1 //===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::Legalize method. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineJumpTableInfo.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/CodeGen/SelectionDAGNodes.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DebugInfo.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetFrameLowering.h" 36 #include "llvm/Target/TargetLowering.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "legalizedag" 42 43 namespace { 44 45 struct FloatSignAsInt; 46 47 //===----------------------------------------------------------------------===// 48 /// This takes an arbitrary SelectionDAG as input and 49 /// hacks on it until the target machine can handle it. This involves 50 /// eliminating value sizes the machine cannot handle (promoting small sizes to 51 /// large sizes or splitting up large values into small values) as well as 52 /// eliminating operations the machine cannot handle. 53 /// 54 /// This code also does a small amount of optimization and recognition of idioms 55 /// as part of its processing. For example, if a target does not support a 56 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 57 /// will attempt merge setcc and brc instructions into brcc's. 58 /// 59 class SelectionDAGLegalize { 60 const TargetMachine &TM; 61 const TargetLowering &TLI; 62 SelectionDAG &DAG; 63 64 /// \brief The set of nodes which have already been legalized. We hold a 65 /// reference to it in order to update as necessary on node deletion. 66 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 67 68 /// \brief A set of all the nodes updated during legalization. 69 SmallSetVector<SDNode *, 16> *UpdatedNodes; 70 71 EVT getSetCCResultType(EVT VT) const { 72 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 73 } 74 75 // Libcall insertion helpers. 76 77 public: 78 SelectionDAGLegalize(SelectionDAG &DAG, 79 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 80 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 81 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 82 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 83 84 /// \brief Legalizes the given operation. 85 void LegalizeOp(SDNode *Node); 86 87 private: 88 SDValue OptimizeFloatStore(StoreSDNode *ST); 89 90 void LegalizeLoadOps(SDNode *Node); 91 void LegalizeStoreOps(SDNode *Node); 92 93 /// Some targets cannot handle a variable 94 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 95 /// is necessary to spill the vector being inserted into to memory, perform 96 /// the insert there, and then read the result back. 97 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, 98 SDValue Idx, SDLoc dl); 99 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 100 SDValue Idx, SDLoc dl); 101 102 /// Return a vector shuffle operation which 103 /// performs the same shuffe in terms of order or result bytes, but on a type 104 /// whose vector element type is narrower than the original shuffle type. 105 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 106 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, SDLoc dl, 107 SDValue N1, SDValue N2, 108 ArrayRef<int> Mask) const; 109 110 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 111 bool &NeedInvert, SDLoc dl); 112 113 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 114 SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops, 115 unsigned NumOps, bool isSigned, SDLoc dl); 116 117 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC, 118 SDNode *Node, bool isSigned); 119 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 120 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 121 RTLIB::Libcall Call_F128, 122 RTLIB::Libcall Call_PPCF128); 123 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 124 RTLIB::Libcall Call_I8, 125 RTLIB::Libcall Call_I16, 126 RTLIB::Libcall Call_I32, 127 RTLIB::Libcall Call_I64, 128 RTLIB::Libcall Call_I128); 129 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 130 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 131 132 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, SDLoc dl); 133 SDValue ExpandBUILD_VECTOR(SDNode *Node); 134 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 135 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 136 SmallVectorImpl<SDValue> &Results); 137 void getSignAsIntValue(FloatSignAsInt &State, SDLoc DL, SDValue Value) const; 138 SDValue modifySignAsInt(const FloatSignAsInt &State, SDLoc DL, 139 SDValue NewIntValue) const; 140 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 141 SDValue ExpandFABS(SDNode *Node) const; 142 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT, 143 SDLoc dl); 144 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, 145 SDLoc dl); 146 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, 147 SDLoc dl); 148 149 SDValue ExpandBITREVERSE(SDValue Op, SDLoc dl); 150 SDValue ExpandBSWAP(SDValue Op, SDLoc dl); 151 SDValue ExpandBitCount(unsigned Opc, SDValue Op, SDLoc dl); 152 153 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 154 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 155 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 156 157 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 158 SDValue ExpandConstant(ConstantSDNode *CP); 159 160 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 161 bool ExpandNode(SDNode *Node); 162 void ConvertNodeToLibcall(SDNode *Node); 163 void PromoteNode(SDNode *Node); 164 165 public: 166 // Node replacement helpers 167 void ReplacedNode(SDNode *N) { 168 LegalizedNodes.erase(N); 169 if (UpdatedNodes) 170 UpdatedNodes->insert(N); 171 } 172 void ReplaceNode(SDNode *Old, SDNode *New) { 173 DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 174 dbgs() << " with: "; New->dump(&DAG)); 175 176 assert(Old->getNumValues() == New->getNumValues() && 177 "Replacing one node with another that produces a different number " 178 "of values!"); 179 DAG.ReplaceAllUsesWith(Old, New); 180 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) 181 DAG.TransferDbgValues(SDValue(Old, i), SDValue(New, i)); 182 if (UpdatedNodes) 183 UpdatedNodes->insert(New); 184 ReplacedNode(Old); 185 } 186 void ReplaceNode(SDValue Old, SDValue New) { 187 DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 188 dbgs() << " with: "; New->dump(&DAG)); 189 190 DAG.ReplaceAllUsesWith(Old, New); 191 DAG.TransferDbgValues(Old, New); 192 if (UpdatedNodes) 193 UpdatedNodes->insert(New.getNode()); 194 ReplacedNode(Old.getNode()); 195 } 196 void ReplaceNode(SDNode *Old, const SDValue *New) { 197 DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 198 199 DAG.ReplaceAllUsesWith(Old, New); 200 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 201 DEBUG(dbgs() << (i == 0 ? " with: " 202 : " and: "); 203 New[i]->dump(&DAG)); 204 DAG.TransferDbgValues(SDValue(Old, i), New[i]); 205 if (UpdatedNodes) 206 UpdatedNodes->insert(New[i].getNode()); 207 } 208 ReplacedNode(Old); 209 } 210 }; 211 } 212 213 /// Return a vector shuffle operation which 214 /// performs the same shuffe in terms of order or result bytes, but on a type 215 /// whose vector element type is narrower than the original shuffle type. 216 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 217 SDValue 218 SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT, SDLoc dl, 219 SDValue N1, SDValue N2, 220 ArrayRef<int> Mask) const { 221 unsigned NumMaskElts = VT.getVectorNumElements(); 222 unsigned NumDestElts = NVT.getVectorNumElements(); 223 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 224 225 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 226 227 if (NumEltsGrowth == 1) 228 return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]); 229 230 SmallVector<int, 8> NewMask; 231 for (unsigned i = 0; i != NumMaskElts; ++i) { 232 int Idx = Mask[i]; 233 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 234 if (Idx < 0) 235 NewMask.push_back(-1); 236 else 237 NewMask.push_back(Idx * NumEltsGrowth + j); 238 } 239 } 240 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 241 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 242 return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]); 243 } 244 245 /// Expands the ConstantFP node to an integer constant or 246 /// a load from the constant pool. 247 SDValue 248 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 249 bool Extend = false; 250 SDLoc dl(CFP); 251 252 // If a FP immediate is precise when represented as a float and if the 253 // target can do an extending load from float to double, we put it into 254 // the constant pool as a float, even if it's is statically typed as a 255 // double. This shrinks FP constants and canonicalizes them for targets where 256 // an FP extending load is the same cost as a normal load (such as on the x87 257 // fp stack or PPC FP unit). 258 EVT VT = CFP->getValueType(0); 259 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 260 if (!UseCP) { 261 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 262 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 263 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 264 } 265 266 EVT OrigVT = VT; 267 EVT SVT = VT; 268 while (SVT != MVT::f32 && SVT != MVT::f16) { 269 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 270 if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) && 271 // Only do this if the target has a native EXTLOAD instruction from 272 // smaller type. 273 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 274 TLI.ShouldShrinkFPConstant(OrigVT)) { 275 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 276 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 277 VT = SVT; 278 Extend = true; 279 } 280 } 281 282 SDValue CPIdx = 283 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 284 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 285 if (Extend) { 286 SDValue Result = DAG.getExtLoad( 287 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 288 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 289 false, false, false, Alignment); 290 return Result; 291 } 292 SDValue Result = 293 DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx, 294 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 295 false, false, false, Alignment); 296 return Result; 297 } 298 299 /// Expands the Constant node to a load from the constant pool. 300 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 301 SDLoc dl(CP); 302 EVT VT = CP->getValueType(0); 303 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 304 TLI.getPointerTy(DAG.getDataLayout())); 305 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 306 SDValue Result = 307 DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, 308 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 309 false, false, false, Alignment); 310 return Result; 311 } 312 313 /// Some target cannot handle a variable insertion index for the 314 /// INSERT_VECTOR_ELT instruction. In this case, it 315 /// is necessary to spill the vector being inserted into to memory, perform 316 /// the insert there, and then read the result back. 317 SDValue SelectionDAGLegalize:: 318 PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 319 SDLoc dl) { 320 SDValue Tmp1 = Vec; 321 SDValue Tmp2 = Val; 322 SDValue Tmp3 = Idx; 323 324 // If the target doesn't support this, we have to spill the input vector 325 // to a temporary stack slot, update the element, then reload it. This is 326 // badness. We could also load the value into a vector register (either 327 // with a "move to register" or "extload into register" instruction, then 328 // permute it into place, if the idx is a constant and if the idx is 329 // supported by the target. 330 EVT VT = Tmp1.getValueType(); 331 EVT EltVT = VT.getVectorElementType(); 332 EVT IdxVT = Tmp3.getValueType(); 333 EVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 334 SDValue StackPtr = DAG.CreateStackTemporary(VT); 335 336 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 337 338 // Store the vector. 339 SDValue Ch = DAG.getStore( 340 DAG.getEntryNode(), dl, Tmp1, StackPtr, 341 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), false, 342 false, 0); 343 344 // Truncate or zero extend offset to target pointer type. 345 Tmp3 = DAG.getZExtOrTrunc(Tmp3, dl, PtrVT); 346 // Add the offset to the index. 347 unsigned EltSize = EltVT.getSizeInBits()/8; 348 Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3, 349 DAG.getConstant(EltSize, dl, IdxVT)); 350 SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr); 351 // Store the scalar value. 352 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT, 353 false, false, 0); 354 // Load the updated vector. 355 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 356 DAG.getMachineFunction(), SPFI), 357 false, false, false, 0); 358 } 359 360 361 SDValue SelectionDAGLegalize:: 362 ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, SDLoc dl) { 363 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 364 // SCALAR_TO_VECTOR requires that the type of the value being inserted 365 // match the element type of the vector being created, except for 366 // integers in which case the inserted value can be over width. 367 EVT EltVT = Vec.getValueType().getVectorElementType(); 368 if (Val.getValueType() == EltVT || 369 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 370 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 371 Vec.getValueType(), Val); 372 373 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 374 // We generate a shuffle of InVec and ScVec, so the shuffle mask 375 // should be 0,1,2,3,4,5... with the appropriate element replaced with 376 // elt 0 of the RHS. 377 SmallVector<int, 8> ShufOps; 378 for (unsigned i = 0; i != NumElts; ++i) 379 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 380 381 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, 382 &ShufOps[0]); 383 } 384 } 385 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 386 } 387 388 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 389 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 390 // FIXME: We shouldn't do this for TargetConstantFP's. 391 // FIXME: move this to the DAG Combiner! Note that we can't regress due 392 // to phase ordering between legalized code and the dag combiner. This 393 // probably means that we need to integrate dag combiner and legalizer 394 // together. 395 // We generally can't do this one for long doubles. 396 SDValue Chain = ST->getChain(); 397 SDValue Ptr = ST->getBasePtr(); 398 unsigned Alignment = ST->getAlignment(); 399 bool isVolatile = ST->isVolatile(); 400 bool isNonTemporal = ST->isNonTemporal(); 401 AAMDNodes AAInfo = ST->getAAInfo(); 402 SDLoc dl(ST); 403 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 404 if (CFP->getValueType(0) == MVT::f32 && 405 TLI.isTypeLegal(MVT::i32)) { 406 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 407 bitcastToAPInt().zextOrTrunc(32), 408 SDLoc(CFP), MVT::i32); 409 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 410 isVolatile, isNonTemporal, Alignment, AAInfo); 411 } 412 413 if (CFP->getValueType(0) == MVT::f64) { 414 // If this target supports 64-bit registers, do a single 64-bit store. 415 if (TLI.isTypeLegal(MVT::i64)) { 416 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 417 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 418 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 419 isVolatile, isNonTemporal, Alignment, AAInfo); 420 } 421 422 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 423 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 424 // stores. If the target supports neither 32- nor 64-bits, this 425 // xform is certainly not worth it. 426 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 427 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 428 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 429 if (DAG.getDataLayout().isBigEndian()) 430 std::swap(Lo, Hi); 431 432 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), isVolatile, 433 isNonTemporal, Alignment, AAInfo); 434 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 435 DAG.getConstant(4, dl, Ptr.getValueType())); 436 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 437 ST->getPointerInfo().getWithOffset(4), 438 isVolatile, isNonTemporal, MinAlign(Alignment, 4U), 439 AAInfo); 440 441 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 442 } 443 } 444 } 445 return SDValue(nullptr, 0); 446 } 447 448 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 449 StoreSDNode *ST = cast<StoreSDNode>(Node); 450 SDValue Chain = ST->getChain(); 451 SDValue Ptr = ST->getBasePtr(); 452 SDLoc dl(Node); 453 454 unsigned Alignment = ST->getAlignment(); 455 bool isVolatile = ST->isVolatile(); 456 bool isNonTemporal = ST->isNonTemporal(); 457 AAMDNodes AAInfo = ST->getAAInfo(); 458 459 if (!ST->isTruncatingStore()) { 460 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 461 ReplaceNode(ST, OptStore); 462 return; 463 } 464 465 { 466 SDValue Value = ST->getValue(); 467 MVT VT = Value.getSimpleValueType(); 468 switch (TLI.getOperationAction(ISD::STORE, VT)) { 469 default: llvm_unreachable("This action is not supported yet!"); 470 case TargetLowering::Legal: { 471 // If this is an unaligned store and the target doesn't support it, 472 // expand it. 473 EVT MemVT = ST->getMemoryVT(); 474 unsigned AS = ST->getAddressSpace(); 475 unsigned Align = ST->getAlignment(); 476 const DataLayout &DL = DAG.getDataLayout(); 477 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 478 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 479 ReplaceNode(SDValue(ST, 0), Result); 480 } 481 break; 482 } 483 case TargetLowering::Custom: { 484 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 485 if (Res && Res != SDValue(Node, 0)) 486 ReplaceNode(SDValue(Node, 0), Res); 487 return; 488 } 489 case TargetLowering::Promote: { 490 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 491 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 492 "Can only promote stores to same size type"); 493 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 494 SDValue Result = 495 DAG.getStore(Chain, dl, Value, Ptr, 496 ST->getPointerInfo(), isVolatile, 497 isNonTemporal, Alignment, AAInfo); 498 ReplaceNode(SDValue(Node, 0), Result); 499 break; 500 } 501 } 502 return; 503 } 504 } else { 505 SDValue Value = ST->getValue(); 506 507 EVT StVT = ST->getMemoryVT(); 508 unsigned StWidth = StVT.getSizeInBits(); 509 auto &DL = DAG.getDataLayout(); 510 511 if (StWidth != StVT.getStoreSizeInBits()) { 512 // Promote to a byte-sized store with upper bits zero if not 513 // storing an integral number of bytes. For example, promote 514 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 515 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), 516 StVT.getStoreSizeInBits()); 517 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 518 SDValue Result = 519 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 520 NVT, isVolatile, isNonTemporal, Alignment, AAInfo); 521 ReplaceNode(SDValue(Node, 0), Result); 522 } else if (StWidth & (StWidth - 1)) { 523 // If not storing a power-of-2 number of bits, expand as two stores. 524 assert(!StVT.isVector() && "Unsupported truncstore!"); 525 unsigned RoundWidth = 1 << Log2_32(StWidth); 526 assert(RoundWidth < StWidth); 527 unsigned ExtraWidth = StWidth - RoundWidth; 528 assert(ExtraWidth < RoundWidth); 529 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 530 "Store size not an integral number of bytes!"); 531 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 532 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 533 SDValue Lo, Hi; 534 unsigned IncrementSize; 535 536 if (DL.isLittleEndian()) { 537 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 538 // Store the bottom RoundWidth bits. 539 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 540 RoundVT, 541 isVolatile, isNonTemporal, Alignment, 542 AAInfo); 543 544 // Store the remaining ExtraWidth bits. 545 IncrementSize = RoundWidth / 8; 546 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 547 DAG.getConstant(IncrementSize, dl, 548 Ptr.getValueType())); 549 Hi = DAG.getNode( 550 ISD::SRL, dl, Value.getValueType(), Value, 551 DAG.getConstant(RoundWidth, dl, 552 TLI.getShiftAmountTy(Value.getValueType(), DL))); 553 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, 554 ST->getPointerInfo().getWithOffset(IncrementSize), 555 ExtraVT, isVolatile, isNonTemporal, 556 MinAlign(Alignment, IncrementSize), AAInfo); 557 } else { 558 // Big endian - avoid unaligned stores. 