1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::Legalize method. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/FloatingPointMode.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/CodeGen/ISDOpcodes.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/RuntimeLibcalls.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/SelectionDAGNodes.h" 29 #include "llvm/CodeGen/TargetFrameLowering.h" 30 #include "llvm/CodeGen/TargetLowering.h" 31 #include "llvm/CodeGen/TargetSubtargetInfo.h" 32 #include "llvm/CodeGen/ValueTypes.h" 33 #include "llvm/IR/CallingConv.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Compiler.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/MachineValueType.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include <cassert> 50 #include <cstdint> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "legalizedag" 57 58 namespace { 59 60 /// Keeps track of state when getting the sign of a floating-point value as an 61 /// integer. 62 struct FloatSignAsInt { 63 EVT FloatVT; 64 SDValue Chain; 65 SDValue FloatPtr; 66 SDValue IntPtr; 67 MachinePointerInfo IntPointerInfo; 68 MachinePointerInfo FloatPointerInfo; 69 SDValue IntValue; 70 APInt SignMask; 71 uint8_t SignBit; 72 }; 73 74 //===----------------------------------------------------------------------===// 75 /// This takes an arbitrary SelectionDAG as input and 76 /// hacks on it until the target machine can handle it. This involves 77 /// eliminating value sizes the machine cannot handle (promoting small sizes to 78 /// large sizes or splitting up large values into small values) as well as 79 /// eliminating operations the machine cannot handle. 80 /// 81 /// This code also does a small amount of optimization and recognition of idioms 82 /// as part of its processing. For example, if a target does not support a 83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 84 /// will attempt merge setcc and brc instructions into brcc's. 85 class SelectionDAGLegalize { 86 const TargetMachine &TM; 87 const TargetLowering &TLI; 88 SelectionDAG &DAG; 89 90 /// The set of nodes which have already been legalized. We hold a 91 /// reference to it in order to update as necessary on node deletion. 92 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 93 94 /// A set of all the nodes updated during legalization. 95 SmallSetVector<SDNode *, 16> *UpdatedNodes; 96 97 EVT getSetCCResultType(EVT VT) const { 98 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 99 } 100 101 // Libcall insertion helpers. 102 103 public: 104 SelectionDAGLegalize(SelectionDAG &DAG, 105 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 106 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 107 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 108 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 109 110 /// Legalizes the given operation. 111 void LegalizeOp(SDNode *Node); 112 113 private: 114 SDValue OptimizeFloatStore(StoreSDNode *ST); 115 116 void LegalizeLoadOps(SDNode *Node); 117 void LegalizeStoreOps(SDNode *Node); 118 119 /// Some targets cannot handle a variable 120 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 121 /// is necessary to spill the vector being inserted into to memory, perform 122 /// the insert there, and then read the result back. 123 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 124 const SDLoc &dl); 125 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 126 const SDLoc &dl); 127 128 /// Return a vector shuffle operation which 129 /// performs the same shuffe in terms of order or result bytes, but on a type 130 /// whose vector element type is narrower than the original shuffle type. 131 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 132 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 133 SDValue N1, SDValue N2, 134 ArrayRef<int> Mask) const; 135 136 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 137 138 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall LC, 139 SmallVectorImpl<SDValue> &Results); 140 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 141 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 142 RTLIB::Libcall Call_F128, 143 RTLIB::Libcall Call_PPCF128, 144 SmallVectorImpl<SDValue> &Results); 145 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, RTLIB::Libcall Call_I8, 146 RTLIB::Libcall Call_I16, RTLIB::Libcall Call_I32, 147 RTLIB::Libcall Call_I64, RTLIB::Libcall Call_I128, 148 RTLIB::Libcall Call_IEXT); 149 void ExpandArgFPLibCall(SDNode *Node, 150 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, 151 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, 152 RTLIB::Libcall Call_PPCF128, 153 SmallVectorImpl<SDValue> &Results); 154 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 155 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 156 157 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 158 const SDLoc &dl); 159 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 160 const SDLoc &dl, SDValue ChainIn); 161 SDValue ExpandBUILD_VECTOR(SDNode *Node); 162 SDValue ExpandSPLAT_VECTOR(SDNode *Node); 163 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 164 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 165 SmallVectorImpl<SDValue> &Results); 166 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 167 SDValue Value) const; 168 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 169 SDValue NewIntValue) const; 170 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 171 SDValue ExpandFABS(SDNode *Node) const; 172 SDValue ExpandFNEG(SDNode *Node) const; 173 SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain); 174 void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl, 175 SmallVectorImpl<SDValue> &Results); 176 void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 177 SmallVectorImpl<SDValue> &Results); 178 SDValue PromoteLegalFP_TO_INT_SAT(SDNode *Node, const SDLoc &dl); 179 180 SDValue ExpandPARITY(SDValue Op, const SDLoc &dl); 181 182 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 183 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 184 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 185 186 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 187 SDValue ExpandConstant(ConstantSDNode *CP); 188 189 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 190 bool ExpandNode(SDNode *Node); 191 void ConvertNodeToLibcall(SDNode *Node); 192 void PromoteNode(SDNode *Node); 193 194 public: 195 // Node replacement helpers 196 197 void ReplacedNode(SDNode *N) { 198 LegalizedNodes.erase(N); 199 if (UpdatedNodes) 200 UpdatedNodes->insert(N); 201 } 202 203 void ReplaceNode(SDNode *Old, SDNode *New) { 204 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 205 dbgs() << " with: "; New->dump(&DAG)); 206 207 assert(Old->getNumValues() == New->getNumValues() && 208 "Replacing one node with another that produces a different number " 209 "of values!"); 210 DAG.ReplaceAllUsesWith(Old, New); 211 if (UpdatedNodes) 212 UpdatedNodes->insert(New); 213 ReplacedNode(Old); 214 } 215 216 void ReplaceNode(SDValue Old, SDValue New) { 217 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 218 dbgs() << " with: "; New->dump(&DAG)); 219 220 DAG.ReplaceAllUsesWith(Old, New); 221 if (UpdatedNodes) 222 UpdatedNodes->insert(New.getNode()); 223 ReplacedNode(Old.getNode()); 224 } 225 226 void ReplaceNode(SDNode *Old, const SDValue *New) { 227 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 228 229 DAG.ReplaceAllUsesWith(Old, New); 230 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 231 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); 232 New[i]->dump(&DAG)); 233 if (UpdatedNodes) 234 UpdatedNodes->insert(New[i].getNode()); 235 } 236 ReplacedNode(Old); 237 } 238 239 void ReplaceNodeWithValue(SDValue Old, SDValue New) { 240 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 241 dbgs() << " with: "; New->dump(&DAG)); 242 243 DAG.ReplaceAllUsesOfValueWith(Old, New); 244 if (UpdatedNodes) 245 UpdatedNodes->insert(New.getNode()); 246 ReplacedNode(Old.getNode()); 247 } 248 }; 249 250 } // end anonymous namespace 251 252 /// Return a vector shuffle operation which 253 /// performs the same shuffle in terms of order or result bytes, but on a type 254 /// whose vector element type is narrower than the original shuffle type. 255 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 256 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 257 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 258 ArrayRef<int> Mask) const { 259 unsigned NumMaskElts = VT.getVectorNumElements(); 260 unsigned NumDestElts = NVT.getVectorNumElements(); 261 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 262 263 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 264 265 if (NumEltsGrowth == 1) 266 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 267 268 SmallVector<int, 8> NewMask; 269 for (unsigned i = 0; i != NumMaskElts; ++i) { 270 int Idx = Mask[i]; 271 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 272 if (Idx < 0) 273 NewMask.push_back(-1); 274 else 275 NewMask.push_back(Idx * NumEltsGrowth + j); 276 } 277 } 278 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 279 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 280 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 281 } 282 283 /// Expands the ConstantFP node to an integer constant or 284 /// a load from the constant pool. 285 SDValue 286 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 287 bool Extend = false; 288 SDLoc dl(CFP); 289 290 // If a FP immediate is precise when represented as a float and if the 291 // target can do an extending load from float to double, we put it into 292 // the constant pool as a float, even if it's is statically typed as a 293 // double. This shrinks FP constants and canonicalizes them for targets where 294 // an FP extending load is the same cost as a normal load (such as on the x87 295 // fp stack or PPC FP unit). 296 EVT VT = CFP->getValueType(0); 297 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 298 if (!UseCP) { 299 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 300 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 301 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 302 } 303 304 APFloat APF = CFP->getValueAPF(); 305 EVT OrigVT = VT; 306 EVT SVT = VT; 307 308 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 309 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 310 if (!APF.isSignaling()) { 311 while (SVT != MVT::f32 && SVT != MVT::f16) { 312 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 313 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 314 // Only do this if the target has a native EXTLOAD instruction from 315 // smaller type. 316 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 317 TLI.ShouldShrinkFPConstant(OrigVT)) { 318 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 319 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 320 VT = SVT; 321 Extend = true; 322 } 323 } 324 } 325 326 SDValue CPIdx = 327 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 328 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 329 if (Extend) { 330 SDValue Result = DAG.getExtLoad( 331 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 332 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 333 Alignment); 334 return Result; 335 } 336 SDValue Result = DAG.getLoad( 337 OrigVT, dl, DAG.getEntryNode(), CPIdx, 338 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 339 return Result; 340 } 341 342 /// Expands the Constant node to a load from the constant pool. 343 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 344 SDLoc dl(CP); 345 EVT VT = CP->getValueType(0); 346 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 347 TLI.getPointerTy(DAG.getDataLayout())); 348 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 349 SDValue Result = DAG.getLoad( 350 VT, dl, DAG.getEntryNode(), CPIdx, 351 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 352 return Result; 353 } 354 355 /// Some target cannot handle a variable insertion index for the 356 /// INSERT_VECTOR_ELT instruction. In this case, it 357 /// is necessary to spill the vector being inserted into to memory, perform 358 /// the insert there, and then read the result back. 359 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 360 SDValue Val, 361 SDValue Idx, 362 const SDLoc &dl) { 363 SDValue Tmp1 = Vec; 364 SDValue Tmp2 = Val; 365 SDValue Tmp3 = Idx; 366 367 // If the target doesn't support this, we have to spill the input vector 368 // to a temporary stack slot, update the element, then reload it. This is 369 // badness. We could also load the value into a vector register (either 370 // with a "move to register" or "extload into register" instruction, then 371 // permute it into place, if the idx is a constant and if the idx is 372 // supported by the target. 373 EVT VT = Tmp1.getValueType(); 374 EVT EltVT = VT.getVectorElementType(); 375 SDValue StackPtr = DAG.CreateStackTemporary(VT); 376 377 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 378 379 // Store the vector. 380 SDValue Ch = DAG.getStore( 381 DAG.getEntryNode(), dl, Tmp1, StackPtr, 382 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 383 384 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 385 386 // Store the scalar value. 387 Ch = DAG.getTruncStore( 388 Ch, dl, Tmp2, StackPtr2, 389 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT); 390 // Load the updated vector. 391 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 392 DAG.getMachineFunction(), SPFI)); 393 } 394 395 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 396 SDValue Idx, 397 const SDLoc &dl) { 398 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 399 // SCALAR_TO_VECTOR requires that the type of the value being inserted 400 // match the element type of the vector being created, except for 401 // integers in which case the inserted value can be over width. 402 EVT EltVT = Vec.getValueType().getVectorElementType(); 403 if (Val.getValueType() == EltVT || 404 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 405 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 406 Vec.getValueType(), Val); 407 408 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 409 // We generate a shuffle of InVec and ScVec, so the shuffle mask 410 // should be 0,1,2,3,4,5... with the appropriate element replaced with 411 // elt 0 of the RHS. 412 SmallVector<int, 8> ShufOps; 413 for (unsigned i = 0; i != NumElts; ++i) 414 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 415 416 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 417 } 418 } 419 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 420 } 421 422 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 423 if (!ISD::isNormalStore(ST)) 424 return SDValue(); 425 426 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); 427 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 428 // FIXME: move this to the DAG Combiner! Note that we can't regress due 429 // to phase ordering between legalized code and the dag combiner. This 430 // probably means that we need to integrate dag combiner and legalizer 431 // together. 432 // We generally can't do this one for long doubles. 433 SDValue Chain = ST->getChain(); 434 SDValue Ptr = ST->getBasePtr(); 435 SDValue Value = ST->getValue(); 436 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 437 AAMDNodes AAInfo = ST->getAAInfo(); 438 SDLoc dl(ST); 439 440 // Don't optimise TargetConstantFP 441 if (Value.getOpcode() == ISD::TargetConstantFP) 442 return SDValue(); 443 444 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) { 445 if (CFP->getValueType(0) == MVT::f32 && 446 TLI.isTypeLegal(MVT::i32)) { 447 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 448 bitcastToAPInt().zextOrTrunc(32), 449 SDLoc(CFP), MVT::i32); 450 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 451 ST->getOriginalAlign(), MMOFlags, AAInfo); 452 } 453 454 if (CFP->getValueType(0) == MVT::f64) { 455 // If this target supports 64-bit registers, do a single 64-bit store. 456 if (TLI.isTypeLegal(MVT::i64)) { 457 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 458 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 459 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 460 ST->getOriginalAlign(), MMOFlags, AAInfo); 461 } 462 463 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 464 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 465 // stores. If the target supports neither 32- nor 64-bits, this 466 // xform is certainly not worth it. 467 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 468 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 469 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 470 if (DAG.getDataLayout().isBigEndian()) 471 std::swap(Lo, Hi); 472 473 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), 474 ST->getOriginalAlign(), MMOFlags, AAInfo); 475 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), dl); 476 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 477 ST->getPointerInfo().getWithOffset(4), 478 ST->getOriginalAlign(), MMOFlags, AAInfo); 479 480 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 481 } 482 } 483 } 484 return SDValue(); 485 } 486 487 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 488 StoreSDNode *ST = cast<StoreSDNode>(Node); 489 SDValue Chain = ST->getChain(); 490 SDValue Ptr = ST->getBasePtr(); 491 SDLoc dl(Node); 492 493 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 494 AAMDNodes AAInfo = ST->getAAInfo(); 495 496 if (!ST->isTruncatingStore()) { 497 LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); 498 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 499 ReplaceNode(ST, OptStore); 500 return; 501 } 502 503 SDValue Value = ST->getValue(); 504 MVT VT = Value.getSimpleValueType(); 505 switch (TLI.getOperationAction(ISD::STORE, VT)) { 506 default: llvm_unreachable("This action is not supported yet!"); 507 case TargetLowering::Legal: { 508 // If this is an unaligned store and the target doesn't support it, 509 // expand it. 510 EVT MemVT = ST->getMemoryVT(); 511 const DataLayout &DL = DAG.getDataLayout(); 512 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 513 *ST->getMemOperand())) { 514 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 515 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 516 ReplaceNode(SDValue(ST, 0), Result); 517 } else 518 LLVM_DEBUG(dbgs() << "Legal store\n"); 519 break; 520 } 521 case TargetLowering::Custom: { 522 LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); 523 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 524 if (Res && Res != SDValue(Node, 0)) 525 ReplaceNode(SDValue(Node, 0), Res); 526 return; 527 } 528 case TargetLowering::Promote: { 529 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 530 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 531 "Can only promote stores to same size type"); 532 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 533 SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 534 ST->getOriginalAlign(), MMOFlags, AAInfo); 535 ReplaceNode(SDValue(Node, 0), Result); 536 break; 537 } 538 } 539 return; 540 } 541 542 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); 543 SDValue Value = ST->getValue(); 544 EVT StVT = ST->getMemoryVT(); 545 TypeSize StWidth = StVT.getSizeInBits(); 546 TypeSize StSize = StVT.getStoreSizeInBits(); 547 auto &DL = DAG.getDataLayout(); 548 549 if (StWidth != StSize) { 550 // Promote to a byte-sized store with upper bits zero if not 551 // storing an integral number of bytes. For example, promote 552 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 553 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StSize.getFixedSize()); 554 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 555 SDValue Result = 556 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 557 ST->getOriginalAlign(), MMOFlags, AAInfo); 558 ReplaceNode(SDValue(Node, 0), Result); 559 } else if (!StVT.isVector() && !isPowerOf2_64(StWidth.getFixedSize())) { 560 // If not storing a power-of-2 number of bits, expand as two stores. 561 assert(!StVT.isVector() && "Unsupported truncstore!"); 562 unsigned StWidthBits = StWidth.getFixedSize(); 563 unsigned LogStWidth = Log2_32(StWidthBits); 564 assert(LogStWidth < 32); 565 unsigned RoundWidth = 1 << LogStWidth; 566 assert(RoundWidth < StWidthBits); 567 unsigned ExtraWidth = StWidthBits - RoundWidth; 568 assert(ExtraWidth < RoundWidth); 569 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 570 "Store size not an integral number of bytes!"); 571 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 572 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 573 SDValue Lo, Hi; 574 unsigned IncrementSize; 575 576 if (DL.isLittleEndian()) { 577 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 578 // Store the bottom RoundWidth bits. 579 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 580 RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 581 582 // Store the remaining ExtraWidth bits. 583 IncrementSize = RoundWidth / 8; 584 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 585 Hi = DAG.getNode( 586 ISD::SRL, dl, Value.getValueType(), Value, 587 DAG.getConstant(RoundWidth, dl, 588 TLI.getShiftAmountTy(Value.getValueType(), DL))); 589 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, 590 ST->getPointerInfo().getWithOffset(IncrementSize), 591 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 592 } else { 593 // Big endian - avoid unaligned stores. 594 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 595 // Store the top RoundWidth bits. 596 Hi = DAG.getNode( 597 ISD::SRL, dl, Value.getValueType(), Value, 598 DAG.getConstant(ExtraWidth, dl, 599 TLI.getShiftAmountTy(Value.getValueType(), DL))); 600 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT, 601 ST->getOriginalAlign(), MMOFlags, AAInfo); 602 603 // Store the remaining ExtraWidth bits. 604 IncrementSize = RoundWidth / 8; 605 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 606 DAG.getConstant(IncrementSize, dl, 607 Ptr.getValueType())); 608 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, 609 ST->getPointerInfo().getWithOffset(IncrementSize), 610 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 611 } 612 613 // The order of the stores doesn't matter. 614 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 615 ReplaceNode(SDValue(Node, 0), Result); 616 } else { 617 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 618 default: llvm_unreachable("This action is not supported yet!"); 619 case TargetLowering::Legal: { 620 EVT MemVT = ST->getMemoryVT(); 621 // If this is an unaligned store and the target doesn't support it, 622 // expand it. 623 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 624 *ST->getMemOperand())) { 625 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 626 ReplaceNode(SDValue(ST, 0), Result); 627 } 628 break; 629 } 630 case TargetLowering::Custom: { 631 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 632 if (Res && Res != SDValue(Node, 0)) 633 ReplaceNode(SDValue(Node, 0), Res); 634 return; 635 } 636 case TargetLowering::Expand: 637 assert(!StVT.isVector() && 638 "Vector Stores are handled in LegalizeVectorOps"); 639 640 SDValue Result; 641 642 // TRUNCSTORE:i16 i32 -> STORE i16 643 if (TLI.isTypeLegal(StVT)) { 644 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 645 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 646 ST->getOriginalAlign(), MMOFlags, AAInfo); 647 } else { 648 // The in-memory type isn't legal. Truncate to the type it would promote 649 // to, and then do a truncstore. 