1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::Legalize method.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/CodeGen/ISDOpcodes.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/RuntimeLibcalls.h"
26 #include "llvm/CodeGen/SelectionDAG.h"
27 #include "llvm/CodeGen/SelectionDAGNodes.h"
28 #include "llvm/CodeGen/TargetFrameLowering.h"
29 #include "llvm/CodeGen/TargetLowering.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/CodeGen/ValueTypes.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstdint>
51 #include <tuple>
52 #include <utility>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "legalizedag"
57 
58 namespace {
59 
60 /// Keeps track of state when getting the sign of a floating-point value as an
61 /// integer.
62 struct FloatSignAsInt {
63   EVT FloatVT;
64   SDValue Chain;
65   SDValue FloatPtr;
66   SDValue IntPtr;
67   MachinePointerInfo IntPointerInfo;
68   MachinePointerInfo FloatPointerInfo;
69   SDValue IntValue;
70   APInt SignMask;
71   uint8_t SignBit;
72 };
73 
74 //===----------------------------------------------------------------------===//
75 /// This takes an arbitrary SelectionDAG as input and
76 /// hacks on it until the target machine can handle it.  This involves
77 /// eliminating value sizes the machine cannot handle (promoting small sizes to
78 /// large sizes or splitting up large values into small values) as well as
79 /// eliminating operations the machine cannot handle.
80 ///
81 /// This code also does a small amount of optimization and recognition of idioms
82 /// as part of its processing.  For example, if a target does not support a
83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
84 /// will attempt merge setcc and brc instructions into brcc's.
85 class SelectionDAGLegalize {
86   const TargetMachine &TM;
87   const TargetLowering &TLI;
88   SelectionDAG &DAG;
89 
90   /// The set of nodes which have already been legalized. We hold a
91   /// reference to it in order to update as necessary on node deletion.
92   SmallPtrSetImpl<SDNode *> &LegalizedNodes;
93 
94   /// A set of all the nodes updated during legalization.
95   SmallSetVector<SDNode *, 16> *UpdatedNodes;
96 
97   EVT getSetCCResultType(EVT VT) const {
98     return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
99   }
100 
101   // Libcall insertion helpers.
102 
103 public:
104   SelectionDAGLegalize(SelectionDAG &DAG,
105                        SmallPtrSetImpl<SDNode *> &LegalizedNodes,
106                        SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr)
107       : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG),
108         LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {}
109 
110   /// Legalizes the given operation.
111   void LegalizeOp(SDNode *Node);
112 
113 private:
114   SDValue OptimizeFloatStore(StoreSDNode *ST);
115 
116   void LegalizeLoadOps(SDNode *Node);
117   void LegalizeStoreOps(SDNode *Node);
118 
119   /// Some targets cannot handle a variable
120   /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
121   /// is necessary to spill the vector being inserted into to memory, perform
122   /// the insert there, and then read the result back.
123   SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
124                                          const SDLoc &dl);
125   SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx,
126                                   const SDLoc &dl);
127 
128   /// Return a vector shuffle operation which
129   /// performs the same shuffe in terms of order or result bytes, but on a type
130   /// whose vector element type is narrower than the original shuffle type.
131   /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
132   SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl,
133                                      SDValue N1, SDValue N2,
134                                      ArrayRef<int> Mask) const;
135 
136   bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
137                              bool &NeedInvert, const SDLoc &dl, SDValue &Chain,
138                              bool IsSignaling = false);
139 
140   SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
141 
142   void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
143                        RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
144                        RTLIB::Libcall Call_F128,
145                        RTLIB::Libcall Call_PPCF128,
146                        SmallVectorImpl<SDValue> &Results);
147   SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
148                            RTLIB::Libcall Call_I8,
149                            RTLIB::Libcall Call_I16,
150                            RTLIB::Libcall Call_I32,
151                            RTLIB::Libcall Call_I64,
152                            RTLIB::Libcall Call_I128);
153   void ExpandArgFPLibCall(SDNode *Node,
154                           RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64,
155                           RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128,
156                           RTLIB::Libcall Call_PPCF128,
157                           SmallVectorImpl<SDValue> &Results);
158   void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
159   void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
160 
161   SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
162                            const SDLoc &dl);
163   SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
164                            const SDLoc &dl, SDValue ChainIn);
165   SDValue ExpandBUILD_VECTOR(SDNode *Node);
166   SDValue ExpandSPLAT_VECTOR(SDNode *Node);
167   SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
168   void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
169                                 SmallVectorImpl<SDValue> &Results);
170   void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL,
171                          SDValue Value) const;
172   SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL,
173                           SDValue NewIntValue) const;
174   SDValue ExpandFCOPYSIGN(SDNode *Node) const;
175   SDValue ExpandFABS(SDNode *Node) const;
176   SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain);
177   void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl,
178                              SmallVectorImpl<SDValue> &Results);
179   void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl,
180                              SmallVectorImpl<SDValue> &Results);
181 
182   SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl);
183   SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl);
184 
185   SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
186   SDValue ExpandInsertToVectorThroughStack(SDValue Op);
187   SDValue ExpandVectorBuildThroughStack(SDNode* Node);
188 
189   SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
190   SDValue ExpandConstant(ConstantSDNode *CP);
191 
192   // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall
193   bool ExpandNode(SDNode *Node);
194   void ConvertNodeToLibcall(SDNode *Node);
195   void PromoteNode(SDNode *Node);
196 
197 public:
198   // Node replacement helpers
199 
200   void ReplacedNode(SDNode *N) {
201     LegalizedNodes.erase(N);
202     if (UpdatedNodes)
203       UpdatedNodes->insert(N);
204   }
205 
206   void ReplaceNode(SDNode *Old, SDNode *New) {
207     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
208                dbgs() << "     with:      "; New->dump(&DAG));
209 
210     assert(Old->getNumValues() == New->getNumValues() &&
211            "Replacing one node with another that produces a different number "
212            "of values!");
213     DAG.ReplaceAllUsesWith(Old, New);
214     if (UpdatedNodes)
215       UpdatedNodes->insert(New);
216     ReplacedNode(Old);
217   }
218 
219   void ReplaceNode(SDValue Old, SDValue New) {
220     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
221                dbgs() << "     with:      "; New->dump(&DAG));
222 
223     DAG.ReplaceAllUsesWith(Old, New);
224     if (UpdatedNodes)
225       UpdatedNodes->insert(New.getNode());
226     ReplacedNode(Old.getNode());
227   }
228 
229   void ReplaceNode(SDNode *Old, const SDValue *New) {
230     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG));
231 
232     DAG.ReplaceAllUsesWith(Old, New);
233     for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
234       LLVM_DEBUG(dbgs() << (i == 0 ? "     with:      " : "      and:      ");
235                  New[i]->dump(&DAG));
236       if (UpdatedNodes)
237         UpdatedNodes->insert(New[i].getNode());
238     }
239     ReplacedNode(Old);
240   }
241 
242   void ReplaceNodeWithValue(SDValue Old, SDValue New) {
243     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
244                dbgs() << "     with:      "; New->dump(&DAG));
245 
246     DAG.ReplaceAllUsesOfValueWith(Old, New);
247     if (UpdatedNodes)
248       UpdatedNodes->insert(New.getNode());
249     ReplacedNode(Old.getNode());
250   }
251 };
252 
253 } // end anonymous namespace
254 
255 /// Return a vector shuffle operation which
256 /// performs the same shuffle in terms of order or result bytes, but on a type
257 /// whose vector element type is narrower than the original shuffle type.
