1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::Legalize method. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/CodeGen/ISDOpcodes.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/RuntimeLibcalls.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/SelectionDAGNodes.h" 28 #include "llvm/CodeGen/TargetFrameLowering.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/CodeGen/ValueTypes.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstdint> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "legalizedag" 57 58 namespace { 59 60 /// Keeps track of state when getting the sign of a floating-point value as an 61 /// integer. 62 struct FloatSignAsInt { 63 EVT FloatVT; 64 SDValue Chain; 65 SDValue FloatPtr; 66 SDValue IntPtr; 67 MachinePointerInfo IntPointerInfo; 68 MachinePointerInfo FloatPointerInfo; 69 SDValue IntValue; 70 APInt SignMask; 71 uint8_t SignBit; 72 }; 73 74 //===----------------------------------------------------------------------===// 75 /// This takes an arbitrary SelectionDAG as input and 76 /// hacks on it until the target machine can handle it. This involves 77 /// eliminating value sizes the machine cannot handle (promoting small sizes to 78 /// large sizes or splitting up large values into small values) as well as 79 /// eliminating operations the machine cannot handle. 80 /// 81 /// This code also does a small amount of optimization and recognition of idioms 82 /// as part of its processing. For example, if a target does not support a 83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 84 /// will attempt merge setcc and brc instructions into brcc's. 85 class SelectionDAGLegalize { 86 const TargetMachine &TM; 87 const TargetLowering &TLI; 88 SelectionDAG &DAG; 89 90 /// The set of nodes which have already been legalized. We hold a 91 /// reference to it in order to update as necessary on node deletion. 92 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 93 94 /// A set of all the nodes updated during legalization. 95 SmallSetVector<SDNode *, 16> *UpdatedNodes; 96 97 EVT getSetCCResultType(EVT VT) const { 98 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 99 } 100 101 // Libcall insertion helpers. 102 103 public: 104 SelectionDAGLegalize(SelectionDAG &DAG, 105 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 106 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 107 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 108 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 109 110 /// Legalizes the given operation. 111 void LegalizeOp(SDNode *Node); 112 113 private: 114 SDValue OptimizeFloatStore(StoreSDNode *ST); 115 116 void LegalizeLoadOps(SDNode *Node); 117 void LegalizeStoreOps(SDNode *Node); 118 119 /// Some targets cannot handle a variable 120 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 121 /// is necessary to spill the vector being inserted into to memory, perform 122 /// the insert there, and then read the result back. 123 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 124 const SDLoc &dl); 125 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 126 const SDLoc &dl); 127 128 /// Return a vector shuffle operation which 129 /// performs the same shuffe in terms of order or result bytes, but on a type 130 /// whose vector element type is narrower than the original shuffle type. 131 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 132 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 133 SDValue N1, SDValue N2, 134 ArrayRef<int> Mask) const; 135 136 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 137 bool &NeedInvert, const SDLoc &dl, SDValue &Chain, 138 bool IsSignaling = false); 139 140 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 141 142 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 143 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 144 RTLIB::Libcall Call_F128, 145 RTLIB::Libcall Call_PPCF128, 146 SmallVectorImpl<SDValue> &Results); 147 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 148 RTLIB::Libcall Call_I8, 149 RTLIB::Libcall Call_I16, 150 RTLIB::Libcall Call_I32, 151 RTLIB::Libcall Call_I64, 152 RTLIB::Libcall Call_I128); 153 void ExpandArgFPLibCall(SDNode *Node, 154 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, 155 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, 156 RTLIB::Libcall Call_PPCF128, 157 SmallVectorImpl<SDValue> &Results); 158 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 159 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 160 161 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 162 const SDLoc &dl); 163 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 164 const SDLoc &dl, SDValue ChainIn); 165 SDValue ExpandBUILD_VECTOR(SDNode *Node); 166 SDValue ExpandSPLAT_VECTOR(SDNode *Node); 167 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 168 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 169 SmallVectorImpl<SDValue> &Results); 170 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 171 SDValue Value) const; 172 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 173 SDValue NewIntValue) const; 174 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 175 SDValue ExpandFABS(SDNode *Node) const; 176 SDValue ExpandFNEG(SDNode *Node) const; 177 SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain); 178 void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl, 179 SmallVectorImpl<SDValue> &Results); 180 void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 181 SmallVectorImpl<SDValue> &Results); 182 SDValue PromoteLegalFP_TO_INT_SAT(SDNode *Node, const SDLoc &dl); 183 184 SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl); 185 SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl); 186 SDValue ExpandPARITY(SDValue Op, const SDLoc &dl); 187 188 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 189 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 190 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 191 192 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 193 SDValue ExpandConstant(ConstantSDNode *CP); 194 195 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 196 bool ExpandNode(SDNode *Node); 197 void ConvertNodeToLibcall(SDNode *Node); 198 void PromoteNode(SDNode *Node); 199 200 public: 201 // Node replacement helpers 202 203 void ReplacedNode(SDNode *N) { 204 LegalizedNodes.erase(N); 205 if (UpdatedNodes) 206 UpdatedNodes->insert(N); 207 } 208 209 void ReplaceNode(SDNode *Old, SDNode *New) { 210 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 211 dbgs() << " with: "; New->dump(&DAG)); 212 213 assert(Old->getNumValues() == New->getNumValues() && 214 "Replacing one node with another that produces a different number " 215 "of values!"); 216 DAG.ReplaceAllUsesWith(Old, New); 217 if (UpdatedNodes) 218 UpdatedNodes->insert(New); 219 ReplacedNode(Old); 220 } 221 222 void ReplaceNode(SDValue Old, SDValue New) { 223 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 224 dbgs() << " with: "; New->dump(&DAG)); 225 226 DAG.ReplaceAllUsesWith(Old, New); 227 if (UpdatedNodes) 228 UpdatedNodes->insert(New.getNode()); 229 ReplacedNode(Old.getNode()); 230 } 231 232 void ReplaceNode(SDNode *Old, const SDValue *New) { 233 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 234 235 DAG.ReplaceAllUsesWith(Old, New); 236 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 237 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); 238 New[i]->dump(&DAG)); 239 if (UpdatedNodes) 240 UpdatedNodes->insert(New[i].getNode()); 241 } 242 ReplacedNode(Old); 243 } 244 245 void ReplaceNodeWithValue(SDValue Old, SDValue New) { 246 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 247 dbgs() << " with: "; New->dump(&DAG)); 248 249 DAG.ReplaceAllUsesOfValueWith(Old, New); 250 if (UpdatedNodes) 251 UpdatedNodes->insert(New.getNode()); 252 ReplacedNode(Old.getNode()); 253 } 254 }; 255 256 } // end anonymous namespace 257 258 /// Return a vector shuffle operation which 259 /// performs the same shuffle in terms of order or result bytes, but on a type 260 /// whose vector element type is narrower than the original shuffle type. 261 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 262 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 263 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 264 ArrayRef<int> Mask) const { 265 unsigned NumMaskElts = VT.getVectorNumElements(); 266 unsigned NumDestElts = NVT.getVectorNumElements(); 267 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 268 269 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 270 271 if (NumEltsGrowth == 1) 272 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 273 274 SmallVector<int, 8> NewMask; 275 for (unsigned i = 0; i != NumMaskElts; ++i) { 276 int Idx = Mask[i]; 277 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 278 if (Idx < 0) 279 NewMask.push_back(-1); 280 else 281 NewMask.push_back(Idx * NumEltsGrowth + j); 282 } 283 } 284 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 285 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 286 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 287 } 288 289 /// Expands the ConstantFP node to an integer constant or 290 /// a load from the constant pool. 291 SDValue 292 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 293 bool Extend = false; 294 SDLoc dl(CFP); 295 296 // If a FP immediate is precise when represented as a float and if the 297 // target can do an extending load from float to double, we put it into 298 // the constant pool as a float, even if it's is statically typed as a 299 // double. This shrinks FP constants and canonicalizes them for targets where 300 // an FP extending load is the same cost as a normal load (such as on the x87 301 // fp stack or PPC FP unit). 302 EVT VT = CFP->getValueType(0); 303 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 304 if (!UseCP) { 305 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 306 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 307 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 308 } 309 310 APFloat APF = CFP->getValueAPF(); 311 EVT OrigVT = VT; 312 EVT SVT = VT; 313 314 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 315 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 316 if (!APF.isSignaling()) { 317 while (SVT != MVT::f32 && SVT != MVT::f16) { 318 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 319 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 320 // Only do this if the target has a native EXTLOAD instruction from 321 // smaller type. 322 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 323 TLI.ShouldShrinkFPConstant(OrigVT)) { 324 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 325 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 326 VT = SVT; 327 Extend = true; 328 } 329 } 330 } 331 332 SDValue CPIdx = 333 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 334 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 335 if (Extend) { 336 SDValue Result = DAG.getExtLoad( 337 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 338 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 339 Alignment); 340 return Result; 341 } 342 SDValue Result = DAG.getLoad( 343 OrigVT, dl, DAG.getEntryNode(), CPIdx, 344 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 345 return Result; 346 } 347 348 /// Expands the Constant node to a load from the constant pool. 349 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 350 SDLoc dl(CP); 351 EVT VT = CP->getValueType(0); 352 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 353 TLI.getPointerTy(DAG.getDataLayout())); 354 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 355 SDValue Result = DAG.getLoad( 356 VT, dl, DAG.getEntryNode(), CPIdx, 357 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 358 return Result; 359 } 360 361 /// Some target cannot handle a variable insertion index for the 362 /// INSERT_VECTOR_ELT instruction. In this case, it 363 /// is necessary to spill the vector being inserted into to memory, perform 364 /// the insert there, and then read the result back. 365 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 366 SDValue Val, 367 SDValue Idx, 368 const SDLoc &dl) { 369 SDValue Tmp1 = Vec; 370 SDValue Tmp2 = Val; 371 SDValue Tmp3 = Idx; 372 373 // If the target doesn't support this, we have to spill the input vector 374 // to a temporary stack slot, update the element, then reload it. This is 375 // badness. We could also load the value into a vector register (either 376 // with a "move to register" or "extload into register" instruction, then 377 // permute it into place, if the idx is a constant and if the idx is 378 // supported by the target. 379 EVT VT = Tmp1.getValueType(); 380 EVT EltVT = VT.getVectorElementType(); 381 SDValue StackPtr = DAG.CreateStackTemporary(VT); 382 383 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 384 385 // Store the vector. 386 SDValue Ch = DAG.getStore( 387 DAG.getEntryNode(), dl, Tmp1, StackPtr, 388 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 389 390 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 391 392 // Store the scalar value. 393 Ch = DAG.getTruncStore( 394 Ch, dl, Tmp2, StackPtr2, 395 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT); 396 // Load the updated vector. 397 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 398 DAG.getMachineFunction(), SPFI)); 399 } 400 401 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 402 SDValue Idx, 403 const SDLoc &dl) { 404 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 405 // SCALAR_TO_VECTOR requires that the type of the value being inserted 406 // match the element type of the vector being created, except for 407 // integers in which case the inserted value can be over width. 408 EVT EltVT = Vec.getValueType().getVectorElementType(); 409 if (Val.getValueType() == EltVT || 410 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 411 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 412 Vec.getValueType(), Val); 413 414 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 415 // We generate a shuffle of InVec and ScVec, so the shuffle mask 416 // should be 0,1,2,3,4,5... with the appropriate element replaced with 417 // elt 0 of the RHS. 418 SmallVector<int, 8> ShufOps; 419 for (unsigned i = 0; i != NumElts; ++i) 420 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 421 422 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 423 } 424 } 425 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 426 } 427 428 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 429 if (!ISD::isNormalStore(ST)) 430 return SDValue(); 431 432 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); 433 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 434 // FIXME: We shouldn't do this for TargetConstantFP's. 435 // FIXME: move this to the DAG Combiner! Note that we can't regress due 436 // to phase ordering between legalized code and the dag combiner. This 437 // probably means that we need to integrate dag combiner and legalizer 438 // together. 439 // We generally can't do this one for long doubles. 440 SDValue Chain = ST->getChain(); 441 SDValue Ptr = ST->getBasePtr(); 442 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 443 AAMDNodes AAInfo = ST->getAAInfo(); 444 SDLoc dl(ST); 445 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 446 if (CFP->getValueType(0) == MVT::f32 && 447 TLI.isTypeLegal(MVT::i32)) { 448 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 449 bitcastToAPInt().zextOrTrunc(32), 450 SDLoc(CFP), MVT::i32); 451 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 452 ST->getOriginalAlign(), MMOFlags, AAInfo); 453 } 454 455 if (CFP->getValueType(0) == MVT::f64) { 456 // If this target supports 64-bit registers, do a single 64-bit store. 457 if (TLI.isTypeLegal(MVT::i64)) { 458 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 459 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 460 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 461 ST->getOriginalAlign(), MMOFlags, AAInfo); 462 } 463 464 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 465 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 466 // stores. If the target supports neither 32- nor 64-bits, this 467 // xform is certainly not worth it. 468 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 469 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 470 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 471 if (DAG.getDataLayout().isBigEndian()) 472 std::swap(Lo, Hi); 473 474 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), 475 ST->getOriginalAlign(), MMOFlags, AAInfo); 476 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), dl); 477 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 478 ST->getPointerInfo().getWithOffset(4), 479 ST->getOriginalAlign(), MMOFlags, AAInfo); 480 481 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 482 } 483 } 484 } 485 return SDValue(nullptr, 0); 486 } 487 488 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 489 StoreSDNode *ST = cast<StoreSDNode>(Node); 490 SDValue Chain = ST->getChain(); 491 SDValue Ptr = ST->getBasePtr(); 492 SDLoc dl(Node); 493 494 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 495 AAMDNodes AAInfo = ST->getAAInfo(); 496 497 if (!ST->isTruncatingStore()) { 498 LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); 499 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 500 ReplaceNode(ST, OptStore); 501 return; 502 } 503 504 SDValue Value = ST->getValue(); 505 MVT VT = Value.getSimpleValueType(); 506 switch (TLI.getOperationAction(ISD::STORE, VT)) { 507 default: llvm_unreachable("This action is not supported yet!"); 508 case TargetLowering::Legal: { 509 // If this is an unaligned store and the target doesn't support it, 510 // expand it. 511 EVT MemVT = ST->getMemoryVT(); 512 const DataLayout &DL = DAG.getDataLayout(); 513 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 514 *ST->getMemOperand())) { 515 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 516 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 517 ReplaceNode(SDValue(ST, 0), Result); 518 } else 519 LLVM_DEBUG(dbgs() << "Legal store\n"); 520 break; 521 } 522 case TargetLowering::Custom: { 523 LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); 524 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 525 if (Res && Res != SDValue(Node, 0)) 526 ReplaceNode(SDValue(Node, 0), Res); 527 return; 528 } 529 case TargetLowering::Promote: { 530 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 531 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 532 "Can only promote stores to same size type"); 533 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 534 SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 535 ST->getOriginalAlign(), MMOFlags, AAInfo); 536 ReplaceNode(SDValue(Node, 0), Result); 537 break; 538 } 539 } 540 return; 541 } 542 543 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); 544 SDValue Value = ST->getValue(); 545 EVT StVT = ST->getMemoryVT(); 546 TypeSize StWidth = StVT.getSizeInBits(); 547 TypeSize StSize = StVT.getStoreSizeInBits(); 548 auto &DL = DAG.getDataLayout(); 549 550 if (StWidth != StSize) { 551 // Promote to a byte-sized store with upper bits zero if not 552 // storing an integral number of bytes. For example, promote 553 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 554 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StSize.getFixedSize()); 555 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 556 SDValue Result = 557 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 558 ST->getOriginalAlign(), MMOFlags, AAInfo); 559 ReplaceNode(SDValue(Node, 0), Result); 560 } else if (!StVT.isVector() && !isPowerOf2_64(StWidth.getFixedSize())) { 561 // If not storing a power-of-2 number of bits, expand as two stores. 562 assert(!StVT.isVector() && "Unsupported truncstore!"); 563 unsigned StWidthBits = StWidth.getFixedSize(); 564 unsigned LogStWidth = Log2_32(StWidthBits); 565 assert(LogStWidth < 32); 566 unsigned RoundWidth = 1 << LogStWidth; 567 assert(RoundWidth < StWidthBits); 568 unsigned ExtraWidth = StWidthBits - RoundWidth; 569 assert(ExtraWidth < RoundWidth); 570 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 571 "Store size not an integral number of bytes!"); 572 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 573 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 574 SDValue Lo, Hi; 575 unsigned IncrementSize; 576 577 if (DL.isLittleEndian()) { 578 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 579 // Store the bottom RoundWidth bits. 580 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 581 RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 582 583 // Store the remaining ExtraWidth bits. 584 IncrementSize = RoundWidth / 8; 585 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 586 Hi = DAG.getNode( 587 ISD::SRL, dl, Value.getValueType(), Value, 588 DAG.getConstant(RoundWidth, dl, 589 TLI.getShiftAmountTy(Value.getValueType(), DL))); 590 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, 591 ST->getPointerInfo().getWithOffset(IncrementSize), 592 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 593 } else { 594 // Big endian - avoid unaligned stores. 595 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 596 // Store the top RoundWidth bits. 597 Hi = DAG.getNode( 598 ISD::SRL, dl, Value.getValueType(), Value, 599 DAG.getConstant(ExtraWidth, dl, 600 TLI.getShiftAmountTy(Value.getValueType(), DL))); 601 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT, 602 ST->getOriginalAlign(), MMOFlags, AAInfo); 603 604 // Store the remaining ExtraWidth bits. 605 IncrementSize = RoundWidth / 8; 606 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 607 DAG.getConstant(IncrementSize, dl, 608 Ptr.getValueType())); 609 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, 610 ST->getPointerInfo().getWithOffset(IncrementSize), 611 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 612 } 613 614 // The order of the stores doesn't matter. 615 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 616 ReplaceNode(SDValue(Node, 0), Result); 617 } else { 618 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 619 default: llvm_unreachable("This action is not supported yet!"); 620 case TargetLowering::Legal: { 621 EVT MemVT = ST->getMemoryVT(); 622 // If this is an unaligned store and the target doesn't support it, 623 // expand it. 624 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 625 *ST->getMemOperand())) { 626 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 627 ReplaceNode(SDValue(ST, 0), Result); 628 } 629 break; 630 } 631 case TargetLowering::Custom: { 632 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 633 if (Res && Res != SDValue(Node, 0)) 634 ReplaceNode(SDValue(Node, 0), Res); 635 return; 636 } 637 case TargetLowering::Expand: 638 assert(!StVT.isVector() && 639 "Vector Stores are handled in LegalizeVectorOps"); 640 641 SDValue Result; 642 643 // TRUNCSTORE:i16 i32 -> STORE i16 644 if (TLI.isTypeLegal(StVT)) { 645 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 646 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 647 ST->getOriginalAlign(), MMOFlags, AAInfo); 648 } else { 649 // The in-memory type isn't legal. Truncate to the type it would promote 650 // to, and then do a truncstore. 651 Value = DAG.getNode(ISD::TRUNCATE, dl, 652 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 653 Value); 654 Result = 655 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT, 656 ST->getOriginalAlign(), MMOFlags, AAInfo); 657 } 658 659 ReplaceNode(SDValue(Node, 0), Result); 660 break; 661 } 662 } 663 } 664 665 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 666 LoadSDNode *LD = cast<LoadSDNode>(Node); 667 SDValue Chain = LD->getChain(); // The chain. 