559 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 560 // Store the top RoundWidth bits. 561 Hi = DAG.getNode( 562 ISD::SRL, dl, Value.getValueType(), Value, 563 DAG.getConstant(ExtraWidth, dl, 564 TLI.getShiftAmountTy(Value.getValueType(), DL))); 565 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), 566 RoundVT, isVolatile, isNonTemporal, Alignment, 567 AAInfo); 568 569 // Store the remaining ExtraWidth bits. 570 IncrementSize = RoundWidth / 8; 571 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 572 DAG.getConstant(IncrementSize, dl, 573 Ptr.getValueType())); 574 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, 575 ST->getPointerInfo().getWithOffset(IncrementSize), 576 ExtraVT, isVolatile, isNonTemporal, 577 MinAlign(Alignment, IncrementSize), AAInfo); 578 } 579 580 // The order of the stores doesn't matter. 581 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 582 ReplaceNode(SDValue(Node, 0), Result); 583 } else { 584 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 585 default: llvm_unreachable("This action is not supported yet!"); 586 case TargetLowering::Legal: { 587 EVT MemVT = ST->getMemoryVT(); 588 unsigned AS = ST->getAddressSpace(); 589 unsigned Align = ST->getAlignment(); 590 // If this is an unaligned store and the target doesn't support it, 591 // expand it. 592 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 593 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 594 ReplaceNode(SDValue(ST, 0), Result); 595 } 596 break; 597 } 598 case TargetLowering::Custom: { 599 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 600 if (Res && Res != SDValue(Node, 0)) 601 ReplaceNode(SDValue(Node, 0), Res); 602 return; 603 } 604 case TargetLowering::Expand: 605 assert(!StVT.isVector() && 606 "Vector Stores are handled in LegalizeVectorOps"); 607 608 // TRUNCSTORE:i16 i32 -> STORE i16 609 assert(TLI.isTypeLegal(StVT) && 610 "Do not know how to expand this store!"); 611 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 612 SDValue Result = 613 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 614 isVolatile, isNonTemporal, Alignment, AAInfo); 615 ReplaceNode(SDValue(Node, 0), Result); 616 break; 617 } 618 } 619 } 620 } 621 622 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 623 LoadSDNode *LD = cast<LoadSDNode>(Node); 624 SDValue Chain = LD->getChain(); // The chain. 625 SDValue Ptr = LD->getBasePtr(); // The base pointer. 626 SDValue Value; // The value returned by the load op. 627 SDLoc dl(Node); 628 629 ISD::LoadExtType ExtType = LD->getExtensionType(); 630 if (ExtType == ISD::NON_EXTLOAD) { 631 MVT VT = Node->getSimpleValueType(0); 632 SDValue RVal = SDValue(Node, 0); 633 SDValue RChain = SDValue(Node, 1); 634 635 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 636 default: llvm_unreachable("This action is not supported yet!"); 637 case TargetLowering::Legal: { 638 EVT MemVT = LD->getMemoryVT(); 639 unsigned AS = LD->getAddressSpace(); 640 unsigned Align = LD->getAlignment(); 641 const DataLayout &DL = DAG.getDataLayout(); 642 // If this is an unaligned load and the target doesn't support it, 643 // expand it. 644 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 645 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 646 } 647 break; 648 } 649 case TargetLowering::Custom: { 650 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 651 RVal = Res; 652 RChain = Res.getValue(1); 653 } 654 break; 655 } 656 case TargetLowering::Promote: { 657 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 658 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 659 "Can only promote loads to same size type"); 660 661 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 662 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 663 RChain = Res.getValue(1); 664 break; 665 } 666 } 667 if (RChain.getNode() != Node) { 668 assert(RVal.getNode() != Node && "Load must be completely replaced"); 669 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 670 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 671 if (UpdatedNodes) { 672 UpdatedNodes->insert(RVal.getNode()); 673 UpdatedNodes->insert(RChain.getNode()); 674 } 675 ReplacedNode(Node); 676 } 677 return; 678 } 679 680 EVT SrcVT = LD->getMemoryVT(); 681 unsigned SrcWidth = SrcVT.getSizeInBits(); 682 unsigned Alignment = LD->getAlignment(); 683 bool isVolatile = LD->isVolatile(); 684 bool isNonTemporal = LD->isNonTemporal(); 685 bool isInvariant = LD->isInvariant(); 686 AAMDNodes AAInfo = LD->getAAInfo(); 687 688 if (SrcWidth != SrcVT.getStoreSizeInBits() && 689 // Some targets pretend to have an i1 loading operation, and actually 690 // load an i8. This trick is correct for ZEXTLOAD because the top 7 691 // bits are guaranteed to be zero; it helps the optimizers understand 692 // that these bits are zero. It is also useful for EXTLOAD, since it 693 // tells the optimizers that those bits are undefined. It would be 694 // nice to have an effective generic way of getting these benefits... 695 // Until such a way is found, don't insist on promoting i1 here. 696 (SrcVT != MVT::i1 || 697 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 698 TargetLowering::Promote)) { 699 // Promote to a byte-sized load if not loading an integral number of 700 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 701 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 702 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 703 SDValue Ch; 704 705 // The extra bits are guaranteed to be zero, since we stored them that 706 // way. A zext load from NVT thus automatically gives zext from SrcVT. 707 708 ISD::LoadExtType NewExtType = 709 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 710 711 SDValue Result = 712 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 713 Chain, Ptr, LD->getPointerInfo(), 714 NVT, isVolatile, isNonTemporal, isInvariant, Alignment, 715 AAInfo); 716 717 Ch = Result.getValue(1); // The chain. 718 719 if (ExtType == ISD::SEXTLOAD) 720 // Having the top bits zero doesn't help when sign extending. 721 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 722 Result.getValueType(), 723 Result, DAG.getValueType(SrcVT)); 724 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 725 // All the top bits are guaranteed to be zero - inform the optimizers. 726 Result = DAG.getNode(ISD::AssertZext, dl, 727 Result.getValueType(), Result, 728 DAG.getValueType(SrcVT)); 729 730 Value = Result; 731 Chain = Ch; 732 } else if (SrcWidth & (SrcWidth - 1)) { 733 // If not loading a power-of-2 number of bits, expand as two loads. 734 assert(!SrcVT.isVector() && "Unsupported extload!"); 735 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 736 assert(RoundWidth < SrcWidth); 737 unsigned ExtraWidth = SrcWidth - RoundWidth; 738 assert(ExtraWidth < RoundWidth); 739 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 740 "Load size not an integral number of bytes!"); 741 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 742 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 743 SDValue Lo, Hi, Ch; 744 unsigned IncrementSize; 745 auto &DL = DAG.getDataLayout(); 746 747 if (DL.isLittleEndian()) { 748 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 749 // Load the bottom RoundWidth bits. 750 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), 751 Chain, Ptr, 752 LD->getPointerInfo(), RoundVT, isVolatile, 753 isNonTemporal, isInvariant, Alignment, AAInfo); 754 755 // Load the remaining ExtraWidth bits. 756 IncrementSize = RoundWidth / 8; 757 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 758 DAG.getConstant(IncrementSize, dl, 759 Ptr.getValueType())); 760 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 761 LD->getPointerInfo().getWithOffset(IncrementSize), 762 ExtraVT, isVolatile, isNonTemporal, isInvariant, 763 MinAlign(Alignment, IncrementSize), AAInfo); 764 765 // Build a factor node to remember that this load is independent of 766 // the other one. 767 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 768 Hi.getValue(1)); 769 770 // Move the top bits to the right place. 771 Hi = DAG.getNode( 772 ISD::SHL, dl, Hi.getValueType(), Hi, 773 DAG.getConstant(RoundWidth, dl, 774 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 775 776 // Join the hi and lo parts. 777 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 778 } else { 779 // Big endian - avoid unaligned loads. 780 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 781 // Load the top RoundWidth bits. 782 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 783 LD->getPointerInfo(), RoundVT, isVolatile, 784 isNonTemporal, isInvariant, Alignment, AAInfo); 785 786 // Load the remaining ExtraWidth bits. 787 IncrementSize = RoundWidth / 8; 788 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 789 DAG.getConstant(IncrementSize, dl, 790 Ptr.getValueType())); 791 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, 792 dl, Node->getValueType(0), Chain, Ptr, 793 LD->getPointerInfo().getWithOffset(IncrementSize), 794 ExtraVT, isVolatile, isNonTemporal, isInvariant, 795 MinAlign(Alignment, IncrementSize), AAInfo); 796 797 // Build a factor node to remember that this load is independent of 798 // the other one. 799 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 800 Hi.getValue(1)); 801 802 // Move the top bits to the right place. 803 Hi = DAG.getNode( 804 ISD::SHL, dl, Hi.getValueType(), Hi, 805 DAG.getConstant(ExtraWidth, dl, 806 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 807 808 // Join the hi and lo parts. 809 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 810 } 811 812 Chain = Ch; 813 } else { 814 bool isCustom = false; 815 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 816 SrcVT.getSimpleVT())) { 817 default: llvm_unreachable("This action is not supported yet!"); 818 case TargetLowering::Custom: 819 isCustom = true; 820 // FALLTHROUGH 821 case TargetLowering::Legal: { 822 Value = SDValue(Node, 0); 823 Chain = SDValue(Node, 1); 824 825 if (isCustom) { 826 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 827 Value = Res; 828 Chain = Res.getValue(1); 829 } 830 } else { 831 // If this is an unaligned load and the target doesn't support it, 832 // expand it. 833 EVT MemVT = LD->getMemoryVT(); 834 unsigned AS = LD->getAddressSpace(); 835 unsigned Align = LD->getAlignment(); 836 const DataLayout &DL = DAG.getDataLayout(); 837 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 838 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 839 } 840 } 841 break; 842 } 843 case TargetLowering::Expand: 844 EVT DestVT = Node->getValueType(0); 845 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 846 // If the source type is not legal, see if there is a legal extload to 847 // an intermediate type that we can then extend further. 848 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 849 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 850 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 851 // If we are loading a legal type, this is a non-extload followed by a 852 // full extend. 853 ISD::LoadExtType MidExtType = 854 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 855 856 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 857 SrcVT, LD->getMemOperand()); 858 unsigned ExtendOp = 859 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 860 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 861 Chain = Load.getValue(1); 862 break; 863 } 864 865 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 866 // normal undefined upper bits behavior to allow using an in-reg extend 867 // with the illegal FP type, so load as an integer and do the 868 // from-integer conversion. 869 if (SrcVT.getScalarType() == MVT::f16) { 870 EVT ISrcVT = SrcVT.changeTypeToInteger(); 871 EVT IDestVT = DestVT.changeTypeToInteger(); 872 EVT LoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 873 874 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, LoadVT, 875 Chain, Ptr, ISrcVT, 876 LD->getMemOperand()); 877 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 878 Chain = Result.getValue(1); 879 break; 880 } 881 } 882 883 assert(!SrcVT.isVector() && 884 "Vector Loads are handled in LegalizeVectorOps"); 885 886 // FIXME: This does not work for vectors on most targets. Sign- 887 // and zero-extend operations are currently folded into extending 888 // loads, whether they are legal or not, and then we end up here 889 // without any support for legalizing them. 890 assert(ExtType != ISD::EXTLOAD && 891 "EXTLOAD should always be supported!"); 892 // Turn the unsupported load into an EXTLOAD followed by an 893 // explicit zero/sign extend inreg. 894 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 895 Node->getValueType(0), 896 Chain, Ptr, SrcVT, 897 LD->getMemOperand()); 898 SDValue ValRes; 899 if (ExtType == ISD::SEXTLOAD) 900 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 901 Result.getValueType(), 902 Result, DAG.getValueType(SrcVT)); 903 else 904 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); 905 Value = ValRes; 906 Chain = Result.getValue(1); 907 break; 908 } 909 } 910 911 // Since loads produce two values, make sure to remember that we legalized 912 // both of them. 913 if (Chain.getNode() != Node) { 914 assert(Value.getNode() != Node && "Load must be completely replaced"); 915 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 916 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 917 if (UpdatedNodes) { 918 UpdatedNodes->insert(Value.getNode()); 919 UpdatedNodes->insert(Chain.getNode()); 920 } 921 ReplacedNode(Node); 922 } 923 } 924 925 /// Return a legal replacement for the given operation, with all legal operands. 926 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 927 DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 928 929 if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 930 return; 931 932 #ifndef NDEBUG 933 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 934 assert((TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 935 TargetLowering::TypeLegal || 936 TLI.isTypeLegal(Node->getValueType(i))) && 937 "Unexpected illegal type!"); 938 939 for (const SDValue &Op : Node->op_values()) 940 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 941 TargetLowering::TypeLegal || 942 TLI.isTypeLegal(Op.getValueType()) || 943 Op.getOpcode() == ISD::TargetConstant) && 944 "Unexpected illegal type!"); 945 #endif 946 947 // Figure out the correct action; the way to query this varies by opcode 948 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 949 bool SimpleFinishLegalizing = true; 950 switch (Node->getOpcode()) { 951 case ISD::INTRINSIC_W_CHAIN: 952 case ISD::INTRINSIC_WO_CHAIN: 953 case ISD::INTRINSIC_VOID: 954 case ISD::STACKSAVE: 955 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 956 break; 957 case ISD::GET_DYNAMIC_AREA_OFFSET: 958 Action = TLI.getOperationAction(Node->getOpcode(), 959 Node->getValueType(0)); 960 break; 961 case ISD::VAARG: 962 Action = TLI.getOperationAction(Node->getOpcode(), 963 Node->getValueType(0)); 964 if (Action != TargetLowering::Promote) 965 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 966 break; 967 case ISD::FP_TO_FP16: 968 case ISD::SINT_TO_FP: 969 case ISD::UINT_TO_FP: 970 case ISD::EXTRACT_VECTOR_ELT: 971 Action = TLI.getOperationAction(Node->getOpcode(), 972 Node->getOperand(0).getValueType()); 973 break; 974 case ISD::FP_ROUND_INREG: 975 case ISD::SIGN_EXTEND_INREG: { 976 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 977 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 978 break; 979 } 980 case ISD::ATOMIC_STORE: { 981 Action = TLI.getOperationAction(Node->getOpcode(), 982 Node->getOperand(2).getValueType()); 983 break; 984 } 985 case ISD::SELECT_CC: 986 case ISD::SETCC: 987 case ISD::BR_CC: { 988 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 989 Node->getOpcode() == ISD::SETCC ? 2 : 990 Node->getOpcode() == ISD::SETCCE ? 3 : 1; 991 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; 992 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 993 ISD::CondCode CCCode = 994 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 995 Action = TLI.getCondCodeAction(CCCode, OpVT); 996 if (Action == TargetLowering::Legal) { 997 if (Node->getOpcode() == ISD::SELECT_CC) 998 Action = TLI.getOperationAction(Node->getOpcode(), 999 Node->getValueType(0)); 1000 else 1001 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1002 } 1003 break; 1004 } 1005 case ISD::LOAD: 1006 case ISD::STORE: 1007 // FIXME: Model these properly. LOAD and STORE are complicated, and 1008 // STORE expects the unlegalized operand in some cases. 1009 SimpleFinishLegalizing = false; 1010 break; 1011 case ISD::CALLSEQ_START: 1012 case ISD::CALLSEQ_END: 1013 // FIXME: This shouldn't be necessary. These nodes have special properties 1014 // dealing with the recursive nature of legalization. Removing this 1015 // special case should be done as part of making LegalizeDAG non-recursive. 1016 SimpleFinishLegalizing = false; 1017 break; 1018 case ISD::EXTRACT_ELEMENT: 1019 case ISD::FLT_ROUNDS_: 1020 case ISD::FPOWI: 1021 case ISD::MERGE_VALUES: 1022 case ISD::EH_RETURN: 1023 case ISD::FRAME_TO_ARGS_OFFSET: 1024 case ISD::EH_SJLJ_SETJMP: 1025 case ISD::EH_SJLJ_LONGJMP: 1026 case ISD::EH_SJLJ_SETUP_DISPATCH: 1027 // These operations lie about being legal: when they claim to be legal, 1028 // they should actually be expanded. 1029 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1030 if (Action == TargetLowering::Legal) 1031 Action = TargetLowering::Expand; 1032 break; 1033 case ISD::INIT_TRAMPOLINE: 1034 case ISD::ADJUST_TRAMPOLINE: 1035 case ISD::FRAMEADDR: 1036 case ISD::RETURNADDR: 1037 // These operations lie about being legal: when they claim to be legal, 1038 // they should actually be custom-lowered. 1039 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1040 if (Action == TargetLowering::Legal) 1041 Action = TargetLowering::Custom; 1042 break; 1043 case ISD::READCYCLECOUNTER: 1044 // READCYCLECOUNTER returns an i64, even if type legalization might have 1045 // expanded that to several smaller types. 1046 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1047 break; 1048 case ISD::READ_REGISTER: 1049 case ISD::WRITE_REGISTER: 1050 // Named register is legal in the DAG, but blocked by register name 1051 // selection if not implemented by target (to chose the correct register) 1052 // They'll be converted to Copy(To/From)Reg. 1053 Action = TargetLowering::Legal; 1054 break; 1055 case ISD::DEBUGTRAP: 1056 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1057 if (Action == TargetLowering::Expand) { 1058 // replace ISD::DEBUGTRAP with ISD::TRAP 1059 SDValue NewVal; 1060 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1061 Node->getOperand(0)); 1062 ReplaceNode(Node, NewVal.getNode()); 1063 LegalizeOp(NewVal.getNode()); 1064 return; 1065 } 1066 break; 1067 1068 default: 1069 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1070 Action = TargetLowering::Legal; 1071 } else { 1072 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1073 } 1074 break; 1075 } 1076 1077 if (SimpleFinishLegalizing) { 1078 SDNode *NewNode = Node; 1079 switch (Node->getOpcode()) { 1080 default: break; 1081 case ISD::SHL: 1082 case ISD::SRL: 1083 case ISD::SRA: 1084 case ISD::ROTL: 1085 case ISD::ROTR: 1086 // Legalizing shifts/rotates requires adjusting the shift amount 1087 // to the appropriate width. 1088 if (!Node->getOperand(1).getValueType().isVector()) { 1089 SDValue SAO = 1090 DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(), 1091 Node->getOperand(1)); 1092 HandleSDNode Handle(SAO); 1093 LegalizeOp(SAO.getNode()); 1094 NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0), 1095 Handle.getValue()); 1096 } 1097 break; 1098 case ISD::SRL_PARTS: 1099 case ISD::SRA_PARTS: 1100 case ISD::SHL_PARTS: 1101 // Legalizing shifts/rotates requires adjusting the shift amount 1102 // to the appropriate width. 1103 if (!Node->getOperand(2).getValueType().isVector()) { 1104 SDValue SAO = 1105 DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(), 1106 Node->getOperand(2)); 1107 HandleSDNode Handle(SAO); 1108 LegalizeOp(SAO.getNode()); 1109 NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0), 1110 Node->getOperand(1), 1111 Handle.getValue()); 1112 } 1113 break; 1114 } 1115 1116 if (NewNode != Node) { 1117 ReplaceNode(Node, NewNode); 1118 Node = NewNode; 1119 } 1120 switch (Action) { 1121 case TargetLowering::Legal: 1122 return; 1123 case TargetLowering::Custom: { 1124 // FIXME: The handling for custom lowering with multiple results is 1125 // a complete mess. 1126 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1127 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1128 return; 1129 1130 if (Node->getNumValues() == 1) { 1131 // We can just directly replace this node with the lowered value. 