258 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
259 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType(
260     EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
261     ArrayRef<int> Mask) const {
262   unsigned NumMaskElts = VT.getVectorNumElements();
263   unsigned NumDestElts = NVT.getVectorNumElements();
264   unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
265 
266   assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
267 
268   if (NumEltsGrowth == 1)
269     return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask);
270 
271   SmallVector<int, 8> NewMask;
272   for (unsigned i = 0; i != NumMaskElts; ++i) {
273     int Idx = Mask[i];
274     for (unsigned j = 0; j != NumEltsGrowth; ++j) {
275       if (Idx < 0)
276         NewMask.push_back(-1);
277       else
278         NewMask.push_back(Idx * NumEltsGrowth + j);
279     }
280   }
281   assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
282   assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
283   return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask);
284 }
285 
286 /// Expands the ConstantFP node to an integer constant or
287 /// a load from the constant pool.
288 SDValue
289 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
290   bool Extend = false;
291   SDLoc dl(CFP);
292 
293   // If a FP immediate is precise when represented as a float and if the
294   // target can do an extending load from float to double, we put it into
295   // the constant pool as a float, even if it's is statically typed as a
296   // double.  This shrinks FP constants and canonicalizes them for targets where
297   // an FP extending load is the same cost as a normal load (such as on the x87
298   // fp stack or PPC FP unit).
299   EVT VT = CFP->getValueType(0);
300   ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
301   if (!UseCP) {
302     assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
303     return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl,
304                            (VT == MVT::f64) ? MVT::i64 : MVT::i32);
305   }
306 
307   APFloat APF = CFP->getValueAPF();
308   EVT OrigVT = VT;
309   EVT SVT = VT;
310 
311   // We don't want to shrink SNaNs. Converting the SNaN back to its real type
312   // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ).
313   if (!APF.isSignaling()) {
314     while (SVT != MVT::f32 && SVT != MVT::f16) {
315       SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
316       if (ConstantFPSDNode::isValueValidForType(SVT, APF) &&
317           // Only do this if the target has a native EXTLOAD instruction from
318           // smaller type.
319           TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) &&
320           TLI.ShouldShrinkFPConstant(OrigVT)) {
321         Type *SType = SVT.getTypeForEVT(*DAG.getContext());
322         LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
323         VT = SVT;
324         Extend = true;
325       }
326     }
327   }
328 
329   SDValue CPIdx =
330       DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout()));
331   unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
332   if (Extend) {
333     SDValue Result = DAG.getExtLoad(
334         ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx,
335         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT,
336         Alignment);
337     return Result;
338   }
339   SDValue Result = DAG.getLoad(
340       OrigVT, dl, DAG.getEntryNode(), CPIdx,
341       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
342   return Result;
343 }
344 
345 /// Expands the Constant node to a load from the constant pool.
346 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) {
347   SDLoc dl(CP);
348   EVT VT = CP->getValueType(0);
349   SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(),
350                                       TLI.getPointerTy(DAG.getDataLayout()));
351   unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
352   SDValue Result = DAG.getLoad(
353       VT, dl, DAG.getEntryNode(), CPIdx,
354       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
355   return Result;
356 }
357 
358 /// Some target cannot handle a variable insertion index for the
359 /// INSERT_VECTOR_ELT instruction.  In this case, it
360 /// is necessary to spill the vector being inserted into to memory, perform
361 /// the insert there, and then read the result back.
362 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec,
363                                                              SDValue Val,
364                                                              SDValue Idx,
365                                                              const SDLoc &dl) {
366   SDValue Tmp1 = Vec;
367   SDValue Tmp2 = Val;
368   SDValue Tmp3 = Idx;
369 
370   // If the target doesn't support this, we have to spill the input vector
371   // to a temporary stack slot, update the element, then reload it.  This is
372   // badness.  We could also load the value into a vector register (either
373   // with a "move to register" or "extload into register" instruction, then
374   // permute it into place, if the idx is a constant and if the idx is
375   // supported by the target.
376   EVT VT    = Tmp1.getValueType();
377   EVT EltVT = VT.getVectorElementType();
378   SDValue StackPtr = DAG.CreateStackTemporary(VT);
379 
380   int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
381 
382   // Store the vector.
383   SDValue Ch = DAG.getStore(
384       DAG.getEntryNode(), dl, Tmp1, StackPtr,
385       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
386 
387   SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3);
388 
389   // Store the scalar value.
