1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::Legalize method. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/CodeGen/ISDOpcodes.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/RuntimeLibcalls.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/SelectionDAGNodes.h" 28 #include "llvm/CodeGen/TargetFrameLowering.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/CodeGen/ValueTypes.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstdint> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "legalizedag" 57 58 namespace { 59 60 /// Keeps track of state when getting the sign of a floating-point value as an 61 /// integer. 62 struct FloatSignAsInt { 63 EVT FloatVT; 64 SDValue Chain; 65 SDValue FloatPtr; 66 SDValue IntPtr; 67 MachinePointerInfo IntPointerInfo; 68 MachinePointerInfo FloatPointerInfo; 69 SDValue IntValue; 70 APInt SignMask; 71 uint8_t SignBit; 72 }; 73 74 //===----------------------------------------------------------------------===// 75 /// This takes an arbitrary SelectionDAG as input and 76 /// hacks on it until the target machine can handle it. This involves 77 /// eliminating value sizes the machine cannot handle (promoting small sizes to 78 /// large sizes or splitting up large values into small values) as well as 79 /// eliminating operations the machine cannot handle. 80 /// 81 /// This code also does a small amount of optimization and recognition of idioms 82 /// as part of its processing. For example, if a target does not support a 83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 84 /// will attempt merge setcc and brc instructions into brcc's. 85 class SelectionDAGLegalize { 86 const TargetMachine &TM; 87 const TargetLowering &TLI; 88 SelectionDAG &DAG; 89 90 /// The set of nodes which have already been legalized. We hold a 91 /// reference to it in order to update as necessary on node deletion. 92 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 93 94 /// A set of all the nodes updated during legalization. 95 SmallSetVector<SDNode *, 16> *UpdatedNodes; 96 97 EVT getSetCCResultType(EVT VT) const { 98 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 99 } 100 101 // Libcall insertion helpers. 102 103 public: 104 SelectionDAGLegalize(SelectionDAG &DAG, 105 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 106 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 107 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 108 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 109 110 /// Legalizes the given operation. 111 void LegalizeOp(SDNode *Node); 112 113 private: 114 SDValue OptimizeFloatStore(StoreSDNode *ST); 115 116 void LegalizeLoadOps(SDNode *Node); 117 void LegalizeStoreOps(SDNode *Node); 118 119 /// Some targets cannot handle a variable 120 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 121 /// is necessary to spill the vector being inserted into to memory, perform 122 /// the insert there, and then read the result back. 123 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 124 const SDLoc &dl); 125 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 126 const SDLoc &dl); 127 128 /// Return a vector shuffle operation which 129 /// performs the same shuffe in terms of order or result bytes, but on a type 130 /// whose vector element type is narrower than the original shuffle type. 131 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 132 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 133 SDValue N1, SDValue N2, 134 ArrayRef<int> Mask) const; 135 136 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 137 138 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall LC, 139 SmallVectorImpl<SDValue> &Results); 140 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 141 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 142 RTLIB::Libcall Call_F128, 143 RTLIB::Libcall Call_PPCF128, 144 SmallVectorImpl<SDValue> &Results); 145 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 146 RTLIB::Libcall Call_I8, 147 RTLIB::Libcall Call_I16, 148 RTLIB::Libcall Call_I32, 149 RTLIB::Libcall Call_I64, 150 RTLIB::Libcall Call_I128); 151 void ExpandArgFPLibCall(SDNode *Node, 152 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, 153 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, 154 RTLIB::Libcall Call_PPCF128, 155 SmallVectorImpl<SDValue> &Results); 156 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 157 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 158 159 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 160 const SDLoc &dl); 161 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 162 const SDLoc &dl, SDValue ChainIn); 163 SDValue ExpandBUILD_VECTOR(SDNode *Node); 164 SDValue ExpandSPLAT_VECTOR(SDNode *Node); 165 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 166 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 167 SmallVectorImpl<SDValue> &Results); 168 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 169 SDValue Value) const; 170 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 171 SDValue NewIntValue) const; 172 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 173 SDValue ExpandFABS(SDNode *Node) const; 174 SDValue ExpandFNEG(SDNode *Node) const; 175 SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain); 176 void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl, 177 SmallVectorImpl<SDValue> &Results); 178 void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 179 SmallVectorImpl<SDValue> &Results); 180 SDValue PromoteLegalFP_TO_INT_SAT(SDNode *Node, const SDLoc &dl); 181 182 SDValue ExpandPARITY(SDValue Op, const SDLoc &dl); 183 184 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 185 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 186 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 187 188 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 189 SDValue ExpandConstant(ConstantSDNode *CP); 190 191 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 192 bool ExpandNode(SDNode *Node); 193 void ConvertNodeToLibcall(SDNode *Node); 194 void PromoteNode(SDNode *Node); 195 196 public: 197 // Node replacement helpers 198 199 void ReplacedNode(SDNode *N) { 200 LegalizedNodes.erase(N); 201 if (UpdatedNodes) 202 UpdatedNodes->insert(N); 203 } 204 205 void ReplaceNode(SDNode *Old, SDNode *New) { 206 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 207 dbgs() << " with: "; New->dump(&DAG)); 208 209 assert(Old->getNumValues() == New->getNumValues() && 210 "Replacing one node with another that produces a different number " 211 "of values!"); 212 DAG.ReplaceAllUsesWith(Old, New); 213 if (UpdatedNodes) 214 UpdatedNodes->insert(New); 215 ReplacedNode(Old); 216 } 217 218 void ReplaceNode(SDValue Old, SDValue New) { 219 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 220 dbgs() << " with: "; New->dump(&DAG)); 221 222 DAG.ReplaceAllUsesWith(Old, New); 223 if (UpdatedNodes) 224 UpdatedNodes->insert(New.getNode()); 225 ReplacedNode(Old.getNode()); 226 } 227 228 void ReplaceNode(SDNode *Old, const SDValue *New) { 229 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 230 231 DAG.ReplaceAllUsesWith(Old, New); 232 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 233 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); 234 New[i]->dump(&DAG)); 235 if (UpdatedNodes) 236 UpdatedNodes->insert(New[i].getNode()); 237 } 238 ReplacedNode(Old); 239 } 240 241 void ReplaceNodeWithValue(SDValue Old, SDValue New) { 242 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 243 dbgs() << " with: "; New->dump(&DAG)); 244 245 DAG.ReplaceAllUsesOfValueWith(Old, New); 246 if (UpdatedNodes) 247 UpdatedNodes->insert(New.getNode()); 248 ReplacedNode(Old.getNode()); 249 } 250 }; 251 252 } // end anonymous namespace 253 254 /// Return a vector shuffle operation which 255 /// performs the same shuffle in terms of order or result bytes, but on a type 256 /// whose vector element type is narrower than the original shuffle type. 257 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 258 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 259 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 260 ArrayRef<int> Mask) const { 261 unsigned NumMaskElts = VT.getVectorNumElements(); 262 unsigned NumDestElts = NVT.getVectorNumElements(); 263 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 264 265 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 266 267 if (NumEltsGrowth == 1) 268 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 269 270 SmallVector<int, 8> NewMask; 271 for (unsigned i = 0; i != NumMaskElts; ++i) { 272 int Idx = Mask[i]; 273 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 274 if (Idx < 0) 275 NewMask.push_back(-1); 276 else 277 NewMask.push_back(Idx * NumEltsGrowth + j); 278 } 279 } 280 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 281 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 282 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 283 } 284 285 /// Expands the ConstantFP node to an integer constant or 286 /// a load from the constant pool. 287 SDValue 288 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 289 bool Extend = false; 290 SDLoc dl(CFP); 291 292 // If a FP immediate is precise when represented as a float and if the 293 // target can do an extending load from float to double, we put it into 294 // the constant pool as a float, even if it's is statically typed as a 295 // double. This shrinks FP constants and canonicalizes them for targets where 296 // an FP extending load is the same cost as a normal load (such as on the x87 297 // fp stack or PPC FP unit). 298 EVT VT = CFP->getValueType(0); 299 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 300 if (!UseCP) { 301 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 302 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 303 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 304 } 305 306 APFloat APF = CFP->getValueAPF(); 307 EVT OrigVT = VT; 308 EVT SVT = VT; 309 310 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 311 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 312 if (!APF.isSignaling()) { 313 while (SVT != MVT::f32 && SVT != MVT::f16) { 314 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 315 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 316 // Only do this if the target has a native EXTLOAD instruction from 317 // smaller type. 318 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 319 TLI.ShouldShrinkFPConstant(OrigVT)) { 320 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 321 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 322 VT = SVT; 323 Extend = true; 324 } 325 } 326 } 327 328 SDValue CPIdx = 329 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 330 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 331 if (Extend) { 332 SDValue Result = DAG.getExtLoad( 333 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 334 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 335 Alignment); 336 return Result; 337 } 338 SDValue Result = DAG.getLoad( 339 OrigVT, dl, DAG.getEntryNode(), CPIdx, 340 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 341 return Result; 342 } 343 344 /// Expands the Constant node to a load from the constant pool. 345 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 346 SDLoc dl(CP); 347 EVT VT = CP->getValueType(0); 348 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 349 TLI.getPointerTy(DAG.getDataLayout())); 350 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 351 SDValue Result = DAG.getLoad( 352 VT, dl, DAG.getEntryNode(), CPIdx, 353 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 354 return Result; 355 } 356 357 /// Some target cannot handle a variable insertion index for the 358 /// INSERT_VECTOR_ELT instruction. In this case, it 359 /// is necessary to spill the vector being inserted into to memory, perform 360 /// the insert there, and then read the result back. 361 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 362 SDValue Val, 363 SDValue Idx, 364 const SDLoc &dl) { 365 SDValue Tmp1 = Vec; 366 SDValue Tmp2 = Val; 367 SDValue Tmp3 = Idx; 368 369 // If the target doesn't support this, we have to spill the input vector 370 // to a temporary stack slot, update the element, then reload it. This is 371 // badness. We could also load the value into a vector register (either 372 // with a "move to register" or "extload into register" instruction, then 373 // permute it into place, if the idx is a constant and if the idx is 374 // supported by the target. 375 EVT VT = Tmp1.getValueType(); 376 EVT EltVT = VT.getVectorElementType(); 377 SDValue StackPtr = DAG.CreateStackTemporary(VT); 378 379 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 380 381 // Store the vector. 382 SDValue Ch = DAG.getStore( 383 DAG.getEntryNode(), dl, Tmp1, StackPtr, 384 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 385 386 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 387 388 // Store the scalar value. 389 Ch = DAG.getTruncStore( 390 Ch, dl, Tmp2, StackPtr2, 391 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT); 392 // Load the updated vector. 393 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 394 DAG.getMachineFunction(), SPFI)); 395 } 396 397 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 398 SDValue Idx, 399 const SDLoc &dl) { 400 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 401 // SCALAR_TO_VECTOR requires that the type of the value being inserted 402 // match the element type of the vector being created, except for 403 // integers in which case the inserted value can be over width. 404 EVT EltVT = Vec.getValueType().getVectorElementType(); 405 if (Val.getValueType() == EltVT || 406 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 407 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 408 Vec.getValueType(), Val); 409 410 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 411 // We generate a shuffle of InVec and ScVec, so the shuffle mask 412 // should be 0,1,2,3,4,5... with the appropriate element replaced with 413 // elt 0 of the RHS. 414 SmallVector<int, 8> ShufOps; 415 for (unsigned i = 0; i != NumElts; ++i) 416 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 417 418 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 419 } 420 } 421 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 422 } 423 424 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 425 if (!ISD::isNormalStore(ST)) 426 return SDValue(); 427 428 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); 429 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 430 // FIXME: move this to the DAG Combiner! Note that we can't regress due 431 // to phase ordering between legalized code and the dag combiner. This 432 // probably means that we need to integrate dag combiner and legalizer 433 // together. 434 // We generally can't do this one for long doubles. 435 SDValue Chain = ST->getChain(); 436 SDValue Ptr = ST->getBasePtr(); 437 SDValue Value = ST->getValue(); 438 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 439 AAMDNodes AAInfo = ST->getAAInfo(); 440 SDLoc dl(ST); 441 442 // Don't optimise TargetConstantFP 443 if (Value.getOpcode() == ISD::TargetConstantFP) 444 return SDValue(); 445 446 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) { 447 if (CFP->getValueType(0) == MVT::f32 && 448 TLI.isTypeLegal(MVT::i32)) { 449 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 450 bitcastToAPInt().zextOrTrunc(32), 451 SDLoc(CFP), MVT::i32); 452 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 453 ST->getOriginalAlign(), MMOFlags, AAInfo); 454 } 455 456 if (CFP->getValueType(0) == MVT::f64) { 457 // If this target supports 64-bit registers, do a single 64-bit store. 458 if (TLI.isTypeLegal(MVT::i64)) { 459 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 460 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 461 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 462 ST->getOriginalAlign(), MMOFlags, AAInfo); 463 } 464 465 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 466 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 467 // stores. If the target supports neither 32- nor 64-bits, this 468 // xform is certainly not worth it. 469 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 470 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 471 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 472 if (DAG.getDataLayout().isBigEndian()) 473 std::swap(Lo, Hi); 474 475 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), 476 ST->getOriginalAlign(), MMOFlags, AAInfo); 477 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), dl); 478 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 479 ST->getPointerInfo().getWithOffset(4), 480 ST->getOriginalAlign(), MMOFlags, AAInfo); 481 482 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 483 } 484 } 485 } 486 return SDValue(); 487 } 488 489 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 490 StoreSDNode *ST = cast<StoreSDNode>(Node); 491 SDValue Chain = ST->getChain(); 492 SDValue Ptr = ST->getBasePtr(); 493 SDLoc dl(Node); 494 495 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 496 AAMDNodes AAInfo = ST->getAAInfo(); 497 498 if (!ST->isTruncatingStore()) { 499 LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); 500 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 501 ReplaceNode(ST, OptStore); 502 return; 503 } 504 505 SDValue Value = ST->getValue(); 506 MVT VT = Value.getSimpleValueType(); 507 switch (TLI.getOperationAction(ISD::STORE, VT)) { 508 default: llvm_unreachable("This action is not supported yet!"); 509 case TargetLowering::Legal: { 510 // If this is an unaligned store and the target doesn't support it, 511 // expand it. 512 EVT MemVT = ST->getMemoryVT(); 513 const DataLayout &DL = DAG.getDataLayout(); 514 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 515 *ST->getMemOperand())) { 516 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 517 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 518 ReplaceNode(SDValue(ST, 0), Result); 519 } else 520 LLVM_DEBUG(dbgs() << "Legal store\n"); 521 break; 522 } 523 case TargetLowering::Custom: { 524 LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); 525 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 526 if (Res && Res != SDValue(Node, 0)) 527 ReplaceNode(SDValue(Node, 0), Res); 528 return; 529 } 530 case TargetLowering::Promote: { 531 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 532 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 533 "Can only promote stores to same size type"); 534 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 535 SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 536 ST->getOriginalAlign(), MMOFlags, AAInfo); 537 ReplaceNode(SDValue(Node, 0), Result); 538 break; 539 } 540 } 541 return; 542 } 543 544 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); 545 SDValue Value = ST->getValue(); 546 EVT StVT = ST->getMemoryVT(); 547 TypeSize StWidth = StVT.getSizeInBits(); 548 TypeSize StSize = StVT.getStoreSizeInBits(); 549 auto &DL = DAG.getDataLayout(); 550 551 if (StWidth != StSize) { 552 // Promote to a byte-sized store with upper bits zero if not 553 // storing an integral number of bytes. For example, promote 554 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 555 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StSize.getFixedSize()); 556 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 557 SDValue Result = 558 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 559 ST->getOriginalAlign(), MMOFlags, AAInfo); 560 ReplaceNode(SDValue(Node, 0), Result); 561 } else if (!StVT.isVector() && !isPowerOf2_64(StWidth.getFixedSize())) { 562 // If not storing a power-of-2 number of bits, expand as two stores. 563 assert(!StVT.isVector() && "Unsupported truncstore!"); 564 unsigned StWidthBits = StWidth.getFixedSize(); 565 unsigned LogStWidth = Log2_32(StWidthBits); 566 assert(LogStWidth < 32); 567 unsigned RoundWidth = 1 << LogStWidth; 568 assert(RoundWidth < StWidthBits); 569 unsigned ExtraWidth = StWidthBits - RoundWidth; 570 assert(ExtraWidth < RoundWidth); 571 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 572 "Store size not an integral number of bytes!"); 573 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 574 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 575 SDValue Lo, Hi; 576 unsigned IncrementSize; 577 578 if (DL.isLittleEndian()) { 579 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 580 // Store the bottom RoundWidth bits. 581 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 582 RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 583 584 // Store the remaining ExtraWidth bits. 585 IncrementSize = RoundWidth / 8; 586 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 587 Hi = DAG.getNode( 588 ISD::SRL, dl, Value.getValueType(), Value, 589 DAG.getConstant(RoundWidth, dl, 590 TLI.getShiftAmountTy(Value.getValueType(), DL))); 591 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, 592 ST->getPointerInfo().getWithOffset(IncrementSize), 593 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 594 } else { 595 // Big endian - avoid unaligned stores. 596 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 597 // Store the top RoundWidth bits. 598 Hi = DAG.getNode( 599 ISD::SRL, dl, Value.getValueType(), Value, 600 DAG.getConstant(ExtraWidth, dl, 601 TLI.getShiftAmountTy(Value.getValueType(), DL))); 602 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT, 603 ST->getOriginalAlign(), MMOFlags, AAInfo); 604 605 // Store the remaining ExtraWidth bits. 606 IncrementSize = RoundWidth / 8; 607 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 608 DAG.getConstant(IncrementSize, dl, 609 Ptr.getValueType())); 610 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, 611 ST->getPointerInfo().getWithOffset(IncrementSize), 612 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 613 } 614 615 // The order of the stores doesn't matter. 616 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 617 ReplaceNode(SDValue(Node, 0), Result); 618 } else { 619 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 620 default: llvm_unreachable("This action is not supported yet!"); 621 case TargetLowering::Legal: { 622 EVT MemVT = ST->getMemoryVT(); 623 // If this is an unaligned store and the target doesn't support it, 624 // expand it. 625 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 626 *ST->getMemOperand())) { 627 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 628 ReplaceNode(SDValue(ST, 0), Result); 629 } 630 break; 631 } 632 case TargetLowering::Custom: { 633 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 634 if (Res && Res != SDValue(Node, 0)) 635 ReplaceNode(SDValue(Node, 0), Res); 636 return; 637 } 638 case TargetLowering::Expand: 639 assert(!StVT.isVector() && 640 "Vector Stores are handled in LegalizeVectorOps"); 641 642 SDValue Result; 643 644 // TRUNCSTORE:i16 i32 -> STORE i16 645 if (TLI.isTypeLegal(StVT)) { 646 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 647 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 648 ST->getOriginalAlign(), MMOFlags, AAInfo); 649 } else { 650 // The in-memory type isn't legal. Truncate to the type it would promote 651 // to, and then do a truncstore. 