1132 ReplaceNode(SDValue(Node, 0), Res); 1133 return; 1134 } 1135 1136 SmallVector<SDValue, 8> ResultVals; 1137 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1138 ResultVals.push_back(Res.getValue(i)); 1139 ReplaceNode(Node, ResultVals.data()); 1140 return; 1141 } 1142 } 1143 // FALL THROUGH 1144 case TargetLowering::Expand: 1145 if (ExpandNode(Node)) 1146 return; 1147 // FALL THROUGH 1148 case TargetLowering::LibCall: 1149 ConvertNodeToLibcall(Node); 1150 return; 1151 case TargetLowering::Promote: 1152 PromoteNode(Node); 1153 return; 1154 } 1155 } 1156 1157 switch (Node->getOpcode()) { 1158 default: 1159 #ifndef NDEBUG 1160 dbgs() << "NODE: "; 1161 Node->dump( &DAG); 1162 dbgs() << "\n"; 1163 #endif 1164 llvm_unreachable("Do not know how to legalize this operator!"); 1165 1166 case ISD::CALLSEQ_START: 1167 case ISD::CALLSEQ_END: 1168 break; 1169 case ISD::LOAD: { 1170 return LegalizeLoadOps(Node); 1171 } 1172 case ISD::STORE: { 1173 return LegalizeStoreOps(Node); 1174 } 1175 } 1176 } 1177 1178 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1179 SDValue Vec = Op.getOperand(0); 1180 SDValue Idx = Op.getOperand(1); 1181 SDLoc dl(Op); 1182 1183 // Before we generate a new store to a temporary stack slot, see if there is 1184 // already one that we can use. There often is because when we scalarize 1185 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1186 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1187 // the vector. If all are expanded here, we don't want one store per vector 1188 // element. 1189 1190 // Caches for hasPredecessorHelper 1191 SmallPtrSet<const SDNode *, 32> Visited; 1192 SmallVector<const SDNode *, 16> Worklist; 1193 Worklist.push_back(Idx.getNode()); 1194 SDValue StackPtr, Ch; 1195 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), 1196 UE = Vec.getNode()->use_end(); UI != UE; ++UI) { 1197 SDNode *User = *UI; 1198 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1199 if (ST->isIndexed() || ST->isTruncatingStore() || 1200 ST->getValue() != Vec) 1201 continue; 1202 1203 // Make sure that nothing else could have stored into the destination of 1204 // this store. 1205 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1206 continue; 1207 1208 // If the index is dependent on the store we will introduce a cycle when 1209 // creating the load (the load uses the index, and by replacing the chain 1210 // we will make the index dependent on the load). 1211 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist)) 1212 continue; 1213 1214 StackPtr = ST->getBasePtr(); 1215 Ch = SDValue(ST, 0); 1216 break; 1217 } 1218 } 1219 1220 if (!Ch.getNode()) { 1221 // Store the value to a temporary stack slot, then LOAD the returned part. 1222 StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 1223 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1224 MachinePointerInfo(), false, false, 0); 1225 } 1226 1227 // Add the offset to the index. 1228 unsigned EltSize = 1229 Vec.getValueType().getVectorElementType().getSizeInBits()/8; 1230 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 1231 DAG.getConstant(EltSize, SDLoc(Vec), Idx.getValueType())); 1232 1233 Idx = DAG.getZExtOrTrunc(Idx, dl, TLI.getPointerTy(DAG.getDataLayout())); 1234 StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr); 1235 1236 SDValue NewLoad; 1237 1238 if (Op.getValueType().isVector()) 1239 NewLoad = DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, 1240 MachinePointerInfo(), false, false, false, 0); 1241 else 1242 NewLoad = DAG.getExtLoad( 1243 ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, MachinePointerInfo(), 1244 Vec.getValueType().getVectorElementType(), false, false, false, 0); 1245 1246 // Replace the chain going out of the store, by the one out of the load. 1247 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1248 1249 // We introduced a cycle though, so update the loads operands, making sure 1250 // to use the original store's chain as an incoming chain. 1251 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1252 NewLoad->op_end()); 1253 NewLoadOperands[0] = Ch; 1254 NewLoad = 1255 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1256 return NewLoad; 1257 } 1258 1259 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1260 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1261 1262 SDValue Vec = Op.getOperand(0); 1263 SDValue Part = Op.getOperand(1); 1264 SDValue Idx = Op.getOperand(2); 1265 SDLoc dl(Op); 1266 1267 // Store the value to a temporary stack slot, then LOAD the returned part. 1268 1269 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 1270 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1271 MachinePointerInfo PtrInfo = 1272 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1273 1274 // First store the whole vector. 1275 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo, 1276 false, false, 0); 1277 1278 // Then store the inserted part. 1279 1280 // Add the offset to the index. 1281 unsigned EltSize = 1282 Vec.getValueType().getVectorElementType().getSizeInBits()/8; 1283 1284 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 1285 DAG.getConstant(EltSize, SDLoc(Vec), Idx.getValueType())); 1286 Idx = DAG.getZExtOrTrunc(Idx, dl, TLI.getPointerTy(DAG.getDataLayout())); 1287 1288 SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, 1289 StackPtr); 1290 1291 // Store the subvector. 1292 Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, 1293 MachinePointerInfo(), false, false, 0); 1294 1295 // Finally, load the updated vector. 1296 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo, 1297 false, false, false, 0); 1298 } 1299 1300 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1301 // We can't handle this case efficiently. Allocate a sufficiently 1302 // aligned object on the stack, store each element into it, then load 1303 // the result as a vector. 1304 // Create the stack frame object. 1305 EVT VT = Node->getValueType(0); 1306 EVT EltVT = VT.getVectorElementType(); 1307 SDLoc dl(Node); 1308 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1309 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1310 MachinePointerInfo PtrInfo = 1311 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1312 1313 // Emit a store of each element to the stack slot. 1314 SmallVector<SDValue, 8> Stores; 1315 unsigned TypeByteSize = EltVT.getSizeInBits() / 8; 1316 // Store (in the right endianness) the elements to memory. 1317 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1318 // Ignore undef elements. 1319 if (Node->getOperand(i).isUndef()) continue; 1320 1321 unsigned Offset = TypeByteSize*i; 1322 1323 SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType()); 1324 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); 1325 1326 // If the destination vector element type is narrower than the source 1327 // element type, only store the bits necessary. 1328 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { 1329 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1330 Node->getOperand(i), Idx, 1331 PtrInfo.getWithOffset(Offset), 1332 EltVT, false, false, 0)); 1333 } else 1334 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, 1335 Node->getOperand(i), Idx, 1336 PtrInfo.getWithOffset(Offset), 1337 false, false, 0)); 1338 } 1339 1340 SDValue StoreChain; 1341 if (!Stores.empty()) // Not all undef elements? 1342 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1343 else 1344 StoreChain = DAG.getEntryNode(); 1345 1346 // Result is a load from the stack slot. 1347 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo, 1348 false, false, false, 0); 1349 } 1350 1351 namespace { 1352 /// Keeps track of state when getting the sign of a floating-point value as an 1353 /// integer. 1354 struct FloatSignAsInt { 1355 EVT FloatVT; 1356 SDValue Chain; 1357 SDValue FloatPtr; 1358 SDValue IntPtr; 1359 MachinePointerInfo IntPointerInfo; 1360 MachinePointerInfo FloatPointerInfo; 1361 SDValue IntValue; 1362 APInt SignMask; 1363 uint8_t SignBit; 1364 }; 1365 } 1366 1367 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1368 /// containing the sign bit if the target has no integer value capable of 1369 /// holding all bits of the floating-point value. 1370 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1371 SDLoc DL, SDValue Value) const { 1372 EVT FloatVT = Value.getValueType(); 1373 unsigned NumBits = FloatVT.getSizeInBits(); 1374 State.FloatVT = FloatVT; 1375 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1376 // Convert to an integer of the same size. 1377 if (TLI.isTypeLegal(IVT)) { 1378 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1379 State.SignMask = APInt::getSignBit(NumBits); 1380 State.SignBit = NumBits - 1; 1381 return; 1382 } 1383 1384 auto &DataLayout = DAG.getDataLayout(); 1385 // Store the float to memory, then load the sign part out as an integer. 1386 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1387 // First create a temporary that is aligned for both the load and store. 1388 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1389 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1390 // Then store the float to it. 1391 State.FloatPtr = StackPtr; 1392 MachineFunction &MF = DAG.getMachineFunction(); 1393 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1394 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1395 State.FloatPointerInfo, false, false, 0); 1396 1397 SDValue IntPtr; 1398 if (DataLayout.isBigEndian()) { 1399 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1400 // Load out a legal integer with the same sign bit as the float. 1401 IntPtr = StackPtr; 1402 State.IntPointerInfo = State.FloatPointerInfo; 1403 } else { 1404 // Advance the pointer so that the loaded byte will contain the sign bit. 1405 unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1; 1406 IntPtr = DAG.getNode(ISD::ADD, DL, StackPtr.getValueType(), StackPtr, 1407 DAG.getConstant(ByteOffset, DL, StackPtr.getValueType())); 1408 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1409 ByteOffset); 1410 } 1411 1412 State.IntPtr = IntPtr; 1413 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, 1414 IntPtr, State.IntPointerInfo, MVT::i8, 1415 false, false, false, 0); 1416 State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7); 1417 State.SignBit = 7; 1418 } 1419 1420 /// Replace the integer value produced by getSignAsIntValue() with a new value 1421 /// and cast the result back to a floating-point type. 1422 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1423 SDLoc DL, SDValue NewIntValue) const { 1424 if (!State.Chain) 1425 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1426 1427 // Override the part containing the sign bit in the value stored on the stack. 1428 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1429 State.IntPointerInfo, MVT::i8, false, false, 1430 0); 1431 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1432 State.FloatPointerInfo, false, false, false, 0); 1433 } 1434 1435 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1436 SDLoc DL(Node); 1437 SDValue Mag = Node->getOperand(0); 1438 SDValue Sign = Node->getOperand(1); 1439 1440 // Get sign bit into an integer value. 1441 FloatSignAsInt SignAsInt; 1442 getSignAsIntValue(SignAsInt, DL, Sign); 1443 1444 EVT IntVT = SignAsInt.IntValue.getValueType(); 1445 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1446 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1447 SignMask); 1448 1449 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1450 EVT FloatVT = Mag.getValueType(); 1451 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1452 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1453 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1454 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1455 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1456 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1457 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1458 } 1459 1460 // Transform Mag value to integer, and clear the sign bit. 1461 FloatSignAsInt MagAsInt; 1462 getSignAsIntValue(MagAsInt, DL, Mag); 1463 EVT MagVT = MagAsInt.IntValue.getValueType(); 1464 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1465 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1466 ClearSignMask); 1467 1468 // Get the signbit at the right position for MagAsInt. 1469 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1470 if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) { 1471 if (ShiftAmount > 0) { 1472 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, IntVT); 1473 SignBit = DAG.getNode(ISD::SRL, DL, IntVT, SignBit, ShiftCnst); 1474 } else if (ShiftAmount < 0) { 1475 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, IntVT); 1476 SignBit = DAG.getNode(ISD::SHL, DL, IntVT, SignBit, ShiftCnst); 1477 } 1478 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1479 } else if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) { 1480 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1481 if (ShiftAmount > 0) { 1482 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, MagVT); 1483 SignBit = DAG.getNode(ISD::SRL, DL, MagVT, SignBit, ShiftCnst); 1484 } else if (ShiftAmount < 0) { 1485 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, MagVT); 1486 SignBit = DAG.getNode(ISD::SHL, DL, MagVT, SignBit, ShiftCnst); 1487 } 1488 } 1489 1490 // Store the part with the modified sign and convert back to float. 1491 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1492 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1493 } 1494 1495 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1496 SDLoc DL(Node); 1497 SDValue Value = Node->getOperand(0); 1498 1499 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1500 EVT FloatVT = Value.getValueType(); 1501 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1502 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1503 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1504 } 1505 1506 // Transform value to integer, clear the sign bit and transform back. 1507 FloatSignAsInt ValueAsInt; 1508 getSignAsIntValue(ValueAsInt, DL, Value); 1509 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1510 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1511 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1512 ClearSignMask); 1513 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1514 } 1515 1516 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1517 SmallVectorImpl<SDValue> &Results) { 1518 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1519 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1520 " not tell us which reg is the stack pointer!"); 1521 SDLoc dl(Node); 1522 EVT VT = Node->getValueType(0); 1523 SDValue Tmp1 = SDValue(Node, 0); 1524 SDValue Tmp2 = SDValue(Node, 1); 1525 SDValue Tmp3 = Node->getOperand(2); 1526 SDValue Chain = Tmp1.getOperand(0); 1527 1528 // Chain the dynamic stack allocation so that it doesn't modify the stack 1529 // pointer when other instructions are using the stack. 1530 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, dl, true), dl); 1531 1532 SDValue Size = Tmp2.getOperand(1); 1533 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1534 Chain = SP.getValue(1); 1535 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1536 unsigned StackAlign = 1537 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 1538 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 1539 if (Align > StackAlign) 1540 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1541 DAG.getConstant(-(uint64_t)Align, dl, VT)); 1542 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1543 1544 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1545 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1546 1547 Results.push_back(Tmp1); 1548 Results.push_back(Tmp2); 1549 } 1550 1551 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current 1552 /// target. 1553 /// 1554 /// If the SETCC has been legalized using AND / OR, then the legalized node 1555 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert 1556 /// will be set to false. 1557 /// 1558 /// If the SETCC has been legalized by using getSetCCSwappedOperands(), 1559 /// then the values of LHS and RHS will be swapped, CC will be set to the 1560 /// new condition, and NeedInvert will be set to false. 1561 /// 1562 /// If the SETCC has been legalized using the inverse condcode, then LHS and 1563 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert 1564 /// will be set to true. The caller must invert the result of the SETCC with 1565 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect 1566 /// of a true/false result. 1567 /// 1568 /// \returns true if the SetCC has been legalized, false if it hasn't. 1569 bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, 1570 SDValue &LHS, SDValue &RHS, 1571 SDValue &CC, 1572 bool &NeedInvert, 1573 SDLoc dl) { 1574 MVT OpVT = LHS.getSimpleValueType(); 1575 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1576 NeedInvert = false; 1577 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1578 default: llvm_unreachable("Unknown condition code action!"); 1579 case TargetLowering::Legal: 1580 // Nothing to do. 1581 break; 1582 case TargetLowering::Expand: { 1583 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 1584 if (TLI.isCondCodeLegal(InvCC, OpVT)) { 1585 std::swap(LHS, RHS); 1586 CC = DAG.getCondCode(InvCC); 1587 return true; 1588 } 1589 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1590 unsigned Opc = 0; 1591 switch (CCCode) { 1592 default: llvm_unreachable("Don't know how to expand this condition!"); 1593 case ISD::SETO: 1594 assert(TLI.getCondCodeAction(ISD::SETOEQ, OpVT) 1595 == TargetLowering::Legal 1596 && "If SETO is expanded, SETOEQ must be legal!"); 1597 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; 1598 case ISD::SETUO: 1599 assert(TLI.getCondCodeAction(ISD::SETUNE, OpVT) 1600 == TargetLowering::Legal 1601 && "If SETUO is expanded, SETUNE must be legal!"); 1602 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break; 1603 case ISD::SETOEQ: 1604 case ISD::SETOGT: 1605 case ISD::SETOGE: 1606 case ISD::SETOLT: 1607 case ISD::SETOLE: 1608 case ISD::SETONE: 1609 case ISD::SETUEQ: 1610 case ISD::SETUNE: 1611 case ISD::SETUGT: 1612 case ISD::SETUGE: 1613 case ISD::SETULT: 1614 case ISD::SETULE: 1615 // If we are floating point, assign and break, otherwise fall through. 1616 if (!OpVT.isInteger()) { 1617 // We can use the 4th bit to tell if we are the unordered 1618 // or ordered version of the opcode. 1619 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 1620 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 1621 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 1622 break; 1623 } 1624 // Fallthrough if we are unsigned integer. 1625 case ISD::SETLE: 1626 case ISD::SETGT: 1627 case ISD::SETGE: 1628 case ISD::SETLT: 1629 // We only support using the inverted operation, which is computed above 1630 // and not a different manner of supporting expanding these cases. 1631 llvm_unreachable("Don't know how to expand this condition!"); 1632 case ISD::SETNE: 1633 case ISD::SETEQ: 1634 // Try inverting the result of the inverse condition. 1635 InvCC = CCCode == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ; 1636 if (TLI.isCondCodeLegal(InvCC, OpVT)) { 1637 CC = DAG.getCondCode(InvCC); 1638 NeedInvert = true; 1639 return true; 1640 } 1641 // If inverting the condition didn't work then we have no means to expand 1642 // the condition. 1643 llvm_unreachable("Don't know how to expand this condition!"); 1644 } 1645 1646 SDValue SetCC1, SetCC2; 1647 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 1648 // If we aren't the ordered or unorder operation, 1649 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 1650 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); 1651 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); 1652 } else { 1653 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 1654 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1); 1655 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2); 1656 } 1657 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1658 RHS = SDValue(); 1659 CC = SDValue(); 1660 return true; 1661 } 1662 } 1663 return false; 1664 } 1665 1666 /// Emit a store/load combination to the stack. This stores 1667 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1668 /// a load from the stack slot to DestVT, extending it if needed. 1669 /// The resultant code need not be legal. 