390   Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT);
391   // Load the updated vector.
392   return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack(
393                                                DAG.getMachineFunction(), SPFI));
394 }
395 
396 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
397                                                       SDValue Idx,
398                                                       const SDLoc &dl) {
399   if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
400     // SCALAR_TO_VECTOR requires that the type of the value being inserted
401     // match the element type of the vector being created, except for
402     // integers in which case the inserted value can be over width.
403     EVT EltVT = Vec.getValueType().getVectorElementType();
404     if (Val.getValueType() == EltVT ||
405         (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
406       SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
407                                   Vec.getValueType(), Val);
408 
409       unsigned NumElts = Vec.getValueType().getVectorNumElements();
410       // We generate a shuffle of InVec and ScVec, so the shuffle mask
411       // should be 0,1,2,3,4,5... with the appropriate element replaced with
412       // elt 0 of the RHS.
413       SmallVector<int, 8> ShufOps;
414       for (unsigned i = 0; i != NumElts; ++i)
415         ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
416 
417       return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps);
418     }
419   }
420   return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
421 }
422 
423 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
424   if (!ISD::isNormalStore(ST))
425     return SDValue();
426 
427   LLVM_DEBUG(dbgs() << "Optimizing float store operations\n");
428   // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
429   // FIXME: We shouldn't do this for TargetConstantFP's.
430   // FIXME: move this to the DAG Combiner!  Note that we can't regress due
431   // to phase ordering between legalized code and the dag combiner.  This
432   // probably means that we need to integrate dag combiner and legalizer
433   // together.
434   // We generally can't do this one for long doubles.
435   SDValue Chain = ST->getChain();
436   SDValue Ptr = ST->getBasePtr();
437   unsigned Alignment = ST->getAlignment();
438   MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
439   AAMDNodes AAInfo = ST->getAAInfo();
440   SDLoc dl(ST);
441   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
442     if (CFP->getValueType(0) == MVT::f32 &&
443         TLI.isTypeLegal(MVT::i32)) {
444       SDValue Con = DAG.getConstant(CFP->getValueAPF().
445                                       bitcastToAPInt().zextOrTrunc(32),
446                                     SDLoc(CFP), MVT::i32);
447       return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), Alignment,
448                           MMOFlags, AAInfo);
449     }
450 
451     if (CFP->getValueType(0) == MVT::f64) {
452       // If this target supports 64-bit registers, do a single 64-bit store.
453       if (TLI.isTypeLegal(MVT::i64)) {
454         SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
455                                       zextOrTrunc(64), SDLoc(CFP), MVT::i64);
456         return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
457                             Alignment, MMOFlags, AAInfo);
458       }
459 
460       if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
461         // Otherwise, if the target supports 32-bit registers, use 2 32-bit
462         // stores.  If the target supports neither 32- nor 64-bits, this
463         // xform is certainly not worth it.
464         const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt();
465         SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32);
466         SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32);
467         if (DAG.getDataLayout().isBigEndian())
468           std::swap(Lo, Hi);
469 
470         Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), Alignment,
471                           MMOFlags, AAInfo);
472         Ptr = DAG.getMemBasePlusOffset(Ptr, 4, dl);
473         Hi = DAG.getStore(Chain, dl, Hi, Ptr,
474                           ST->getPointerInfo().getWithOffset(4),
475                           MinAlign(Alignment, 4U), MMOFlags, AAInfo);
476 
477         return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
478       }
479     }
480   }
481   return SDValue(nullptr, 0);
482 }
483 
484 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
485   StoreSDNode *ST = cast<StoreSDNode>(Node);
486   SDValue Chain = ST->getChain();
487   SDValue Ptr = ST->getBasePtr();
488   SDLoc dl(Node);
489 
490   unsigned Alignment = ST->getAlignment();
491   MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
492   AAMDNodes AAInfo = ST->getAAInfo();
493 
494   if (!ST->isTruncatingStore()) {
495     LLVM_DEBUG(dbgs() << "Legalizing store operation\n");
496     if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
497       ReplaceNode(ST, OptStore);
498       return;
499     }
500 
501     SDValue Value = ST->getValue();
502     MVT VT = Value.getSimpleValueType();
503     switch (TLI.getOperationAction(ISD::STORE, VT)) {
504     default: llvm_unreachable("This action is not supported yet!");
505     case TargetLowering::Legal: {
506       // If this is an unaligned store and the target doesn't support it,
507       // expand it.
508       EVT MemVT = ST->getMemoryVT();
509       const DataLayout &DL = DAG.getDataLayout();
510       if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
511                                               *ST->getMemOperand())) {
512         LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n");
513         SDValue Result = TLI.expandUnalignedStore(ST, DAG);
514         ReplaceNode(SDValue(ST, 0), Result);
515       } else
516         LLVM_DEBUG(dbgs() << "Legal store\n");
517       break;
518     }
519     case TargetLowering::Custom: {
520       LLVM_DEBUG(dbgs() << "Trying custom lowering\n");
521       SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
522       if (Res && Res != SDValue(Node, 0))
523         ReplaceNode(SDValue(Node, 0), Res);
524       return;
525     }
526     case TargetLowering::Promote: {
527       MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
528       assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
529              "Can only promote stores to same size type");
530       Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
531       SDValue Result =
532           DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
533                        Alignment, MMOFlags, AAInfo);
534       ReplaceNode(SDValue(Node, 0), Result);
535       break;
536     }
537     }
538     return;
539   }
540 
541   LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n");
542   SDValue Value = ST->getValue();
543   EVT StVT = ST->getMemoryVT();
544   unsigned StWidth = StVT.getSizeInBits();
545   auto &DL = DAG.getDataLayout();
546 
547   if (StWidth != StVT.getStoreSizeInBits()) {
548     // Promote to a byte-sized store with upper bits zero if not
549     // storing an integral number of bytes.  For example, promote
550     // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
551     EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
552                                 StVT.getStoreSizeInBits());
553     Value = DAG.getZeroExtendInReg(Value, dl, StVT);
554     SDValue Result =
555         DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT,
556                           Alignment, MMOFlags, AAInfo);
557     ReplaceNode(SDValue(Node, 0), Result);
558   } else if (StWidth & (StWidth - 1)) {
559     // If not storing a power-of-2 number of bits, expand as two stores.