668 SDValue Ptr = LD->getBasePtr(); // The base pointer. 669 SDValue Value; // The value returned by the load op. 670 SDLoc dl(Node); 671 672 ISD::LoadExtType ExtType = LD->getExtensionType(); 673 if (ExtType == ISD::NON_EXTLOAD) { 674 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 675 MVT VT = Node->getSimpleValueType(0); 676 SDValue RVal = SDValue(Node, 0); 677 SDValue RChain = SDValue(Node, 1); 678 679 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 680 default: llvm_unreachable("This action is not supported yet!"); 681 case TargetLowering::Legal: { 682 EVT MemVT = LD->getMemoryVT(); 683 const DataLayout &DL = DAG.getDataLayout(); 684 // If this is an unaligned load and the target doesn't support it, 685 // expand it. 686 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 687 *LD->getMemOperand())) { 688 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 689 } 690 break; 691 } 692 case TargetLowering::Custom: 693 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 694 RVal = Res; 695 RChain = Res.getValue(1); 696 } 697 break; 698 699 case TargetLowering::Promote: { 700 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 701 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 702 "Can only promote loads to same size type"); 703 704 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 705 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 706 RChain = Res.getValue(1); 707 break; 708 } 709 } 710 if (RChain.getNode() != Node) { 711 assert(RVal.getNode() != Node && "Load must be completely replaced"); 712 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 713 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 714 if (UpdatedNodes) { 715 UpdatedNodes->insert(RVal.getNode()); 716 UpdatedNodes->insert(RChain.getNode()); 717 } 718 ReplacedNode(Node); 719 } 720 return; 721 } 722 723 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); 724 EVT SrcVT = LD->getMemoryVT(); 725 TypeSize SrcWidth = SrcVT.getSizeInBits(); 726 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 727 AAMDNodes AAInfo = LD->getAAInfo(); 728 729 if (SrcWidth != SrcVT.getStoreSizeInBits() && 730 // Some targets pretend to have an i1 loading operation, and actually 731 // load an i8. This trick is correct for ZEXTLOAD because the top 7 732 // bits are guaranteed to be zero; it helps the optimizers understand 733 // that these bits are zero. It is also useful for EXTLOAD, since it 734 // tells the optimizers that those bits are undefined. It would be 735 // nice to have an effective generic way of getting these benefits... 736 // Until such a way is found, don't insist on promoting i1 here. 737 (SrcVT != MVT::i1 || 738 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 739 TargetLowering::Promote)) { 740 // Promote to a byte-sized load if not loading an integral number of 741 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 742 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 743 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 744 SDValue Ch; 745 746 // The extra bits are guaranteed to be zero, since we stored them that 747 // way. A zext load from NVT thus automatically gives zext from SrcVT. 748 749 ISD::LoadExtType NewExtType = 750 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 751 752 SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 753 Chain, Ptr, LD->getPointerInfo(), NVT, 754 LD->getOriginalAlign(), MMOFlags, AAInfo); 755 756 Ch = Result.getValue(1); // The chain. 757 758 if (ExtType == ISD::SEXTLOAD) 759 // Having the top bits zero doesn't help when sign extending. 760 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 761 Result.getValueType(), 762 Result, DAG.getValueType(SrcVT)); 763 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 764 // All the top bits are guaranteed to be zero - inform the optimizers. 765 Result = DAG.getNode(ISD::AssertZext, dl, 766 Result.getValueType(), Result, 767 DAG.getValueType(SrcVT)); 768 769 Value = Result; 770 Chain = Ch; 771 } else if (!isPowerOf2_64(SrcWidth.getKnownMinSize())) { 772 // If not loading a power-of-2 number of bits, expand as two loads. 773 assert(!SrcVT.isVector() && "Unsupported extload!"); 774 unsigned SrcWidthBits = SrcWidth.getFixedSize(); 775 unsigned LogSrcWidth = Log2_32(SrcWidthBits); 776 assert(LogSrcWidth < 32); 777 unsigned RoundWidth = 1 << LogSrcWidth; 778 assert(RoundWidth < SrcWidthBits); 779 unsigned ExtraWidth = SrcWidthBits - RoundWidth; 780 assert(ExtraWidth < RoundWidth); 781 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 782 "Load size not an integral number of bytes!"); 783 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 784 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 785 SDValue Lo, Hi, Ch; 786 unsigned IncrementSize; 787 auto &DL = DAG.getDataLayout(); 788 789 if (DL.isLittleEndian()) { 790 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 791 // Load the bottom RoundWidth bits. 792 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 793 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 794 MMOFlags, AAInfo); 795 796 // Load the remaining ExtraWidth bits. 797 IncrementSize = RoundWidth / 8; 798 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 799 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 800 LD->getPointerInfo().getWithOffset(IncrementSize), 801 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 802 803 // Build a factor node to remember that this load is independent of 804 // the other one. 805 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 806 Hi.getValue(1)); 807 808 // Move the top bits to the right place. 809 Hi = DAG.getNode( 810 ISD::SHL, dl, Hi.getValueType(), Hi, 811 DAG.getConstant(RoundWidth, dl, 812 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 813 814 // Join the hi and lo parts. 815 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 816 } else { 817 // Big endian - avoid unaligned loads. 818 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 819 // Load the top RoundWidth bits. 820 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 821 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 822 MMOFlags, AAInfo); 823 824 // Load the remaining ExtraWidth bits. 825 IncrementSize = RoundWidth / 8; 826 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 827 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 828 LD->getPointerInfo().getWithOffset(IncrementSize), 829 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 830 831 // Build a factor node to remember that this load is independent of 832 // the other one. 833 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 834 Hi.getValue(1)); 835 836 // Move the top bits to the right place. 837 Hi = DAG.getNode( 838 ISD::SHL, dl, Hi.getValueType(), Hi, 839 DAG.getConstant(ExtraWidth, dl, 840 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 841 842 // Join the hi and lo parts. 843 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 844 } 845 846 Chain = Ch; 847 } else { 848 bool isCustom = false; 849 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 850 SrcVT.getSimpleVT())) { 851 default: llvm_unreachable("This action is not supported yet!"); 852 case TargetLowering::Custom: 853 isCustom = true; 854 LLVM_FALLTHROUGH; 855 case TargetLowering::Legal: 856 Value = SDValue(Node, 0); 857 Chain = SDValue(Node, 1); 858 859 if (isCustom) { 860 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 861 Value = Res; 862 Chain = Res.getValue(1); 863 } 864 } else { 865 // If this is an unaligned load and the target doesn't support it, 866 // expand it. 867 EVT MemVT = LD->getMemoryVT(); 868 const DataLayout &DL = DAG.getDataLayout(); 869 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, 870 *LD->getMemOperand())) { 871 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 872 } 873 } 874 break; 875 876 case TargetLowering::Expand: { 877 EVT DestVT = Node->getValueType(0); 878 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 879 // If the source type is not legal, see if there is a legal extload to 880 // an intermediate type that we can then extend further. 881 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 882 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 883 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 884 // If we are loading a legal type, this is a non-extload followed by a 885 // full extend. 886 ISD::LoadExtType MidExtType = 887 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 888 889 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 890 SrcVT, LD->getMemOperand()); 891 unsigned ExtendOp = 892 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 893 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 894 Chain = Load.getValue(1); 895 break; 896 } 897 898 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 899 // normal undefined upper bits behavior to allow using an in-reg extend 900 // with the illegal FP type, so load as an integer and do the 901 // from-integer conversion. 902 if (SrcVT.getScalarType() == MVT::f16) { 903 EVT ISrcVT = SrcVT.changeTypeToInteger(); 904 EVT IDestVT = DestVT.changeTypeToInteger(); 905 EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 906 907 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain, 908 Ptr, ISrcVT, LD->getMemOperand()); 909 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 910 Chain = Result.getValue(1); 911 break; 912 } 913 } 914 915 assert(!SrcVT.isVector() && 916 "Vector Loads are handled in LegalizeVectorOps"); 917 918 // FIXME: This does not work for vectors on most targets. Sign- 919 // and zero-extend operations are currently folded into extending 920 // loads, whether they are legal or not, and then we end up here 921 // without any support for legalizing them. 922 assert(ExtType != ISD::EXTLOAD && 923 "EXTLOAD should always be supported!"); 924 // Turn the unsupported load into an EXTLOAD followed by an 925 // explicit zero/sign extend inreg. 926 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 927 Node->getValueType(0), 928 Chain, Ptr, SrcVT, 929 LD->getMemOperand()); 930 SDValue ValRes; 931 if (ExtType == ISD::SEXTLOAD) 932 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 933 Result.getValueType(), 934 Result, DAG.getValueType(SrcVT)); 935 else 936 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT); 937 Value = ValRes; 938 Chain = Result.getValue(1); 939 break; 940 } 941 } 942 } 943 944 // Since loads produce two values, make sure to remember that we legalized 945 // both of them. 946 if (Chain.getNode() != Node) { 947 assert(Value.getNode() != Node && "Load must be completely replaced"); 948 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 949 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 950 if (UpdatedNodes) { 951 UpdatedNodes->insert(Value.getNode()); 952 UpdatedNodes->insert(Chain.getNode()); 953 } 954 ReplacedNode(Node); 955 } 956 } 957 958 /// Return a legal replacement for the given operation, with all legal operands. 959 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 960 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 961 962 // Allow illegal target nodes and illegal registers. 963 if (Node->getOpcode() == ISD::TargetConstant || 964 Node->getOpcode() == ISD::Register) 965 return; 966 967 #ifndef NDEBUG 968 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 969 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 970 TargetLowering::TypeLegal && 971 "Unexpected illegal type!"); 972 973 for (const SDValue &Op : Node->op_values()) 974 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 975 TargetLowering::TypeLegal || 976 Op.getOpcode() == ISD::TargetConstant || 977 Op.getOpcode() == ISD::Register) && 978 "Unexpected illegal type!"); 979 #endif 980 981 // Figure out the correct action; the way to query this varies by opcode 982 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 983 bool SimpleFinishLegalizing = true; 984 switch (Node->getOpcode()) { 985 case ISD::INTRINSIC_W_CHAIN: 986 case ISD::INTRINSIC_WO_CHAIN: 987 case ISD::INTRINSIC_VOID: 988 case ISD::STACKSAVE: 989 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 990 break; 991 case ISD::GET_DYNAMIC_AREA_OFFSET: 992 Action = TLI.getOperationAction(Node->getOpcode(), 993 Node->getValueType(0)); 994 break; 995 case ISD::VAARG: 996 Action = TLI.getOperationAction(Node->getOpcode(), 997 Node->getValueType(0)); 998 if (Action != TargetLowering::Promote) 999 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 1000 break; 1001 case ISD::FP_TO_FP16: 1002 case ISD::SINT_TO_FP: 1003 case ISD::UINT_TO_FP: 1004 case ISD::EXTRACT_VECTOR_ELT: 1005 case ISD::LROUND: 1006 case ISD::LLROUND: 1007 case ISD::LRINT: 1008 case ISD::LLRINT: 1009 Action = TLI.getOperationAction(Node->getOpcode(), 1010 Node->getOperand(0).getValueType()); 1011 break; 1012 case ISD::STRICT_FP_TO_FP16: 1013 case ISD::STRICT_SINT_TO_FP: 1014 case ISD::STRICT_UINT_TO_FP: 1015 case ISD::STRICT_LRINT: 1016 case ISD::STRICT_LLRINT: 1017 case ISD::STRICT_LROUND: 1018 case ISD::STRICT_LLROUND: 1019 // These pseudo-ops are the same as the other STRICT_ ops except 1020 // they are registered with setOperationAction() using the input type 1021 // instead of the output type. 1022 Action = TLI.getOperationAction(Node->getOpcode(), 1023 Node->getOperand(1).getValueType()); 1024 break; 1025 case ISD::SIGN_EXTEND_INREG: { 1026 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1027 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1028 break; 1029 } 1030 case ISD::ATOMIC_STORE: 1031 Action = TLI.getOperationAction(Node->getOpcode(), 1032 Node->getOperand(2).getValueType()); 1033 break; 1034 case ISD::SELECT_CC: 1035 case ISD::STRICT_FSETCC: 1036 case ISD::STRICT_FSETCCS: 1037 case ISD::SETCC: 1038 case ISD::BR_CC: { 1039 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 1040 Node->getOpcode() == ISD::STRICT_FSETCC ? 3 : 1041 Node->getOpcode() == ISD::STRICT_FSETCCS ? 3 : 1042 Node->getOpcode() == ISD::SETCC ? 2 : 1; 1043 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 1044 Node->getOpcode() == ISD::STRICT_FSETCC ? 1 : 1045 Node->getOpcode() == ISD::STRICT_FSETCCS ? 1 : 0; 1046 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1047 ISD::CondCode CCCode = 1048 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1049 Action = TLI.getCondCodeAction(CCCode, OpVT); 1050 if (Action == TargetLowering::Legal) { 1051 if (Node->getOpcode() == ISD::SELECT_CC) 1052 Action = TLI.getOperationAction(Node->getOpcode(), 1053 Node->getValueType(0)); 1054 else 1055 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1056 } 1057 break; 1058 } 1059 case ISD::LOAD: 1060 case ISD::STORE: 1061 // FIXME: Model these properly. LOAD and STORE are complicated, and 1062 // STORE expects the unlegalized operand in some cases. 1063 SimpleFinishLegalizing = false; 1064 break; 1065 case ISD::CALLSEQ_START: 1066 case ISD::CALLSEQ_END: 1067 // FIXME: This shouldn't be necessary. These nodes have special properties 1068 // dealing with the recursive nature of legalization. Removing this 1069 // special case should be done as part of making LegalizeDAG non-recursive. 1070 SimpleFinishLegalizing = false; 1071 break; 1072 case ISD::EXTRACT_ELEMENT: 1073 case ISD::FLT_ROUNDS_: 1074 case ISD::MERGE_VALUES: 1075 case ISD::EH_RETURN: 1076 case ISD::FRAME_TO_ARGS_OFFSET: 1077 case ISD::EH_DWARF_CFA: 1078 case ISD::EH_SJLJ_SETJMP: 1079 case ISD::EH_SJLJ_LONGJMP: 1080 case ISD::EH_SJLJ_SETUP_DISPATCH: 1081 // These operations lie about being legal: when they claim to be legal, 1082 // they should actually be expanded. 1083 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1084 if (Action == TargetLowering::Legal) 1085 Action = TargetLowering::Expand; 1086 break; 1087 case ISD::INIT_TRAMPOLINE: 1088 case ISD::ADJUST_TRAMPOLINE: 1089 case ISD::FRAMEADDR: 1090 case ISD::RETURNADDR: 1091 case ISD::ADDROFRETURNADDR: 1092 case ISD::SPONENTRY: 1093 // These operations lie about being legal: when they claim to be legal, 1094 // they should actually be custom-lowered. 1095 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1096 if (Action == TargetLowering::Legal) 1097 Action = TargetLowering::Custom; 1098 break; 1099 case ISD::READCYCLECOUNTER: 1100 // READCYCLECOUNTER returns an i64, even if type legalization might have 1101 // expanded that to several smaller types. 1102 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1103 break; 1104 case ISD::READ_REGISTER: 1105 case ISD::WRITE_REGISTER: 1106 // Named register is legal in the DAG, but blocked by register name 1107 // selection if not implemented by target (to chose the correct register) 1108 // They'll be converted to Copy(To/From)Reg. 1109 Action = TargetLowering::Legal; 1110 break; 1111 case ISD::UBSANTRAP: 1112 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1113 if (Action == TargetLowering::Expand) { 1114 // replace ISD::UBSANTRAP with ISD::TRAP 1115 SDValue NewVal; 1116 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1117 Node->getOperand(0)); 1118 ReplaceNode(Node, NewVal.getNode()); 1119 LegalizeOp(NewVal.getNode()); 1120 return; 1121 } 1122 break; 1123 case ISD::DEBUGTRAP: 1124 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1125 if (Action == TargetLowering::Expand) { 1126 // replace ISD::DEBUGTRAP with ISD::TRAP 1127 SDValue NewVal; 1128 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1129 Node->getOperand(0)); 1130 ReplaceNode(Node, NewVal.getNode()); 1131 LegalizeOp(NewVal.getNode()); 1132 return; 1133 } 1134 break; 1135 case ISD::SADDSAT: 1136 case ISD::UADDSAT: 1137 case ISD::SSUBSAT: 1138 case ISD::USUBSAT: 1139 case ISD::SSHLSAT: 1140 case ISD::USHLSAT: 1141 case ISD::FP_TO_SINT_SAT: 1142 case ISD::FP_TO_UINT_SAT: 1143 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1144 break; 1145 case ISD::SMULFIX: 1146 case ISD::SMULFIXSAT: 1147 case ISD::UMULFIX: 1148 case ISD::UMULFIXSAT: 1149 case ISD::SDIVFIX: 1150 case ISD::SDIVFIXSAT: 1151 case ISD::UDIVFIX: 1152 case ISD::UDIVFIXSAT: { 1153 unsigned Scale = Node->getConstantOperandVal(2); 1154 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 1155 Node->getValueType(0), Scale); 1156 break; 1157 } 1158 case ISD::MSCATTER: 1159 Action = TLI.getOperationAction(Node->getOpcode(), 1160 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 1161 break; 1162 case ISD::MSTORE: 1163 Action = TLI.getOperationAction(Node->getOpcode(), 1164 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 1165 break; 1166 case ISD::VECREDUCE_FADD: 1167 case ISD::VECREDUCE_FMUL: 1168 case ISD::VECREDUCE_ADD: 1169 case ISD::VECREDUCE_MUL: 1170 case ISD::VECREDUCE_AND: 1171 case ISD::VECREDUCE_OR: 1172 case ISD::VECREDUCE_XOR: 1173 case ISD::VECREDUCE_SMAX: 1174 case ISD::VECREDUCE_SMIN: 1175 case ISD::VECREDUCE_UMAX: 1176 case ISD::VECREDUCE_UMIN: 1177 case ISD::VECREDUCE_FMAX: 1178 case ISD::VECREDUCE_FMIN: 1179 Action = TLI.getOperationAction( 1180 Node->getOpcode(), Node->getOperand(0).getValueType()); 1181 break; 1182 case ISD::VECREDUCE_SEQ_FADD: 1183 Action = TLI.getOperationAction( 1184 Node->getOpcode(), Node->getOperand(1).getValueType()); 1185 break; 1186 default: 1187 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1188 Action = TargetLowering::Legal; 1189 } else { 1190 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1191 } 1192 break; 1193 } 1194 1195 if (SimpleFinishLegalizing) { 1196 SDNode *NewNode = Node; 1197 switch (Node->getOpcode()) { 1198 default: break; 1199 case ISD::SHL: 1200 case ISD::SRL: 1201 case ISD::SRA: 1202 case ISD::ROTL: 1203 case ISD::ROTR: { 1204 // Legalizing shifts/rotates requires adjusting the shift amount 1205 // to the appropriate width. 1206 SDValue Op0 = Node->getOperand(0); 1207 SDValue Op1 = Node->getOperand(1); 1208 if (!Op1.getValueType().isVector()) { 1209 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1210 // The getShiftAmountOperand() may create a new operand node or 1211 // return the existing one. If new operand is created we need 1212 // to update the parent node. 1213 // Do not try to legalize SAO here! It will be automatically legalized 1214 // in the next round. 1215 if (SAO != Op1) 1216 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1217 } 1218 } 1219 break; 1220 case ISD::FSHL: 1221 case ISD::FSHR: 1222 case ISD::SRL_PARTS: 1223 case ISD::SRA_PARTS: 1224 case ISD::SHL_PARTS: { 1225 // Legalizing shifts/rotates requires adjusting the shift amount 1226 // to the appropriate width. 1227 SDValue Op0 = Node->getOperand(0); 1228 SDValue Op1 = Node->getOperand(1); 1229 SDValue Op2 = Node->getOperand(2); 1230 if (!Op2.getValueType().isVector()) { 1231 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1232 // The getShiftAmountOperand() may create a new operand node or 1233 // return the existing one. If new operand is created we need 1234 // to update the parent node. 1235 if (SAO != Op2) 1236 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1237 } 1238 break; 1239 } 1240 } 1241 1242 if (NewNode != Node) { 1243 ReplaceNode(Node, NewNode); 1244 Node = NewNode; 1245 } 1246 switch (Action) { 1247 case TargetLowering::Legal: 1248 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 1249 return; 1250 case TargetLowering::Custom: 1251 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 1252 // FIXME: The handling for custom lowering with multiple results is 1253 // a complete mess. 1254 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1255 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1256 return; 1257 1258 if (Node->getNumValues() == 1) { 1259 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1260 // We can just directly replace this node with the lowered value. 1261 ReplaceNode(SDValue(Node, 0), Res); 1262 return; 1263 } 1264 1265 SmallVector<SDValue, 8> ResultVals; 1266 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1267 ResultVals.push_back(Res.getValue(i)); 1268 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1269 ReplaceNode(Node, ResultVals.data()); 1270 return; 1271 } 1272 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 1273 LLVM_FALLTHROUGH; 1274 case TargetLowering::Expand: 1275 if (ExpandNode(Node)) 1276 return; 1277 LLVM_FALLTHROUGH; 1278 case TargetLowering::LibCall: 1279 ConvertNodeToLibcall(Node); 1280 return; 1281 case TargetLowering::Promote: 1282 PromoteNode(Node); 1283 return; 1284 } 1285 } 1286 1287 switch (Node->getOpcode()) { 1288 default: 1289 #ifndef NDEBUG 1290 dbgs() << "NODE: "; 1291 Node->dump( &DAG); 1292 dbgs() << "\n"; 1293 #endif 1294 llvm_unreachable("Do not know how to legalize this operator!"); 1295 1296 case ISD::CALLSEQ_START: 1297 case ISD::CALLSEQ_END: 1298 break; 1299 case ISD::LOAD: 1300 return LegalizeLoadOps(Node); 1301 case ISD::STORE: 1302 return LegalizeStoreOps(Node); 1303 } 1304 } 1305 1306 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1307 SDValue Vec = Op.getOperand(0); 1308 SDValue Idx = Op.getOperand(1); 1309 SDLoc dl(Op); 1310 1311 // Before we generate a new store to a temporary stack slot, see if there is 1312 // already one that we can use. There often is because when we scalarize 1313 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1314 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1315 // the vector. If all are expanded here, we don't want one store per vector 1316 // element. 1317 1318 // Caches for hasPredecessorHelper 1319 SmallPtrSet<const SDNode *, 32> Visited; 1320 SmallVector<const SDNode *, 16> Worklist; 1321 Visited.insert(Op.getNode()); 1322 Worklist.push_back(Idx.getNode()); 1323 SDValue StackPtr, Ch; 1324 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), 1325 UE = Vec.getNode()->use_end(); UI != UE; ++UI) { 1326 SDNode *User = *UI; 1327 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1328 if (ST->isIndexed() || ST->isTruncatingStore() || 1329 ST->getValue() != Vec) 1330 continue; 1331 1332 // Make sure that nothing else could have stored into the destination of 1333 // this store. 