1670 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, 1671 EVT SlotVT, 1672 EVT DestVT, 1673 SDLoc dl) { 1674 // Create the stack frame object. 1675 unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment( 1676 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1677 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 1678 1679 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1680 int SPFI = StackPtrFI->getIndex(); 1681 MachinePointerInfo PtrInfo = 1682 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1683 1684 unsigned SrcSize = SrcOp.getValueType().getSizeInBits(); 1685 unsigned SlotSize = SlotVT.getSizeInBits(); 1686 unsigned DestSize = DestVT.getSizeInBits(); 1687 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1688 unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType); 1689 1690 // Emit a store to the stack slot. Use a truncstore if the input value is 1691 // later than DestVT. 1692 SDValue Store; 1693 1694 if (SrcSize > SlotSize) 1695 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 1696 PtrInfo, SlotVT, false, false, SrcAlign); 1697 else { 1698 assert(SrcSize == SlotSize && "Invalid store"); 1699 Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 1700 PtrInfo, false, false, SrcAlign); 1701 } 1702 1703 // Result is a load from the stack slot. 1704 if (SlotSize == DestSize) 1705 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, 1706 false, false, false, DestAlign); 1707 1708 assert(SlotSize < DestSize && "Unknown extension!"); 1709 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, 1710 PtrInfo, SlotVT, false, false, false, DestAlign); 1711 } 1712 1713 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1714 SDLoc dl(Node); 1715 // Create a vector sized/aligned stack slot, store the value to element #0, 1716 // then load the whole vector back out. 1717 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1718 1719 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1720 int SPFI = StackPtrFI->getIndex(); 1721 1722 SDValue Ch = DAG.getTruncStore( 1723 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1724 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1725 Node->getValueType(0).getVectorElementType(), false, false, 0); 1726 return DAG.getLoad( 1727 Node->getValueType(0), dl, Ch, StackPtr, 1728 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), false, 1729 false, false, 0); 1730 } 1731 1732 static bool 1733 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1734 const TargetLowering &TLI, SDValue &Res) { 1735 unsigned NumElems = Node->getNumOperands(); 1736 SDLoc dl(Node); 1737 EVT VT = Node->getValueType(0); 1738 1739 // Try to group the scalars into pairs, shuffle the pairs together, then 1740 // shuffle the pairs of pairs together, etc. until the vector has 1741 // been built. This will work only if all of the necessary shuffle masks 1742 // are legal. 1743 1744 // We do this in two phases; first to check the legality of the shuffles, 1745 // and next, assuming that all shuffles are legal, to create the new nodes. 1746 for (int Phase = 0; Phase < 2; ++Phase) { 1747 SmallVector<std::pair<SDValue, SmallVector<int, 16> >, 16> IntermedVals, 1748 NewIntermedVals; 1749 for (unsigned i = 0; i < NumElems; ++i) { 1750 SDValue V = Node->getOperand(i); 1751 if (V.isUndef()) 1752 continue; 1753 1754 SDValue Vec; 1755 if (Phase) 1756 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1757 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1758 } 1759 1760 while (IntermedVals.size() > 2) { 1761 NewIntermedVals.clear(); 1762 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1763 // This vector and the next vector are shuffled together (simply to 1764 // append the one to the other). 1765 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1766 1767 SmallVector<int, 16> FinalIndices; 1768 FinalIndices.reserve(IntermedVals[i].second.size() + 1769 IntermedVals[i+1].second.size()); 1770 1771 int k = 0; 1772 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1773 ++j, ++k) { 1774 ShuffleVec[k] = j; 1775 FinalIndices.push_back(IntermedVals[i].second[j]); 1776 } 1777 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1778 ++j, ++k) { 1779 ShuffleVec[k] = NumElems + j; 1780 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1781 } 1782 1783 SDValue Shuffle; 1784 if (Phase) 1785 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1786 IntermedVals[i+1].first, 1787 ShuffleVec.data()); 1788 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1789 return false; 1790 NewIntermedVals.push_back( 1791 std::make_pair(Shuffle, std::move(FinalIndices))); 1792 } 1793 1794 // If we had an odd number of defined values, then append the last 1795 // element to the array of new vectors. 1796 if ((IntermedVals.size() & 1) != 0) 1797 NewIntermedVals.push_back(IntermedVals.back()); 1798 1799 IntermedVals.swap(NewIntermedVals); 1800 } 1801 1802 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1803 "Invalid number of intermediate vectors"); 1804 SDValue Vec1 = IntermedVals[0].first; 1805 SDValue Vec2; 1806 if (IntermedVals.size() > 1) 1807 Vec2 = IntermedVals[1].first; 1808 else if (Phase) 1809 Vec2 = DAG.getUNDEF(VT); 1810 1811 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1812 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1813 ShuffleVec[IntermedVals[0].second[i]] = i; 1814 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1815 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1816 1817 if (Phase) 1818 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data()); 1819 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1820 return false; 1821 } 1822 1823 return true; 1824 } 1825 1826 /// Expand a BUILD_VECTOR node on targets that don't 1827 /// support the operation, but do support the resultant vector type. 1828 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1829 unsigned NumElems = Node->getNumOperands(); 1830 SDValue Value1, Value2; 1831 SDLoc dl(Node); 1832 EVT VT = Node->getValueType(0); 1833 EVT OpVT = Node->getOperand(0).getValueType(); 1834 EVT EltVT = VT.getVectorElementType(); 1835 1836 // If the only non-undef value is the low element, turn this into a 1837 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1838 bool isOnlyLowElement = true; 1839 bool MoreThanTwoValues = false; 1840 bool isConstant = true; 1841 for (unsigned i = 0; i < NumElems; ++i) { 1842 SDValue V = Node->getOperand(i); 1843 if (V.isUndef()) 1844 continue; 1845 if (i > 0) 1846 isOnlyLowElement = false; 1847 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1848 isConstant = false; 1849 1850 if (!Value1.getNode()) { 1851 Value1 = V; 1852 } else if (!Value2.getNode()) { 1853 if (V != Value1) 1854 Value2 = V; 1855 } else if (V != Value1 && V != Value2) { 1856 MoreThanTwoValues = true; 1857 } 1858 } 1859 1860 if (!Value1.getNode()) 1861 return DAG.getUNDEF(VT); 1862 1863 if (isOnlyLowElement) 1864 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1865 1866 // If all elements are constants, create a load from the constant pool. 1867 if (isConstant) { 1868 SmallVector<Constant*, 16> CV; 1869 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1870 if (ConstantFPSDNode *V = 1871 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1872 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1873 } else if (ConstantSDNode *V = 1874 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1875 if (OpVT==EltVT) 1876 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1877 else { 1878 // If OpVT and EltVT don't match, EltVT is not legal and the 1879 // element values have been promoted/truncated earlier. Undo this; 1880 // we don't want a v16i8 to become a v16i32 for example. 1881 const ConstantInt *CI = V->getConstantIntValue(); 1882 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1883 CI->getZExtValue())); 1884 } 1885 } else { 1886 assert(Node->getOperand(i).isUndef()); 1887 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1888 CV.push_back(UndefValue::get(OpNTy)); 1889 } 1890 } 1891 Constant *CP = ConstantVector::get(CV); 1892 SDValue CPIdx = 1893 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 1894 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 1895 return DAG.getLoad( 1896 VT, dl, DAG.getEntryNode(), CPIdx, 1897 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 1898 false, false, Alignment); 1899 } 1900 1901 SmallSet<SDValue, 16> DefinedValues; 1902 for (unsigned i = 0; i < NumElems; ++i) { 1903 if (Node->getOperand(i).isUndef()) 1904 continue; 1905 DefinedValues.insert(Node->getOperand(i)); 1906 } 1907 1908 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 1909 if (!MoreThanTwoValues) { 1910 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1911 for (unsigned i = 0; i < NumElems; ++i) { 1912 SDValue V = Node->getOperand(i); 1913 if (V.isUndef()) 1914 continue; 1915 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1916 } 1917 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1918 // Get the splatted value into the low element of a vector register. 1919 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1920 SDValue Vec2; 1921 if (Value2.getNode()) 1922 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 1923 else 1924 Vec2 = DAG.getUNDEF(VT); 1925 1926 // Return shuffle(LowValVec, undef, <0,0,0,0>) 1927 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data()); 1928 } 1929 } else { 1930 SDValue Res; 1931 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 1932 return Res; 1933 } 1934 } 1935 1936 // Otherwise, we can't handle this case efficiently. 1937 return ExpandVectorBuildThroughStack(Node); 1938 } 1939 1940 // Expand a node into a call to a libcall. If the result value 1941 // does not fit into a register, return the lo part and set the hi part to the 1942 // by-reg argument. If it does fit into a single register, return the result 1943 // and leave the Hi part unset. 1944 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 1945 bool isSigned) { 1946 TargetLowering::ArgListTy Args; 1947 TargetLowering::ArgListEntry Entry; 1948 for (const SDValue &Op : Node->op_values()) { 1949 EVT ArgVT = Op.getValueType(); 1950 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 1951 Entry.Node = Op; 1952 Entry.Ty = ArgTy; 1953 Entry.isSExt = isSigned; 1954 Entry.isZExt = !isSigned; 1955 Args.push_back(Entry); 1956 } 1957 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1958 TLI.getPointerTy(DAG.getDataLayout())); 1959 1960 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 1961 1962 // By default, the input chain to this libcall is the entry node of the 1963 // function. If the libcall is going to be emitted as a tail call then 1964 // TLI.isUsedByReturnOnly will change it to the right chain if the return 1965 // node which is being folded has a non-entry input chain. 1966 SDValue InChain = DAG.getEntryNode(); 1967 1968 // isTailCall may be true since the callee does not reference caller stack 1969 // frame. Check if it's in the right position and that the return types match. 1970 SDValue TCChain = InChain; 1971 const Function *F = DAG.getMachineFunction().getFunction(); 1972 bool isTailCall = 1973 TLI.isInTailCallPosition(DAG, Node, TCChain) && 1974 (RetTy == F->getReturnType() || F->getReturnType()->isVoidTy()); 1975 if (isTailCall) 1976 InChain = TCChain; 1977 1978 TargetLowering::CallLoweringInfo CLI(DAG); 1979 CLI.setDebugLoc(SDLoc(Node)).setChain(InChain) 1980 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0) 1981 .setTailCall(isTailCall).setSExtResult(isSigned).setZExtResult(!isSigned); 1982 1983 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 1984 1985 if (!CallInfo.second.getNode()) 1986 // It's a tailcall, return the chain (which is the DAG root). 1987 return DAG.getRoot(); 1988 1989 return CallInfo.first; 1990 } 1991 1992 /// Generate a libcall taking the given operands as arguments 1993 /// and returning a result of type RetVT. 1994 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, 1995 const SDValue *Ops, unsigned NumOps, 1996 bool isSigned, SDLoc dl) { 1997 TargetLowering::ArgListTy Args; 1998 Args.reserve(NumOps); 1999 2000 TargetLowering::ArgListEntry Entry; 2001 for (unsigned i = 0; i != NumOps; ++i) { 2002 Entry.Node = Ops[i]; 2003 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 2004 Entry.isSExt = isSigned; 2005 Entry.isZExt = !isSigned; 2006 Args.push_back(Entry); 2007 } 2008 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2009 TLI.getPointerTy(DAG.getDataLayout())); 2010 2011 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2012 2013 TargetLowering::CallLoweringInfo CLI(DAG); 2014 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) 2015 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0) 2016 .setSExtResult(isSigned).setZExtResult(!isSigned); 2017 2018 std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI); 2019 2020 return CallInfo.first; 2021 } 2022 2023 // Expand a node into a call to a libcall. Similar to 2024 // ExpandLibCall except that the first operand is the in-chain. 2025 std::pair<SDValue, SDValue> 2026 SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC, 2027 SDNode *Node, 2028 bool isSigned) { 2029 SDValue InChain = Node->getOperand(0); 2030 2031 TargetLowering::ArgListTy Args; 2032 TargetLowering::ArgListEntry Entry; 2033 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { 2034 EVT ArgVT = Node->getOperand(i).getValueType(); 2035 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2036 Entry.Node = Node->getOperand(i); 2037 Entry.Ty = ArgTy; 2038 Entry.isSExt = isSigned; 2039 Entry.isZExt = !isSigned; 2040 Args.push_back(Entry); 2041 } 2042 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2043 TLI.getPointerTy(DAG.getDataLayout())); 2044 2045 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 2046 2047 TargetLowering::CallLoweringInfo CLI(DAG); 2048 CLI.setDebugLoc(SDLoc(Node)).setChain(InChain) 2049 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0) 2050 .setSExtResult(isSigned).setZExtResult(!isSigned); 2051 2052 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2053 2054 return CallInfo; 2055 } 2056 2057 SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2058 RTLIB::Libcall Call_F32, 2059 RTLIB::Libcall Call_F64, 2060 RTLIB::Libcall Call_F80, 2061 RTLIB::Libcall Call_F128, 2062 RTLIB::Libcall Call_PPCF128) { 2063 RTLIB::Libcall LC; 2064 switch (Node->getSimpleValueType(0).SimpleTy) { 2065 default: llvm_unreachable("Unexpected request for libcall!"); 2066 case MVT::f32: LC = Call_F32; break; 2067 case MVT::f64: LC = Call_F64; break; 2068 case MVT::f80: LC = Call_F80; break; 2069 case MVT::f128: LC = Call_F128; break; 2070 case MVT::ppcf128: LC = Call_PPCF128; break; 2071 } 2072 return ExpandLibCall(LC, Node, false); 2073 } 2074 2075 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2076 RTLIB::Libcall Call_I8, 2077 RTLIB::Libcall Call_I16, 2078 RTLIB::Libcall Call_I32, 2079 RTLIB::Libcall Call_I64, 2080 RTLIB::Libcall Call_I128) { 2081 RTLIB::Libcall LC; 2082 switch (Node->getSimpleValueType(0).SimpleTy) { 2083 default: llvm_unreachable("Unexpected request for libcall!"); 2084 case MVT::i8: LC = Call_I8; break; 2085 case MVT::i16: LC = Call_I16; break; 2086 case MVT::i32: LC = Call_I32; break; 2087 case MVT::i64: LC = Call_I64; break; 2088 case MVT::i128: LC = Call_I128; break; 2089 } 2090 return ExpandLibCall(LC, Node, isSigned); 2091 } 2092 2093 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2094 void 2095 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2096 SmallVectorImpl<SDValue> &Results) { 2097 unsigned Opcode = Node->getOpcode(); 2098 bool isSigned = Opcode == ISD::SDIVREM; 2099 2100 RTLIB::Libcall LC; 2101 switch (Node->getSimpleValueType(0).SimpleTy) { 2102 default: llvm_unreachable("Unexpected request for libcall!"); 2103 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2104 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2105 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2106 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2107 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2108 } 2109 2110 // The input chain to this libcall is the entry node of the function. 2111 // Legalizing the call will automatically add the previous call to the 2112 // dependence. 2113 SDValue InChain = DAG.getEntryNode(); 2114 2115 EVT RetVT = Node->getValueType(0); 2116 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2117 2118 TargetLowering::ArgListTy Args; 2119 TargetLowering::ArgListEntry Entry; 2120 for (const SDValue &Op : Node->op_values()) { 2121 EVT ArgVT = Op.getValueType(); 2122 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2123 Entry.Node = Op; 2124 Entry.Ty = ArgTy; 2125 Entry.isSExt = isSigned; 2126 Entry.isZExt = !isSigned; 2127 Args.push_back(Entry); 2128 } 2129 2130 // Also pass the return address of the remainder. 2131 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2132 Entry.Node = FIPtr; 2133 Entry.Ty = RetTy->getPointerTo(); 2134 Entry.isSExt = isSigned; 2135 Entry.isZExt = !isSigned; 2136 Args.push_back(Entry); 2137 2138 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2139 TLI.getPointerTy(DAG.getDataLayout())); 2140 2141 SDLoc dl(Node); 2142 TargetLowering::CallLoweringInfo CLI(DAG); 2143 CLI.setDebugLoc(dl).setChain(InChain) 2144 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0) 2145 .setSExtResult(isSigned).setZExtResult(!isSigned); 2146 2147 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2148 2149 // Remainder is loaded back from the stack frame. 2150 SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, 2151 MachinePointerInfo(), false, false, false, 0); 2152 Results.push_back(CallInfo.first); 2153 Results.push_back(Rem); 2154 } 2155 2156 /// Return true if sincos libcall is available. 2157 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2158 RTLIB::Libcall LC; 2159 switch (Node->getSimpleValueType(0).SimpleTy) { 2160 default: llvm_unreachable("Unexpected request for libcall!"); 2161 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2162 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2163 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2164 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2165 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2166 } 2167 return TLI.getLibcallName(LC) != nullptr; 2168 } 2169 2170 /// Return true if sincos libcall is available and can be used to combine sin 2171 /// and cos. 2172 static bool canCombineSinCosLibcall(SDNode *Node, const TargetLowering &TLI, 2173 const TargetMachine &TM) { 2174 if (!isSinCosLibcallAvailable(Node, TLI)) 2175 return false; 2176 // GNU sin/cos functions set errno while sincos does not. Therefore 2177 // combining sin and cos is only safe if unsafe-fpmath is enabled. 2178 bool isGNU = Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU; 2179 if (isGNU && !TM.Options.UnsafeFPMath) 2180 return false; 2181 return true; 2182 } 2183 2184 /// Only issue sincos libcall if both sin and cos are needed. 2185 static bool useSinCos(SDNode *Node) { 2186 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2187 ? ISD::FCOS : ISD::FSIN; 2188 2189 SDValue Op0 = Node->getOperand(0); 2190 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2191 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2192 SDNode *User = *UI; 2193 if (User == Node) 2194 continue; 2195 // The other user might have been turned into sincos already. 2196 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2197 return true; 2198 } 2199 return false; 2200 } 2201 2202 /// Issue libcalls to sincos to compute sin / cos pairs. 2203 void 2204 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2205 SmallVectorImpl<SDValue> &Results) { 2206 RTLIB::Libcall LC; 2207 switch (Node->getSimpleValueType(0).SimpleTy) { 2208 default: llvm_unreachable("Unexpected request for libcall!"); 2209 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2210 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2211 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2212 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2213 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2214 } 2215 2216 // The input chain to this libcall is the entry node of the function. 2217 // Legalizing the call will automatically add the previous call to the 2218 // dependence. 2219 SDValue InChain = DAG.getEntryNode(); 2220 2221 EVT RetVT = Node->getValueType(0); 2222 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2223 2224 TargetLowering::ArgListTy Args; 2225 TargetLowering::ArgListEntry Entry; 2226 2227 // Pass the argument. 