560     assert(!StVT.isVector() && "Unsupported truncstore!");
561     unsigned LogStWidth = Log2_32(StWidth);
562     assert(LogStWidth < 32);
563     unsigned RoundWidth = 1 << LogStWidth;
564     assert(RoundWidth < StWidth);
565     unsigned ExtraWidth = StWidth - RoundWidth;
566     assert(ExtraWidth < RoundWidth);
567     assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
568            "Store size not an integral number of bytes!");
569     EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
570     EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
571     SDValue Lo, Hi;
572     unsigned IncrementSize;
573 
574     if (DL.isLittleEndian()) {
575       // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
576       // Store the bottom RoundWidth bits.
577       Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
578                              RoundVT, Alignment, MMOFlags, AAInfo);
579 
580       // Store the remaining ExtraWidth bits.
581       IncrementSize = RoundWidth / 8;
582       Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl);
583       Hi = DAG.getNode(
584           ISD::SRL, dl, Value.getValueType(), Value,
585           DAG.getConstant(RoundWidth, dl,
586                           TLI.getShiftAmountTy(Value.getValueType(), DL)));
587       Hi = DAG.getTruncStore(
588           Chain, dl, Hi, Ptr,
589           ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT,
590           MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo);
591     } else {
592       // Big endian - avoid unaligned stores.
593       // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
594       // Store the top RoundWidth bits.
595       Hi = DAG.getNode(
596           ISD::SRL, dl, Value.getValueType(), Value,
597           DAG.getConstant(ExtraWidth, dl,
598                           TLI.getShiftAmountTy(Value.getValueType(), DL)));
599       Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(),
600                              RoundVT, Alignment, MMOFlags, AAInfo);
601 
602       // Store the remaining ExtraWidth bits.
603       IncrementSize = RoundWidth / 8;
604       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
605                         DAG.getConstant(IncrementSize, dl,
606                                         Ptr.getValueType()));
607       Lo = DAG.getTruncStore(
608           Chain, dl, Value, Ptr,
609           ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT,
610           MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo);
611     }
612 
613     // The order of the stores doesn't matter.
614     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
615     ReplaceNode(SDValue(Node, 0), Result);
616   } else {
617     switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
618     default: llvm_unreachable("This action is not supported yet!");
619     case TargetLowering::Legal: {
620       EVT MemVT = ST->getMemoryVT();
621       // If this is an unaligned store and the target doesn't support it,
622       // expand it.
623       if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
624                                               *ST->getMemOperand())) {
625         SDValue Result = TLI.expandUnalignedStore(ST, DAG);
626         ReplaceNode(SDValue(ST, 0), Result);
627       }
628       break;
629     }
630     case TargetLowering::Custom: {
631       SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
632       if (Res && Res != SDValue(Node, 0))
633         ReplaceNode(SDValue(Node, 0), Res);
634       return;
635     }
636     case TargetLowering::Expand:
637       assert(!StVT.isVector() &&
638              "Vector Stores are handled in LegalizeVectorOps");
639 
640       SDValue Result;
641 
642       // TRUNCSTORE:i16 i32 -> STORE i16
643       if (TLI.isTypeLegal(StVT)) {
644         Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
645         Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
646                               Alignment, MMOFlags, AAInfo);
647       } else {
648         // The in-memory type isn't legal. Truncate to the type it would promote
649         // to, and then do a truncstore.
650         Value = DAG.getNode(ISD::TRUNCATE, dl,
651                             TLI.getTypeToTransformTo(*DAG.getContext(), StVT),
652                             Value);
653         Result = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
654                                    StVT, Alignment, MMOFlags, AAInfo);
655       }
656 
657       ReplaceNode(SDValue(Node, 0), Result);
658       break;
659     }
660   }
661 }
662 
663 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
664   LoadSDNode *LD = cast<LoadSDNode>(Node);
665   SDValue Chain = LD->getChain();  // The chain.
666   SDValue Ptr = LD->getBasePtr();  // The base pointer.
667   SDValue Value;                   // The value returned by the load op.
668   SDLoc dl(Node);
669 
670   ISD::LoadExtType ExtType = LD->getExtensionType();
671   if (ExtType == ISD::NON_EXTLOAD) {
672     LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n");
673     MVT VT = Node->getSimpleValueType(0);
674     SDValue RVal = SDValue(Node, 0);
675     SDValue RChain = SDValue(Node, 1);
676 
677     switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
678     default: llvm_unreachable("This action is not supported yet!");
679     case TargetLowering::Legal: {
680       EVT MemVT = LD->getMemoryVT();
681       const DataLayout &DL = DAG.getDataLayout();
682       // If this is an unaligned load and the target doesn't support it,
683       // expand it.
684       if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
685                                               *LD->getMemOperand())) {
686         std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG);
687       }
688       break;
689     }
690     case TargetLowering::Custom:
691       if (SDValue Res = TLI.LowerOperation(RVal, DAG)) {
692         RVal = Res;
693         RChain = Res.getValue(1);
694       }
695       break;
696 
697     case TargetLowering::Promote: {
698       MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
699       assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
700              "Can only promote loads to same size type");
701 
702       SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand());
703       RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
704       RChain = Res.getValue(1);
705       break;
706     }
707     }
708     if (RChain.getNode() != Node) {
709       assert(RVal.getNode() != Node && "Load must be completely replaced");
710       DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
711       DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
712       if (UpdatedNodes) {
713         UpdatedNodes->insert(RVal.getNode());
714         UpdatedNodes->insert(RChain.getNode());
715       }
716       ReplacedNode(Node);
717     }
718     return;
719   }
720 
721   LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n");
722   EVT SrcVT = LD->getMemoryVT();
723   unsigned SrcWidth = SrcVT.getSizeInBits();
724   unsigned Alignment = LD->getAlignment();
725   MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
726   AAMDNodes AAInfo = LD->getAAInfo();
727 
728   if (SrcWidth != SrcVT.getStoreSizeInBits() &&
729       // Some targets pretend to have an i1 loading operation, and actually
730       // load an i8.  This trick is correct for ZEXTLOAD because the top 7
731       // bits are guaranteed to be zero; it helps the optimizers understand
732       // that these bits are zero.  It is also useful for EXTLOAD, since it
733       // tells the optimizers that those bits are undefined.  It would be
734       // nice to have an effective generic way of getting these benefits...