652 Value = DAG.getNode(ISD::TRUNCATE, dl, 653 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 654 Value); 655 Result = 656 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT, 657 ST->getOriginalAlign(), MMOFlags, AAInfo); 658 } 659 660 ReplaceNode(SDValue(Node, 0), Result); 661 break; 662 } 663 } 664 } 665 666 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 667 LoadSDNode *LD = cast<LoadSDNode>(Node); 668 SDValue Chain = LD->getChain(); // The chain. 669 SDValue Ptr = LD->getBasePtr(); // The base pointer. 670 SDValue Value; // The value returned by the load op. 671 SDLoc dl(Node); 672 673 ISD::LoadExtType ExtType = LD->getExtensionType(); 674 if (ExtType == ISD::NON_EXTLOAD) { 675 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 676 MVT VT = Node->getSimpleValueType(0); 677 SDValue RVal = SDValue(Node, 0); 678 SDValue RChain = SDValue(Node, 1); 679 680 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 681 default: llvm_unreachable("This action is not supported yet!"); 682 case TargetLowering::Legal: { 683 EVT MemVT = LD->getMemoryVT(); 684 const DataLayout &DL = DAG.getDataLayout(); 685 // If this is an unaligned load and the target doesn't support it, 686 // expand it. 687 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 688 *LD->getMemOperand())) { 689 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 690 } 691 break; 692 } 693 case TargetLowering::Custom: 694 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 695 RVal = Res; 696 RChain = Res.getValue(1); 697 } 698 break; 699 700 case TargetLowering::Promote: { 701 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 702 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 703 "Can only promote loads to same size type"); 704 705 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 706 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 707 RChain = Res.getValue(1); 708 break; 709 } 710 } 711 if (RChain.getNode() != Node) { 712 assert(RVal.getNode() != Node && "Load must be completely replaced"); 713 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 714 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 715 if (UpdatedNodes) { 716 UpdatedNodes->insert(RVal.getNode()); 717 UpdatedNodes->insert(RChain.getNode()); 718 } 719 ReplacedNode(Node); 720 } 721 return; 722 } 723 724 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); 725 EVT SrcVT = LD->getMemoryVT(); 726 TypeSize SrcWidth = SrcVT.getSizeInBits(); 727 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 728 AAMDNodes AAInfo = LD->getAAInfo(); 729 730 if (SrcWidth != SrcVT.getStoreSizeInBits() && 731 // Some targets pretend to have an i1 loading operation, and actually 732 // load an i8. This trick is correct for ZEXTLOAD because the top 7 733 // bits are guaranteed to be zero; it helps the optimizers understand 734 // that these bits are zero. It is also useful for EXTLOAD, since it 735 // tells the optimizers that those bits are undefined. It would be 736 // nice to have an effective generic way of getting these benefits... 737 // Until such a way is found, don't insist on promoting i1 here. 738 (SrcVT != MVT::i1 || 739 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 740 TargetLowering::Promote)) { 741 // Promote to a byte-sized load if not loading an integral number of 742 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 743 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 744 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 745 SDValue Ch; 746 747 // The extra bits are guaranteed to be zero, since we stored them that 748 // way. A zext load from NVT thus automatically gives zext from SrcVT. 749 750 ISD::LoadExtType NewExtType = 751 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 752 753 SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 754 Chain, Ptr, LD->getPointerInfo(), NVT, 755 LD->getOriginalAlign(), MMOFlags, AAInfo); 756 757 Ch = Result.getValue(1); // The chain. 758 759 if (ExtType == ISD::SEXTLOAD) 760 // Having the top bits zero doesn't help when sign extending. 761 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 762 Result.getValueType(), 763 Result, DAG.getValueType(SrcVT)); 764 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 765 // All the top bits are guaranteed to be zero - inform the optimizers. 766 Result = DAG.getNode(ISD::AssertZext, dl, 767 Result.getValueType(), Result, 768 DAG.getValueType(SrcVT)); 769 770 Value = Result; 771 Chain = Ch; 772 } else if (!isPowerOf2_64(SrcWidth.getKnownMinSize())) { 773 // If not loading a power-of-2 number of bits, expand as two loads. 774 assert(!SrcVT.isVector() && "Unsupported extload!"); 775 unsigned SrcWidthBits = SrcWidth.getFixedSize(); 776 unsigned LogSrcWidth = Log2_32(SrcWidthBits); 777 assert(LogSrcWidth < 32); 778 unsigned RoundWidth = 1 << LogSrcWidth; 779 assert(RoundWidth < SrcWidthBits); 780 unsigned ExtraWidth = SrcWidthBits - RoundWidth; 781 assert(ExtraWidth < RoundWidth); 782 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 783 "Load size not an integral number of bytes!"); 784 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 785 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 786 SDValue Lo, Hi, Ch; 787 unsigned IncrementSize; 788 auto &DL = DAG.getDataLayout(); 789 790 if (DL.isLittleEndian()) { 791 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 792 // Load the bottom RoundWidth bits. 793 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 794 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 795 MMOFlags, AAInfo); 796 797 // Load the remaining ExtraWidth bits. 798 IncrementSize = RoundWidth / 8; 799 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 800 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 801 LD->getPointerInfo().getWithOffset(IncrementSize), 802 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 803 804 // Build a factor node to remember that this load is independent of 805 // the other one. 806 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 807 Hi.getValue(1)); 808 809 // Move the top bits to the right place. 810 Hi = DAG.getNode( 811 ISD::SHL, dl, Hi.getValueType(), Hi, 812 DAG.getConstant(RoundWidth, dl, 813 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 814 815 // Join the hi and lo parts. 816 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 817 } else { 818 // Big endian - avoid unaligned loads. 819 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 820 // Load the top RoundWidth bits. 821 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 822 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 823 MMOFlags, AAInfo); 824 825 // Load the remaining ExtraWidth bits. 826 IncrementSize = RoundWidth / 8; 827 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 828 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 829 LD->getPointerInfo().getWithOffset(IncrementSize), 830 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 831 832 // Build a factor node to remember that this load is independent of 833 // the other one. 834 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 835 Hi.getValue(1)); 836 837 // Move the top bits to the right place. 838 Hi = DAG.getNode( 839 ISD::SHL, dl, Hi.getValueType(), Hi, 840 DAG.getConstant(ExtraWidth, dl, 841 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 842 843 // Join the hi and lo parts. 844 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 845 } 846 847 Chain = Ch; 848 } else { 849 bool isCustom = false; 850 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 851 SrcVT.getSimpleVT())) { 852 default: llvm_unreachable("This action is not supported yet!"); 853 case TargetLowering::Custom: 854 isCustom = true; 855 LLVM_FALLTHROUGH; 856 case TargetLowering::Legal: 857 Value = SDValue(Node, 0); 858 Chain = SDValue(Node, 1); 859 860 if (isCustom) { 861 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 862 Value = Res; 863 Chain = Res.getValue(1); 864 } 865 } else { 866 // If this is an unaligned load and the target doesn't support it, 867 // expand it. 868 EVT MemVT = LD->getMemoryVT(); 869 const DataLayout &DL = DAG.getDataLayout(); 870 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, 871 *LD->getMemOperand())) { 872 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 873 } 874 } 875 break; 876 877 case TargetLowering::Expand: { 878 EVT DestVT = Node->getValueType(0); 879 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 880 // If the source type is not legal, see if there is a legal extload to 881 // an intermediate type that we can then extend further. 882 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 883 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 884 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 885 // If we are loading a legal type, this is a non-extload followed by a 886 // full extend. 887 ISD::LoadExtType MidExtType = 888 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 889 890 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 891 SrcVT, LD->getMemOperand()); 892 unsigned ExtendOp = 893 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 894 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 895 Chain = Load.getValue(1); 896 break; 897 } 898 899 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 900 // normal undefined upper bits behavior to allow using an in-reg extend 901 // with the illegal FP type, so load as an integer and do the 902 // from-integer conversion. 903 if (SrcVT.getScalarType() == MVT::f16) { 904 EVT ISrcVT = SrcVT.changeTypeToInteger(); 905 EVT IDestVT = DestVT.changeTypeToInteger(); 906 EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 907 908 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain, 909 Ptr, ISrcVT, LD->getMemOperand()); 910 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 911 Chain = Result.getValue(1); 912 break; 913 } 914 } 915 916 assert(!SrcVT.isVector() && 917 "Vector Loads are handled in LegalizeVectorOps"); 918 919 // FIXME: This does not work for vectors on most targets. Sign- 920 // and zero-extend operations are currently folded into extending 921 // loads, whether they are legal or not, and then we end up here 922 // without any support for legalizing them. 923 assert(ExtType != ISD::EXTLOAD && 924 "EXTLOAD should always be supported!"); 925 // Turn the unsupported load into an EXTLOAD followed by an 926 // explicit zero/sign extend inreg. 927 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 928 Node->getValueType(0), 929 Chain, Ptr, SrcVT, 930 LD->getMemOperand()); 931 SDValue ValRes; 932 if (ExtType == ISD::SEXTLOAD) 933 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 934 Result.getValueType(), 935 Result, DAG.getValueType(SrcVT)); 936 else 937 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT); 938 Value = ValRes; 939 Chain = Result.getValue(1); 940 break; 941 } 942 } 943 } 944 945 // Since loads produce two values, make sure to remember that we legalized 946 // both of them. 947 if (Chain.getNode() != Node) { 948 assert(Value.getNode() != Node && "Load must be completely replaced"); 949 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 950 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 951 if (UpdatedNodes) { 952 UpdatedNodes->insert(Value.getNode()); 953 UpdatedNodes->insert(Chain.getNode()); 954 } 955 ReplacedNode(Node); 956 } 957 } 958 959 /// Return a legal replacement for the given operation, with all legal operands. 960 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 961 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 962 963 // Allow illegal target nodes and illegal registers. 964 if (Node->getOpcode() == ISD::TargetConstant || 965 Node->getOpcode() == ISD::Register) 966 return; 967 968 #ifndef NDEBUG 969 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 970 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 971 TargetLowering::TypeLegal && 972 "Unexpected illegal type!"); 973 974 for (const SDValue &Op : Node->op_values()) 975 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 976 TargetLowering::TypeLegal || 977 Op.getOpcode() == ISD::TargetConstant || 978 Op.getOpcode() == ISD::Register) && 979 "Unexpected illegal type!"); 980 #endif 981 982 // Figure out the correct action; the way to query this varies by opcode 983 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 984 bool SimpleFinishLegalizing = true; 985 switch (Node->getOpcode()) { 986 case ISD::INTRINSIC_W_CHAIN: 987 case ISD::INTRINSIC_WO_CHAIN: 988 case ISD::INTRINSIC_VOID: 989 case ISD::STACKSAVE: 990 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 991 break; 992 case ISD::GET_DYNAMIC_AREA_OFFSET: 993 Action = TLI.getOperationAction(Node->getOpcode(), 994 Node->getValueType(0)); 995 break; 996 case ISD::VAARG: 997 Action = TLI.getOperationAction(Node->getOpcode(), 998 Node->getValueType(0)); 999 if (Action != TargetLowering::Promote) 1000 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 1001 break; 1002 case ISD::FP_TO_FP16: 1003 case ISD::SINT_TO_FP: 1004 case ISD::UINT_TO_FP: 1005 case ISD::EXTRACT_VECTOR_ELT: 1006 case ISD::LROUND: 1007 case ISD::LLROUND: 1008 case ISD::LRINT: 1009 case ISD::LLRINT: 1010 Action = TLI.getOperationAction(Node->getOpcode(), 1011 Node->getOperand(0).getValueType()); 1012 break; 1013 case ISD::STRICT_FP_TO_FP16: 1014 case ISD::STRICT_SINT_TO_FP: 1015 case ISD::STRICT_UINT_TO_FP: 1016 case ISD::STRICT_LRINT: 1017 case ISD::STRICT_LLRINT: 1018 case ISD::STRICT_LROUND: 1019 case ISD::STRICT_LLROUND: 1020 // These pseudo-ops are the same as the other STRICT_ ops except 1021 // they are registered with setOperationAction() using the input type 1022 // instead of the output type. 1023 Action = TLI.getOperationAction(Node->getOpcode(), 1024 Node->getOperand(1).getValueType()); 1025 break; 1026 case ISD::SIGN_EXTEND_INREG: { 1027 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1028 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1029 break; 1030 } 1031 case ISD::ATOMIC_STORE: 1032 Action = TLI.getOperationAction(Node->getOpcode(), 1033 Node->getOperand(2).getValueType()); 1034 break; 1035 case ISD::SELECT_CC: 1036 case ISD::STRICT_FSETCC: 1037 case ISD::STRICT_FSETCCS: 1038 case ISD::SETCC: 1039 case ISD::BR_CC: { 1040 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 1041 Node->getOpcode() == ISD::STRICT_FSETCC ? 3 : 1042 Node->getOpcode() == ISD::STRICT_FSETCCS ? 3 : 1043 Node->getOpcode() == ISD::SETCC ? 2 : 1; 1044 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 1045 Node->getOpcode() == ISD::STRICT_FSETCC ? 1 : 1046 Node->getOpcode() == ISD::STRICT_FSETCCS ? 1 : 0; 1047 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1048 ISD::CondCode CCCode = 1049 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1050 Action = TLI.getCondCodeAction(CCCode, OpVT); 1051 if (Action == TargetLowering::Legal) { 1052 if (Node->getOpcode() == ISD::SELECT_CC) 1053 Action = TLI.getOperationAction(Node->getOpcode(), 1054 Node->getValueType(0)); 1055 else 1056 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1057 } 1058 break; 1059 } 1060 case ISD::LOAD: 1061 case ISD::STORE: 1062 // FIXME: Model these properly. LOAD and STORE are complicated, and 1063 // STORE expects the unlegalized operand in some cases. 1064 SimpleFinishLegalizing = false; 1065 break; 1066 case ISD::CALLSEQ_START: 1067 case ISD::CALLSEQ_END: 1068 // FIXME: This shouldn't be necessary. These nodes have special properties 1069 // dealing with the recursive nature of legalization. Removing this 1070 // special case should be done as part of making LegalizeDAG non-recursive. 1071 SimpleFinishLegalizing = false; 1072 break; 1073 case ISD::EXTRACT_ELEMENT: 1074 case ISD::FLT_ROUNDS_: 1075 case ISD::MERGE_VALUES: 1076 case ISD::EH_RETURN: 1077 case ISD::FRAME_TO_ARGS_OFFSET: 1078 case ISD::EH_DWARF_CFA: 1079 case ISD::EH_SJLJ_SETJMP: 1080 case ISD::EH_SJLJ_LONGJMP: 1081 case ISD::EH_SJLJ_SETUP_DISPATCH: 1082 // These operations lie about being legal: when they claim to be legal, 1083 // they should actually be expanded. 1084 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1085 if (Action == TargetLowering::Legal) 1086 Action = TargetLowering::Expand; 1087 break; 1088 case ISD::INIT_TRAMPOLINE: 1089 case ISD::ADJUST_TRAMPOLINE: 1090 case ISD::FRAMEADDR: 1091 case ISD::RETURNADDR: 1092 case ISD::ADDROFRETURNADDR: 1093 case ISD::SPONENTRY: 1094 // These operations lie about being legal: when they claim to be legal, 1095 // they should actually be custom-lowered. 1096 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1097 if (Action == TargetLowering::Legal) 1098 Action = TargetLowering::Custom; 1099 break; 1100 case ISD::READCYCLECOUNTER: 1101 // READCYCLECOUNTER returns an i64, even if type legalization might have 1102 // expanded that to several smaller types. 1103 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1104 break; 1105 case ISD::READ_REGISTER: 1106 case ISD::WRITE_REGISTER: 1107 // Named register is legal in the DAG, but blocked by register name 1108 // selection if not implemented by target (to chose the correct register) 1109 // They'll be converted to Copy(To/From)Reg. 1110 Action = TargetLowering::Legal; 1111 break; 1112 case ISD::UBSANTRAP: 1113 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1114 if (Action == TargetLowering::Expand) { 1115 // replace ISD::UBSANTRAP with ISD::TRAP 1116 SDValue NewVal; 1117 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1118 Node->getOperand(0)); 1119 ReplaceNode(Node, NewVal.getNode()); 1120 LegalizeOp(NewVal.getNode()); 1121 return; 1122 } 1123 break; 1124 case ISD::DEBUGTRAP: 1125 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1126 if (Action == TargetLowering::Expand) { 1127 // replace ISD::DEBUGTRAP with ISD::TRAP 1128 SDValue NewVal; 1129 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1130 Node->getOperand(0)); 1131 ReplaceNode(Node, NewVal.getNode()); 1132 LegalizeOp(NewVal.getNode()); 1133 return; 1134 } 1135 break; 1136 case ISD::SADDSAT: 1137 case ISD::UADDSAT: 1138 case ISD::SSUBSAT: 1139 case ISD::USUBSAT: 1140 case ISD::SSHLSAT: 1141 case ISD::USHLSAT: 1142 case ISD::FP_TO_SINT_SAT: 1143 case ISD::FP_TO_UINT_SAT: 1144 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1145 break; 1146 case ISD::SMULFIX: 1147 case ISD::SMULFIXSAT: 1148 case ISD::UMULFIX: 1149 case ISD::UMULFIXSAT: 1150 case ISD::SDIVFIX: 1151 case ISD::SDIVFIXSAT: 1152 case ISD::UDIVFIX: 1153 case ISD::UDIVFIXSAT: { 1154 unsigned Scale = Node->getConstantOperandVal(2); 1155 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 1156 Node->getValueType(0), Scale); 1157 break; 1158 } 1159 case ISD::MSCATTER: 1160 Action = TLI.getOperationAction(Node->getOpcode(), 1161 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 1162 break; 1163 case ISD::MSTORE: 1164 Action = TLI.getOperationAction(Node->getOpcode(), 1165 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 1166 break; 1167 case ISD::VP_SCATTER: 1168 Action = TLI.getOperationAction( 1169 Node->getOpcode(), 1170 cast<VPScatterSDNode>(Node)->getValue().getValueType()); 1171 break; 1172 case ISD::VP_STORE: 1173 Action = TLI.getOperationAction( 1174 Node->getOpcode(), 1175 cast<VPStoreSDNode>(Node)->getValue().getValueType()); 1176 break; 1177 case ISD::VECREDUCE_FADD: 1178 case ISD::VECREDUCE_FMUL: 1179 case ISD::VECREDUCE_ADD: 1180 case ISD::VECREDUCE_MUL: 1181 case ISD::VECREDUCE_AND: 1182 case ISD::VECREDUCE_OR: 1183 case ISD::VECREDUCE_XOR: 1184 case ISD::VECREDUCE_SMAX: 1185 case ISD::VECREDUCE_SMIN: 1186 case ISD::VECREDUCE_UMAX: 1187 case ISD::VECREDUCE_UMIN: 1188 case ISD::VECREDUCE_FMAX: 1189 case ISD::VECREDUCE_FMIN: 1190 Action = TLI.getOperationAction( 1191 Node->getOpcode(), Node->getOperand(0).getValueType()); 1192 break; 1193 case ISD::VECREDUCE_SEQ_FADD: 1194 case ISD::VECREDUCE_SEQ_FMUL: 1195 case ISD::VP_REDUCE_FADD: 1196 case ISD::VP_REDUCE_FMUL: 1197 case ISD::VP_REDUCE_ADD: 1198 case ISD::VP_REDUCE_MUL: 1199 case ISD::VP_REDUCE_AND: 1200 case ISD::VP_REDUCE_OR: 1201 case ISD::VP_REDUCE_XOR: 1202 case ISD::VP_REDUCE_SMAX: 1203 case ISD::VP_REDUCE_SMIN: 1204 case ISD::VP_REDUCE_UMAX: 1205 case ISD::VP_REDUCE_UMIN: 1206 case ISD::VP_REDUCE_FMAX: 1207 case ISD::VP_REDUCE_FMIN: 1208 case ISD::VP_REDUCE_SEQ_FADD: 1209 case ISD::VP_REDUCE_SEQ_FMUL: 1210 Action = TLI.getOperationAction( 1211 Node->getOpcode(), Node->getOperand(1).getValueType()); 1212 break; 1213 default: 1214 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1215 Action = TargetLowering::Legal; 1216 } else { 1217 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1218 } 1219 break; 1220 } 1221 1222 if (SimpleFinishLegalizing) { 1223 SDNode *NewNode = Node; 1224 switch (Node->getOpcode()) { 1225 default: break; 1226 case ISD::SHL: 1227 case ISD::SRL: 1228 case ISD::SRA: 1229 case ISD::ROTL: 1230 case ISD::ROTR: { 1231 // Legalizing shifts/rotates requires adjusting the shift amount 1232 // to the appropriate width. 1233 SDValue Op0 = Node->getOperand(0); 1234 SDValue Op1 = Node->getOperand(1); 1235 if (!Op1.getValueType().isVector()) { 1236 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1237 // The getShiftAmountOperand() may create a new operand node or 1238 // return the existing one. If new operand is created we need 1239 // to update the parent node. 1240 // Do not try to legalize SAO here! It will be automatically legalized 1241 // in the next round. 1242 if (SAO != Op1) 1243 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1244 } 1245 } 1246 break; 1247 case ISD::FSHL: 1248 case ISD::FSHR: 1249 case ISD::SRL_PARTS: 1250 case ISD::SRA_PARTS: 1251 case ISD::SHL_PARTS: { 1252 // Legalizing shifts/rotates requires adjusting the shift amount 1253 // to the appropriate width. 