},
4688                        {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)});
4689     Results.push_back(Tmp1);
4690     Results.push_back(Tmp1.getValue(1));
4691     break;
4692   case ISD::FMA:
4693     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4694     Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4695     Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2));
4696     Results.push_back(
4697         DAG.getNode(ISD::FP_ROUND, dl, OVT,
4698                     DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3),
4699                     DAG.getIntPtrConstant(0, dl)));
4700     break;
4701   case ISD::FCOPYSIGN:
4702   case ISD::FPOWI: {
4703     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4704     Tmp2 = Node->getOperand(1);
4705     Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4706 
4707     // fcopysign doesn't change anything but the sign bit, so
4708     //   (fp_round (fcopysign (fpext a), b))
4709     // is as precise as
4710     //   (fp_round (fpext a))
4711     // which is a no-op. Mark it as a TRUNCating FP_ROUND.
4712     const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN);
4713     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4714                                   Tmp3, DAG.getIntPtrConstant(isTrunc, dl)));
4715     break;
4716   }
4717   case ISD::FFLOOR:
4718   case ISD::FCEIL:
4719   case ISD::FRINT:
4720   case ISD::FNEARBYINT:
4721   case ISD::FROUND:
4722   case ISD::FROUNDEVEN:
4723   case ISD::FTRUNC:
4724   case ISD::FNEG:
4725   case ISD::FSQRT:
4726   case ISD::FSIN:
4727   case ISD::FCOS:
4728   case ISD::FLOG:
4729   case ISD::FLOG2:
4730   case ISD::FLOG10:
4731   case ISD::FABS:
4732   case ISD::FEXP:
4733   case ISD::FEXP2:
4734     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4735     Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4736     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4737                                   Tmp2, DAG.getIntPtrConstant(0, dl)));
4738     break;
4739   case ISD::STRICT_FFLOOR:
4740   case ISD::STRICT_FCEIL:
4741   case ISD::STRICT_FSIN:
4742   case ISD::STRICT_FCOS:
4743   case ISD::STRICT_FLOG:
4744   case ISD::STRICT_FLOG10:
4745   case ISD::STRICT_FEXP:
4746     Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4747                        {Node->getOperand(0), Node->getOperand(1)});
4748     Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other},
4749                        {Tmp1.getValue(1), Tmp1});
4750     Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other},
4751                        {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)});
4752     Results.push_back(Tmp3);
4753     Results.push_back(Tmp3.getValue(1));
4754     break;
4755   case ISD::BUILD_VECTOR: {
4756     MVT EltVT = OVT.getVectorElementType();
4757     MVT NewEltVT = NVT.getVectorElementType();
4758 
4759     // Handle bitcasts to a different vector type with the same total bit size
4760     //
4761     // e.g. v2i64 = build_vector i64:x, i64:y => v4i32
4762     //  =>
4763     //  v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y))
4764 
4765     assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4766            "Invalid promote type for build_vector");
4767     assert(NewEltVT.bitsLT(EltVT) && "not handled");
4768 
4769     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4770 
4771     SmallVector<SDValue, 8> NewOps;
4772     for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) {
4773       SDValue Op = Node->getOperand(I);
4774       NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op));
4775     }
4776 
4777     SDLoc SL(Node);
4778     SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps);
4779     SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4780     Results.push_back(CvtVec);
4781     break;
4782   }
4783   case ISD::EXTRACT_VECTOR_ELT: {
4784     MVT EltVT = OVT.getVectorElementType();
4785     MVT NewEltVT = NVT.getVectorElementType();
4786 
4787     // Handle bitcasts to a different vector type with the same total bit size.
4788     //
4789     // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32
4790     //  =>
4791     //  v4i32:castx = bitcast x:v2i64
4792     //
4793     // i64 = bitcast
4794     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
4795     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
4796     //
4797 
4798     assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4799            "Invalid promote type for extract_vector_elt");
4800     assert(NewEltVT.bitsLT(EltVT) && "not handled");
4801 
4802     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4803     unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4804 
4805     SDValue Idx = Node->getOperand(1);
4806     EVT IdxVT = Idx.getValueType();
4807     SDLoc SL(Node);
4808     SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT);
4809     SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4810 
4811     SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4812 
4813     SmallVector<SDValue, 8> NewOps;
4814     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4815       SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4816       SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4817 
4818       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4819                                 CastVec, TmpIdx);
4820       NewOps.push_back(Elt);
4821     }
4822 
4823     SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps);
4824     Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec));
4825     break;
4826   }
4827   case ISD::INSERT_VECTOR_ELT: {
4828     MVT EltVT = OVT.getVectorElementType();
4829     MVT NewEltVT = NVT.getVectorElementType();
4830 
4831     // Handle bitcasts to a different vector type with the same total bit size
4832     //
4833     // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32
4834     //  =>
4835     //  v4i32:castx = bitcast x:v2i64
4836     //  v2i32:casty = bitcast y:i64
4837     //
4838     // v2i64 = bitcast
4839     //   (v4i32 insert_vector_elt
4840     //       (v4i32 insert_vector_elt v4i32:castx,
4841     //                                (extract_vector_elt casty, 0), 2 * z),
4842     //        (extract_vector_elt casty, 1), (2 * z + 1))
4843 
4844     assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4845            "Invalid promote type for insert_vector_elt");
4846     assert(NewEltVT.bitsLT(EltVT) && "not handled");
4847 
4848     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4849     unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4850 
4851     SDValue Val = Node->getOperand(1);
4852     SDValue Idx = Node->getOperand(2);
4853     EVT IdxVT = Idx.getValueType();
4854     SDLoc SL(Node);
4855 
4856     SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT);
4857     SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4858 
4859     SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4860     SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4861 
4862     SDValue NewVec = CastVec;
4863     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4864       SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4865       SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4866 
4867       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4868                                 CastVal, IdxOffset);
4869 
4870       NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT,
4871                            NewVec, Elt, InEltIdx);
4872     }
4873 
4874     Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec));
4875     break;
4876   }
4877   case ISD::SCALAR_TO_VECTOR: {
4878     MVT EltVT = OVT.getVectorElementType();
4879     MVT NewEltVT = NVT.getVectorElementType();
4880 
4881     // Handle bitcasts to different vector type with the same total bit size.