735       // Until such a way is found, don't insist on promoting i1 here.
736       (SrcVT != MVT::i1 ||
737        TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) ==
738          TargetLowering::Promote)) {
739     // Promote to a byte-sized load if not loading an integral number of
740     // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
741     unsigned NewWidth = SrcVT.getStoreSizeInBits();
742     EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
743     SDValue Ch;
744 
745     // The extra bits are guaranteed to be zero, since we stored them that
746     // way.  A zext load from NVT thus automatically gives zext from SrcVT.
747 
748     ISD::LoadExtType NewExtType =
749       ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
750 
751     SDValue Result =
752         DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), Chain, Ptr,
753                        LD->getPointerInfo(), NVT, Alignment, MMOFlags, AAInfo);
754 
755     Ch = Result.getValue(1); // The chain.
756 
757     if (ExtType == ISD::SEXTLOAD)
758       // Having the top bits zero doesn't help when sign extending.
759       Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
760                            Result.getValueType(),
761                            Result, DAG.getValueType(SrcVT));
762     else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
763       // All the top bits are guaranteed to be zero - inform the optimizers.
764       Result = DAG.getNode(ISD::AssertZext, dl,
765                            Result.getValueType(), Result,
766                            DAG.getValueType(SrcVT));
767 
768     Value = Result;
769     Chain = Ch;
770   } else if (SrcWidth & (SrcWidth - 1)) {
771     // If not loading a power-of-2 number of bits, expand as two loads.
772     assert(!SrcVT.isVector() && "Unsupported extload!");
773     unsigned LogSrcWidth = Log2_32(SrcWidth);
774     assert(LogSrcWidth < 32);
775     unsigned RoundWidth = 1 << LogSrcWidth;
776     assert(RoundWidth < SrcWidth);
777     unsigned ExtraWidth = SrcWidth - RoundWidth;
778     assert(ExtraWidth < RoundWidth);
779     assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
780            "Load size not an integral number of bytes!");
781     EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
782     EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
783     SDValue Lo, Hi, Ch;
784     unsigned IncrementSize;
785     auto &DL = DAG.getDataLayout();
786 
787     if (DL.isLittleEndian()) {
788       // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
789       // Load the bottom RoundWidth bits.
790       Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
791                           LD->getPointerInfo(), RoundVT, Alignment, MMOFlags,
792                           AAInfo);
793 
794       // Load the remaining ExtraWidth bits.
795       IncrementSize = RoundWidth / 8;
796       Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl);
797       Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
798                           LD->getPointerInfo().getWithOffset(IncrementSize),
799                           ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags,
800                           AAInfo);
801 
802       // Build a factor node to remember that this load is independent of
803       // the other one.
804       Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
805                        Hi.getValue(1));
806 
807       // Move the top bits to the right place.
808       Hi = DAG.getNode(
809           ISD::SHL, dl, Hi.getValueType(), Hi,
810           DAG.getConstant(RoundWidth, dl,
811                           TLI.getShiftAmountTy(Hi.getValueType(), DL)));
812 
813       // Join the hi and lo parts.
814       Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
815     } else {
816       // Big endian - avoid unaligned loads.
817       // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
818       // Load the top RoundWidth bits.
819       Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
820                           LD->getPointerInfo(), RoundVT, Alignment, MMOFlags,
821                           AAInfo);
822 
823       // Load the remaining ExtraWidth bits.
824       IncrementSize = RoundWidth / 8;
825       Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl);
826       Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
827                           LD->getPointerInfo().getWithOffset(IncrementSize),
828                           ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags,
829                           AAInfo);
830 
831       // Build a factor node to remember that this load is independent of
832       // the other one.
833       Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
834                        Hi.getValue(1));
835 
836       // Move the top bits to the right place.
837       Hi = DAG.getNode(
838           ISD::SHL, dl, Hi.getValueType(), Hi,
839           DAG.getConstant(ExtraWidth, dl,
840                           TLI.getShiftAmountTy(Hi.getValueType(), DL)));
841 
842       // Join the hi and lo parts.
843       Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
844     }
845 
846     Chain = Ch;
847   } else {
848     bool isCustom = false;
849     switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0),
850                                  SrcVT.getSimpleVT())) {
851     default: llvm_unreachable("This action is not supported yet!");
852     case TargetLowering::Custom:
853       isCustom = true;
854       LLVM_FALLTHROUGH;
855     case TargetLowering::Legal:
856       Value = SDValue(Node, 0);
857       Chain = SDValue(Node, 1);
858 
859       if (isCustom) {
860         if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
861           Value = Res;
862           Chain = Res.getValue(1);
863         }
864       } else {
865         // If this is an unaligned load and the target doesn't support it,
866         // expand it.
867         EVT MemVT = LD->getMemoryVT();
868         const DataLayout &DL = DAG.getDataLayout();
869         if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT,
870                                     *LD->getMemOperand())) {
871           std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG);
872         }
873       }
874       break;
875 
876     case TargetLowering::Expand: {
877       EVT DestVT = Node->getValueType(0);
878       if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) {
879         // If the source type is not legal, see if there is a legal extload to
880         // an intermediate type that we can then extend further.
881         EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT());
882         if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT?