1254 SDValue Op0 = Node->getOperand(0); 1255 SDValue Op1 = Node->getOperand(1); 1256 SDValue Op2 = Node->getOperand(2); 1257 if (!Op2.getValueType().isVector()) { 1258 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1259 // The getShiftAmountOperand() may create a new operand node or 1260 // return the existing one. If new operand is created we need 1261 // to update the parent node. 1262 if (SAO != Op2) 1263 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1264 } 1265 break; 1266 } 1267 } 1268 1269 if (NewNode != Node) { 1270 ReplaceNode(Node, NewNode); 1271 Node = NewNode; 1272 } 1273 switch (Action) { 1274 case TargetLowering::Legal: 1275 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 1276 return; 1277 case TargetLowering::Custom: 1278 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 1279 // FIXME: The handling for custom lowering with multiple results is 1280 // a complete mess. 1281 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1282 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1283 return; 1284 1285 if (Node->getNumValues() == 1) { 1286 // Verify the new types match the original. Glue is waived because 1287 // ISD::ADDC can be legalized by replacing Glue with an integer type. 1288 assert((Res.getValueType() == Node->getValueType(0) || 1289 Node->getValueType(0) == MVT::Glue) && 1290 "Type mismatch for custom legalized operation"); 1291 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1292 // We can just directly replace this node with the lowered value. 1293 ReplaceNode(SDValue(Node, 0), Res); 1294 return; 1295 } 1296 1297 SmallVector<SDValue, 8> ResultVals; 1298 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 1299 // Verify the new types match the original. Glue is waived because 1300 // ISD::ADDC can be legalized by replacing Glue with an integer type. 1301 assert((Res->getValueType(i) == Node->getValueType(i) || 1302 Node->getValueType(i) == MVT::Glue) && 1303 "Type mismatch for custom legalized operation"); 1304 ResultVals.push_back(Res.getValue(i)); 1305 } 1306 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1307 ReplaceNode(Node, ResultVals.data()); 1308 return; 1309 } 1310 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 1311 LLVM_FALLTHROUGH; 1312 case TargetLowering::Expand: 1313 if (ExpandNode(Node)) 1314 return; 1315 LLVM_FALLTHROUGH; 1316 case TargetLowering::LibCall: 1317 ConvertNodeToLibcall(Node); 1318 return; 1319 case TargetLowering::Promote: 1320 PromoteNode(Node); 1321 return; 1322 } 1323 } 1324 1325 switch (Node->getOpcode()) { 1326 default: 1327 #ifndef NDEBUG 1328 dbgs() << "NODE: "; 1329 Node->dump( &DAG); 1330 dbgs() << "\n"; 1331 #endif 1332 llvm_unreachable("Do not know how to legalize this operator!"); 1333 1334 case ISD::CALLSEQ_START: 1335 case ISD::CALLSEQ_END: 1336 break; 1337 case ISD::LOAD: 1338 return LegalizeLoadOps(Node); 1339 case ISD::STORE: 1340 return LegalizeStoreOps(Node); 1341 } 1342 } 1343 1344 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1345 SDValue Vec = Op.getOperand(0); 1346 SDValue Idx = Op.getOperand(1); 1347 SDLoc dl(Op); 1348 1349 // Before we generate a new store to a temporary stack slot, see if there is 1350 // already one that we can use. There often is because when we scalarize 1351 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1352 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1353 // the vector. If all are expanded here, we don't want one store per vector 1354 // element. 1355 1356 // Caches for hasPredecessorHelper 1357 SmallPtrSet<const SDNode *, 32> Visited; 1358 SmallVector<const SDNode *, 16> Worklist; 1359 Visited.insert(Op.getNode()); 1360 Worklist.push_back(Idx.getNode()); 1361 SDValue StackPtr, Ch; 1362 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), 1363 UE = Vec.getNode()->use_end(); UI != UE; ++UI) { 1364 SDNode *User = *UI; 1365 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1366 if (ST->isIndexed() || ST->isTruncatingStore() || 1367 ST->getValue() != Vec) 1368 continue; 1369 1370 // Make sure that nothing else could have stored into the destination of 1371 // this store. 1372 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1373 continue; 1374 1375 // If the index is dependent on the store we will introduce a cycle when 1376 // creating the load (the load uses the index, and by replacing the chain 1377 // we will make the index dependent on the load). Also, the store might be 1378 // dependent on the extractelement and introduce a cycle when creating 1379 // the load. 1380 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1381 ST->hasPredecessor(Op.getNode())) 1382 continue; 1383 1384 StackPtr = ST->getBasePtr(); 1385 Ch = SDValue(ST, 0); 1386 break; 1387 } 1388 } 1389 1390 EVT VecVT = Vec.getValueType(); 1391 1392 if (!Ch.getNode()) { 1393 // Store the value to a temporary stack slot, then LOAD the returned part. 1394 StackPtr = DAG.CreateStackTemporary(VecVT); 1395 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1396 MachinePointerInfo()); 1397 } 1398 1399 SDValue NewLoad; 1400 1401 if (Op.getValueType().isVector()) { 1402 StackPtr = TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, 1403 Op.getValueType(), Idx); 1404 NewLoad = 1405 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); 1406 } else { 1407 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1408 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1409 MachinePointerInfo(), 1410 VecVT.getVectorElementType()); 1411 } 1412 1413 // Replace the chain going out of the store, by the one out of the load. 1414 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1415 1416 // We introduced a cycle though, so update the loads operands, making sure 1417 // to use the original store's chain as an incoming chain. 1418 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1419 NewLoad->op_end()); 1420 NewLoadOperands[0] = Ch; 1421 NewLoad = 1422 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1423 return NewLoad; 1424 } 1425 1426 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1427 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1428 1429 SDValue Vec = Op.getOperand(0); 1430 SDValue Part = Op.getOperand(1); 1431 SDValue Idx = Op.getOperand(2); 1432 SDLoc dl(Op); 1433 1434 // Store the value to a temporary stack slot, then LOAD the returned part. 1435 EVT VecVT = Vec.getValueType(); 1436 EVT SubVecVT = Part.getValueType(); 1437 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1438 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1439 MachinePointerInfo PtrInfo = 1440 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1441 1442 // First store the whole vector. 1443 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1444 1445 // Then store the inserted part. 1446 SDValue SubStackPtr = 1447 TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, SubVecVT, Idx); 1448 1449 // Store the subvector. 1450 Ch = DAG.getStore( 1451 Ch, dl, Part, SubStackPtr, 1452 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1453 1454 // Finally, load the updated vector. 1455 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1456 } 1457 1458 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1459 assert((Node->getOpcode() == ISD::BUILD_VECTOR || 1460 Node->getOpcode() == ISD::CONCAT_VECTORS) && 1461 "Unexpected opcode!"); 1462 1463 // We can't handle this case efficiently. Allocate a sufficiently 1464 // aligned object on the stack, store each operand into it, then load 1465 // the result as a vector. 1466 // Create the stack frame object. 1467 EVT VT = Node->getValueType(0); 1468 EVT MemVT = isa<BuildVectorSDNode>(Node) ? VT.getVectorElementType() 1469 : Node->getOperand(0).getValueType(); 1470 SDLoc dl(Node); 1471 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1472 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1473 MachinePointerInfo PtrInfo = 1474 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1475 1476 // Emit a store of each element to the stack slot. 1477 SmallVector<SDValue, 8> Stores; 1478 unsigned TypeByteSize = MemVT.getSizeInBits() / 8; 1479 assert(TypeByteSize > 0 && "Vector element type too small for stack store!"); 1480 1481 // If the destination vector element type of a BUILD_VECTOR is narrower than 1482 // the source element type, only store the bits necessary. 1483 bool Truncate = isa<BuildVectorSDNode>(Node) && 1484 MemVT.bitsLT(Node->getOperand(0).getValueType()); 1485 1486 // Store (in the right endianness) the elements to memory. 1487 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1488 // Ignore undef elements. 1489 if (Node->getOperand(i).isUndef()) continue; 1490 1491 unsigned Offset = TypeByteSize*i; 1492 1493 SDValue Idx = DAG.getMemBasePlusOffset(FIPtr, TypeSize::Fixed(Offset), dl); 1494 1495 if (Truncate) 1496 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1497 Node->getOperand(i), Idx, 1498 PtrInfo.getWithOffset(Offset), MemVT)); 1499 else 1500 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1501 Idx, PtrInfo.getWithOffset(Offset))); 1502 } 1503 1504 SDValue StoreChain; 1505 if (!Stores.empty()) // Not all undef elements? 1506 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1507 else 1508 StoreChain = DAG.getEntryNode(); 1509 1510 // Result is a load from the stack slot. 1511 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1512 } 1513 1514 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1515 /// containing the sign bit if the target has no integer value capable of 1516 /// holding all bits of the floating-point value. 1517 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1518 const SDLoc &DL, 1519 SDValue Value) const { 1520 EVT FloatVT = Value.getValueType(); 1521 unsigned NumBits = FloatVT.getScalarSizeInBits(); 1522 State.FloatVT = FloatVT; 1523 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1524 // Convert to an integer of the same size. 1525 if (TLI.isTypeLegal(IVT)) { 1526 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1527 State.SignMask = APInt::getSignMask(NumBits); 1528 State.SignBit = NumBits - 1; 1529 return; 1530 } 1531 1532 auto &DataLayout = DAG.getDataLayout(); 1533 // Store the float to memory, then load the sign part out as an integer. 1534 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1535 // First create a temporary that is aligned for both the load and store. 1536 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1537 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1538 // Then store the float to it. 1539 State.FloatPtr = StackPtr; 1540 MachineFunction &MF = DAG.getMachineFunction(); 1541 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1542 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1543 State.FloatPointerInfo); 1544 1545 SDValue IntPtr; 1546 if (DataLayout.isBigEndian()) { 1547 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1548 // Load out a legal integer with the same sign bit as the float. 1549 IntPtr = StackPtr; 1550 State.IntPointerInfo = State.FloatPointerInfo; 1551 } else { 1552 // Advance the pointer so that the loaded byte will contain the sign bit. 1553 unsigned ByteOffset = (NumBits / 8) - 1; 1554 IntPtr = 1555 DAG.getMemBasePlusOffset(StackPtr, TypeSize::Fixed(ByteOffset), DL); 1556 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1557 ByteOffset); 1558 } 1559 1560 State.IntPtr = IntPtr; 1561 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1562 State.IntPointerInfo, MVT::i8); 1563 State.SignMask = APInt::getOneBitSet(LoadTy.getScalarSizeInBits(), 7); 1564 State.SignBit = 7; 1565 } 1566 1567 /// Replace the integer value produced by getSignAsIntValue() with a new value 1568 /// and cast the result back to a floating-point type. 1569 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1570 const SDLoc &DL, 1571 SDValue NewIntValue) const { 1572 if (!State.Chain) 1573 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1574 1575 // Override the part containing the sign bit in the value stored on the stack. 1576 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1577 State.IntPointerInfo, MVT::i8); 1578 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1579 State.FloatPointerInfo); 1580 } 1581 1582 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1583 SDLoc DL(Node); 1584 SDValue Mag = Node->getOperand(0); 1585 SDValue Sign = Node->getOperand(1); 1586 1587 // Get sign bit into an integer value. 1588 FloatSignAsInt SignAsInt; 1589 getSignAsIntValue(SignAsInt, DL, Sign); 1590 1591 EVT IntVT = SignAsInt.IntValue.getValueType(); 1592 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1593 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1594 SignMask); 1595 1596 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1597 EVT FloatVT = Mag.getValueType(); 1598 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1599 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1600 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1601 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1602 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1603 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1604 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1605 } 1606 1607 // Transform Mag value to integer, and clear the sign bit. 1608 FloatSignAsInt MagAsInt; 1609 getSignAsIntValue(MagAsInt, DL, Mag); 1610 EVT MagVT = MagAsInt.IntValue.getValueType(); 1611 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1612 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1613 ClearSignMask); 1614 1615 // Get the signbit at the right position for MagAsInt. 1616 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1617 EVT ShiftVT = IntVT; 1618 if (SignBit.getScalarValueSizeInBits() < 1619 ClearedSign.getScalarValueSizeInBits()) { 1620 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1621 ShiftVT = MagVT; 1622 } 1623 if (ShiftAmount > 0) { 1624 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); 1625 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); 1626 } else if (ShiftAmount < 0) { 1627 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); 1628 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); 1629 } 1630 if (SignBit.getScalarValueSizeInBits() > 1631 ClearedSign.getScalarValueSizeInBits()) { 1632 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1633 } 1634 1635 // Store the part with the modified sign and convert back to float. 1636 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1637 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1638 } 1639 1640 SDValue SelectionDAGLegalize::ExpandFNEG(SDNode *Node) const { 1641 // Get the sign bit as an integer. 1642 SDLoc DL(Node); 1643 FloatSignAsInt SignAsInt; 1644 getSignAsIntValue(SignAsInt, DL, Node->getOperand(0)); 1645 EVT IntVT = SignAsInt.IntValue.getValueType(); 1646 1647 // Flip the sign. 1648 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1649 SDValue SignFlip = 1650 DAG.getNode(ISD::XOR, DL, IntVT, SignAsInt.IntValue, SignMask); 1651 1652 // Convert back to float. 1653 return modifySignAsInt(SignAsInt, DL, SignFlip); 1654 } 1655 1656 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1657 SDLoc DL(Node); 1658 SDValue Value = Node->getOperand(0); 1659 1660 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1661 EVT FloatVT = Value.getValueType(); 1662 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1663 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1664 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1665 } 1666 1667 // Transform value to integer, clear the sign bit and transform back. 1668 FloatSignAsInt ValueAsInt; 1669 getSignAsIntValue(ValueAsInt, DL, Value); 1670 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1671 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1672 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1673 ClearSignMask); 1674 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1675 } 1676 1677 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1678 SmallVectorImpl<SDValue> &Results) { 1679 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1680 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1681 " not tell us which reg is the stack pointer!"); 1682 SDLoc dl(Node); 1683 EVT VT = Node->getValueType(0); 1684 SDValue Tmp1 = SDValue(Node, 0); 1685 SDValue Tmp2 = SDValue(Node, 1); 1686 SDValue Tmp3 = Node->getOperand(2); 1687 SDValue Chain = Tmp1.getOperand(0); 1688 1689 // Chain the dynamic stack allocation so that it doesn't modify the stack 1690 // pointer when other instructions are using the stack. 1691 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1692 1693 SDValue Size = Tmp2.getOperand(1); 1694 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1695 Chain = SP.getValue(1); 1696 Align Alignment = cast<ConstantSDNode>(Tmp3)->getAlignValue(); 1697 const TargetFrameLowering *TFL = DAG.getSubtarget().getFrameLowering(); 1698 unsigned Opc = 1699 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 1700 ISD::ADD : ISD::SUB; 1701 1702 Align StackAlign = TFL->getStackAlign(); 1703 Tmp1 = DAG.getNode(Opc, dl, VT, SP, Size); // Value 1704 if (Alignment > StackAlign) 1705 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1706 DAG.getConstant(-Alignment.value(), dl, VT)); 1707 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1708 1709 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1710 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1711 1712 Results.push_back(Tmp1); 1713 Results.push_back(Tmp2); 1714 } 1715 1716 /// Emit a store/load combination to the stack. This stores 1717 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1718 /// a load from the stack slot to DestVT, extending it if needed. 1719 /// The resultant code need not be legal. 1720 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1721 EVT DestVT, const SDLoc &dl) { 1722 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode()); 1723 } 1724 1725 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1726 EVT DestVT, const SDLoc &dl, 1727 SDValue Chain) { 1728 unsigned SrcSize = SrcOp.getValueSizeInBits(); 1729 unsigned SlotSize = SlotVT.getSizeInBits(); 1730 unsigned DestSize = DestVT.getSizeInBits(); 1731 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1732 Align DestAlign = DAG.getDataLayout().getPrefTypeAlign(DestType); 1733 1734 // Don't convert with stack if the load/store is expensive. 1735 if ((SrcSize > SlotSize && 1736 !TLI.isTruncStoreLegalOrCustom(SrcOp.getValueType(), SlotVT)) || 1737 (SlotSize < DestSize && 1738 !TLI.isLoadExtLegalOrCustom(ISD::EXTLOAD, DestVT, SlotVT))) 1739 return SDValue(); 1740 1741 // Create the stack frame object. 1742 Align SrcAlign = DAG.getDataLayout().getPrefTypeAlign( 1743 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1744 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT.getStoreSize(), SrcAlign); 1745 1746 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1747 int SPFI = StackPtrFI->getIndex(); 1748 MachinePointerInfo PtrInfo = 1749 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1750 1751 // Emit a store to the stack slot. Use a truncstore if the input value is 1752 // later than DestVT. 1753 SDValue Store; 1754 1755 if (SrcSize > SlotSize) 1756 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo, 1757 SlotVT, SrcAlign); 1758 else { 1759 assert(SrcSize == SlotSize && "Invalid store"); 1760 Store = 1761 DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1762 } 1763 1764 // Result is a load from the stack slot. 1765 if (SlotSize == DestSize) 1766 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1767 1768 assert(SlotSize < DestSize && "Unknown extension!"); 1769 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1770 DestAlign); 1771 } 1772 1773 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1774 SDLoc dl(Node); 1775 // Create a vector sized/aligned stack slot, store the value to element #0, 1776 // then load the whole vector back out. 1777 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1778 1779 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1780 int SPFI = StackPtrFI->getIndex(); 1781 1782 SDValue Ch = DAG.getTruncStore( 1783 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1784 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1785 Node->getValueType(0).getVectorElementType()); 1786 return DAG.getLoad( 1787 Node->getValueType(0), dl, Ch, StackPtr, 1788 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1789 } 1790 1791 static bool 1792 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1793 const TargetLowering &TLI, SDValue &Res) { 1794 unsigned NumElems = Node->getNumOperands(); 1795 SDLoc dl(Node); 1796 EVT VT = Node->getValueType(0); 1797 1798 // Try to group the scalars into pairs, shuffle the pairs together, then 1799 // shuffle the pairs of pairs together, etc. until the vector has 1800 // been built. This will work only if all of the necessary shuffle masks 1801 // are legal. 1802 1803 // We do this in two phases; first to check the legality of the shuffles, 1804 // and next, assuming that all shuffles are legal, to create the new nodes. 1805 for (int Phase = 0; Phase < 2; ++Phase) { 1806 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1807 NewIntermedVals; 1808 for (unsigned i = 0; i < NumElems; ++i) { 1809 SDValue V = Node->getOperand(i); 1810 if (V.isUndef()) 1811 continue; 1812 1813 SDValue Vec; 1814 if (Phase) 1815 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1816 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1817 } 1818 1819 while (IntermedVals.size() > 2) { 1820 NewIntermedVals.clear(); 1821 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1822 // This vector and the next vector are shuffled together (simply to 1823 // append the one to the other). 1824 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1825 1826 SmallVector<int, 16> FinalIndices; 1827 FinalIndices.reserve(IntermedVals[i].second.size() + 1828 IntermedVals[i+1].second.size()); 1829 1830 int k = 0; 1831 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1832 ++j, ++k) { 1833 ShuffleVec[k] = j; 1834 FinalIndices.push_back(IntermedVals[i].second[j]); 1835 } 1836 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1837 ++j, ++k) { 1838 ShuffleVec[k] = NumElems + j; 1839 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1840 } 1841 1842 SDValue Shuffle; 1843 if (Phase) 1844 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1845 IntermedVals[i+1].first, 1846 ShuffleVec); 1847 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1848 return false; 1849 NewIntermedVals.push_back( 1850 std::make_pair(Shuffle, std::move(FinalIndices))); 1851 } 1852 1853 // If we had an odd number of defined values, then append the last 1854 // element to the array of new vectors. 