2228 Entry.Node = Node->getOperand(0); 2229 Entry.Ty = RetTy; 2230 Entry.isSExt = false; 2231 Entry.isZExt = false; 2232 Args.push_back(Entry); 2233 2234 // Pass the return address of sin. 2235 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2236 Entry.Node = SinPtr; 2237 Entry.Ty = RetTy->getPointerTo(); 2238 Entry.isSExt = false; 2239 Entry.isZExt = false; 2240 Args.push_back(Entry); 2241 2242 // Also pass the return address of the cos. 2243 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2244 Entry.Node = CosPtr; 2245 Entry.Ty = RetTy->getPointerTo(); 2246 Entry.isSExt = false; 2247 Entry.isZExt = false; 2248 Args.push_back(Entry); 2249 2250 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2251 TLI.getPointerTy(DAG.getDataLayout())); 2252 2253 SDLoc dl(Node); 2254 TargetLowering::CallLoweringInfo CLI(DAG); 2255 CLI.setDebugLoc(dl).setChain(InChain) 2256 .setCallee(TLI.getLibcallCallingConv(LC), 2257 Type::getVoidTy(*DAG.getContext()), Callee, std::move(Args), 0); 2258 2259 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2260 2261 Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, 2262 MachinePointerInfo(), false, false, false, 0)); 2263 Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, 2264 MachinePointerInfo(), false, false, false, 0)); 2265 } 2266 2267 /// This function is responsible for legalizing a 2268 /// INT_TO_FP operation of the specified operand when the target requests that 2269 /// we expand it. At this point, we know that the result and operand types are 2270 /// legal for the target. 2271 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, 2272 SDValue Op0, 2273 EVT DestVT, 2274 SDLoc dl) { 2275 // TODO: Should any fast-math-flags be set for the created nodes? 2276 2277 if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { 2278 // simple 32-bit [signed|unsigned] integer to float/double expansion 2279 2280 // Get the stack frame index of a 8 byte buffer. 2281 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2282 2283 // word offset constant for Hi/Lo address computation 2284 SDValue WordOff = DAG.getConstant(sizeof(int), dl, 2285 StackSlot.getValueType()); 2286 // set up Hi and Lo (into buffer) address based on endian 2287 SDValue Hi = StackSlot; 2288 SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(), 2289 StackSlot, WordOff); 2290 if (DAG.getDataLayout().isLittleEndian()) 2291 std::swap(Hi, Lo); 2292 2293 // if signed map to unsigned space 2294 SDValue Op0Mapped; 2295 if (isSigned) { 2296 // constant used to invert sign bit (signed to unsigned mapping) 2297 SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32); 2298 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); 2299 } else { 2300 Op0Mapped = Op0; 2301 } 2302 // store the lo of the constructed double - based on integer input 2303 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, 2304 Op0Mapped, Lo, MachinePointerInfo(), 2305 false, false, 0); 2306 // initial hi portion of constructed double 2307 SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2308 // store the hi of the constructed double - biased exponent 2309 SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi, 2310 MachinePointerInfo(), 2311 false, false, 0); 2312 // load the constructed double 2313 SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, 2314 MachinePointerInfo(), false, false, false, 0); 2315 // FP constant to bias correct the final result 2316 SDValue Bias = DAG.getConstantFP(isSigned ? 2317 BitsToDouble(0x4330000080000000ULL) : 2318 BitsToDouble(0x4330000000000000ULL), 2319 dl, MVT::f64); 2320 // subtract the bias 2321 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2322 // final result 2323 SDValue Result; 2324 // handle final rounding 2325 if (DestVT == MVT::f64) { 2326 // do nothing 2327 Result = Sub; 2328 } else if (DestVT.bitsLT(MVT::f64)) { 2329 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, 2330 DAG.getIntPtrConstant(0, dl)); 2331 } else if (DestVT.bitsGT(MVT::f64)) { 2332 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); 2333 } 2334 return Result; 2335 } 2336 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2337 // Code below here assumes !isSigned without checking again. 2338 2339 // Implementation of unsigned i64 to f64 following the algorithm in 2340 // __floatundidf in compiler_rt. This implementation has the advantage 2341 // of performing rounding correctly, both in the default rounding mode 2342 // and in all alternate rounding modes. 2343 // TODO: Generalize this for use with other types. 2344 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) { 2345 SDValue TwoP52 = 2346 DAG.getConstant(UINT64_C(0x4330000000000000), dl, MVT::i64); 2347 SDValue TwoP84PlusTwoP52 = 2348 DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), dl, 2349 MVT::f64); 2350 SDValue TwoP84 = 2351 DAG.getConstant(UINT64_C(0x4530000000000000), dl, MVT::i64); 2352 2353 SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32); 2354 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, 2355 DAG.getConstant(32, dl, MVT::i64)); 2356 SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52); 2357 SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84); 2358 SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr); 2359 SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr); 2360 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, 2361 TwoP84PlusTwoP52); 2362 return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub); 2363 } 2364 2365 // Implementation of unsigned i64 to f32. 2366 // TODO: Generalize this for use with other types. 2367 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) { 2368 // For unsigned conversions, convert them to signed conversions using the 2369 // algorithm from the x86_64 __floatundidf in compiler_rt. 2370 if (!isSigned) { 2371 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0); 2372 2373 SDValue ShiftConst = DAG.getConstant( 2374 1, dl, TLI.getShiftAmountTy(Op0.getValueType(), DAG.getDataLayout())); 2375 SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst); 2376 SDValue AndConst = DAG.getConstant(1, dl, MVT::i64); 2377 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst); 2378 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr); 2379 2380 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or); 2381 SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt); 2382 2383 // TODO: This really should be implemented using a branch rather than a 2384 // select. We happen to get lucky and machinesink does the right 2385 // thing most of the time. This would be a good candidate for a 2386 //pseudo-op, or, even better, for whole-function isel. 2387 SDValue SignBitTest = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), 2388 Op0, DAG.getConstant(0, dl, MVT::i64), ISD::SETLT); 2389 return DAG.getSelect(dl, MVT::f32, SignBitTest, Slow, Fast); 2390 } 2391 2392 // Otherwise, implement the fully general conversion. 2393 2394 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2395 DAG.getConstant(UINT64_C(0xfffffffffffff800), dl, MVT::i64)); 2396 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, 2397 DAG.getConstant(UINT64_C(0x800), dl, MVT::i64)); 2398 SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2399 DAG.getConstant(UINT64_C(0x7ff), dl, MVT::i64)); 2400 SDValue Ne = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), And2, 2401 DAG.getConstant(UINT64_C(0), dl, MVT::i64), 2402 ISD::SETNE); 2403 SDValue Sel = DAG.getSelect(dl, MVT::i64, Ne, Or, Op0); 2404 SDValue Ge = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), Op0, 2405 DAG.getConstant(UINT64_C(0x0020000000000000), dl, 2406 MVT::i64), 2407 ISD::SETUGE); 2408 SDValue Sel2 = DAG.getSelect(dl, MVT::i64, Ge, Sel, Op0); 2409 EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType(), DAG.getDataLayout()); 2410 2411 SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2, 2412 DAG.getConstant(32, dl, SHVT)); 2413 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh); 2414 SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc); 2415 SDValue TwoP32 = 2416 DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), dl, 2417 MVT::f64); 2418 SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt); 2419 SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2); 2420 SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo); 2421 SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2); 2422 return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd, 2423 DAG.getIntPtrConstant(0, dl)); 2424 } 2425 2426 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2427 2428 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(Op0.getValueType()), 2429 Op0, 2430 DAG.getConstant(0, dl, Op0.getValueType()), 2431 ISD::SETLT); 2432 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2433 Four = DAG.getIntPtrConstant(4, dl); 2434 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2435 SignSet, Four, Zero); 2436 2437 // If the sign bit of the integer is set, the large number will be treated 2438 // as a negative number. To counteract this, the dynamic code adds an 2439 // offset depending on the data type. 2440 uint64_t FF; 2441 switch (Op0.getSimpleValueType().SimpleTy) { 2442 default: llvm_unreachable("Unsupported integer type!"); 2443 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2444 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2445 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2446 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2447 } 2448 if (DAG.getDataLayout().isLittleEndian()) 2449 FF <<= 32; 2450 Constant *FudgeFactor = ConstantInt::get( 2451 Type::getInt64Ty(*DAG.getContext()), FF); 2452 2453 SDValue CPIdx = 2454 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2455 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2456 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2457 Alignment = std::min(Alignment, 4u); 2458 SDValue FudgeInReg; 2459 if (DestVT == MVT::f32) 2460 FudgeInReg = DAG.getLoad( 2461 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2462 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2463 false, false, Alignment); 2464 else { 2465 SDValue Load = DAG.getExtLoad( 2466 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2467 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2468 false, false, false, Alignment); 2469 HandleSDNode Handle(Load); 2470 LegalizeOp(Load.getNode()); 2471 FudgeInReg = Handle.getValue(); 2472 } 2473 2474 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2475 } 2476 2477 /// This function is responsible for legalizing a 2478 /// *INT_TO_FP operation of the specified operand when the target requests that 2479 /// we promote it. At this point, we know that the result and operand types are 2480 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2481 /// operation that takes a larger input. 2482 SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, 2483 EVT DestVT, 2484 bool isSigned, 2485 SDLoc dl) { 2486 // First step, figure out the appropriate *INT_TO_FP operation to use. 2487 EVT NewInTy = LegalOp.getValueType(); 2488 2489 unsigned OpToUse = 0; 2490 2491 // Scan for the appropriate larger type to use. 2492 while (1) { 2493 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2494 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2495 2496 // If the target supports SINT_TO_FP of this type, use it. 2497 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { 2498 OpToUse = ISD::SINT_TO_FP; 2499 break; 2500 } 2501 if (isSigned) continue; 2502 2503 // If the target supports UINT_TO_FP of this type, use it. 2504 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { 2505 OpToUse = ISD::UINT_TO_FP; 2506 break; 2507 } 2508 2509 // Otherwise, try a larger type. 2510 } 2511 2512 // Okay, we found the operation and type to use. Zero extend our input to the 2513 // desired type then run the operation on it. 2514 return DAG.getNode(OpToUse, dl, DestVT, 2515 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2516 dl, NewInTy, LegalOp)); 2517 } 2518 2519 /// This function is responsible for legalizing a 2520 /// FP_TO_*INT operation of the specified operand when the target requests that 2521 /// we promote it. At this point, we know that the result and operand types are 2522 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2523 /// operation that returns a larger result. 2524 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, 2525 EVT DestVT, 2526 bool isSigned, 2527 SDLoc dl) { 2528 // First step, figure out the appropriate FP_TO*INT operation to use. 2529 EVT NewOutTy = DestVT; 2530 2531 unsigned OpToUse = 0; 2532 2533 // Scan for the appropriate larger type to use. 2534 while (1) { 2535 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2536 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2537 2538 // A larger signed type can hold all unsigned values of the requested type, 2539 // so using FP_TO_SINT is valid 2540 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { 2541 OpToUse = ISD::FP_TO_SINT; 2542 break; 2543 } 2544 2545 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2546 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { 2547 OpToUse = ISD::FP_TO_UINT; 2548 break; 2549 } 2550 2551 // Otherwise, try a larger type. 2552 } 2553 2554 2555 // Okay, we found the operation and type to use. 2556 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2557 2558 // Truncate the result of the extended FP_TO_*INT operation to the desired 2559 // size. 2560 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2561 } 2562 2563 /// Open code the operations for BITREVERSE. 2564 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, SDLoc dl) { 2565 EVT VT = Op.getValueType(); 2566 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2567 unsigned Sz = VT.getScalarSizeInBits(); 2568 2569 SDValue Tmp, Tmp2; 2570 Tmp = DAG.getConstant(0, dl, VT); 2571 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 2572 if (I < J) 2573 Tmp2 = 2574 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 2575 else 2576 Tmp2 = 2577 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 2578 2579 APInt Shift(Sz, 1); 2580 Shift = Shift.shl(J); 2581 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 2582 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 2583 } 2584 2585 return Tmp; 2586 } 2587 2588 /// Open code the operations for BSWAP of the specified operation. 2589 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, SDLoc dl) { 2590 EVT VT = Op.getValueType(); 2591 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2592 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2593 switch (VT.getSimpleVT().SimpleTy) { 2594 default: llvm_unreachable("Unhandled Expand type in BSWAP!"); 2595 case MVT::i16: 2596 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2597 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2598 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 2599 case MVT::i32: 2600 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2601 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2602 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2603 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2604 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2605 DAG.getConstant(0xFF0000, dl, VT)); 2606 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 2607 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2608 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2609 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2610 case MVT::i64: 2611 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2612 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2613 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2614 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2615 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2616 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2617 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2618 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2619 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 2620 DAG.getConstant(255ULL<<48, dl, VT)); 2621 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 2622 DAG.getConstant(255ULL<<40, dl, VT)); 2623 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 2624 DAG.getConstant(255ULL<<32, dl, VT)); 2625 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 2626 DAG.getConstant(255ULL<<24, dl, VT)); 2627 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2628 DAG.getConstant(255ULL<<16, dl, VT)); 2629 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 2630 DAG.getConstant(255ULL<<8 , dl, VT)); 2631 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2632 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2633 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2634 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2635 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2636 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2637 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2638 } 2639 } 2640 2641 /// Expand the specified bitcount instruction into operations. 2642 SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op, 2643 SDLoc dl) { 2644 switch (Opc) { 2645 default: llvm_unreachable("Cannot expand this yet!"); 2646 case ISD::CTPOP: { 2647 EVT VT = Op.getValueType(); 2648 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2649 unsigned Len = VT.getSizeInBits(); 2650 2651 assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 && 2652 "CTPOP not implemented for this type."); 2653 2654 // This is the "best" algorithm from 2655 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 2656 2657 SDValue Mask55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), 2658 dl, VT); 2659 SDValue Mask33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), 2660 dl, VT); 2661 SDValue Mask0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), 2662 dl, VT); 2663 SDValue Mask01 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), 2664 dl, VT); 2665 2666 // v = v - ((v >> 1) & 0x55555555...) 2667 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 2668 DAG.getNode(ISD::AND, dl, VT, 2669 DAG.getNode(ISD::SRL, dl, VT, Op, 2670 DAG.getConstant(1, dl, ShVT)), 2671 Mask55)); 2672 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 2673 Op = DAG.getNode(ISD::ADD, dl, VT, 2674 DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 2675 DAG.getNode(ISD::AND, dl, VT, 2676 DAG.getNode(ISD::SRL, dl, VT, Op, 2677 DAG.getConstant(2, dl, ShVT)), 2678 Mask33)); 2679 // v = (v + (v >> 4)) & 0x0F0F0F0F... 2680 Op = DAG.getNode(ISD::AND, dl, VT, 2681 DAG.getNode(ISD::ADD, dl, VT, Op, 2682 DAG.getNode(ISD::SRL, dl, VT, Op, 2683 DAG.getConstant(4, dl, ShVT))), 2684 Mask0F); 2685 // v = (v * 0x01010101...) >> (Len - 8) 2686 Op = DAG.getNode(ISD::SRL, dl, VT, 2687 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 2688 DAG.getConstant(Len - 8, dl, ShVT)); 2689 2690 return Op; 2691 } 2692 case ISD::CTLZ_ZERO_UNDEF: 2693 // This trivially expands to CTLZ. 2694 return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op); 2695 case ISD::CTLZ: { 2696 EVT VT = Op.getValueType(); 2697 unsigned len = VT.getSizeInBits(); 2698 2699 if (TLI.isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 2700 EVT SetCCVT = getSetCCResultType(VT); 2701 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 2702 SDValue Zero = DAG.getConstant(0, dl, VT); 2703 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 2704 return DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 2705 DAG.getConstant(len, dl, VT), CTLZ); 2706 } 2707 2708 // for now, we do this: 2709 // x = x | (x >> 1); 2710 // x = x | (x >> 2); 2711 // ... 