650 Value = DAG.getNode(ISD::TRUNCATE, dl, 651 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 652 Value); 653 Result = 654 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT, 655 ST->getOriginalAlign(), MMOFlags, AAInfo); 656 } 657 658 ReplaceNode(SDValue(Node, 0), Result); 659 break; 660 } 661 } 662 } 663 664 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 665 LoadSDNode *LD = cast<LoadSDNode>(Node); 666 SDValue Chain = LD->getChain(); // The chain. 667 SDValue Ptr = LD->getBasePtr(); // The base pointer. 668 SDValue Value; // The value returned by the load op. 669 SDLoc dl(Node); 670 671 ISD::LoadExtType ExtType = LD->getExtensionType(); 672 if (ExtType == ISD::NON_EXTLOAD) { 673 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 674 MVT VT = Node->getSimpleValueType(0); 675 SDValue RVal = SDValue(Node, 0); 676 SDValue RChain = SDValue(Node, 1); 677 678 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 679 default: llvm_unreachable("This action is not supported yet!"); 680 case TargetLowering::Legal: { 681 EVT MemVT = LD->getMemoryVT(); 682 const DataLayout &DL = DAG.getDataLayout(); 683 // If this is an unaligned load and the target doesn't support it, 684 // expand it. 685 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 686 *LD->getMemOperand())) { 687 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 688 } 689 break; 690 } 691 case TargetLowering::Custom: 692 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 693 RVal = Res; 694 RChain = Res.getValue(1); 695 } 696 break; 697 698 case TargetLowering::Promote: { 699 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 700 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 701 "Can only promote loads to same size type"); 702 703 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 704 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 705 RChain = Res.getValue(1); 706 break; 707 } 708 } 709 if (RChain.getNode() != Node) { 710 assert(RVal.getNode() != Node && "Load must be completely replaced"); 711 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 712 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 713 if (UpdatedNodes) { 714 UpdatedNodes->insert(RVal.getNode()); 715 UpdatedNodes->insert(RChain.getNode()); 716 } 717 ReplacedNode(Node); 718 } 719 return; 720 } 721 722 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); 723 EVT SrcVT = LD->getMemoryVT(); 724 TypeSize SrcWidth = SrcVT.getSizeInBits(); 725 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 726 AAMDNodes AAInfo = LD->getAAInfo(); 727 728 if (SrcWidth != SrcVT.getStoreSizeInBits() && 729 // Some targets pretend to have an i1 loading operation, and actually 730 // load an i8. This trick is correct for ZEXTLOAD because the top 7 731 // bits are guaranteed to be zero; it helps the optimizers understand 732 // that these bits are zero. It is also useful for EXTLOAD, since it 733 // tells the optimizers that those bits are undefined. It would be 734 // nice to have an effective generic way of getting these benefits... 735 // Until such a way is found, don't insist on promoting i1 here. 736 (SrcVT != MVT::i1 || 737 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 738 TargetLowering::Promote)) { 739 // Promote to a byte-sized load if not loading an integral number of 740 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 741 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 742 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 743 SDValue Ch; 744 745 // The extra bits are guaranteed to be zero, since we stored them that 746 // way. A zext load from NVT thus automatically gives zext from SrcVT. 747 748 ISD::LoadExtType NewExtType = 749 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 750 751 SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 752 Chain, Ptr, LD->getPointerInfo(), NVT, 753 LD->getOriginalAlign(), MMOFlags, AAInfo); 754 755 Ch = Result.getValue(1); // The chain. 756 757 if (ExtType == ISD::SEXTLOAD) 758 // Having the top bits zero doesn't help when sign extending. 759 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 760 Result.getValueType(), 761 Result, DAG.getValueType(SrcVT)); 762 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 763 // All the top bits are guaranteed to be zero - inform the optimizers. 764 Result = DAG.getNode(ISD::AssertZext, dl, 765 Result.getValueType(), Result, 766 DAG.getValueType(SrcVT)); 767 768 Value = Result; 769 Chain = Ch; 770 } else if (!isPowerOf2_64(SrcWidth.getKnownMinSize())) { 771 // If not loading a power-of-2 number of bits, expand as two loads. 772 assert(!SrcVT.isVector() && "Unsupported extload!"); 773 unsigned SrcWidthBits = SrcWidth.getFixedSize(); 774 unsigned LogSrcWidth = Log2_32(SrcWidthBits); 775 assert(LogSrcWidth < 32); 776 unsigned RoundWidth = 1 << LogSrcWidth; 777 assert(RoundWidth < SrcWidthBits); 778 unsigned ExtraWidth = SrcWidthBits - RoundWidth; 779 assert(ExtraWidth < RoundWidth); 780 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 781 "Load size not an integral number of bytes!"); 782 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 783 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 784 SDValue Lo, Hi, Ch; 785 unsigned IncrementSize; 786 auto &DL = DAG.getDataLayout(); 787 788 if (DL.isLittleEndian()) { 789 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 790 // Load the bottom RoundWidth bits. 791 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 792 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 793 MMOFlags, AAInfo); 794 795 // Load the remaining ExtraWidth bits. 796 IncrementSize = RoundWidth / 8; 797 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 798 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 799 LD->getPointerInfo().getWithOffset(IncrementSize), 800 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 801 802 // Build a factor node to remember that this load is independent of 803 // the other one. 804 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 805 Hi.getValue(1)); 806 807 // Move the top bits to the right place. 808 Hi = DAG.getNode( 809 ISD::SHL, dl, Hi.getValueType(), Hi, 810 DAG.getConstant(RoundWidth, dl, 811 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 812 813 // Join the hi and lo parts. 814 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 815 } else { 816 // Big endian - avoid unaligned loads. 817 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 818 // Load the top RoundWidth bits. 819 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 820 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 821 MMOFlags, AAInfo); 822 823 // Load the remaining ExtraWidth bits. 824 IncrementSize = RoundWidth / 8; 825 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 826 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 827 LD->getPointerInfo().getWithOffset(IncrementSize), 828 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 829 830 // Build a factor node to remember that this load is independent of 831 // the other one. 832 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 833 Hi.getValue(1)); 834 835 // Move the top bits to the right place. 836 Hi = DAG.getNode( 837 ISD::SHL, dl, Hi.getValueType(), Hi, 838 DAG.getConstant(ExtraWidth, dl, 839 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 840 841 // Join the hi and lo parts. 842 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 843 } 844 845 Chain = Ch; 846 } else { 847 bool isCustom = false; 848 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 849 SrcVT.getSimpleVT())) { 850 default: llvm_unreachable("This action is not supported yet!"); 851 case TargetLowering::Custom: 852 isCustom = true; 853 LLVM_FALLTHROUGH; 854 case TargetLowering::Legal: 855 Value = SDValue(Node, 0); 856 Chain = SDValue(Node, 1); 857 858 if (isCustom) { 859 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 860 Value = Res; 861 Chain = Res.getValue(1); 862 } 863 } else { 864 // If this is an unaligned load and the target doesn't support it, 865 // expand it. 866 EVT MemVT = LD->getMemoryVT(); 867 const DataLayout &DL = DAG.getDataLayout(); 868 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, 869 *LD->getMemOperand())) { 870 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 871 } 872 } 873 break; 874 875 case TargetLowering::Expand: { 876 EVT DestVT = Node->getValueType(0); 877 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 878 // If the source type is not legal, see if there is a legal extload to 879 // an intermediate type that we can then extend further. 880 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 881 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 882 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 883 // If we are loading a legal type, this is a non-extload followed by a 884 // full extend. 885 ISD::LoadExtType MidExtType = 886 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 887 888 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 889 SrcVT, LD->getMemOperand()); 890 unsigned ExtendOp = 891 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 892 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 893 Chain = Load.getValue(1); 894 break; 895 } 896 897 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 898 // normal undefined upper bits behavior to allow using an in-reg extend 899 // with the illegal FP type, so load as an integer and do the 900 // from-integer conversion. 901 if (SrcVT.getScalarType() == MVT::f16) { 902 EVT ISrcVT = SrcVT.changeTypeToInteger(); 903 EVT IDestVT = DestVT.changeTypeToInteger(); 904 EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 905 906 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain, 907 Ptr, ISrcVT, LD->getMemOperand()); 908 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 909 Chain = Result.getValue(1); 910 break; 911 } 912 } 913 914 assert(!SrcVT.isVector() && 915 "Vector Loads are handled in LegalizeVectorOps"); 916 917 // FIXME: This does not work for vectors on most targets. Sign- 918 // and zero-extend operations are currently folded into extending 919 // loads, whether they are legal or not, and then we end up here 920 // without any support for legalizing them. 921 assert(ExtType != ISD::EXTLOAD && 922 "EXTLOAD should always be supported!"); 923 // Turn the unsupported load into an EXTLOAD followed by an 924 // explicit zero/sign extend inreg. 925 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 926 Node->getValueType(0), 927 Chain, Ptr, SrcVT, 928 LD->getMemOperand()); 929 SDValue ValRes; 930 if (ExtType == ISD::SEXTLOAD) 931 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 932 Result.getValueType(), 933 Result, DAG.getValueType(SrcVT)); 934 else 935 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT); 936 Value = ValRes; 937 Chain = Result.getValue(1); 938 break; 939 } 940 } 941 } 942 943 // Since loads produce two values, make sure to remember that we legalized 944 // both of them. 945 if (Chain.getNode() != Node) { 946 assert(Value.getNode() != Node && "Load must be completely replaced"); 947 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 948 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 949 if (UpdatedNodes) { 950 UpdatedNodes->insert(Value.getNode()); 951 UpdatedNodes->insert(Chain.getNode()); 952 } 953 ReplacedNode(Node); 954 } 955 } 956 957 /// Return a legal replacement for the given operation, with all legal operands. 958 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 959 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 960 961 // Allow illegal target nodes and illegal registers. 962 if (Node->getOpcode() == ISD::TargetConstant || 963 Node->getOpcode() == ISD::Register) 964 return; 965 966 #ifndef NDEBUG 967 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 968 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 969 TargetLowering::TypeLegal && 970 "Unexpected illegal type!"); 971 972 for (const SDValue &Op : Node->op_values()) 973 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 974 TargetLowering::TypeLegal || 975 Op.getOpcode() == ISD::TargetConstant || 976 Op.getOpcode() == ISD::Register) && 977 "Unexpected illegal type!"); 978 #endif 979 980 // Figure out the correct action; the way to query this varies by opcode 981 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 982 bool SimpleFinishLegalizing = true; 983 switch (Node->getOpcode()) { 984 case ISD::INTRINSIC_W_CHAIN: 985 case ISD::INTRINSIC_WO_CHAIN: 986 case ISD::INTRINSIC_VOID: 987 case ISD::STACKSAVE: 988 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 989 break; 990 case ISD::GET_DYNAMIC_AREA_OFFSET: 991 Action = TLI.getOperationAction(Node->getOpcode(), 992 Node->getValueType(0)); 993 break; 994 case ISD::VAARG: 995 Action = TLI.getOperationAction(Node->getOpcode(), 996 Node->getValueType(0)); 997 if (Action != TargetLowering::Promote) 998 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 999 break; 1000 case ISD::FP_TO_FP16: 1001 case ISD::SINT_TO_FP: 1002 case ISD::UINT_TO_FP: 1003 case ISD::EXTRACT_VECTOR_ELT: 1004 case ISD::LROUND: 1005 case ISD::LLROUND: 1006 case ISD::LRINT: 1007 case ISD::LLRINT: 1008 Action = TLI.getOperationAction(Node->getOpcode(), 1009 Node->getOperand(0).getValueType()); 1010 break; 1011 case ISD::STRICT_FP_TO_FP16: 1012 case ISD::STRICT_SINT_TO_FP: 1013 case ISD::STRICT_UINT_TO_FP: 1014 case ISD::STRICT_LRINT: 1015 case ISD::STRICT_LLRINT: 1016 case ISD::STRICT_LROUND: 1017 case ISD::STRICT_LLROUND: 1018 // These pseudo-ops are the same as the other STRICT_ ops except 1019 // they are registered with setOperationAction() using the input type 1020 // instead of the output type. 1021 Action = TLI.getOperationAction(Node->getOpcode(), 1022 Node->getOperand(1).getValueType()); 1023 break; 1024 case ISD::SIGN_EXTEND_INREG: { 1025 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1026 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1027 break; 1028 } 1029 case ISD::ATOMIC_STORE: 1030 Action = TLI.getOperationAction(Node->getOpcode(), 1031 Node->getOperand(2).getValueType()); 1032 break; 1033 case ISD::SELECT_CC: 1034 case ISD::STRICT_FSETCC: 1035 case ISD::STRICT_FSETCCS: 1036 case ISD::SETCC: 1037 case ISD::VP_SETCC: 1038 case ISD::BR_CC: { 1039 unsigned Opc = Node->getOpcode(); 1040 unsigned CCOperand = Opc == ISD::SELECT_CC ? 4 1041 : Opc == ISD::STRICT_FSETCC ? 3 1042 : Opc == ISD::STRICT_FSETCCS ? 3 1043 : (Opc == ISD::SETCC || Opc == ISD::VP_SETCC) ? 2 1044 : 1; 1045 unsigned CompareOperand = Opc == ISD::BR_CC ? 2 1046 : Opc == ISD::STRICT_FSETCC ? 1 1047 : Opc == ISD::STRICT_FSETCCS ? 1 1048 : 0; 1049 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1050 ISD::CondCode CCCode = 1051 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1052 Action = TLI.getCondCodeAction(CCCode, OpVT); 1053 if (Action == TargetLowering::Legal) { 1054 if (Node->getOpcode() == ISD::SELECT_CC) 1055 Action = TLI.getOperationAction(Node->getOpcode(), 1056 Node->getValueType(0)); 1057 else 1058 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1059 } 1060 break; 1061 } 1062 case ISD::LOAD: 1063 case ISD::STORE: 1064 // FIXME: Model these properly. LOAD and STORE are complicated, and 1065 // STORE expects the unlegalized operand in some cases. 1066 SimpleFinishLegalizing = false; 1067 break; 1068 case ISD::CALLSEQ_START: 1069 case ISD::CALLSEQ_END: 1070 // FIXME: This shouldn't be necessary. These nodes have special properties 1071 // dealing with the recursive nature of legalization. Removing this 1072 // special case should be done as part of making LegalizeDAG non-recursive. 1073 SimpleFinishLegalizing = false; 1074 break; 1075 case ISD::EXTRACT_ELEMENT: 1076 case ISD::FLT_ROUNDS_: 1077 case ISD::MERGE_VALUES: 1078 case ISD::EH_RETURN: 1079 case ISD::FRAME_TO_ARGS_OFFSET: 1080 case ISD::EH_DWARF_CFA: 1081 case ISD::EH_SJLJ_SETJMP: 1082 case ISD::EH_SJLJ_LONGJMP: 1083 case ISD::EH_SJLJ_SETUP_DISPATCH: 1084 // These operations lie about being legal: when they claim to be legal, 1085 // they should actually be expanded. 1086 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1087 if (Action == TargetLowering::Legal) 1088 Action = TargetLowering::Expand; 1089 break; 1090 case ISD::INIT_TRAMPOLINE: 1091 case ISD::ADJUST_TRAMPOLINE: 1092 case ISD::FRAMEADDR: 1093 case ISD::RETURNADDR: 1094 case ISD::ADDROFRETURNADDR: 1095 case ISD::SPONENTRY: 1096 // These operations lie about being legal: when they claim to be legal, 1097 // they should actually be custom-lowered. 1098 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1099 if (Action == TargetLowering::Legal) 1100 Action = TargetLowering::Custom; 1101 break; 1102 case ISD::READCYCLECOUNTER: 1103 // READCYCLECOUNTER returns an i64, even if type legalization might have 1104 // expanded that to several smaller types. 1105 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1106 break; 1107 case ISD::READ_REGISTER: 1108 case ISD::WRITE_REGISTER: 1109 // Named register is legal in the DAG, but blocked by register name 1110 // selection if not implemented by target (to chose the correct register) 1111 // They'll be converted to Copy(To/From)Reg. 1112 Action = TargetLowering::Legal; 1113 break; 1114 case ISD::UBSANTRAP: 1115 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1116 if (Action == TargetLowering::Expand) { 1117 // replace ISD::UBSANTRAP with ISD::TRAP 1118 SDValue NewVal; 1119 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1120 Node->getOperand(0)); 1121 ReplaceNode(Node, NewVal.getNode()); 1122 LegalizeOp(NewVal.getNode()); 1123 return; 1124 } 1125 break; 1126 case ISD::DEBUGTRAP: 1127 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1128 if (Action == TargetLowering::Expand) { 1129 // replace ISD::DEBUGTRAP with ISD::TRAP 1130 SDValue NewVal; 1131 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1132 Node->getOperand(0)); 1133 ReplaceNode(Node, NewVal.getNode()); 1134 LegalizeOp(NewVal.getNode()); 1135 return; 1136 } 1137 break; 1138 case ISD::SADDSAT: 1139 case ISD::UADDSAT: 1140 case ISD::SSUBSAT: 1141 case ISD::USUBSAT: 1142 case ISD::SSHLSAT: 1143 case ISD::USHLSAT: 1144 case ISD::FP_TO_SINT_SAT: 1145 case ISD::FP_TO_UINT_SAT: 1146 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1147 break; 1148 case ISD::SMULFIX: 1149 case ISD::SMULFIXSAT: 1150 case ISD::UMULFIX: 1151 case ISD::UMULFIXSAT: 1152 case ISD::SDIVFIX: 1153 case ISD::SDIVFIXSAT: 1154 case ISD::UDIVFIX: 1155 case ISD::UDIVFIXSAT: { 1156 unsigned Scale = Node->getConstantOperandVal(2); 1157 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 1158 Node->getValueType(0), Scale); 1159 break; 1160 } 1161 case ISD::MSCATTER: 1162 Action = TLI.getOperationAction(Node->getOpcode(), 1163 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 1164 break; 1165 case ISD::MSTORE: 1166 Action = TLI.getOperationAction(Node->getOpcode(), 1167 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 1168 break; 1169 case ISD::VP_SCATTER: 1170 Action = TLI.getOperationAction( 1171 Node->getOpcode(), 1172 cast<VPScatterSDNode>(Node)->getValue().getValueType()); 1173 break; 1174 case ISD::VP_STORE: 1175 Action = TLI.getOperationAction( 1176 Node->getOpcode(), 1177 cast<VPStoreSDNode>(Node)->getValue().getValueType()); 1178 break; 1179 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 1180 Action = TLI.getOperationAction( 1181 Node->getOpcode(), 1182 cast<VPStridedStoreSDNode>(Node)->getValue().getValueType()); 1183 break; 1184 case ISD::VECREDUCE_FADD: 1185 case ISD::VECREDUCE_FMUL: 1186 case ISD::VECREDUCE_ADD: 1187 case ISD::VECREDUCE_MUL: 1188 case ISD::VECREDUCE_AND: 1189 case ISD::VECREDUCE_OR: 1190 case ISD::VECREDUCE_XOR: 1191 case ISD::VECREDUCE_SMAX: 1192 case ISD::VECREDUCE_SMIN: 1193 case ISD::VECREDUCE_UMAX: 1194 case ISD::VECREDUCE_UMIN: 1195 case ISD::VECREDUCE_FMAX: 1196 case ISD::VECREDUCE_FMIN: 1197 case ISD::IS_FPCLASS: 1198 Action = TLI.getOperationAction( 1199 Node->getOpcode(), Node->getOperand(0).getValueType()); 1200 break; 1201 case ISD::VECREDUCE_SEQ_FADD: 1202 case ISD::VECREDUCE_SEQ_FMUL: 1203 case ISD::VP_REDUCE_FADD: 1204 case ISD::VP_REDUCE_FMUL: 1205 case ISD::VP_REDUCE_ADD: 1206 case ISD::VP_REDUCE_MUL: 1207 case ISD::VP_REDUCE_AND: 1208 case ISD::VP_REDUCE_OR: 1209 case ISD::VP_REDUCE_XOR: 1210 case ISD::VP_REDUCE_SMAX: 1211 case ISD::VP_REDUCE_SMIN: 1212 case ISD::VP_REDUCE_UMAX: 1213 case ISD::VP_REDUCE_UMIN: 1214 case ISD::VP_REDUCE_FMAX: 1215 case ISD::VP_REDUCE_FMIN: 1216 case ISD::VP_REDUCE_SEQ_FADD: 1217 case ISD::VP_REDUCE_SEQ_FMUL: 1218 Action = TLI.getOperationAction( 1219 Node->getOpcode(), Node->getOperand(1).getValueType()); 1220 break; 1221 default: 1222 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1223 Action = TLI.getCustomOperationAction(*Node); 1224 } else { 1225 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1226 } 1227 break; 1228 } 1229 1230 if (SimpleFinishLegalizing) { 1231 SDNode *NewNode = Node; 1232 switch (Node->getOpcode()) { 1233 default: break; 1234 case ISD::SHL: 1235 case ISD::SRL: 1236 case ISD::SRA: 1237 case ISD::ROTL: 1238 case ISD::ROTR: { 1239 // Legalizing shifts/rotates requires adjusting the shift amount 1240 // to the appropriate width. 1241 SDValue Op0 = Node->getOperand(0); 1242 SDValue Op1 = Node->getOperand(1); 1243 if (!Op1.getValueType().isVector()) { 1244 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1245 // The getShiftAmountOperand() may create a new operand node or 1246 // return the existing one. If new operand is created we need 1247 // to update the parent node. 1248 // Do not try to legalize SAO here! It will be automatically legalized 1249 // in the next round. 1250 if (SAO != Op1) 1251 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1252 } 1253 } 1254 break; 1255 case ISD::FSHL: 1256 case ISD::FSHR: 1257 case ISD::SRL_PARTS: 1258 case ISD::SRA_PARTS: 1259 case ISD::SHL_PARTS: { 1260 // Legalizing shifts/rotates requires adjusting the shift amount 1261 // to the appropriate width. 1262 SDValue Op0 = Node->getOperand(0); 1263 SDValue Op1 = Node->getOperand(1); 1264 SDValue Op2 = Node->getOperand(2); 1265 if (!Op2.getValueType().isVector()) { 1266 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1267 // The getShiftAmountOperand() may create a new operand node or 1268 // return the existing one. If new operand is created we need 1269 // to update the parent node. 1270 if (SAO != Op2) 1271 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1272 } 1273 break; 1274 } 1275 } 1276 1277 if (NewNode != Node) { 1278 ReplaceNode(Node, NewNode); 1279 Node = NewNode; 1280 } 1281 switch (Action) { 1282 case TargetLowering::Legal: 1283 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 1284 return; 1285 case TargetLowering::Custom: 1286 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 1287 // FIXME: The handling for custom lowering with multiple results is 1288 // a complete mess. 1289 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1290 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1291 return; 1292 1293 if (Node->getNumValues() == 1) { 1294 // Verify the new types match the original. Glue is waived because 1295 // ISD::ADDC can be legalized by replacing Glue with an integer type. 1296 assert((Res.getValueType() == Node->getValueType(0) || 1297 Node->getValueType(0) == MVT::Glue) && 1298 "Type mismatch for custom legalized operation"); 1299 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1300 // We can just directly replace this node with the lowered value. 