1855 if ((IntermedVals.size() & 1) != 0) 1856 NewIntermedVals.push_back(IntermedVals.back()); 1857 1858 IntermedVals.swap(NewIntermedVals); 1859 } 1860 1861 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1862 "Invalid number of intermediate vectors"); 1863 SDValue Vec1 = IntermedVals[0].first; 1864 SDValue Vec2; 1865 if (IntermedVals.size() > 1) 1866 Vec2 = IntermedVals[1].first; 1867 else if (Phase) 1868 Vec2 = DAG.getUNDEF(VT); 1869 1870 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1871 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1872 ShuffleVec[IntermedVals[0].second[i]] = i; 1873 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1874 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1875 1876 if (Phase) 1877 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1878 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1879 return false; 1880 } 1881 1882 return true; 1883 } 1884 1885 /// Expand a BUILD_VECTOR node on targets that don't 1886 /// support the operation, but do support the resultant vector type. 1887 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1888 unsigned NumElems = Node->getNumOperands(); 1889 SDValue Value1, Value2; 1890 SDLoc dl(Node); 1891 EVT VT = Node->getValueType(0); 1892 EVT OpVT = Node->getOperand(0).getValueType(); 1893 EVT EltVT = VT.getVectorElementType(); 1894 1895 // If the only non-undef value is the low element, turn this into a 1896 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1897 bool isOnlyLowElement = true; 1898 bool MoreThanTwoValues = false; 1899 bool isConstant = true; 1900 for (unsigned i = 0; i < NumElems; ++i) { 1901 SDValue V = Node->getOperand(i); 1902 if (V.isUndef()) 1903 continue; 1904 if (i > 0) 1905 isOnlyLowElement = false; 1906 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1907 isConstant = false; 1908 1909 if (!Value1.getNode()) { 1910 Value1 = V; 1911 } else if (!Value2.getNode()) { 1912 if (V != Value1) 1913 Value2 = V; 1914 } else if (V != Value1 && V != Value2) { 1915 MoreThanTwoValues = true; 1916 } 1917 } 1918 1919 if (!Value1.getNode()) 1920 return DAG.getUNDEF(VT); 1921 1922 if (isOnlyLowElement) 1923 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1924 1925 // If all elements are constants, create a load from the constant pool. 1926 if (isConstant) { 1927 SmallVector<Constant*, 16> CV; 1928 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1929 if (ConstantFPSDNode *V = 1930 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1931 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1932 } else if (ConstantSDNode *V = 1933 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1934 if (OpVT==EltVT) 1935 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1936 else { 1937 // If OpVT and EltVT don't match, EltVT is not legal and the 1938 // element values have been promoted/truncated earlier. Undo this; 1939 // we don't want a v16i8 to become a v16i32 for example. 1940 const ConstantInt *CI = V->getConstantIntValue(); 1941 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1942 CI->getZExtValue())); 1943 } 1944 } else { 1945 assert(Node->getOperand(i).isUndef()); 1946 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1947 CV.push_back(UndefValue::get(OpNTy)); 1948 } 1949 } 1950 Constant *CP = ConstantVector::get(CV); 1951 SDValue CPIdx = 1952 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 1953 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 1954 return DAG.getLoad( 1955 VT, dl, DAG.getEntryNode(), CPIdx, 1956 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 1957 Alignment); 1958 } 1959 1960 SmallSet<SDValue, 16> DefinedValues; 1961 for (unsigned i = 0; i < NumElems; ++i) { 1962 if (Node->getOperand(i).isUndef()) 1963 continue; 1964 DefinedValues.insert(Node->getOperand(i)); 1965 } 1966 1967 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 1968 if (!MoreThanTwoValues) { 1969 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1970 for (unsigned i = 0; i < NumElems; ++i) { 1971 SDValue V = Node->getOperand(i); 1972 if (V.isUndef()) 1973 continue; 1974 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1975 } 1976 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1977 // Get the splatted value into the low element of a vector register. 1978 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1979 SDValue Vec2; 1980 if (Value2.getNode()) 1981 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 1982 else 1983 Vec2 = DAG.getUNDEF(VT); 1984 1985 // Return shuffle(LowValVec, undef, <0,0,0,0>) 1986 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1987 } 1988 } else { 1989 SDValue Res; 1990 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 1991 return Res; 1992 } 1993 } 1994 1995 // Otherwise, we can't handle this case efficiently. 1996 return ExpandVectorBuildThroughStack(Node); 1997 } 1998 1999 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) { 2000 SDLoc DL(Node); 2001 EVT VT = Node->getValueType(0); 2002 SDValue SplatVal = Node->getOperand(0); 2003 2004 return DAG.getSplatBuildVector(VT, DL, SplatVal); 2005 } 2006 2007 // Expand a node into a call to a libcall. If the result value 2008 // does not fit into a register, return the lo part and set the hi part to the 2009 // by-reg argument. If it does fit into a single register, return the result 2010 // and leave the Hi part unset. 2011 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2012 bool isSigned) { 2013 TargetLowering::ArgListTy Args; 2014 TargetLowering::ArgListEntry Entry; 2015 for (const SDValue &Op : Node->op_values()) { 2016 EVT ArgVT = Op.getValueType(); 2017 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2018 Entry.Node = Op; 2019 Entry.Ty = ArgTy; 2020 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2021 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2022 Args.push_back(Entry); 2023 } 2024 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2025 TLI.getPointerTy(DAG.getDataLayout())); 2026 2027 EVT RetVT = Node->getValueType(0); 2028 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2029 2030 // By default, the input chain to this libcall is the entry node of the 2031 // function. If the libcall is going to be emitted as a tail call then 2032 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2033 // node which is being folded has a non-entry input chain. 2034 SDValue InChain = DAG.getEntryNode(); 2035 2036 // isTailCall may be true since the callee does not reference caller stack 2037 // frame. Check if it's in the right position and that the return types match. 2038 SDValue TCChain = InChain; 2039 const Function &F = DAG.getMachineFunction().getFunction(); 2040 bool isTailCall = 2041 TLI.isInTailCallPosition(DAG, Node, TCChain) && 2042 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 2043 if (isTailCall) 2044 InChain = TCChain; 2045 2046 TargetLowering::CallLoweringInfo CLI(DAG); 2047 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2048 CLI.setDebugLoc(SDLoc(Node)) 2049 .setChain(InChain) 2050 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2051 std::move(Args)) 2052 .setTailCall(isTailCall) 2053 .setSExtResult(signExtend) 2054 .setZExtResult(!signExtend) 2055 .setIsPostTypeLegalization(true); 2056 2057 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2058 2059 if (!CallInfo.second.getNode()) { 2060 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG)); 2061 // It's a tailcall, return the chain (which is the DAG root). 2062 return DAG.getRoot(); 2063 } 2064 2065 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG)); 2066 return CallInfo.first; 2067 } 2068 2069 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2070 RTLIB::Libcall LC, 2071 SmallVectorImpl<SDValue> &Results) { 2072 if (LC == RTLIB::UNKNOWN_LIBCALL) 2073 llvm_unreachable("Can't create an unknown libcall!"); 2074 2075 if (Node->isStrictFPOpcode()) { 2076 EVT RetVT = Node->getValueType(0); 2077 SmallVector<SDValue, 4> Ops(drop_begin(Node->ops())); 2078 TargetLowering::MakeLibCallOptions CallOptions; 2079 // FIXME: This doesn't support tail calls. 2080 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2081 Ops, CallOptions, 2082 SDLoc(Node), 2083 Node->getOperand(0)); 2084 Results.push_back(Tmp.first); 2085 Results.push_back(Tmp.second); 2086 } else { 2087 SDValue Tmp = ExpandLibCall(LC, Node, false); 2088 Results.push_back(Tmp); 2089 } 2090 } 2091 2092 /// Expand the node to a libcall based on the result type. 2093 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2094 RTLIB::Libcall Call_F32, 2095 RTLIB::Libcall Call_F64, 2096 RTLIB::Libcall Call_F80, 2097 RTLIB::Libcall Call_F128, 2098 RTLIB::Libcall Call_PPCF128, 2099 SmallVectorImpl<SDValue> &Results) { 2100 RTLIB::Libcall LC = RTLIB::getFPLibCall(Node->getSimpleValueType(0), 2101 Call_F32, Call_F64, Call_F80, 2102 Call_F128, Call_PPCF128); 2103 ExpandFPLibCall(Node, LC, Results); 2104 } 2105 2106 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2107 RTLIB::Libcall Call_I8, 2108 RTLIB::Libcall Call_I16, 2109 RTLIB::Libcall Call_I32, 2110 RTLIB::Libcall Call_I64, 2111 RTLIB::Libcall Call_I128) { 2112 RTLIB::Libcall LC; 2113 switch (Node->getSimpleValueType(0).SimpleTy) { 2114 default: llvm_unreachable("Unexpected request for libcall!"); 2115 case MVT::i8: LC = Call_I8; break; 2116 case MVT::i16: LC = Call_I16; break; 2117 case MVT::i32: LC = Call_I32; break; 2118 case MVT::i64: LC = Call_I64; break; 2119 case MVT::i128: LC = Call_I128; break; 2120 } 2121 return ExpandLibCall(LC, Node, isSigned); 2122 } 2123 2124 /// Expand the node to a libcall based on first argument type (for instance 2125 /// lround and its variant). 2126 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node, 2127 RTLIB::Libcall Call_F32, 2128 RTLIB::Libcall Call_F64, 2129 RTLIB::Libcall Call_F80, 2130 RTLIB::Libcall Call_F128, 2131 RTLIB::Libcall Call_PPCF128, 2132 SmallVectorImpl<SDValue> &Results) { 2133 EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType(); 2134 RTLIB::Libcall LC = RTLIB::getFPLibCall(InVT.getSimpleVT(), 2135 Call_F32, Call_F64, Call_F80, 2136 Call_F128, Call_PPCF128); 2137 ExpandFPLibCall(Node, LC, Results); 2138 } 2139 2140 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2141 void 2142 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2143 SmallVectorImpl<SDValue> &Results) { 2144 unsigned Opcode = Node->getOpcode(); 2145 bool isSigned = Opcode == ISD::SDIVREM; 2146 2147 RTLIB::Libcall LC; 2148 switch (Node->getSimpleValueType(0).SimpleTy) { 2149 default: llvm_unreachable("Unexpected request for libcall!"); 2150 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2151 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2152 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2153 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2154 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2155 } 2156 2157 // The input chain to this libcall is the entry node of the function. 2158 // Legalizing the call will automatically add the previous call to the 2159 // dependence. 2160 SDValue InChain = DAG.getEntryNode(); 2161 2162 EVT RetVT = Node->getValueType(0); 2163 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2164 2165 TargetLowering::ArgListTy Args; 2166 TargetLowering::ArgListEntry Entry; 2167 for (const SDValue &Op : Node->op_values()) { 2168 EVT ArgVT = Op.getValueType(); 2169 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2170 Entry.Node = Op; 2171 Entry.Ty = ArgTy; 2172 Entry.IsSExt = isSigned; 2173 Entry.IsZExt = !isSigned; 2174 Args.push_back(Entry); 2175 } 2176 2177 // Also pass the return address of the remainder. 2178 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2179 Entry.Node = FIPtr; 2180 Entry.Ty = RetTy->getPointerTo(); 2181 Entry.IsSExt = isSigned; 2182 Entry.IsZExt = !isSigned; 2183 Args.push_back(Entry); 2184 2185 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2186 TLI.getPointerTy(DAG.getDataLayout())); 2187 2188 SDLoc dl(Node); 2189 TargetLowering::CallLoweringInfo CLI(DAG); 2190 CLI.setDebugLoc(dl) 2191 .setChain(InChain) 2192 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2193 std::move(Args)) 2194 .setSExtResult(isSigned) 2195 .setZExtResult(!isSigned); 2196 2197 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2198 2199 // Remainder is loaded back from the stack frame. 2200 SDValue Rem = 2201 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2202 Results.push_back(CallInfo.first); 2203 Results.push_back(Rem); 2204 } 2205 2206 /// Return true if sincos libcall is available. 2207 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2208 RTLIB::Libcall LC; 2209 switch (Node->getSimpleValueType(0).SimpleTy) { 2210 default: llvm_unreachable("Unexpected request for libcall!"); 2211 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2212 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2213 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2214 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2215 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2216 } 2217 return TLI.getLibcallName(LC) != nullptr; 2218 } 2219 2220 /// Only issue sincos libcall if both sin and cos are needed. 2221 static bool useSinCos(SDNode *Node) { 2222 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2223 ? ISD::FCOS : ISD::FSIN; 2224 2225 SDValue Op0 = Node->getOperand(0); 2226 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2227 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2228 SDNode *User = *UI; 2229 if (User == Node) 2230 continue; 2231 // The other user might have been turned into sincos already. 2232 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2233 return true; 2234 } 2235 return false; 2236 } 2237 2238 /// Issue libcalls to sincos to compute sin / cos pairs. 2239 void 2240 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2241 SmallVectorImpl<SDValue> &Results) { 2242 RTLIB::Libcall LC; 2243 switch (Node->getSimpleValueType(0).SimpleTy) { 2244 default: llvm_unreachable("Unexpected request for libcall!"); 2245 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2246 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2247 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2248 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2249 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2250 } 2251 2252 // The input chain to this libcall is the entry node of the function. 2253 // Legalizing the call will automatically add the previous call to the 2254 // dependence. 2255 SDValue InChain = DAG.getEntryNode(); 2256 2257 EVT RetVT = Node->getValueType(0); 2258 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2259 2260 TargetLowering::ArgListTy Args; 2261 TargetLowering::ArgListEntry Entry; 2262 2263 // Pass the argument. 2264 Entry.Node = Node->getOperand(0); 2265 Entry.Ty = RetTy; 2266 Entry.IsSExt = false; 2267 Entry.IsZExt = false; 2268 Args.push_back(Entry); 2269 2270 // Pass the return address of sin. 2271 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2272 Entry.Node = SinPtr; 2273 Entry.Ty = RetTy->getPointerTo(); 2274 Entry.IsSExt = false; 2275 Entry.IsZExt = false; 2276 Args.push_back(Entry); 2277 2278 // Also pass the return address of the cos. 2279 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2280 Entry.Node = CosPtr; 2281 Entry.Ty = RetTy->getPointerTo(); 2282 Entry.IsSExt = false; 2283 Entry.IsZExt = false; 2284 Args.push_back(Entry); 2285 2286 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2287 TLI.getPointerTy(DAG.getDataLayout())); 2288 2289 SDLoc dl(Node); 2290 TargetLowering::CallLoweringInfo CLI(DAG); 2291 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2292 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2293 std::move(Args)); 2294 2295 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2296 2297 Results.push_back( 2298 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2299 Results.push_back( 2300 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2301 } 2302 2303 /// This function is responsible for legalizing a 2304 /// INT_TO_FP operation of the specified operand when the target requests that 2305 /// we expand it. At this point, we know that the result and operand types are 2306 /// legal for the target. 2307 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node, 2308 SDValue &Chain) { 2309 bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 2310 Node->getOpcode() == ISD::SINT_TO_FP); 2311 EVT DestVT = Node->getValueType(0); 2312 SDLoc dl(Node); 2313 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 2314 SDValue Op0 = Node->getOperand(OpNo); 2315 EVT SrcVT = Op0.getValueType(); 2316 2317 // TODO: Should any fast-math-flags be set for the created nodes? 2318 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2319 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64) && 2320 (DestVT.bitsLE(MVT::f64) || 2321 TLI.isOperationLegal(Node->isStrictFPOpcode() ? ISD::STRICT_FP_EXTEND 2322 : ISD::FP_EXTEND, 2323 DestVT))) { 2324 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2325 "expansion\n"); 2326 2327 // Get the stack frame index of a 8 byte buffer. 2328 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2329 2330 SDValue Lo = Op0; 2331 // if signed map to unsigned space 2332 if (isSigned) { 2333 // Invert sign bit (signed to unsigned mapping). 2334 Lo = DAG.getNode(ISD::XOR, dl, MVT::i32, Lo, 2335 DAG.getConstant(0x80000000u, dl, MVT::i32)); 2336 } 2337 // Initial hi portion of constructed double. 2338 SDValue Hi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2339 2340 // If this a big endian target, swap the lo and high data. 2341 if (DAG.getDataLayout().isBigEndian()) 2342 std::swap(Lo, Hi); 2343 2344 SDValue MemChain = DAG.getEntryNode(); 2345 2346 // Store the lo of the constructed double. 2347 SDValue Store1 = DAG.getStore(MemChain, dl, Lo, StackSlot, 2348 MachinePointerInfo()); 2349 // Store the hi of the constructed double. 2350 SDValue HiPtr = DAG.getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), dl); 2351 SDValue Store2 = 2352 DAG.getStore(MemChain, dl, Hi, HiPtr, MachinePointerInfo()); 2353 MemChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 2354 2355 // load the constructed double 2356 SDValue Load = 2357 DAG.getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo()); 2358 // FP constant to bias correct the final result 2359 SDValue Bias = DAG.getConstantFP(isSigned ? 2360 BitsToDouble(0x4330000080000000ULL) : 2361 BitsToDouble(0x4330000000000000ULL), 2362 dl, MVT::f64); 2363 // Subtract the bias and get the final result. 2364 SDValue Sub; 2365 SDValue Result; 2366 if (Node->isStrictFPOpcode()) { 2367 Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other}, 2368 {Node->getOperand(0), Load, Bias}); 2369 Chain = Sub.getValue(1); 2370 if (DestVT != Sub.getValueType()) { 2371 std::pair<SDValue, SDValue> ResultPair; 2372 ResultPair = 2373 DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT); 2374 Result = ResultPair.first; 2375 Chain = ResultPair.second; 2376 } 2377 else 2378 Result = Sub; 2379 } else { 2380 Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2381 Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); 2382 } 2383 return Result; 2384 } 2385 2386 if (isSigned) 2387 return SDValue(); 2388 2389 // TODO: Generalize this for use with other types. 2390 if (((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) || 2391 (SrcVT == MVT::i64 && DestVT == MVT::f64)) { 2392 LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32/f64\n"); 2393 // For unsigned conversions, convert them to signed conversions using the 2394 // algorithm from the x86_64 __floatundisf in compiler_rt. That method 2395 // should be valid for i32->f32 as well. 2396 2397 // More generally this transform should be valid if there are 3 more bits 2398 // in the integer type than the significand. Rounding uses the first bit 2399 // after the width of the significand and the OR of all bits after that. So 2400 // we need to be able to OR the shifted out bit into one of the bits that 2401 // participate in the OR. 2402 2403 // TODO: This really should be implemented using a branch rather than a 2404 // select. We happen to get lucky and machinesink does the right 2405 // thing most of the time. This would be a good candidate for a 2406 // pseudo-op, or, even better, for whole-function isel. 2407 EVT SetCCVT = getSetCCResultType(SrcVT); 2408 2409 SDValue SignBitTest = DAG.getSetCC( 2410 dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2411 2412 EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout()); 2413 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 2414 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst); 2415 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 2416 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst); 2417 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 2418 2419 SDValue Slow, Fast; 2420 if (Node->isStrictFPOpcode()) { 2421 // In strict mode, we must avoid spurious exceptions, and therefore 2422 // must make sure to only emit a single STRICT_SINT_TO_FP. 2423 SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0); 2424 Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2425 { Node->getOperand(0), InCvt }); 2426 Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2427 { Fast.getValue(1), Fast, Fast }); 2428 Chain = Slow.getValue(1); 2429 // The STRICT_SINT_TO_FP inherits the exception mode from the 2430 // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can 2431 // never raise any exception. 2432 SDNodeFlags Flags; 2433 Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept()); 2434 Fast->setFlags(Flags); 2435 Flags.setNoFPExcept(true); 2436 Slow->setFlags(Flags); 2437 } else { 2438 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or); 2439 Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt); 2440 Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2441 } 2442 2443 return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast); 2444 } 2445 2446 // Don't expand it if there isn't cheap fadd. 2447 if (!TLI.isOperationLegalOrCustom( 2448 Node->isStrictFPOpcode() ? ISD::STRICT_FADD : ISD::FADD, DestVT)) 2449 return SDValue(); 2450 2451 // The following optimization is valid only if every value in SrcVT (when 2452 // treated as signed) is representable in DestVT. Check that the mantissa 2453 // size of DestVT is >= than the number of bits in SrcVT -1. 