2712 // x = x | (x >>16); 2713 // x = x | (x >>32); // for 64-bit input 2714 // return popcount(~x); 2715 // 2716 // Ref: "Hacker's Delight" by Henry Warren 2717 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2718 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 2719 SDValue Tmp3 = DAG.getConstant(1ULL << i, dl, ShVT); 2720 Op = DAG.getNode(ISD::OR, dl, VT, Op, 2721 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3)); 2722 } 2723 Op = DAG.getNOT(dl, Op, VT); 2724 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 2725 } 2726 case ISD::CTTZ_ZERO_UNDEF: 2727 // This trivially expands to CTTZ. 2728 return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op); 2729 case ISD::CTTZ: { 2730 // for now, we use: { return popcount(~x & (x - 1)); } 2731 // unless the target has ctlz but not ctpop, in which case we use: 2732 // { return 32 - nlz(~x & (x-1)); } 2733 // Ref: "Hacker's Delight" by Henry Warren 2734 EVT VT = Op.getValueType(); 2735 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT, 2736 DAG.getNOT(dl, Op, VT), 2737 DAG.getNode(ISD::SUB, dl, VT, Op, 2738 DAG.getConstant(1, dl, VT))); 2739 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 2740 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && 2741 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) 2742 return DAG.getNode(ISD::SUB, dl, VT, 2743 DAG.getConstant(VT.getSizeInBits(), dl, VT), 2744 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3)); 2745 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3); 2746 } 2747 } 2748 } 2749 2750 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2751 SmallVector<SDValue, 8> Results; 2752 SDLoc dl(Node); 2753 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2754 bool NeedInvert; 2755 switch (Node->getOpcode()) { 2756 case ISD::CTPOP: 2757 case ISD::CTLZ: 2758 case ISD::CTLZ_ZERO_UNDEF: 2759 case ISD::CTTZ: 2760 case ISD::CTTZ_ZERO_UNDEF: 2761 Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl); 2762 Results.push_back(Tmp1); 2763 break; 2764 case ISD::BITREVERSE: 2765 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl)); 2766 break; 2767 case ISD::BSWAP: 2768 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2769 break; 2770 case ISD::FRAMEADDR: 2771 case ISD::RETURNADDR: 2772 case ISD::FRAME_TO_ARGS_OFFSET: 2773 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2774 break; 2775 case ISD::FLT_ROUNDS_: 2776 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2777 break; 2778 case ISD::EH_RETURN: 2779 case ISD::EH_LABEL: 2780 case ISD::PREFETCH: 2781 case ISD::VAEND: 2782 case ISD::EH_SJLJ_LONGJMP: 2783 // If the target didn't expand these, there's nothing to do, so just 2784 // preserve the chain and be done. 2785 Results.push_back(Node->getOperand(0)); 2786 break; 2787 case ISD::READCYCLECOUNTER: 2788 // If the target didn't expand this, just return 'zero' and preserve the 2789 // chain. 2790 Results.append(Node->getNumValues() - 1, 2791 DAG.getConstant(0, dl, Node->getValueType(0))); 2792 Results.push_back(Node->getOperand(0)); 2793 break; 2794 case ISD::EH_SJLJ_SETJMP: 2795 // If the target didn't expand this, just return 'zero' and preserve the 2796 // chain. 2797 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2798 Results.push_back(Node->getOperand(0)); 2799 break; 2800 case ISD::ATOMIC_LOAD: { 2801 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2802 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2803 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2804 SDValue Swap = DAG.getAtomicCmpSwap( 2805 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2806 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2807 cast<AtomicSDNode>(Node)->getMemOperand(), 2808 cast<AtomicSDNode>(Node)->getOrdering(), 2809 cast<AtomicSDNode>(Node)->getOrdering(), 2810 cast<AtomicSDNode>(Node)->getSynchScope()); 2811 Results.push_back(Swap.getValue(0)); 2812 Results.push_back(Swap.getValue(1)); 2813 break; 2814 } 2815 case ISD::ATOMIC_STORE: { 2816 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2817 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2818 cast<AtomicSDNode>(Node)->getMemoryVT(), 2819 Node->getOperand(0), 2820 Node->getOperand(1), Node->getOperand(2), 2821 cast<AtomicSDNode>(Node)->getMemOperand(), 2822 cast<AtomicSDNode>(Node)->getOrdering(), 2823 cast<AtomicSDNode>(Node)->getSynchScope()); 2824 Results.push_back(Swap.getValue(1)); 2825 break; 2826 } 2827 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 2828 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 2829 // splits out the success value as a comparison. Expanding the resulting 2830 // ATOMIC_CMP_SWAP will produce a libcall. 2831 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2832 SDValue Res = DAG.getAtomicCmpSwap( 2833 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2834 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 2835 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand(), 2836 cast<AtomicSDNode>(Node)->getSuccessOrdering(), 2837 cast<AtomicSDNode>(Node)->getFailureOrdering(), 2838 cast<AtomicSDNode>(Node)->getSynchScope()); 2839 2840 SDValue ExtRes = Res; 2841 SDValue LHS = Res; 2842 SDValue RHS = Node->getOperand(1); 2843 2844 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 2845 EVT OuterType = Node->getValueType(0); 2846 switch (TLI.getExtendForAtomicOps()) { 2847 case ISD::SIGN_EXTEND: 2848 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 2849 DAG.getValueType(AtomicType)); 2850 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 2851 Node->getOperand(2), DAG.getValueType(AtomicType)); 2852 ExtRes = LHS; 2853 break; 2854 case ISD::ZERO_EXTEND: 2855 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 2856 DAG.getValueType(AtomicType)); 2857 RHS = DAG.getNode(ISD::ZERO_EXTEND, dl, OuterType, Node->getOperand(2)); 2858 ExtRes = LHS; 2859 break; 2860 case ISD::ANY_EXTEND: 2861 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 2862 RHS = DAG.getNode(ISD::ZERO_EXTEND, dl, OuterType, Node->getOperand(2)); 2863 break; 2864 default: 2865 llvm_unreachable("Invalid atomic op extension"); 2866 } 2867 2868 SDValue Success = 2869 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 2870 2871 Results.push_back(ExtRes.getValue(0)); 2872 Results.push_back(Success); 2873 Results.push_back(Res.getValue(1)); 2874 break; 2875 } 2876 case ISD::DYNAMIC_STACKALLOC: 2877 ExpandDYNAMIC_STACKALLOC(Node, Results); 2878 break; 2879 case ISD::MERGE_VALUES: 2880 for (unsigned i = 0; i < Node->getNumValues(); i++) 2881 Results.push_back(Node->getOperand(i)); 2882 break; 2883 case ISD::UNDEF: { 2884 EVT VT = Node->getValueType(0); 2885 if (VT.isInteger()) 2886 Results.push_back(DAG.getConstant(0, dl, VT)); 2887 else { 2888 assert(VT.isFloatingPoint() && "Unknown value type!"); 2889 Results.push_back(DAG.getConstantFP(0, dl, VT)); 2890 } 2891 break; 2892 } 2893 case ISD::FP_ROUND: 2894 case ISD::BITCAST: 2895 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 2896 Node->getValueType(0), dl); 2897 Results.push_back(Tmp1); 2898 break; 2899 case ISD::FP_EXTEND: 2900 Tmp1 = EmitStackConvert(Node->getOperand(0), 2901 Node->getOperand(0).getValueType(), 2902 Node->getValueType(0), dl); 2903 Results.push_back(Tmp1); 2904 break; 2905 case ISD::SIGN_EXTEND_INREG: { 2906 // NOTE: we could fall back on load/store here too for targets without 2907 // SAR. However, it is doubtful that any exist. 2908 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2909 EVT VT = Node->getValueType(0); 2910 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2911 if (VT.isVector()) 2912 ShiftAmountTy = VT; 2913 unsigned BitsDiff = VT.getScalarType().getSizeInBits() - 2914 ExtraVT.getScalarType().getSizeInBits(); 2915 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 2916 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 2917 Node->getOperand(0), ShiftCst); 2918 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 2919 Results.push_back(Tmp1); 2920 break; 2921 } 2922 case ISD::FP_ROUND_INREG: { 2923 // The only way we can lower this is to turn it into a TRUNCSTORE, 2924 // EXTLOAD pair, targeting a temporary location (a stack slot). 2925 2926 // NOTE: there is a choice here between constantly creating new stack 2927 // slots and always reusing the same one. We currently always create 2928 // new ones, as reuse may inhibit scheduling. 2929 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2930 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT, 2931 Node->getValueType(0), dl); 2932 Results.push_back(Tmp1); 2933 break; 2934 } 2935 case ISD::SINT_TO_FP: 2936 case ISD::UINT_TO_FP: 2937 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, 2938 Node->getOperand(0), Node->getValueType(0), dl); 2939 Results.push_back(Tmp1); 2940 break; 2941 case ISD::FP_TO_SINT: 2942 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 2943 Results.push_back(Tmp1); 2944 break; 2945 case ISD::FP_TO_UINT: { 2946 SDValue True, False; 2947 EVT VT = Node->getOperand(0).getValueType(); 2948 EVT NVT = Node->getValueType(0); 2949 APFloat apf(DAG.EVTToAPFloatSemantics(VT), 2950 APInt::getNullValue(VT.getSizeInBits())); 2951 APInt x = APInt::getSignBit(NVT.getSizeInBits()); 2952 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); 2953 Tmp1 = DAG.getConstantFP(apf, dl, VT); 2954 Tmp2 = DAG.getSetCC(dl, getSetCCResultType(VT), 2955 Node->getOperand(0), 2956 Tmp1, ISD::SETLT); 2957 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0)); 2958 // TODO: Should any fast-math-flags be set for the FSUB? 2959 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, 2960 DAG.getNode(ISD::FSUB, dl, VT, 2961 Node->getOperand(0), Tmp1)); 2962 False = DAG.getNode(ISD::XOR, dl, NVT, False, 2963 DAG.getConstant(x, dl, NVT)); 2964 Tmp1 = DAG.getSelect(dl, NVT, Tmp2, True, False); 2965 Results.push_back(Tmp1); 2966 break; 2967 } 2968 case ISD::VAARG: 2969 Results.push_back(DAG.expandVAArg(Node)); 2970 Results.push_back(Results[0].getValue(1)); 2971 break; 2972 case ISD::VACOPY: 2973 Results.push_back(DAG.expandVACopy(Node)); 2974 break; 2975 case ISD::EXTRACT_VECTOR_ELT: 2976 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 2977 // This must be an access of the only element. Return it. 2978 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 2979 Node->getOperand(0)); 2980 else 2981 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 2982 Results.push_back(Tmp1); 2983 break; 2984 case ISD::EXTRACT_SUBVECTOR: 2985 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 2986 break; 2987 case ISD::INSERT_SUBVECTOR: 2988 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 2989 break; 2990 case ISD::CONCAT_VECTORS: { 2991 Results.push_back(ExpandVectorBuildThroughStack(Node)); 2992 break; 2993 } 2994 case ISD::SCALAR_TO_VECTOR: 2995 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 2996 break; 2997 case ISD::INSERT_VECTOR_ELT: 2998 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 2999 Node->getOperand(1), 3000 Node->getOperand(2), dl)); 3001 break; 3002 case ISD::VECTOR_SHUFFLE: { 3003 SmallVector<int, 32> NewMask; 3004 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3005 3006 EVT VT = Node->getValueType(0); 3007 EVT EltVT = VT.getVectorElementType(); 3008 SDValue Op0 = Node->getOperand(0); 3009 SDValue Op1 = Node->getOperand(1); 3010 if (!TLI.isTypeLegal(EltVT)) { 3011 3012 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3013 3014 // BUILD_VECTOR operands are allowed to be wider than the element type. 3015 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 3016 // it. 3017 if (NewEltVT.bitsLT(EltVT)) { 3018 3019 // Convert shuffle node. 3020 // If original node was v4i64 and the new EltVT is i32, 3021 // cast operands to v8i32 and re-build the mask. 3022 3023 // Calculate new VT, the size of the new VT should be equal to original. 3024 EVT NewVT = 3025 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3026 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 3027 assert(NewVT.bitsEq(VT)); 3028 3029 // cast operands to new VT 3030 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3031 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3032 3033 // Convert the shuffle mask 3034 unsigned int factor = 3035 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3036 3037 // EltVT gets smaller 3038 assert(factor > 0); 3039 3040 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3041 if (Mask[i] < 0) { 3042 for (unsigned fi = 0; fi < factor; ++fi) 3043 NewMask.push_back(Mask[i]); 3044 } 3045 else { 3046 for (unsigned fi = 0; fi < factor; ++fi) 3047 NewMask.push_back(Mask[i]*factor+fi); 3048 } 3049 } 3050 Mask = NewMask; 3051 VT = NewVT; 3052 } 3053 EltVT = NewEltVT; 3054 } 3055 unsigned NumElems = VT.getVectorNumElements(); 3056 SmallVector<SDValue, 16> Ops; 3057 for (unsigned i = 0; i != NumElems; ++i) { 3058 if (Mask[i] < 0) { 3059 Ops.push_back(DAG.getUNDEF(EltVT)); 3060 continue; 3061 } 3062 unsigned Idx = Mask[i]; 3063 if (Idx < NumElems) 3064 Ops.push_back(DAG.getNode( 3065 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3066 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())))); 3067 else 3068 Ops.push_back(DAG.getNode( 3069 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3070 DAG.getConstant(Idx - NumElems, dl, 3071 TLI.getVectorIdxTy(DAG.getDataLayout())))); 3072 } 3073 3074 Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3075 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3076 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3077 Results.push_back(Tmp1); 3078 break; 3079 } 3080 case ISD::EXTRACT_ELEMENT: { 3081 EVT OpTy = Node->getOperand(0).getValueType(); 3082 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3083 // 1 -> Hi 3084 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3085 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3086 TLI.getShiftAmountTy( 3087 Node->getOperand(0).getValueType(), 3088 DAG.getDataLayout()))); 3089 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3090 } else { 3091 // 0 -> Lo 3092 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3093 Node->getOperand(0)); 3094 } 3095 Results.push_back(Tmp1); 3096 break; 3097 } 3098 case ISD::STACKSAVE: 3099 // Expand to CopyFromReg if the target set 3100 // StackPointerRegisterToSaveRestore. 3101 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3102 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3103 Node->getValueType(0))); 3104 Results.push_back(Results[0].getValue(1)); 3105 } else { 3106 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3107 Results.push_back(Node->getOperand(0)); 3108 } 3109 break; 3110 case ISD::STACKRESTORE: 3111 // Expand to CopyToReg if the target set 3112 // StackPointerRegisterToSaveRestore. 3113 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3114 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3115 Node->getOperand(1))); 3116 } else { 3117 Results.push_back(Node->getOperand(0)); 3118 } 3119 break; 3120 case ISD::GET_DYNAMIC_AREA_OFFSET: 3121 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3122 Results.push_back(Results[0].getValue(0)); 3123 break; 3124 case ISD::FCOPYSIGN: 3125 Results.push_back(ExpandFCOPYSIGN(Node)); 3126 break; 3127 case ISD::FNEG: 3128 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3129 Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0)); 3130 // TODO: If FNEG has fast-math-flags, propagate them to the FSUB. 3131 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, 3132 Node->getOperand(0)); 3133 Results.push_back(Tmp1); 3134 break; 3135 case ISD::FABS: 3136 Results.push_back(ExpandFABS(Node)); 3137 break; 3138 case ISD::SMIN: 3139 case ISD::SMAX: 3140 case ISD::UMIN: 3141 case ISD::UMAX: { 3142 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3143 ISD::CondCode Pred; 3144 switch (Node->getOpcode()) { 3145 default: llvm_unreachable("How did we get here?"); 3146 case ISD::SMAX: Pred = ISD::SETGT; break; 3147 case ISD::SMIN: Pred = ISD::SETLT; break; 3148 case ISD::UMAX: Pred = ISD::SETUGT; break; 3149 case ISD::UMIN: Pred = ISD::SETULT; break; 3150 } 3151 Tmp1 = Node->getOperand(0); 3152 Tmp2 = Node->getOperand(1); 3153 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3154 Results.push_back(Tmp1); 3155 break; 3156 } 3157 3158 case ISD::FSIN: 3159 case ISD::FCOS: { 3160 EVT VT = Node->getValueType(0); 3161 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3162 // fcos which share the same operand and both are used. 3163 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3164 canCombineSinCosLibcall(Node, TLI, TM)) 3165 && useSinCos(Node)) { 3166 SDVTList VTs = DAG.getVTList(VT, VT); 3167 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3168 if (Node->getOpcode() == ISD::FCOS) 3169 Tmp1 = Tmp1.getValue(1); 3170 Results.push_back(Tmp1); 3171 } 3172 break; 3173 } 3174 case ISD::FMAD: 3175 llvm_unreachable("Illegal fmad should never be formed"); 3176 3177 case ISD::FP16_TO_FP: 3178 if (Node->getValueType(0) != MVT::f32) { 3179 // We can extend to types bigger than f32 in two steps without changing 3180 // the result. Since "f16 -> f32" is much more commonly available, give 3181 // CodeGen the option of emitting that before resorting to a libcall. 3182 SDValue Res = 3183 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3184 Results.push_back( 3185 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3186 } 3187 break; 3188 case ISD::FP_TO_FP16: 3189 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3190 SDValue Op = Node->getOperand(0); 3191 MVT SVT = Op.getSimpleValueType(); 3192 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3193 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3194 // Under fastmath, we can expand this node into a fround followed by 3195 // a float-half conversion. 3196 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3197 DAG.getIntPtrConstant(0, dl)); 3198 Results.push_back( 3199 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3200 } 3201 } 3202 break; 3203 case ISD::ConstantFP: { 3204 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3205 // Check to see if this FP immediate is already legal. 3206 // If this is a legal constant, turn it into a TargetConstantFP node. 3207 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0))) 3208 Results.push_back(ExpandConstantFP(CFP, true)); 3209 break; 3210 } 3211 case ISD::Constant: { 3212 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3213 Results.push_back(ExpandConstant(CP)); 3214 break; 3215 } 3216 case ISD::FSUB: { 3217 EVT VT = Node->getValueType(0); 3218 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3219 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3220 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(Node)->Flags; 3221 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3222 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3223 Results.push_back(Tmp1); 3224 } 3225 break; 3226 } 3227 case ISD::SUB: { 3228 EVT VT = Node->getValueType(0); 3229 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3230 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3231 "Don't know how to expand this subtraction!"); 3232 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3233 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, 3234 VT)); 3235 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3236 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3237 break; 3238 } 3239 case ISD::UREM: 3240 case ISD::SREM: { 3241 EVT VT = Node->getValueType(0); 3242 bool isSigned = Node->getOpcode() == ISD::SREM; 3243 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 3244 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3245 Tmp2 = Node->getOperand(0); 3246 Tmp3 = Node->getOperand(1); 3247 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3248 SDVTList VTs = DAG.getVTList(VT, VT); 3249 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); 3250 Results.push_back(Tmp1); 3251 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { 3252 // X % Y -> X-X/Y*Y 3253 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); 3254 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); 3255 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); 3256 Results.push_back(Tmp1); 3257 } 3258 break; 3259 } 3260 case ISD::UDIV: 3261 case ISD::SDIV: { 3262 bool isSigned = Node->getOpcode() == ISD::SDIV; 3263 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3264 EVT VT = Node->getValueType(0); 3265 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3266 SDVTList VTs = DAG.getVTList(VT, VT); 3267 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3268 Node->getOperand(1)); 3269 Results.push_back(Tmp1); 3270 } 3271 break; 3272 } 3273 case ISD::MULHU: 3274 case ISD::MULHS: { 3275 unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : 3276 ISD::SMUL_LOHI; 3277 EVT VT = Node->getValueType(0); 3278 SDVTList VTs = DAG.getVTList(VT, VT); 3279 assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) && 3280 "If this wasn't legal, it shouldn't have been created!"); 3281 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3282 Node->getOperand(1)); 3283 Results.push_back(Tmp1.getValue(1)); 3284 break; 3285 } 3286 case ISD::MUL: { 3287 EVT VT = Node->getValueType(0); 3288 SDVTList VTs = DAG.getVTList(VT, VT); 3289 // See if multiply or divide can be lowered using two-result operations. 3290 // We just need the low half of the multiply; try both the signed 3291 // and unsigned forms. If the target supports both SMUL_LOHI and 3292 // UMUL_LOHI, form a preference by checking which forms of plain 3293 // MULH it supports. 