1334 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1335 continue; 1336 1337 // If the index is dependent on the store we will introduce a cycle when 1338 // creating the load (the load uses the index, and by replacing the chain 1339 // we will make the index dependent on the load). Also, the store might be 1340 // dependent on the extractelement and introduce a cycle when creating 1341 // the load. 1342 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1343 ST->hasPredecessor(Op.getNode())) 1344 continue; 1345 1346 StackPtr = ST->getBasePtr(); 1347 Ch = SDValue(ST, 0); 1348 break; 1349 } 1350 } 1351 1352 EVT VecVT = Vec.getValueType(); 1353 1354 if (!Ch.getNode()) { 1355 // Store the value to a temporary stack slot, then LOAD the returned part. 1356 StackPtr = DAG.CreateStackTemporary(VecVT); 1357 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1358 MachinePointerInfo()); 1359 } 1360 1361 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1362 1363 SDValue NewLoad; 1364 1365 if (Op.getValueType().isVector()) 1366 NewLoad = 1367 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); 1368 else 1369 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1370 MachinePointerInfo(), 1371 VecVT.getVectorElementType()); 1372 1373 // Replace the chain going out of the store, by the one out of the load. 1374 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1375 1376 // We introduced a cycle though, so update the loads operands, making sure 1377 // to use the original store's chain as an incoming chain. 1378 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1379 NewLoad->op_end()); 1380 NewLoadOperands[0] = Ch; 1381 NewLoad = 1382 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1383 return NewLoad; 1384 } 1385 1386 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1387 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1388 1389 SDValue Vec = Op.getOperand(0); 1390 SDValue Part = Op.getOperand(1); 1391 SDValue Idx = Op.getOperand(2); 1392 SDLoc dl(Op); 1393 1394 // Store the value to a temporary stack slot, then LOAD the returned part. 1395 EVT VecVT = Vec.getValueType(); 1396 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1397 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1398 MachinePointerInfo PtrInfo = 1399 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1400 1401 // First store the whole vector. 1402 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1403 1404 // Then store the inserted part. 1405 SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1406 1407 // Store the subvector. 1408 Ch = DAG.getStore( 1409 Ch, dl, Part, SubStackPtr, 1410 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1411 1412 // Finally, load the updated vector. 1413 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1414 } 1415 1416 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1417 assert((Node->getOpcode() == ISD::BUILD_VECTOR || 1418 Node->getOpcode() == ISD::CONCAT_VECTORS) && 1419 "Unexpected opcode!"); 1420 1421 // We can't handle this case efficiently. Allocate a sufficiently 1422 // aligned object on the stack, store each operand into it, then load 1423 // the result as a vector. 1424 // Create the stack frame object. 1425 EVT VT = Node->getValueType(0); 1426 EVT MemVT = isa<BuildVectorSDNode>(Node) ? VT.getVectorElementType() 1427 : Node->getOperand(0).getValueType(); 1428 SDLoc dl(Node); 1429 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1430 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1431 MachinePointerInfo PtrInfo = 1432 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1433 1434 // Emit a store of each element to the stack slot. 1435 SmallVector<SDValue, 8> Stores; 1436 unsigned TypeByteSize = MemVT.getSizeInBits() / 8; 1437 assert(TypeByteSize > 0 && "Vector element type too small for stack store!"); 1438 1439 // If the destination vector element type of a BUILD_VECTOR is narrower than 1440 // the source element type, only store the bits necessary. 1441 bool Truncate = isa<BuildVectorSDNode>(Node) && 1442 MemVT.bitsLT(Node->getOperand(0).getValueType()); 1443 1444 // Store (in the right endianness) the elements to memory. 1445 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1446 // Ignore undef elements. 1447 if (Node->getOperand(i).isUndef()) continue; 1448 1449 unsigned Offset = TypeByteSize*i; 1450 1451 SDValue Idx = DAG.getMemBasePlusOffset(FIPtr, TypeSize::Fixed(Offset), dl); 1452 1453 if (Truncate) 1454 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1455 Node->getOperand(i), Idx, 1456 PtrInfo.getWithOffset(Offset), MemVT)); 1457 else 1458 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1459 Idx, PtrInfo.getWithOffset(Offset))); 1460 } 1461 1462 SDValue StoreChain; 1463 if (!Stores.empty()) // Not all undef elements? 1464 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1465 else 1466 StoreChain = DAG.getEntryNode(); 1467 1468 // Result is a load from the stack slot. 1469 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1470 } 1471 1472 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1473 /// containing the sign bit if the target has no integer value capable of 1474 /// holding all bits of the floating-point value. 1475 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1476 const SDLoc &DL, 1477 SDValue Value) const { 1478 EVT FloatVT = Value.getValueType(); 1479 unsigned NumBits = FloatVT.getScalarSizeInBits(); 1480 State.FloatVT = FloatVT; 1481 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1482 // Convert to an integer of the same size. 1483 if (TLI.isTypeLegal(IVT)) { 1484 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1485 State.SignMask = APInt::getSignMask(NumBits); 1486 State.SignBit = NumBits - 1; 1487 return; 1488 } 1489 1490 auto &DataLayout = DAG.getDataLayout(); 1491 // Store the float to memory, then load the sign part out as an integer. 1492 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1493 // First create a temporary that is aligned for both the load and store. 1494 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1495 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1496 // Then store the float to it. 1497 State.FloatPtr = StackPtr; 1498 MachineFunction &MF = DAG.getMachineFunction(); 1499 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1500 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1501 State.FloatPointerInfo); 1502 1503 SDValue IntPtr; 1504 if (DataLayout.isBigEndian()) { 1505 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1506 // Load out a legal integer with the same sign bit as the float. 1507 IntPtr = StackPtr; 1508 State.IntPointerInfo = State.FloatPointerInfo; 1509 } else { 1510 // Advance the pointer so that the loaded byte will contain the sign bit. 1511 unsigned ByteOffset = (NumBits / 8) - 1; 1512 IntPtr = 1513 DAG.getMemBasePlusOffset(StackPtr, TypeSize::Fixed(ByteOffset), DL); 1514 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1515 ByteOffset); 1516 } 1517 1518 State.IntPtr = IntPtr; 1519 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1520 State.IntPointerInfo, MVT::i8); 1521 State.SignMask = APInt::getOneBitSet(LoadTy.getScalarSizeInBits(), 7); 1522 State.SignBit = 7; 1523 } 1524 1525 /// Replace the integer value produced by getSignAsIntValue() with a new value 1526 /// and cast the result back to a floating-point type. 1527 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1528 const SDLoc &DL, 1529 SDValue NewIntValue) const { 1530 if (!State.Chain) 1531 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1532 1533 // Override the part containing the sign bit in the value stored on the stack. 1534 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1535 State.IntPointerInfo, MVT::i8); 1536 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1537 State.FloatPointerInfo); 1538 } 1539 1540 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1541 SDLoc DL(Node); 1542 SDValue Mag = Node->getOperand(0); 1543 SDValue Sign = Node->getOperand(1); 1544 1545 // Get sign bit into an integer value. 1546 FloatSignAsInt SignAsInt; 1547 getSignAsIntValue(SignAsInt, DL, Sign); 1548 1549 EVT IntVT = SignAsInt.IntValue.getValueType(); 1550 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1551 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1552 SignMask); 1553 1554 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1555 EVT FloatVT = Mag.getValueType(); 1556 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1557 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1558 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1559 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1560 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1561 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1562 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1563 } 1564 1565 // Transform Mag value to integer, and clear the sign bit. 1566 FloatSignAsInt MagAsInt; 1567 getSignAsIntValue(MagAsInt, DL, Mag); 1568 EVT MagVT = MagAsInt.IntValue.getValueType(); 1569 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1570 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1571 ClearSignMask); 1572 1573 // Get the signbit at the right position for MagAsInt. 1574 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1575 EVT ShiftVT = IntVT; 1576 if (SignBit.getScalarValueSizeInBits() < 1577 ClearedSign.getScalarValueSizeInBits()) { 1578 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1579 ShiftVT = MagVT; 1580 } 1581 if (ShiftAmount > 0) { 1582 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); 1583 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); 1584 } else if (ShiftAmount < 0) { 1585 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); 1586 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); 1587 } 1588 if (SignBit.getScalarValueSizeInBits() > 1589 ClearedSign.getScalarValueSizeInBits()) { 1590 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1591 } 1592 1593 // Store the part with the modified sign and convert back to float. 1594 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1595 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1596 } 1597 1598 SDValue SelectionDAGLegalize::ExpandFNEG(SDNode *Node) const { 1599 // Get the sign bit as an integer. 1600 SDLoc DL(Node); 1601 FloatSignAsInt SignAsInt; 1602 getSignAsIntValue(SignAsInt, DL, Node->getOperand(0)); 1603 EVT IntVT = SignAsInt.IntValue.getValueType(); 1604 1605 // Flip the sign. 1606 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1607 SDValue SignFlip = 1608 DAG.getNode(ISD::XOR, DL, IntVT, SignAsInt.IntValue, SignMask); 1609 1610 // Convert back to float. 1611 return modifySignAsInt(SignAsInt, DL, SignFlip); 1612 } 1613 1614 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1615 SDLoc DL(Node); 1616 SDValue Value = Node->getOperand(0); 1617 1618 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1619 EVT FloatVT = Value.getValueType(); 1620 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1621 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1622 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1623 } 1624 1625 // Transform value to integer, clear the sign bit and transform back. 1626 FloatSignAsInt ValueAsInt; 1627 getSignAsIntValue(ValueAsInt, DL, Value); 1628 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1629 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1630 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1631 ClearSignMask); 1632 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1633 } 1634 1635 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1636 SmallVectorImpl<SDValue> &Results) { 1637 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1638 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1639 " not tell us which reg is the stack pointer!"); 1640 SDLoc dl(Node); 1641 EVT VT = Node->getValueType(0); 1642 SDValue Tmp1 = SDValue(Node, 0); 1643 SDValue Tmp2 = SDValue(Node, 1); 1644 SDValue Tmp3 = Node->getOperand(2); 1645 SDValue Chain = Tmp1.getOperand(0); 1646 1647 // Chain the dynamic stack allocation so that it doesn't modify the stack 1648 // pointer when other instructions are using the stack. 1649 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1650 1651 SDValue Size = Tmp2.getOperand(1); 1652 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1653 Chain = SP.getValue(1); 1654 Align Alignment = cast<ConstantSDNode>(Tmp3)->getAlignValue(); 1655 const TargetFrameLowering *TFL = DAG.getSubtarget().getFrameLowering(); 1656 unsigned Opc = 1657 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 1658 ISD::ADD : ISD::SUB; 1659 1660 Align StackAlign = TFL->getStackAlign(); 1661 Tmp1 = DAG.getNode(Opc, dl, VT, SP, Size); // Value 1662 if (Alignment > StackAlign) 1663 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1664 DAG.getConstant(-Alignment.value(), dl, VT)); 1665 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1666 1667 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1668 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1669 1670 Results.push_back(Tmp1); 1671 Results.push_back(Tmp2); 1672 } 1673 1674 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current 1675 /// target. 1676 /// 1677 /// If the SETCC has been legalized using AND / OR, then the legalized node 1678 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert 1679 /// will be set to false. 1680 /// 1681 /// If the SETCC has been legalized by using getSetCCSwappedOperands(), 1682 /// then the values of LHS and RHS will be swapped, CC will be set to the 1683 /// new condition, and NeedInvert will be set to false. 1684 /// 1685 /// If the SETCC has been legalized using the inverse condcode, then LHS and 1686 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert 1687 /// will be set to true. The caller must invert the result of the SETCC with 1688 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect 1689 /// of a true/false result. 1690 /// 1691 /// \returns true if the SetCC has been legalized, false if it hasn't. 1692 bool SelectionDAGLegalize::LegalizeSetCCCondCode( 1693 EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, bool &NeedInvert, 1694 const SDLoc &dl, SDValue &Chain, bool IsSignaling) { 1695 MVT OpVT = LHS.getSimpleValueType(); 1696 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1697 NeedInvert = false; 1698 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1699 default: llvm_unreachable("Unknown condition code action!"); 1700 case TargetLowering::Legal: 1701 // Nothing to do. 1702 break; 1703 case TargetLowering::Expand: { 1704 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 1705 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1706 std::swap(LHS, RHS); 1707 CC = DAG.getCondCode(InvCC); 1708 return true; 1709 } 1710 // Swapping operands didn't work. Try inverting the condition. 1711 bool NeedSwap = false; 1712 InvCC = getSetCCInverse(CCCode, OpVT); 1713 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1714 // If inverting the condition is not enough, try swapping operands 1715 // on top of it. 1716 InvCC = ISD::getSetCCSwappedOperands(InvCC); 1717 NeedSwap = true; 1718 } 1719 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1720 CC = DAG.getCondCode(InvCC); 1721 NeedInvert = true; 1722 if (NeedSwap) 1723 std::swap(LHS, RHS); 1724 return true; 1725 } 1726 1727 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1728 unsigned Opc = 0; 1729 switch (CCCode) { 1730 default: llvm_unreachable("Don't know how to expand this condition!"); 1731 case ISD::SETUO: 1732 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 1733 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; 1734 break; 1735 } 1736 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 1737 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 1738 NeedInvert = true; 1739 LLVM_FALLTHROUGH; 1740 case ISD::SETO: 1741 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) 1742 && "If SETO is expanded, SETOEQ must be legal!"); 1743 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; 1744 case ISD::SETOEQ: 1745 case ISD::SETOGT: 1746 case ISD::SETOGE: 1747 case ISD::SETOLT: 1748 case ISD::SETOLE: 1749 case ISD::SETONE: 1750 case ISD::SETUEQ: 1751 case ISD::SETUNE: 1752 case ISD::SETUGT: 1753 case ISD::SETUGE: 1754 case ISD::SETULT: 1755 case ISD::SETULE: 1756 // If we are floating point, assign and break, otherwise fall through. 1757 if (!OpVT.isInteger()) { 1758 // We can use the 4th bit to tell if we are the unordered 1759 // or ordered version of the opcode. 1760 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 1761 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 1762 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 1763 break; 1764 } 1765 // Fallthrough if we are unsigned integer. 1766 LLVM_FALLTHROUGH; 1767 case ISD::SETLE: 1768 case ISD::SETGT: 1769 case ISD::SETGE: 1770 case ISD::SETLT: 1771 case ISD::SETNE: 1772 case ISD::SETEQ: 1773 // If all combinations of inverting the condition and swapping operands 1774 // didn't work then we have no means to expand the condition. 1775 llvm_unreachable("Don't know how to expand this condition!"); 1776 } 1777 1778 SDValue SetCC1, SetCC2; 1779 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 1780 // If we aren't the ordered or unorder operation, 1781 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 1782 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, 1783 IsSignaling); 1784 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, 1785 IsSignaling); 1786 } else { 1787 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 1788 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, 1789 IsSignaling); 1790 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, 1791 IsSignaling); 1792 } 1793 if (Chain) 1794 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 1795 SetCC2.getValue(1)); 1796 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1797 RHS = SDValue(); 1798 CC = SDValue(); 1799 return true; 1800 } 1801 } 1802 return false; 1803 } 1804 1805 /// Emit a store/load combination to the stack. This stores 1806 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1807 /// a load from the stack slot to DestVT, extending it if needed. 1808 /// The resultant code need not be legal. 1809 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1810 EVT DestVT, const SDLoc &dl) { 1811 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode()); 1812 } 1813 1814 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1815 EVT DestVT, const SDLoc &dl, 1816 SDValue Chain) { 1817 unsigned SrcSize = SrcOp.getValueSizeInBits(); 1818 unsigned SlotSize = SlotVT.getSizeInBits(); 1819 unsigned DestSize = DestVT.getSizeInBits(); 1820 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1821 Align DestAlign = DAG.getDataLayout().getPrefTypeAlign(DestType); 1822 1823 // Don't convert with stack if the load/store is expensive. 1824 if ((SrcSize > SlotSize && 1825 !TLI.isTruncStoreLegalOrCustom(SrcOp.getValueType(), SlotVT)) || 1826 (SlotSize < DestSize && 1827 !TLI.isLoadExtLegalOrCustom(ISD::EXTLOAD, DestVT, SlotVT))) 1828 return SDValue(); 1829 1830 // Create the stack frame object. 1831 Align SrcAlign = DAG.getDataLayout().getPrefTypeAlign( 1832 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1833 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT.getStoreSize(), SrcAlign); 1834 1835 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1836 int SPFI = StackPtrFI->getIndex(); 1837 MachinePointerInfo PtrInfo = 1838 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1839 1840 // Emit a store to the stack slot. Use a truncstore if the input value is 1841 // later than DestVT. 1842 SDValue Store; 1843 1844 if (SrcSize > SlotSize) 1845 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo, 1846 SlotVT, SrcAlign); 1847 else { 1848 assert(SrcSize == SlotSize && "Invalid store"); 1849 Store = 1850 DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1851 } 1852 1853 // Result is a load from the stack slot. 1854 if (SlotSize == DestSize) 1855 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1856 1857 assert(SlotSize < DestSize && "Unknown extension!"); 1858 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1859 DestAlign); 1860 } 1861 1862 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1863 SDLoc dl(Node); 1864 // Create a vector sized/aligned stack slot, store the value to element #0, 1865 // then load the whole vector back out. 1866 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1867 1868 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1869 int SPFI = StackPtrFI->getIndex(); 1870 1871 SDValue Ch = DAG.getTruncStore( 1872 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1873 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1874 Node->getValueType(0).getVectorElementType()); 1875 return DAG.getLoad( 1876 Node->getValueType(0), dl, Ch, StackPtr, 1877 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1878 } 1879 1880 static bool 1881 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1882 const TargetLowering &TLI, SDValue &Res) { 1883 unsigned NumElems = Node->getNumOperands(); 1884 SDLoc dl(Node); 1885 EVT VT = Node->getValueType(0); 1886 1887 // Try to group the scalars into pairs, shuffle the pairs together, then 1888 // shuffle the pairs of pairs together, etc. until the vector has 1889 // been built. This will work only if all of the necessary shuffle masks 1890 // are legal. 1891 1892 // We do this in two phases; first to check the legality of the shuffles, 1893 // and next, assuming that all shuffles are legal, to create the new nodes. 1894 for (int Phase = 0; Phase < 2; ++Phase) { 1895 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1896 NewIntermedVals; 1897 for (unsigned i = 0; i < NumElems; ++i) { 1898 SDValue V = Node->getOperand(i); 1899 if (V.isUndef()) 1900 continue; 1901 1902 SDValue Vec; 1903 if (Phase) 1904 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1905 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1906 } 1907 1908 while (IntermedVals.size() > 2) { 1909 NewIntermedVals.clear(); 1910 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1911 // This vector and the next vector are shuffled together (simply to 1912 // append the one to the other). 1913 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1914 1915 SmallVector<int, 16> FinalIndices; 1916 FinalIndices.reserve(IntermedVals[i].second.size() + 1917 IntermedVals[i+1].second.size()); 1918 1919 int k = 0; 1920 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1921 ++j, ++k) { 1922 ShuffleVec[k] = j; 1923 FinalIndices.push_back(IntermedVals[i].second[j]); 1924 } 1925 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1926 ++j, ++k) { 1927 ShuffleVec[k] = NumElems + j; 1928 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1929 } 1930 1931 SDValue Shuffle; 1932 if (Phase) 1933 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1934 IntermedVals[i+1].first, 1935 ShuffleVec); 1936 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1937 return false; 1938 NewIntermedVals.push_back( 1939 std::make_pair(Shuffle, std::move(FinalIndices))); 1940 } 1941 1942 // If we had an odd number of defined values, then append the last 1943 // element to the array of new vectors. 