883             TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) {
884           // If we are loading a legal type, this is a non-extload followed by a
885           // full extend.
886           ISD::LoadExtType MidExtType =
887               (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType;
888 
889           SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr,
890                                         SrcVT, LD->getMemOperand());
891           unsigned ExtendOp =
892               ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType);
893           Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
894           Chain = Load.getValue(1);
895           break;
896         }
897 
898         // Handle the special case of fp16 extloads. EXTLOAD doesn't have the
899         // normal undefined upper bits behavior to allow using an in-reg extend
900         // with the illegal FP type, so load as an integer and do the
901         // from-integer conversion.
902         if (SrcVT.getScalarType() == MVT::f16) {
903           EVT ISrcVT = SrcVT.changeTypeToInteger();
904           EVT IDestVT = DestVT.changeTypeToInteger();
905           EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT());
906 
907           SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain,
908                                           Ptr, ISrcVT, LD->getMemOperand());
909           Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result);
910           Chain = Result.getValue(1);
911           break;
912         }
913       }
914 
915       assert(!SrcVT.isVector() &&
916              "Vector Loads are handled in LegalizeVectorOps");
917 
918       // FIXME: This does not work for vectors on most targets.  Sign-
919       // and zero-extend operations are currently folded into extending
920       // loads, whether they are legal or not, and then we end up here
921       // without any support for legalizing them.
922       assert(ExtType != ISD::EXTLOAD &&
923              "EXTLOAD should always be supported!");
924       // Turn the unsupported load into an EXTLOAD followed by an
925       // explicit zero/sign extend inreg.
926       SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl,
927                                       Node->getValueType(0),
928                                       Chain, Ptr, SrcVT,
929                                       LD->getMemOperand());
930       SDValue ValRes;
931       if (ExtType == ISD::SEXTLOAD)
932         ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
933                              Result.getValueType(),
934                              Result, DAG.getValueType(SrcVT));
935       else
936         ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
937       Value = ValRes;
938       Chain = Result.getValue(1);
939       break;
940     }
941     }
942   }
943 
944   // Since loads produce two values, make sure to remember that we legalized
945   // both of them.
946   if (Chain.getNode() != Node) {
947     assert(Value.getNode() != Node && "Load must be completely replaced");
948     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
949     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
950     if (UpdatedNodes) {
951       UpdatedNodes->insert(Value.getNode());
952       UpdatedNodes->insert(Chain.getNode());
953     }
954     ReplacedNode(Node);
955   }
956 }
957 
958 /// Return a legal replacement for the given operation, with all legal operands.
959 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
960   LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG));
961 
962   // Allow illegal target nodes and illegal registers.
963   if (Node->getOpcode() == ISD::TargetConstant ||
964       Node->getOpcode() == ISD::Register)
965     return;
966 
967 #ifndef NDEBUG
968   for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
969     assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
970              TargetLowering::TypeLegal &&
971            "Unexpected illegal type!");
972 
973   for (const SDValue &Op : Node->op_values())
974     assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) ==
975               TargetLowering::TypeLegal ||
976             Op.getOpcode() == ISD::TargetConstant ||
977             Op.getOpcode() == ISD::Register) &&
978             "Unexpected illegal type!");
979 #endif
980 
981   // Figure out the correct action; the way to query this varies by opcode
982   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
983   bool SimpleFinishLegalizing = true;
984   switch (Node->getOpcode()) {
985   case ISD::INTRINSIC_W_CHAIN:
986   case ISD::INTRINSIC_WO_CHAIN:
987   case ISD::INTRINSIC_VOID:
988   case ISD::STACKSAVE:
989     Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
990     break;
991   case ISD::GET_DYNAMIC_AREA_OFFSET:
992     Action = TLI.getOperationAction(Node->getOpcode(),
993                                     Node->getValueType(0));
994     break;
995   case ISD::VAARG:
996     Action = TLI.getOperationAction(Node->getOpcode(),
997                                     Node->getValueType(0));
998     if (Action != TargetLowering::Promote)
999       Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1000     break;
1001   case ISD::FP_TO_FP16:
1002   case ISD::SINT_TO_FP:
1003   case ISD::UINT_TO_FP:
1004   case ISD::EXTRACT_VECTOR_ELT:
1005   case ISD::LROUND:
1006   case ISD::LLROUND:
1007   case ISD::LRINT:
1008   case ISD::LLRINT:
1009     Action = TLI.getOperationAction(Node->getOpcode(),
1010                                     Node->getOperand(0).getValueType());
1011     break;
1012   case ISD::STRICT_FP_TO_FP16:
1013   case ISD::STRICT_SINT_TO_FP:
1014   case ISD::STRICT_UINT_TO_FP:
1015   case ISD::STRICT_LRINT:
1016   case ISD::STRICT_LLRINT:
1017   case ISD::STRICT_LROUND:
1018   case ISD::STRICT_LLROUND:
1019     // These pseudo-ops are the same as the other STRICT_ ops except
1020     // they are registered with setOperationAction() using the input type
1021     // instead of the output type.
1022     Action = TLI.getOperationAction(Node->getOpcode(),
1023                                     Node->getOperand(1).getValueType());
1024     break;
1025   case ISD::SIGN_EXTEND_INREG: {
1026     EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
1027     Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
1028     break;
1029   }
1030   case ISD::ATOMIC_STORE:
1031     Action = TLI.getOperationAction(Node->getOpcode(),
1032                                     Node->getOperand(2).getValueType());
1033     break;
1034   case ISD::SELECT_CC:
1035   case ISD::STRICT_FSETCC:
1036   case ISD::STRICT_FSETCCS:
1037   case ISD::SETCC:
1038   case ISD::BR_CC: {
1039     unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
1040                          Node->getOpcode() == ISD::STRICT_FSETCC ? 3 :
1041                          Node->getOpcode() == ISD::STRICT_FSETCCS ? 3 :
1042                          Node->getOpcode() == ISD::SETCC ? 2 : 1;
1043     unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 :
1044                               Node->getOpcode() == ISD::STRICT_FSETCC ? 1 :
1045                               Node->getOpcode() == ISD::STRICT_FSETCCS ? 1 : 0;
1046     MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
1047     ISD::CondCode CCCode =
1048         cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
1049     Action = TLI.getCondCodeAction(CCCode, OpVT);
1050     if (Action == TargetLowering::Legal) {
1051       if (Node->getOpcode() == ISD::SELECT_CC)
1052         Action = TLI.getOperationAction(Node->getOpcode(),
1053                                         Node->getValueType(0));
1054       else
1055         Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
1056     }
1057     break;
1058   }
1059   case ISD::LOAD:
1060   case ISD::STORE:
1061     // FIXME: Model these properly.  LOAD and STORE are complicated, and
1062     // STORE expects the unlegalized operand in some cases.