1301 ReplaceNode(SDValue(Node, 0), Res); 1302 return; 1303 } 1304 1305 SmallVector<SDValue, 8> ResultVals; 1306 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 1307 // Verify the new types match the original. Glue is waived because 1308 // ISD::ADDC can be legalized by replacing Glue with an integer type. 1309 assert((Res->getValueType(i) == Node->getValueType(i) || 1310 Node->getValueType(i) == MVT::Glue) && 1311 "Type mismatch for custom legalized operation"); 1312 ResultVals.push_back(Res.getValue(i)); 1313 } 1314 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1315 ReplaceNode(Node, ResultVals.data()); 1316 return; 1317 } 1318 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 1319 LLVM_FALLTHROUGH; 1320 case TargetLowering::Expand: 1321 if (ExpandNode(Node)) 1322 return; 1323 LLVM_FALLTHROUGH; 1324 case TargetLowering::LibCall: 1325 ConvertNodeToLibcall(Node); 1326 return; 1327 case TargetLowering::Promote: 1328 PromoteNode(Node); 1329 return; 1330 } 1331 } 1332 1333 switch (Node->getOpcode()) { 1334 default: 1335 #ifndef NDEBUG 1336 dbgs() << "NODE: "; 1337 Node->dump( &DAG); 1338 dbgs() << "\n"; 1339 #endif 1340 llvm_unreachable("Do not know how to legalize this operator!"); 1341 1342 case ISD::CALLSEQ_START: 1343 case ISD::CALLSEQ_END: 1344 break; 1345 case ISD::LOAD: 1346 return LegalizeLoadOps(Node); 1347 case ISD::STORE: 1348 return LegalizeStoreOps(Node); 1349 } 1350 } 1351 1352 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1353 SDValue Vec = Op.getOperand(0); 1354 SDValue Idx = Op.getOperand(1); 1355 SDLoc dl(Op); 1356 1357 // Before we generate a new store to a temporary stack slot, see if there is 1358 // already one that we can use. There often is because when we scalarize 1359 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1360 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1361 // the vector. If all are expanded here, we don't want one store per vector 1362 // element. 1363 1364 // Caches for hasPredecessorHelper 1365 SmallPtrSet<const SDNode *, 32> Visited; 1366 SmallVector<const SDNode *, 16> Worklist; 1367 Visited.insert(Op.getNode()); 1368 Worklist.push_back(Idx.getNode()); 1369 SDValue StackPtr, Ch; 1370 for (SDNode *User : Vec.getNode()->uses()) { 1371 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1372 if (ST->isIndexed() || ST->isTruncatingStore() || 1373 ST->getValue() != Vec) 1374 continue; 1375 1376 // Make sure that nothing else could have stored into the destination of 1377 // this store. 1378 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1379 continue; 1380 1381 // If the index is dependent on the store we will introduce a cycle when 1382 // creating the load (the load uses the index, and by replacing the chain 1383 // we will make the index dependent on the load). Also, the store might be 1384 // dependent on the extractelement and introduce a cycle when creating 1385 // the load. 1386 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1387 ST->hasPredecessor(Op.getNode())) 1388 continue; 1389 1390 StackPtr = ST->getBasePtr(); 1391 Ch = SDValue(ST, 0); 1392 break; 1393 } 1394 } 1395 1396 EVT VecVT = Vec.getValueType(); 1397 1398 if (!Ch.getNode()) { 1399 // Store the value to a temporary stack slot, then LOAD the returned part. 1400 StackPtr = DAG.CreateStackTemporary(VecVT); 1401 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1402 MachinePointerInfo()); 1403 } 1404 1405 SDValue NewLoad; 1406 1407 if (Op.getValueType().isVector()) { 1408 StackPtr = TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, 1409 Op.getValueType(), Idx); 1410 NewLoad = 1411 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); 1412 } else { 1413 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1414 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1415 MachinePointerInfo(), 1416 VecVT.getVectorElementType()); 1417 } 1418 1419 // Replace the chain going out of the store, by the one out of the load. 1420 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1421 1422 // We introduced a cycle though, so update the loads operands, making sure 1423 // to use the original store's chain as an incoming chain. 1424 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1425 NewLoad->op_end()); 1426 NewLoadOperands[0] = Ch; 1427 NewLoad = 1428 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1429 return NewLoad; 1430 } 1431 1432 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1433 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1434 1435 SDValue Vec = Op.getOperand(0); 1436 SDValue Part = Op.getOperand(1); 1437 SDValue Idx = Op.getOperand(2); 1438 SDLoc dl(Op); 1439 1440 // Store the value to a temporary stack slot, then LOAD the returned part. 1441 EVT VecVT = Vec.getValueType(); 1442 EVT SubVecVT = Part.getValueType(); 1443 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1444 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1445 MachinePointerInfo PtrInfo = 1446 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1447 1448 // First store the whole vector. 1449 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1450 1451 // Then store the inserted part. 1452 SDValue SubStackPtr = 1453 TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, SubVecVT, Idx); 1454 1455 // Store the subvector. 1456 Ch = DAG.getStore( 1457 Ch, dl, Part, SubStackPtr, 1458 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1459 1460 // Finally, load the updated vector. 1461 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1462 } 1463 1464 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1465 assert((Node->getOpcode() == ISD::BUILD_VECTOR || 1466 Node->getOpcode() == ISD::CONCAT_VECTORS) && 1467 "Unexpected opcode!"); 1468 1469 // We can't handle this case efficiently. Allocate a sufficiently 1470 // aligned object on the stack, store each operand into it, then load 1471 // the result as a vector. 1472 // Create the stack frame object. 1473 EVT VT = Node->getValueType(0); 1474 EVT MemVT = isa<BuildVectorSDNode>(Node) ? VT.getVectorElementType() 1475 : Node->getOperand(0).getValueType(); 1476 SDLoc dl(Node); 1477 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1478 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1479 MachinePointerInfo PtrInfo = 1480 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1481 1482 // Emit a store of each element to the stack slot. 1483 SmallVector<SDValue, 8> Stores; 1484 unsigned TypeByteSize = MemVT.getSizeInBits() / 8; 1485 assert(TypeByteSize > 0 && "Vector element type too small for stack store!"); 1486 1487 // If the destination vector element type of a BUILD_VECTOR is narrower than 1488 // the source element type, only store the bits necessary. 1489 bool Truncate = isa<BuildVectorSDNode>(Node) && 1490 MemVT.bitsLT(Node->getOperand(0).getValueType()); 1491 1492 // Store (in the right endianness) the elements to memory. 1493 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1494 // Ignore undef elements. 1495 if (Node->getOperand(i).isUndef()) continue; 1496 1497 unsigned Offset = TypeByteSize*i; 1498 1499 SDValue Idx = DAG.getMemBasePlusOffset(FIPtr, TypeSize::Fixed(Offset), dl); 1500 1501 if (Truncate) 1502 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1503 Node->getOperand(i), Idx, 1504 PtrInfo.getWithOffset(Offset), MemVT)); 1505 else 1506 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1507 Idx, PtrInfo.getWithOffset(Offset))); 1508 } 1509 1510 SDValue StoreChain; 1511 if (!Stores.empty()) // Not all undef elements? 1512 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1513 else 1514 StoreChain = DAG.getEntryNode(); 1515 1516 // Result is a load from the stack slot. 1517 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1518 } 1519 1520 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1521 /// containing the sign bit if the target has no integer value capable of 1522 /// holding all bits of the floating-point value. 1523 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1524 const SDLoc &DL, 1525 SDValue Value) const { 1526 EVT FloatVT = Value.getValueType(); 1527 unsigned NumBits = FloatVT.getScalarSizeInBits(); 1528 State.FloatVT = FloatVT; 1529 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1530 // Convert to an integer of the same size. 1531 if (TLI.isTypeLegal(IVT)) { 1532 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1533 State.SignMask = APInt::getSignMask(NumBits); 1534 State.SignBit = NumBits - 1; 1535 return; 1536 } 1537 1538 auto &DataLayout = DAG.getDataLayout(); 1539 // Store the float to memory, then load the sign part out as an integer. 1540 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1541 // First create a temporary that is aligned for both the load and store. 1542 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1543 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1544 // Then store the float to it. 1545 State.FloatPtr = StackPtr; 1546 MachineFunction &MF = DAG.getMachineFunction(); 1547 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1548 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1549 State.FloatPointerInfo); 1550 1551 SDValue IntPtr; 1552 if (DataLayout.isBigEndian()) { 1553 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1554 // Load out a legal integer with the same sign bit as the float. 1555 IntPtr = StackPtr; 1556 State.IntPointerInfo = State.FloatPointerInfo; 1557 } else { 1558 // Advance the pointer so that the loaded byte will contain the sign bit. 1559 unsigned ByteOffset = (NumBits / 8) - 1; 1560 IntPtr = 1561 DAG.getMemBasePlusOffset(StackPtr, TypeSize::Fixed(ByteOffset), DL); 1562 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1563 ByteOffset); 1564 } 1565 1566 State.IntPtr = IntPtr; 1567 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1568 State.IntPointerInfo, MVT::i8); 1569 State.SignMask = APInt::getOneBitSet(LoadTy.getScalarSizeInBits(), 7); 1570 State.SignBit = 7; 1571 } 1572 1573 /// Replace the integer value produced by getSignAsIntValue() with a new value 1574 /// and cast the result back to a floating-point type. 1575 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1576 const SDLoc &DL, 1577 SDValue NewIntValue) const { 1578 if (!State.Chain) 1579 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1580 1581 // Override the part containing the sign bit in the value stored on the stack. 1582 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1583 State.IntPointerInfo, MVT::i8); 1584 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1585 State.FloatPointerInfo); 1586 } 1587 1588 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1589 SDLoc DL(Node); 1590 SDValue Mag = Node->getOperand(0); 1591 SDValue Sign = Node->getOperand(1); 1592 1593 // Get sign bit into an integer value. 1594 FloatSignAsInt SignAsInt; 1595 getSignAsIntValue(SignAsInt, DL, Sign); 1596 1597 EVT IntVT = SignAsInt.IntValue.getValueType(); 1598 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1599 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1600 SignMask); 1601 1602 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1603 EVT FloatVT = Mag.getValueType(); 1604 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1605 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1606 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1607 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1608 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1609 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1610 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1611 } 1612 1613 // Transform Mag value to integer, and clear the sign bit. 1614 FloatSignAsInt MagAsInt; 1615 getSignAsIntValue(MagAsInt, DL, Mag); 1616 EVT MagVT = MagAsInt.IntValue.getValueType(); 1617 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1618 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1619 ClearSignMask); 1620 1621 // Get the signbit at the right position for MagAsInt. 1622 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1623 EVT ShiftVT = IntVT; 1624 if (SignBit.getScalarValueSizeInBits() < 1625 ClearedSign.getScalarValueSizeInBits()) { 1626 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1627 ShiftVT = MagVT; 1628 } 1629 if (ShiftAmount > 0) { 1630 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); 1631 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); 1632 } else if (ShiftAmount < 0) { 1633 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); 1634 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); 1635 } 1636 if (SignBit.getScalarValueSizeInBits() > 1637 ClearedSign.getScalarValueSizeInBits()) { 1638 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1639 } 1640 1641 // Store the part with the modified sign and convert back to float. 1642 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1643 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1644 } 1645 1646 SDValue SelectionDAGLegalize::ExpandFNEG(SDNode *Node) const { 1647 // Get the sign bit as an integer. 1648 SDLoc DL(Node); 1649 FloatSignAsInt SignAsInt; 1650 getSignAsIntValue(SignAsInt, DL, Node->getOperand(0)); 1651 EVT IntVT = SignAsInt.IntValue.getValueType(); 1652 1653 // Flip the sign. 1654 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1655 SDValue SignFlip = 1656 DAG.getNode(ISD::XOR, DL, IntVT, SignAsInt.IntValue, SignMask); 1657 1658 // Convert back to float. 1659 return modifySignAsInt(SignAsInt, DL, SignFlip); 1660 } 1661 1662 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1663 SDLoc DL(Node); 1664 SDValue Value = Node->getOperand(0); 1665 1666 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1667 EVT FloatVT = Value.getValueType(); 1668 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1669 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1670 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1671 } 1672 1673 // Transform value to integer, clear the sign bit and transform back. 1674 FloatSignAsInt ValueAsInt; 1675 getSignAsIntValue(ValueAsInt, DL, Value); 1676 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1677 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1678 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1679 ClearSignMask); 1680 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1681 } 1682 1683 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1684 SmallVectorImpl<SDValue> &Results) { 1685 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1686 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1687 " not tell us which reg is the stack pointer!"); 1688 SDLoc dl(Node); 1689 EVT VT = Node->getValueType(0); 1690 SDValue Tmp1 = SDValue(Node, 0); 1691 SDValue Tmp2 = SDValue(Node, 1); 1692 SDValue Tmp3 = Node->getOperand(2); 1693 SDValue Chain = Tmp1.getOperand(0); 1694 1695 // Chain the dynamic stack allocation so that it doesn't modify the stack 1696 // pointer when other instructions are using the stack. 1697 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1698 1699 SDValue Size = Tmp2.getOperand(1); 1700 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1701 Chain = SP.getValue(1); 1702 Align Alignment = cast<ConstantSDNode>(Tmp3)->getAlignValue(); 1703 const TargetFrameLowering *TFL = DAG.getSubtarget().getFrameLowering(); 1704 unsigned Opc = 1705 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 1706 ISD::ADD : ISD::SUB; 1707 1708 Align StackAlign = TFL->getStackAlign(); 1709 Tmp1 = DAG.getNode(Opc, dl, VT, SP, Size); // Value 1710 if (Alignment > StackAlign) 1711 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1712 DAG.getConstant(-Alignment.value(), dl, VT)); 1713 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1714 1715 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1716 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1717 1718 Results.push_back(Tmp1); 1719 Results.push_back(Tmp2); 1720 } 1721 1722 /// Emit a store/load combination to the stack. This stores 1723 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1724 /// a load from the stack slot to DestVT, extending it if needed. 1725 /// The resultant code need not be legal. 1726 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1727 EVT DestVT, const SDLoc &dl) { 1728 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode()); 1729 } 1730 1731 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1732 EVT DestVT, const SDLoc &dl, 1733 SDValue Chain) { 1734 unsigned SrcSize = SrcOp.getValueSizeInBits(); 1735 unsigned SlotSize = SlotVT.getSizeInBits(); 1736 unsigned DestSize = DestVT.getSizeInBits(); 1737 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1738 Align DestAlign = DAG.getDataLayout().getPrefTypeAlign(DestType); 1739 1740 // Don't convert with stack if the load/store is expensive. 1741 if ((SrcSize > SlotSize && 1742 !TLI.isTruncStoreLegalOrCustom(SrcOp.getValueType(), SlotVT)) || 1743 (SlotSize < DestSize && 1744 !TLI.isLoadExtLegalOrCustom(ISD::EXTLOAD, DestVT, SlotVT))) 1745 return SDValue(); 1746 1747 // Create the stack frame object. 1748 Align SrcAlign = DAG.getDataLayout().getPrefTypeAlign( 1749 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1750 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT.getStoreSize(), SrcAlign); 1751 1752 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1753 int SPFI = StackPtrFI->getIndex(); 1754 MachinePointerInfo PtrInfo = 1755 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1756 1757 // Emit a store to the stack slot. Use a truncstore if the input value is 1758 // later than DestVT. 1759 SDValue Store; 1760 1761 if (SrcSize > SlotSize) 1762 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo, 1763 SlotVT, SrcAlign); 1764 else { 1765 assert(SrcSize == SlotSize && "Invalid store"); 1766 Store = 1767 DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1768 } 1769 1770 // Result is a load from the stack slot. 1771 if (SlotSize == DestSize) 1772 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1773 1774 assert(SlotSize < DestSize && "Unknown extension!"); 1775 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1776 DestAlign); 1777 } 1778 1779 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1780 SDLoc dl(Node); 1781 // Create a vector sized/aligned stack slot, store the value to element #0, 1782 // then load the whole vector back out. 1783 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1784 1785 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1786 int SPFI = StackPtrFI->getIndex(); 1787 1788 SDValue Ch = DAG.getTruncStore( 1789 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1790 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1791 Node->getValueType(0).getVectorElementType()); 1792 return DAG.getLoad( 1793 Node->getValueType(0), dl, Ch, StackPtr, 1794 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1795 } 1796 1797 static bool 1798 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1799 const TargetLowering &TLI, SDValue &Res) { 1800 unsigned NumElems = Node->getNumOperands(); 1801 SDLoc dl(Node); 1802 EVT VT = Node->getValueType(0); 1803 1804 // Try to group the scalars into pairs, shuffle the pairs together, then 1805 // shuffle the pairs of pairs together, etc. until the vector has 1806 // been built. This will work only if all of the necessary shuffle masks 1807 // are legal. 1808 1809 // We do this in two phases; first to check the legality of the shuffles, 1810 // and next, assuming that all shuffles are legal, to create the new nodes. 1811 for (int Phase = 0; Phase < 2; ++Phase) { 1812 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1813 NewIntermedVals; 1814 for (unsigned i = 0; i < NumElems; ++i) { 1815 SDValue V = Node->getOperand(i); 1816 if (V.isUndef()) 1817 continue; 1818 1819 SDValue Vec; 1820 if (Phase) 1821 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1822 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1823 } 1824 1825 while (IntermedVals.size() > 2) { 1826 NewIntermedVals.clear(); 1827 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1828 // This vector and the next vector are shuffled together (simply to 1829 // append the one to the other). 1830 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1831 1832 SmallVector<int, 16> FinalIndices; 1833 FinalIndices.reserve(IntermedVals[i].second.size() + 1834 IntermedVals[i+1].second.size()); 1835 1836 int k = 0; 1837 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1838 ++j, ++k) { 1839 ShuffleVec[k] = j; 1840 FinalIndices.push_back(IntermedVals[i].second[j]); 1841 } 1842 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1843 ++j, ++k) { 1844 ShuffleVec[k] = NumElems + j; 1845 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1846 } 1847 1848 SDValue Shuffle; 1849 if (Phase) 1850 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1851 IntermedVals[i+1].first, 1852 ShuffleVec); 1853 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1854 return false; 1855 NewIntermedVals.push_back( 1856 std::make_pair(Shuffle, std::move(FinalIndices))); 1857 } 1858 1859 // If we had an odd number of defined values, then append the last 1860 // element to the array of new vectors. 1861 if ((IntermedVals.size() & 1) != 0) 1862 NewIntermedVals.push_back(IntermedVals.back()); 1863 1864 IntermedVals.swap(NewIntermedVals); 1865 } 1866 1867 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1868 "Invalid number of intermediate vectors"); 1869 SDValue Vec1 = IntermedVals[0].first; 1870 SDValue Vec2; 1871 if (IntermedVals.size() > 1) 1872 Vec2 = IntermedVals[1].first; 1873 else if (Phase) 1874 Vec2 = DAG.getUNDEF(VT); 1875 1876 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1877 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1878 ShuffleVec[IntermedVals[0].second[i]] = i; 1879 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1880 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1881 1882 if (Phase) 1883 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1884 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1885 return false; 1886 } 1887 1888 return true; 1889 } 1890 1891 /// Expand a BUILD_VECTOR node on targets that don't 1892 /// support the operation, but do support the resultant vector type. 1893 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1894 unsigned NumElems = Node->getNumOperands(); 1895 SDValue Value1, Value2; 1896 SDLoc dl(Node); 1897 EVT VT = Node->getValueType(0); 1898 EVT OpVT = Node->getOperand(0).getValueType(); 1899 EVT EltVT = VT.getVectorElementType(); 1900 1901 // If the only non-undef value is the low element, turn this into a 1902 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1903 bool isOnlyLowElement = true; 1904 bool MoreThanTwoValues = false; 1905 bool isConstant = true; 1906 for (unsigned i = 0; i < NumElems; ++i) { 1907 SDValue V = Node->getOperand(i); 1908 if (V.isUndef()) 1909 continue; 1910 if (i > 0) 1911 isOnlyLowElement = false; 1912 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1913 isConstant = false; 1914 1915 if (!Value1.getNode()) { 1916 Value1 = V; 1917 } else if (!Value2.getNode()) { 1918 if (V != Value1) 1919 Value2 = V; 1920 } else if (V != Value1 && V != Value2) { 1921 MoreThanTwoValues = true; 1922 } 1923 } 1924 1925 if (!Value1.getNode()) 1926 return DAG.getUNDEF(VT); 1927 1928 if (isOnlyLowElement) 1929 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1930 1931 // If all elements are constants, create a load from the constant pool. 1932 if (isConstant) { 1933 SmallVector<Constant*, 16> CV; 1934 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1935 if (ConstantFPSDNode *V = 1936 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1937 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1938 } else if (ConstantSDNode *V = 1939 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1940 if (OpVT==EltVT) 1941 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1942 else { 1943 // If OpVT and EltVT don't match, EltVT is not legal and the 1944 // element values have been promoted/truncated earlier. Undo this; 1945 // we don't want a v16i8 to become a v16i32 for example. 