1944 if ((IntermedVals.size() & 1) != 0) 1945 NewIntermedVals.push_back(IntermedVals.back()); 1946 1947 IntermedVals.swap(NewIntermedVals); 1948 } 1949 1950 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1951 "Invalid number of intermediate vectors"); 1952 SDValue Vec1 = IntermedVals[0].first; 1953 SDValue Vec2; 1954 if (IntermedVals.size() > 1) 1955 Vec2 = IntermedVals[1].first; 1956 else if (Phase) 1957 Vec2 = DAG.getUNDEF(VT); 1958 1959 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1960 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1961 ShuffleVec[IntermedVals[0].second[i]] = i; 1962 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1963 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1964 1965 if (Phase) 1966 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1967 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1968 return false; 1969 } 1970 1971 return true; 1972 } 1973 1974 /// Expand a BUILD_VECTOR node on targets that don't 1975 /// support the operation, but do support the resultant vector type. 1976 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1977 unsigned NumElems = Node->getNumOperands(); 1978 SDValue Value1, Value2; 1979 SDLoc dl(Node); 1980 EVT VT = Node->getValueType(0); 1981 EVT OpVT = Node->getOperand(0).getValueType(); 1982 EVT EltVT = VT.getVectorElementType(); 1983 1984 // If the only non-undef value is the low element, turn this into a 1985 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1986 bool isOnlyLowElement = true; 1987 bool MoreThanTwoValues = false; 1988 bool isConstant = true; 1989 for (unsigned i = 0; i < NumElems; ++i) { 1990 SDValue V = Node->getOperand(i); 1991 if (V.isUndef()) 1992 continue; 1993 if (i > 0) 1994 isOnlyLowElement = false; 1995 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1996 isConstant = false; 1997 1998 if (!Value1.getNode()) { 1999 Value1 = V; 2000 } else if (!Value2.getNode()) { 2001 if (V != Value1) 2002 Value2 = V; 2003 } else if (V != Value1 && V != Value2) { 2004 MoreThanTwoValues = true; 2005 } 2006 } 2007 2008 if (!Value1.getNode()) 2009 return DAG.getUNDEF(VT); 2010 2011 if (isOnlyLowElement) 2012 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 2013 2014 // If all elements are constants, create a load from the constant pool. 2015 if (isConstant) { 2016 SmallVector<Constant*, 16> CV; 2017 for (unsigned i = 0, e = NumElems; i != e; ++i) { 2018 if (ConstantFPSDNode *V = 2019 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 2020 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 2021 } else if (ConstantSDNode *V = 2022 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 2023 if (OpVT==EltVT) 2024 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 2025 else { 2026 // If OpVT and EltVT don't match, EltVT is not legal and the 2027 // element values have been promoted/truncated earlier. Undo this; 2028 // we don't want a v16i8 to become a v16i32 for example. 2029 const ConstantInt *CI = V->getConstantIntValue(); 2030 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 2031 CI->getZExtValue())); 2032 } 2033 } else { 2034 assert(Node->getOperand(i).isUndef()); 2035 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 2036 CV.push_back(UndefValue::get(OpNTy)); 2037 } 2038 } 2039 Constant *CP = ConstantVector::get(CV); 2040 SDValue CPIdx = 2041 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 2042 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 2043 return DAG.getLoad( 2044 VT, dl, DAG.getEntryNode(), CPIdx, 2045 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2046 Alignment); 2047 } 2048 2049 SmallSet<SDValue, 16> DefinedValues; 2050 for (unsigned i = 0; i < NumElems; ++i) { 2051 if (Node->getOperand(i).isUndef()) 2052 continue; 2053 DefinedValues.insert(Node->getOperand(i)); 2054 } 2055 2056 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 2057 if (!MoreThanTwoValues) { 2058 SmallVector<int, 8> ShuffleVec(NumElems, -1); 2059 for (unsigned i = 0; i < NumElems; ++i) { 2060 SDValue V = Node->getOperand(i); 2061 if (V.isUndef()) 2062 continue; 2063 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 2064 } 2065 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 2066 // Get the splatted value into the low element of a vector register. 2067 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 2068 SDValue Vec2; 2069 if (Value2.getNode()) 2070 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 2071 else 2072 Vec2 = DAG.getUNDEF(VT); 2073 2074 // Return shuffle(LowValVec, undef, <0,0,0,0>) 2075 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 2076 } 2077 } else { 2078 SDValue Res; 2079 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 2080 return Res; 2081 } 2082 } 2083 2084 // Otherwise, we can't handle this case efficiently. 2085 return ExpandVectorBuildThroughStack(Node); 2086 } 2087 2088 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) { 2089 SDLoc DL(Node); 2090 EVT VT = Node->getValueType(0); 2091 SDValue SplatVal = Node->getOperand(0); 2092 2093 return DAG.getSplatBuildVector(VT, DL, SplatVal); 2094 } 2095 2096 // Expand a node into a call to a libcall. If the result value 2097 // does not fit into a register, return the lo part and set the hi part to the 2098 // by-reg argument. If it does fit into a single register, return the result 2099 // and leave the Hi part unset. 2100 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2101 bool isSigned) { 2102 TargetLowering::ArgListTy Args; 2103 TargetLowering::ArgListEntry Entry; 2104 for (const SDValue &Op : Node->op_values()) { 2105 EVT ArgVT = Op.getValueType(); 2106 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2107 Entry.Node = Op; 2108 Entry.Ty = ArgTy; 2109 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2110 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2111 Args.push_back(Entry); 2112 } 2113 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2114 TLI.getPointerTy(DAG.getDataLayout())); 2115 2116 EVT RetVT = Node->getValueType(0); 2117 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2118 2119 // By default, the input chain to this libcall is the entry node of the 2120 // function. If the libcall is going to be emitted as a tail call then 2121 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2122 // node which is being folded has a non-entry input chain. 2123 SDValue InChain = DAG.getEntryNode(); 2124 2125 // isTailCall may be true since the callee does not reference caller stack 2126 // frame. Check if it's in the right position and that the return types match. 2127 SDValue TCChain = InChain; 2128 const Function &F = DAG.getMachineFunction().getFunction(); 2129 bool isTailCall = 2130 TLI.isInTailCallPosition(DAG, Node, TCChain) && 2131 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 2132 if (isTailCall) 2133 InChain = TCChain; 2134 2135 TargetLowering::CallLoweringInfo CLI(DAG); 2136 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2137 CLI.setDebugLoc(SDLoc(Node)) 2138 .setChain(InChain) 2139 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2140 std::move(Args)) 2141 .setTailCall(isTailCall) 2142 .setSExtResult(signExtend) 2143 .setZExtResult(!signExtend) 2144 .setIsPostTypeLegalization(true); 2145 2146 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2147 2148 if (!CallInfo.second.getNode()) { 2149 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG)); 2150 // It's a tailcall, return the chain (which is the DAG root). 2151 return DAG.getRoot(); 2152 } 2153 2154 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG)); 2155 return CallInfo.first; 2156 } 2157 2158 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2159 RTLIB::Libcall Call_F32, 2160 RTLIB::Libcall Call_F64, 2161 RTLIB::Libcall Call_F80, 2162 RTLIB::Libcall Call_F128, 2163 RTLIB::Libcall Call_PPCF128, 2164 SmallVectorImpl<SDValue> &Results) { 2165 RTLIB::Libcall LC; 2166 switch (Node->getSimpleValueType(0).SimpleTy) { 2167 default: llvm_unreachable("Unexpected request for libcall!"); 2168 case MVT::f32: LC = Call_F32; break; 2169 case MVT::f64: LC = Call_F64; break; 2170 case MVT::f80: LC = Call_F80; break; 2171 case MVT::f128: LC = Call_F128; break; 2172 case MVT::ppcf128: LC = Call_PPCF128; break; 2173 } 2174 2175 if (Node->isStrictFPOpcode()) { 2176 EVT RetVT = Node->getValueType(0); 2177 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); 2178 TargetLowering::MakeLibCallOptions CallOptions; 2179 // FIXME: This doesn't support tail calls. 2180 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2181 Ops, CallOptions, 2182 SDLoc(Node), 2183 Node->getOperand(0)); 2184 Results.push_back(Tmp.first); 2185 Results.push_back(Tmp.second); 2186 } else { 2187 SDValue Tmp = ExpandLibCall(LC, Node, false); 2188 Results.push_back(Tmp); 2189 } 2190 } 2191 2192 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2193 RTLIB::Libcall Call_I8, 2194 RTLIB::Libcall Call_I16, 2195 RTLIB::Libcall Call_I32, 2196 RTLIB::Libcall Call_I64, 2197 RTLIB::Libcall Call_I128) { 2198 RTLIB::Libcall LC; 2199 switch (Node->getSimpleValueType(0).SimpleTy) { 2200 default: llvm_unreachable("Unexpected request for libcall!"); 2201 case MVT::i8: LC = Call_I8; break; 2202 case MVT::i16: LC = Call_I16; break; 2203 case MVT::i32: LC = Call_I32; break; 2204 case MVT::i64: LC = Call_I64; break; 2205 case MVT::i128: LC = Call_I128; break; 2206 } 2207 return ExpandLibCall(LC, Node, isSigned); 2208 } 2209 2210 /// Expand the node to a libcall based on first argument type (for instance 2211 /// lround and its variant). 2212 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node, 2213 RTLIB::Libcall Call_F32, 2214 RTLIB::Libcall Call_F64, 2215 RTLIB::Libcall Call_F80, 2216 RTLIB::Libcall Call_F128, 2217 RTLIB::Libcall Call_PPCF128, 2218 SmallVectorImpl<SDValue> &Results) { 2219 EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType(); 2220 2221 RTLIB::Libcall LC; 2222 switch (InVT.getSimpleVT().SimpleTy) { 2223 default: llvm_unreachable("Unexpected request for libcall!"); 2224 case MVT::f32: LC = Call_F32; break; 2225 case MVT::f64: LC = Call_F64; break; 2226 case MVT::f80: LC = Call_F80; break; 2227 case MVT::f128: LC = Call_F128; break; 2228 case MVT::ppcf128: LC = Call_PPCF128; break; 2229 } 2230 2231 if (Node->isStrictFPOpcode()) { 2232 EVT RetVT = Node->getValueType(0); 2233 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); 2234 TargetLowering::MakeLibCallOptions CallOptions; 2235 // FIXME: This doesn't support tail calls. 2236 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2237 Ops, CallOptions, 2238 SDLoc(Node), 2239 Node->getOperand(0)); 2240 Results.push_back(Tmp.first); 2241 Results.push_back(Tmp.second); 2242 } else { 2243 SDValue Tmp = ExpandLibCall(LC, Node, false); 2244 Results.push_back(Tmp); 2245 } 2246 } 2247 2248 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2249 void 2250 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2251 SmallVectorImpl<SDValue> &Results) { 2252 unsigned Opcode = Node->getOpcode(); 2253 bool isSigned = Opcode == ISD::SDIVREM; 2254 2255 RTLIB::Libcall LC; 2256 switch (Node->getSimpleValueType(0).SimpleTy) { 2257 default: llvm_unreachable("Unexpected request for libcall!"); 2258 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2259 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2260 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2261 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2262 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2263 } 2264 2265 // The input chain to this libcall is the entry node of the function. 2266 // Legalizing the call will automatically add the previous call to the 2267 // dependence. 2268 SDValue InChain = DAG.getEntryNode(); 2269 2270 EVT RetVT = Node->getValueType(0); 2271 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2272 2273 TargetLowering::ArgListTy Args; 2274 TargetLowering::ArgListEntry Entry; 2275 for (const SDValue &Op : Node->op_values()) { 2276 EVT ArgVT = Op.getValueType(); 2277 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2278 Entry.Node = Op; 2279 Entry.Ty = ArgTy; 2280 Entry.IsSExt = isSigned; 2281 Entry.IsZExt = !isSigned; 2282 Args.push_back(Entry); 2283 } 2284 2285 // Also pass the return address of the remainder. 2286 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2287 Entry.Node = FIPtr; 2288 Entry.Ty = RetTy->getPointerTo(); 2289 Entry.IsSExt = isSigned; 2290 Entry.IsZExt = !isSigned; 2291 Args.push_back(Entry); 2292 2293 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2294 TLI.getPointerTy(DAG.getDataLayout())); 2295 2296 SDLoc dl(Node); 2297 TargetLowering::CallLoweringInfo CLI(DAG); 2298 CLI.setDebugLoc(dl) 2299 .setChain(InChain) 2300 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2301 std::move(Args)) 2302 .setSExtResult(isSigned) 2303 .setZExtResult(!isSigned); 2304 2305 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2306 2307 // Remainder is loaded back from the stack frame. 2308 SDValue Rem = 2309 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2310 Results.push_back(CallInfo.first); 2311 Results.push_back(Rem); 2312 } 2313 2314 /// Return true if sincos libcall is available. 2315 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2316 RTLIB::Libcall LC; 2317 switch (Node->getSimpleValueType(0).SimpleTy) { 2318 default: llvm_unreachable("Unexpected request for libcall!"); 2319 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2320 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2321 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2322 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2323 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2324 } 2325 return TLI.getLibcallName(LC) != nullptr; 2326 } 2327 2328 /// Only issue sincos libcall if both sin and cos are needed. 2329 static bool useSinCos(SDNode *Node) { 2330 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2331 ? ISD::FCOS : ISD::FSIN; 2332 2333 SDValue Op0 = Node->getOperand(0); 2334 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2335 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2336 SDNode *User = *UI; 2337 if (User == Node) 2338 continue; 2339 // The other user might have been turned into sincos already. 2340 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2341 return true; 2342 } 2343 return false; 2344 } 2345 2346 /// Issue libcalls to sincos to compute sin / cos pairs. 2347 void 2348 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2349 SmallVectorImpl<SDValue> &Results) { 2350 RTLIB::Libcall LC; 2351 switch (Node->getSimpleValueType(0).SimpleTy) { 2352 default: llvm_unreachable("Unexpected request for libcall!"); 2353 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2354 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2355 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2356 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2357 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2358 } 2359 2360 // The input chain to this libcall is the entry node of the function. 2361 // Legalizing the call will automatically add the previous call to the 2362 // dependence. 2363 SDValue InChain = DAG.getEntryNode(); 2364 2365 EVT RetVT = Node->getValueType(0); 2366 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2367 2368 TargetLowering::ArgListTy Args; 2369 TargetLowering::ArgListEntry Entry; 2370 2371 // Pass the argument. 2372 Entry.Node = Node->getOperand(0); 2373 Entry.Ty = RetTy; 2374 Entry.IsSExt = false; 2375 Entry.IsZExt = false; 2376 Args.push_back(Entry); 2377 2378 // Pass the return address of sin. 2379 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2380 Entry.Node = SinPtr; 2381 Entry.Ty = RetTy->getPointerTo(); 2382 Entry.IsSExt = false; 2383 Entry.IsZExt = false; 2384 Args.push_back(Entry); 2385 2386 // Also pass the return address of the cos. 2387 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2388 Entry.Node = CosPtr; 2389 Entry.Ty = RetTy->getPointerTo(); 2390 Entry.IsSExt = false; 2391 Entry.IsZExt = false; 2392 Args.push_back(Entry); 2393 2394 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2395 TLI.getPointerTy(DAG.getDataLayout())); 2396 2397 SDLoc dl(Node); 2398 TargetLowering::CallLoweringInfo CLI(DAG); 2399 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2400 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2401 std::move(Args)); 2402 2403 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2404 2405 Results.push_back( 2406 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2407 Results.push_back( 2408 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2409 } 2410 2411 /// This function is responsible for legalizing a 2412 /// INT_TO_FP operation of the specified operand when the target requests that 2413 /// we expand it. At this point, we know that the result and operand types are 2414 /// legal for the target. 2415 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node, 2416 SDValue &Chain) { 2417 bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 2418 Node->getOpcode() == ISD::SINT_TO_FP); 2419 EVT DestVT = Node->getValueType(0); 2420 SDLoc dl(Node); 2421 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 2422 SDValue Op0 = Node->getOperand(OpNo); 2423 EVT SrcVT = Op0.getValueType(); 2424 2425 // TODO: Should any fast-math-flags be set for the created nodes? 2426 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2427 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64) && 2428 (DestVT.bitsLE(MVT::f64) || 2429 TLI.isOperationLegal(Node->isStrictFPOpcode() ? ISD::STRICT_FP_EXTEND 2430 : ISD::FP_EXTEND, 2431 DestVT))) { 2432 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2433 "expansion\n"); 2434 2435 // Get the stack frame index of a 8 byte buffer. 2436 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2437 2438 SDValue Lo = Op0; 2439 // if signed map to unsigned space 2440 if (isSigned) { 2441 // Invert sign bit (signed to unsigned mapping). 2442 Lo = DAG.getNode(ISD::XOR, dl, MVT::i32, Lo, 2443 DAG.getConstant(0x80000000u, dl, MVT::i32)); 2444 } 2445 // Initial hi portion of constructed double. 2446 SDValue Hi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2447 2448 // If this a big endian target, swap the lo and high data. 2449 if (DAG.getDataLayout().isBigEndian()) 2450 std::swap(Lo, Hi); 2451 2452 SDValue MemChain = DAG.getEntryNode(); 2453 2454 // Store the lo of the constructed double. 2455 SDValue Store1 = DAG.getStore(MemChain, dl, Lo, StackSlot, 2456 MachinePointerInfo()); 2457 // Store the hi of the constructed double. 2458 SDValue HiPtr = DAG.getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), dl); 2459 SDValue Store2 = 2460 DAG.getStore(MemChain, dl, Hi, HiPtr, MachinePointerInfo()); 2461 MemChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 2462 2463 // load the constructed double 2464 SDValue Load = 2465 DAG.getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo()); 2466 // FP constant to bias correct the final result 2467 SDValue Bias = DAG.getConstantFP(isSigned ? 2468 BitsToDouble(0x4330000080000000ULL) : 2469 BitsToDouble(0x4330000000000000ULL), 2470 dl, MVT::f64); 2471 // Subtract the bias and get the final result. 2472 SDValue Sub; 2473 SDValue Result; 2474 if (Node->isStrictFPOpcode()) { 2475 Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other}, 2476 {Node->getOperand(0), Load, Bias}); 2477 Chain = Sub.getValue(1); 2478 if (DestVT != Sub.getValueType()) { 2479 std::pair<SDValue, SDValue> ResultPair; 2480 ResultPair = 2481 DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT); 2482 Result = ResultPair.first; 2483 Chain = ResultPair.second; 2484 } 2485 else 2486 Result = Sub; 2487 } else { 2488 Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2489 Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); 2490 } 2491 return Result; 2492 } 2493 2494 if (isSigned) 2495 return SDValue(); 2496 2497 // TODO: Generalize this for use with other types. 2498 if (((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) || 2499 (SrcVT == MVT::i64 && DestVT == MVT::f64)) { 2500 LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32/f64\n"); 2501 // For unsigned conversions, convert them to signed conversions using the 2502 // algorithm from the x86_64 __floatundisf in compiler_rt. That method 2503 // should be valid for i32->f32 as well. 2504 2505 // More generally this transform should be valid if there are 3 more bits 2506 // in the integer type than the significand. Rounding uses the first bit 2507 // after the width of the significand and the OR of all bits after that. So 2508 // we need to be able to OR the shifted out bit into one of the bits that 2509 // participate in the OR. 2510 2511 // TODO: This really should be implemented using a branch rather than a 2512 // select. We happen to get lucky and machinesink does the right 2513 // thing most of the time. This would be a good candidate for a 2514 // pseudo-op, or, even better, for whole-function isel. 2515 EVT SetCCVT = getSetCCResultType(SrcVT); 2516 2517 SDValue SignBitTest = DAG.getSetCC( 2518 dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2519 2520 EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout()); 2521 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 2522 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst); 2523 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 2524 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst); 2525 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 2526 2527 SDValue Slow, Fast; 2528 if (Node->isStrictFPOpcode()) { 2529 // In strict mode, we must avoid spurious exceptions, and therefore 2530 // must make sure to only emit a single STRICT_SINT_TO_FP. 2531 SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0); 2532 Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2533 { Node->getOperand(0), InCvt }); 2534 Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2535 { Fast.getValue(1), Fast, Fast }); 2536 Chain = Slow.getValue(1); 2537 // The STRICT_SINT_TO_FP inherits the exception mode from the 2538 // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can 2539 // never raise any exception. 2540 SDNodeFlags Flags; 2541 Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept()); 2542 Fast->setFlags(Flags); 2543 Flags.setNoFPExcept(true); 2544 Slow->setFlags(Flags); 2545 } else { 2546 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or); 2547 Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt); 2548 Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2549 } 2550 2551 return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast); 2552 } 2553 2554 // Don't expand it if there isn't cheap fadd. 2555 if (!TLI.isOperationLegalOrCustom( 2556 Node->isStrictFPOpcode() ? ISD::STRICT_FADD : ISD::FADD, DestVT)) 2557 return SDValue(); 2558 2559 // The following optimization is valid only if every value in SrcVT (when 2560 // treated as signed) is representable in DestVT. Check that the mantissa 2561 // size of DestVT is >= than the number of bits in SrcVT -1. 