1063     SimpleFinishLegalizing = false;
1064     break;
1065   case ISD::CALLSEQ_START:
1066   case ISD::CALLSEQ_END:
1067     // FIXME: This shouldn't be necessary.  These nodes have special properties
1068     // dealing with the recursive nature of legalization.  Removing this
1069     // special case should be done as part of making LegalizeDAG non-recursive.
1070     SimpleFinishLegalizing = false;
1071     break;
1072   case ISD::EXTRACT_ELEMENT:
1073   case ISD::FLT_ROUNDS_:
1074   case ISD::MERGE_VALUES:
1075   case ISD::EH_RETURN:
1076   case ISD::FRAME_TO_ARGS_OFFSET:
1077   case ISD::EH_DWARF_CFA:
1078   case ISD::EH_SJLJ_SETJMP:
1079   case ISD::EH_SJLJ_LONGJMP:
1080   case ISD::EH_SJLJ_SETUP_DISPATCH:
1081     // These operations lie about being legal: when they claim to be legal,
1082     // they should actually be expanded.
1083     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1084     if (Action == TargetLowering::Legal)
1085       Action = TargetLowering::Expand;
1086     break;
1087   case ISD::INIT_TRAMPOLINE:
1088   case ISD::ADJUST_TRAMPOLINE:
1089   case ISD::FRAMEADDR:
1090   case ISD::RETURNADDR:
1091   case ISD::ADDROFRETURNADDR:
1092   case ISD::SPONENTRY:
1093     // These operations lie about being legal: when they claim to be legal,
1094     // they should actually be custom-lowered.
1095     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1096     if (Action == TargetLowering::Legal)
1097       Action = TargetLowering::Custom;
1098     break;
1099   case ISD::READCYCLECOUNTER:
1100     // READCYCLECOUNTER returns an i64, even if type legalization might have
1101     // expanded that to several smaller types.
1102     Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64);
1103     break;
1104   case ISD::READ_REGISTER:
1105   case ISD::WRITE_REGISTER:
1106     // Named register is legal in the DAG, but blocked by register name
1107     // selection if not implemented by target (to chose the correct register)
1108     // They'll be converted to Copy(To/From)Reg.
1109     Action = TargetLowering::Legal;
1110     break;
1111   case ISD::DEBUGTRAP:
1112     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1113     if (Action == TargetLowering::Expand) {
1114       // replace ISD::DEBUGTRAP with ISD::TRAP
1115       SDValue NewVal;
1116       NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
1117                            Node->getOperand(0));
1118       ReplaceNode(Node, NewVal.getNode());
1119       LegalizeOp(NewVal.getNode());
1120       return;
1121     }
1122     break;
1123   case ISD::SADDSAT:
1124   case ISD::UADDSAT:
1125   case ISD::SSUBSAT:
1126   case ISD::USUBSAT: {
1127     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1128     break;
1129   }
1130   case ISD::SMULFIX:
1131   case ISD::SMULFIXSAT:
1132   case ISD::UMULFIX:
1133   case ISD::UMULFIXSAT:
1134   case ISD::SDIVFIX:
1135   case ISD::SDIVFIXSAT:
1136   case ISD::UDIVFIX:
1137   case ISD::UDIVFIXSAT: {
1138     unsigned Scale = Node->getConstantOperandVal(2);
1139     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
1140                                               Node->getValueType(0), Scale);
1141     break;
1142   }
1143   case ISD::MSCATTER:
1144     Action = TLI.getOperationAction(Node->getOpcode(),
1145                     cast<MaskedScatterSDNode>(Node)->getValue().getValueType());
1146     break;
1147   case ISD::MSTORE:
1148     Action = TLI.getOperationAction(Node->getOpcode(),
1149                     cast<MaskedStoreSDNode>(Node)->getValue().getValueType());
1150     break;
1151   case ISD::VECREDUCE_FADD:
1152   case ISD::VECREDUCE_FMUL:
1153   case ISD::VECREDUCE_ADD:
1154   case ISD::VECREDUCE_MUL:
1155   case ISD::VECREDUCE_AND:
1156   case ISD::VECREDUCE_OR:
1157   case ISD::VECREDUCE_XOR:
1158   case ISD::VECREDUCE_SMAX:
1159   case ISD::VECREDUCE_SMIN:
1160   case ISD::VECREDUCE_UMAX:
1161   case ISD::VECREDUCE_UMIN:
1162   case ISD::VECREDUCE_FMAX:
1163   case ISD::VECREDUCE_FMIN:
1164     Action = TLI.getOperationAction(
1165         Node->getOpcode(), Node->getOperand(0).getValueType());
1166     break;
1167   default:
1168     if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1169       Action = TargetLowering::Legal;
1170     } else {
1171       Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1172     }
1173     break;
1174   }
1175 
1176   if (SimpleFinishLegalizing) {
1177     SDNode *NewNode = Node;
1178     switch (Node->getOpcode()) {
1179     default: break;
1180     case ISD::SHL:
1181     case ISD::SRL:
1182     case ISD::SRA:
1183     case ISD::ROTL:
1184     case ISD::ROTR: {
1185       // Legalizing shifts/rotates requires adjusting the shift amount
1186       // to the appropriate width.