1946 const ConstantInt *CI = V->getConstantIntValue(); 1947 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1948 CI->getZExtValue())); 1949 } 1950 } else { 1951 assert(Node->getOperand(i).isUndef()); 1952 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1953 CV.push_back(UndefValue::get(OpNTy)); 1954 } 1955 } 1956 Constant *CP = ConstantVector::get(CV); 1957 SDValue CPIdx = 1958 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 1959 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 1960 return DAG.getLoad( 1961 VT, dl, DAG.getEntryNode(), CPIdx, 1962 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 1963 Alignment); 1964 } 1965 1966 SmallSet<SDValue, 16> DefinedValues; 1967 for (unsigned i = 0; i < NumElems; ++i) { 1968 if (Node->getOperand(i).isUndef()) 1969 continue; 1970 DefinedValues.insert(Node->getOperand(i)); 1971 } 1972 1973 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 1974 if (!MoreThanTwoValues) { 1975 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1976 for (unsigned i = 0; i < NumElems; ++i) { 1977 SDValue V = Node->getOperand(i); 1978 if (V.isUndef()) 1979 continue; 1980 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1981 } 1982 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1983 // Get the splatted value into the low element of a vector register. 1984 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1985 SDValue Vec2; 1986 if (Value2.getNode()) 1987 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 1988 else 1989 Vec2 = DAG.getUNDEF(VT); 1990 1991 // Return shuffle(LowValVec, undef, <0,0,0,0>) 1992 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1993 } 1994 } else { 1995 SDValue Res; 1996 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 1997 return Res; 1998 } 1999 } 2000 2001 // Otherwise, we can't handle this case efficiently. 2002 return ExpandVectorBuildThroughStack(Node); 2003 } 2004 2005 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) { 2006 SDLoc DL(Node); 2007 EVT VT = Node->getValueType(0); 2008 SDValue SplatVal = Node->getOperand(0); 2009 2010 return DAG.getSplatBuildVector(VT, DL, SplatVal); 2011 } 2012 2013 // Expand a node into a call to a libcall. If the result value 2014 // does not fit into a register, return the lo part and set the hi part to the 2015 // by-reg argument. If it does fit into a single register, return the result 2016 // and leave the Hi part unset. 2017 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2018 bool isSigned) { 2019 TargetLowering::ArgListTy Args; 2020 TargetLowering::ArgListEntry Entry; 2021 for (const SDValue &Op : Node->op_values()) { 2022 EVT ArgVT = Op.getValueType(); 2023 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2024 Entry.Node = Op; 2025 Entry.Ty = ArgTy; 2026 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2027 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2028 Args.push_back(Entry); 2029 } 2030 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2031 TLI.getPointerTy(DAG.getDataLayout())); 2032 2033 EVT RetVT = Node->getValueType(0); 2034 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2035 2036 // By default, the input chain to this libcall is the entry node of the 2037 // function. If the libcall is going to be emitted as a tail call then 2038 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2039 // node which is being folded has a non-entry input chain. 2040 SDValue InChain = DAG.getEntryNode(); 2041 2042 // isTailCall may be true since the callee does not reference caller stack 2043 // frame. Check if it's in the right position and that the return types match. 2044 SDValue TCChain = InChain; 2045 const Function &F = DAG.getMachineFunction().getFunction(); 2046 bool isTailCall = 2047 TLI.isInTailCallPosition(DAG, Node, TCChain) && 2048 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 2049 if (isTailCall) 2050 InChain = TCChain; 2051 2052 TargetLowering::CallLoweringInfo CLI(DAG); 2053 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2054 CLI.setDebugLoc(SDLoc(Node)) 2055 .setChain(InChain) 2056 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2057 std::move(Args)) 2058 .setTailCall(isTailCall) 2059 .setSExtResult(signExtend) 2060 .setZExtResult(!signExtend) 2061 .setIsPostTypeLegalization(true); 2062 2063 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2064 2065 if (!CallInfo.second.getNode()) { 2066 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG)); 2067 // It's a tailcall, return the chain (which is the DAG root). 2068 return DAG.getRoot(); 2069 } 2070 2071 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG)); 2072 return CallInfo.first; 2073 } 2074 2075 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2076 RTLIB::Libcall LC, 2077 SmallVectorImpl<SDValue> &Results) { 2078 if (LC == RTLIB::UNKNOWN_LIBCALL) 2079 llvm_unreachable("Can't create an unknown libcall!"); 2080 2081 if (Node->isStrictFPOpcode()) { 2082 EVT RetVT = Node->getValueType(0); 2083 SmallVector<SDValue, 4> Ops(drop_begin(Node->ops())); 2084 TargetLowering::MakeLibCallOptions CallOptions; 2085 // FIXME: This doesn't support tail calls. 2086 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2087 Ops, CallOptions, 2088 SDLoc(Node), 2089 Node->getOperand(0)); 2090 Results.push_back(Tmp.first); 2091 Results.push_back(Tmp.second); 2092 } else { 2093 SDValue Tmp = ExpandLibCall(LC, Node, false); 2094 Results.push_back(Tmp); 2095 } 2096 } 2097 2098 /// Expand the node to a libcall based on the result type. 2099 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2100 RTLIB::Libcall Call_F32, 2101 RTLIB::Libcall Call_F64, 2102 RTLIB::Libcall Call_F80, 2103 RTLIB::Libcall Call_F128, 2104 RTLIB::Libcall Call_PPCF128, 2105 SmallVectorImpl<SDValue> &Results) { 2106 RTLIB::Libcall LC = RTLIB::getFPLibCall(Node->getSimpleValueType(0), 2107 Call_F32, Call_F64, Call_F80, 2108 Call_F128, Call_PPCF128); 2109 ExpandFPLibCall(Node, LC, Results); 2110 } 2111 2112 SDValue SelectionDAGLegalize::ExpandIntLibCall( 2113 SDNode *Node, bool isSigned, RTLIB::Libcall Call_I8, 2114 RTLIB::Libcall Call_I16, RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64, 2115 RTLIB::Libcall Call_I128, RTLIB::Libcall Call_IEXT) { 2116 RTLIB::Libcall LC; 2117 switch (Node->getSimpleValueType(0).SimpleTy) { 2118 2119 default: 2120 LC = Call_IEXT; 2121 break; 2122 2123 case MVT::i8: LC = Call_I8; break; 2124 case MVT::i16: LC = Call_I16; break; 2125 case MVT::i32: LC = Call_I32; break; 2126 case MVT::i64: LC = Call_I64; break; 2127 case MVT::i128: LC = Call_I128; break; 2128 } 2129 return ExpandLibCall(LC, Node, isSigned); 2130 } 2131 2132 /// Expand the node to a libcall based on first argument type (for instance 2133 /// lround and its variant). 2134 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node, 2135 RTLIB::Libcall Call_F32, 2136 RTLIB::Libcall Call_F64, 2137 RTLIB::Libcall Call_F80, 2138 RTLIB::Libcall Call_F128, 2139 RTLIB::Libcall Call_PPCF128, 2140 SmallVectorImpl<SDValue> &Results) { 2141 EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType(); 2142 RTLIB::Libcall LC = RTLIB::getFPLibCall(InVT.getSimpleVT(), 2143 Call_F32, Call_F64, Call_F80, 2144 Call_F128, Call_PPCF128); 2145 ExpandFPLibCall(Node, LC, Results); 2146 } 2147 2148 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2149 void 2150 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2151 SmallVectorImpl<SDValue> &Results) { 2152 unsigned Opcode = Node->getOpcode(); 2153 bool isSigned = Opcode == ISD::SDIVREM; 2154 2155 RTLIB::Libcall LC; 2156 switch (Node->getSimpleValueType(0).SimpleTy) { 2157 2158 default: 2159 LC = isSigned ? RTLIB::SDIVREM_IEXT : RTLIB::UDIVREM_IEXT; 2160 break; 2161 2162 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2163 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2164 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2165 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2166 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2167 } 2168 2169 // The input chain to this libcall is the entry node of the function. 2170 // Legalizing the call will automatically add the previous call to the 2171 // dependence. 2172 SDValue InChain = DAG.getEntryNode(); 2173 2174 EVT RetVT = Node->getValueType(0); 2175 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2176 2177 TargetLowering::ArgListTy Args; 2178 TargetLowering::ArgListEntry Entry; 2179 for (const SDValue &Op : Node->op_values()) { 2180 EVT ArgVT = Op.getValueType(); 2181 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2182 Entry.Node = Op; 2183 Entry.Ty = ArgTy; 2184 Entry.IsSExt = isSigned; 2185 Entry.IsZExt = !isSigned; 2186 Args.push_back(Entry); 2187 } 2188 2189 // Also pass the return address of the remainder. 2190 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2191 Entry.Node = FIPtr; 2192 Entry.Ty = RetTy->getPointerTo(); 2193 Entry.IsSExt = isSigned; 2194 Entry.IsZExt = !isSigned; 2195 Args.push_back(Entry); 2196 2197 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2198 TLI.getPointerTy(DAG.getDataLayout())); 2199 2200 SDLoc dl(Node); 2201 TargetLowering::CallLoweringInfo CLI(DAG); 2202 CLI.setDebugLoc(dl) 2203 .setChain(InChain) 2204 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2205 std::move(Args)) 2206 .setSExtResult(isSigned) 2207 .setZExtResult(!isSigned); 2208 2209 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2210 2211 // Remainder is loaded back from the stack frame. 2212 SDValue Rem = 2213 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2214 Results.push_back(CallInfo.first); 2215 Results.push_back(Rem); 2216 } 2217 2218 /// Return true if sincos libcall is available. 2219 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2220 RTLIB::Libcall LC; 2221 switch (Node->getSimpleValueType(0).SimpleTy) { 2222 default: llvm_unreachable("Unexpected request for libcall!"); 2223 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2224 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2225 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2226 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2227 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2228 } 2229 return TLI.getLibcallName(LC) != nullptr; 2230 } 2231 2232 /// Only issue sincos libcall if both sin and cos are needed. 2233 static bool useSinCos(SDNode *Node) { 2234 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2235 ? ISD::FCOS : ISD::FSIN; 2236 2237 SDValue Op0 = Node->getOperand(0); 2238 for (const SDNode *User : Op0.getNode()->uses()) { 2239 if (User == Node) 2240 continue; 2241 // The other user might have been turned into sincos already. 2242 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2243 return true; 2244 } 2245 return false; 2246 } 2247 2248 /// Issue libcalls to sincos to compute sin / cos pairs. 2249 void 2250 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2251 SmallVectorImpl<SDValue> &Results) { 2252 RTLIB::Libcall LC; 2253 switch (Node->getSimpleValueType(0).SimpleTy) { 2254 default: llvm_unreachable("Unexpected request for libcall!"); 2255 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2256 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2257 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2258 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2259 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2260 } 2261 2262 // The input chain to this libcall is the entry node of the function. 2263 // Legalizing the call will automatically add the previous call to the 2264 // dependence. 2265 SDValue InChain = DAG.getEntryNode(); 2266 2267 EVT RetVT = Node->getValueType(0); 2268 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2269 2270 TargetLowering::ArgListTy Args; 2271 TargetLowering::ArgListEntry Entry; 2272 2273 // Pass the argument. 2274 Entry.Node = Node->getOperand(0); 2275 Entry.Ty = RetTy; 2276 Entry.IsSExt = false; 2277 Entry.IsZExt = false; 2278 Args.push_back(Entry); 2279 2280 // Pass the return address of sin. 2281 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2282 Entry.Node = SinPtr; 2283 Entry.Ty = RetTy->getPointerTo(); 2284 Entry.IsSExt = false; 2285 Entry.IsZExt = false; 2286 Args.push_back(Entry); 2287 2288 // Also pass the return address of the cos. 2289 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2290 Entry.Node = CosPtr; 2291 Entry.Ty = RetTy->getPointerTo(); 2292 Entry.IsSExt = false; 2293 Entry.IsZExt = false; 2294 Args.push_back(Entry); 2295 2296 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2297 TLI.getPointerTy(DAG.getDataLayout())); 2298 2299 SDLoc dl(Node); 2300 TargetLowering::CallLoweringInfo CLI(DAG); 2301 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2302 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2303 std::move(Args)); 2304 2305 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2306 2307 Results.push_back( 2308 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2309 Results.push_back( 2310 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2311 } 2312 2313 /// This function is responsible for legalizing a 2314 /// INT_TO_FP operation of the specified operand when the target requests that 2315 /// we expand it. At this point, we know that the result and operand types are 2316 /// legal for the target. 2317 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node, 2318 SDValue &Chain) { 2319 bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 2320 Node->getOpcode() == ISD::SINT_TO_FP); 2321 EVT DestVT = Node->getValueType(0); 2322 SDLoc dl(Node); 2323 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 2324 SDValue Op0 = Node->getOperand(OpNo); 2325 EVT SrcVT = Op0.getValueType(); 2326 2327 // TODO: Should any fast-math-flags be set for the created nodes? 2328 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2329 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64) && 2330 (DestVT.bitsLE(MVT::f64) || 2331 TLI.isOperationLegal(Node->isStrictFPOpcode() ? ISD::STRICT_FP_EXTEND 2332 : ISD::FP_EXTEND, 2333 DestVT))) { 2334 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2335 "expansion\n"); 2336 2337 // Get the stack frame index of a 8 byte buffer. 2338 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2339 2340 SDValue Lo = Op0; 2341 // if signed map to unsigned space 2342 if (isSigned) { 2343 // Invert sign bit (signed to unsigned mapping). 2344 Lo = DAG.getNode(ISD::XOR, dl, MVT::i32, Lo, 2345 DAG.getConstant(0x80000000u, dl, MVT::i32)); 2346 } 2347 // Initial hi portion of constructed double. 2348 SDValue Hi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2349 2350 // If this a big endian target, swap the lo and high data. 2351 if (DAG.getDataLayout().isBigEndian()) 2352 std::swap(Lo, Hi); 2353 2354 SDValue MemChain = DAG.getEntryNode(); 2355 2356 // Store the lo of the constructed double. 2357 SDValue Store1 = DAG.getStore(MemChain, dl, Lo, StackSlot, 2358 MachinePointerInfo()); 2359 // Store the hi of the constructed double. 2360 SDValue HiPtr = DAG.getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), dl); 2361 SDValue Store2 = 2362 DAG.getStore(MemChain, dl, Hi, HiPtr, MachinePointerInfo()); 2363 MemChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 2364 2365 // load the constructed double 2366 SDValue Load = 2367 DAG.getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo()); 2368 // FP constant to bias correct the final result 2369 SDValue Bias = DAG.getConstantFP(isSigned ? 2370 BitsToDouble(0x4330000080000000ULL) : 2371 BitsToDouble(0x4330000000000000ULL), 2372 dl, MVT::f64); 2373 // Subtract the bias and get the final result. 2374 SDValue Sub; 2375 SDValue Result; 2376 if (Node->isStrictFPOpcode()) { 2377 Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other}, 2378 {Node->getOperand(0), Load, Bias}); 2379 Chain = Sub.getValue(1); 2380 if (DestVT != Sub.getValueType()) { 2381 std::pair<SDValue, SDValue> ResultPair; 2382 ResultPair = 2383 DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT); 2384 Result = ResultPair.first; 2385 Chain = ResultPair.second; 2386 } 2387 else 2388 Result = Sub; 2389 } else { 2390 Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2391 Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); 2392 } 2393 return Result; 2394 } 2395 2396 if (isSigned) 2397 return SDValue(); 2398 2399 // TODO: Generalize this for use with other types. 2400 if (((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) || 2401 (SrcVT == MVT::i64 && DestVT == MVT::f64)) { 2402 LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32/f64\n"); 2403 // For unsigned conversions, convert them to signed conversions using the 2404 // algorithm from the x86_64 __floatundisf in compiler_rt. That method 2405 // should be valid for i32->f32 as well. 2406 2407 // More generally this transform should be valid if there are 3 more bits 2408 // in the integer type than the significand. Rounding uses the first bit 2409 // after the width of the significand and the OR of all bits after that. So 2410 // we need to be able to OR the shifted out bit into one of the bits that 2411 // participate in the OR. 2412 2413 // TODO: This really should be implemented using a branch rather than a 2414 // select. We happen to get lucky and machinesink does the right 2415 // thing most of the time. This would be a good candidate for a 2416 // pseudo-op, or, even better, for whole-function isel. 2417 EVT SetCCVT = getSetCCResultType(SrcVT); 2418 2419 SDValue SignBitTest = DAG.getSetCC( 2420 dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2421 2422 EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout()); 2423 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 2424 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst); 2425 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 2426 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst); 2427 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 2428 2429 SDValue Slow, Fast; 2430 if (Node->isStrictFPOpcode()) { 2431 // In strict mode, we must avoid spurious exceptions, and therefore 2432 // must make sure to only emit a single STRICT_SINT_TO_FP. 2433 SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0); 2434 Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2435 { Node->getOperand(0), InCvt }); 2436 Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2437 { Fast.getValue(1), Fast, Fast }); 2438 Chain = Slow.getValue(1); 2439 // The STRICT_SINT_TO_FP inherits the exception mode from the 2440 // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can 2441 // never raise any exception. 2442 SDNodeFlags Flags; 2443 Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept()); 2444 Fast->setFlags(Flags); 2445 Flags.setNoFPExcept(true); 2446 Slow->setFlags(Flags); 2447 } else { 2448 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or); 2449 Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt); 2450 Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2451 } 2452 2453 return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast); 2454 } 2455 2456 // Don't expand it if there isn't cheap fadd. 2457 if (!TLI.isOperationLegalOrCustom( 2458 Node->isStrictFPOpcode() ? ISD::STRICT_FADD : ISD::FADD, DestVT)) 2459 return SDValue(); 2460 2461 // The following optimization is valid only if every value in SrcVT (when 2462 // treated as signed) is representable in DestVT. Check that the mantissa 2463 // size of DestVT is >= than the number of bits in SrcVT -1. 2464 assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >= 2465 SrcVT.getSizeInBits() - 1 && 2466 "Cannot perform lossless SINT_TO_FP!"); 2467 2468 SDValue Tmp1; 2469 if (Node->isStrictFPOpcode()) { 2470 Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2471 { Node->getOperand(0), Op0 }); 2472 } else 2473 Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2474 2475 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, 2476 DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2477 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2478 Four = DAG.getIntPtrConstant(4, dl); 2479 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2480 SignSet, Four, Zero); 2481 2482 // If the sign bit of the integer is set, the large number will be treated 2483 // as a negative number. To counteract this, the dynamic code adds an 2484 // offset depending on the data type. 2485 uint64_t FF; 2486 switch (SrcVT.getSimpleVT().SimpleTy) { 2487 default: 2488 return SDValue(); 2489 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2490 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2491 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2492 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2493 } 2494 if (DAG.getDataLayout().isLittleEndian()) 2495 FF <<= 32; 2496 Constant *FudgeFactor = ConstantInt::get( 2497 Type::getInt64Ty(*DAG.getContext()), FF); 2498 2499 SDValue CPIdx = 2500 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2501 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 2502 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2503 Alignment = commonAlignment(Alignment, 4); 2504 SDValue FudgeInReg; 2505 if (DestVT == MVT::f32) 2506 FudgeInReg = DAG.getLoad( 2507 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2508 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2509 Alignment); 2510 else { 2511 SDValue Load = DAG.getExtLoad( 2512 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2513 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2514 Alignment); 2515 HandleSDNode Handle(Load); 2516 LegalizeOp(Load.getNode()); 2517 FudgeInReg = Handle.getValue(); 2518 } 2519 2520 if (Node->isStrictFPOpcode()) { 2521 SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2522 { Tmp1.getValue(1), Tmp1, FudgeInReg }); 2523 Chain = Result.getValue(1); 2524 return Result; 2525 } 2526 2527 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2528 } 2529 2530 /// This function is responsible for legalizing a 2531 /// *INT_TO_FP operation of the specified operand when the target requests that 2532 /// we promote it. At this point, we know that the result and operand types are 2533 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2534 /// operation that takes a larger input. 