2562 assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >= 2563 SrcVT.getSizeInBits() - 1 && 2564 "Cannot perform lossless SINT_TO_FP!"); 2565 2566 SDValue Tmp1; 2567 if (Node->isStrictFPOpcode()) { 2568 Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2569 { Node->getOperand(0), Op0 }); 2570 } else 2571 Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2572 2573 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, 2574 DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2575 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2576 Four = DAG.getIntPtrConstant(4, dl); 2577 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2578 SignSet, Four, Zero); 2579 2580 // If the sign bit of the integer is set, the large number will be treated 2581 // as a negative number. To counteract this, the dynamic code adds an 2582 // offset depending on the data type. 2583 uint64_t FF; 2584 switch (SrcVT.getSimpleVT().SimpleTy) { 2585 default: 2586 return SDValue(); 2587 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2588 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2589 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2590 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2591 } 2592 if (DAG.getDataLayout().isLittleEndian()) 2593 FF <<= 32; 2594 Constant *FudgeFactor = ConstantInt::get( 2595 Type::getInt64Ty(*DAG.getContext()), FF); 2596 2597 SDValue CPIdx = 2598 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2599 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 2600 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2601 Alignment = commonAlignment(Alignment, 4); 2602 SDValue FudgeInReg; 2603 if (DestVT == MVT::f32) 2604 FudgeInReg = DAG.getLoad( 2605 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2606 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2607 Alignment); 2608 else { 2609 SDValue Load = DAG.getExtLoad( 2610 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2611 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2612 Alignment); 2613 HandleSDNode Handle(Load); 2614 LegalizeOp(Load.getNode()); 2615 FudgeInReg = Handle.getValue(); 2616 } 2617 2618 if (Node->isStrictFPOpcode()) { 2619 SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2620 { Tmp1.getValue(1), Tmp1, FudgeInReg }); 2621 Chain = Result.getValue(1); 2622 return Result; 2623 } 2624 2625 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2626 } 2627 2628 /// This function is responsible for legalizing a 2629 /// *INT_TO_FP operation of the specified operand when the target requests that 2630 /// we promote it. At this point, we know that the result and operand types are 2631 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2632 /// operation that takes a larger input. 2633 void SelectionDAGLegalize::PromoteLegalINT_TO_FP( 2634 SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) { 2635 bool IsStrict = N->isStrictFPOpcode(); 2636 bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP || 2637 N->getOpcode() == ISD::STRICT_SINT_TO_FP; 2638 EVT DestVT = N->getValueType(0); 2639 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2640 unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP; 2641 unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP; 2642 2643 // First step, figure out the appropriate *INT_TO_FP operation to use. 2644 EVT NewInTy = LegalOp.getValueType(); 2645 2646 unsigned OpToUse = 0; 2647 2648 // Scan for the appropriate larger type to use. 2649 while (true) { 2650 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2651 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2652 2653 // If the target supports SINT_TO_FP of this type, use it. 2654 if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) { 2655 OpToUse = SIntOp; 2656 break; 2657 } 2658 if (IsSigned) 2659 continue; 2660 2661 // If the target supports UINT_TO_FP of this type, use it. 2662 if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) { 2663 OpToUse = UIntOp; 2664 break; 2665 } 2666 2667 // Otherwise, try a larger type. 2668 } 2669 2670 // Okay, we found the operation and type to use. Zero extend our input to the 2671 // desired type then run the operation on it. 2672 if (IsStrict) { 2673 SDValue Res = 2674 DAG.getNode(OpToUse, dl, {DestVT, MVT::Other}, 2675 {N->getOperand(0), 2676 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2677 dl, NewInTy, LegalOp)}); 2678 Results.push_back(Res); 2679 Results.push_back(Res.getValue(1)); 2680 return; 2681 } 2682 2683 Results.push_back( 2684 DAG.getNode(OpToUse, dl, DestVT, 2685 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2686 dl, NewInTy, LegalOp))); 2687 } 2688 2689 /// This function is responsible for legalizing a 2690 /// FP_TO_*INT operation of the specified operand when the target requests that 2691 /// we promote it. At this point, we know that the result and operand types are 2692 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2693 /// operation that returns a larger result. 2694 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 2695 SmallVectorImpl<SDValue> &Results) { 2696 bool IsStrict = N->isStrictFPOpcode(); 2697 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 2698 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 2699 EVT DestVT = N->getValueType(0); 2700 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2701 // First step, figure out the appropriate FP_TO*INT operation to use. 2702 EVT NewOutTy = DestVT; 2703 2704 unsigned OpToUse = 0; 2705 2706 // Scan for the appropriate larger type to use. 2707 while (true) { 2708 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2709 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2710 2711 // A larger signed type can hold all unsigned values of the requested type, 2712 // so using FP_TO_SINT is valid 2713 OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT; 2714 if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2715 break; 2716 2717 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2718 OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT; 2719 if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2720 break; 2721 2722 // Otherwise, try a larger type. 2723 } 2724 2725 // Okay, we found the operation and type to use. 2726 SDValue Operation; 2727 if (IsStrict) { 2728 SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other); 2729 Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp); 2730 } else 2731 Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2732 2733 // Truncate the result of the extended FP_TO_*INT operation to the desired 2734 // size. 2735 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2736 Results.push_back(Trunc); 2737 if (IsStrict) 2738 Results.push_back(Operation.getValue(1)); 2739 } 2740 2741 /// Promote FP_TO_*INT_SAT operation to a larger result type. At this point 2742 /// the result and operand types are legal and there must be a legal 2743 /// FP_TO_*INT_SAT operation for a larger result type. 2744 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT_SAT(SDNode *Node, 2745 const SDLoc &dl) { 2746 unsigned Opcode = Node->getOpcode(); 2747 2748 // Scan for the appropriate larger type to use. 2749 EVT NewOutTy = Node->getValueType(0); 2750 while (true) { 2751 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy + 1); 2752 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2753 2754 if (TLI.isOperationLegalOrCustom(Opcode, NewOutTy)) 2755 break; 2756 } 2757 2758 // Saturation width is determined by second operand, so we don't have to 2759 // perform any fixup and can directly truncate the result. 2760 SDValue Result = DAG.getNode(Opcode, dl, NewOutTy, Node->getOperand(0), 2761 Node->getOperand(1)); 2762 return DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Result); 2763 } 2764 2765 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts. 2766 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) { 2767 EVT VT = Op.getValueType(); 2768 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2769 unsigned Sz = VT.getScalarSizeInBits(); 2770 2771 SDValue Tmp, Tmp2, Tmp3; 2772 2773 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 2774 // and finally the i1 pairs. 2775 // TODO: We can easily support i4/i2 legal types if any target ever does. 2776 if (Sz >= 8 && isPowerOf2_32(Sz)) { 2777 // Create the masks - repeating the pattern every byte. 2778 APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0)); 2779 APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC)); 2780 APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA)); 2781 APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 2782 APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33)); 2783 APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55)); 2784 2785 // BSWAP if the type is wider than a single byte. 2786 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 2787 2788 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) 2789 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); 2790 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); 2791 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT)); 2792 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 2793 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2794 2795 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) 2796 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); 2797 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); 2798 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT)); 2799 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 2800 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2801 2802 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) 2803 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); 2804 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); 2805 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT)); 2806 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 2807 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2808 return Tmp; 2809 } 2810 2811 Tmp = DAG.getConstant(0, dl, VT); 2812 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 2813 if (I < J) 2814 Tmp2 = 2815 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 2816 else 2817 Tmp2 = 2818 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 2819 2820 APInt Shift(Sz, 1); 2821 Shift <<= J; 2822 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 2823 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 2824 } 2825 2826 return Tmp; 2827 } 2828 2829 /// Open code the operations for BSWAP of the specified operation. 2830 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) { 2831 EVT VT = Op.getValueType(); 2832 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2833 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2834 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 2835 default: llvm_unreachable("Unhandled Expand type in BSWAP!"); 2836 case MVT::i16: 2837 // Use a rotate by 8. This can be further expanded if necessary. 2838 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2839 case MVT::i32: 2840 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2841 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2842 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2843 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2844 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2845 DAG.getConstant(0xFF0000, dl, VT)); 2846 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 2847 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2848 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2849 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2850 case MVT::i64: 2851 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2852 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2853 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2854 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2855 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2856 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2857 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2858 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2859 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 2860 DAG.getConstant(255ULL<<48, dl, VT)); 2861 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 2862 DAG.getConstant(255ULL<<40, dl, VT)); 2863 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 2864 DAG.getConstant(255ULL<<32, dl, VT)); 2865 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 2866 DAG.getConstant(255ULL<<24, dl, VT)); 2867 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2868 DAG.getConstant(255ULL<<16, dl, VT)); 2869 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 2870 DAG.getConstant(255ULL<<8 , dl, VT)); 2871 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2872 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2873 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2874 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2875 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2876 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2877 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2878 } 2879 } 2880 2881 /// Open code the operations for PARITY of the specified operation. 2882 SDValue SelectionDAGLegalize::ExpandPARITY(SDValue Op, const SDLoc &dl) { 2883 EVT VT = Op.getValueType(); 2884 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2885 unsigned Sz = VT.getScalarSizeInBits(); 2886 2887 // If CTPOP is legal, use it. Otherwise use shifts and xor. 2888 SDValue Result; 2889 if (TLI.isOperationLegal(ISD::CTPOP, VT)) { 2890 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 2891 } else { 2892 Result = Op; 2893 for (unsigned i = Log2_32_Ceil(Sz); i != 0;) { 2894 SDValue Shift = DAG.getNode(ISD::SRL, dl, VT, Result, 2895 DAG.getConstant(1ULL << (--i), dl, ShVT)); 2896 Result = DAG.getNode(ISD::XOR, dl, VT, Result, Shift); 2897 } 2898 } 2899 2900 return DAG.getNode(ISD::AND, dl, VT, Result, DAG.getConstant(1, dl, VT)); 2901 } 2902 2903 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2904 LLVM_DEBUG(dbgs() << "Trying to expand node\n"); 2905 SmallVector<SDValue, 8> Results; 2906 SDLoc dl(Node); 2907 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2908 bool NeedInvert; 2909 switch (Node->getOpcode()) { 2910 case ISD::ABS: 2911 if (TLI.expandABS(Node, Tmp1, DAG)) 2912 Results.push_back(Tmp1); 2913 break; 2914 case ISD::CTPOP: 2915 if (TLI.expandCTPOP(Node, Tmp1, DAG)) 2916 Results.push_back(Tmp1); 2917 break; 2918 case ISD::CTLZ: 2919 case ISD::CTLZ_ZERO_UNDEF: 2920 if (TLI.expandCTLZ(Node, Tmp1, DAG)) 2921 Results.push_back(Tmp1); 2922 break; 2923 case ISD::CTTZ: 2924 case ISD::CTTZ_ZERO_UNDEF: 2925 if (TLI.expandCTTZ(Node, Tmp1, DAG)) 2926 Results.push_back(Tmp1); 2927 break; 2928 case ISD::BITREVERSE: 2929 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl)); 2930 break; 2931 case ISD::BSWAP: 2932 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2933 break; 2934 case ISD::PARITY: 2935 Results.push_back(ExpandPARITY(Node->getOperand(0), dl)); 2936 break; 2937 case ISD::FRAMEADDR: 2938 case ISD::RETURNADDR: 2939 case ISD::FRAME_TO_ARGS_OFFSET: 2940 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2941 break; 2942 case ISD::EH_DWARF_CFA: { 2943 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 2944 TLI.getPointerTy(DAG.getDataLayout())); 2945 SDValue Offset = DAG.getNode(ISD::ADD, dl, 2946 CfaArg.getValueType(), 2947 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 2948 CfaArg.getValueType()), 2949 CfaArg); 2950 SDValue FA = DAG.getNode( 2951 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 2952 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2953 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 2954 FA, Offset)); 2955 break; 2956 } 2957 case ISD::FLT_ROUNDS_: 2958 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2959 Results.push_back(Node->getOperand(0)); 2960 break; 2961 case ISD::EH_RETURN: 2962 case ISD::EH_LABEL: 2963 case ISD::PREFETCH: 2964 case ISD::VAEND: 2965 case ISD::EH_SJLJ_LONGJMP: 2966 // If the target didn't expand these, there's nothing to do, so just 2967 // preserve the chain and be done. 2968 Results.push_back(Node->getOperand(0)); 2969 break; 2970 case ISD::READCYCLECOUNTER: 2971 // If the target didn't expand this, just return 'zero' and preserve the 2972 // chain. 2973 Results.append(Node->getNumValues() - 1, 2974 DAG.getConstant(0, dl, Node->getValueType(0))); 2975 Results.push_back(Node->getOperand(0)); 2976 break; 2977 case ISD::EH_SJLJ_SETJMP: 2978 // If the target didn't expand this, just return 'zero' and preserve the 2979 // chain. 2980 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2981 Results.push_back(Node->getOperand(0)); 2982 break; 2983 case ISD::ATOMIC_LOAD: { 2984 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2985 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2986 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2987 SDValue Swap = DAG.getAtomicCmpSwap( 2988 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2989 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2990 cast<AtomicSDNode>(Node)->getMemOperand()); 2991 Results.push_back(Swap.getValue(0)); 2992 Results.push_back(Swap.getValue(1)); 2993 break; 2994 } 2995 case ISD::ATOMIC_STORE: { 2996 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2997 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2998 cast<AtomicSDNode>(Node)->getMemoryVT(), 2999 Node->getOperand(0), 3000 Node->getOperand(1), Node->getOperand(2), 3001 cast<AtomicSDNode>(Node)->getMemOperand()); 3002 Results.push_back(Swap.getValue(1)); 3003 break; 3004 } 3005 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 3006 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 3007 // splits out the success value as a comparison. Expanding the resulting 3008 // ATOMIC_CMP_SWAP will produce a libcall. 3009 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 3010 SDValue Res = DAG.getAtomicCmpSwap( 3011 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 3012 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 3013 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 3014 3015 SDValue ExtRes = Res; 3016 SDValue LHS = Res; 3017 SDValue RHS = Node->getOperand(1); 3018 3019 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 3020 EVT OuterType = Node->getValueType(0); 3021 switch (TLI.getExtendForAtomicOps()) { 3022 case ISD::SIGN_EXTEND: 3023 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 3024 DAG.getValueType(AtomicType)); 3025 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 3026 Node->getOperand(2), DAG.getValueType(AtomicType)); 3027 ExtRes = LHS; 3028 break; 3029 case ISD::ZERO_EXTEND: 3030 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 3031 DAG.getValueType(AtomicType)); 3032 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 3033 ExtRes = LHS; 3034 break; 3035 case ISD::ANY_EXTEND: 3036 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 3037 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 3038 break; 3039 default: 3040 llvm_unreachable("Invalid atomic op extension"); 3041 } 3042 3043 SDValue Success = 3044 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 3045 3046 Results.push_back(ExtRes.getValue(0)); 3047 Results.push_back(Success); 3048 Results.push_back(Res.getValue(1)); 3049 break; 3050 } 3051 case ISD::DYNAMIC_STACKALLOC: 3052 ExpandDYNAMIC_STACKALLOC(Node, Results); 3053 break; 3054 case ISD::MERGE_VALUES: 3055 for (unsigned i = 0; i < Node->getNumValues(); i++) 3056 Results.push_back(Node->getOperand(i)); 3057 break; 3058 case ISD::UNDEF: { 3059 EVT VT = Node->getValueType(0); 3060 if (VT.isInteger()) 3061 Results.push_back(DAG.getConstant(0, dl, VT)); 3062 else { 3063 assert(VT.isFloatingPoint() && "Unknown value type!"); 3064 Results.push_back(DAG.getConstantFP(0, dl, VT)); 3065 } 3066 break; 3067 } 3068 case ISD::STRICT_FP_ROUND: 3069 // When strict mode is enforced we can't do expansion because it 3070 // does not honor the "strict" properties. Only libcall is allowed. 3071 if (TLI.isStrictFPEnabled()) 3072 break; 3073 // We might as well mutate to FP_ROUND when FP_ROUND operation is legal 3074 // since this operation is more efficient than stack operation. 3075 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3076 Node->getValueType(0)) 3077 == TargetLowering::Legal) 3078 break; 3079 // We fall back to use stack operation when the FP_ROUND operation 3080 // isn't available. 3081 if ((Tmp1 = EmitStackConvert(Node->getOperand(1), Node->getValueType(0), 3082 Node->getValueType(0), dl, 3083 Node->getOperand(0)))) { 3084 ReplaceNode(Node, Tmp1.getNode()); 3085 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n"); 3086 return true; 3087 } 3088 break; 3089 case ISD::FP_ROUND: 3090 case ISD::BITCAST: 3091 if ((Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 3092 Node->getValueType(0), dl))) 3093 Results.push_back(Tmp1); 3094 break; 3095 case ISD::STRICT_FP_EXTEND: 3096 // When strict mode is enforced we can't do expansion because it 3097 // does not honor the "strict" properties. Only libcall is allowed. 3098 if (TLI.isStrictFPEnabled()) 3099 break; 3100 // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal 3101 // since this operation is more efficient than stack operation. 3102 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3103 Node->getValueType(0)) 3104 == TargetLowering::Legal) 3105 break; 3106 // We fall back to use stack operation when the FP_EXTEND operation 3107 // isn't available. 3108 if ((Tmp1 = EmitStackConvert( 3109 Node->getOperand(1), Node->getOperand(1).getValueType(), 3110 Node->getValueType(0), dl, Node->getOperand(0)))) { 3111 ReplaceNode(Node, Tmp1.getNode()); 3112 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n"); 3113 return true; 3114 } 3115 break; 3116 case ISD::FP_EXTEND: 3117 if ((Tmp1 = EmitStackConvert(Node->getOperand(0), 3118 Node->getOperand(0).getValueType(), 3119 Node->getValueType(0), dl))) 3120 Results.push_back(Tmp1); 3121 break; 3122 case ISD::SIGN_EXTEND_INREG: { 3123 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 3124 EVT VT = Node->getValueType(0); 3125 3126 // An in-register sign-extend of a boolean is a negation: 3127 // 'true' (1) sign-extended is -1. 3128 // 'false' (0) sign-extended is 0. 3129 // However, we must mask the high bits of the source operand because the 3130 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 3131 3132 // TODO: Do this for vectors too? 3133 if (ExtraVT.getSizeInBits() == 1) { 3134 SDValue One = DAG.getConstant(1, dl, VT); 3135 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 3136 SDValue Zero = DAG.getConstant(0, dl, VT); 3137 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 3138 Results.push_back(Neg); 3139 break; 3140 } 3141 3142 // NOTE: we could fall back on load/store here too for targets without 3143 // SRA. However, it is doubtful that any exist. 3144 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 3145 unsigned BitsDiff = VT.getScalarSizeInBits() - 3146 ExtraVT.getScalarSizeInBits(); 3147 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 3148 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 3149 Node->getOperand(0), ShiftCst); 3150 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 3151 Results.push_back(Tmp1); 3152 break; 3153 } 3154 case ISD::UINT_TO_FP: 3155 case ISD::STRICT_UINT_TO_FP: 3156 if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) { 3157 Results.push_back(Tmp1); 3158 if (Node->isStrictFPOpcode()) 3159 Results.push_back(Tmp2); 3160 break; 3161 } 3162 LLVM_FALLTHROUGH; 3163 case ISD::SINT_TO_FP: 3164 case ISD::STRICT_SINT_TO_FP: 3165 if ((Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2))) { 3166 Results.push_back(Tmp1); 3167 if (Node->isStrictFPOpcode()) 3168 Results.push_back(Tmp2); 3169 } 3170 break; 3171 case ISD::FP_TO_SINT: 3172 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 3173 Results.push_back(Tmp1); 3174 break; 3175 case ISD::STRICT_FP_TO_SINT: 3176 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) { 3177 ReplaceNode(Node, Tmp1.getNode()); 3178 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n"); 3179 return true; 3180 } 3181 break; 3182 case ISD::FP_TO_UINT: 3183 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) 3184 Results.push_back(Tmp1); 3185 break; 3186 case ISD::STRICT_FP_TO_UINT: 3187 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) { 3188 // Relink the chain. 3189 DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2); 3190 // Replace the new UINT result. 