2454 assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >= 2455 SrcVT.getSizeInBits() - 1 && 2456 "Cannot perform lossless SINT_TO_FP!"); 2457 2458 SDValue Tmp1; 2459 if (Node->isStrictFPOpcode()) { 2460 Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2461 { Node->getOperand(0), Op0 }); 2462 } else 2463 Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2464 2465 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, 2466 DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2467 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2468 Four = DAG.getIntPtrConstant(4, dl); 2469 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2470 SignSet, Four, Zero); 2471 2472 // If the sign bit of the integer is set, the large number will be treated 2473 // as a negative number. To counteract this, the dynamic code adds an 2474 // offset depending on the data type. 2475 uint64_t FF; 2476 switch (SrcVT.getSimpleVT().SimpleTy) { 2477 default: 2478 return SDValue(); 2479 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2480 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2481 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2482 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2483 } 2484 if (DAG.getDataLayout().isLittleEndian()) 2485 FF <<= 32; 2486 Constant *FudgeFactor = ConstantInt::get( 2487 Type::getInt64Ty(*DAG.getContext()), FF); 2488 2489 SDValue CPIdx = 2490 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2491 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 2492 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2493 Alignment = commonAlignment(Alignment, 4); 2494 SDValue FudgeInReg; 2495 if (DestVT == MVT::f32) 2496 FudgeInReg = DAG.getLoad( 2497 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2498 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2499 Alignment); 2500 else { 2501 SDValue Load = DAG.getExtLoad( 2502 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2503 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2504 Alignment); 2505 HandleSDNode Handle(Load); 2506 LegalizeOp(Load.getNode()); 2507 FudgeInReg = Handle.getValue(); 2508 } 2509 2510 if (Node->isStrictFPOpcode()) { 2511 SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2512 { Tmp1.getValue(1), Tmp1, FudgeInReg }); 2513 Chain = Result.getValue(1); 2514 return Result; 2515 } 2516 2517 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2518 } 2519 2520 /// This function is responsible for legalizing a 2521 /// *INT_TO_FP operation of the specified operand when the target requests that 2522 /// we promote it. At this point, we know that the result and operand types are 2523 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2524 /// operation that takes a larger input. 2525 void SelectionDAGLegalize::PromoteLegalINT_TO_FP( 2526 SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) { 2527 bool IsStrict = N->isStrictFPOpcode(); 2528 bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP || 2529 N->getOpcode() == ISD::STRICT_SINT_TO_FP; 2530 EVT DestVT = N->getValueType(0); 2531 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2532 unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP; 2533 unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP; 2534 2535 // First step, figure out the appropriate *INT_TO_FP operation to use. 2536 EVT NewInTy = LegalOp.getValueType(); 2537 2538 unsigned OpToUse = 0; 2539 2540 // Scan for the appropriate larger type to use. 2541 while (true) { 2542 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2543 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2544 2545 // If the target supports SINT_TO_FP of this type, use it. 2546 if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) { 2547 OpToUse = SIntOp; 2548 break; 2549 } 2550 if (IsSigned) 2551 continue; 2552 2553 // If the target supports UINT_TO_FP of this type, use it. 2554 if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) { 2555 OpToUse = UIntOp; 2556 break; 2557 } 2558 2559 // Otherwise, try a larger type. 2560 } 2561 2562 // Okay, we found the operation and type to use. Zero extend our input to the 2563 // desired type then run the operation on it. 2564 if (IsStrict) { 2565 SDValue Res = 2566 DAG.getNode(OpToUse, dl, {DestVT, MVT::Other}, 2567 {N->getOperand(0), 2568 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2569 dl, NewInTy, LegalOp)}); 2570 Results.push_back(Res); 2571 Results.push_back(Res.getValue(1)); 2572 return; 2573 } 2574 2575 Results.push_back( 2576 DAG.getNode(OpToUse, dl, DestVT, 2577 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2578 dl, NewInTy, LegalOp))); 2579 } 2580 2581 /// This function is responsible for legalizing a 2582 /// FP_TO_*INT operation of the specified operand when the target requests that 2583 /// we promote it. At this point, we know that the result and operand types are 2584 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2585 /// operation that returns a larger result. 2586 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 2587 SmallVectorImpl<SDValue> &Results) { 2588 bool IsStrict = N->isStrictFPOpcode(); 2589 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 2590 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 2591 EVT DestVT = N->getValueType(0); 2592 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2593 // First step, figure out the appropriate FP_TO*INT operation to use. 2594 EVT NewOutTy = DestVT; 2595 2596 unsigned OpToUse = 0; 2597 2598 // Scan for the appropriate larger type to use. 2599 while (true) { 2600 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2601 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2602 2603 // A larger signed type can hold all unsigned values of the requested type, 2604 // so using FP_TO_SINT is valid 2605 OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT; 2606 if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2607 break; 2608 2609 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2610 OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT; 2611 if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2612 break; 2613 2614 // Otherwise, try a larger type. 2615 } 2616 2617 // Okay, we found the operation and type to use. 2618 SDValue Operation; 2619 if (IsStrict) { 2620 SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other); 2621 Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp); 2622 } else 2623 Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2624 2625 // Truncate the result of the extended FP_TO_*INT operation to the desired 2626 // size. 2627 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2628 Results.push_back(Trunc); 2629 if (IsStrict) 2630 Results.push_back(Operation.getValue(1)); 2631 } 2632 2633 /// Promote FP_TO_*INT_SAT operation to a larger result type. At this point 2634 /// the result and operand types are legal and there must be a legal 2635 /// FP_TO_*INT_SAT operation for a larger result type. 2636 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT_SAT(SDNode *Node, 2637 const SDLoc &dl) { 2638 unsigned Opcode = Node->getOpcode(); 2639 2640 // Scan for the appropriate larger type to use. 2641 EVT NewOutTy = Node->getValueType(0); 2642 while (true) { 2643 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy + 1); 2644 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2645 2646 if (TLI.isOperationLegalOrCustom(Opcode, NewOutTy)) 2647 break; 2648 } 2649 2650 // Saturation width is determined by second operand, so we don't have to 2651 // perform any fixup and can directly truncate the result. 2652 SDValue Result = DAG.getNode(Opcode, dl, NewOutTy, Node->getOperand(0), 2653 Node->getOperand(1)); 2654 return DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Result); 2655 } 2656 2657 /// Open code the operations for PARITY of the specified operation. 2658 SDValue SelectionDAGLegalize::ExpandPARITY(SDValue Op, const SDLoc &dl) { 2659 EVT VT = Op.getValueType(); 2660 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2661 unsigned Sz = VT.getScalarSizeInBits(); 2662 2663 // If CTPOP is legal, use it. Otherwise use shifts and xor. 2664 SDValue Result; 2665 if (TLI.isOperationLegal(ISD::CTPOP, VT)) { 2666 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 2667 } else { 2668 Result = Op; 2669 for (unsigned i = Log2_32_Ceil(Sz); i != 0;) { 2670 SDValue Shift = DAG.getNode(ISD::SRL, dl, VT, Result, 2671 DAG.getConstant(1ULL << (--i), dl, ShVT)); 2672 Result = DAG.getNode(ISD::XOR, dl, VT, Result, Shift); 2673 } 2674 } 2675 2676 return DAG.getNode(ISD::AND, dl, VT, Result, DAG.getConstant(1, dl, VT)); 2677 } 2678 2679 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2680 LLVM_DEBUG(dbgs() << "Trying to expand node\n"); 2681 SmallVector<SDValue, 8> Results; 2682 SDLoc dl(Node); 2683 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2684 bool NeedInvert; 2685 switch (Node->getOpcode()) { 2686 case ISD::ABS: 2687 if (TLI.expandABS(Node, Tmp1, DAG)) 2688 Results.push_back(Tmp1); 2689 break; 2690 case ISD::CTPOP: 2691 if (TLI.expandCTPOP(Node, Tmp1, DAG)) 2692 Results.push_back(Tmp1); 2693 break; 2694 case ISD::CTLZ: 2695 case ISD::CTLZ_ZERO_UNDEF: 2696 if (TLI.expandCTLZ(Node, Tmp1, DAG)) 2697 Results.push_back(Tmp1); 2698 break; 2699 case ISD::CTTZ: 2700 case ISD::CTTZ_ZERO_UNDEF: 2701 if (TLI.expandCTTZ(Node, Tmp1, DAG)) 2702 Results.push_back(Tmp1); 2703 break; 2704 case ISD::BITREVERSE: 2705 if ((Tmp1 = TLI.expandBITREVERSE(Node, DAG))) 2706 Results.push_back(Tmp1); 2707 break; 2708 case ISD::BSWAP: 2709 if ((Tmp1 = TLI.expandBSWAP(Node, DAG))) 2710 Results.push_back(Tmp1); 2711 break; 2712 case ISD::PARITY: 2713 Results.push_back(ExpandPARITY(Node->getOperand(0), dl)); 2714 break; 2715 case ISD::FRAMEADDR: 2716 case ISD::RETURNADDR: 2717 case ISD::FRAME_TO_ARGS_OFFSET: 2718 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2719 break; 2720 case ISD::EH_DWARF_CFA: { 2721 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 2722 TLI.getPointerTy(DAG.getDataLayout())); 2723 SDValue Offset = DAG.getNode(ISD::ADD, dl, 2724 CfaArg.getValueType(), 2725 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 2726 CfaArg.getValueType()), 2727 CfaArg); 2728 SDValue FA = DAG.getNode( 2729 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 2730 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2731 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 2732 FA, Offset)); 2733 break; 2734 } 2735 case ISD::FLT_ROUNDS_: 2736 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2737 Results.push_back(Node->getOperand(0)); 2738 break; 2739 case ISD::EH_RETURN: 2740 case ISD::EH_LABEL: 2741 case ISD::PREFETCH: 2742 case ISD::VAEND: 2743 case ISD::EH_SJLJ_LONGJMP: 2744 // If the target didn't expand these, there's nothing to do, so just 2745 // preserve the chain and be done. 2746 Results.push_back(Node->getOperand(0)); 2747 break; 2748 case ISD::READCYCLECOUNTER: 2749 // If the target didn't expand this, just return 'zero' and preserve the 2750 // chain. 2751 Results.append(Node->getNumValues() - 1, 2752 DAG.getConstant(0, dl, Node->getValueType(0))); 2753 Results.push_back(Node->getOperand(0)); 2754 break; 2755 case ISD::EH_SJLJ_SETJMP: 2756 // If the target didn't expand this, just return 'zero' and preserve the 2757 // chain. 2758 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2759 Results.push_back(Node->getOperand(0)); 2760 break; 2761 case ISD::ATOMIC_LOAD: { 2762 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2763 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2764 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2765 SDValue Swap = DAG.getAtomicCmpSwap( 2766 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2767 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2768 cast<AtomicSDNode>(Node)->getMemOperand()); 2769 Results.push_back(Swap.getValue(0)); 2770 Results.push_back(Swap.getValue(1)); 2771 break; 2772 } 2773 case ISD::ATOMIC_STORE: { 2774 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2775 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2776 cast<AtomicSDNode>(Node)->getMemoryVT(), 2777 Node->getOperand(0), 2778 Node->getOperand(1), Node->getOperand(2), 2779 cast<AtomicSDNode>(Node)->getMemOperand()); 2780 Results.push_back(Swap.getValue(1)); 2781 break; 2782 } 2783 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 2784 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 2785 // splits out the success value as a comparison. Expanding the resulting 2786 // ATOMIC_CMP_SWAP will produce a libcall. 2787 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2788 SDValue Res = DAG.getAtomicCmpSwap( 2789 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2790 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 2791 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 2792 2793 SDValue ExtRes = Res; 2794 SDValue LHS = Res; 2795 SDValue RHS = Node->getOperand(1); 2796 2797 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 2798 EVT OuterType = Node->getValueType(0); 2799 switch (TLI.getExtendForAtomicOps()) { 2800 case ISD::SIGN_EXTEND: 2801 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 2802 DAG.getValueType(AtomicType)); 2803 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 2804 Node->getOperand(2), DAG.getValueType(AtomicType)); 2805 ExtRes = LHS; 2806 break; 2807 case ISD::ZERO_EXTEND: 2808 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 2809 DAG.getValueType(AtomicType)); 2810 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2811 ExtRes = LHS; 2812 break; 2813 case ISD::ANY_EXTEND: 2814 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 2815 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2816 break; 2817 default: 2818 llvm_unreachable("Invalid atomic op extension"); 2819 } 2820 2821 SDValue Success = 2822 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 2823 2824 Results.push_back(ExtRes.getValue(0)); 2825 Results.push_back(Success); 2826 Results.push_back(Res.getValue(1)); 2827 break; 2828 } 2829 case ISD::DYNAMIC_STACKALLOC: 2830 ExpandDYNAMIC_STACKALLOC(Node, Results); 2831 break; 2832 case ISD::MERGE_VALUES: 2833 for (unsigned i = 0; i < Node->getNumValues(); i++) 2834 Results.push_back(Node->getOperand(i)); 2835 break; 2836 case ISD::UNDEF: { 2837 EVT VT = Node->getValueType(0); 2838 if (VT.isInteger()) 2839 Results.push_back(DAG.getConstant(0, dl, VT)); 2840 else { 2841 assert(VT.isFloatingPoint() && "Unknown value type!"); 2842 Results.push_back(DAG.getConstantFP(0, dl, VT)); 2843 } 2844 break; 2845 } 2846 case ISD::STRICT_FP_ROUND: 2847 // When strict mode is enforced we can't do expansion because it 2848 // does not honor the "strict" properties. Only libcall is allowed. 2849 if (TLI.isStrictFPEnabled()) 2850 break; 2851 // We might as well mutate to FP_ROUND when FP_ROUND operation is legal 2852 // since this operation is more efficient than stack operation. 2853 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2854 Node->getValueType(0)) 2855 == TargetLowering::Legal) 2856 break; 2857 // We fall back to use stack operation when the FP_ROUND operation 2858 // isn't available. 2859 if ((Tmp1 = EmitStackConvert(Node->getOperand(1), Node->getValueType(0), 2860 Node->getValueType(0), dl, 2861 Node->getOperand(0)))) { 2862 ReplaceNode(Node, Tmp1.getNode()); 2863 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n"); 2864 return true; 2865 } 2866 break; 2867 case ISD::FP_ROUND: 2868 case ISD::BITCAST: 2869 if ((Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 2870 Node->getValueType(0), dl))) 2871 Results.push_back(Tmp1); 2872 break; 2873 case ISD::STRICT_FP_EXTEND: 2874 // When strict mode is enforced we can't do expansion because it 2875 // does not honor the "strict" properties. Only libcall is allowed. 2876 if (TLI.isStrictFPEnabled()) 2877 break; 2878 // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal 2879 // since this operation is more efficient than stack operation. 2880 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2881 Node->getValueType(0)) 2882 == TargetLowering::Legal) 2883 break; 2884 // We fall back to use stack operation when the FP_EXTEND operation 2885 // isn't available. 2886 if ((Tmp1 = EmitStackConvert( 2887 Node->getOperand(1), Node->getOperand(1).getValueType(), 2888 Node->getValueType(0), dl, Node->getOperand(0)))) { 2889 ReplaceNode(Node, Tmp1.getNode()); 2890 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n"); 2891 return true; 2892 } 2893 break; 2894 case ISD::FP_EXTEND: 2895 if ((Tmp1 = EmitStackConvert(Node->getOperand(0), 2896 Node->getOperand(0).getValueType(), 2897 Node->getValueType(0), dl))) 2898 Results.push_back(Tmp1); 2899 break; 2900 case ISD::SIGN_EXTEND_INREG: { 2901 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2902 EVT VT = Node->getValueType(0); 2903 2904 // An in-register sign-extend of a boolean is a negation: 2905 // 'true' (1) sign-extended is -1. 2906 // 'false' (0) sign-extended is 0. 2907 // However, we must mask the high bits of the source operand because the 2908 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 2909 2910 // TODO: Do this for vectors too? 2911 if (ExtraVT.getSizeInBits() == 1) { 2912 SDValue One = DAG.getConstant(1, dl, VT); 2913 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 2914 SDValue Zero = DAG.getConstant(0, dl, VT); 2915 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 2916 Results.push_back(Neg); 2917 break; 2918 } 2919 2920 // NOTE: we could fall back on load/store here too for targets without 2921 // SRA. However, it is doubtful that any exist. 2922 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2923 unsigned BitsDiff = VT.getScalarSizeInBits() - 2924 ExtraVT.getScalarSizeInBits(); 2925 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 2926 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 2927 Node->getOperand(0), ShiftCst); 2928 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 2929 Results.push_back(Tmp1); 2930 break; 2931 } 2932 case ISD::UINT_TO_FP: 2933 case ISD::STRICT_UINT_TO_FP: 2934 if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) { 2935 Results.push_back(Tmp1); 2936 if (Node->isStrictFPOpcode()) 2937 Results.push_back(Tmp2); 2938 break; 2939 } 2940 LLVM_FALLTHROUGH; 2941 case ISD::SINT_TO_FP: 2942 case ISD::STRICT_SINT_TO_FP: 2943 if ((Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2))) { 2944 Results.push_back(Tmp1); 2945 if (Node->isStrictFPOpcode()) 2946 Results.push_back(Tmp2); 2947 } 2948 break; 2949 case ISD::FP_TO_SINT: 2950 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 2951 Results.push_back(Tmp1); 2952 break; 2953 case ISD::STRICT_FP_TO_SINT: 2954 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) { 2955 ReplaceNode(Node, Tmp1.getNode()); 2956 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n"); 2957 return true; 2958 } 2959 break; 2960 case ISD::FP_TO_UINT: 2961 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) 2962 Results.push_back(Tmp1); 2963 break; 2964 case ISD::STRICT_FP_TO_UINT: 2965 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) { 2966 // Relink the chain. 2967 DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2); 2968 // Replace the new UINT result. 2969 ReplaceNodeWithValue(SDValue(Node, 0), Tmp1); 2970 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n"); 2971 return true; 2972 } 2973 break; 2974 case ISD::FP_TO_SINT_SAT: 2975 case ISD::FP_TO_UINT_SAT: 2976 Results.push_back(TLI.expandFP_TO_INT_SAT(Node, DAG)); 2977 break; 2978 case ISD::VAARG: 2979 Results.push_back(DAG.expandVAArg(Node)); 2980 Results.push_back(Results[0].getValue(1)); 2981 break; 2982 case ISD::VACOPY: 2983 Results.push_back(DAG.expandVACopy(Node)); 2984 break; 2985 case ISD::EXTRACT_VECTOR_ELT: 2986 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 2987 // This must be an access of the only element. Return it. 2988 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 2989 Node->getOperand(0)); 2990 else 2991 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 2992 Results.push_back(Tmp1); 2993 break; 2994 case ISD::EXTRACT_SUBVECTOR: 2995 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 2996 break; 2997 case ISD::INSERT_SUBVECTOR: 2998 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 2999 break; 3000 case ISD::CONCAT_VECTORS: 3001 Results.push_back(ExpandVectorBuildThroughStack(Node)); 3002 break; 3003 case ISD::SCALAR_TO_VECTOR: 3004 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3005 break; 3006 case ISD::INSERT_VECTOR_ELT: 3007 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3008 Node->getOperand(1), 3009 Node->getOperand(2), dl)); 3010 break; 3011 case ISD::VECTOR_SHUFFLE: { 3012 SmallVector<int, 32> NewMask; 3013 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3014 3015 EVT VT = Node->getValueType(0); 3016 EVT EltVT = VT.getVectorElementType(); 3017 SDValue Op0 = Node->getOperand(0); 3018 SDValue Op1 = Node->getOperand(1); 3019 if (!TLI.isTypeLegal(EltVT)) { 3020 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3021 3022 // BUILD_VECTOR operands are allowed to be wider than the element type. 3023 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 3024 // it. 3025 if (NewEltVT.bitsLT(EltVT)) { 3026 // Convert shuffle node. 3027 // If original node was v4i64 and the new EltVT is i32, 3028 // cast operands to v8i32 and re-build the mask. 3029 3030 // Calculate new VT, the size of the new VT should be equal to original. 3031 EVT NewVT = 3032 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3033 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 3034 assert(NewVT.bitsEq(VT)); 3035 3036 // cast operands to new VT 3037 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3038 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3039 3040 // Convert the shuffle mask 3041 unsigned int factor = 3042 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3043 3044 // EltVT gets smaller 3045 assert(factor > 0); 3046 3047 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3048 if (Mask[i] < 0) { 3049 for (unsigned fi = 0; fi < factor; ++fi) 3050 NewMask.push_back(Mask[i]); 3051 } 3052 else { 3053 for (unsigned fi = 0; fi < factor; ++fi) 3054 NewMask.push_back(Mask[i]*factor+fi); 3055 } 3056 } 3057 Mask = NewMask; 3058 VT = NewVT; 3059 } 3060 EltVT = NewEltVT; 3061 } 3062 unsigned NumElems = VT.getVectorNumElements(); 3063 SmallVector<SDValue, 16> Ops; 3064 for (unsigned i = 0; i != NumElems; ++i) { 3065 if (Mask[i] < 0) { 3066 Ops.push_back(DAG.getUNDEF(EltVT)); 3067 continue; 3068 } 3069 unsigned Idx = Mask[i]; 3070 if (Idx < NumElems) 3071 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3072 DAG.getVectorIdxConstant(Idx, dl))); 3073 else 3074 Ops.push_back( 3075 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3076 DAG.getVectorIdxConstant(Idx - NumElems, dl))); 3077 } 3078 3079 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 3080 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3081 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3082 Results.push_back(Tmp1); 3083 break; 3084 } 3085 case ISD::VECTOR_SPLICE: { 3086 Results.push_back(TLI.expandVectorSplice(Node, DAG)); 3087 break; 3088 } 3089 case ISD::EXTRACT_ELEMENT: { 3090 EVT OpTy = Node->getOperand(0).getValueType(); 3091 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3092 // 1 -> Hi 3093 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3094 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3095 TLI.getShiftAmountTy( 3096 Node->getOperand(0).getValueType(), 3097 DAG.getDataLayout()))); 3098 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3099 } else { 3100 // 0 -> Lo 3101 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3102 Node->getOperand(0)); 3103 } 3104 Results.push_back(Tmp1); 3105 break; 3106 } 3107 case ISD::STACKSAVE: 3108 // Expand to CopyFromReg if the target set 3109 // StackPointerRegisterToSaveRestore. 3110 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { 3111 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3112 Node->getValueType(0))); 3113 Results.push_back(Results[0].getValue(1)); 3114 } else { 3115 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3116 Results.push_back(Node->getOperand(0)); 3117 } 3118 break; 3119 case ISD::STACKRESTORE: 3120 // Expand to CopyToReg if the target set 3121 // StackPointerRegisterToSaveRestore. 