2535 void SelectionDAGLegalize::PromoteLegalINT_TO_FP( 2536 SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) { 2537 bool IsStrict = N->isStrictFPOpcode(); 2538 bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP || 2539 N->getOpcode() == ISD::STRICT_SINT_TO_FP; 2540 EVT DestVT = N->getValueType(0); 2541 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2542 unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP; 2543 unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP; 2544 2545 // First step, figure out the appropriate *INT_TO_FP operation to use. 2546 EVT NewInTy = LegalOp.getValueType(); 2547 2548 unsigned OpToUse = 0; 2549 2550 // Scan for the appropriate larger type to use. 2551 while (true) { 2552 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2553 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2554 2555 // If the target supports SINT_TO_FP of this type, use it. 2556 if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) { 2557 OpToUse = SIntOp; 2558 break; 2559 } 2560 if (IsSigned) 2561 continue; 2562 2563 // If the target supports UINT_TO_FP of this type, use it. 2564 if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) { 2565 OpToUse = UIntOp; 2566 break; 2567 } 2568 2569 // Otherwise, try a larger type. 2570 } 2571 2572 // Okay, we found the operation and type to use. Zero extend our input to the 2573 // desired type then run the operation on it. 2574 if (IsStrict) { 2575 SDValue Res = 2576 DAG.getNode(OpToUse, dl, {DestVT, MVT::Other}, 2577 {N->getOperand(0), 2578 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2579 dl, NewInTy, LegalOp)}); 2580 Results.push_back(Res); 2581 Results.push_back(Res.getValue(1)); 2582 return; 2583 } 2584 2585 Results.push_back( 2586 DAG.getNode(OpToUse, dl, DestVT, 2587 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2588 dl, NewInTy, LegalOp))); 2589 } 2590 2591 /// This function is responsible for legalizing a 2592 /// FP_TO_*INT operation of the specified operand when the target requests that 2593 /// we promote it. At this point, we know that the result and operand types are 2594 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2595 /// operation that returns a larger result. 2596 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 2597 SmallVectorImpl<SDValue> &Results) { 2598 bool IsStrict = N->isStrictFPOpcode(); 2599 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 2600 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 2601 EVT DestVT = N->getValueType(0); 2602 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2603 // First step, figure out the appropriate FP_TO*INT operation to use. 2604 EVT NewOutTy = DestVT; 2605 2606 unsigned OpToUse = 0; 2607 2608 // Scan for the appropriate larger type to use. 2609 while (true) { 2610 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2611 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2612 2613 // A larger signed type can hold all unsigned values of the requested type, 2614 // so using FP_TO_SINT is valid 2615 OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT; 2616 if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2617 break; 2618 2619 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2620 OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT; 2621 if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2622 break; 2623 2624 // Otherwise, try a larger type. 2625 } 2626 2627 // Okay, we found the operation and type to use. 2628 SDValue Operation; 2629 if (IsStrict) { 2630 SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other); 2631 Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp); 2632 } else 2633 Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2634 2635 // Truncate the result of the extended FP_TO_*INT operation to the desired 2636 // size. 2637 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2638 Results.push_back(Trunc); 2639 if (IsStrict) 2640 Results.push_back(Operation.getValue(1)); 2641 } 2642 2643 /// Promote FP_TO_*INT_SAT operation to a larger result type. At this point 2644 /// the result and operand types are legal and there must be a legal 2645 /// FP_TO_*INT_SAT operation for a larger result type. 2646 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT_SAT(SDNode *Node, 2647 const SDLoc &dl) { 2648 unsigned Opcode = Node->getOpcode(); 2649 2650 // Scan for the appropriate larger type to use. 2651 EVT NewOutTy = Node->getValueType(0); 2652 while (true) { 2653 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy + 1); 2654 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2655 2656 if (TLI.isOperationLegalOrCustom(Opcode, NewOutTy)) 2657 break; 2658 } 2659 2660 // Saturation width is determined by second operand, so we don't have to 2661 // perform any fixup and can directly truncate the result. 2662 SDValue Result = DAG.getNode(Opcode, dl, NewOutTy, Node->getOperand(0), 2663 Node->getOperand(1)); 2664 return DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Result); 2665 } 2666 2667 /// Open code the operations for PARITY of the specified operation. 2668 SDValue SelectionDAGLegalize::ExpandPARITY(SDValue Op, const SDLoc &dl) { 2669 EVT VT = Op.getValueType(); 2670 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2671 unsigned Sz = VT.getScalarSizeInBits(); 2672 2673 // If CTPOP is legal, use it. Otherwise use shifts and xor. 2674 SDValue Result; 2675 if (TLI.isOperationLegalOrPromote(ISD::CTPOP, VT)) { 2676 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 2677 } else { 2678 Result = Op; 2679 for (unsigned i = Log2_32_Ceil(Sz); i != 0;) { 2680 SDValue Shift = DAG.getNode(ISD::SRL, dl, VT, Result, 2681 DAG.getConstant(1ULL << (--i), dl, ShVT)); 2682 Result = DAG.getNode(ISD::XOR, dl, VT, Result, Shift); 2683 } 2684 } 2685 2686 return DAG.getNode(ISD::AND, dl, VT, Result, DAG.getConstant(1, dl, VT)); 2687 } 2688 2689 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2690 LLVM_DEBUG(dbgs() << "Trying to expand node\n"); 2691 SmallVector<SDValue, 8> Results; 2692 SDLoc dl(Node); 2693 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2694 bool NeedInvert; 2695 switch (Node->getOpcode()) { 2696 case ISD::ABS: 2697 if ((Tmp1 = TLI.expandABS(Node, DAG))) 2698 Results.push_back(Tmp1); 2699 break; 2700 case ISD::CTPOP: 2701 if ((Tmp1 = TLI.expandCTPOP(Node, DAG))) 2702 Results.push_back(Tmp1); 2703 break; 2704 case ISD::CTLZ: 2705 case ISD::CTLZ_ZERO_UNDEF: 2706 if ((Tmp1 = TLI.expandCTLZ(Node, DAG))) 2707 Results.push_back(Tmp1); 2708 break; 2709 case ISD::CTTZ: 2710 case ISD::CTTZ_ZERO_UNDEF: 2711 if ((Tmp1 = TLI.expandCTTZ(Node, DAG))) 2712 Results.push_back(Tmp1); 2713 break; 2714 case ISD::BITREVERSE: 2715 if ((Tmp1 = TLI.expandBITREVERSE(Node, DAG))) 2716 Results.push_back(Tmp1); 2717 break; 2718 case ISD::BSWAP: 2719 if ((Tmp1 = TLI.expandBSWAP(Node, DAG))) 2720 Results.push_back(Tmp1); 2721 break; 2722 case ISD::PARITY: 2723 Results.push_back(ExpandPARITY(Node->getOperand(0), dl)); 2724 break; 2725 case ISD::FRAMEADDR: 2726 case ISD::RETURNADDR: 2727 case ISD::FRAME_TO_ARGS_OFFSET: 2728 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2729 break; 2730 case ISD::EH_DWARF_CFA: { 2731 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 2732 TLI.getPointerTy(DAG.getDataLayout())); 2733 SDValue Offset = DAG.getNode(ISD::ADD, dl, 2734 CfaArg.getValueType(), 2735 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 2736 CfaArg.getValueType()), 2737 CfaArg); 2738 SDValue FA = DAG.getNode( 2739 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 2740 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2741 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 2742 FA, Offset)); 2743 break; 2744 } 2745 case ISD::FLT_ROUNDS_: 2746 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2747 Results.push_back(Node->getOperand(0)); 2748 break; 2749 case ISD::EH_RETURN: 2750 case ISD::EH_LABEL: 2751 case ISD::PREFETCH: 2752 case ISD::VAEND: 2753 case ISD::EH_SJLJ_LONGJMP: 2754 // If the target didn't expand these, there's nothing to do, so just 2755 // preserve the chain and be done. 2756 Results.push_back(Node->getOperand(0)); 2757 break; 2758 case ISD::READCYCLECOUNTER: 2759 // If the target didn't expand this, just return 'zero' and preserve the 2760 // chain. 2761 Results.append(Node->getNumValues() - 1, 2762 DAG.getConstant(0, dl, Node->getValueType(0))); 2763 Results.push_back(Node->getOperand(0)); 2764 break; 2765 case ISD::EH_SJLJ_SETJMP: 2766 // If the target didn't expand this, just return 'zero' and preserve the 2767 // chain. 2768 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2769 Results.push_back(Node->getOperand(0)); 2770 break; 2771 case ISD::ATOMIC_LOAD: { 2772 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2773 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2774 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2775 SDValue Swap = DAG.getAtomicCmpSwap( 2776 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2777 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2778 cast<AtomicSDNode>(Node)->getMemOperand()); 2779 Results.push_back(Swap.getValue(0)); 2780 Results.push_back(Swap.getValue(1)); 2781 break; 2782 } 2783 case ISD::ATOMIC_STORE: { 2784 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2785 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2786 cast<AtomicSDNode>(Node)->getMemoryVT(), 2787 Node->getOperand(0), 2788 Node->getOperand(1), Node->getOperand(2), 2789 cast<AtomicSDNode>(Node)->getMemOperand()); 2790 Results.push_back(Swap.getValue(1)); 2791 break; 2792 } 2793 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 2794 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 2795 // splits out the success value as a comparison. Expanding the resulting 2796 // ATOMIC_CMP_SWAP will produce a libcall. 2797 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2798 SDValue Res = DAG.getAtomicCmpSwap( 2799 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2800 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 2801 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 2802 2803 SDValue ExtRes = Res; 2804 SDValue LHS = Res; 2805 SDValue RHS = Node->getOperand(1); 2806 2807 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 2808 EVT OuterType = Node->getValueType(0); 2809 switch (TLI.getExtendForAtomicOps()) { 2810 case ISD::SIGN_EXTEND: 2811 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 2812 DAG.getValueType(AtomicType)); 2813 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 2814 Node->getOperand(2), DAG.getValueType(AtomicType)); 2815 ExtRes = LHS; 2816 break; 2817 case ISD::ZERO_EXTEND: 2818 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 2819 DAG.getValueType(AtomicType)); 2820 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2821 ExtRes = LHS; 2822 break; 2823 case ISD::ANY_EXTEND: 2824 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 2825 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2826 break; 2827 default: 2828 llvm_unreachable("Invalid atomic op extension"); 2829 } 2830 2831 SDValue Success = 2832 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 2833 2834 Results.push_back(ExtRes.getValue(0)); 2835 Results.push_back(Success); 2836 Results.push_back(Res.getValue(1)); 2837 break; 2838 } 2839 case ISD::DYNAMIC_STACKALLOC: 2840 ExpandDYNAMIC_STACKALLOC(Node, Results); 2841 break; 2842 case ISD::MERGE_VALUES: 2843 for (unsigned i = 0; i < Node->getNumValues(); i++) 2844 Results.push_back(Node->getOperand(i)); 2845 break; 2846 case ISD::UNDEF: { 2847 EVT VT = Node->getValueType(0); 2848 if (VT.isInteger()) 2849 Results.push_back(DAG.getConstant(0, dl, VT)); 2850 else { 2851 assert(VT.isFloatingPoint() && "Unknown value type!"); 2852 Results.push_back(DAG.getConstantFP(0, dl, VT)); 2853 } 2854 break; 2855 } 2856 case ISD::STRICT_FP_ROUND: 2857 // When strict mode is enforced we can't do expansion because it 2858 // does not honor the "strict" properties. Only libcall is allowed. 2859 if (TLI.isStrictFPEnabled()) 2860 break; 2861 // We might as well mutate to FP_ROUND when FP_ROUND operation is legal 2862 // since this operation is more efficient than stack operation. 2863 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2864 Node->getValueType(0)) 2865 == TargetLowering::Legal) 2866 break; 2867 // We fall back to use stack operation when the FP_ROUND operation 2868 // isn't available. 2869 if ((Tmp1 = EmitStackConvert(Node->getOperand(1), Node->getValueType(0), 2870 Node->getValueType(0), dl, 2871 Node->getOperand(0)))) { 2872 ReplaceNode(Node, Tmp1.getNode()); 2873 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n"); 2874 return true; 2875 } 2876 break; 2877 case ISD::FP_ROUND: 2878 case ISD::BITCAST: 2879 if ((Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 2880 Node->getValueType(0), dl))) 2881 Results.push_back(Tmp1); 2882 break; 2883 case ISD::STRICT_FP_EXTEND: 2884 // When strict mode is enforced we can't do expansion because it 2885 // does not honor the "strict" properties. Only libcall is allowed. 2886 if (TLI.isStrictFPEnabled()) 2887 break; 2888 // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal 2889 // since this operation is more efficient than stack operation. 2890 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2891 Node->getValueType(0)) 2892 == TargetLowering::Legal) 2893 break; 2894 // We fall back to use stack operation when the FP_EXTEND operation 2895 // isn't available. 2896 if ((Tmp1 = EmitStackConvert( 2897 Node->getOperand(1), Node->getOperand(1).getValueType(), 2898 Node->getValueType(0), dl, Node->getOperand(0)))) { 2899 ReplaceNode(Node, Tmp1.getNode()); 2900 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n"); 2901 return true; 2902 } 2903 break; 2904 case ISD::FP_EXTEND: 2905 if ((Tmp1 = EmitStackConvert(Node->getOperand(0), 2906 Node->getOperand(0).getValueType(), 2907 Node->getValueType(0), dl))) 2908 Results.push_back(Tmp1); 2909 break; 2910 case ISD::SIGN_EXTEND_INREG: { 2911 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2912 EVT VT = Node->getValueType(0); 2913 2914 // An in-register sign-extend of a boolean is a negation: 2915 // 'true' (1) sign-extended is -1. 2916 // 'false' (0) sign-extended is 0. 2917 // However, we must mask the high bits of the source operand because the 2918 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 2919 2920 // TODO: Do this for vectors too? 2921 if (ExtraVT.isScalarInteger() && ExtraVT.getSizeInBits() == 1) { 2922 SDValue One = DAG.getConstant(1, dl, VT); 2923 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 2924 SDValue Zero = DAG.getConstant(0, dl, VT); 2925 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 2926 Results.push_back(Neg); 2927 break; 2928 } 2929 2930 // NOTE: we could fall back on load/store here too for targets without 2931 // SRA. However, it is doubtful that any exist. 2932 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2933 unsigned BitsDiff = VT.getScalarSizeInBits() - 2934 ExtraVT.getScalarSizeInBits(); 2935 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 2936 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 2937 Node->getOperand(0), ShiftCst); 2938 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 2939 Results.push_back(Tmp1); 2940 break; 2941 } 2942 case ISD::UINT_TO_FP: 2943 case ISD::STRICT_UINT_TO_FP: 2944 if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) { 2945 Results.push_back(Tmp1); 2946 if (Node->isStrictFPOpcode()) 2947 Results.push_back(Tmp2); 2948 break; 2949 } 2950 LLVM_FALLTHROUGH; 2951 case ISD::SINT_TO_FP: 2952 case ISD::STRICT_SINT_TO_FP: 2953 if ((Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2))) { 2954 Results.push_back(Tmp1); 2955 if (Node->isStrictFPOpcode()) 2956 Results.push_back(Tmp2); 2957 } 2958 break; 2959 case ISD::FP_TO_SINT: 2960 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 2961 Results.push_back(Tmp1); 2962 break; 2963 case ISD::STRICT_FP_TO_SINT: 2964 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) { 2965 ReplaceNode(Node, Tmp1.getNode()); 2966 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n"); 2967 return true; 2968 } 2969 break; 2970 case ISD::FP_TO_UINT: 2971 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) 2972 Results.push_back(Tmp1); 2973 break; 2974 case ISD::STRICT_FP_TO_UINT: 2975 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) { 2976 // Relink the chain. 2977 DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2); 2978 // Replace the new UINT result. 2979 ReplaceNodeWithValue(SDValue(Node, 0), Tmp1); 2980 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n"); 2981 return true; 2982 } 2983 break; 2984 case ISD::FP_TO_SINT_SAT: 2985 case ISD::FP_TO_UINT_SAT: 2986 Results.push_back(TLI.expandFP_TO_INT_SAT(Node, DAG)); 2987 break; 2988 case ISD::VAARG: 2989 Results.push_back(DAG.expandVAArg(Node)); 2990 Results.push_back(Results[0].getValue(1)); 2991 break; 2992 case ISD::VACOPY: 2993 Results.push_back(DAG.expandVACopy(Node)); 2994 break; 2995 case ISD::EXTRACT_VECTOR_ELT: 2996 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 2997 // This must be an access of the only element. Return it. 2998 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 2999 Node->getOperand(0)); 3000 else 3001 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 3002 Results.push_back(Tmp1); 3003 break; 3004 case ISD::EXTRACT_SUBVECTOR: 3005 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 3006 break; 3007 case ISD::INSERT_SUBVECTOR: 3008 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 3009 break; 3010 case ISD::CONCAT_VECTORS: 3011 Results.push_back(ExpandVectorBuildThroughStack(Node)); 3012 break; 3013 case ISD::SCALAR_TO_VECTOR: 3014 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3015 break; 3016 case ISD::INSERT_VECTOR_ELT: 3017 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3018 Node->getOperand(1), 3019 Node->getOperand(2), dl)); 3020 break; 3021 case ISD::VECTOR_SHUFFLE: { 3022 SmallVector<int, 32> NewMask; 3023 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3024 3025 EVT VT = Node->getValueType(0); 3026 EVT EltVT = VT.getVectorElementType(); 3027 SDValue Op0 = Node->getOperand(0); 3028 SDValue Op1 = Node->getOperand(1); 3029 if (!TLI.isTypeLegal(EltVT)) { 3030 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3031 3032 // BUILD_VECTOR operands are allowed to be wider than the element type. 3033 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 3034 // it. 3035 if (NewEltVT.bitsLT(EltVT)) { 3036 // Convert shuffle node. 3037 // If original node was v4i64 and the new EltVT is i32, 3038 // cast operands to v8i32 and re-build the mask. 3039 3040 // Calculate new VT, the size of the new VT should be equal to original. 3041 EVT NewVT = 3042 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3043 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 3044 assert(NewVT.bitsEq(VT)); 3045 3046 // cast operands to new VT 3047 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3048 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3049 3050 // Convert the shuffle mask 3051 unsigned int factor = 3052 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3053 3054 // EltVT gets smaller 3055 assert(factor > 0); 3056 3057 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3058 if (Mask[i] < 0) { 3059 for (unsigned fi = 0; fi < factor; ++fi) 3060 NewMask.push_back(Mask[i]); 3061 } 3062 else { 3063 for (unsigned fi = 0; fi < factor; ++fi) 3064 NewMask.push_back(Mask[i]*factor+fi); 3065 } 3066 } 3067 Mask = NewMask; 3068 VT = NewVT; 3069 } 3070 EltVT = NewEltVT; 3071 } 3072 unsigned NumElems = VT.getVectorNumElements(); 3073 SmallVector<SDValue, 16> Ops; 3074 for (unsigned i = 0; i != NumElems; ++i) { 3075 if (Mask[i] < 0) { 3076 Ops.push_back(DAG.getUNDEF(EltVT)); 3077 continue; 3078 } 3079 unsigned Idx = Mask[i]; 3080 if (Idx < NumElems) 3081 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3082 DAG.getVectorIdxConstant(Idx, dl))); 3083 else 3084 Ops.push_back( 3085 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3086 DAG.getVectorIdxConstant(Idx - NumElems, dl))); 3087 } 3088 3089 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 3090 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3091 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3092 Results.push_back(Tmp1); 3093 break; 3094 } 3095 case ISD::VECTOR_SPLICE: { 3096 Results.push_back(TLI.expandVectorSplice(Node, DAG)); 3097 break; 3098 } 3099 case ISD::EXTRACT_ELEMENT: { 3100 EVT OpTy = Node->getOperand(0).getValueType(); 3101 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3102 // 1 -> Hi 3103 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3104 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3105 TLI.getShiftAmountTy( 3106 Node->getOperand(0).getValueType(), 3107 DAG.getDataLayout()))); 3108 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3109 } else { 3110 // 0 -> Lo 3111 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3112 Node->getOperand(0)); 3113 } 3114 Results.push_back(Tmp1); 3115 break; 3116 } 3117 case ISD::STACKSAVE: 3118 // Expand to CopyFromReg if the target set 3119 // StackPointerRegisterToSaveRestore. 3120 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { 3121 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3122 Node->getValueType(0))); 3123 Results.push_back(Results[0].getValue(1)); 3124 } else { 3125 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3126 Results.push_back(Node->getOperand(0)); 3127 } 3128 break; 3129 case ISD::STACKRESTORE: 3130 // Expand to CopyToReg if the target set 3131 // StackPointerRegisterToSaveRestore. 3132 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { 3133 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3134 Node->getOperand(1))); 3135 } else { 3136 Results.push_back(Node->getOperand(0)); 3137 } 3138 break; 3139 case ISD::GET_DYNAMIC_AREA_OFFSET: 3140 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3141 Results.push_back(Results[0].getValue(0)); 3142 break; 3143 case ISD::FCOPYSIGN: 3144 Results.push_back(ExpandFCOPYSIGN(Node)); 3145 break; 3146 case ISD::FNEG: 3147 Results.push_back(ExpandFNEG(Node)); 3148 break; 3149 case ISD::FABS: 3150 Results.push_back(ExpandFABS(Node)); 3151 break; 3152 case ISD::IS_FPCLASS: { 3153 auto CNode = cast<ConstantSDNode>(Node->getOperand(1)); 3154 auto Test = static_cast<FPClassTest>(CNode->getZExtValue()); 3155 if (SDValue Expanded = 3156 TLI.expandIS_FPCLASS(Node->getValueType(0), Node->getOperand(0), 3157 Test, Node->getFlags(), SDLoc(Node), DAG)) 3158 Results.push_back(Expanded); 3159 break; 3160 } 3161 case ISD::SMIN: 3162 case ISD::SMAX: 3163 case ISD::UMIN: 3164 case ISD::UMAX: { 3165 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3166 ISD::CondCode Pred; 3167 switch (Node->getOpcode()) { 3168 default: llvm_unreachable("How did we get here?"); 3169 case ISD::SMAX: Pred = ISD::SETGT; break; 3170 case ISD::SMIN: Pred = ISD::SETLT; break; 3171 case ISD::UMAX: Pred = ISD::SETUGT; break; 3172 case ISD::UMIN: Pred = ISD::SETULT; break; 3173 } 3174 Tmp1 = Node->getOperand(0); 3175 Tmp2 = Node->getOperand(1); 3176 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3177 Results.push_back(Tmp1); 3178 break; 3179 } 3180 case ISD::FMINNUM: 3181 case ISD::FMAXNUM: { 3182 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) 3183 Results.push_back(Expanded); 3184 break; 3185 } 3186 case ISD::FSIN: 3187 case ISD::FCOS: { 3188 EVT VT = Node->getValueType(0); 3189 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3190 // fcos which share the same operand and both are used. 3191 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3192 isSinCosLibcallAvailable(Node, TLI)) 3193 && useSinCos(Node)) { 3194 SDVTList VTs = DAG.getVTList(VT, VT); 3195 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3196 if (Node->getOpcode() == ISD::FCOS) 3197 Tmp1 = Tmp1.getValue(1); 3198 Results.push_back(Tmp1); 3199 } 3200 break; 3201 } 3202 case ISD::FMAD: 3203 llvm_unreachable("Illegal fmad should never be formed"); 3204 3205 case ISD::FP16_TO_FP: 3206 if (Node->getValueType(0) != MVT::f32) { 3207 // We can extend to types bigger than f32 in two steps without changing 3208 // the result. Since "f16 -> f32" is much more commonly available, give 3209 // CodeGen the option of emitting that before resorting to a libcall. 