3191 ReplaceNodeWithValue(SDValue(Node, 0), Tmp1); 3192 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n"); 3193 return true; 3194 } 3195 break; 3196 case ISD::FP_TO_SINT_SAT: 3197 case ISD::FP_TO_UINT_SAT: 3198 Results.push_back(TLI.expandFP_TO_INT_SAT(Node, DAG)); 3199 break; 3200 case ISD::VAARG: 3201 Results.push_back(DAG.expandVAArg(Node)); 3202 Results.push_back(Results[0].getValue(1)); 3203 break; 3204 case ISD::VACOPY: 3205 Results.push_back(DAG.expandVACopy(Node)); 3206 break; 3207 case ISD::EXTRACT_VECTOR_ELT: 3208 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 3209 // This must be an access of the only element. Return it. 3210 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 3211 Node->getOperand(0)); 3212 else 3213 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 3214 Results.push_back(Tmp1); 3215 break; 3216 case ISD::EXTRACT_SUBVECTOR: 3217 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 3218 break; 3219 case ISD::INSERT_SUBVECTOR: 3220 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 3221 break; 3222 case ISD::CONCAT_VECTORS: 3223 Results.push_back(ExpandVectorBuildThroughStack(Node)); 3224 break; 3225 case ISD::SCALAR_TO_VECTOR: 3226 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3227 break; 3228 case ISD::INSERT_VECTOR_ELT: 3229 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3230 Node->getOperand(1), 3231 Node->getOperand(2), dl)); 3232 break; 3233 case ISD::VECTOR_SHUFFLE: { 3234 SmallVector<int, 32> NewMask; 3235 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3236 3237 EVT VT = Node->getValueType(0); 3238 EVT EltVT = VT.getVectorElementType(); 3239 SDValue Op0 = Node->getOperand(0); 3240 SDValue Op1 = Node->getOperand(1); 3241 if (!TLI.isTypeLegal(EltVT)) { 3242 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3243 3244 // BUILD_VECTOR operands are allowed to be wider than the element type. 3245 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 3246 // it. 3247 if (NewEltVT.bitsLT(EltVT)) { 3248 // Convert shuffle node. 3249 // If original node was v4i64 and the new EltVT is i32, 3250 // cast operands to v8i32 and re-build the mask. 3251 3252 // Calculate new VT, the size of the new VT should be equal to original. 3253 EVT NewVT = 3254 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3255 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 3256 assert(NewVT.bitsEq(VT)); 3257 3258 // cast operands to new VT 3259 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3260 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3261 3262 // Convert the shuffle mask 3263 unsigned int factor = 3264 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3265 3266 // EltVT gets smaller 3267 assert(factor > 0); 3268 3269 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3270 if (Mask[i] < 0) { 3271 for (unsigned fi = 0; fi < factor; ++fi) 3272 NewMask.push_back(Mask[i]); 3273 } 3274 else { 3275 for (unsigned fi = 0; fi < factor; ++fi) 3276 NewMask.push_back(Mask[i]*factor+fi); 3277 } 3278 } 3279 Mask = NewMask; 3280 VT = NewVT; 3281 } 3282 EltVT = NewEltVT; 3283 } 3284 unsigned NumElems = VT.getVectorNumElements(); 3285 SmallVector<SDValue, 16> Ops; 3286 for (unsigned i = 0; i != NumElems; ++i) { 3287 if (Mask[i] < 0) { 3288 Ops.push_back(DAG.getUNDEF(EltVT)); 3289 continue; 3290 } 3291 unsigned Idx = Mask[i]; 3292 if (Idx < NumElems) 3293 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3294 DAG.getVectorIdxConstant(Idx, dl))); 3295 else 3296 Ops.push_back( 3297 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3298 DAG.getVectorIdxConstant(Idx - NumElems, dl))); 3299 } 3300 3301 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 3302 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3303 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3304 Results.push_back(Tmp1); 3305 break; 3306 } 3307 case ISD::EXTRACT_ELEMENT: { 3308 EVT OpTy = Node->getOperand(0).getValueType(); 3309 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3310 // 1 -> Hi 3311 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3312 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3313 TLI.getShiftAmountTy( 3314 Node->getOperand(0).getValueType(), 3315 DAG.getDataLayout()))); 3316 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3317 } else { 3318 // 0 -> Lo 3319 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3320 Node->getOperand(0)); 3321 } 3322 Results.push_back(Tmp1); 3323 break; 3324 } 3325 case ISD::STACKSAVE: 3326 // Expand to CopyFromReg if the target set 3327 // StackPointerRegisterToSaveRestore. 3328 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { 3329 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3330 Node->getValueType(0))); 3331 Results.push_back(Results[0].getValue(1)); 3332 } else { 3333 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3334 Results.push_back(Node->getOperand(0)); 3335 } 3336 break; 3337 case ISD::STACKRESTORE: 3338 // Expand to CopyToReg if the target set 3339 // StackPointerRegisterToSaveRestore. 3340 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { 3341 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3342 Node->getOperand(1))); 3343 } else { 3344 Results.push_back(Node->getOperand(0)); 3345 } 3346 break; 3347 case ISD::GET_DYNAMIC_AREA_OFFSET: 3348 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3349 Results.push_back(Results[0].getValue(0)); 3350 break; 3351 case ISD::FCOPYSIGN: 3352 Results.push_back(ExpandFCOPYSIGN(Node)); 3353 break; 3354 case ISD::FNEG: 3355 Results.push_back(ExpandFNEG(Node)); 3356 break; 3357 case ISD::FABS: 3358 Results.push_back(ExpandFABS(Node)); 3359 break; 3360 case ISD::SMIN: 3361 case ISD::SMAX: 3362 case ISD::UMIN: 3363 case ISD::UMAX: { 3364 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3365 ISD::CondCode Pred; 3366 switch (Node->getOpcode()) { 3367 default: llvm_unreachable("How did we get here?"); 3368 case ISD::SMAX: Pred = ISD::SETGT; break; 3369 case ISD::SMIN: Pred = ISD::SETLT; break; 3370 case ISD::UMAX: Pred = ISD::SETUGT; break; 3371 case ISD::UMIN: Pred = ISD::SETULT; break; 3372 } 3373 Tmp1 = Node->getOperand(0); 3374 Tmp2 = Node->getOperand(1); 3375 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3376 Results.push_back(Tmp1); 3377 break; 3378 } 3379 case ISD::FMINNUM: 3380 case ISD::FMAXNUM: { 3381 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) 3382 Results.push_back(Expanded); 3383 break; 3384 } 3385 case ISD::FSIN: 3386 case ISD::FCOS: { 3387 EVT VT = Node->getValueType(0); 3388 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3389 // fcos which share the same operand and both are used. 3390 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3391 isSinCosLibcallAvailable(Node, TLI)) 3392 && useSinCos(Node)) { 3393 SDVTList VTs = DAG.getVTList(VT, VT); 3394 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3395 if (Node->getOpcode() == ISD::FCOS) 3396 Tmp1 = Tmp1.getValue(1); 3397 Results.push_back(Tmp1); 3398 } 3399 break; 3400 } 3401 case ISD::FMAD: 3402 llvm_unreachable("Illegal fmad should never be formed"); 3403 3404 case ISD::FP16_TO_FP: 3405 if (Node->getValueType(0) != MVT::f32) { 3406 // We can extend to types bigger than f32 in two steps without changing 3407 // the result. Since "f16 -> f32" is much more commonly available, give 3408 // CodeGen the option of emitting that before resorting to a libcall. 3409 SDValue Res = 3410 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3411 Results.push_back( 3412 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3413 } 3414 break; 3415 case ISD::STRICT_FP16_TO_FP: 3416 if (Node->getValueType(0) != MVT::f32) { 3417 // We can extend to types bigger than f32 in two steps without changing 3418 // the result. Since "f16 -> f32" is much more commonly available, give 3419 // CodeGen the option of emitting that before resorting to a libcall. 3420 SDValue Res = 3421 DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other}, 3422 {Node->getOperand(0), Node->getOperand(1)}); 3423 Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 3424 {Node->getValueType(0), MVT::Other}, 3425 {Res.getValue(1), Res}); 3426 Results.push_back(Res); 3427 Results.push_back(Res.getValue(1)); 3428 } 3429 break; 3430 case ISD::FP_TO_FP16: 3431 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3432 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3433 SDValue Op = Node->getOperand(0); 3434 MVT SVT = Op.getSimpleValueType(); 3435 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3436 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3437 // Under fastmath, we can expand this node into a fround followed by 3438 // a float-half conversion. 3439 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3440 DAG.getIntPtrConstant(0, dl)); 3441 Results.push_back( 3442 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3443 } 3444 } 3445 break; 3446 case ISD::ConstantFP: { 3447 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3448 // Check to see if this FP immediate is already legal. 3449 // If this is a legal constant, turn it into a TargetConstantFP node. 3450 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0), 3451 DAG.shouldOptForSize())) 3452 Results.push_back(ExpandConstantFP(CFP, true)); 3453 break; 3454 } 3455 case ISD::Constant: { 3456 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3457 Results.push_back(ExpandConstant(CP)); 3458 break; 3459 } 3460 case ISD::FSUB: { 3461 EVT VT = Node->getValueType(0); 3462 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3463 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3464 const SDNodeFlags Flags = Node->getFlags(); 3465 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3466 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3467 Results.push_back(Tmp1); 3468 } 3469 break; 3470 } 3471 case ISD::SUB: { 3472 EVT VT = Node->getValueType(0); 3473 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3474 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3475 "Don't know how to expand this subtraction!"); 3476 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3477 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, 3478 VT)); 3479 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3480 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3481 break; 3482 } 3483 case ISD::UREM: 3484 case ISD::SREM: 3485 if (TLI.expandREM(Node, Tmp1, DAG)) 3486 Results.push_back(Tmp1); 3487 break; 3488 case ISD::UDIV: 3489 case ISD::SDIV: { 3490 bool isSigned = Node->getOpcode() == ISD::SDIV; 3491 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3492 EVT VT = Node->getValueType(0); 3493 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3494 SDVTList VTs = DAG.getVTList(VT, VT); 3495 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3496 Node->getOperand(1)); 3497 Results.push_back(Tmp1); 3498 } 3499 break; 3500 } 3501 case ISD::MULHU: 3502 case ISD::MULHS: { 3503 unsigned ExpandOpcode = 3504 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3505 EVT VT = Node->getValueType(0); 3506 SDVTList VTs = DAG.getVTList(VT, VT); 3507 3508 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3509 Node->getOperand(1)); 3510 Results.push_back(Tmp1.getValue(1)); 3511 break; 3512 } 3513 case ISD::UMUL_LOHI: 3514 case ISD::SMUL_LOHI: { 3515 SDValue LHS = Node->getOperand(0); 3516 SDValue RHS = Node->getOperand(1); 3517 MVT VT = LHS.getSimpleValueType(); 3518 unsigned MULHOpcode = 3519 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3520 3521 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3522 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3523 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3524 break; 3525 } 3526 3527 SmallVector<SDValue, 4> Halves; 3528 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3529 assert(TLI.isTypeLegal(HalfType)); 3530 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, dl, LHS, RHS, Halves, 3531 HalfType, DAG, 3532 TargetLowering::MulExpansionKind::Always)) { 3533 for (unsigned i = 0; i < 2; ++i) { 3534 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3535 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3536 SDValue Shift = DAG.getConstant( 3537 HalfType.getScalarSizeInBits(), dl, 3538 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3539 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3540 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3541 } 3542 break; 3543 } 3544 break; 3545 } 3546 case ISD::MUL: { 3547 EVT VT = Node->getValueType(0); 3548 SDVTList VTs = DAG.getVTList(VT, VT); 3549 // See if multiply or divide can be lowered using two-result operations. 3550 // We just need the low half of the multiply; try both the signed 3551 // and unsigned forms. If the target supports both SMUL_LOHI and 3552 // UMUL_LOHI, form a preference by checking which forms of plain 3553 // MULH it supports. 3554 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3555 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3556 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3557 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3558 unsigned OpToUse = 0; 3559 if (HasSMUL_LOHI && !HasMULHS) { 3560 OpToUse = ISD::SMUL_LOHI; 3561 } else if (HasUMUL_LOHI && !HasMULHU) { 3562 OpToUse = ISD::UMUL_LOHI; 3563 } else if (HasSMUL_LOHI) { 3564 OpToUse = ISD::SMUL_LOHI; 3565 } else if (HasUMUL_LOHI) { 3566 OpToUse = ISD::UMUL_LOHI; 3567 } 3568 if (OpToUse) { 3569 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3570 Node->getOperand(1))); 3571 break; 3572 } 3573 3574 SDValue Lo, Hi; 3575 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3576 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3577 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3578 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3579 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3580 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3581 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3582 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3583 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3584 SDValue Shift = 3585 DAG.getConstant(HalfType.getSizeInBits(), dl, 3586 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3587 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3588 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3589 } 3590 break; 3591 } 3592 case ISD::FSHL: 3593 case ISD::FSHR: 3594 if (TLI.expandFunnelShift(Node, Tmp1, DAG)) 3595 Results.push_back(Tmp1); 3596 break; 3597 case ISD::ROTL: 3598 case ISD::ROTR: 3599 if (TLI.expandROT(Node, true /*AllowVectorOps*/, Tmp1, DAG)) 3600 Results.push_back(Tmp1); 3601 break; 3602 case ISD::SADDSAT: 3603 case ISD::UADDSAT: 3604 case ISD::SSUBSAT: 3605 case ISD::USUBSAT: 3606 Results.push_back(TLI.expandAddSubSat(Node, DAG)); 3607 break; 3608 case ISD::SSHLSAT: 3609 case ISD::USHLSAT: 3610 Results.push_back(TLI.expandShlSat(Node, DAG)); 3611 break; 3612 case ISD::SMULFIX: 3613 case ISD::SMULFIXSAT: 3614 case ISD::UMULFIX: 3615 case ISD::UMULFIXSAT: 3616 Results.push_back(TLI.expandFixedPointMul(Node, DAG)); 3617 break; 3618 case ISD::SDIVFIX: 3619 case ISD::SDIVFIXSAT: 3620 case ISD::UDIVFIX: 3621 case ISD::UDIVFIXSAT: 3622 if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node), 3623 Node->getOperand(0), 3624 Node->getOperand(1), 3625 Node->getConstantOperandVal(2), 3626 DAG)) { 3627 Results.push_back(V); 3628 break; 3629 } 3630 // FIXME: We might want to retry here with a wider type if we fail, if that 3631 // type is legal. 3632 // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is 3633 // <= 128 (which is the case for all of the default Embedded-C types), 3634 // we will only get here with types and scales that we could always expand 3635 // if we were allowed to generate libcalls to division functions of illegal 3636 // type. But we cannot do that. 3637 llvm_unreachable("Cannot expand DIVFIX!"); 3638 case ISD::ADDCARRY: 3639 case ISD::SUBCARRY: { 3640 SDValue LHS = Node->getOperand(0); 3641 SDValue RHS = Node->getOperand(1); 3642 SDValue Carry = Node->getOperand(2); 3643 3644 bool IsAdd = Node->getOpcode() == ISD::ADDCARRY; 3645 3646 // Initial add of the 2 operands. 3647 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB; 3648 EVT VT = LHS.getValueType(); 3649 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS); 3650 3651 // Initial check for overflow. 3652 EVT CarryType = Node->getValueType(1); 3653 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3654 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 3655 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3656 3657 // Add of the sum and the carry. 3658 SDValue One = DAG.getConstant(1, dl, VT); 3659 SDValue CarryExt = 3660 DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One); 3661 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt); 3662 3663 // Second check for overflow. If we are adding, we can only overflow if the 3664 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0. 3665 // If we are subtracting, we can only overflow if the initial sum is 0 and 3666 // the carry is set, resulting in a new sum of all 1s. 3667 SDValue Zero = DAG.getConstant(0, dl, VT); 3668 SDValue Overflow2 = 3669 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ) 3670 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ); 3671 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2, 3672 DAG.getZExtOrTrunc(Carry, dl, SetCCType)); 3673 3674 SDValue ResultCarry = 3675 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2); 3676 3677 Results.push_back(Sum2); 3678 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT)); 3679 break; 3680 } 3681 case ISD::SADDO: 3682 case ISD::SSUBO: { 3683 SDValue Result, Overflow; 3684 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 3685 Results.push_back(Result); 3686 Results.push_back(Overflow); 3687 break; 3688 } 3689 case ISD::UADDO: 3690 case ISD::USUBO: { 3691 SDValue Result, Overflow; 3692 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 3693 Results.push_back(Result); 3694 Results.push_back(Overflow); 3695 break; 3696 } 3697 case ISD::UMULO: 3698 case ISD::SMULO: { 3699 SDValue Result, Overflow; 3700 if (TLI.expandMULO(Node, Result, Overflow, DAG)) { 3701 Results.push_back(Result); 3702 Results.push_back(Overflow); 3703 } 3704 break; 3705 } 3706 case ISD::BUILD_PAIR: { 3707 EVT PairTy = Node->getValueType(0); 3708 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3709 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3710 Tmp2 = DAG.getNode( 3711 ISD::SHL, dl, PairTy, Tmp2, 3712 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3713 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3714 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3715 break; 3716 } 3717 case ISD::SELECT: 3718 Tmp1 = Node->getOperand(0); 3719 Tmp2 = Node->getOperand(1); 3720 Tmp3 = Node->getOperand(2); 3721 if (Tmp1.getOpcode() == ISD::SETCC) { 3722 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3723 Tmp2, Tmp3, 3724 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3725 } else { 3726 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3727 DAG.getConstant(0, dl, Tmp1.getValueType()), 3728 Tmp2, Tmp3, ISD::SETNE); 3729 } 3730 Tmp1->setFlags(Node->getFlags()); 3731 Results.push_back(Tmp1); 3732 break; 3733 case ISD::BR_JT: { 3734 SDValue Chain = Node->getOperand(0); 3735 SDValue Table = Node->getOperand(1); 3736 SDValue Index = Node->getOperand(2); 3737 3738 const DataLayout &TD = DAG.getDataLayout(); 3739 EVT PTy = TLI.getPointerTy(TD); 3740 3741 unsigned EntrySize = 3742 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3743 3744 // For power-of-two jumptable entry sizes convert multiplication to a shift. 3745 // This transformation needs to be done here since otherwise the MIPS 3746 // backend will end up emitting a three instruction multiply sequence 3747 // instead of a single shift and MSP430 will call a runtime function. 3748 if (llvm::isPowerOf2_32(EntrySize)) 3749 Index = DAG.getNode( 3750 ISD::SHL, dl, Index.getValueType(), Index, 3751 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); 3752 else 3753 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3754 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3755 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3756 Index, Table); 3757 3758 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3759 SDValue LD = DAG.getExtLoad( 3760 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3761 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3762 Addr = LD; 3763 if (TLI.isJumpTableRelative()) { 3764 // For PIC, the sequence is: 3765 // BRIND(load(Jumptable + index) + RelocBase) 3766 // RelocBase can be JumpTable, GOT or some sort of global base. 3767 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3768 TLI.getPICJumpTableRelocBase(Table, DAG)); 3769 } 3770 3771 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); 3772 Results.push_back(Tmp1); 3773 break; 3774 } 3775 case ISD::BRCOND: 3776 // Expand brcond's setcc into its constituent parts and create a BR_CC 3777 // Node. 3778 Tmp1 = Node->getOperand(0); 3779 Tmp2 = Node->getOperand(1); 3780 if (Tmp2.getOpcode() == ISD::SETCC) { 3781 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3782 Tmp1, Tmp2.getOperand(2), 3783 Tmp2.getOperand(0), Tmp2.getOperand(1), 3784 Node->getOperand(2)); 3785 } else { 3786 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 3787 if (Tmp2.isUndef() || 3788 (Tmp2.getOpcode() == ISD::AND && 3789 isa<ConstantSDNode>(Tmp2.getOperand(1)) && 3790 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) 3791 Tmp3 = Tmp2; 3792 else 3793 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3794 DAG.getConstant(1, dl, Tmp2.getValueType())); 3795 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3796 DAG.getCondCode(ISD::SETNE), Tmp3, 3797 DAG.getConstant(0, dl, Tmp3.getValueType()), 3798 Node->getOperand(2)); 3799 } 3800 Results.push_back(Tmp1); 3801 break; 3802 case ISD::SETCC: 3803 case ISD::STRICT_FSETCC: 3804 case ISD::STRICT_FSETCCS: { 3805 bool IsStrict = Node->getOpcode() != ISD::SETCC; 3806 bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS; 3807 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 3808 unsigned Offset = IsStrict ? 1 : 0; 3809 Tmp1 = Node->getOperand(0 + Offset); 3810 Tmp2 = Node->getOperand(1 + Offset); 3811 Tmp3 = Node->getOperand(2 + Offset); 3812 bool Legalized = 3813 LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, 3814 NeedInvert, dl, Chain, IsSignaling); 3815 3816 if (Legalized) { 3817 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3818 // condition code, create a new SETCC node. 3819 if (Tmp3.getNode()) 3820 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3821 Tmp1, Tmp2, Tmp3, Node->getFlags()); 3822 3823 // If we expanded the SETCC by inverting the condition code, then wrap 3824 // the existing SETCC in a NOT to restore the intended condition. 3825 if (NeedInvert) 3826 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3827 3828 Results.push_back(Tmp1); 3829 if (IsStrict) 3830 Results.push_back(Chain); 3831 3832 break; 3833 } 3834 3835 // FIXME: It seems Legalized is false iff CCCode is Legal. I don't 3836 // understand if this code is useful for strict nodes. 3837 assert(!IsStrict && "Don't know how to expand for strict nodes."); 3838 3839 // Otherwise, SETCC for the given comparison type must be completely 3840 // illegal; expand it into a SELECT_CC. 3841 EVT VT = Node->getValueType(0); 3842 int TrueValue; 3843 switch (TLI.getBooleanContents(Tmp1.getValueType())) { 3844 case TargetLowering::ZeroOrOneBooleanContent: 3845 case TargetLowering::UndefinedBooleanContent: 3846 TrueValue = 1; 3847 break; 3848 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3849 TrueValue = -1; 3850 break; 3851 } 3852 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3853 DAG.getConstant(TrueValue, dl, VT), 3854 DAG.getConstant(0, dl, VT), 3855 Tmp3); 3856 Tmp1->setFlags(Node->getFlags()); 3857 Results.push_back(Tmp1); 3858 break; 3859 } 3860 case ISD::SELECT_CC: { 3861 // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS 3862 Tmp1 = Node->getOperand(0); // LHS 3863 Tmp2 = Node->getOperand(1); // RHS 3864 Tmp3 = Node->getOperand(2); // True 3865 Tmp4 = Node->getOperand(3); // False 3866 EVT VT = Node->getValueType(0); 3867 SDValue Chain; 3868 SDValue CC = Node->getOperand(4); 3869 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3870 3871 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 3872 // If the condition code is legal, then we need to expand this 3873 // node using SETCC and SELECT. 