3122 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { 3123 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3124 Node->getOperand(1))); 3125 } else { 3126 Results.push_back(Node->getOperand(0)); 3127 } 3128 break; 3129 case ISD::GET_DYNAMIC_AREA_OFFSET: 3130 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3131 Results.push_back(Results[0].getValue(0)); 3132 break; 3133 case ISD::FCOPYSIGN: 3134 Results.push_back(ExpandFCOPYSIGN(Node)); 3135 break; 3136 case ISD::FNEG: 3137 Results.push_back(ExpandFNEG(Node)); 3138 break; 3139 case ISD::FABS: 3140 Results.push_back(ExpandFABS(Node)); 3141 break; 3142 case ISD::SMIN: 3143 case ISD::SMAX: 3144 case ISD::UMIN: 3145 case ISD::UMAX: { 3146 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3147 ISD::CondCode Pred; 3148 switch (Node->getOpcode()) { 3149 default: llvm_unreachable("How did we get here?"); 3150 case ISD::SMAX: Pred = ISD::SETGT; break; 3151 case ISD::SMIN: Pred = ISD::SETLT; break; 3152 case ISD::UMAX: Pred = ISD::SETUGT; break; 3153 case ISD::UMIN: Pred = ISD::SETULT; break; 3154 } 3155 Tmp1 = Node->getOperand(0); 3156 Tmp2 = Node->getOperand(1); 3157 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3158 Results.push_back(Tmp1); 3159 break; 3160 } 3161 case ISD::FMINNUM: 3162 case ISD::FMAXNUM: { 3163 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) 3164 Results.push_back(Expanded); 3165 break; 3166 } 3167 case ISD::FSIN: 3168 case ISD::FCOS: { 3169 EVT VT = Node->getValueType(0); 3170 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3171 // fcos which share the same operand and both are used. 3172 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3173 isSinCosLibcallAvailable(Node, TLI)) 3174 && useSinCos(Node)) { 3175 SDVTList VTs = DAG.getVTList(VT, VT); 3176 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3177 if (Node->getOpcode() == ISD::FCOS) 3178 Tmp1 = Tmp1.getValue(1); 3179 Results.push_back(Tmp1); 3180 } 3181 break; 3182 } 3183 case ISD::FMAD: 3184 llvm_unreachable("Illegal fmad should never be formed"); 3185 3186 case ISD::FP16_TO_FP: 3187 if (Node->getValueType(0) != MVT::f32) { 3188 // We can extend to types bigger than f32 in two steps without changing 3189 // the result. Since "f16 -> f32" is much more commonly available, give 3190 // CodeGen the option of emitting that before resorting to a libcall. 3191 SDValue Res = 3192 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3193 Results.push_back( 3194 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3195 } 3196 break; 3197 case ISD::STRICT_FP16_TO_FP: 3198 if (Node->getValueType(0) != MVT::f32) { 3199 // We can extend to types bigger than f32 in two steps without changing 3200 // the result. Since "f16 -> f32" is much more commonly available, give 3201 // CodeGen the option of emitting that before resorting to a libcall. 3202 SDValue Res = 3203 DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other}, 3204 {Node->getOperand(0), Node->getOperand(1)}); 3205 Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 3206 {Node->getValueType(0), MVT::Other}, 3207 {Res.getValue(1), Res}); 3208 Results.push_back(Res); 3209 Results.push_back(Res.getValue(1)); 3210 } 3211 break; 3212 case ISD::FP_TO_FP16: 3213 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3214 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3215 SDValue Op = Node->getOperand(0); 3216 MVT SVT = Op.getSimpleValueType(); 3217 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3218 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3219 // Under fastmath, we can expand this node into a fround followed by 3220 // a float-half conversion. 3221 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3222 DAG.getIntPtrConstant(0, dl)); 3223 Results.push_back( 3224 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3225 } 3226 } 3227 break; 3228 case ISD::ConstantFP: { 3229 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3230 // Check to see if this FP immediate is already legal. 3231 // If this is a legal constant, turn it into a TargetConstantFP node. 3232 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0), 3233 DAG.shouldOptForSize())) 3234 Results.push_back(ExpandConstantFP(CFP, true)); 3235 break; 3236 } 3237 case ISD::Constant: { 3238 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3239 Results.push_back(ExpandConstant(CP)); 3240 break; 3241 } 3242 case ISD::FSUB: { 3243 EVT VT = Node->getValueType(0); 3244 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3245 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3246 const SDNodeFlags Flags = Node->getFlags(); 3247 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3248 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3249 Results.push_back(Tmp1); 3250 } 3251 break; 3252 } 3253 case ISD::SUB: { 3254 EVT VT = Node->getValueType(0); 3255 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3256 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3257 "Don't know how to expand this subtraction!"); 3258 Tmp1 = DAG.getNOT(dl, Node->getOperand(1), VT); 3259 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3260 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3261 break; 3262 } 3263 case ISD::UREM: 3264 case ISD::SREM: 3265 if (TLI.expandREM(Node, Tmp1, DAG)) 3266 Results.push_back(Tmp1); 3267 break; 3268 case ISD::UDIV: 3269 case ISD::SDIV: { 3270 bool isSigned = Node->getOpcode() == ISD::SDIV; 3271 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3272 EVT VT = Node->getValueType(0); 3273 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3274 SDVTList VTs = DAG.getVTList(VT, VT); 3275 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3276 Node->getOperand(1)); 3277 Results.push_back(Tmp1); 3278 } 3279 break; 3280 } 3281 case ISD::MULHU: 3282 case ISD::MULHS: { 3283 unsigned ExpandOpcode = 3284 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3285 EVT VT = Node->getValueType(0); 3286 SDVTList VTs = DAG.getVTList(VT, VT); 3287 3288 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3289 Node->getOperand(1)); 3290 Results.push_back(Tmp1.getValue(1)); 3291 break; 3292 } 3293 case ISD::UMUL_LOHI: 3294 case ISD::SMUL_LOHI: { 3295 SDValue LHS = Node->getOperand(0); 3296 SDValue RHS = Node->getOperand(1); 3297 MVT VT = LHS.getSimpleValueType(); 3298 unsigned MULHOpcode = 3299 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3300 3301 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3302 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3303 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3304 break; 3305 } 3306 3307 SmallVector<SDValue, 4> Halves; 3308 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3309 assert(TLI.isTypeLegal(HalfType)); 3310 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, dl, LHS, RHS, Halves, 3311 HalfType, DAG, 3312 TargetLowering::MulExpansionKind::Always)) { 3313 for (unsigned i = 0; i < 2; ++i) { 3314 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3315 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3316 SDValue Shift = DAG.getConstant( 3317 HalfType.getScalarSizeInBits(), dl, 3318 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3319 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3320 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3321 } 3322 break; 3323 } 3324 break; 3325 } 3326 case ISD::MUL: { 3327 EVT VT = Node->getValueType(0); 3328 SDVTList VTs = DAG.getVTList(VT, VT); 3329 // See if multiply or divide can be lowered using two-result operations. 3330 // We just need the low half of the multiply; try both the signed 3331 // and unsigned forms. If the target supports both SMUL_LOHI and 3332 // UMUL_LOHI, form a preference by checking which forms of plain 3333 // MULH it supports. 3334 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3335 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3336 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3337 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3338 unsigned OpToUse = 0; 3339 if (HasSMUL_LOHI && !HasMULHS) { 3340 OpToUse = ISD::SMUL_LOHI; 3341 } else if (HasUMUL_LOHI && !HasMULHU) { 3342 OpToUse = ISD::UMUL_LOHI; 3343 } else if (HasSMUL_LOHI) { 3344 OpToUse = ISD::SMUL_LOHI; 3345 } else if (HasUMUL_LOHI) { 3346 OpToUse = ISD::UMUL_LOHI; 3347 } 3348 if (OpToUse) { 3349 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3350 Node->getOperand(1))); 3351 break; 3352 } 3353 3354 SDValue Lo, Hi; 3355 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3356 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3357 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3358 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3359 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3360 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3361 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3362 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3363 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3364 SDValue Shift = 3365 DAG.getConstant(HalfType.getSizeInBits(), dl, 3366 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3367 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3368 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3369 } 3370 break; 3371 } 3372 case ISD::FSHL: 3373 case ISD::FSHR: 3374 if (TLI.expandFunnelShift(Node, Tmp1, DAG)) 3375 Results.push_back(Tmp1); 3376 break; 3377 case ISD::ROTL: 3378 case ISD::ROTR: 3379 if (TLI.expandROT(Node, true /*AllowVectorOps*/, Tmp1, DAG)) 3380 Results.push_back(Tmp1); 3381 break; 3382 case ISD::SADDSAT: 3383 case ISD::UADDSAT: 3384 case ISD::SSUBSAT: 3385 case ISD::USUBSAT: 3386 Results.push_back(TLI.expandAddSubSat(Node, DAG)); 3387 break; 3388 case ISD::SSHLSAT: 3389 case ISD::USHLSAT: 3390 Results.push_back(TLI.expandShlSat(Node, DAG)); 3391 break; 3392 case ISD::SMULFIX: 3393 case ISD::SMULFIXSAT: 3394 case ISD::UMULFIX: 3395 case ISD::UMULFIXSAT: 3396 Results.push_back(TLI.expandFixedPointMul(Node, DAG)); 3397 break; 3398 case ISD::SDIVFIX: 3399 case ISD::SDIVFIXSAT: 3400 case ISD::UDIVFIX: 3401 case ISD::UDIVFIXSAT: 3402 if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node), 3403 Node->getOperand(0), 3404 Node->getOperand(1), 3405 Node->getConstantOperandVal(2), 3406 DAG)) { 3407 Results.push_back(V); 3408 break; 3409 } 3410 // FIXME: We might want to retry here with a wider type if we fail, if that 3411 // type is legal. 3412 // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is 3413 // <= 128 (which is the case for all of the default Embedded-C types), 3414 // we will only get here with types and scales that we could always expand 3415 // if we were allowed to generate libcalls to division functions of illegal 3416 // type. But we cannot do that. 3417 llvm_unreachable("Cannot expand DIVFIX!"); 3418 case ISD::ADDCARRY: 3419 case ISD::SUBCARRY: { 3420 SDValue LHS = Node->getOperand(0); 3421 SDValue RHS = Node->getOperand(1); 3422 SDValue Carry = Node->getOperand(2); 3423 3424 bool IsAdd = Node->getOpcode() == ISD::ADDCARRY; 3425 3426 // Initial add of the 2 operands. 3427 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB; 3428 EVT VT = LHS.getValueType(); 3429 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS); 3430 3431 // Initial check for overflow. 3432 EVT CarryType = Node->getValueType(1); 3433 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3434 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 3435 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3436 3437 // Add of the sum and the carry. 3438 SDValue One = DAG.getConstant(1, dl, VT); 3439 SDValue CarryExt = 3440 DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One); 3441 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt); 3442 3443 // Second check for overflow. If we are adding, we can only overflow if the 3444 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0. 3445 // If we are subtracting, we can only overflow if the initial sum is 0 and 3446 // the carry is set, resulting in a new sum of all 1s. 3447 SDValue Zero = DAG.getConstant(0, dl, VT); 3448 SDValue Overflow2 = 3449 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ) 3450 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ); 3451 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2, 3452 DAG.getZExtOrTrunc(Carry, dl, SetCCType)); 3453 3454 SDValue ResultCarry = 3455 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2); 3456 3457 Results.push_back(Sum2); 3458 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT)); 3459 break; 3460 } 3461 case ISD::SADDO: 3462 case ISD::SSUBO: { 3463 SDValue Result, Overflow; 3464 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 3465 Results.push_back(Result); 3466 Results.push_back(Overflow); 3467 break; 3468 } 3469 case ISD::UADDO: 3470 case ISD::USUBO: { 3471 SDValue Result, Overflow; 3472 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 3473 Results.push_back(Result); 3474 Results.push_back(Overflow); 3475 break; 3476 } 3477 case ISD::UMULO: 3478 case ISD::SMULO: { 3479 SDValue Result, Overflow; 3480 if (TLI.expandMULO(Node, Result, Overflow, DAG)) { 3481 Results.push_back(Result); 3482 Results.push_back(Overflow); 3483 } 3484 break; 3485 } 3486 case ISD::BUILD_PAIR: { 3487 EVT PairTy = Node->getValueType(0); 3488 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3489 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3490 Tmp2 = DAG.getNode( 3491 ISD::SHL, dl, PairTy, Tmp2, 3492 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3493 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3494 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3495 break; 3496 } 3497 case ISD::SELECT: 3498 Tmp1 = Node->getOperand(0); 3499 Tmp2 = Node->getOperand(1); 3500 Tmp3 = Node->getOperand(2); 3501 if (Tmp1.getOpcode() == ISD::SETCC) { 3502 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3503 Tmp2, Tmp3, 3504 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3505 } else { 3506 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3507 DAG.getConstant(0, dl, Tmp1.getValueType()), 3508 Tmp2, Tmp3, ISD::SETNE); 3509 } 3510 Tmp1->setFlags(Node->getFlags()); 3511 Results.push_back(Tmp1); 3512 break; 3513 case ISD::BR_JT: { 3514 SDValue Chain = Node->getOperand(0); 3515 SDValue Table = Node->getOperand(1); 3516 SDValue Index = Node->getOperand(2); 3517 3518 const DataLayout &TD = DAG.getDataLayout(); 3519 EVT PTy = TLI.getPointerTy(TD); 3520 3521 unsigned EntrySize = 3522 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3523 3524 // For power-of-two jumptable entry sizes convert multiplication to a shift. 3525 // This transformation needs to be done here since otherwise the MIPS 3526 // backend will end up emitting a three instruction multiply sequence 3527 // instead of a single shift and MSP430 will call a runtime function. 3528 if (llvm::isPowerOf2_32(EntrySize)) 3529 Index = DAG.getNode( 3530 ISD::SHL, dl, Index.getValueType(), Index, 3531 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); 3532 else 3533 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3534 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3535 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3536 Index, Table); 3537 3538 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3539 SDValue LD = DAG.getExtLoad( 3540 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3541 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3542 Addr = LD; 3543 if (TLI.isJumpTableRelative()) { 3544 // For PIC, the sequence is: 3545 // BRIND(load(Jumptable + index) + RelocBase) 3546 // RelocBase can be JumpTable, GOT or some sort of global base. 3547 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3548 TLI.getPICJumpTableRelocBase(Table, DAG)); 3549 } 3550 3551 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); 3552 Results.push_back(Tmp1); 3553 break; 3554 } 3555 case ISD::BRCOND: 3556 // Expand brcond's setcc into its constituent parts and create a BR_CC 3557 // Node. 3558 Tmp1 = Node->getOperand(0); 3559 Tmp2 = Node->getOperand(1); 3560 if (Tmp2.getOpcode() == ISD::SETCC) { 3561 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3562 Tmp1, Tmp2.getOperand(2), 3563 Tmp2.getOperand(0), Tmp2.getOperand(1), 3564 Node->getOperand(2)); 3565 } else { 3566 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 3567 if (Tmp2.isUndef() || 3568 (Tmp2.getOpcode() == ISD::AND && 3569 isa<ConstantSDNode>(Tmp2.getOperand(1)) && 3570 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) 3571 Tmp3 = Tmp2; 3572 else 3573 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3574 DAG.getConstant(1, dl, Tmp2.getValueType())); 3575 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3576 DAG.getCondCode(ISD::SETNE), Tmp3, 3577 DAG.getConstant(0, dl, Tmp3.getValueType()), 3578 Node->getOperand(2)); 3579 } 3580 Results.push_back(Tmp1); 3581 break; 3582 case ISD::SETCC: 3583 case ISD::STRICT_FSETCC: 3584 case ISD::STRICT_FSETCCS: { 3585 bool IsStrict = Node->getOpcode() != ISD::SETCC; 3586 bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS; 3587 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 3588 unsigned Offset = IsStrict ? 1 : 0; 3589 Tmp1 = Node->getOperand(0 + Offset); 3590 Tmp2 = Node->getOperand(1 + Offset); 3591 Tmp3 = Node->getOperand(2 + Offset); 3592 bool Legalized = 3593 TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), Tmp1, Tmp2, Tmp3, 3594 NeedInvert, dl, Chain, IsSignaling); 3595 3596 if (Legalized) { 3597 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3598 // condition code, create a new SETCC node. 3599 if (Tmp3.getNode()) 3600 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3601 Tmp1, Tmp2, Tmp3, Node->getFlags()); 3602 3603 // If we expanded the SETCC by inverting the condition code, then wrap 3604 // the existing SETCC in a NOT to restore the intended condition. 3605 if (NeedInvert) 3606 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3607 3608 Results.push_back(Tmp1); 3609 if (IsStrict) 3610 Results.push_back(Chain); 3611 3612 break; 3613 } 3614 3615 // FIXME: It seems Legalized is false iff CCCode is Legal. I don't 3616 // understand if this code is useful for strict nodes. 3617 assert(!IsStrict && "Don't know how to expand for strict nodes."); 3618 3619 // Otherwise, SETCC for the given comparison type must be completely 3620 // illegal; expand it into a SELECT_CC. 3621 EVT VT = Node->getValueType(0); 3622 int TrueValue; 3623 switch (TLI.getBooleanContents(Tmp1.getValueType())) { 3624 case TargetLowering::ZeroOrOneBooleanContent: 3625 case TargetLowering::UndefinedBooleanContent: 3626 TrueValue = 1; 3627 break; 3628 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3629 TrueValue = -1; 3630 break; 3631 } 3632 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3633 DAG.getConstant(TrueValue, dl, VT), 3634 DAG.getConstant(0, dl, VT), 3635 Tmp3); 3636 Tmp1->setFlags(Node->getFlags()); 3637 Results.push_back(Tmp1); 3638 break; 3639 } 3640 case ISD::SELECT_CC: { 3641 // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS 3642 Tmp1 = Node->getOperand(0); // LHS 3643 Tmp2 = Node->getOperand(1); // RHS 3644 Tmp3 = Node->getOperand(2); // True 3645 Tmp4 = Node->getOperand(3); // False 3646 EVT VT = Node->getValueType(0); 3647 SDValue Chain; 3648 SDValue CC = Node->getOperand(4); 3649 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3650 3651 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 3652 // If the condition code is legal, then we need to expand this 3653 // node using SETCC and SELECT. 3654 EVT CmpVT = Tmp1.getValueType(); 3655 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3656 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3657 "expanded."); 3658 EVT CCVT = getSetCCResultType(CmpVT); 3659 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags()); 3660 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3661 break; 3662 } 3663 3664 // SELECT_CC is legal, so the condition code must not be. 3665 bool Legalized = false; 3666 // Try to legalize by inverting the condition. This is for targets that 3667 // might support an ordered version of a condition, but not the unordered 3668 // version (or vice versa). 3669 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType()); 3670 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 3671 // Use the new condition code and swap true and false 3672 Legalized = true; 3673 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3674 Tmp1->setFlags(Node->getFlags()); 3675 } else { 3676 // If The inverse is not legal, then try to swap the arguments using 3677 // the inverse condition code. 3678 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3679 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 3680 // The swapped inverse condition is legal, so swap true and false, 3681 // lhs and rhs. 3682 Legalized = true; 3683 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3684 Tmp1->setFlags(Node->getFlags()); 3685 } 3686 } 3687 3688 if (!Legalized) { 3689 Legalized = TLI.LegalizeSetCCCondCode( 3690 DAG, getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, 3691 NeedInvert, dl, Chain); 3692 3693 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3694 3695 // If we expanded the SETCC by inverting the condition code, then swap 3696 // the True/False operands to match. 