3210 SDValue Res = 3211 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3212 Results.push_back( 3213 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3214 } 3215 break; 3216 case ISD::STRICT_FP16_TO_FP: 3217 if (Node->getValueType(0) != MVT::f32) { 3218 // We can extend to types bigger than f32 in two steps without changing 3219 // the result. Since "f16 -> f32" is much more commonly available, give 3220 // CodeGen the option of emitting that before resorting to a libcall. 3221 SDValue Res = 3222 DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other}, 3223 {Node->getOperand(0), Node->getOperand(1)}); 3224 Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 3225 {Node->getValueType(0), MVT::Other}, 3226 {Res.getValue(1), Res}); 3227 Results.push_back(Res); 3228 Results.push_back(Res.getValue(1)); 3229 } 3230 break; 3231 case ISD::FP_TO_FP16: 3232 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3233 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3234 SDValue Op = Node->getOperand(0); 3235 MVT SVT = Op.getSimpleValueType(); 3236 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3237 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3238 // Under fastmath, we can expand this node into a fround followed by 3239 // a float-half conversion. 3240 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3241 DAG.getIntPtrConstant(0, dl)); 3242 Results.push_back( 3243 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3244 } 3245 } 3246 break; 3247 case ISD::ConstantFP: { 3248 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3249 // Check to see if this FP immediate is already legal. 3250 // If this is a legal constant, turn it into a TargetConstantFP node. 3251 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0), 3252 DAG.shouldOptForSize())) 3253 Results.push_back(ExpandConstantFP(CFP, true)); 3254 break; 3255 } 3256 case ISD::Constant: { 3257 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3258 Results.push_back(ExpandConstant(CP)); 3259 break; 3260 } 3261 case ISD::FSUB: { 3262 EVT VT = Node->getValueType(0); 3263 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3264 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3265 const SDNodeFlags Flags = Node->getFlags(); 3266 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3267 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3268 Results.push_back(Tmp1); 3269 } 3270 break; 3271 } 3272 case ISD::SUB: { 3273 EVT VT = Node->getValueType(0); 3274 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3275 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3276 "Don't know how to expand this subtraction!"); 3277 Tmp1 = DAG.getNOT(dl, Node->getOperand(1), VT); 3278 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3279 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3280 break; 3281 } 3282 case ISD::UREM: 3283 case ISD::SREM: 3284 if (TLI.expandREM(Node, Tmp1, DAG)) 3285 Results.push_back(Tmp1); 3286 break; 3287 case ISD::UDIV: 3288 case ISD::SDIV: { 3289 bool isSigned = Node->getOpcode() == ISD::SDIV; 3290 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3291 EVT VT = Node->getValueType(0); 3292 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3293 SDVTList VTs = DAG.getVTList(VT, VT); 3294 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3295 Node->getOperand(1)); 3296 Results.push_back(Tmp1); 3297 } 3298 break; 3299 } 3300 case ISD::MULHU: 3301 case ISD::MULHS: { 3302 unsigned ExpandOpcode = 3303 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3304 EVT VT = Node->getValueType(0); 3305 SDVTList VTs = DAG.getVTList(VT, VT); 3306 3307 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3308 Node->getOperand(1)); 3309 Results.push_back(Tmp1.getValue(1)); 3310 break; 3311 } 3312 case ISD::UMUL_LOHI: 3313 case ISD::SMUL_LOHI: { 3314 SDValue LHS = Node->getOperand(0); 3315 SDValue RHS = Node->getOperand(1); 3316 MVT VT = LHS.getSimpleValueType(); 3317 unsigned MULHOpcode = 3318 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3319 3320 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3321 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3322 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3323 break; 3324 } 3325 3326 SmallVector<SDValue, 4> Halves; 3327 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3328 assert(TLI.isTypeLegal(HalfType)); 3329 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, dl, LHS, RHS, Halves, 3330 HalfType, DAG, 3331 TargetLowering::MulExpansionKind::Always)) { 3332 for (unsigned i = 0; i < 2; ++i) { 3333 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3334 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3335 SDValue Shift = DAG.getConstant( 3336 HalfType.getScalarSizeInBits(), dl, 3337 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3338 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3339 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3340 } 3341 break; 3342 } 3343 break; 3344 } 3345 case ISD::MUL: { 3346 EVT VT = Node->getValueType(0); 3347 SDVTList VTs = DAG.getVTList(VT, VT); 3348 // See if multiply or divide can be lowered using two-result operations. 3349 // We just need the low half of the multiply; try both the signed 3350 // and unsigned forms. If the target supports both SMUL_LOHI and 3351 // UMUL_LOHI, form a preference by checking which forms of plain 3352 // MULH it supports. 3353 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3354 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3355 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3356 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3357 unsigned OpToUse = 0; 3358 if (HasSMUL_LOHI && !HasMULHS) { 3359 OpToUse = ISD::SMUL_LOHI; 3360 } else if (HasUMUL_LOHI && !HasMULHU) { 3361 OpToUse = ISD::UMUL_LOHI; 3362 } else if (HasSMUL_LOHI) { 3363 OpToUse = ISD::SMUL_LOHI; 3364 } else if (HasUMUL_LOHI) { 3365 OpToUse = ISD::UMUL_LOHI; 3366 } 3367 if (OpToUse) { 3368 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3369 Node->getOperand(1))); 3370 break; 3371 } 3372 3373 SDValue Lo, Hi; 3374 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3375 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3376 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3377 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3378 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3379 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3380 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3381 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3382 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3383 SDValue Shift = 3384 DAG.getConstant(HalfType.getSizeInBits(), dl, 3385 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3386 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3387 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3388 } 3389 break; 3390 } 3391 case ISD::FSHL: 3392 case ISD::FSHR: 3393 if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) 3394 Results.push_back(Expanded); 3395 break; 3396 case ISD::ROTL: 3397 case ISD::ROTR: 3398 if (SDValue Expanded = TLI.expandROT(Node, true /*AllowVectorOps*/, DAG)) 3399 Results.push_back(Expanded); 3400 break; 3401 case ISD::SADDSAT: 3402 case ISD::UADDSAT: 3403 case ISD::SSUBSAT: 3404 case ISD::USUBSAT: 3405 Results.push_back(TLI.expandAddSubSat(Node, DAG)); 3406 break; 3407 case ISD::SSHLSAT: 3408 case ISD::USHLSAT: 3409 Results.push_back(TLI.expandShlSat(Node, DAG)); 3410 break; 3411 case ISD::SMULFIX: 3412 case ISD::SMULFIXSAT: 3413 case ISD::UMULFIX: 3414 case ISD::UMULFIXSAT: 3415 Results.push_back(TLI.expandFixedPointMul(Node, DAG)); 3416 break; 3417 case ISD::SDIVFIX: 3418 case ISD::SDIVFIXSAT: 3419 case ISD::UDIVFIX: 3420 case ISD::UDIVFIXSAT: 3421 if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node), 3422 Node->getOperand(0), 3423 Node->getOperand(1), 3424 Node->getConstantOperandVal(2), 3425 DAG)) { 3426 Results.push_back(V); 3427 break; 3428 } 3429 // FIXME: We might want to retry here with a wider type if we fail, if that 3430 // type is legal. 3431 // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is 3432 // <= 128 (which is the case for all of the default Embedded-C types), 3433 // we will only get here with types and scales that we could always expand 3434 // if we were allowed to generate libcalls to division functions of illegal 3435 // type. But we cannot do that. 3436 llvm_unreachable("Cannot expand DIVFIX!"); 3437 case ISD::ADDCARRY: 3438 case ISD::SUBCARRY: { 3439 SDValue LHS = Node->getOperand(0); 3440 SDValue RHS = Node->getOperand(1); 3441 SDValue Carry = Node->getOperand(2); 3442 3443 bool IsAdd = Node->getOpcode() == ISD::ADDCARRY; 3444 3445 // Initial add of the 2 operands. 3446 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB; 3447 EVT VT = LHS.getValueType(); 3448 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS); 3449 3450 // Initial check for overflow. 3451 EVT CarryType = Node->getValueType(1); 3452 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3453 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 3454 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3455 3456 // Add of the sum and the carry. 3457 SDValue One = DAG.getConstant(1, dl, VT); 3458 SDValue CarryExt = 3459 DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One); 3460 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt); 3461 3462 // Second check for overflow. If we are adding, we can only overflow if the 3463 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0. 3464 // If we are subtracting, we can only overflow if the initial sum is 0 and 3465 // the carry is set, resulting in a new sum of all 1s. 3466 SDValue Zero = DAG.getConstant(0, dl, VT); 3467 SDValue Overflow2 = 3468 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ) 3469 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ); 3470 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2, 3471 DAG.getZExtOrTrunc(Carry, dl, SetCCType)); 3472 3473 SDValue ResultCarry = 3474 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2); 3475 3476 Results.push_back(Sum2); 3477 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT)); 3478 break; 3479 } 3480 case ISD::SADDO: 3481 case ISD::SSUBO: { 3482 SDValue Result, Overflow; 3483 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 3484 Results.push_back(Result); 3485 Results.push_back(Overflow); 3486 break; 3487 } 3488 case ISD::UADDO: 3489 case ISD::USUBO: { 3490 SDValue Result, Overflow; 3491 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 3492 Results.push_back(Result); 3493 Results.push_back(Overflow); 3494 break; 3495 } 3496 case ISD::UMULO: 3497 case ISD::SMULO: { 3498 SDValue Result, Overflow; 3499 if (TLI.expandMULO(Node, Result, Overflow, DAG)) { 3500 Results.push_back(Result); 3501 Results.push_back(Overflow); 3502 } 3503 break; 3504 } 3505 case ISD::BUILD_PAIR: { 3506 EVT PairTy = Node->getValueType(0); 3507 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3508 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3509 Tmp2 = DAG.getNode( 3510 ISD::SHL, dl, PairTy, Tmp2, 3511 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3512 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3513 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3514 break; 3515 } 3516 case ISD::SELECT: 3517 Tmp1 = Node->getOperand(0); 3518 Tmp2 = Node->getOperand(1); 3519 Tmp3 = Node->getOperand(2); 3520 if (Tmp1.getOpcode() == ISD::SETCC) { 3521 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3522 Tmp2, Tmp3, 3523 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3524 } else { 3525 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3526 DAG.getConstant(0, dl, Tmp1.getValueType()), 3527 Tmp2, Tmp3, ISD::SETNE); 3528 } 3529 Tmp1->setFlags(Node->getFlags()); 3530 Results.push_back(Tmp1); 3531 break; 3532 case ISD::BR_JT: { 3533 SDValue Chain = Node->getOperand(0); 3534 SDValue Table = Node->getOperand(1); 3535 SDValue Index = Node->getOperand(2); 3536 3537 const DataLayout &TD = DAG.getDataLayout(); 3538 EVT PTy = TLI.getPointerTy(TD); 3539 3540 unsigned EntrySize = 3541 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3542 3543 // For power-of-two jumptable entry sizes convert multiplication to a shift. 3544 // This transformation needs to be done here since otherwise the MIPS 3545 // backend will end up emitting a three instruction multiply sequence 3546 // instead of a single shift and MSP430 will call a runtime function. 3547 if (llvm::isPowerOf2_32(EntrySize)) 3548 Index = DAG.getNode( 3549 ISD::SHL, dl, Index.getValueType(), Index, 3550 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); 3551 else 3552 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3553 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3554 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3555 Index, Table); 3556 3557 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3558 SDValue LD = DAG.getExtLoad( 3559 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3560 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3561 Addr = LD; 3562 if (TLI.isJumpTableRelative()) { 3563 // For PIC, the sequence is: 3564 // BRIND(load(Jumptable + index) + RelocBase) 3565 // RelocBase can be JumpTable, GOT or some sort of global base. 3566 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3567 TLI.getPICJumpTableRelocBase(Table, DAG)); 3568 } 3569 3570 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); 3571 Results.push_back(Tmp1); 3572 break; 3573 } 3574 case ISD::BRCOND: 3575 // Expand brcond's setcc into its constituent parts and create a BR_CC 3576 // Node. 3577 Tmp1 = Node->getOperand(0); 3578 Tmp2 = Node->getOperand(1); 3579 if (Tmp2.getOpcode() == ISD::SETCC && 3580 TLI.isOperationLegalOrCustom(ISD::BR_CC, 3581 Tmp2.getOperand(0).getValueType())) { 3582 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, Tmp2.getOperand(2), 3583 Tmp2.getOperand(0), Tmp2.getOperand(1), 3584 Node->getOperand(2)); 3585 } else { 3586 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 3587 if (Tmp2.isUndef() || 3588 (Tmp2.getOpcode() == ISD::AND && 3589 isa<ConstantSDNode>(Tmp2.getOperand(1)) && 3590 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) 3591 Tmp3 = Tmp2; 3592 else 3593 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3594 DAG.getConstant(1, dl, Tmp2.getValueType())); 3595 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3596 DAG.getCondCode(ISD::SETNE), Tmp3, 3597 DAG.getConstant(0, dl, Tmp3.getValueType()), 3598 Node->getOperand(2)); 3599 } 3600 Results.push_back(Tmp1); 3601 break; 3602 case ISD::SETCC: 3603 case ISD::VP_SETCC: 3604 case ISD::STRICT_FSETCC: 3605 case ISD::STRICT_FSETCCS: { 3606 bool IsVP = Node->getOpcode() == ISD::VP_SETCC; 3607 bool IsStrict = Node->getOpcode() == ISD::STRICT_FSETCC || 3608 Node->getOpcode() == ISD::STRICT_FSETCCS; 3609 bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS; 3610 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 3611 unsigned Offset = IsStrict ? 1 : 0; 3612 Tmp1 = Node->getOperand(0 + Offset); 3613 Tmp2 = Node->getOperand(1 + Offset); 3614 Tmp3 = Node->getOperand(2 + Offset); 3615 SDValue Mask, EVL; 3616 if (IsVP) { 3617 Mask = Node->getOperand(3 + Offset); 3618 EVL = Node->getOperand(4 + Offset); 3619 } 3620 bool Legalized = TLI.LegalizeSetCCCondCode( 3621 DAG, Node->getValueType(0), Tmp1, Tmp2, Tmp3, Mask, EVL, NeedInvert, dl, 3622 Chain, IsSignaling); 3623 3624 if (Legalized) { 3625 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3626 // condition code, create a new SETCC node. 3627 if (Tmp3.getNode()) { 3628 if (IsStrict) { 3629 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getVTList(), 3630 {Chain, Tmp1, Tmp2, Tmp3}, Node->getFlags()); 3631 Chain = Tmp1.getValue(1); 3632 } else if (IsVP) { 3633 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), 3634 {Tmp1, Tmp2, Tmp3, Mask, EVL}, Node->getFlags()); 3635 } else { 3636 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Tmp1, 3637 Tmp2, Tmp3, Node->getFlags()); 3638 } 3639 } 3640 3641 // If we expanded the SETCC by inverting the condition code, then wrap 3642 // the existing SETCC in a NOT to restore the intended condition. 3643 if (NeedInvert) { 3644 if (!IsVP) 3645 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3646 else 3647 Tmp1 = 3648 DAG.getVPLogicalNOT(dl, Tmp1, Mask, EVL, Tmp1->getValueType(0)); 3649 } 3650 3651 Results.push_back(Tmp1); 3652 if (IsStrict) 3653 Results.push_back(Chain); 3654 3655 break; 3656 } 3657 3658 // FIXME: It seems Legalized is false iff CCCode is Legal. I don't 3659 // understand if this code is useful for strict nodes. 3660 assert(!IsStrict && "Don't know how to expand for strict nodes."); 3661 3662 // Otherwise, SETCC for the given comparison type must be completely 3663 // illegal; expand it into a SELECT_CC. 3664 // FIXME: This drops the mask/evl for VP_SETCC. 3665 EVT VT = Node->getValueType(0); 3666 EVT Tmp1VT = Tmp1.getValueType(); 3667 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3668 DAG.getBoolConstant(true, dl, VT, Tmp1VT), 3669 DAG.getBoolConstant(false, dl, VT, Tmp1VT), Tmp3); 3670 Tmp1->setFlags(Node->getFlags()); 3671 Results.push_back(Tmp1); 3672 break; 3673 } 3674 case ISD::SELECT_CC: { 3675 // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS 3676 Tmp1 = Node->getOperand(0); // LHS 3677 Tmp2 = Node->getOperand(1); // RHS 3678 Tmp3 = Node->getOperand(2); // True 3679 Tmp4 = Node->getOperand(3); // False 3680 EVT VT = Node->getValueType(0); 3681 SDValue Chain; 3682 SDValue CC = Node->getOperand(4); 3683 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3684 3685 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 3686 // If the condition code is legal, then we need to expand this 3687 // node using SETCC and SELECT. 3688 EVT CmpVT = Tmp1.getValueType(); 3689 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3690 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3691 "expanded."); 3692 EVT CCVT = getSetCCResultType(CmpVT); 3693 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags()); 3694 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3695 break; 3696 } 3697 3698 // SELECT_CC is legal, so the condition code must not be. 3699 bool Legalized = false; 3700 // Try to legalize by inverting the condition. This is for targets that 3701 // might support an ordered version of a condition, but not the unordered 3702 // version (or vice versa). 3703 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType()); 3704 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 3705 // Use the new condition code and swap true and false 3706 Legalized = true; 3707 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3708 Tmp1->setFlags(Node->getFlags()); 3709 } else { 3710 // If The inverse is not legal, then try to swap the arguments using 3711 // the inverse condition code. 3712 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3713 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 3714 // The swapped inverse condition is legal, so swap true and false, 3715 // lhs and rhs. 3716 Legalized = true; 3717 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3718 Tmp1->setFlags(Node->getFlags()); 3719 } 3720 } 3721 3722 if (!Legalized) { 3723 Legalized = TLI.LegalizeSetCCCondCode( 3724 DAG, getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, 3725 /*Mask*/ SDValue(), /*EVL*/ SDValue(), NeedInvert, dl, Chain); 3726 3727 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3728 3729 // If we expanded the SETCC by inverting the condition code, then swap 3730 // the True/False operands to match. 3731 if (NeedInvert) 3732 std::swap(Tmp3, Tmp4); 3733 3734 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3735 // condition code, create a new SELECT_CC node. 3736 if (CC.getNode()) { 3737 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3738 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3739 } else { 3740 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3741 CC = DAG.getCondCode(ISD::SETNE); 3742 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3743 Tmp2, Tmp3, Tmp4, CC); 3744 } 3745 Tmp1->setFlags(Node->getFlags()); 3746 } 3747 Results.push_back(Tmp1); 3748 break; 3749 } 3750 case ISD::BR_CC: { 3751 // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS 3752 SDValue Chain; 3753 Tmp1 = Node->getOperand(0); // Chain 3754 Tmp2 = Node->getOperand(2); // LHS 3755 Tmp3 = Node->getOperand(3); // RHS 3756 Tmp4 = Node->getOperand(1); // CC 3757 3758 bool Legalized = TLI.LegalizeSetCCCondCode( 3759 DAG, getSetCCResultType(Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, 3760 /*Mask*/ SDValue(), /*EVL*/ SDValue(), NeedInvert, dl, Chain); 3761 (void)Legalized; 3762 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3763 3764 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3765 // node. 3766 if (Tmp4.getNode()) { 3767 assert(!NeedInvert && "Don't know how to invert BR_CC!"); 3768 3769 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3770 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3771 } else { 3772 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3773 Tmp4 = DAG.getCondCode(NeedInvert ? ISD::SETEQ : ISD::SETNE); 3774 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3775 Tmp2, Tmp3, Node->getOperand(4)); 3776 } 3777 Results.push_back(Tmp1); 3778 break; 3779 } 3780 case ISD::BUILD_VECTOR: 3781 Results.push_back(ExpandBUILD_VECTOR(Node)); 3782 break; 3783 case ISD::SPLAT_VECTOR: 3784 Results.push_back(ExpandSPLAT_VECTOR(Node)); 3785 break; 3786 case ISD::SRA: 3787 case ISD::SRL: 3788 case ISD::SHL: { 3789 // Scalarize vector SRA/SRL/SHL. 3790 EVT VT = Node->getValueType(0); 3791 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3792 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3793 unsigned NumElem = VT.getVectorNumElements(); 3794 3795 SmallVector<SDValue, 8> Scalars; 3796 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3797 SDValue Ex = 3798 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3799 Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl)); 3800 SDValue Sh = 3801 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3802 Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl)); 3803 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3804 VT.getScalarType(), Ex, Sh)); 3805 } 3806 3807 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 3808 Results.push_back(Result); 3809 break; 3810 } 3811 case ISD::VECREDUCE_FADD: 3812 case ISD::VECREDUCE_FMUL: 3813 case ISD::VECREDUCE_ADD: 3814 case ISD::VECREDUCE_MUL: 3815 case ISD::VECREDUCE_AND: 3816 case ISD::VECREDUCE_OR: 3817 case ISD::VECREDUCE_XOR: 3818 case ISD::VECREDUCE_SMAX: 3819 case ISD::VECREDUCE_SMIN: 3820 case ISD::VECREDUCE_UMAX: 3821 case ISD::VECREDUCE_UMIN: 3822 case ISD::VECREDUCE_FMAX: 3823 case ISD::VECREDUCE_FMIN: 3824 Results.push_back(TLI.expandVecReduce(Node, DAG)); 3825 break; 3826 case ISD::GLOBAL_OFFSET_TABLE: 3827 case ISD::GlobalAddress: 3828 case ISD::GlobalTLSAddress: 3829 case ISD::ExternalSymbol: 3830 case ISD::ConstantPool: 3831 case ISD::JumpTable: 3832 case ISD::INTRINSIC_W_CHAIN: 3833 case ISD::INTRINSIC_WO_CHAIN: 3834 case ISD::INTRINSIC_VOID: 3835 // FIXME: Custom lowering for these operations shouldn't return null! 3836 // Return true so that we don't call ConvertNodeToLibcall which also won't 3837 // do anything. 