3874 EVT CmpVT = Tmp1.getValueType(); 3875 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3876 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3877 "expanded."); 3878 EVT CCVT = getSetCCResultType(CmpVT); 3879 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags()); 3880 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3881 break; 3882 } 3883 3884 // SELECT_CC is legal, so the condition code must not be. 3885 bool Legalized = false; 3886 // Try to legalize by inverting the condition. This is for targets that 3887 // might support an ordered version of a condition, but not the unordered 3888 // version (or vice versa). 3889 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType()); 3890 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 3891 // Use the new condition code and swap true and false 3892 Legalized = true; 3893 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3894 Tmp1->setFlags(Node->getFlags()); 3895 } else { 3896 // If The inverse is not legal, then try to swap the arguments using 3897 // the inverse condition code. 3898 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3899 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 3900 // The swapped inverse condition is legal, so swap true and false, 3901 // lhs and rhs. 3902 Legalized = true; 3903 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3904 Tmp1->setFlags(Node->getFlags()); 3905 } 3906 } 3907 3908 if (!Legalized) { 3909 Legalized = LegalizeSetCCCondCode(getSetCCResultType(Tmp1.getValueType()), 3910 Tmp1, Tmp2, CC, NeedInvert, dl, Chain); 3911 3912 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3913 3914 // If we expanded the SETCC by inverting the condition code, then swap 3915 // the True/False operands to match. 3916 if (NeedInvert) 3917 std::swap(Tmp3, Tmp4); 3918 3919 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3920 // condition code, create a new SELECT_CC node. 3921 if (CC.getNode()) { 3922 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3923 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3924 } else { 3925 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3926 CC = DAG.getCondCode(ISD::SETNE); 3927 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3928 Tmp2, Tmp3, Tmp4, CC); 3929 } 3930 Tmp1->setFlags(Node->getFlags()); 3931 } 3932 Results.push_back(Tmp1); 3933 break; 3934 } 3935 case ISD::BR_CC: { 3936 // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS 3937 SDValue Chain; 3938 Tmp1 = Node->getOperand(0); // Chain 3939 Tmp2 = Node->getOperand(2); // LHS 3940 Tmp3 = Node->getOperand(3); // RHS 3941 Tmp4 = Node->getOperand(1); // CC 3942 3943 bool Legalized = 3944 LegalizeSetCCCondCode(getSetCCResultType(Tmp2.getValueType()), Tmp2, 3945 Tmp3, Tmp4, NeedInvert, dl, Chain); 3946 (void)Legalized; 3947 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3948 3949 assert(!NeedInvert && "Don't know how to invert BR_CC!"); 3950 3951 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3952 // node. 3953 if (Tmp4.getNode()) { 3954 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3955 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3956 } else { 3957 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3958 Tmp4 = DAG.getCondCode(ISD::SETNE); 3959 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3960 Tmp2, Tmp3, Node->getOperand(4)); 3961 } 3962 Results.push_back(Tmp1); 3963 break; 3964 } 3965 case ISD::BUILD_VECTOR: 3966 Results.push_back(ExpandBUILD_VECTOR(Node)); 3967 break; 3968 case ISD::SPLAT_VECTOR: 3969 Results.push_back(ExpandSPLAT_VECTOR(Node)); 3970 break; 3971 case ISD::SRA: 3972 case ISD::SRL: 3973 case ISD::SHL: { 3974 // Scalarize vector SRA/SRL/SHL. 3975 EVT VT = Node->getValueType(0); 3976 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3977 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3978 unsigned NumElem = VT.getVectorNumElements(); 3979 3980 SmallVector<SDValue, 8> Scalars; 3981 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3982 SDValue Ex = 3983 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3984 Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl)); 3985 SDValue Sh = 3986 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3987 Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl)); 3988 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3989 VT.getScalarType(), Ex, Sh)); 3990 } 3991 3992 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 3993 Results.push_back(Result); 3994 break; 3995 } 3996 case ISD::VECREDUCE_FADD: 3997 case ISD::VECREDUCE_FMUL: 3998 case ISD::VECREDUCE_ADD: 3999 case ISD::VECREDUCE_MUL: 4000 case ISD::VECREDUCE_AND: 4001 case ISD::VECREDUCE_OR: 4002 case ISD::VECREDUCE_XOR: 4003 case ISD::VECREDUCE_SMAX: 4004 case ISD::VECREDUCE_SMIN: 4005 case ISD::VECREDUCE_UMAX: 4006 case ISD::VECREDUCE_UMIN: 4007 case ISD::VECREDUCE_FMAX: 4008 case ISD::VECREDUCE_FMIN: 4009 Results.push_back(TLI.expandVecReduce(Node, DAG)); 4010 break; 4011 case ISD::GLOBAL_OFFSET_TABLE: 4012 case ISD::GlobalAddress: 4013 case ISD::GlobalTLSAddress: 4014 case ISD::ExternalSymbol: 4015 case ISD::ConstantPool: 4016 case ISD::JumpTable: 4017 case ISD::INTRINSIC_W_CHAIN: 4018 case ISD::INTRINSIC_WO_CHAIN: 4019 case ISD::INTRINSIC_VOID: 4020 // FIXME: Custom lowering for these operations shouldn't return null! 4021 // Return true so that we don't call ConvertNodeToLibcall which also won't 4022 // do anything. 4023 return true; 4024 } 4025 4026 if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) { 4027 // FIXME: We were asked to expand a strict floating-point operation, 4028 // but there is currently no expansion implemented that would preserve 4029 // the "strict" properties. For now, we just fall back to the non-strict 4030 // version if that is legal on the target. The actual mutation of the 4031 // operation will happen in SelectionDAGISel::DoInstructionSelection. 4032 switch (Node->getOpcode()) { 4033 default: 4034 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 4035 Node->getValueType(0)) 4036 == TargetLowering::Legal) 4037 return true; 4038 break; 4039 case ISD::STRICT_FSUB: { 4040 if (TLI.getStrictFPOperationAction( 4041 ISD::STRICT_FSUB, Node->getValueType(0)) == TargetLowering::Legal) 4042 return true; 4043 if (TLI.getStrictFPOperationAction( 4044 ISD::STRICT_FADD, Node->getValueType(0)) != TargetLowering::Legal) 4045 break; 4046 4047 EVT VT = Node->getValueType(0); 4048 const SDNodeFlags Flags = Node->getFlags(); 4049 SDValue Neg = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(2), Flags); 4050 SDValue Fadd = DAG.getNode(ISD::STRICT_FADD, dl, Node->getVTList(), 4051 {Node->getOperand(0), Node->getOperand(1), Neg}, 4052 Flags); 4053 4054 Results.push_back(Fadd); 4055 Results.push_back(Fadd.getValue(1)); 4056 break; 4057 } 4058 case ISD::STRICT_SINT_TO_FP: 4059 case ISD::STRICT_UINT_TO_FP: 4060 case ISD::STRICT_LRINT: 4061 case ISD::STRICT_LLRINT: 4062 case ISD::STRICT_LROUND: 4063 case ISD::STRICT_LLROUND: 4064 // These are registered by the operand type instead of the value 4065 // type. Reflect that here. 4066 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 4067 Node->getOperand(1).getValueType()) 4068 == TargetLowering::Legal) 4069 return true; 4070 break; 4071 } 4072 } 4073 4074 // Replace the original node with the legalized result. 4075 if (Results.empty()) { 4076 LLVM_DEBUG(dbgs() << "Cannot expand node\n"); 4077 return false; 4078 } 4079 4080 LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); 4081 ReplaceNode(Node, Results.data()); 4082 return true; 4083 } 4084 4085 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 4086 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); 4087 SmallVector<SDValue, 8> Results; 4088 SDLoc dl(Node); 4089 // FIXME: Check flags on the node to see if we can use a finite call. 4090 unsigned Opc = Node->getOpcode(); 4091 switch (Opc) { 4092 case ISD::ATOMIC_FENCE: { 4093 // If the target didn't lower this, lower it to '__sync_synchronize()' call 4094 // FIXME: handle "fence singlethread" more efficiently. 4095 TargetLowering::ArgListTy Args; 4096 4097 TargetLowering::CallLoweringInfo CLI(DAG); 4098 CLI.setDebugLoc(dl) 4099 .setChain(Node->getOperand(0)) 4100 .setLibCallee( 4101 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 4102 DAG.getExternalSymbol("__sync_synchronize", 4103 TLI.getPointerTy(DAG.getDataLayout())), 4104 std::move(Args)); 4105 4106 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 4107 4108 Results.push_back(CallResult.second); 4109 break; 4110 } 4111 // By default, atomic intrinsics are marked Legal and lowered. Targets 4112 // which don't support them directly, however, may want libcalls, in which 4113 // case they mark them Expand, and we get here. 4114 case ISD::ATOMIC_SWAP: 4115 case ISD::ATOMIC_LOAD_ADD: 4116 case ISD::ATOMIC_LOAD_SUB: 4117 case ISD::ATOMIC_LOAD_AND: 4118 case ISD::ATOMIC_LOAD_CLR: 4119 case ISD::ATOMIC_LOAD_OR: 4120 case ISD::ATOMIC_LOAD_XOR: 4121 case ISD::ATOMIC_LOAD_NAND: 4122 case ISD::ATOMIC_LOAD_MIN: 4123 case ISD::ATOMIC_LOAD_MAX: 4124 case ISD::ATOMIC_LOAD_UMIN: 4125 case ISD::ATOMIC_LOAD_UMAX: 4126 case ISD::ATOMIC_CMP_SWAP: { 4127 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 4128 AtomicOrdering Order = cast<AtomicSDNode>(Node)->getOrdering(); 4129 RTLIB::Libcall LC = RTLIB::getOUTLINE_ATOMIC(Opc, Order, VT); 4130 EVT RetVT = Node->getValueType(0); 4131 TargetLowering::MakeLibCallOptions CallOptions; 4132 SmallVector<SDValue, 4> Ops; 4133 if (TLI.getLibcallName(LC)) { 4134 // If outline atomic available, prepare its arguments and expand. 4135 Ops.append(Node->op_begin() + 2, Node->op_end()); 4136 Ops.push_back(Node->getOperand(1)); 4137 4138 } else { 4139 LC = RTLIB::getSYNC(Opc, VT); 4140 assert(LC != RTLIB::UNKNOWN_LIBCALL && 4141 "Unexpected atomic op or value type!"); 4142 // Arguments for expansion to sync libcall 4143 Ops.append(Node->op_begin() + 1, Node->op_end()); 4144 } 4145 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 4146 Ops, CallOptions, 4147 SDLoc(Node), 4148 Node->getOperand(0)); 4149 Results.push_back(Tmp.first); 4150 Results.push_back(Tmp.second); 4151 break; 4152 } 4153 case ISD::TRAP: { 4154 // If this operation is not supported, lower it to 'abort()' call 4155 TargetLowering::ArgListTy Args; 4156 TargetLowering::CallLoweringInfo CLI(DAG); 4157 CLI.setDebugLoc(dl) 4158 .setChain(Node->getOperand(0)) 4159 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 4160 DAG.getExternalSymbol( 4161 "abort", TLI.getPointerTy(DAG.getDataLayout())), 4162 std::move(Args)); 4163 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 4164 4165 Results.push_back(CallResult.second); 4166 break; 4167 } 4168 case ISD::FMINNUM: 4169 case ISD::STRICT_FMINNUM: 4170 ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 4171 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 4172 RTLIB::FMIN_PPCF128, Results); 4173 break; 4174 case ISD::FMAXNUM: 4175 case ISD::STRICT_FMAXNUM: 4176 ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 4177 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 4178 RTLIB::FMAX_PPCF128, Results); 4179 break; 4180 case ISD::FSQRT: 4181 case ISD::STRICT_FSQRT: 4182 ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 4183 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 4184 RTLIB::SQRT_PPCF128, Results); 4185 break; 4186 case ISD::FCBRT: 4187 ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, 4188 RTLIB::CBRT_F80, RTLIB::CBRT_F128, 4189 RTLIB::CBRT_PPCF128, Results); 4190 break; 4191 case ISD::FSIN: 4192 case ISD::STRICT_FSIN: 4193 ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 4194 RTLIB::SIN_F80, RTLIB::SIN_F128, 4195 RTLIB::SIN_PPCF128, Results); 4196 break; 4197 case ISD::FCOS: 4198 case ISD::STRICT_FCOS: 4199 ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 4200 RTLIB::COS_F80, RTLIB::COS_F128, 4201 RTLIB::COS_PPCF128, Results); 4202 break; 4203 case ISD::FSINCOS: 4204 // Expand into sincos libcall. 4205 ExpandSinCosLibCall(Node, Results); 4206 break; 4207 case ISD::FLOG: 4208 case ISD::STRICT_FLOG: 4209 ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80, 4210 RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results); 4211 break; 4212 case ISD::FLOG2: 4213 case ISD::STRICT_FLOG2: 4214 ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80, 4215 RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results); 4216 break; 4217 case ISD::FLOG10: 4218 case ISD::STRICT_FLOG10: 4219 ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80, 4220 RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results); 4221 break; 4222 case ISD::FEXP: 4223 case ISD::STRICT_FEXP: 4224 ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80, 4225 RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results); 4226 break; 4227 case ISD::FEXP2: 4228 case ISD::STRICT_FEXP2: 4229 ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80, 4230 RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results); 4231 break; 4232 case ISD::FTRUNC: 4233 case ISD::STRICT_FTRUNC: 4234 ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 4235 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 4236 RTLIB::TRUNC_PPCF128, Results); 4237 break; 4238 case ISD::FFLOOR: 4239 case ISD::STRICT_FFLOOR: 4240 ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 4241 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 4242 RTLIB::FLOOR_PPCF128, Results); 4243 break; 4244 case ISD::FCEIL: 4245 case ISD::STRICT_FCEIL: 4246 ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 4247 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 4248 RTLIB::CEIL_PPCF128, Results); 4249 break; 4250 case ISD::FRINT: 4251 case ISD::STRICT_FRINT: 4252 ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 4253 RTLIB::RINT_F80, RTLIB::RINT_F128, 4254 RTLIB::RINT_PPCF128, Results); 4255 break; 4256 case ISD::FNEARBYINT: 4257 case ISD::STRICT_FNEARBYINT: 4258 ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 4259 RTLIB::NEARBYINT_F64, 4260 RTLIB::NEARBYINT_F80, 4261 RTLIB::NEARBYINT_F128, 4262 RTLIB::NEARBYINT_PPCF128, Results); 4263 break; 4264 case ISD::FROUND: 4265 case ISD::STRICT_FROUND: 4266 ExpandFPLibCall(Node, RTLIB::ROUND_F32, 4267 RTLIB::ROUND_F64, 4268 RTLIB::ROUND_F80, 4269 RTLIB::ROUND_F128, 4270 RTLIB::ROUND_PPCF128, Results); 4271 break; 4272 case ISD::FROUNDEVEN: 4273 case ISD::STRICT_FROUNDEVEN: 4274 ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32, 4275 RTLIB::ROUNDEVEN_F64, 4276 RTLIB::ROUNDEVEN_F80, 4277 RTLIB::ROUNDEVEN_F128, 4278 RTLIB::ROUNDEVEN_PPCF128, Results); 4279 break; 4280 case ISD::FPOWI: 4281 case ISD::STRICT_FPOWI: { 4282 RTLIB::Libcall LC; 4283 switch (Node->getSimpleValueType(0).SimpleTy) { 4284 default: llvm_unreachable("Unexpected request for libcall!"); 4285 case MVT::f32: LC = RTLIB::POWI_F32; break; 4286 case MVT::f64: LC = RTLIB::POWI_F64; break; 4287 case MVT::f80: LC = RTLIB::POWI_F80; break; 4288 case MVT::f128: LC = RTLIB::POWI_F128; break; 4289 case MVT::ppcf128: LC = RTLIB::POWI_PPCF128; break; 4290 } 4291 if (!TLI.getLibcallName(LC)) { 4292 // Some targets don't have a powi libcall; use pow instead. 4293 SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), 4294 Node->getValueType(0), 4295 Node->getOperand(1)); 4296 Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node), 4297 Node->getValueType(0), Node->getOperand(0), 4298 Exponent)); 4299 break; 4300 } 4301 ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 4302 RTLIB::POWI_F80, RTLIB::POWI_F128, 4303 RTLIB::POWI_PPCF128, Results); 4304 break; 4305 } 4306 case ISD::FPOW: 4307 case ISD::STRICT_FPOW: 4308 ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 4309 RTLIB::POW_F128, RTLIB::POW_PPCF128, Results); 4310 break; 4311 case ISD::LROUND: 4312 case ISD::STRICT_LROUND: 4313 ExpandArgFPLibCall(Node, RTLIB::LROUND_F32, 4314 RTLIB::LROUND_F64, RTLIB::LROUND_F80, 4315 RTLIB::LROUND_F128, 4316 RTLIB::LROUND_PPCF128, Results); 4317 break; 4318 case ISD::LLROUND: 4319 case ISD::STRICT_LLROUND: 4320 ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32, 4321 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, 4322 RTLIB::LLROUND_F128, 4323 RTLIB::LLROUND_PPCF128, Results); 4324 break; 4325 case ISD::LRINT: 4326 case ISD::STRICT_LRINT: 4327 ExpandArgFPLibCall(Node, RTLIB::LRINT_F32, 4328 RTLIB::LRINT_F64, RTLIB::LRINT_F80, 4329 RTLIB::LRINT_F128, 4330 RTLIB::LRINT_PPCF128, Results); 4331 break; 4332 case ISD::LLRINT: 4333 case ISD::STRICT_LLRINT: 4334 ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32, 4335 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80, 4336 RTLIB::LLRINT_F128, 4337 RTLIB::LLRINT_PPCF128, Results); 4338 break; 4339 case ISD::FDIV: 4340 case ISD::STRICT_FDIV: 4341 ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 4342 RTLIB::DIV_F80, RTLIB::DIV_F128, 4343 RTLIB::DIV_PPCF128, Results); 4344 break; 4345 case ISD::FREM: 4346 case ISD::STRICT_FREM: 4347 ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 4348 RTLIB::REM_F80, RTLIB::REM_F128, 4349 RTLIB::REM_PPCF128, Results); 4350 break; 4351 case ISD::FMA: 4352 case ISD::STRICT_FMA: 4353 ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 4354 RTLIB::FMA_F80, RTLIB::FMA_F128, 4355 RTLIB::FMA_PPCF128, Results); 4356 break; 4357 case ISD::FADD: 4358 case ISD::STRICT_FADD: 4359 ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 4360 RTLIB::ADD_F80, RTLIB::ADD_F128, 4361 RTLIB::ADD_PPCF128, Results); 4362 break; 4363 case ISD::FMUL: 4364 case ISD::STRICT_FMUL: 4365 ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 4366 RTLIB::MUL_F80, RTLIB::MUL_F128, 4367 RTLIB::MUL_PPCF128, Results); 4368 break; 4369 case ISD::FP16_TO_FP: 4370 if (Node->getValueType(0) == MVT::f32) { 4371 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 4372 } 4373 break; 4374 case ISD::STRICT_FP16_TO_FP: { 4375 if (Node->getValueType(0) == MVT::f32) { 4376 TargetLowering::MakeLibCallOptions CallOptions; 4377 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall( 4378 DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions, 4379 SDLoc(Node), Node->getOperand(0)); 4380 Results.push_back(Tmp.first); 4381 Results.push_back(Tmp.second); 4382 } 4383 break; 4384 } 4385 case ISD::FP_TO_FP16: { 4386 RTLIB::Libcall LC = 4387 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 4388 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 4389 Results.push_back(ExpandLibCall(LC, Node, false)); 4390 break; 4391 } 4392 case ISD::STRICT_SINT_TO_FP: 4393 case ISD::STRICT_UINT_TO_FP: 4394 case ISD::SINT_TO_FP: 4395 case ISD::UINT_TO_FP: { 4396 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP 4397 bool IsStrict = Node->isStrictFPOpcode(); 4398 bool Signed = Node->getOpcode() == ISD::SINT_TO_FP || 4399 Node->getOpcode() == ISD::STRICT_SINT_TO_FP; 4400 EVT SVT = Node->getOperand(IsStrict ? 1 : 0).getValueType(); 4401 EVT RVT = Node->getValueType(0); 4402 EVT NVT = EVT(); 4403 SDLoc dl(Node); 4404 4405 // Even if the input is legal, no libcall may exactly match, eg. we don't 4406 // have i1 -> fp conversions. So, it needs to be promoted to a larger type, 4407 // eg: i13 -> fp. Then, look for an appropriate libcall. 4408 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 4409 for (unsigned t = MVT::FIRST_INTEGER_VALUETYPE; 4410 t <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; 4411 ++t) { 4412 NVT = (MVT::SimpleValueType)t; 4413 // The source needs to big enough to hold the operand. 4414 if (NVT.bitsGE(SVT)) 4415 LC = Signed ? RTLIB::getSINTTOFP(NVT, RVT) 4416 : RTLIB::getUINTTOFP(NVT, RVT); 4417 } 4418 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4419 4420 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4421 // Sign/zero extend the argument if the libcall takes a larger type. 4422 SDValue Op = DAG.getNode(Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl, 4423 NVT, Node->getOperand(IsStrict ? 1 : 0)); 4424 TargetLowering::MakeLibCallOptions CallOptions; 4425 CallOptions.setSExt(Signed); 4426 std::pair<SDValue, SDValue> Tmp = 4427 TLI.makeLibCall(DAG, LC, RVT, Op, CallOptions, dl, Chain); 4428 Results.push_back(Tmp.first); 4429 if (IsStrict) 4430 Results.push_back(Tmp.second); 4431 break; 4432 } 4433 case ISD::FP_TO_SINT: 4434 case ISD::FP_TO_UINT: 4435 case ISD::STRICT_FP_TO_SINT: 4436 case ISD::STRICT_FP_TO_UINT: { 4437 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatOp_FP_TO_XINT. 4438 bool IsStrict = Node->isStrictFPOpcode(); 4439 bool Signed = Node->getOpcode() == ISD::FP_TO_SINT || 4440 Node->getOpcode() == ISD::STRICT_FP_TO_SINT; 4441 4442 SDValue Op = Node->getOperand(IsStrict ? 1 : 0); 4443 EVT SVT = Op.getValueType(); 4444 EVT RVT = Node->getValueType(0); 4445 EVT NVT = EVT(); 4446 SDLoc dl(Node); 4447 4448 // Even if the result is legal, no libcall may exactly match, eg. we don't 4449 // have fp -> i1 conversions. So, it needs to be promoted to a larger type, 4450 // eg: fp -> i32. Then, look for an appropriate libcall. 4451 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 4452 for (unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE; 4453 IntVT <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; 4454 ++IntVT) { 4455 NVT = (MVT::SimpleValueType)IntVT; 4456 // The type needs to big enough to hold the result. 4457 if (NVT.bitsGE(RVT)) 4458 LC = Signed ? RTLIB::getFPTOSINT(SVT, NVT) 4459 : RTLIB::getFPTOUINT(SVT, NVT); 4460 } 4461 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4462 4463 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4464 TargetLowering::MakeLibCallOptions CallOptions; 4465 std::pair<SDValue, SDValue> Tmp = 4466 TLI.makeLibCall(DAG, LC, NVT, Op, CallOptions, dl, Chain); 4467 4468 // Truncate the result if the libcall returns a larger type. 4469 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, RVT, Tmp.first)); 4470 if (IsStrict) 4471 Results.push_back(Tmp.second); 4472 break; 4473 } 4474 4475 case ISD::FP_ROUND: 4476 case ISD::STRICT_FP_ROUND: { 4477 // X = FP_ROUND(Y, TRUNC) 4478 // TRUNC is a flag, which is always an integer that is zero or one. 4479 // If TRUNC is 0, this is a normal rounding, if it is 1, this FP_ROUND 4480 // is known to not change the value of Y. 4481 // We can only expand it into libcall if the TRUNC is 0. 4482 bool IsStrict = Node->isStrictFPOpcode(); 4483 SDValue Op = Node->getOperand(IsStrict ? 1 : 0); 4484 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4485 EVT VT = Node->getValueType(0); 4486 assert(cast<ConstantSDNode>(Node->getOperand(IsStrict ? 