3697 if (NeedInvert) 3698 std::swap(Tmp3, Tmp4); 3699 3700 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3701 // condition code, create a new SELECT_CC node. 3702 if (CC.getNode()) { 3703 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3704 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3705 } else { 3706 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3707 CC = DAG.getCondCode(ISD::SETNE); 3708 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3709 Tmp2, Tmp3, Tmp4, CC); 3710 } 3711 Tmp1->setFlags(Node->getFlags()); 3712 } 3713 Results.push_back(Tmp1); 3714 break; 3715 } 3716 case ISD::BR_CC: { 3717 // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS 3718 SDValue Chain; 3719 Tmp1 = Node->getOperand(0); // Chain 3720 Tmp2 = Node->getOperand(2); // LHS 3721 Tmp3 = Node->getOperand(3); // RHS 3722 Tmp4 = Node->getOperand(1); // CC 3723 3724 bool Legalized = 3725 TLI.LegalizeSetCCCondCode(DAG, getSetCCResultType(Tmp2.getValueType()), 3726 Tmp2, Tmp3, Tmp4, NeedInvert, dl, Chain); 3727 (void)Legalized; 3728 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3729 3730 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3731 // node. 3732 if (Tmp4.getNode()) { 3733 assert(!NeedInvert && "Don't know how to invert BR_CC!"); 3734 3735 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3736 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3737 } else { 3738 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3739 Tmp4 = DAG.getCondCode(NeedInvert ? ISD::SETEQ : ISD::SETNE); 3740 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3741 Tmp2, Tmp3, Node->getOperand(4)); 3742 } 3743 Results.push_back(Tmp1); 3744 break; 3745 } 3746 case ISD::BUILD_VECTOR: 3747 Results.push_back(ExpandBUILD_VECTOR(Node)); 3748 break; 3749 case ISD::SPLAT_VECTOR: 3750 Results.push_back(ExpandSPLAT_VECTOR(Node)); 3751 break; 3752 case ISD::SRA: 3753 case ISD::SRL: 3754 case ISD::SHL: { 3755 // Scalarize vector SRA/SRL/SHL. 3756 EVT VT = Node->getValueType(0); 3757 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3758 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3759 unsigned NumElem = VT.getVectorNumElements(); 3760 3761 SmallVector<SDValue, 8> Scalars; 3762 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3763 SDValue Ex = 3764 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3765 Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl)); 3766 SDValue Sh = 3767 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3768 Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl)); 3769 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3770 VT.getScalarType(), Ex, Sh)); 3771 } 3772 3773 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 3774 Results.push_back(Result); 3775 break; 3776 } 3777 case ISD::VECREDUCE_FADD: 3778 case ISD::VECREDUCE_FMUL: 3779 case ISD::VECREDUCE_ADD: 3780 case ISD::VECREDUCE_MUL: 3781 case ISD::VECREDUCE_AND: 3782 case ISD::VECREDUCE_OR: 3783 case ISD::VECREDUCE_XOR: 3784 case ISD::VECREDUCE_SMAX: 3785 case ISD::VECREDUCE_SMIN: 3786 case ISD::VECREDUCE_UMAX: 3787 case ISD::VECREDUCE_UMIN: 3788 case ISD::VECREDUCE_FMAX: 3789 case ISD::VECREDUCE_FMIN: 3790 Results.push_back(TLI.expandVecReduce(Node, DAG)); 3791 break; 3792 case ISD::GLOBAL_OFFSET_TABLE: 3793 case ISD::GlobalAddress: 3794 case ISD::GlobalTLSAddress: 3795 case ISD::ExternalSymbol: 3796 case ISD::ConstantPool: 3797 case ISD::JumpTable: 3798 case ISD::INTRINSIC_W_CHAIN: 3799 case ISD::INTRINSIC_WO_CHAIN: 3800 case ISD::INTRINSIC_VOID: 3801 // FIXME: Custom lowering for these operations shouldn't return null! 3802 // Return true so that we don't call ConvertNodeToLibcall which also won't 3803 // do anything. 3804 return true; 3805 } 3806 3807 if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) { 3808 // FIXME: We were asked to expand a strict floating-point operation, 3809 // but there is currently no expansion implemented that would preserve 3810 // the "strict" properties. For now, we just fall back to the non-strict 3811 // version if that is legal on the target. The actual mutation of the 3812 // operation will happen in SelectionDAGISel::DoInstructionSelection. 3813 switch (Node->getOpcode()) { 3814 default: 3815 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3816 Node->getValueType(0)) 3817 == TargetLowering::Legal) 3818 return true; 3819 break; 3820 case ISD::STRICT_FSUB: { 3821 if (TLI.getStrictFPOperationAction( 3822 ISD::STRICT_FSUB, Node->getValueType(0)) == TargetLowering::Legal) 3823 return true; 3824 if (TLI.getStrictFPOperationAction( 3825 ISD::STRICT_FADD, Node->getValueType(0)) != TargetLowering::Legal) 3826 break; 3827 3828 EVT VT = Node->getValueType(0); 3829 const SDNodeFlags Flags = Node->getFlags(); 3830 SDValue Neg = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(2), Flags); 3831 SDValue Fadd = DAG.getNode(ISD::STRICT_FADD, dl, Node->getVTList(), 3832 {Node->getOperand(0), Node->getOperand(1), Neg}, 3833 Flags); 3834 3835 Results.push_back(Fadd); 3836 Results.push_back(Fadd.getValue(1)); 3837 break; 3838 } 3839 case ISD::STRICT_SINT_TO_FP: 3840 case ISD::STRICT_UINT_TO_FP: 3841 case ISD::STRICT_LRINT: 3842 case ISD::STRICT_LLRINT: 3843 case ISD::STRICT_LROUND: 3844 case ISD::STRICT_LLROUND: 3845 // These are registered by the operand type instead of the value 3846 // type. Reflect that here. 3847 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3848 Node->getOperand(1).getValueType()) 3849 == TargetLowering::Legal) 3850 return true; 3851 break; 3852 } 3853 } 3854 3855 // Replace the original node with the legalized result. 3856 if (Results.empty()) { 3857 LLVM_DEBUG(dbgs() << "Cannot expand node\n"); 3858 return false; 3859 } 3860 3861 LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); 3862 ReplaceNode(Node, Results.data()); 3863 return true; 3864 } 3865 3866 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 3867 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); 3868 SmallVector<SDValue, 8> Results; 3869 SDLoc dl(Node); 3870 // FIXME: Check flags on the node to see if we can use a finite call. 3871 unsigned Opc = Node->getOpcode(); 3872 switch (Opc) { 3873 case ISD::ATOMIC_FENCE: { 3874 // If the target didn't lower this, lower it to '__sync_synchronize()' call 3875 // FIXME: handle "fence singlethread" more efficiently. 3876 TargetLowering::ArgListTy Args; 3877 3878 TargetLowering::CallLoweringInfo CLI(DAG); 3879 CLI.setDebugLoc(dl) 3880 .setChain(Node->getOperand(0)) 3881 .setLibCallee( 3882 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3883 DAG.getExternalSymbol("__sync_synchronize", 3884 TLI.getPointerTy(DAG.getDataLayout())), 3885 std::move(Args)); 3886 3887 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3888 3889 Results.push_back(CallResult.second); 3890 break; 3891 } 3892 // By default, atomic intrinsics are marked Legal and lowered. Targets 3893 // which don't support them directly, however, may want libcalls, in which 3894 // case they mark them Expand, and we get here. 3895 case ISD::ATOMIC_SWAP: 3896 case ISD::ATOMIC_LOAD_ADD: 3897 case ISD::ATOMIC_LOAD_SUB: 3898 case ISD::ATOMIC_LOAD_AND: 3899 case ISD::ATOMIC_LOAD_CLR: 3900 case ISD::ATOMIC_LOAD_OR: 3901 case ISD::ATOMIC_LOAD_XOR: 3902 case ISD::ATOMIC_LOAD_NAND: 3903 case ISD::ATOMIC_LOAD_MIN: 3904 case ISD::ATOMIC_LOAD_MAX: 3905 case ISD::ATOMIC_LOAD_UMIN: 3906 case ISD::ATOMIC_LOAD_UMAX: 3907 case ISD::ATOMIC_CMP_SWAP: { 3908 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 3909 AtomicOrdering Order = cast<AtomicSDNode>(Node)->getMergedOrdering(); 3910 RTLIB::Libcall LC = RTLIB::getOUTLINE_ATOMIC(Opc, Order, VT); 3911 EVT RetVT = Node->getValueType(0); 3912 TargetLowering::MakeLibCallOptions CallOptions; 3913 SmallVector<SDValue, 4> Ops; 3914 if (TLI.getLibcallName(LC)) { 3915 // If outline atomic available, prepare its arguments and expand. 3916 Ops.append(Node->op_begin() + 2, Node->op_end()); 3917 Ops.push_back(Node->getOperand(1)); 3918 3919 } else { 3920 LC = RTLIB::getSYNC(Opc, VT); 3921 assert(LC != RTLIB::UNKNOWN_LIBCALL && 3922 "Unexpected atomic op or value type!"); 3923 // Arguments for expansion to sync libcall 3924 Ops.append(Node->op_begin() + 1, Node->op_end()); 3925 } 3926 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 3927 Ops, CallOptions, 3928 SDLoc(Node), 3929 Node->getOperand(0)); 3930 Results.push_back(Tmp.first); 3931 Results.push_back(Tmp.second); 3932 break; 3933 } 3934 case ISD::TRAP: { 3935 // If this operation is not supported, lower it to 'abort()' call 3936 TargetLowering::ArgListTy Args; 3937 TargetLowering::CallLoweringInfo CLI(DAG); 3938 CLI.setDebugLoc(dl) 3939 .setChain(Node->getOperand(0)) 3940 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3941 DAG.getExternalSymbol( 3942 "abort", TLI.getPointerTy(DAG.getDataLayout())), 3943 std::move(Args)); 3944 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3945 3946 Results.push_back(CallResult.second); 3947 break; 3948 } 3949 case ISD::FMINNUM: 3950 case ISD::STRICT_FMINNUM: 3951 ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 3952 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 3953 RTLIB::FMIN_PPCF128, Results); 3954 break; 3955 case ISD::FMAXNUM: 3956 case ISD::STRICT_FMAXNUM: 3957 ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 3958 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 3959 RTLIB::FMAX_PPCF128, Results); 3960 break; 3961 case ISD::FSQRT: 3962 case ISD::STRICT_FSQRT: 3963 ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3964 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 3965 RTLIB::SQRT_PPCF128, Results); 3966 break; 3967 case ISD::FCBRT: 3968 ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, 3969 RTLIB::CBRT_F80, RTLIB::CBRT_F128, 3970 RTLIB::CBRT_PPCF128, Results); 3971 break; 3972 case ISD::FSIN: 3973 case ISD::STRICT_FSIN: 3974 ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 3975 RTLIB::SIN_F80, RTLIB::SIN_F128, 3976 RTLIB::SIN_PPCF128, Results); 3977 break; 3978 case ISD::FCOS: 3979 case ISD::STRICT_FCOS: 3980 ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 3981 RTLIB::COS_F80, RTLIB::COS_F128, 3982 RTLIB::COS_PPCF128, Results); 3983 break; 3984 case ISD::FSINCOS: 3985 // Expand into sincos libcall. 3986 ExpandSinCosLibCall(Node, Results); 3987 break; 3988 case ISD::FLOG: 3989 case ISD::STRICT_FLOG: 3990 ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80, 3991 RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results); 3992 break; 3993 case ISD::FLOG2: 3994 case ISD::STRICT_FLOG2: 3995 ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80, 3996 RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results); 3997 break; 3998 case ISD::FLOG10: 3999 case ISD::STRICT_FLOG10: 4000 ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80, 4001 RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results); 4002 break; 4003 case ISD::FEXP: 4004 case ISD::STRICT_FEXP: 4005 ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80, 4006 RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results); 4007 break; 4008 case ISD::FEXP2: 4009 case ISD::STRICT_FEXP2: 4010 ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80, 4011 RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results); 4012 break; 4013 case ISD::FTRUNC: 4014 case ISD::STRICT_FTRUNC: 4015 ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 4016 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 4017 RTLIB::TRUNC_PPCF128, Results); 4018 break; 4019 case ISD::FFLOOR: 4020 case ISD::STRICT_FFLOOR: 4021 ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 4022 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 4023 RTLIB::FLOOR_PPCF128, Results); 4024 break; 4025 case ISD::FCEIL: 4026 case ISD::STRICT_FCEIL: 4027 ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 4028 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 4029 RTLIB::CEIL_PPCF128, Results); 4030 break; 4031 case ISD::FRINT: 4032 case ISD::STRICT_FRINT: 4033 ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 4034 RTLIB::RINT_F80, RTLIB::RINT_F128, 4035 RTLIB::RINT_PPCF128, Results); 4036 break; 4037 case ISD::FNEARBYINT: 4038 case ISD::STRICT_FNEARBYINT: 4039 ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 4040 RTLIB::NEARBYINT_F64, 4041 RTLIB::NEARBYINT_F80, 4042 RTLIB::NEARBYINT_F128, 4043 RTLIB::NEARBYINT_PPCF128, Results); 4044 break; 4045 case ISD::FROUND: 4046 case ISD::STRICT_FROUND: 4047 ExpandFPLibCall(Node, RTLIB::ROUND_F32, 4048 RTLIB::ROUND_F64, 4049 RTLIB::ROUND_F80, 4050 RTLIB::ROUND_F128, 4051 RTLIB::ROUND_PPCF128, Results); 4052 break; 4053 case ISD::FROUNDEVEN: 4054 case ISD::STRICT_FROUNDEVEN: 4055 ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32, 4056 RTLIB::ROUNDEVEN_F64, 4057 RTLIB::ROUNDEVEN_F80, 4058 RTLIB::ROUNDEVEN_F128, 4059 RTLIB::ROUNDEVEN_PPCF128, Results); 4060 break; 4061 case ISD::FPOWI: 4062 case ISD::STRICT_FPOWI: { 4063 RTLIB::Libcall LC = RTLIB::getPOWI(Node->getSimpleValueType(0)); 4064 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fpowi."); 4065 if (!TLI.getLibcallName(LC)) { 4066 // Some targets don't have a powi libcall; use pow instead. 4067 SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), 4068 Node->getValueType(0), 4069 Node->getOperand(1)); 4070 Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node), 4071 Node->getValueType(0), Node->getOperand(0), 4072 Exponent)); 4073 break; 4074 } 4075 unsigned Offset = Node->isStrictFPOpcode() ? 1 : 0; 4076 bool ExponentHasSizeOfInt = 4077 DAG.getLibInfo().getIntSize() == 4078 Node->getOperand(1 + Offset).getValueType().getSizeInBits(); 4079 if (!ExponentHasSizeOfInt) { 4080 // If the exponent does not match with sizeof(int) a libcall to 4081 // RTLIB::POWI would use the wrong type for the argument. 4082 DAG.getContext()->emitError("POWI exponent does not match sizeof(int)"); 4083 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 4084 break; 4085 } 4086 ExpandFPLibCall(Node, LC, Results); 4087 break; 4088 } 4089 case ISD::FPOW: 4090 case ISD::STRICT_FPOW: 4091 ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 4092 RTLIB::POW_F128, RTLIB::POW_PPCF128, Results); 4093 break; 4094 case ISD::LROUND: 4095 case ISD::STRICT_LROUND: 4096 ExpandArgFPLibCall(Node, RTLIB::LROUND_F32, 4097 RTLIB::LROUND_F64, RTLIB::LROUND_F80, 4098 RTLIB::LROUND_F128, 4099 RTLIB::LROUND_PPCF128, Results); 4100 break; 4101 case ISD::LLROUND: 4102 case ISD::STRICT_LLROUND: 4103 ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32, 4104 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, 4105 RTLIB::LLROUND_F128, 4106 RTLIB::LLROUND_PPCF128, Results); 4107 break; 4108 case ISD::LRINT: 4109 case ISD::STRICT_LRINT: 4110 ExpandArgFPLibCall(Node, RTLIB::LRINT_F32, 4111 RTLIB::LRINT_F64, RTLIB::LRINT_F80, 4112 RTLIB::LRINT_F128, 4113 RTLIB::LRINT_PPCF128, Results); 4114 break; 4115 case ISD::LLRINT: 4116 case ISD::STRICT_LLRINT: 4117 ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32, 4118 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80, 4119 RTLIB::LLRINT_F128, 4120 RTLIB::LLRINT_PPCF128, Results); 4121 break; 4122 case ISD::FDIV: 4123 case ISD::STRICT_FDIV: 4124 ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 4125 RTLIB::DIV_F80, RTLIB::DIV_F128, 4126 RTLIB::DIV_PPCF128, Results); 4127 break; 4128 case ISD::FREM: 4129 case ISD::STRICT_FREM: 4130 ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 4131 RTLIB::REM_F80, RTLIB::REM_F128, 4132 RTLIB::REM_PPCF128, Results); 4133 break; 4134 case ISD::FMA: 4135 case ISD::STRICT_FMA: 4136 ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 4137 RTLIB::FMA_F80, RTLIB::FMA_F128, 4138 RTLIB::FMA_PPCF128, Results); 4139 break; 4140 case ISD::FADD: 4141 case ISD::STRICT_FADD: 4142 ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 4143 RTLIB::ADD_F80, RTLIB::ADD_F128, 4144 RTLIB::ADD_PPCF128, Results); 4145 break; 4146 case ISD::FMUL: 4147 case ISD::STRICT_FMUL: 4148 ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 4149 RTLIB::MUL_F80, RTLIB::MUL_F128, 4150 RTLIB::MUL_PPCF128, Results); 4151 break; 4152 case ISD::FP16_TO_FP: 4153 if (Node->getValueType(0) == MVT::f32) { 4154 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 4155 } 4156 break; 4157 case ISD::STRICT_FP16_TO_FP: { 4158 if (Node->getValueType(0) == MVT::f32) { 4159 TargetLowering::MakeLibCallOptions CallOptions; 4160 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall( 4161 DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions, 4162 SDLoc(Node), Node->getOperand(0)); 4163 Results.push_back(Tmp.first); 4164 Results.push_back(Tmp.second); 4165 } 4166 break; 4167 } 4168 case ISD::FP_TO_FP16: { 4169 RTLIB::Libcall LC = 4170 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 4171 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 4172 Results.push_back(ExpandLibCall(LC, Node, false)); 4173 break; 4174 } 4175 case ISD::STRICT_SINT_TO_FP: 4176 case ISD::STRICT_UINT_TO_FP: 4177 case ISD::SINT_TO_FP: 4178 case ISD::UINT_TO_FP: { 4179 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP 4180 bool IsStrict = Node->isStrictFPOpcode(); 4181 bool Signed = Node->getOpcode() == ISD::SINT_TO_FP || 4182 Node->getOpcode() == ISD::STRICT_SINT_TO_FP; 4183 EVT SVT = Node->getOperand(IsStrict ? 1 : 0).getValueType(); 4184 EVT RVT = Node->getValueType(0); 4185 EVT NVT = EVT(); 4186 SDLoc dl(Node); 4187 4188 // Even if the input is legal, no libcall may exactly match, eg. we don't 4189 // have i1 -> fp conversions. So, it needs to be promoted to a larger type, 4190 // eg: i13 -> fp. Then, look for an appropriate libcall. 4191 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 4192 for (unsigned t = MVT::FIRST_INTEGER_VALUETYPE; 4193 t <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; 4194 ++t) { 4195 NVT = (MVT::SimpleValueType)t; 4196 // The source needs to big enough to hold the operand. 4197 if (NVT.bitsGE(SVT)) 4198 LC = Signed ? RTLIB::getSINTTOFP(NVT, RVT) 4199 : RTLIB::getUINTTOFP(NVT, RVT); 4200 } 4201 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4202 4203 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4204 // Sign/zero extend the argument if the libcall takes a larger type. 4205 SDValue Op = DAG.getNode(Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl, 4206 NVT, Node->getOperand(IsStrict ? 1 : 0)); 4207 TargetLowering::MakeLibCallOptions CallOptions; 4208 CallOptions.setSExt(Signed); 4209 std::pair<SDValue, SDValue> Tmp = 4210 TLI.makeLibCall(DAG, LC, RVT, Op, CallOptions, dl, Chain); 4211 Results.push_back(Tmp.first); 4212 if (IsStrict) 4213 Results.push_back(Tmp.second); 4214 break; 4215 } 4216 case ISD::FP_TO_SINT: 4217 case ISD::FP_TO_UINT: 4218 case ISD::STRICT_FP_TO_SINT: 4219 case ISD::STRICT_FP_TO_UINT: { 4220 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatOp_FP_TO_XINT. 4221 bool IsStrict = Node->isStrictFPOpcode(); 4222 bool Signed = Node->getOpcode() == ISD::FP_TO_SINT || 4223 Node->getOpcode() == ISD::STRICT_FP_TO_SINT; 4224 4225 SDValue Op = Node->getOperand(IsStrict ? 1 : 0); 4226 EVT SVT = Op.getValueType(); 4227 EVT RVT = Node->getValueType(0); 4228 EVT NVT = EVT(); 4229 SDLoc dl(Node); 4230 4231 // Even if the result is legal, no libcall may exactly match, eg. we don't 4232 // have fp -> i1 conversions. So, it needs to be promoted to a larger type, 4233 // eg: fp -> i32. Then, look for an appropriate libcall. 4234 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 4235 for (unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE; 4236 IntVT <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; 4237 ++IntVT) { 4238 NVT = (MVT::SimpleValueType)IntVT; 4239 // The type needs to big enough to hold the result. 4240 if (NVT.bitsGE(RVT)) 4241 LC = Signed ? RTLIB::getFPTOSINT(SVT, NVT) 4242 : RTLIB::getFPTOUINT(SVT, NVT); 4243 } 4244 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4245 4246 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4247 TargetLowering::MakeLibCallOptions CallOptions; 4248 std::pair<SDValue, SDValue> Tmp = 4249 TLI.makeLibCall(DAG, LC, NVT, Op, CallOptions, dl, Chain); 4250 4251 // Truncate the result if the libcall returns a larger type. 4252 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, RVT, Tmp.first)); 4253 if (IsStrict) 4254 Results.push_back(Tmp.second); 4255 break; 4256 } 4257 4258 case ISD::FP_ROUND: 4259 case ISD::STRICT_FP_ROUND: { 4260 // X = FP_ROUND(Y, TRUNC) 4261 // TRUNC is a flag, which is always an integer that is zero or one. 4262 // If TRUNC is 0, this is a normal rounding, if it is 1, this FP_ROUND 4263 // is known to not change the value of Y. 4264 // We can only expand it into libcall if the TRUNC is 0. 4265 bool IsStrict = Node->isStrictFPOpcode(); 4266 SDValue Op = Node->getOperand(IsStrict ? 1 : 0); 4267 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4268 EVT VT = Node->getValueType(0); 4269 assert(cast<ConstantSDNode>(Node->getOperand(IsStrict ? 2 : 1))->isZero() && 4270 "Unable to expand as libcall if it is not normal rounding"); 4271 4272 RTLIB::Libcall LC = RTLIB::getFPROUND(Op.getValueType(), VT); 4273 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4274 4275 TargetLowering::MakeLibCallOptions CallOptions; 4276 std::pair<SDValue, SDValue> Tmp = 4277 TLI.makeLibCall(DAG, LC, VT, Op, CallOptions, SDLoc(Node), Chain); 4278 Results.push_back(Tmp.first); 4279 if (IsStrict) 4280 Results.push_back(Tmp.second); 4281 break; 4282 } 4283 case ISD::FP_EXTEND: { 4284 Results.push_back( 4285 ExpandLibCall(RTLIB::getFPEXT(Node->getOperand(0).getValueType(), 4286 Node->getValueType(0)), 4287 Node, false)); 4288 break; 4289 } 4290 case ISD::STRICT_FP_EXTEND: 4291 case ISD::STRICT_FP_TO_FP16: { 4292 RTLIB::Libcall LC = 4293 Node->getOpcode() == ISD::STRICT_FP_TO_FP16 4294 ? RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16) 4295 : RTLIB::getFPEXT(Node->getOperand(1).getValueType(), 4296 Node->getValueType(0)); 4297 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4298 4299 TargetLowering::MakeLibCallOptions CallOptions; 4300 std::pair<SDValue, SDValue> Tmp = 4301 TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1), 4302 CallOptions, SDLoc(Node), Node->getOperand(0)); 4303 Results.push_back(Tmp.first); 4304 Results.push_back(Tmp.second); 4305 break; 4306 } 4307 case ISD::FSUB: 4308 case ISD::STRICT_FSUB: 4309 ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4310 RTLIB::SUB_F80, RTLIB::SUB_F128, 4311 RTLIB::SUB_PPCF128, Results); 4312 break; 4313 case ISD::SREM: 4314 Results.push_back(ExpandIntLibCall(Node, true, 4315 RTLIB::SREM_I8, 4316 RTLIB::SREM_I16, RTLIB::SREM_I32, 4317 RTLIB::SREM_I64, RTLIB::SREM_I128)); 4318 break; 4319 case ISD::UREM: 4320 Results.push_back(ExpandIntLibCall(Node, false, 4321 RTLIB::UREM_I8, 4322 RTLIB::UREM_I16, RTLIB::UREM_I32, 4323 RTLIB::UREM_I64, RTLIB::UREM_I128)); 4324 break; 4325 case ISD::SDIV: 4326 Results.push_back(ExpandIntLibCall(Node, true, 4327 RTLIB::SDIV_I8, 4328 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4329 RTLIB::SDIV_I64, RTLIB::SDIV_I128)); 4330 break; 4331 case ISD::UDIV: 4332 Results.push_back(ExpandIntLibCall(Node, false, 4333 RTLIB::UDIV_I8, 4334 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4335 RTLIB::UDIV_I64, RTLIB::UDIV_I128)); 4336 break; 4337 case ISD::SDIVREM: 4338 case ISD::UDIVREM: 4339 // Expand into divrem libcall 4340 ExpandDivRemLibCall(Node, Results); 4341 break; 4342 case ISD::MUL: 4343 Results.push_back(ExpandIntLibCall(Node, false, 4344 RTLIB::MUL_I8, 4345 RTLIB::MUL_I16, RTLIB::MUL_I32, 4346 RTLIB::MUL_I64, RTLIB::MUL_I128)); 4347 break; 4348 case ISD::CTLZ_ZERO_UNDEF: 4349 switch (Node->getSimpleValueType(0).SimpleTy) { 4350 default: 4351 llvm_unreachable("LibCall explicitly requested, but not available"); 4352 case MVT::i32: 4353 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false)); 4354 break; 4355 case MVT::i64: 4356 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false)); 4357 break; 4358 case MVT::i128: 4359 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false)); 4360 break; 4361 } 4362 break; 4363 } 4364 4365 // Replace the original node with the legalized result. 4366 if (!Results.empty()) { 4367 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); 4368 ReplaceNode(Node, Results.data()); 4369 } else 4370 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); 4371 } 4372 4373 // Determine the vector type to use in place of an original scalar element when 4374 // promoting equally sized vectors. 