3838 return true; 3839 } 3840 3841 if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) { 3842 // FIXME: We were asked to expand a strict floating-point operation, 3843 // but there is currently no expansion implemented that would preserve 3844 // the "strict" properties. For now, we just fall back to the non-strict 3845 // version if that is legal on the target. The actual mutation of the 3846 // operation will happen in SelectionDAGISel::DoInstructionSelection. 3847 switch (Node->getOpcode()) { 3848 default: 3849 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3850 Node->getValueType(0)) 3851 == TargetLowering::Legal) 3852 return true; 3853 break; 3854 case ISD::STRICT_FSUB: { 3855 if (TLI.getStrictFPOperationAction( 3856 ISD::STRICT_FSUB, Node->getValueType(0)) == TargetLowering::Legal) 3857 return true; 3858 if (TLI.getStrictFPOperationAction( 3859 ISD::STRICT_FADD, Node->getValueType(0)) != TargetLowering::Legal) 3860 break; 3861 3862 EVT VT = Node->getValueType(0); 3863 const SDNodeFlags Flags = Node->getFlags(); 3864 SDValue Neg = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(2), Flags); 3865 SDValue Fadd = DAG.getNode(ISD::STRICT_FADD, dl, Node->getVTList(), 3866 {Node->getOperand(0), Node->getOperand(1), Neg}, 3867 Flags); 3868 3869 Results.push_back(Fadd); 3870 Results.push_back(Fadd.getValue(1)); 3871 break; 3872 } 3873 case ISD::STRICT_SINT_TO_FP: 3874 case ISD::STRICT_UINT_TO_FP: 3875 case ISD::STRICT_LRINT: 3876 case ISD::STRICT_LLRINT: 3877 case ISD::STRICT_LROUND: 3878 case ISD::STRICT_LLROUND: 3879 // These are registered by the operand type instead of the value 3880 // type. Reflect that here. 3881 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3882 Node->getOperand(1).getValueType()) 3883 == TargetLowering::Legal) 3884 return true; 3885 break; 3886 } 3887 } 3888 3889 // Replace the original node with the legalized result. 3890 if (Results.empty()) { 3891 LLVM_DEBUG(dbgs() << "Cannot expand node\n"); 3892 return false; 3893 } 3894 3895 LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); 3896 ReplaceNode(Node, Results.data()); 3897 return true; 3898 } 3899 3900 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 3901 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); 3902 SmallVector<SDValue, 8> Results; 3903 SDLoc dl(Node); 3904 // FIXME: Check flags on the node to see if we can use a finite call. 3905 unsigned Opc = Node->getOpcode(); 3906 switch (Opc) { 3907 case ISD::ATOMIC_FENCE: { 3908 // If the target didn't lower this, lower it to '__sync_synchronize()' call 3909 // FIXME: handle "fence singlethread" more efficiently. 3910 TargetLowering::ArgListTy Args; 3911 3912 TargetLowering::CallLoweringInfo CLI(DAG); 3913 CLI.setDebugLoc(dl) 3914 .setChain(Node->getOperand(0)) 3915 .setLibCallee( 3916 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3917 DAG.getExternalSymbol("__sync_synchronize", 3918 TLI.getPointerTy(DAG.getDataLayout())), 3919 std::move(Args)); 3920 3921 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3922 3923 Results.push_back(CallResult.second); 3924 break; 3925 } 3926 // By default, atomic intrinsics are marked Legal and lowered. Targets 3927 // which don't support them directly, however, may want libcalls, in which 3928 // case they mark them Expand, and we get here. 3929 case ISD::ATOMIC_SWAP: 3930 case ISD::ATOMIC_LOAD_ADD: 3931 case ISD::ATOMIC_LOAD_SUB: 3932 case ISD::ATOMIC_LOAD_AND: 3933 case ISD::ATOMIC_LOAD_CLR: 3934 case ISD::ATOMIC_LOAD_OR: 3935 case ISD::ATOMIC_LOAD_XOR: 3936 case ISD::ATOMIC_LOAD_NAND: 3937 case ISD::ATOMIC_LOAD_MIN: 3938 case ISD::ATOMIC_LOAD_MAX: 3939 case ISD::ATOMIC_LOAD_UMIN: 3940 case ISD::ATOMIC_LOAD_UMAX: 3941 case ISD::ATOMIC_CMP_SWAP: { 3942 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 3943 AtomicOrdering Order = cast<AtomicSDNode>(Node)->getMergedOrdering(); 3944 RTLIB::Libcall LC = RTLIB::getOUTLINE_ATOMIC(Opc, Order, VT); 3945 EVT RetVT = Node->getValueType(0); 3946 TargetLowering::MakeLibCallOptions CallOptions; 3947 SmallVector<SDValue, 4> Ops; 3948 if (TLI.getLibcallName(LC)) { 3949 // If outline atomic available, prepare its arguments and expand. 3950 Ops.append(Node->op_begin() + 2, Node->op_end()); 3951 Ops.push_back(Node->getOperand(1)); 3952 3953 } else { 3954 LC = RTLIB::getSYNC(Opc, VT); 3955 assert(LC != RTLIB::UNKNOWN_LIBCALL && 3956 "Unexpected atomic op or value type!"); 3957 // Arguments for expansion to sync libcall 3958 Ops.append(Node->op_begin() + 1, Node->op_end()); 3959 } 3960 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 3961 Ops, CallOptions, 3962 SDLoc(Node), 3963 Node->getOperand(0)); 3964 Results.push_back(Tmp.first); 3965 Results.push_back(Tmp.second); 3966 break; 3967 } 3968 case ISD::TRAP: { 3969 // If this operation is not supported, lower it to 'abort()' call 3970 TargetLowering::ArgListTy Args; 3971 TargetLowering::CallLoweringInfo CLI(DAG); 3972 CLI.setDebugLoc(dl) 3973 .setChain(Node->getOperand(0)) 3974 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3975 DAG.getExternalSymbol( 3976 "abort", TLI.getPointerTy(DAG.getDataLayout())), 3977 std::move(Args)); 3978 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3979 3980 Results.push_back(CallResult.second); 3981 break; 3982 } 3983 case ISD::FMINNUM: 3984 case ISD::STRICT_FMINNUM: 3985 ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 3986 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 3987 RTLIB::FMIN_PPCF128, Results); 3988 break; 3989 case ISD::FMAXNUM: 3990 case ISD::STRICT_FMAXNUM: 3991 ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 3992 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 3993 RTLIB::FMAX_PPCF128, Results); 3994 break; 3995 case ISD::FSQRT: 3996 case ISD::STRICT_FSQRT: 3997 ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3998 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 3999 RTLIB::SQRT_PPCF128, Results); 4000 break; 4001 case ISD::FCBRT: 4002 ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, 4003 RTLIB::CBRT_F80, RTLIB::CBRT_F128, 4004 RTLIB::CBRT_PPCF128, Results); 4005 break; 4006 case ISD::FSIN: 4007 case ISD::STRICT_FSIN: 4008 ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 4009 RTLIB::SIN_F80, RTLIB::SIN_F128, 4010 RTLIB::SIN_PPCF128, Results); 4011 break; 4012 case ISD::FCOS: 4013 case ISD::STRICT_FCOS: 4014 ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 4015 RTLIB::COS_F80, RTLIB::COS_F128, 4016 RTLIB::COS_PPCF128, Results); 4017 break; 4018 case ISD::FSINCOS: 4019 // Expand into sincos libcall. 4020 ExpandSinCosLibCall(Node, Results); 4021 break; 4022 case ISD::FLOG: 4023 case ISD::STRICT_FLOG: 4024 ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80, 4025 RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results); 4026 break; 4027 case ISD::FLOG2: 4028 case ISD::STRICT_FLOG2: 4029 ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80, 4030 RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results); 4031 break; 4032 case ISD::FLOG10: 4033 case ISD::STRICT_FLOG10: 4034 ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80, 4035 RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results); 4036 break; 4037 case ISD::FEXP: 4038 case ISD::STRICT_FEXP: 4039 ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80, 4040 RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results); 4041 break; 4042 case ISD::FEXP2: 4043 case ISD::STRICT_FEXP2: 4044 ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80, 4045 RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results); 4046 break; 4047 case ISD::FTRUNC: 4048 case ISD::STRICT_FTRUNC: 4049 ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 4050 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 4051 RTLIB::TRUNC_PPCF128, Results); 4052 break; 4053 case ISD::FFLOOR: 4054 case ISD::STRICT_FFLOOR: 4055 ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 4056 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 4057 RTLIB::FLOOR_PPCF128, Results); 4058 break; 4059 case ISD::FCEIL: 4060 case ISD::STRICT_FCEIL: 4061 ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 4062 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 4063 RTLIB::CEIL_PPCF128, Results); 4064 break; 4065 case ISD::FRINT: 4066 case ISD::STRICT_FRINT: 4067 ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 4068 RTLIB::RINT_F80, RTLIB::RINT_F128, 4069 RTLIB::RINT_PPCF128, Results); 4070 break; 4071 case ISD::FNEARBYINT: 4072 case ISD::STRICT_FNEARBYINT: 4073 ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 4074 RTLIB::NEARBYINT_F64, 4075 RTLIB::NEARBYINT_F80, 4076 RTLIB::NEARBYINT_F128, 4077 RTLIB::NEARBYINT_PPCF128, Results); 4078 break; 4079 case ISD::FROUND: 4080 case ISD::STRICT_FROUND: 4081 ExpandFPLibCall(Node, RTLIB::ROUND_F32, 4082 RTLIB::ROUND_F64, 4083 RTLIB::ROUND_F80, 4084 RTLIB::ROUND_F128, 4085 RTLIB::ROUND_PPCF128, Results); 4086 break; 4087 case ISD::FROUNDEVEN: 4088 case ISD::STRICT_FROUNDEVEN: 4089 ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32, 4090 RTLIB::ROUNDEVEN_F64, 4091 RTLIB::ROUNDEVEN_F80, 4092 RTLIB::ROUNDEVEN_F128, 4093 RTLIB::ROUNDEVEN_PPCF128, Results); 4094 break; 4095 case ISD::FPOWI: 4096 case ISD::STRICT_FPOWI: { 4097 RTLIB::Libcall LC = RTLIB::getPOWI(Node->getSimpleValueType(0)); 4098 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fpowi."); 4099 if (!TLI.getLibcallName(LC)) { 4100 // Some targets don't have a powi libcall; use pow instead. 4101 if (Node->isStrictFPOpcode()) { 4102 SDValue Exponent = 4103 DAG.getNode(ISD::STRICT_SINT_TO_FP, SDLoc(Node), 4104 {Node->getValueType(0), Node->getValueType(1)}, 4105 {Node->getOperand(0), Node->getOperand(2)}); 4106 SDValue FPOW = 4107 DAG.getNode(ISD::STRICT_FPOW, SDLoc(Node), 4108 {Node->getValueType(0), Node->getValueType(1)}, 4109 {Exponent.getValue(1), Node->getOperand(1), Exponent}); 4110 Results.push_back(FPOW); 4111 Results.push_back(FPOW.getValue(1)); 4112 } else { 4113 SDValue Exponent = 4114 DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), Node->getValueType(0), 4115 Node->getOperand(1)); 4116 Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node), 4117 Node->getValueType(0), 4118 Node->getOperand(0), Exponent)); 4119 } 4120 break; 4121 } 4122 unsigned Offset = Node->isStrictFPOpcode() ? 1 : 0; 4123 bool ExponentHasSizeOfInt = 4124 DAG.getLibInfo().getIntSize() == 4125 Node->getOperand(1 + Offset).getValueType().getSizeInBits(); 4126 if (!ExponentHasSizeOfInt) { 4127 // If the exponent does not match with sizeof(int) a libcall to 4128 // RTLIB::POWI would use the wrong type for the argument. 4129 DAG.getContext()->emitError("POWI exponent does not match sizeof(int)"); 4130 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 4131 break; 4132 } 4133 ExpandFPLibCall(Node, LC, Results); 4134 break; 4135 } 4136 case ISD::FPOW: 4137 case ISD::STRICT_FPOW: 4138 ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 4139 RTLIB::POW_F128, RTLIB::POW_PPCF128, Results); 4140 break; 4141 case ISD::LROUND: 4142 case ISD::STRICT_LROUND: 4143 ExpandArgFPLibCall(Node, RTLIB::LROUND_F32, 4144 RTLIB::LROUND_F64, RTLIB::LROUND_F80, 4145 RTLIB::LROUND_F128, 4146 RTLIB::LROUND_PPCF128, Results); 4147 break; 4148 case ISD::LLROUND: 4149 case ISD::STRICT_LLROUND: 4150 ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32, 4151 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, 4152 RTLIB::LLROUND_F128, 4153 RTLIB::LLROUND_PPCF128, Results); 4154 break; 4155 case ISD::LRINT: 4156 case ISD::STRICT_LRINT: 4157 ExpandArgFPLibCall(Node, RTLIB::LRINT_F32, 4158 RTLIB::LRINT_F64, RTLIB::LRINT_F80, 4159 RTLIB::LRINT_F128, 4160 RTLIB::LRINT_PPCF128, Results); 4161 break; 4162 case ISD::LLRINT: 4163 case ISD::STRICT_LLRINT: 4164 ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32, 4165 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80, 4166 RTLIB::LLRINT_F128, 4167 RTLIB::LLRINT_PPCF128, Results); 4168 break; 4169 case ISD::FDIV: 4170 case ISD::STRICT_FDIV: 4171 ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 4172 RTLIB::DIV_F80, RTLIB::DIV_F128, 4173 RTLIB::DIV_PPCF128, Results); 4174 break; 4175 case ISD::FREM: 4176 case ISD::STRICT_FREM: 4177 ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 4178 RTLIB::REM_F80, RTLIB::REM_F128, 4179 RTLIB::REM_PPCF128, Results); 4180 break; 4181 case ISD::FMA: 4182 case ISD::STRICT_FMA: 4183 ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 4184 RTLIB::FMA_F80, RTLIB::FMA_F128, 4185 RTLIB::FMA_PPCF128, Results); 4186 break; 4187 case ISD::FADD: 4188 case ISD::STRICT_FADD: 4189 ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 4190 RTLIB::ADD_F80, RTLIB::ADD_F128, 4191 RTLIB::ADD_PPCF128, Results); 4192 break; 4193 case ISD::FMUL: 4194 case ISD::STRICT_FMUL: 4195 ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 4196 RTLIB::MUL_F80, RTLIB::MUL_F128, 4197 RTLIB::MUL_PPCF128, Results); 4198 break; 4199 case ISD::FP16_TO_FP: 4200 if (Node->getValueType(0) == MVT::f32) { 4201 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 4202 } 4203 break; 4204 case ISD::STRICT_FP16_TO_FP: { 4205 if (Node->getValueType(0) == MVT::f32) { 4206 TargetLowering::MakeLibCallOptions CallOptions; 4207 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall( 4208 DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions, 4209 SDLoc(Node), Node->getOperand(0)); 4210 Results.push_back(Tmp.first); 4211 Results.push_back(Tmp.second); 4212 } 4213 break; 4214 } 4215 case ISD::FP_TO_FP16: { 4216 RTLIB::Libcall LC = 4217 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 4218 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 4219 Results.push_back(ExpandLibCall(LC, Node, false)); 4220 break; 4221 } 4222 case ISD::STRICT_SINT_TO_FP: 4223 case ISD::STRICT_UINT_TO_FP: 4224 case ISD::SINT_TO_FP: 4225 case ISD::UINT_TO_FP: { 4226 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP 4227 bool IsStrict = Node->isStrictFPOpcode(); 4228 bool Signed = Node->getOpcode() == ISD::SINT_TO_FP || 4229 Node->getOpcode() == ISD::STRICT_SINT_TO_FP; 4230 EVT SVT = Node->getOperand(IsStrict ? 1 : 0).getValueType(); 4231 EVT RVT = Node->getValueType(0); 4232 EVT NVT = EVT(); 4233 SDLoc dl(Node); 4234 4235 // Even if the input is legal, no libcall may exactly match, eg. we don't 4236 // have i1 -> fp conversions. So, it needs to be promoted to a larger type, 4237 // eg: i13 -> fp. Then, look for an appropriate libcall. 4238 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 4239 for (unsigned t = MVT::FIRST_INTEGER_VALUETYPE; 4240 t <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; 4241 ++t) { 4242 NVT = (MVT::SimpleValueType)t; 4243 // The source needs to big enough to hold the operand. 4244 if (NVT.bitsGE(SVT)) 4245 LC = Signed ? RTLIB::getSINTTOFP(NVT, RVT) 4246 : RTLIB::getUINTTOFP(NVT, RVT); 4247 } 4248 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4249 4250 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4251 // Sign/zero extend the argument if the libcall takes a larger type. 4252 SDValue Op = DAG.getNode(Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl, 4253 NVT, Node->getOperand(IsStrict ? 1 : 0)); 4254 TargetLowering::MakeLibCallOptions CallOptions; 4255 CallOptions.setSExt(Signed); 4256 std::pair<SDValue, SDValue> Tmp = 4257 TLI.makeLibCall(DAG, LC, RVT, Op, CallOptions, dl, Chain); 4258 Results.push_back(Tmp.first); 4259 if (IsStrict) 4260 Results.push_back(Tmp.second); 4261 break; 4262 } 4263 case ISD::FP_TO_SINT: 4264 case ISD::FP_TO_UINT: 4265 case ISD::STRICT_FP_TO_SINT: 4266 case ISD::STRICT_FP_TO_UINT: { 4267 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatOp_FP_TO_XINT. 4268 bool IsStrict = Node->isStrictFPOpcode(); 4269 bool Signed = Node->getOpcode() == ISD::FP_TO_SINT || 4270 Node->getOpcode() == ISD::STRICT_FP_TO_SINT; 4271 4272 SDValue Op = Node->getOperand(IsStrict ? 1 : 0); 4273 EVT SVT = Op.getValueType(); 4274 EVT RVT = Node->getValueType(0); 4275 EVT NVT = EVT(); 4276 SDLoc dl(Node); 4277 4278 // Even if the result is legal, no libcall may exactly match, eg. we don't 4279 // have fp -> i1 conversions. So, it needs to be promoted to a larger type, 4280 // eg: fp -> i32. Then, look for an appropriate libcall. 4281 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 4282 for (unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE; 4283 IntVT <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; 4284 ++IntVT) { 4285 NVT = (MVT::SimpleValueType)IntVT; 4286 // The type needs to big enough to hold the result. 4287 if (NVT.bitsGE(RVT)) 4288 LC = Signed ? RTLIB::getFPTOSINT(SVT, NVT) 4289 : RTLIB::getFPTOUINT(SVT, NVT); 4290 } 4291 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4292 4293 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4294 TargetLowering::MakeLibCallOptions CallOptions; 4295 std::pair<SDValue, SDValue> Tmp = 4296 TLI.makeLibCall(DAG, LC, NVT, Op, CallOptions, dl, Chain); 4297 4298 // Truncate the result if the libcall returns a larger type. 4299 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, RVT, Tmp.first)); 4300 if (IsStrict) 4301 Results.push_back(Tmp.second); 4302 break; 4303 } 4304 4305 case ISD::FP_ROUND: 4306 case ISD::STRICT_FP_ROUND: { 4307 // X = FP_ROUND(Y, TRUNC) 4308 // TRUNC is a flag, which is always an integer that is zero or one. 4309 // If TRUNC is 0, this is a normal rounding, if it is 1, this FP_ROUND 4310 // is known to not change the value of Y. 4311 // We can only expand it into libcall if the TRUNC is 0. 4312 bool IsStrict = Node->isStrictFPOpcode(); 4313 SDValue Op = Node->getOperand(IsStrict ? 1 : 0); 4314 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4315 EVT VT = Node->getValueType(0); 4316 assert(cast<ConstantSDNode>(Node->getOperand(IsStrict ? 2 : 1))->isZero() && 4317 "Unable to expand as libcall if it is not normal rounding"); 4318 4319 RTLIB::Libcall LC = RTLIB::getFPROUND(Op.getValueType(), VT); 4320 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4321 4322 TargetLowering::MakeLibCallOptions CallOptions; 4323 std::pair<SDValue, SDValue> Tmp = 4324 TLI.makeLibCall(DAG, LC, VT, Op, CallOptions, SDLoc(Node), Chain); 4325 Results.push_back(Tmp.first); 4326 if (IsStrict) 4327 Results.push_back(Tmp.second); 4328 break; 4329 } 4330 case ISD::FP_EXTEND: { 4331 Results.push_back( 4332 ExpandLibCall(RTLIB::getFPEXT(Node->getOperand(0).getValueType(), 4333 Node->getValueType(0)), 4334 Node, false)); 4335 break; 4336 } 4337 case ISD::STRICT_FP_EXTEND: 4338 case ISD::STRICT_FP_TO_FP16: { 4339 RTLIB::Libcall LC = 4340 Node->getOpcode() == ISD::STRICT_FP_TO_FP16 4341 ? RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16) 4342 : RTLIB::getFPEXT(Node->getOperand(1).getValueType(), 4343 Node->getValueType(0)); 4344 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4345 4346 TargetLowering::MakeLibCallOptions CallOptions; 4347 std::pair<SDValue, SDValue> Tmp = 4348 TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1), 4349 CallOptions, SDLoc(Node), Node->getOperand(0)); 4350 Results.push_back(Tmp.first); 4351 Results.push_back(Tmp.second); 4352 break; 4353 } 4354 case ISD::FSUB: 4355 case ISD::STRICT_FSUB: 4356 ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4357 RTLIB::SUB_F80, RTLIB::SUB_F128, 4358 RTLIB::SUB_PPCF128, Results); 4359 break; 4360 case ISD::SREM: 4361 Results.push_back(ExpandIntLibCall( 4362 Node, true, RTLIB::SREM_I8, RTLIB::SREM_I16, RTLIB::SREM_I32, 4363 RTLIB::SREM_I64, RTLIB::SREM_I128, RTLIB::SREM_IEXT)); 4364 break; 4365 case ISD::UREM: 4366 Results.push_back(ExpandIntLibCall( 4367 Node, false, RTLIB::UREM_I8, RTLIB::UREM_I16, RTLIB::UREM_I32, 4368 RTLIB::UREM_I64, RTLIB::UREM_I128, RTLIB::UREM_IEXT)); 4369 break; 4370 case ISD::SDIV: 4371 Results.push_back(ExpandIntLibCall( 4372 Node, true, RTLIB::SDIV_I8, RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4373 RTLIB::SDIV_I64, RTLIB::SDIV_I128, RTLIB::SDIV_IEXT)); 4374 break; 4375 case ISD::UDIV: 4376 Results.push_back(ExpandIntLibCall( 4377 Node, false, RTLIB::UDIV_I8, RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4378 RTLIB::UDIV_I64, RTLIB::UDIV_I128, RTLIB::UDIV_IEXT)); 4379 break; 4380 case ISD::SDIVREM: 4381 case ISD::UDIVREM: 4382 // Expand into divrem libcall 4383 ExpandDivRemLibCall(Node, Results); 4384 break; 4385 case ISD::MUL: 4386 Results.push_back(ExpandIntLibCall( 4387 Node, false, RTLIB::MUL_I8, RTLIB::MUL_I16, RTLIB::MUL_I32, 4388 RTLIB::MUL_I64, RTLIB::MUL_I128, RTLIB::MUL_IEXT)); 4389 break; 4390 case ISD::CTLZ_ZERO_UNDEF: 4391 switch (Node->getSimpleValueType(0).SimpleTy) { 4392 default: 4393 llvm_unreachable("LibCall explicitly requested, but not available"); 4394 case MVT::i32: 4395 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false)); 4396 break; 4397 case MVT::i64: 4398 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false)); 4399 break; 4400 case MVT::i128: 4401 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false)); 4402 break; 4403 } 4404 break; 4405 } 4406 4407 // Replace the original node with the legalized result. 4408 if (!Results.empty()) { 4409 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); 4410 ReplaceNode(Node, Results.data()); 4411 } else 4412 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); 4413 } 4414 4415 // Determine the vector type to use in place of an original scalar element when 4416 // promoting equally sized vectors. 4417 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4418 MVT EltVT, MVT NewEltVT) { 4419 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4420 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4421 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4422 return MidVT; 4423 } 4424 4425 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4426 LLVM_DEBUG(dbgs() << "Trying to promote node\n"); 4427 SmallVector<SDValue, 8> Results; 4428 MVT OVT = Node->getSimpleValueType(0); 4429 if (Node->getOpcode() == ISD::UINT_TO_FP || 4430 Node->getOpcode() == ISD::SINT_TO_FP || 4431 Node->getOpcode() == ISD::SETCC || 4432 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4433 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4434 OVT = Node->getOperand(0).getSimpleValueType(); 4435 } 4436 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP || 4437 Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 4438 Node->getOpcode() == ISD::STRICT_FSETCC || 4439 Node->getOpcode() == ISD::STRICT_FSETCCS) 4440 OVT = Node->getOperand(1).getSimpleValueType(); 4441 if (Node->getOpcode() == ISD::BR_CC || 4442 Node->getOpcode() == ISD::SELECT_CC) 4443 OVT = Node->getOperand(2).getSimpleValueType(); 4444 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4445 SDLoc dl(Node); 4446 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 4447 switch (Node->getOpcode()) { 4448 case ISD::CTTZ: 4449 case ISD::CTTZ_ZERO_UNDEF: 4450 case ISD::CTLZ: 4451 case ISD::CTLZ_ZERO_UNDEF: 4452 case ISD::CTPOP: 4453 // Zero extend the argument unless its cttz, then use any_extend. 