2 : 1)) 4487 ->isNullValue() && 4488 "Unable to expand as libcall if it is not normal rounding"); 4489 4490 RTLIB::Libcall LC = RTLIB::getFPROUND(Op.getValueType(), VT); 4491 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4492 4493 TargetLowering::MakeLibCallOptions CallOptions; 4494 std::pair<SDValue, SDValue> Tmp = 4495 TLI.makeLibCall(DAG, LC, VT, Op, CallOptions, SDLoc(Node), Chain); 4496 Results.push_back(Tmp.first); 4497 if (IsStrict) 4498 Results.push_back(Tmp.second); 4499 break; 4500 } 4501 case ISD::FP_EXTEND: { 4502 Results.push_back( 4503 ExpandLibCall(RTLIB::getFPEXT(Node->getOperand(0).getValueType(), 4504 Node->getValueType(0)), 4505 Node, false)); 4506 break; 4507 } 4508 case ISD::STRICT_FP_EXTEND: 4509 case ISD::STRICT_FP_TO_FP16: { 4510 RTLIB::Libcall LC = 4511 Node->getOpcode() == ISD::STRICT_FP_TO_FP16 4512 ? RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16) 4513 : RTLIB::getFPEXT(Node->getOperand(1).getValueType(), 4514 Node->getValueType(0)); 4515 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4516 4517 TargetLowering::MakeLibCallOptions CallOptions; 4518 std::pair<SDValue, SDValue> Tmp = 4519 TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1), 4520 CallOptions, SDLoc(Node), Node->getOperand(0)); 4521 Results.push_back(Tmp.first); 4522 Results.push_back(Tmp.second); 4523 break; 4524 } 4525 case ISD::FSUB: 4526 case ISD::STRICT_FSUB: 4527 ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4528 RTLIB::SUB_F80, RTLIB::SUB_F128, 4529 RTLIB::SUB_PPCF128, Results); 4530 break; 4531 case ISD::SREM: 4532 Results.push_back(ExpandIntLibCall(Node, true, 4533 RTLIB::SREM_I8, 4534 RTLIB::SREM_I16, RTLIB::SREM_I32, 4535 RTLIB::SREM_I64, RTLIB::SREM_I128)); 4536 break; 4537 case ISD::UREM: 4538 Results.push_back(ExpandIntLibCall(Node, false, 4539 RTLIB::UREM_I8, 4540 RTLIB::UREM_I16, RTLIB::UREM_I32, 4541 RTLIB::UREM_I64, RTLIB::UREM_I128)); 4542 break; 4543 case ISD::SDIV: 4544 Results.push_back(ExpandIntLibCall(Node, true, 4545 RTLIB::SDIV_I8, 4546 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4547 RTLIB::SDIV_I64, RTLIB::SDIV_I128)); 4548 break; 4549 case ISD::UDIV: 4550 Results.push_back(ExpandIntLibCall(Node, false, 4551 RTLIB::UDIV_I8, 4552 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4553 RTLIB::UDIV_I64, RTLIB::UDIV_I128)); 4554 break; 4555 case ISD::SDIVREM: 4556 case ISD::UDIVREM: 4557 // Expand into divrem libcall 4558 ExpandDivRemLibCall(Node, Results); 4559 break; 4560 case ISD::MUL: 4561 Results.push_back(ExpandIntLibCall(Node, false, 4562 RTLIB::MUL_I8, 4563 RTLIB::MUL_I16, RTLIB::MUL_I32, 4564 RTLIB::MUL_I64, RTLIB::MUL_I128)); 4565 break; 4566 case ISD::CTLZ_ZERO_UNDEF: 4567 switch (Node->getSimpleValueType(0).SimpleTy) { 4568 default: 4569 llvm_unreachable("LibCall explicitly requested, but not available"); 4570 case MVT::i32: 4571 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false)); 4572 break; 4573 case MVT::i64: 4574 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false)); 4575 break; 4576 case MVT::i128: 4577 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false)); 4578 break; 4579 } 4580 break; 4581 } 4582 4583 // Replace the original node with the legalized result. 4584 if (!Results.empty()) { 4585 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); 4586 ReplaceNode(Node, Results.data()); 4587 } else 4588 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); 4589 } 4590 4591 // Determine the vector type to use in place of an original scalar element when 4592 // promoting equally sized vectors. 4593 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4594 MVT EltVT, MVT NewEltVT) { 4595 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4596 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4597 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4598 return MidVT; 4599 } 4600 4601 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4602 LLVM_DEBUG(dbgs() << "Trying to promote node\n"); 4603 SmallVector<SDValue, 8> Results; 4604 MVT OVT = Node->getSimpleValueType(0); 4605 if (Node->getOpcode() == ISD::UINT_TO_FP || 4606 Node->getOpcode() == ISD::SINT_TO_FP || 4607 Node->getOpcode() == ISD::SETCC || 4608 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4609 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4610 OVT = Node->getOperand(0).getSimpleValueType(); 4611 } 4612 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP || 4613 Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 4614 Node->getOpcode() == ISD::STRICT_FSETCC || 4615 Node->getOpcode() == ISD::STRICT_FSETCCS) 4616 OVT = Node->getOperand(1).getSimpleValueType(); 4617 if (Node->getOpcode() == ISD::BR_CC) 4618 OVT = Node->getOperand(2).getSimpleValueType(); 4619 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4620 SDLoc dl(Node); 4621 SDValue Tmp1, Tmp2, Tmp3; 4622 switch (Node->getOpcode()) { 4623 case ISD::CTTZ: 4624 case ISD::CTTZ_ZERO_UNDEF: 4625 case ISD::CTLZ: 4626 case ISD::CTLZ_ZERO_UNDEF: 4627 case ISD::CTPOP: 4628 // Zero extend the argument unless its cttz, then use any_extend. 4629 if (Node->getOpcode() == ISD::CTTZ || 4630 Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 4631 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 4632 else 4633 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4634 4635 if (Node->getOpcode() == ISD::CTTZ) { 4636 // The count is the same in the promoted type except if the original 4637 // value was zero. This can be handled by setting the bit just off 4638 // the top of the original type. 4639 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4640 OVT.getSizeInBits()); 4641 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4642 DAG.getConstant(TopBit, dl, NVT)); 4643 } 4644 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4645 // already the correct result. 4646 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4647 if (Node->getOpcode() == ISD::CTLZ || 4648 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4649 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4650 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4651 DAG.getConstant(NVT.getSizeInBits() - 4652 OVT.getSizeInBits(), dl, NVT)); 4653 } 4654 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4655 break; 4656 case ISD::BITREVERSE: 4657 case ISD::BSWAP: { 4658 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4659 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4660 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4661 Tmp1 = DAG.getNode( 4662 ISD::SRL, dl, NVT, Tmp1, 4663 DAG.getConstant(DiffBits, dl, 4664 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4665 4666 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4667 break; 4668 } 4669 case ISD::FP_TO_UINT: 4670 case ISD::STRICT_FP_TO_UINT: 4671 case ISD::FP_TO_SINT: 4672 case ISD::STRICT_FP_TO_SINT: 4673 PromoteLegalFP_TO_INT(Node, dl, Results); 4674 break; 4675 case ISD::FP_TO_UINT_SAT: 4676 case ISD::FP_TO_SINT_SAT: 4677 Results.push_back(PromoteLegalFP_TO_INT_SAT(Node, dl)); 4678 break; 4679 case ISD::UINT_TO_FP: 4680 case ISD::STRICT_UINT_TO_FP: 4681 case ISD::SINT_TO_FP: 4682 case ISD::STRICT_SINT_TO_FP: 4683 PromoteLegalINT_TO_FP(Node, dl, Results); 4684 break; 4685 case ISD::VAARG: { 4686 SDValue Chain = Node->getOperand(0); // Get the chain. 4687 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4688 4689 unsigned TruncOp; 4690 if (OVT.isVector()) { 4691 TruncOp = ISD::BITCAST; 4692 } else { 4693 assert(OVT.isInteger() 4694 && "VAARG promotion is supported only for vectors or integer types"); 4695 TruncOp = ISD::TRUNCATE; 4696 } 4697 4698 // Perform the larger operation, then convert back 4699 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4700 Node->getConstantOperandVal(3)); 4701 Chain = Tmp1.getValue(1); 4702 4703 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4704 4705 // Modified the chain result - switch anything that used the old chain to 4706 // use the new one. 4707 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4708 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4709 if (UpdatedNodes) { 4710 UpdatedNodes->insert(Tmp2.getNode()); 4711 UpdatedNodes->insert(Chain.getNode()); 4712 } 4713 ReplacedNode(Node); 4714 break; 4715 } 4716 case ISD::MUL: 4717 case ISD::SDIV: 4718 case ISD::SREM: 4719 case ISD::UDIV: 4720 case ISD::UREM: 4721 case ISD::AND: 4722 case ISD::OR: 4723 case ISD::XOR: { 4724 unsigned ExtOp, TruncOp; 4725 if (OVT.isVector()) { 4726 ExtOp = ISD::BITCAST; 4727 TruncOp = ISD::BITCAST; 4728 } else { 4729 assert(OVT.isInteger() && "Cannot promote logic operation"); 4730 4731 switch (Node->getOpcode()) { 4732 default: 4733 ExtOp = ISD::ANY_EXTEND; 4734 break; 4735 case ISD::SDIV: 4736 case ISD::SREM: 4737 ExtOp = ISD::SIGN_EXTEND; 4738 break; 4739 case ISD::UDIV: 4740 case ISD::UREM: 4741 ExtOp = ISD::ZERO_EXTEND; 4742 break; 4743 } 4744 TruncOp = ISD::TRUNCATE; 4745 } 4746 // Promote each of the values to the new type. 4747 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4748 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4749 // Perform the larger operation, then convert back 4750 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4751 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4752 break; 4753 } 4754 case ISD::UMUL_LOHI: 4755 case ISD::SMUL_LOHI: { 4756 // Promote to a multiply in a wider integer type. 4757 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 4758 : ISD::SIGN_EXTEND; 4759 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4760 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4761 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 4762 4763 auto &DL = DAG.getDataLayout(); 4764 unsigned OriginalSize = OVT.getScalarSizeInBits(); 4765 Tmp2 = DAG.getNode( 4766 ISD::SRL, dl, NVT, Tmp1, 4767 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 4768 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4769 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 4770 break; 4771 } 4772 case ISD::SELECT: { 4773 unsigned ExtOp, TruncOp; 4774 if (Node->getValueType(0).isVector() || 4775 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4776 ExtOp = ISD::BITCAST; 4777 TruncOp = ISD::BITCAST; 4778 } else if (Node->getValueType(0).isInteger()) { 4779 ExtOp = ISD::ANY_EXTEND; 4780 TruncOp = ISD::TRUNCATE; 4781 } else { 4782 ExtOp = ISD::FP_EXTEND; 4783 TruncOp = ISD::FP_ROUND; 4784 } 4785 Tmp1 = Node->getOperand(0); 4786 // Promote each of the values to the new type. 4787 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4788 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4789 // Perform the larger operation, then round down. 4790 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4791 Tmp1->setFlags(Node->getFlags()); 4792 if (TruncOp != ISD::FP_ROUND) 4793 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4794 else 4795 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4796 DAG.getIntPtrConstant(0, dl)); 4797 Results.push_back(Tmp1); 4798 break; 4799 } 4800 case ISD::VECTOR_SHUFFLE: { 4801 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4802 4803 // Cast the two input vectors. 4804 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4805 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4806 4807 // Convert the shuffle mask to the right # elements. 4808 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4809 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4810 Results.push_back(Tmp1); 4811 break; 4812 } 4813 case ISD::SETCC: 4814 case ISD::STRICT_FSETCC: 4815 case ISD::STRICT_FSETCCS: { 4816 unsigned ExtOp = ISD::FP_EXTEND; 4817 if (NVT.isInteger()) { 4818 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4819 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4820 } 4821 if (Node->isStrictFPOpcode()) { 4822 SDValue InChain = Node->getOperand(0); 4823 std::tie(Tmp1, std::ignore) = 4824 DAG.getStrictFPExtendOrRound(Node->getOperand(1), InChain, dl, NVT); 4825 std::tie(Tmp2, std::ignore) = 4826 DAG.getStrictFPExtendOrRound(Node->getOperand(2), InChain, dl, NVT); 4827 SmallVector<SDValue, 2> TmpChains = {Tmp1.getValue(1), Tmp2.getValue(1)}; 4828 SDValue OutChain = DAG.getTokenFactor(dl, TmpChains); 4829 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 4830 Results.push_back(DAG.getNode(Node->getOpcode(), dl, VTs, 4831 {OutChain, Tmp1, Tmp2, Node->getOperand(3)}, 4832 Node->getFlags())); 4833 Results.push_back(Results.back().getValue(1)); 4834 break; 4835 } 4836 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4837 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4838 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, 4839 Tmp2, Node->getOperand(2), Node->getFlags())); 4840 break; 4841 } 4842 case ISD::BR_CC: { 4843 unsigned ExtOp = ISD::FP_EXTEND; 4844 if (NVT.isInteger()) { 4845 ISD::CondCode CCCode = 4846 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4847 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4848 } 4849 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4850 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4851 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4852 Node->getOperand(0), Node->getOperand(1), 4853 Tmp1, Tmp2, Node->getOperand(4))); 4854 break; 4855 } 4856 case ISD::FADD: 4857 case ISD::FSUB: 4858 case ISD::FMUL: 4859 case ISD::FDIV: 4860 case ISD::FREM: 4861 case ISD::FMINNUM: 4862 case ISD::FMAXNUM: 4863 case ISD::FPOW: 4864 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4865 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4866 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4867 Node->getFlags()); 4868 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4869 Tmp3, DAG.getIntPtrConstant(0, dl))); 4870 break; 4871 case ISD::STRICT_FREM: 4872 case ISD::STRICT_FPOW: 4873 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4874 {Node->getOperand(0), Node->getOperand(1)}); 4875 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4876 {Node->getOperand(0), Node->getOperand(2)}); 4877 Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 4878 Tmp2.getValue(1)); 4879 Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4880 {Tmp3, Tmp1, Tmp2}); 4881 Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4882 {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)}); 4883 Results.push_back(Tmp1); 4884 Results.push_back(Tmp1.getValue(1)); 4885 break; 4886 case ISD::FMA: 4887 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4888 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4889 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4890 Results.push_back( 4891 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4892 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4893 DAG.getIntPtrConstant(0, dl))); 4894 break; 4895 case ISD::FCOPYSIGN: 4896 case ISD::FPOWI: { 4897 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4898 Tmp2 = Node->getOperand(1); 4899 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4900 4901 // fcopysign doesn't change anything but the sign bit, so 4902 // (fp_round (fcopysign (fpext a), b)) 4903 // is as precise as 4904 // (fp_round (fpext a)) 4905 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4906 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4907 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4908 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4909 break; 4910 } 4911 case ISD::FFLOOR: 4912 case ISD::FCEIL: 4913 case ISD::FRINT: 4914 case ISD::FNEARBYINT: 4915 case ISD::FROUND: 4916 case ISD::FROUNDEVEN: 4917 case ISD::FTRUNC: 4918 case ISD::FNEG: 4919 case ISD::FSQRT: 4920 case ISD::FSIN: 4921 case ISD::FCOS: 4922 case ISD::FLOG: 4923 case ISD::FLOG2: 4924 case ISD::FLOG10: 4925 case ISD::FABS: 4926 case ISD::FEXP: 4927 case ISD::FEXP2: 4928 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4929 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4930 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4931 Tmp2, DAG.getIntPtrConstant(0, dl))); 4932 break; 4933 case ISD::STRICT_FFLOOR: 4934 case ISD::STRICT_FCEIL: 4935 case ISD::STRICT_FSIN: 4936 case ISD::STRICT_FCOS: 4937 case ISD::STRICT_FLOG: 4938 case ISD::STRICT_FLOG10: 4939 case ISD::STRICT_FEXP: 4940 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4941 {Node->getOperand(0), Node->getOperand(1)}); 4942 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4943 {Tmp1.getValue(1), Tmp1}); 4944 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4945 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 4946 Results.push_back(Tmp3); 4947 Results.push_back(Tmp3.getValue(1)); 4948 break; 4949 case ISD::BUILD_VECTOR: { 4950 MVT EltVT = OVT.getVectorElementType(); 4951 MVT NewEltVT = NVT.getVectorElementType(); 4952 4953 // Handle bitcasts to a different vector type with the same total bit size 4954 // 4955 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4956 // => 4957 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4958 4959 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4960 "Invalid promote type for build_vector"); 4961 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4962 4963 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4964 4965 SmallVector<SDValue, 8> NewOps; 4966 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4967 SDValue Op = Node->getOperand(I); 4968 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4969 } 4970 4971 SDLoc SL(Node); 4972 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4973 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4974 Results.push_back(CvtVec); 4975 break; 4976 } 4977 case ISD::EXTRACT_VECTOR_ELT: { 4978 MVT EltVT = OVT.getVectorElementType(); 4979 MVT NewEltVT = NVT.getVectorElementType(); 4980 4981 // Handle bitcasts to a different vector type with the same total bit size. 4982 // 4983 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4984 // => 4985 // v4i32:castx = bitcast x:v2i64 4986 // 4987 // i64 = bitcast 4988 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4989 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4990 // 4991 4992 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4993 "Invalid promote type for extract_vector_elt"); 4994 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4995 4996 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4997 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4998 4999 SDValue Idx = Node->getOperand(1); 5000 EVT IdxVT = Idx.getValueType(); 5001 SDLoc SL(Node); 5002 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 5003 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 5004 5005 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 5006 5007 SmallVector<SDValue, 8> NewOps; 5008 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 5009 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 5010 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 5011 5012 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 5013 CastVec, TmpIdx); 5014 NewOps.push_back(Elt); 5015 } 5016 5017 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 5018 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 5019 break; 5020 } 5021 case ISD::INSERT_VECTOR_ELT: { 5022 MVT EltVT = OVT.getVectorElementType(); 5023 MVT NewEltVT = NVT.getVectorElementType(); 5024 5025 // Handle bitcasts to a different vector type with the same total bit size 5026 // 5027 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 5028 // => 5029 // v4i32:castx = bitcast x:v2i64 5030 // v2i32:casty = bitcast y:i64 5031 // 5032 // v2i64 = bitcast 5033 // (v4i32 insert_vector_elt 5034 // (v4i32 insert_vector_elt v4i32:castx, 5035 // (extract_vector_elt casty, 0), 2 * z), 5036 // (extract_vector_elt casty, 1), (2 * z + 1)) 5037 5038 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 5039 "Invalid promote type for insert_vector_elt"); 5040 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 5041 5042 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 5043 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 5044 5045 SDValue Val = Node->getOperand(1); 5046 SDValue Idx = Node->getOperand(2); 5047 EVT IdxVT = Idx.getValueType(); 5048 SDLoc SL(Node); 5049 5050 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 5051 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 5052 5053 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 5054 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 5055 5056 SDValue NewVec = CastVec; 5057 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 5058 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 5059 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 5060 5061 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 5062 CastVal, IdxOffset); 5063 5064 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 5065 NewVec, Elt, InEltIdx); 5066 } 5067 5068 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 5069 break; 5070 } 5071 case ISD::SCALAR_TO_VECTOR: { 5072 MVT EltVT = OVT.getVectorElementType(); 5073 MVT NewEltVT = NVT.getVectorElementType(); 5074 5075 // Handle bitcasts to different vector type with the same total bit size. 5076 // 5077 // e.g. v2i64 = scalar_to_vector x:i64 5078 // => 5079 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 5080 // 5081 5082 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 5083 SDValue Val = Node->getOperand(0); 5084 SDLoc SL(Node); 5085 5086 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 5087 SDValue Undef = DAG.getUNDEF(MidVT); 5088 5089 SmallVector<SDValue, 8> NewElts; 5090 NewElts.push_back(CastVal); 5091 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 5092 NewElts.push_back(Undef); 5093 5094 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 5095 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 5096 Results.push_back(CvtVec); 5097 break; 5098 } 5099 case ISD::ATOMIC_SWAP: { 5100 AtomicSDNode *AM = cast<AtomicSDNode>(Node); 5101 SDLoc SL(Node); 5102 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal()); 5103 assert(NVT.getSizeInBits() == OVT.getSizeInBits() && 5104 "unexpected promotion type"); 5105 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && 5106 "unexpected atomic_swap with illegal type"); 5107 5108 SDValue NewAtomic 5109 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT, 5110 DAG.getVTList(NVT, MVT::Other), 5111 { AM->getChain(), AM->getBasePtr(), CastVal }, 5112 AM->getMemOperand()); 5113 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); 5114 Results.push_back(NewAtomic.getValue(1)); 5115 break; 5116 } 5117 } 5118 5119 // Replace the original node with the legalized result. 5120 if (!Results.empty()) { 5121 LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); 5122 ReplaceNode(Node, Results.data()); 5123 } else 5124 LLVM_DEBUG(dbgs() << "Could not promote node\n"); 5125 } 5126 5127 /// This is the entry point for the file. 5128 void SelectionDAG::Legalize() { 5129 AssignTopologicalOrder(); 5130 5131 SmallPtrSet<SDNode *, 16> LegalizedNodes; 5132 // Use a delete listener to remove nodes which were deleted during 5133 // legalization from LegalizeNodes. This is needed to handle the situation 5134 // where a new node is allocated by the object pool to the same address of a 5135 // previously deleted node. 5136 DAGNodeDeletedListener DeleteListener( 5137 *this, 5138 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 5139 5140 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 5141 5142 // Visit all the nodes. We start in topological order, so that we see 5143 // nodes with their original operands intact. Legalization can produce 5144 // new nodes which may themselves need to be legalized. Iterate until all 5145 // nodes have been legalized. 5146 while (true) { 5147 bool AnyLegalized = false; 5148 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 5149 --NI; 5150 5151 SDNode *N = &*NI; 5152 if (N->use_empty() && N != getRoot().getNode()) { 5153 ++NI; 5154 DeleteNode(N); 5155 continue; 5156 } 5157 5158 if (LegalizedNodes.insert(N).second) { 5159 AnyLegalized = true; 5160 Legalizer.LegalizeOp(N); 5161 5162 if (N->use_empty() && N != getRoot().getNode()) { 5163 ++NI; 5164 DeleteNode(N); 5165 } 5166 } 5167 } 5168 if (!AnyLegalized) 5169 break; 5170 5171 } 5172 5173 // Remove dead nodes now. 5174 RemoveDeadNodes(); 5175 } 5176 5177 bool SelectionDAG::LegalizeOp(SDNode *N, 5178 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 5179 SmallPtrSet<SDNode *, 16> LegalizedNodes; 5180 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 5181 5182 // Directly insert the node in question, and legalize it. This will recurse 5183 // as needed through operands. 5184 LegalizedNodes.insert(N); 5185 Legalizer.LegalizeOp(N); 5186 5187 return LegalizedNodes.count(N); 5188 } 5189