3294 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3295 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3296 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3297 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3298 unsigned OpToUse = 0; 3299 if (HasSMUL_LOHI && !HasMULHS) { 3300 OpToUse = ISD::SMUL_LOHI; 3301 } else if (HasUMUL_LOHI && !HasMULHU) { 3302 OpToUse = ISD::UMUL_LOHI; 3303 } else if (HasSMUL_LOHI) { 3304 OpToUse = ISD::SMUL_LOHI; 3305 } else if (HasUMUL_LOHI) { 3306 OpToUse = ISD::UMUL_LOHI; 3307 } 3308 if (OpToUse) { 3309 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3310 Node->getOperand(1))); 3311 break; 3312 } 3313 3314 SDValue Lo, Hi; 3315 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3316 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3317 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3318 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3319 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3320 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG)) { 3321 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3322 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3323 SDValue Shift = 3324 DAG.getConstant(HalfType.getSizeInBits(), dl, 3325 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3326 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3327 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3328 } 3329 break; 3330 } 3331 case ISD::SADDO: 3332 case ISD::SSUBO: { 3333 SDValue LHS = Node->getOperand(0); 3334 SDValue RHS = Node->getOperand(1); 3335 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? 3336 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3337 LHS, RHS); 3338 Results.push_back(Sum); 3339 EVT ResultType = Node->getValueType(1); 3340 EVT OType = getSetCCResultType(Node->getValueType(0)); 3341 3342 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 3343 3344 // LHSSign -> LHS >= 0 3345 // RHSSign -> RHS >= 0 3346 // SumSign -> Sum >= 0 3347 // 3348 // Add: 3349 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 3350 // Sub: 3351 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 3352 // 3353 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 3354 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 3355 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 3356 Node->getOpcode() == ISD::SADDO ? 3357 ISD::SETEQ : ISD::SETNE); 3358 3359 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); 3360 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 3361 3362 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 3363 Results.push_back(DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType)); 3364 break; 3365 } 3366 case ISD::UADDO: 3367 case ISD::USUBO: { 3368 SDValue LHS = Node->getOperand(0); 3369 SDValue RHS = Node->getOperand(1); 3370 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ? 3371 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3372 LHS, RHS); 3373 Results.push_back(Sum); 3374 3375 EVT ResultType = Node->getValueType(1); 3376 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3377 ISD::CondCode CC 3378 = Node->getOpcode() == ISD::UADDO ? ISD::SETULT : ISD::SETUGT; 3379 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3380 3381 Results.push_back(DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType)); 3382 break; 3383 } 3384 case ISD::UMULO: 3385 case ISD::SMULO: { 3386 EVT VT = Node->getValueType(0); 3387 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); 3388 SDValue LHS = Node->getOperand(0); 3389 SDValue RHS = Node->getOperand(1); 3390 SDValue BottomHalf; 3391 SDValue TopHalf; 3392 static const unsigned Ops[2][3] = 3393 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 3394 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 3395 bool isSigned = Node->getOpcode() == ISD::SMULO; 3396 if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 3397 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 3398 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 3399 } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 3400 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 3401 RHS); 3402 TopHalf = BottomHalf.getValue(1); 3403 } else if (TLI.isTypeLegal(WideVT)) { 3404 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 3405 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 3406 Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 3407 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3408 DAG.getIntPtrConstant(0, dl)); 3409 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3410 DAG.getIntPtrConstant(1, dl)); 3411 } else { 3412 // We can fall back to a libcall with an illegal type for the MUL if we 3413 // have a libcall big enough. 3414 // Also, we can fall back to a division in some cases, but that's a big 3415 // performance hit in the general case. 3416 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3417 if (WideVT == MVT::i16) 3418 LC = RTLIB::MUL_I16; 3419 else if (WideVT == MVT::i32) 3420 LC = RTLIB::MUL_I32; 3421 else if (WideVT == MVT::i64) 3422 LC = RTLIB::MUL_I64; 3423 else if (WideVT == MVT::i128) 3424 LC = RTLIB::MUL_I128; 3425 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 3426 3427 // The high part is obtained by SRA'ing all but one of the bits of low 3428 // part. 3429 unsigned LoSize = VT.getSizeInBits(); 3430 SDValue HiLHS = 3431 DAG.getNode(ISD::SRA, dl, VT, RHS, 3432 DAG.getConstant(LoSize - 1, dl, 3433 TLI.getPointerTy(DAG.getDataLayout()))); 3434 SDValue HiRHS = 3435 DAG.getNode(ISD::SRA, dl, VT, LHS, 3436 DAG.getConstant(LoSize - 1, dl, 3437 TLI.getPointerTy(DAG.getDataLayout()))); 3438 3439 // Here we're passing the 2 arguments explicitly as 4 arguments that are 3440 // pre-lowered to the correct types. This all depends upon WideVT not 3441 // being a legal type for the architecture and thus has to be split to 3442 // two arguments. 3443 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 3444 SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); 3445 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, 3446 DAG.getIntPtrConstant(0, dl)); 3447 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, 3448 DAG.getIntPtrConstant(1, dl)); 3449 // Ret is a node with an illegal type. Because such things are not 3450 // generally permitted during this phase of legalization, make sure the 3451 // node has no more uses. The above EXTRACT_ELEMENT nodes should have been 3452 // folded. 3453 assert(Ret->use_empty() && 3454 "Unexpected uses of illegally type from expanded lib call."); 3455 } 3456 3457 if (isSigned) { 3458 Tmp1 = DAG.getConstant( 3459 VT.getSizeInBits() - 1, dl, 3460 TLI.getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 3461 Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1); 3462 TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, Tmp1, 3463 ISD::SETNE); 3464 } else { 3465 TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, 3466 DAG.getConstant(0, dl, VT), ISD::SETNE); 3467 } 3468 Results.push_back(BottomHalf); 3469 Results.push_back(TopHalf); 3470 break; 3471 } 3472 case ISD::BUILD_PAIR: { 3473 EVT PairTy = Node->getValueType(0); 3474 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3475 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3476 Tmp2 = DAG.getNode( 3477 ISD::SHL, dl, PairTy, Tmp2, 3478 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3479 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3480 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3481 break; 3482 } 3483 case ISD::SELECT: 3484 Tmp1 = Node->getOperand(0); 3485 Tmp2 = Node->getOperand(1); 3486 Tmp3 = Node->getOperand(2); 3487 if (Tmp1.getOpcode() == ISD::SETCC) { 3488 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3489 Tmp2, Tmp3, 3490 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3491 } else { 3492 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3493 DAG.getConstant(0, dl, Tmp1.getValueType()), 3494 Tmp2, Tmp3, ISD::SETNE); 3495 } 3496 Results.push_back(Tmp1); 3497 break; 3498 case ISD::BR_JT: { 3499 SDValue Chain = Node->getOperand(0); 3500 SDValue Table = Node->getOperand(1); 3501 SDValue Index = Node->getOperand(2); 3502 3503 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 3504 3505 const DataLayout &TD = DAG.getDataLayout(); 3506 unsigned EntrySize = 3507 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3508 3509 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3510 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3511 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3512 Index, Table); 3513 3514 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3515 SDValue LD = DAG.getExtLoad( 3516 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3517 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT, 3518 false, false, false, 0); 3519 Addr = LD; 3520 if (TM.getRelocationModel() == Reloc::PIC_) { 3521 // For PIC, the sequence is: 3522 // BRIND(load(Jumptable + index) + RelocBase) 3523 // RelocBase can be JumpTable, GOT or some sort of global base. 3524 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3525 TLI.getPICJumpTableRelocBase(Table, DAG)); 3526 } 3527 Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr); 3528 Results.push_back(Tmp1); 3529 break; 3530 } 3531 case ISD::BRCOND: 3532 // Expand brcond's setcc into its constituent parts and create a BR_CC 3533 // Node. 3534 Tmp1 = Node->getOperand(0); 3535 Tmp2 = Node->getOperand(1); 3536 if (Tmp2.getOpcode() == ISD::SETCC) { 3537 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3538 Tmp1, Tmp2.getOperand(2), 3539 Tmp2.getOperand(0), Tmp2.getOperand(1), 3540 Node->getOperand(2)); 3541 } else { 3542 // We test only the i1 bit. Skip the AND if UNDEF. 3543 Tmp3 = (Tmp2.isUndef()) ? Tmp2 : 3544 DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3545 DAG.getConstant(1, dl, Tmp2.getValueType())); 3546 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3547 DAG.getCondCode(ISD::SETNE), Tmp3, 3548 DAG.getConstant(0, dl, Tmp3.getValueType()), 3549 Node->getOperand(2)); 3550 } 3551 Results.push_back(Tmp1); 3552 break; 3553 case ISD::SETCC: { 3554 Tmp1 = Node->getOperand(0); 3555 Tmp2 = Node->getOperand(1); 3556 Tmp3 = Node->getOperand(2); 3557 bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, 3558 Tmp3, NeedInvert, dl); 3559 3560 if (Legalized) { 3561 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3562 // condition code, create a new SETCC node. 3563 if (Tmp3.getNode()) 3564 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3565 Tmp1, Tmp2, Tmp3); 3566 3567 // If we expanded the SETCC by inverting the condition code, then wrap 3568 // the existing SETCC in a NOT to restore the intended condition. 3569 if (NeedInvert) 3570 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3571 3572 Results.push_back(Tmp1); 3573 break; 3574 } 3575 3576 // Otherwise, SETCC for the given comparison type must be completely 3577 // illegal; expand it into a SELECT_CC. 3578 EVT VT = Node->getValueType(0); 3579 int TrueValue; 3580 switch (TLI.getBooleanContents(Tmp1->getValueType(0))) { 3581 case TargetLowering::ZeroOrOneBooleanContent: 3582 case TargetLowering::UndefinedBooleanContent: 3583 TrueValue = 1; 3584 break; 3585 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3586 TrueValue = -1; 3587 break; 3588 } 3589 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3590 DAG.getConstant(TrueValue, dl, VT), 3591 DAG.getConstant(0, dl, VT), 3592 Tmp3); 3593 Results.push_back(Tmp1); 3594 break; 3595 } 3596 case ISD::SELECT_CC: { 3597 Tmp1 = Node->getOperand(0); // LHS 3598 Tmp2 = Node->getOperand(1); // RHS 3599 Tmp3 = Node->getOperand(2); // True 3600 Tmp4 = Node->getOperand(3); // False 3601 EVT VT = Node->getValueType(0); 3602 SDValue CC = Node->getOperand(4); 3603 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3604 3605 if (TLI.isCondCodeLegal(CCOp, Tmp1.getSimpleValueType())) { 3606 // If the condition code is legal, then we need to expand this 3607 // node using SETCC and SELECT. 3608 EVT CmpVT = Tmp1.getValueType(); 3609 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3610 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3611 "expanded."); 3612 EVT CCVT = 3613 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT); 3614 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC); 3615 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3616 break; 3617 } 3618 3619 // SELECT_CC is legal, so the condition code must not be. 3620 bool Legalized = false; 3621 // Try to legalize by inverting the condition. This is for targets that 3622 // might support an ordered version of a condition, but not the unordered 3623 // version (or vice versa). 3624 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, 3625 Tmp1.getValueType().isInteger()); 3626 if (TLI.isCondCodeLegal(InvCC, Tmp1.getSimpleValueType())) { 3627 // Use the new condition code and swap true and false 3628 Legalized = true; 3629 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3630 } else { 3631 // If The inverse is not legal, then try to swap the arguments using 3632 // the inverse condition code. 3633 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3634 if (TLI.isCondCodeLegal(SwapInvCC, Tmp1.getSimpleValueType())) { 3635 // The swapped inverse condition is legal, so swap true and false, 3636 // lhs and rhs. 3637 Legalized = true; 3638 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3639 } 3640 } 3641 3642 if (!Legalized) { 3643 Legalized = LegalizeSetCCCondCode( 3644 getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert, 3645 dl); 3646 3647 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3648 3649 // If we expanded the SETCC by inverting the condition code, then swap 3650 // the True/False operands to match. 3651 if (NeedInvert) 3652 std::swap(Tmp3, Tmp4); 3653 3654 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3655 // condition code, create a new SELECT_CC node. 3656 if (CC.getNode()) { 3657 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3658 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3659 } else { 3660 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3661 CC = DAG.getCondCode(ISD::SETNE); 3662 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3663 Tmp2, Tmp3, Tmp4, CC); 3664 } 3665 } 3666 Results.push_back(Tmp1); 3667 break; 3668 } 3669 case ISD::BR_CC: { 3670 Tmp1 = Node->getOperand(0); // Chain 3671 Tmp2 = Node->getOperand(2); // LHS 3672 Tmp3 = Node->getOperand(3); // RHS 3673 Tmp4 = Node->getOperand(1); // CC 3674 3675 bool Legalized = LegalizeSetCCCondCode(getSetCCResultType( 3676 Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl); 3677 (void)Legalized; 3678 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3679 3680 // If we expanded the SETCC by inverting the condition code, then wrap 3681 // the existing SETCC in a NOT to restore the intended condition. 3682 if (NeedInvert) 3683 Tmp4 = DAG.getNOT(dl, Tmp4, Tmp4->getValueType(0)); 3684 3685 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3686 // node. 3687 if (Tmp4.getNode()) { 3688 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3689 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3690 } else { 3691 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3692 Tmp4 = DAG.getCondCode(ISD::SETNE); 3693 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3694 Tmp2, Tmp3, Node->getOperand(4)); 3695 } 3696 Results.push_back(Tmp1); 3697 break; 3698 } 3699 case ISD::BUILD_VECTOR: 3700 Results.push_back(ExpandBUILD_VECTOR(Node)); 3701 break; 3702 case ISD::SRA: 3703 case ISD::SRL: 3704 case ISD::SHL: { 3705 // Scalarize vector SRA/SRL/SHL. 3706 EVT VT = Node->getValueType(0); 3707 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3708 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3709 unsigned NumElem = VT.getVectorNumElements(); 3710 3711 SmallVector<SDValue, 8> Scalars; 3712 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3713 SDValue Ex = DAG.getNode( 3714 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0), 3715 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3716 SDValue Sh = DAG.getNode( 3717 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1), 3718 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3719 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3720 VT.getScalarType(), Ex, Sh)); 3721 } 3722 SDValue Result = 3723 DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0), Scalars); 3724 ReplaceNode(SDValue(Node, 0), Result); 3725 break; 3726 } 3727 case ISD::GLOBAL_OFFSET_TABLE: 3728 case ISD::GlobalAddress: 3729 case ISD::GlobalTLSAddress: 3730 case ISD::ExternalSymbol: 3731 case ISD::ConstantPool: 3732 case ISD::JumpTable: 3733 case ISD::INTRINSIC_W_CHAIN: 3734 case ISD::INTRINSIC_WO_CHAIN: 3735 case ISD::INTRINSIC_VOID: 3736 // FIXME: Custom lowering for these operations shouldn't return null! 3737 break; 3738 } 3739 3740 // Replace the original node with the legalized result. 3741 if (Results.empty()) 3742 return false; 3743 3744 ReplaceNode(Node, Results.data()); 3745 return true; 3746 } 3747 3748 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 3749 SmallVector<SDValue, 8> Results; 3750 SDLoc dl(Node); 3751 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 3752 unsigned Opc = Node->getOpcode(); 3753 switch (Opc) { 3754 case ISD::ATOMIC_FENCE: { 3755 // If the target didn't lower this, lower it to '__sync_synchronize()' call 3756 // FIXME: handle "fence singlethread" more efficiently. 3757 TargetLowering::ArgListTy Args; 3758 3759 TargetLowering::CallLoweringInfo CLI(DAG); 3760 CLI.setDebugLoc(dl) 3761 .setChain(Node->getOperand(0)) 3762 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3763 DAG.getExternalSymbol("__sync_synchronize", 3764 TLI.getPointerTy(DAG.getDataLayout())), 3765 std::move(Args), 0); 3766 3767 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3768 3769 Results.push_back(CallResult.second); 3770 break; 3771 } 3772 // By default, atomic intrinsics are marked Legal and lowered. Targets 3773 // which don't support them directly, however, may want libcalls, in which 3774 // case they mark them Expand, and we get here. 3775 case ISD::ATOMIC_SWAP: 3776 case ISD::ATOMIC_LOAD_ADD: 3777 case ISD::ATOMIC_LOAD_SUB: 3778 case ISD::ATOMIC_LOAD_AND: 3779 case ISD::ATOMIC_LOAD_OR: 3780 case ISD::ATOMIC_LOAD_XOR: 3781 case ISD::ATOMIC_LOAD_NAND: 3782 case ISD::ATOMIC_LOAD_MIN: 3783 case ISD::ATOMIC_LOAD_MAX: 3784 case ISD::ATOMIC_LOAD_UMIN: 3785 case ISD::ATOMIC_LOAD_UMAX: 3786 case ISD::ATOMIC_CMP_SWAP: { 3787 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 3788 RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT); 3789 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!"); 3790 3791 std::pair<SDValue, SDValue> Tmp = ExpandChainLibCall(LC, Node, false); 3792 Results.push_back(Tmp.first); 3793 Results.push_back(Tmp.second); 3794 break; 3795 } 3796 case ISD::TRAP: { 3797 // If this operation is not supported, lower it to 'abort()' call 3798 TargetLowering::ArgListTy Args; 3799 TargetLowering::CallLoweringInfo CLI(DAG); 3800 CLI.setDebugLoc(dl) 3801 .setChain(Node->getOperand(0)) 3802 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3803 DAG.getExternalSymbol("abort", 3804 TLI.getPointerTy(DAG.getDataLayout())), 3805 std::move(Args), 0); 3806 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3807 3808 Results.push_back(CallResult.second); 3809 break; 3810 } 3811 case ISD::FMINNUM: 3812 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 3813 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 3814 RTLIB::FMIN_PPCF128)); 3815 break; 3816 case ISD::FMAXNUM: 3817 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 3818 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 3819 RTLIB::FMAX_PPCF128)); 3820 break; 3821 case ISD::FSQRT: 3822 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3823 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 3824 RTLIB::SQRT_PPCF128)); 3825 break; 3826 case ISD::FSIN: 3827 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 3828 RTLIB::SIN_F80, RTLIB::SIN_F128, 3829 RTLIB::SIN_PPCF128)); 3830 break; 3831 case ISD::FCOS: 3832 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 3833 RTLIB::COS_F80, RTLIB::COS_F128, 3834 RTLIB::COS_PPCF128)); 3835 break; 3836 case ISD::FSINCOS: 3837 // Expand into sincos libcall. 