4882     //
4883     // e.g. v2i64 = scalar_to_vector x:i64
4884     //   =>
4885     //  concat_vectors (v2i32 bitcast x:i64), (v2i32 undef)
4886     //
4887 
4888     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4889     SDValue Val = Node->getOperand(0);
4890     SDLoc SL(Node);
4891 
4892     SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4893     SDValue Undef = DAG.getUNDEF(MidVT);
4894 
4895     SmallVector<SDValue, 8> NewElts;
4896     NewElts.push_back(CastVal);
4897     for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I)
4898       NewElts.push_back(Undef);
4899 
4900     SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts);
4901     SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4902     Results.push_back(CvtVec);
4903     break;
4904   }
4905   case ISD::ATOMIC_SWAP: {
4906     AtomicSDNode *AM = cast<AtomicSDNode>(Node);
4907     SDLoc SL(Node);
4908     SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal());
4909     assert(NVT.getSizeInBits() == OVT.getSizeInBits() &&
4910            "unexpected promotion type");
4911     assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() &&
4912            "unexpected atomic_swap with illegal type");
4913 
4914     SDValue NewAtomic
4915       = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT,
4916                       DAG.getVTList(NVT, MVT::Other),
4917                       { AM->getChain(), AM->getBasePtr(), CastVal },
4918                       AM->getMemOperand());
4919     Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic));
4920     Results.push_back(NewAtomic.getValue(1));
4921     break;
4922   }
4923   }
4924 
4925   // Replace the original node with the legalized result.
4926   if (!Results.empty()) {
4927     LLVM_DEBUG(dbgs() << "Successfully promoted node\n");
4928     ReplaceNode(Node, Results.data());
4929   } else
4930     LLVM_DEBUG(dbgs() << "Could not promote node\n");
4931 }
4932 
4933 /// This is the entry point for the file.
4934 void SelectionDAG::Legalize() {
4935   AssignTopologicalOrder();
4936 
4937   SmallPtrSet<SDNode *, 16> LegalizedNodes;
4938   // Use a delete listener to remove nodes which were deleted during
4939   // legalization from LegalizeNodes. This is needed to handle the situation
4940   // where a new node is allocated by the object pool to the same address of a
4941   // previously deleted node.
4942   DAGNodeDeletedListener DeleteListener(
4943       *this,
4944       [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); });
4945 
4946   SelectionDAGLegalize Legalizer(*this, LegalizedNodes);
4947 
4948   // Visit all the nodes. We start in topological order, so that we see
4949   // nodes with their original operands intact. Legalization can produce
4950   // new nodes which may themselves need to be legalized. Iterate until all
4951   // nodes have been legalized.
4952   while (true) {
4953     bool AnyLegalized = false;
4954     for (auto NI = allnodes_end(); NI != allnodes_begin();) {
4955       --NI;
4956 
4957       SDNode *N = &*NI;
4958       if (N->use_empty() && N != getRoot().getNode()) {
4959         ++NI;
4960         DeleteNode(N);
4961         continue;
4962       }
4963 
4964       if (LegalizedNodes.insert(N).second) {
4965         AnyLegalized = true;
4966         Legalizer.LegalizeOp(N);
4967 
4968         if (N->use_empty() && N != getRoot().getNode()) {
4969           ++NI;
4970           DeleteNode(N);
4971         }
4972       }
4973     }
4974     if (!AnyLegalized)
4975       break;
4976 
4977   }
4978 
4979   // Remove dead nodes now.
4980   RemoveDeadNodes();
4981 }
4982 
4983 bool SelectionDAG::LegalizeOp(SDNode *N,
4984                               SmallSetVector<SDNode *, 16> &UpdatedNodes) {
4985   SmallPtrSet<SDNode *, 16> LegalizedNodes;
4986   SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes);
4987 
4988   // Directly insert the node in question, and legalize it. This will recurse
4989   // as needed through operands.
4990   LegalizedNodes.insert(N);
4991   Legalizer.LegalizeOp(N);
4992 
4993   return LegalizedNodes.count(N);
4994 }
4995