4454 if (Node->getOpcode() == ISD::CTTZ || 4455 Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 4456 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 4457 else 4458 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4459 4460 if (Node->getOpcode() == ISD::CTTZ) { 4461 // The count is the same in the promoted type except if the original 4462 // value was zero. This can be handled by setting the bit just off 4463 // the top of the original type. 4464 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4465 OVT.getSizeInBits()); 4466 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4467 DAG.getConstant(TopBit, dl, NVT)); 4468 } 4469 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4470 // already the correct result. 4471 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4472 if (Node->getOpcode() == ISD::CTLZ || 4473 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4474 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4475 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4476 DAG.getConstant(NVT.getSizeInBits() - 4477 OVT.getSizeInBits(), dl, NVT)); 4478 } 4479 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4480 break; 4481 case ISD::BITREVERSE: 4482 case ISD::BSWAP: { 4483 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4484 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4485 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4486 Tmp1 = DAG.getNode( 4487 ISD::SRL, dl, NVT, Tmp1, 4488 DAG.getConstant(DiffBits, dl, 4489 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4490 4491 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4492 break; 4493 } 4494 case ISD::FP_TO_UINT: 4495 case ISD::STRICT_FP_TO_UINT: 4496 case ISD::FP_TO_SINT: 4497 case ISD::STRICT_FP_TO_SINT: 4498 PromoteLegalFP_TO_INT(Node, dl, Results); 4499 break; 4500 case ISD::FP_TO_UINT_SAT: 4501 case ISD::FP_TO_SINT_SAT: 4502 Results.push_back(PromoteLegalFP_TO_INT_SAT(Node, dl)); 4503 break; 4504 case ISD::UINT_TO_FP: 4505 case ISD::STRICT_UINT_TO_FP: 4506 case ISD::SINT_TO_FP: 4507 case ISD::STRICT_SINT_TO_FP: 4508 PromoteLegalINT_TO_FP(Node, dl, Results); 4509 break; 4510 case ISD::VAARG: { 4511 SDValue Chain = Node->getOperand(0); // Get the chain. 4512 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4513 4514 unsigned TruncOp; 4515 if (OVT.isVector()) { 4516 TruncOp = ISD::BITCAST; 4517 } else { 4518 assert(OVT.isInteger() 4519 && "VAARG promotion is supported only for vectors or integer types"); 4520 TruncOp = ISD::TRUNCATE; 4521 } 4522 4523 // Perform the larger operation, then convert back 4524 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4525 Node->getConstantOperandVal(3)); 4526 Chain = Tmp1.getValue(1); 4527 4528 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4529 4530 // Modified the chain result - switch anything that used the old chain to 4531 // use the new one. 4532 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4533 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4534 if (UpdatedNodes) { 4535 UpdatedNodes->insert(Tmp2.getNode()); 4536 UpdatedNodes->insert(Chain.getNode()); 4537 } 4538 ReplacedNode(Node); 4539 break; 4540 } 4541 case ISD::MUL: 4542 case ISD::SDIV: 4543 case ISD::SREM: 4544 case ISD::UDIV: 4545 case ISD::UREM: 4546 case ISD::AND: 4547 case ISD::OR: 4548 case ISD::XOR: { 4549 unsigned ExtOp, TruncOp; 4550 if (OVT.isVector()) { 4551 ExtOp = ISD::BITCAST; 4552 TruncOp = ISD::BITCAST; 4553 } else { 4554 assert(OVT.isInteger() && "Cannot promote logic operation"); 4555 4556 switch (Node->getOpcode()) { 4557 default: 4558 ExtOp = ISD::ANY_EXTEND; 4559 break; 4560 case ISD::SDIV: 4561 case ISD::SREM: 4562 ExtOp = ISD::SIGN_EXTEND; 4563 break; 4564 case ISD::UDIV: 4565 case ISD::UREM: 4566 ExtOp = ISD::ZERO_EXTEND; 4567 break; 4568 } 4569 TruncOp = ISD::TRUNCATE; 4570 } 4571 // Promote each of the values to the new type. 4572 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4573 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4574 // Perform the larger operation, then convert back 4575 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4576 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4577 break; 4578 } 4579 case ISD::UMUL_LOHI: 4580 case ISD::SMUL_LOHI: { 4581 // Promote to a multiply in a wider integer type. 4582 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 4583 : ISD::SIGN_EXTEND; 4584 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4585 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4586 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 4587 4588 auto &DL = DAG.getDataLayout(); 4589 unsigned OriginalSize = OVT.getScalarSizeInBits(); 4590 Tmp2 = DAG.getNode( 4591 ISD::SRL, dl, NVT, Tmp1, 4592 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 4593 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4594 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 4595 break; 4596 } 4597 case ISD::SELECT: { 4598 unsigned ExtOp, TruncOp; 4599 if (Node->getValueType(0).isVector() || 4600 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4601 ExtOp = ISD::BITCAST; 4602 TruncOp = ISD::BITCAST; 4603 } else if (Node->getValueType(0).isInteger()) { 4604 ExtOp = ISD::ANY_EXTEND; 4605 TruncOp = ISD::TRUNCATE; 4606 } else { 4607 ExtOp = ISD::FP_EXTEND; 4608 TruncOp = ISD::FP_ROUND; 4609 } 4610 Tmp1 = Node->getOperand(0); 4611 // Promote each of the values to the new type. 4612 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4613 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4614 // Perform the larger operation, then round down. 4615 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4616 Tmp1->setFlags(Node->getFlags()); 4617 if (TruncOp != ISD::FP_ROUND) 4618 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4619 else 4620 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4621 DAG.getIntPtrConstant(0, dl)); 4622 Results.push_back(Tmp1); 4623 break; 4624 } 4625 case ISD::VECTOR_SHUFFLE: { 4626 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4627 4628 // Cast the two input vectors. 4629 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4630 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4631 4632 // Convert the shuffle mask to the right # elements. 4633 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4634 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4635 Results.push_back(Tmp1); 4636 break; 4637 } 4638 case ISD::VECTOR_SPLICE: { 4639 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 4640 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(1)); 4641 Tmp3 = DAG.getNode(ISD::VECTOR_SPLICE, dl, NVT, Tmp1, Tmp2, 4642 Node->getOperand(2)); 4643 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp3)); 4644 break; 4645 } 4646 case ISD::SELECT_CC: { 4647 SDValue Cond = Node->getOperand(4); 4648 ISD::CondCode CCCode = cast<CondCodeSDNode>(Cond)->get(); 4649 // Type of the comparison operands. 4650 MVT CVT = Node->getSimpleValueType(0); 4651 assert(CVT == OVT && "not handled"); 4652 4653 unsigned ExtOp = ISD::FP_EXTEND; 4654 if (NVT.isInteger()) { 4655 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4656 } 4657 4658 // Promote the comparison operands, if needed. 4659 if (TLI.isCondCodeLegal(CCCode, CVT)) { 4660 Tmp1 = Node->getOperand(0); 4661 Tmp2 = Node->getOperand(1); 4662 } else { 4663 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4664 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4665 } 4666 // Cast the true/false operands. 4667 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4668 Tmp4 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4669 4670 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, NVT, {Tmp1, Tmp2, Tmp3, Tmp4, Cond}, 4671 Node->getFlags()); 4672 4673 // Cast the result back to the original type. 4674 if (ExtOp != ISD::FP_EXTEND) 4675 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1); 4676 else 4677 Tmp1 = DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp1, 4678 DAG.getIntPtrConstant(0, dl)); 4679 4680 Results.push_back(Tmp1); 4681 break; 4682 } 4683 case ISD::SETCC: 4684 case ISD::STRICT_FSETCC: 4685 case ISD::STRICT_FSETCCS: { 4686 unsigned ExtOp = ISD::FP_EXTEND; 4687 if (NVT.isInteger()) { 4688 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4689 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4690 } 4691 if (Node->isStrictFPOpcode()) { 4692 SDValue InChain = Node->getOperand(0); 4693 std::tie(Tmp1, std::ignore) = 4694 DAG.getStrictFPExtendOrRound(Node->getOperand(1), InChain, dl, NVT); 4695 std::tie(Tmp2, std::ignore) = 4696 DAG.getStrictFPExtendOrRound(Node->getOperand(2), InChain, dl, NVT); 4697 SmallVector<SDValue, 2> TmpChains = {Tmp1.getValue(1), Tmp2.getValue(1)}; 4698 SDValue OutChain = DAG.getTokenFactor(dl, TmpChains); 4699 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 4700 Results.push_back(DAG.getNode(Node->getOpcode(), dl, VTs, 4701 {OutChain, Tmp1, Tmp2, Node->getOperand(3)}, 4702 Node->getFlags())); 4703 Results.push_back(Results.back().getValue(1)); 4704 break; 4705 } 4706 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4707 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4708 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, 4709 Tmp2, Node->getOperand(2), Node->getFlags())); 4710 break; 4711 } 4712 case ISD::BR_CC: { 4713 unsigned ExtOp = ISD::FP_EXTEND; 4714 if (NVT.isInteger()) { 4715 ISD::CondCode CCCode = 4716 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4717 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4718 } 4719 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4720 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4721 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4722 Node->getOperand(0), Node->getOperand(1), 4723 Tmp1, Tmp2, Node->getOperand(4))); 4724 break; 4725 } 4726 case ISD::FADD: 4727 case ISD::FSUB: 4728 case ISD::FMUL: 4729 case ISD::FDIV: 4730 case ISD::FREM: 4731 case ISD::FMINNUM: 4732 case ISD::FMAXNUM: 4733 case ISD::FPOW: 4734 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4735 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4736 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4737 Node->getFlags()); 4738 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4739 Tmp3, DAG.getIntPtrConstant(0, dl))); 4740 break; 4741 case ISD::STRICT_FADD: 4742 case ISD::STRICT_FSUB: 4743 case ISD::STRICT_FMUL: 4744 case ISD::STRICT_FDIV: 4745 case ISD::STRICT_FMINNUM: 4746 case ISD::STRICT_FMAXNUM: 4747 case ISD::STRICT_FREM: 4748 case ISD::STRICT_FPOW: 4749 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4750 {Node->getOperand(0), Node->getOperand(1)}); 4751 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4752 {Node->getOperand(0), Node->getOperand(2)}); 4753 Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 4754 Tmp2.getValue(1)); 4755 Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4756 {Tmp3, Tmp1, Tmp2}); 4757 Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4758 {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)}); 4759 Results.push_back(Tmp1); 4760 Results.push_back(Tmp1.getValue(1)); 4761 break; 4762 case ISD::FMA: 4763 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4764 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4765 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4766 Results.push_back( 4767 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4768 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4769 DAG.getIntPtrConstant(0, dl))); 4770 break; 4771 case ISD::STRICT_FMA: 4772 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4773 {Node->getOperand(0), Node->getOperand(1)}); 4774 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4775 {Node->getOperand(0), Node->getOperand(2)}); 4776 Tmp3 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4777 {Node->getOperand(0), Node->getOperand(3)}); 4778 Tmp4 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 4779 Tmp2.getValue(1), Tmp3.getValue(1)); 4780 Tmp4 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4781 {Tmp4, Tmp1, Tmp2, Tmp3}); 4782 Tmp4 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4783 {Tmp4.getValue(1), Tmp4, DAG.getIntPtrConstant(0, dl)}); 4784 Results.push_back(Tmp4); 4785 Results.push_back(Tmp4.getValue(1)); 4786 break; 4787 case ISD::FCOPYSIGN: 4788 case ISD::FPOWI: { 4789 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4790 Tmp2 = Node->getOperand(1); 4791 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4792 4793 // fcopysign doesn't change anything but the sign bit, so 4794 // (fp_round (fcopysign (fpext a), b)) 4795 // is as precise as 4796 // (fp_round (fpext a)) 4797 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4798 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4799 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4800 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4801 break; 4802 } 4803 case ISD::STRICT_FPOWI: 4804 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4805 {Node->getOperand(0), Node->getOperand(1)}); 4806 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4807 {Tmp1.getValue(1), Tmp1, Node->getOperand(2)}); 4808 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4809 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 4810 Results.push_back(Tmp3); 4811 Results.push_back(Tmp3.getValue(1)); 4812 break; 4813 case ISD::FFLOOR: 4814 case ISD::FCEIL: 4815 case ISD::FRINT: 4816 case ISD::FNEARBYINT: 4817 case ISD::FROUND: 4818 case ISD::FROUNDEVEN: 4819 case ISD::FTRUNC: 4820 case ISD::FNEG: 4821 case ISD::FSQRT: 4822 case ISD::FSIN: 4823 case ISD::FCOS: 4824 case ISD::FLOG: 4825 case ISD::FLOG2: 4826 case ISD::FLOG10: 4827 case ISD::FABS: 4828 case ISD::FEXP: 4829 case ISD::FEXP2: 4830 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4831 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4832 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4833 Tmp2, DAG.getIntPtrConstant(0, dl))); 4834 break; 4835 case ISD::STRICT_FFLOOR: 4836 case ISD::STRICT_FCEIL: 4837 case ISD::STRICT_FRINT: 4838 case ISD::STRICT_FNEARBYINT: 4839 case ISD::STRICT_FROUND: 4840 case ISD::STRICT_FROUNDEVEN: 4841 case ISD::STRICT_FTRUNC: 4842 case ISD::STRICT_FSQRT: 4843 case ISD::STRICT_FSIN: 4844 case ISD::STRICT_FCOS: 4845 case ISD::STRICT_FLOG: 4846 case ISD::STRICT_FLOG2: 4847 case ISD::STRICT_FLOG10: 4848 case ISD::STRICT_FEXP: 4849 case ISD::STRICT_FEXP2: 4850 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4851 {Node->getOperand(0), Node->getOperand(1)}); 4852 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4853 {Tmp1.getValue(1), Tmp1}); 4854 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4855 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 4856 Results.push_back(Tmp3); 4857 Results.push_back(Tmp3.getValue(1)); 4858 break; 4859 case ISD::BUILD_VECTOR: { 4860 MVT EltVT = OVT.getVectorElementType(); 4861 MVT NewEltVT = NVT.getVectorElementType(); 4862 4863 // Handle bitcasts to a different vector type with the same total bit size 4864 // 4865 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4866 // => 4867 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4868 4869 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4870 "Invalid promote type for build_vector"); 4871 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4872 4873 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4874 4875 SmallVector<SDValue, 8> NewOps; 4876 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4877 SDValue Op = Node->getOperand(I); 4878 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4879 } 4880 4881 SDLoc SL(Node); 4882 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4883 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4884 Results.push_back(CvtVec); 4885 break; 4886 } 4887 case ISD::EXTRACT_VECTOR_ELT: { 4888 MVT EltVT = OVT.getVectorElementType(); 4889 MVT NewEltVT = NVT.getVectorElementType(); 4890 4891 // Handle bitcasts to a different vector type with the same total bit size. 4892 // 4893 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4894 // => 4895 // v4i32:castx = bitcast x:v2i64 4896 // 4897 // i64 = bitcast 4898 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4899 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4900 // 4901 4902 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4903 "Invalid promote type for extract_vector_elt"); 4904 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4905 4906 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4907 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4908 4909 SDValue Idx = Node->getOperand(1); 4910 EVT IdxVT = Idx.getValueType(); 4911 SDLoc SL(Node); 4912 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4913 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4914 4915 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4916 4917 SmallVector<SDValue, 8> NewOps; 4918 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4919 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4920 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4921 4922 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4923 CastVec, TmpIdx); 4924 NewOps.push_back(Elt); 4925 } 4926 4927 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 4928 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4929 break; 4930 } 4931 case ISD::INSERT_VECTOR_ELT: { 4932 MVT EltVT = OVT.getVectorElementType(); 4933 MVT NewEltVT = NVT.getVectorElementType(); 4934 4935 // Handle bitcasts to a different vector type with the same total bit size 4936 // 4937 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4938 // => 4939 // v4i32:castx = bitcast x:v2i64 4940 // v2i32:casty = bitcast y:i64 4941 // 4942 // v2i64 = bitcast 4943 // (v4i32 insert_vector_elt 4944 // (v4i32 insert_vector_elt v4i32:castx, 4945 // (extract_vector_elt casty, 0), 2 * z), 4946 // (extract_vector_elt casty, 1), (2 * z + 1)) 4947 4948 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4949 "Invalid promote type for insert_vector_elt"); 4950 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4951 4952 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4953 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4954 4955 SDValue Val = Node->getOperand(1); 4956 SDValue Idx = Node->getOperand(2); 4957 EVT IdxVT = Idx.getValueType(); 4958 SDLoc SL(Node); 4959 4960 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 4961 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4962 4963 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4964 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4965 4966 SDValue NewVec = CastVec; 4967 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4968 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4969 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4970 4971 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4972 CastVal, IdxOffset); 4973 4974 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 4975 NewVec, Elt, InEltIdx); 4976 } 4977 4978 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 4979 break; 4980 } 4981 case ISD::SCALAR_TO_VECTOR: { 4982 MVT EltVT = OVT.getVectorElementType(); 4983 MVT NewEltVT = NVT.getVectorElementType(); 4984 4985 // Handle bitcasts to different vector type with the same total bit size. 4986 // 4987 // e.g. v2i64 = scalar_to_vector x:i64 4988 // => 4989 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 4990 // 4991 4992 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4993 SDValue Val = Node->getOperand(0); 4994 SDLoc SL(Node); 4995 4996 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4997 SDValue Undef = DAG.getUNDEF(MidVT); 4998 4999 SmallVector<SDValue, 8> NewElts; 5000 NewElts.push_back(CastVal); 5001 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 5002 NewElts.push_back(Undef); 5003 5004 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 5005 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 5006 Results.push_back(CvtVec); 5007 break; 5008 } 5009 case ISD::ATOMIC_SWAP: { 5010 AtomicSDNode *AM = cast<AtomicSDNode>(Node); 5011 SDLoc SL(Node); 5012 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal()); 5013 assert(NVT.getSizeInBits() == OVT.getSizeInBits() && 5014 "unexpected promotion type"); 5015 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && 5016 "unexpected atomic_swap with illegal type"); 5017 5018 SDValue NewAtomic 5019 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT, 5020 DAG.getVTList(NVT, MVT::Other), 5021 { AM->getChain(), AM->getBasePtr(), CastVal }, 5022 AM->getMemOperand()); 5023 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); 5024 Results.push_back(NewAtomic.getValue(1)); 5025 break; 5026 } 5027 } 5028 5029 // Replace the original node with the legalized result. 5030 if (!Results.empty()) { 5031 LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); 5032 ReplaceNode(Node, Results.data()); 5033 } else 5034 LLVM_DEBUG(dbgs() << "Could not promote node\n"); 5035 } 5036 5037 /// This is the entry point for the file. 5038 void SelectionDAG::Legalize() { 5039 AssignTopologicalOrder(); 5040 5041 SmallPtrSet<SDNode *, 16> LegalizedNodes; 5042 // Use a delete listener to remove nodes which were deleted during 5043 // legalization from LegalizeNodes. This is needed to handle the situation 5044 // where a new node is allocated by the object pool to the same address of a 5045 // previously deleted node. 5046 DAGNodeDeletedListener DeleteListener( 5047 *this, 5048 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 5049 5050 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 5051 5052 // Visit all the nodes. We start in topological order, so that we see 5053 // nodes with their original operands intact. Legalization can produce 5054 // new nodes which may themselves need to be legalized. Iterate until all 5055 // nodes have been legalized. 5056 while (true) { 5057 bool AnyLegalized = false; 5058 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 5059 --NI; 5060 5061 SDNode *N = &*NI; 5062 if (N->use_empty() && N != getRoot().getNode()) { 5063 ++NI; 5064 DeleteNode(N); 5065 continue; 5066 } 5067 5068 if (LegalizedNodes.insert(N).second) { 5069 AnyLegalized = true; 5070 Legalizer.LegalizeOp(N); 5071 5072 if (N->use_empty() && N != getRoot().getNode()) { 5073 ++NI; 5074 DeleteNode(N); 5075 } 5076 } 5077 } 5078 if (!AnyLegalized) 5079 break; 5080 5081 } 5082 5083 // Remove dead nodes now. 5084 RemoveDeadNodes(); 5085 } 5086 5087 bool SelectionDAG::LegalizeOp(SDNode *N, 5088 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 5089 SmallPtrSet<SDNode *, 16> LegalizedNodes; 5090 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 5091 5092 // Directly insert the node in question, and legalize it. This will recurse 5093 // as needed through operands. 5094 LegalizedNodes.insert(N); 5095 Legalizer.LegalizeOp(N); 5096 5097 return LegalizedNodes.count(N); 5098 } 5099