3838 ExpandSinCosLibCall(Node, Results); 3839 break; 3840 case ISD::FLOG: 3841 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, 3842 RTLIB::LOG_F80, RTLIB::LOG_F128, 3843 RTLIB::LOG_PPCF128)); 3844 break; 3845 case ISD::FLOG2: 3846 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 3847 RTLIB::LOG2_F80, RTLIB::LOG2_F128, 3848 RTLIB::LOG2_PPCF128)); 3849 break; 3850 case ISD::FLOG10: 3851 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 3852 RTLIB::LOG10_F80, RTLIB::LOG10_F128, 3853 RTLIB::LOG10_PPCF128)); 3854 break; 3855 case ISD::FEXP: 3856 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, 3857 RTLIB::EXP_F80, RTLIB::EXP_F128, 3858 RTLIB::EXP_PPCF128)); 3859 break; 3860 case ISD::FEXP2: 3861 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 3862 RTLIB::EXP2_F80, RTLIB::EXP2_F128, 3863 RTLIB::EXP2_PPCF128)); 3864 break; 3865 case ISD::FTRUNC: 3866 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 3867 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 3868 RTLIB::TRUNC_PPCF128)); 3869 break; 3870 case ISD::FFLOOR: 3871 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 3872 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 3873 RTLIB::FLOOR_PPCF128)); 3874 break; 3875 case ISD::FCEIL: 3876 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 3877 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 3878 RTLIB::CEIL_PPCF128)); 3879 break; 3880 case ISD::FRINT: 3881 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 3882 RTLIB::RINT_F80, RTLIB::RINT_F128, 3883 RTLIB::RINT_PPCF128)); 3884 break; 3885 case ISD::FNEARBYINT: 3886 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 3887 RTLIB::NEARBYINT_F64, 3888 RTLIB::NEARBYINT_F80, 3889 RTLIB::NEARBYINT_F128, 3890 RTLIB::NEARBYINT_PPCF128)); 3891 break; 3892 case ISD::FROUND: 3893 Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32, 3894 RTLIB::ROUND_F64, 3895 RTLIB::ROUND_F80, 3896 RTLIB::ROUND_F128, 3897 RTLIB::ROUND_PPCF128)); 3898 break; 3899 case ISD::FPOWI: 3900 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 3901 RTLIB::POWI_F80, RTLIB::POWI_F128, 3902 RTLIB::POWI_PPCF128)); 3903 break; 3904 case ISD::FPOW: 3905 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, 3906 RTLIB::POW_F80, RTLIB::POW_F128, 3907 RTLIB::POW_PPCF128)); 3908 break; 3909 case ISD::FDIV: 3910 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 3911 RTLIB::DIV_F80, RTLIB::DIV_F128, 3912 RTLIB::DIV_PPCF128)); 3913 break; 3914 case ISD::FREM: 3915 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 3916 RTLIB::REM_F80, RTLIB::REM_F128, 3917 RTLIB::REM_PPCF128)); 3918 break; 3919 case ISD::FMA: 3920 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 3921 RTLIB::FMA_F80, RTLIB::FMA_F128, 3922 RTLIB::FMA_PPCF128)); 3923 break; 3924 case ISD::FADD: 3925 Results.push_back(ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 3926 RTLIB::ADD_F80, RTLIB::ADD_F128, 3927 RTLIB::ADD_PPCF128)); 3928 break; 3929 case ISD::FMUL: 3930 Results.push_back(ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 3931 RTLIB::MUL_F80, RTLIB::MUL_F128, 3932 RTLIB::MUL_PPCF128)); 3933 break; 3934 case ISD::FP16_TO_FP: 3935 if (Node->getValueType(0) == MVT::f32) { 3936 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 3937 } 3938 break; 3939 case ISD::FP_TO_FP16: { 3940 RTLIB::Libcall LC = 3941 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 3942 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 3943 Results.push_back(ExpandLibCall(LC, Node, false)); 3944 break; 3945 } 3946 case ISD::FSUB: 3947 Results.push_back(ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 3948 RTLIB::SUB_F80, RTLIB::SUB_F128, 3949 RTLIB::SUB_PPCF128)); 3950 break; 3951 case ISD::SREM: 3952 Results.push_back(ExpandIntLibCall(Node, true, 3953 RTLIB::SREM_I8, 3954 RTLIB::SREM_I16, RTLIB::SREM_I32, 3955 RTLIB::SREM_I64, RTLIB::SREM_I128)); 3956 break; 3957 case ISD::UREM: 3958 Results.push_back(ExpandIntLibCall(Node, false, 3959 RTLIB::UREM_I8, 3960 RTLIB::UREM_I16, RTLIB::UREM_I32, 3961 RTLIB::UREM_I64, RTLIB::UREM_I128)); 3962 break; 3963 case ISD::SDIV: 3964 Results.push_back(ExpandIntLibCall(Node, true, 3965 RTLIB::SDIV_I8, 3966 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 3967 RTLIB::SDIV_I64, RTLIB::SDIV_I128)); 3968 break; 3969 case ISD::UDIV: 3970 Results.push_back(ExpandIntLibCall(Node, false, 3971 RTLIB::UDIV_I8, 3972 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 3973 RTLIB::UDIV_I64, RTLIB::UDIV_I128)); 3974 break; 3975 case ISD::SDIVREM: 3976 case ISD::UDIVREM: 3977 // Expand into divrem libcall 3978 ExpandDivRemLibCall(Node, Results); 3979 break; 3980 case ISD::MUL: 3981 Results.push_back(ExpandIntLibCall(Node, false, 3982 RTLIB::MUL_I8, 3983 RTLIB::MUL_I16, RTLIB::MUL_I32, 3984 RTLIB::MUL_I64, RTLIB::MUL_I128)); 3985 break; 3986 } 3987 3988 // Replace the original node with the legalized result. 3989 if (!Results.empty()) 3990 ReplaceNode(Node, Results.data()); 3991 } 3992 3993 // Determine the vector type to use in place of an original scalar element when 3994 // promoting equally sized vectors. 3995 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 3996 MVT EltVT, MVT NewEltVT) { 3997 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 3998 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 3999 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4000 return MidVT; 4001 } 4002 4003 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4004 SmallVector<SDValue, 8> Results; 4005 MVT OVT = Node->getSimpleValueType(0); 4006 if (Node->getOpcode() == ISD::UINT_TO_FP || 4007 Node->getOpcode() == ISD::SINT_TO_FP || 4008 Node->getOpcode() == ISD::SETCC || 4009 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4010 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4011 OVT = Node->getOperand(0).getSimpleValueType(); 4012 } 4013 if (Node->getOpcode() == ISD::BR_CC) 4014 OVT = Node->getOperand(2).getSimpleValueType(); 4015 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4016 SDLoc dl(Node); 4017 SDValue Tmp1, Tmp2, Tmp3; 4018 switch (Node->getOpcode()) { 4019 case ISD::CTTZ: 4020 case ISD::CTTZ_ZERO_UNDEF: 4021 case ISD::CTLZ: 4022 case ISD::CTLZ_ZERO_UNDEF: 4023 case ISD::CTPOP: 4024 // Zero extend the argument. 4025 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4026 if (Node->getOpcode() == ISD::CTTZ) { 4027 // The count is the same in the promoted type except if the original 4028 // value was zero. This can be handled by setting the bit just off 4029 // the top of the original type. 4030 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4031 OVT.getSizeInBits()); 4032 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4033 DAG.getConstant(TopBit, dl, NVT)); 4034 } 4035 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4036 // already the correct result. 4037 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4038 if (Node->getOpcode() == ISD::CTLZ || 4039 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4040 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4041 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4042 DAG.getConstant(NVT.getSizeInBits() - 4043 OVT.getSizeInBits(), dl, NVT)); 4044 } 4045 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4046 break; 4047 case ISD::BSWAP: { 4048 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4049 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4050 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1); 4051 Tmp1 = DAG.getNode( 4052 ISD::SRL, dl, NVT, Tmp1, 4053 DAG.getConstant(DiffBits, dl, 4054 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4055 Results.push_back(Tmp1); 4056 break; 4057 } 4058 case ISD::FP_TO_UINT: 4059 case ISD::FP_TO_SINT: 4060 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), 4061 Node->getOpcode() == ISD::FP_TO_SINT, dl); 4062 Results.push_back(Tmp1); 4063 break; 4064 case ISD::UINT_TO_FP: 4065 case ISD::SINT_TO_FP: 4066 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), 4067 Node->getOpcode() == ISD::SINT_TO_FP, dl); 4068 Results.push_back(Tmp1); 4069 break; 4070 case ISD::VAARG: { 4071 SDValue Chain = Node->getOperand(0); // Get the chain. 4072 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4073 4074 unsigned TruncOp; 4075 if (OVT.isVector()) { 4076 TruncOp = ISD::BITCAST; 4077 } else { 4078 assert(OVT.isInteger() 4079 && "VAARG promotion is supported only for vectors or integer types"); 4080 TruncOp = ISD::TRUNCATE; 4081 } 4082 4083 // Perform the larger operation, then convert back 4084 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4085 Node->getConstantOperandVal(3)); 4086 Chain = Tmp1.getValue(1); 4087 4088 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4089 4090 // Modified the chain result - switch anything that used the old chain to 4091 // use the new one. 4092 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4093 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4094 if (UpdatedNodes) { 4095 UpdatedNodes->insert(Tmp2.getNode()); 4096 UpdatedNodes->insert(Chain.getNode()); 4097 } 4098 ReplacedNode(Node); 4099 break; 4100 } 4101 case ISD::AND: 4102 case ISD::OR: 4103 case ISD::XOR: { 4104 unsigned ExtOp, TruncOp; 4105 if (OVT.isVector()) { 4106 ExtOp = ISD::BITCAST; 4107 TruncOp = ISD::BITCAST; 4108 } else { 4109 assert(OVT.isInteger() && "Cannot promote logic operation"); 4110 ExtOp = ISD::ANY_EXTEND; 4111 TruncOp = ISD::TRUNCATE; 4112 } 4113 // Promote each of the values to the new type. 4114 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4115 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4116 // Perform the larger operation, then convert back 4117 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4118 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4119 break; 4120 } 4121 case ISD::SELECT: { 4122 unsigned ExtOp, TruncOp; 4123 if (Node->getValueType(0).isVector() || 4124 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4125 ExtOp = ISD::BITCAST; 4126 TruncOp = ISD::BITCAST; 4127 } else if (Node->getValueType(0).isInteger()) { 4128 ExtOp = ISD::ANY_EXTEND; 4129 TruncOp = ISD::TRUNCATE; 4130 } else { 4131 ExtOp = ISD::FP_EXTEND; 4132 TruncOp = ISD::FP_ROUND; 4133 } 4134 Tmp1 = Node->getOperand(0); 4135 // Promote each of the values to the new type. 4136 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4137 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4138 // Perform the larger operation, then round down. 4139 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4140 if (TruncOp != ISD::FP_ROUND) 4141 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4142 else 4143 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4144 DAG.getIntPtrConstant(0, dl)); 4145 Results.push_back(Tmp1); 4146 break; 4147 } 4148 case ISD::VECTOR_SHUFFLE: { 4149 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4150 4151 // Cast the two input vectors. 4152 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4153 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4154 4155 // Convert the shuffle mask to the right # elements. 4156 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4157 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4158 Results.push_back(Tmp1); 4159 break; 4160 } 4161 case ISD::SETCC: { 4162 unsigned ExtOp = ISD::FP_EXTEND; 4163 if (NVT.isInteger()) { 4164 ISD::CondCode CCCode = 4165 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4166 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4167 } 4168 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4169 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4170 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 4171 Tmp1, Tmp2, Node->getOperand(2))); 4172 break; 4173 } 4174 case ISD::BR_CC: { 4175 unsigned ExtOp = ISD::FP_EXTEND; 4176 if (NVT.isInteger()) { 4177 ISD::CondCode CCCode = 4178 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4179 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4180 } 4181 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4182 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4183 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4184 Node->getOperand(0), Node->getOperand(1), 4185 Tmp1, Tmp2, Node->getOperand(4))); 4186 break; 4187 } 4188 case ISD::FADD: 4189 case ISD::FSUB: 4190 case ISD::FMUL: 4191 case ISD::FDIV: 4192 case ISD::FREM: 4193 case ISD::FMINNUM: 4194 case ISD::FMAXNUM: 4195 case ISD::FPOW: { 4196 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4197 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4198 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4199 Node->getFlags()); 4200 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4201 Tmp3, DAG.getIntPtrConstant(0, dl))); 4202 break; 4203 } 4204 case ISD::FMA: { 4205 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4206 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4207 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4208 Results.push_back( 4209 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4210 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4211 DAG.getIntPtrConstant(0, dl))); 4212 break; 4213 } 4214 case ISD::FCOPYSIGN: 4215 case ISD::FPOWI: { 4216 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4217 Tmp2 = Node->getOperand(1); 4218 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4219 4220 // fcopysign doesn't change anything but the sign bit, so 4221 // (fp_round (fcopysign (fpext a), b)) 4222 // is as precise as 4223 // (fp_round (fpext a)) 4224 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4225 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4226 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4227 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4228 break; 4229 } 4230 case ISD::FFLOOR: 4231 case ISD::FCEIL: 4232 case ISD::FRINT: 4233 case ISD::FNEARBYINT: 4234 case ISD::FROUND: 4235 case ISD::FTRUNC: 4236 case ISD::FNEG: 4237 case ISD::FSQRT: 4238 case ISD::FSIN: 4239 case ISD::FCOS: 4240 case ISD::FLOG: 4241 case ISD::FLOG2: 4242 case ISD::FLOG10: 4243 case ISD::FABS: 4244 case ISD::FEXP: 4245 case ISD::FEXP2: { 4246 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4247 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4248 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4249 Tmp2, DAG.getIntPtrConstant(0, dl))); 4250 break; 4251 } 4252 case ISD::BUILD_VECTOR: { 4253 MVT EltVT = OVT.getVectorElementType(); 4254 MVT NewEltVT = NVT.getVectorElementType(); 4255 4256 // Handle bitcasts to a different vector type with the same total bit size 4257 // 4258 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4259 // => 4260 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4261 4262 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4263 "Invalid promote type for build_vector"); 4264 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4265 4266 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4267 4268 SmallVector<SDValue, 8> NewOps; 4269 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4270 SDValue Op = Node->getOperand(I); 4271 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4272 } 4273 4274 SDLoc SL(Node); 4275 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4276 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4277 Results.push_back(CvtVec); 4278 break; 4279 } 4280 case ISD::EXTRACT_VECTOR_ELT: { 4281 MVT EltVT = OVT.getVectorElementType(); 4282 MVT NewEltVT = NVT.getVectorElementType(); 4283 4284 // Handle bitcasts to a different vector type with the same total bit size. 4285 // 4286 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4287 // => 4288 // v4i32:castx = bitcast x:v2i64 4289 // 4290 // i64 = bitcast 4291 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4292 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4293 // 4294 4295 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4296 "Invalid promote type for extract_vector_elt"); 4297 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4298 4299 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4300 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4301 4302 SDValue Idx = Node->getOperand(1); 4303 EVT IdxVT = Idx.getValueType(); 4304 SDLoc SL(Node); 4305 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4306 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4307 4308 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4309 4310 SmallVector<SDValue, 8> NewOps; 4311 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4312 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4313 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4314 4315 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4316 CastVec, TmpIdx); 4317 NewOps.push_back(Elt); 4318 } 4319 4320 SDValue NewVec = DAG.getNode(ISD::BUILD_VECTOR, SL, MidVT, NewOps); 4321 4322 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4323 break; 4324 } 4325 case ISD::INSERT_VECTOR_ELT: { 4326 MVT EltVT = OVT.getVectorElementType(); 4327 MVT NewEltVT = NVT.getVectorElementType(); 4328 4329 // Handle bitcasts to a different vector type with the same total bit size 4330 // 4331 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4332 // => 4333 // v4i32:castx = bitcast x:v2i64 4334 // v2i32:casty = bitcast y:i64 4335 // 4336 // v2i64 = bitcast 4337 // (v4i32 insert_vector_elt 4338 // (v4i32 insert_vector_elt v4i32:castx, 4339 // (extract_vector_elt casty, 0), 2 * z), 4340 // (extract_vector_elt casty, 1), (2 * z + 1)) 4341 4342 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4343 "Invalid promote type for insert_vector_elt"); 4344 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4345 4346 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4347 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4348 4349 SDValue Val = Node->getOperand(1); 4350 SDValue Idx = Node->getOperand(2); 4351 EVT IdxVT = Idx.getValueType(); 4352 SDLoc SL(Node); 4353 4354 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 4355 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4356 4357 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4358 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4359 4360 SDValue NewVec = CastVec; 4361 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4362 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4363 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4364 4365 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4366 CastVal, IdxOffset); 4367 4368 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 4369 NewVec, Elt, InEltIdx); 4370 } 4371 4372 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 4373 break; 4374 } 4375 case ISD::SCALAR_TO_VECTOR: { 4376 MVT EltVT = OVT.getVectorElementType(); 4377 MVT NewEltVT = NVT.getVectorElementType(); 4378 4379 // Handle bitcasts to different vector type with the smae total bit size. 4380 // 4381 // e.g. v2i64 = scalar_to_vector x:i64 4382 // => 4383 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 4384 // 4385 4386 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4387 SDValue Val = Node->getOperand(0); 4388 SDLoc SL(Node); 4389 4390 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4391 SDValue Undef = DAG.getUNDEF(MidVT); 4392 4393 SmallVector<SDValue, 8> NewElts; 4394 NewElts.push_back(CastVal); 4395 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 4396 NewElts.push_back(Undef); 4397 4398 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 4399 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4400 Results.push_back(CvtVec); 4401 break; 4402 } 4403 } 4404 4405 // Replace the original node with the legalized result. 4406 if (!Results.empty()) 4407 ReplaceNode(Node, Results.data()); 4408 } 4409 4410 /// This is the entry point for the file. 4411 void SelectionDAG::Legalize() { 4412 AssignTopologicalOrder(); 4413 4414 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4415 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 4416 4417 // Visit all the nodes. We start in topological order, so that we see 4418 // nodes with their original operands intact. Legalization can produce 4419 // new nodes which may themselves need to be legalized. Iterate until all 4420 // nodes have been legalized. 4421 for (;;) { 4422 bool AnyLegalized = false; 4423 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 4424 --NI; 4425 4426 SDNode *N = &*NI; 4427 if (N->use_empty() && N != getRoot().getNode()) { 4428 ++NI; 4429 DeleteNode(N); 4430 continue; 4431 } 4432 4433 if (LegalizedNodes.insert(N).second) { 4434 AnyLegalized = true; 4435 Legalizer.LegalizeOp(N); 4436 4437 if (N->use_empty() && N != getRoot().getNode()) { 4438 ++NI; 4439 DeleteNode(N); 4440 } 4441 } 4442 } 4443 if (!AnyLegalized) 4444 break; 4445 4446 } 4447 4448 // Remove dead nodes now. 4449 RemoveDeadNodes(); 4450 } 4451 4452 bool SelectionDAG::LegalizeOp(SDNode *N, 4453 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 4454 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4455 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 4456 4457 // Directly insert the node in question, and legalize it. This will recurse 4458 // as needed through operands. 4459 LegalizedNodes.insert(N); 4460 Legalizer.LegalizeOp(N); 4461 4462 return LegalizedNodes.count(N); 4463 } 4464