4375 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4376 MVT EltVT, MVT NewEltVT) { 4377 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4378 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4379 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4380 return MidVT; 4381 } 4382 4383 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4384 LLVM_DEBUG(dbgs() << "Trying to promote node\n"); 4385 SmallVector<SDValue, 8> Results; 4386 MVT OVT = Node->getSimpleValueType(0); 4387 if (Node->getOpcode() == ISD::UINT_TO_FP || 4388 Node->getOpcode() == ISD::SINT_TO_FP || 4389 Node->getOpcode() == ISD::SETCC || 4390 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4391 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4392 OVT = Node->getOperand(0).getSimpleValueType(); 4393 } 4394 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP || 4395 Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 4396 Node->getOpcode() == ISD::STRICT_FSETCC || 4397 Node->getOpcode() == ISD::STRICT_FSETCCS) 4398 OVT = Node->getOperand(1).getSimpleValueType(); 4399 if (Node->getOpcode() == ISD::BR_CC || 4400 Node->getOpcode() == ISD::SELECT_CC) 4401 OVT = Node->getOperand(2).getSimpleValueType(); 4402 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4403 SDLoc dl(Node); 4404 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 4405 switch (Node->getOpcode()) { 4406 case ISD::CTTZ: 4407 case ISD::CTTZ_ZERO_UNDEF: 4408 case ISD::CTLZ: 4409 case ISD::CTLZ_ZERO_UNDEF: 4410 case ISD::CTPOP: 4411 // Zero extend the argument unless its cttz, then use any_extend. 4412 if (Node->getOpcode() == ISD::CTTZ || 4413 Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 4414 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 4415 else 4416 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4417 4418 if (Node->getOpcode() == ISD::CTTZ) { 4419 // The count is the same in the promoted type except if the original 4420 // value was zero. This can be handled by setting the bit just off 4421 // the top of the original type. 4422 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4423 OVT.getSizeInBits()); 4424 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4425 DAG.getConstant(TopBit, dl, NVT)); 4426 } 4427 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4428 // already the correct result. 4429 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4430 if (Node->getOpcode() == ISD::CTLZ || 4431 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4432 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4433 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4434 DAG.getConstant(NVT.getSizeInBits() - 4435 OVT.getSizeInBits(), dl, NVT)); 4436 } 4437 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4438 break; 4439 case ISD::BITREVERSE: 4440 case ISD::BSWAP: { 4441 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4442 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4443 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4444 Tmp1 = DAG.getNode( 4445 ISD::SRL, dl, NVT, Tmp1, 4446 DAG.getConstant(DiffBits, dl, 4447 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4448 4449 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4450 break; 4451 } 4452 case ISD::FP_TO_UINT: 4453 case ISD::STRICT_FP_TO_UINT: 4454 case ISD::FP_TO_SINT: 4455 case ISD::STRICT_FP_TO_SINT: 4456 PromoteLegalFP_TO_INT(Node, dl, Results); 4457 break; 4458 case ISD::FP_TO_UINT_SAT: 4459 case ISD::FP_TO_SINT_SAT: 4460 Results.push_back(PromoteLegalFP_TO_INT_SAT(Node, dl)); 4461 break; 4462 case ISD::UINT_TO_FP: 4463 case ISD::STRICT_UINT_TO_FP: 4464 case ISD::SINT_TO_FP: 4465 case ISD::STRICT_SINT_TO_FP: 4466 PromoteLegalINT_TO_FP(Node, dl, Results); 4467 break; 4468 case ISD::VAARG: { 4469 SDValue Chain = Node->getOperand(0); // Get the chain. 4470 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4471 4472 unsigned TruncOp; 4473 if (OVT.isVector()) { 4474 TruncOp = ISD::BITCAST; 4475 } else { 4476 assert(OVT.isInteger() 4477 && "VAARG promotion is supported only for vectors or integer types"); 4478 TruncOp = ISD::TRUNCATE; 4479 } 4480 4481 // Perform the larger operation, then convert back 4482 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4483 Node->getConstantOperandVal(3)); 4484 Chain = Tmp1.getValue(1); 4485 4486 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4487 4488 // Modified the chain result - switch anything that used the old chain to 4489 // use the new one. 4490 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4491 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4492 if (UpdatedNodes) { 4493 UpdatedNodes->insert(Tmp2.getNode()); 4494 UpdatedNodes->insert(Chain.getNode()); 4495 } 4496 ReplacedNode(Node); 4497 break; 4498 } 4499 case ISD::MUL: 4500 case ISD::SDIV: 4501 case ISD::SREM: 4502 case ISD::UDIV: 4503 case ISD::UREM: 4504 case ISD::AND: 4505 case ISD::OR: 4506 case ISD::XOR: { 4507 unsigned ExtOp, TruncOp; 4508 if (OVT.isVector()) { 4509 ExtOp = ISD::BITCAST; 4510 TruncOp = ISD::BITCAST; 4511 } else { 4512 assert(OVT.isInteger() && "Cannot promote logic operation"); 4513 4514 switch (Node->getOpcode()) { 4515 default: 4516 ExtOp = ISD::ANY_EXTEND; 4517 break; 4518 case ISD::SDIV: 4519 case ISD::SREM: 4520 ExtOp = ISD::SIGN_EXTEND; 4521 break; 4522 case ISD::UDIV: 4523 case ISD::UREM: 4524 ExtOp = ISD::ZERO_EXTEND; 4525 break; 4526 } 4527 TruncOp = ISD::TRUNCATE; 4528 } 4529 // Promote each of the values to the new type. 4530 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4531 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4532 // Perform the larger operation, then convert back 4533 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4534 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4535 break; 4536 } 4537 case ISD::UMUL_LOHI: 4538 case ISD::SMUL_LOHI: { 4539 // Promote to a multiply in a wider integer type. 4540 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 4541 : ISD::SIGN_EXTEND; 4542 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4543 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4544 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 4545 4546 auto &DL = DAG.getDataLayout(); 4547 unsigned OriginalSize = OVT.getScalarSizeInBits(); 4548 Tmp2 = DAG.getNode( 4549 ISD::SRL, dl, NVT, Tmp1, 4550 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 4551 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4552 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 4553 break; 4554 } 4555 case ISD::SELECT: { 4556 unsigned ExtOp, TruncOp; 4557 if (Node->getValueType(0).isVector() || 4558 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4559 ExtOp = ISD::BITCAST; 4560 TruncOp = ISD::BITCAST; 4561 } else if (Node->getValueType(0).isInteger()) { 4562 ExtOp = ISD::ANY_EXTEND; 4563 TruncOp = ISD::TRUNCATE; 4564 } else { 4565 ExtOp = ISD::FP_EXTEND; 4566 TruncOp = ISD::FP_ROUND; 4567 } 4568 Tmp1 = Node->getOperand(0); 4569 // Promote each of the values to the new type. 4570 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4571 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4572 // Perform the larger operation, then round down. 4573 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4574 Tmp1->setFlags(Node->getFlags()); 4575 if (TruncOp != ISD::FP_ROUND) 4576 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4577 else 4578 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4579 DAG.getIntPtrConstant(0, dl)); 4580 Results.push_back(Tmp1); 4581 break; 4582 } 4583 case ISD::VECTOR_SHUFFLE: { 4584 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4585 4586 // Cast the two input vectors. 4587 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4588 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4589 4590 // Convert the shuffle mask to the right # elements. 4591 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4592 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4593 Results.push_back(Tmp1); 4594 break; 4595 } 4596 case ISD::VECTOR_SPLICE: { 4597 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 4598 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(1)); 4599 Tmp3 = DAG.getNode(ISD::VECTOR_SPLICE, dl, NVT, Tmp1, Tmp2, 4600 Node->getOperand(2)); 4601 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp3)); 4602 break; 4603 } 4604 case ISD::SELECT_CC: { 4605 SDValue Cond = Node->getOperand(4); 4606 ISD::CondCode CCCode = cast<CondCodeSDNode>(Cond)->get(); 4607 // Type of the comparison operands. 4608 MVT CVT = Node->getSimpleValueType(0); 4609 assert(CVT == OVT && "not handled"); 4610 4611 unsigned ExtOp = ISD::FP_EXTEND; 4612 if (NVT.isInteger()) { 4613 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4614 } 4615 4616 // Promote the comparison operands, if needed. 4617 if (TLI.isCondCodeLegal(CCCode, CVT)) { 4618 Tmp1 = Node->getOperand(0); 4619 Tmp2 = Node->getOperand(1); 4620 } else { 4621 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4622 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4623 } 4624 // Cast the true/false operands. 4625 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4626 Tmp4 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4627 4628 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, NVT, {Tmp1, Tmp2, Tmp3, Tmp4, Cond}, 4629 Node->getFlags()); 4630 4631 // Cast the result back to the original type. 4632 if (ExtOp != ISD::FP_EXTEND) 4633 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1); 4634 else 4635 Tmp1 = DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp1, 4636 DAG.getIntPtrConstant(0, dl)); 4637 4638 Results.push_back(Tmp1); 4639 break; 4640 } 4641 case ISD::SETCC: 4642 case ISD::STRICT_FSETCC: 4643 case ISD::STRICT_FSETCCS: { 4644 unsigned ExtOp = ISD::FP_EXTEND; 4645 if (NVT.isInteger()) { 4646 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4647 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4648 } 4649 if (Node->isStrictFPOpcode()) { 4650 SDValue InChain = Node->getOperand(0); 4651 std::tie(Tmp1, std::ignore) = 4652 DAG.getStrictFPExtendOrRound(Node->getOperand(1), InChain, dl, NVT); 4653 std::tie(Tmp2, std::ignore) = 4654 DAG.getStrictFPExtendOrRound(Node->getOperand(2), InChain, dl, NVT); 4655 SmallVector<SDValue, 2> TmpChains = {Tmp1.getValue(1), Tmp2.getValue(1)}; 4656 SDValue OutChain = DAG.getTokenFactor(dl, TmpChains); 4657 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 4658 Results.push_back(DAG.getNode(Node->getOpcode(), dl, VTs, 4659 {OutChain, Tmp1, Tmp2, Node->getOperand(3)}, 4660 Node->getFlags())); 4661 Results.push_back(Results.back().getValue(1)); 4662 break; 4663 } 4664 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4665 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4666 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, 4667 Tmp2, Node->getOperand(2), Node->getFlags())); 4668 break; 4669 } 4670 case ISD::BR_CC: { 4671 unsigned ExtOp = ISD::FP_EXTEND; 4672 if (NVT.isInteger()) { 4673 ISD::CondCode CCCode = 4674 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4675 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4676 } 4677 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4678 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4679 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4680 Node->getOperand(0), Node->getOperand(1), 4681 Tmp1, Tmp2, Node->getOperand(4))); 4682 break; 4683 } 4684 case ISD::FADD: 4685 case ISD::FSUB: 4686 case ISD::FMUL: 4687 case ISD::FDIV: 4688 case ISD::FREM: 4689 case ISD::FMINNUM: 4690 case ISD::FMAXNUM: 4691 case ISD::FPOW: 4692 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4693 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4694 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4695 Node->getFlags()); 4696 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4697 Tmp3, DAG.getIntPtrConstant(0, dl))); 4698 break; 4699 case ISD::STRICT_FREM: 4700 case ISD::STRICT_FPOW: 4701 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4702 {Node->getOperand(0), Node->getOperand(1)}); 4703 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4704 {Node->getOperand(0), Node->getOperand(2)}); 4705 Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 4706 Tmp2.getValue(1)); 4707 Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4708 {Tmp3, Tmp1, Tmp2}); 4709 Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4710 {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)}); 4711 Results.push_back(Tmp1); 4712 Results.push_back(Tmp1.getValue(1)); 4713 break; 4714 case ISD::FMA: 4715 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4716 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4717 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4718 Results.push_back( 4719 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4720 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4721 DAG.getIntPtrConstant(0, dl))); 4722 break; 4723 case ISD::FCOPYSIGN: 4724 case ISD::FPOWI: { 4725 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4726 Tmp2 = Node->getOperand(1); 4727 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4728 4729 // fcopysign doesn't change anything but the sign bit, so 4730 // (fp_round (fcopysign (fpext a), b)) 4731 // is as precise as 4732 // (fp_round (fpext a)) 4733 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4734 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4735 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4736 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4737 break; 4738 } 4739 case ISD::FFLOOR: 4740 case ISD::FCEIL: 4741 case ISD::FRINT: 4742 case ISD::FNEARBYINT: 4743 case ISD::FROUND: 4744 case ISD::FROUNDEVEN: 4745 case ISD::FTRUNC: 4746 case ISD::FNEG: 4747 case ISD::FSQRT: 4748 case ISD::FSIN: 4749 case ISD::FCOS: 4750 case ISD::FLOG: 4751 case ISD::FLOG2: 4752 case ISD::FLOG10: 4753 case ISD::FABS: 4754 case ISD::FEXP: 4755 case ISD::FEXP2: 4756 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4757 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4758 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4759 Tmp2, DAG.getIntPtrConstant(0, dl))); 4760 break; 4761 case ISD::STRICT_FFLOOR: 4762 case ISD::STRICT_FCEIL: 4763 case ISD::STRICT_FSIN: 4764 case ISD::STRICT_FCOS: 4765 case ISD::STRICT_FLOG: 4766 case ISD::STRICT_FLOG10: 4767 case ISD::STRICT_FEXP: 4768 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4769 {Node->getOperand(0), Node->getOperand(1)}); 4770 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4771 {Tmp1.getValue(1), Tmp1}); 4772 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4773 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 4774 Results.push_back(Tmp3); 4775 Results.push_back(Tmp3.getValue(1)); 4776 break; 4777 case ISD::BUILD_VECTOR: { 4778 MVT EltVT = OVT.getVectorElementType(); 4779 MVT NewEltVT = NVT.getVectorElementType(); 4780 4781 // Handle bitcasts to a different vector type with the same total bit size 4782 // 4783 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4784 // => 4785 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4786 4787 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4788 "Invalid promote type for build_vector"); 4789 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4790 4791 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4792 4793 SmallVector<SDValue, 8> NewOps; 4794 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4795 SDValue Op = Node->getOperand(I); 4796 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4797 } 4798 4799 SDLoc SL(Node); 4800 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4801 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4802 Results.push_back(CvtVec); 4803 break; 4804 } 4805 case ISD::EXTRACT_VECTOR_ELT: { 4806 MVT EltVT = OVT.getVectorElementType(); 4807 MVT NewEltVT = NVT.getVectorElementType(); 4808 4809 // Handle bitcasts to a different vector type with the same total bit size. 4810 // 4811 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4812 // => 4813 // v4i32:castx = bitcast x:v2i64 4814 // 4815 // i64 = bitcast 4816 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4817 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4818 // 4819 4820 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4821 "Invalid promote type for extract_vector_elt"); 4822 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4823 4824 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4825 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4826 4827 SDValue Idx = Node->getOperand(1); 4828 EVT IdxVT = Idx.getValueType(); 4829 SDLoc SL(Node); 4830 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4831 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4832 4833 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4834 4835 SmallVector<SDValue, 8> NewOps; 4836 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4837 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4838 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4839 4840 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4841 CastVec, TmpIdx); 4842 NewOps.push_back(Elt); 4843 } 4844 4845 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 4846 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4847 break; 4848 } 4849 case ISD::INSERT_VECTOR_ELT: { 4850 MVT EltVT = OVT.getVectorElementType(); 4851 MVT NewEltVT = NVT.getVectorElementType(); 4852 4853 // Handle bitcasts to a different vector type with the same total bit size 4854 // 4855 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4856 // => 4857 // v4i32:castx = bitcast x:v2i64 4858 // v2i32:casty = bitcast y:i64 4859 // 4860 // v2i64 = bitcast 4861 // (v4i32 insert_vector_elt 4862 // (v4i32 insert_vector_elt v4i32:castx, 4863 // (extract_vector_elt casty, 0), 2 * z), 4864 // (extract_vector_elt casty, 1), (2 * z + 1)) 4865 4866 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4867 "Invalid promote type for insert_vector_elt"); 4868 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4869 4870 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4871 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4872 4873 SDValue Val = Node->getOperand(1); 4874 SDValue Idx = Node->getOperand(2); 4875 EVT IdxVT = Idx.getValueType(); 4876 SDLoc SL(Node); 4877 4878 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 4879 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4880 4881 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4882 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4883 4884 SDValue NewVec = CastVec; 4885 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4886 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4887 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4888 4889 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4890 CastVal, IdxOffset); 4891 4892 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 4893 NewVec, Elt, InEltIdx); 4894 } 4895 4896 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 4897 break; 4898 } 4899 case ISD::SCALAR_TO_VECTOR: { 4900 MVT EltVT = OVT.getVectorElementType(); 4901 MVT NewEltVT = NVT.getVectorElementType(); 4902 4903 // Handle bitcasts to different vector type with the same total bit size. 4904 // 4905 // e.g. v2i64 = scalar_to_vector x:i64 4906 // => 4907 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 4908 // 4909 4910 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4911 SDValue Val = Node->getOperand(0); 4912 SDLoc SL(Node); 4913 4914 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4915 SDValue Undef = DAG.getUNDEF(MidVT); 4916 4917 SmallVector<SDValue, 8> NewElts; 4918 NewElts.push_back(CastVal); 4919 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 4920 NewElts.push_back(Undef); 4921 4922 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 4923 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4924 Results.push_back(CvtVec); 4925 break; 4926 } 4927 case ISD::ATOMIC_SWAP: { 4928 AtomicSDNode *AM = cast<AtomicSDNode>(Node); 4929 SDLoc SL(Node); 4930 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal()); 4931 assert(NVT.getSizeInBits() == OVT.getSizeInBits() && 4932 "unexpected promotion type"); 4933 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && 4934 "unexpected atomic_swap with illegal type"); 4935 4936 SDValue NewAtomic 4937 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT, 4938 DAG.getVTList(NVT, MVT::Other), 4939 { AM->getChain(), AM->getBasePtr(), CastVal }, 4940 AM->getMemOperand()); 4941 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); 4942 Results.push_back(NewAtomic.getValue(1)); 4943 break; 4944 } 4945 } 4946 4947 // Replace the original node with the legalized result. 4948 if (!Results.empty()) { 4949 LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); 4950 ReplaceNode(Node, Results.data()); 4951 } else 4952 LLVM_DEBUG(dbgs() << "Could not promote node\n"); 4953 } 4954 4955 /// This is the entry point for the file. 4956 void SelectionDAG::Legalize() { 4957 AssignTopologicalOrder(); 4958 4959 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4960 // Use a delete listener to remove nodes which were deleted during 4961 // legalization from LegalizeNodes. This is needed to handle the situation 4962 // where a new node is allocated by the object pool to the same address of a 4963 // previously deleted node. 4964 DAGNodeDeletedListener DeleteListener( 4965 *this, 4966 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 4967 4968 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 4969 4970 // Visit all the nodes. We start in topological order, so that we see 4971 // nodes with their original operands intact. Legalization can produce 4972 // new nodes which may themselves need to be legalized. Iterate until all 4973 // nodes have been legalized. 4974 while (true) { 4975 bool AnyLegalized = false; 4976 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 4977 --NI; 4978 4979 SDNode *N = &*NI; 4980 if (N->use_empty() && N != getRoot().getNode()) { 4981 ++NI; 4982 DeleteNode(N); 4983 continue; 4984 } 4985 4986 if (LegalizedNodes.insert(N).second) { 4987 AnyLegalized = true; 4988 Legalizer.LegalizeOp(N); 4989 4990 if (N->use_empty() && N != getRoot().getNode()) { 4991 ++NI; 4992 DeleteNode(N); 4993 } 4994 } 4995 } 4996 if (!AnyLegalized) 4997 break; 4998 4999 } 5000 5001 // Remove dead nodes now. 5002 RemoveDeadNodes(); 5003 } 5004 5005 bool SelectionDAG::LegalizeOp(SDNode *N, 5006 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 5007 SmallPtrSet<SDNode *, 16> LegalizedNodes; 5008 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 5009 5010 // Directly insert the node in question, and legalize it. This will recurse 5011 // as needed through operands. 5012 LegalizedNodes.insert(N); 5013 Legalizer.LegalizeOp(N); 5014 5015 return LegalizedNodes.count(N); 5016 } 5017