1187       SDValue Op0 = Node->getOperand(0);
1188       SDValue Op1 = Node->getOperand(1);
1189       if (!Op1.getValueType().isVector()) {
1190         SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1);
1191         // The getShiftAmountOperand() may create a new operand node or
1192         // return the existing one. If new operand is created we need
1193         // to update the parent node.
1194         // Do not try to legalize SAO here! It will be automatically legalized
1195         // in the next round.
1196         if (SAO != Op1)
1197           NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO);
1198       }
1199     }
1200     break;
1201     case ISD::FSHL:
1202     case ISD::FSHR:
1203     case ISD::SRL_PARTS:
1204     case ISD::SRA_PARTS:
1205     case ISD::SHL_PARTS: {
1206       // Legalizing shifts/rotates requires adjusting the shift amount
1207       // to the appropriate width.
1208       SDValue Op0 = Node->getOperand(0);
1209       SDValue Op1 = Node->getOperand(1);
1210       SDValue Op2 = Node->getOperand(2);
1211       if (!Op2.getValueType().isVector()) {
1212         SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2);
1213         // The getShiftAmountOperand() may create a new operand node or
1214         // return the existing one. If new operand is created we need
1215         // to update the parent node.
1216         if (SAO != Op2)
1217           NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO);
1218       }
1219       break;
1220     }
1221     }
1222 
1223     if (NewNode != Node) {
1224       ReplaceNode(Node, NewNode);
1225       Node = NewNode;
1226     }
1227     switch (Action) {
1228     case TargetLowering::Legal:
1229       LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
1230       return;
1231     case TargetLowering::Custom:
1232       LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
1233       // FIXME: The handling for custom lowering with multiple results is
1234       // a complete mess.
1235       if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
1236         if (!(Res.getNode() != Node || Res.getResNo() != 0))
1237           return;
1238 
1239         if (Node->getNumValues() == 1) {
1240           LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1241           // We can just directly replace this node with the lowered value.
1242           ReplaceNode(SDValue(Node, 0), Res);
1243           return;
1244         }
1245 
1246         SmallVector<SDValue, 8> ResultVals;
1247         for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1248           ResultVals.push_back(Res.getValue(i));
1249         LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1250         ReplaceNode(Node, ResultVals.data());
1251         return;
1252       }
1253       LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
1254       LLVM_FALLTHROUGH;
1255     case TargetLowering::Expand:
1256       if (ExpandNode(Node))
1257         return;
1258       LLVM_FALLTHROUGH;
1259     case TargetLowering::LibCall:
1260       ConvertNodeToLibcall(Node);
1261       return;
1262     case TargetLowering::Promote:
1263       PromoteNode(Node);
1264       return;
1265     }
1266   }
1267 
1268   switch (Node->getOpcode()) {
1269   default:
1270 #ifndef NDEBUG
1271     dbgs() << "NODE: ";
1272     Node->dump( &DAG);
1273     dbgs() << "\n";
1274 #endif
1275     llvm_unreachable("Do not know how to legalize this operator!");
1276 
1277   case ISD::CALLSEQ_START:
1278   case ISD::CALLSEQ_END:
1279     break;
1280   case ISD::LOAD:
1281     return LegalizeLoadOps(Node);
1282   case ISD::STORE:
1283     return LegalizeStoreOps(Node);
1284   }
1285 }
1286 
1287 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1288   SDValue Vec = Op.getOperand(0);
1289   SDValue Idx = Op.getOperand(1);
1290   SDLoc dl(Op);
1291 
1292   // Before we generate a new store to a temporary stack slot, see if there is
1293   // already one that we can use. There often is because when we scalarize
1294   // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole
1295   // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in
1296   // the vector. If all are expanded here, we don't want one store per vector
1297   // element.
1298 
1299   // Caches for hasPredecessorHelper
1300   SmallPtrSet<const SDNode *, 32> Visited;
1301   SmallVector<const SDNode *, 16> Worklist;
1302   Visited.insert(Op.getNode());
1303   Worklist.push_back(Idx.getNode());
1304   SDValue StackPtr, Ch;
1305   for (SDNode::use_iterator UI = Vec.getNode()->use_begin(),
1306        UE = Vec.getNode()->use_end(); UI != UE; ++UI) {
1307     SDNode *User = *UI;
1308     if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) {
1309       if (ST->isIndexed() || ST->isTruncatingStore() ||
1310           ST->getValue() != Vec)
1311         continue;
1312 
1313       // Make sure that nothing else could have stored into the destination of
1314       // this store.
1315       if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode()))
1316         continue;
1317 
1318       // If the index is dependent on the store we will introduce a cycle when
1319       // creating the load (the load uses the index, and by replacing the chain
1320       // we will make the index dependent on the load). Also, the store might be
1321       // dependent on the extractelement and introduce a cycle when creating
1322       // the load.
1323       if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) ||
1324           ST->hasPredecessor(Op.getNode()))
1325         continue;
1326 
1327       StackPtr = ST->getBasePtr();
1328       Ch = SDValue(ST, 0);
1329       break;
1330     }
1331   }
1332 
1333   EVT VecVT = Vec.getValueType();
1334 
1335   if (!Ch.getNode()) {
1336     // Store the value to a temporary stack slot, then LOAD the returned part.
1337     StackPtr = DAG.CreateStackTemporary(VecVT);
1338     Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1339                       MachinePointerInfo());
1340   }
1341 
1342   StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1343 
1344   SDValue NewLoad;
1345 
1346   if (Op.getValueType().isVector())
1347     NewLoad =
1348         DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo());
1349   else
1350     NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1351                              MachinePointerInfo(),
1352                              VecVT.getVectorElementType());
1353 
1354   // Replace the chain going out of the store, by the one out of the load.
1355   DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1));
1356 
1357   // We introduced a cycle though, so update the loads operands, making sure
1358   // to use the original store's chain as an incoming chain.
1359   SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(),
1360                                           NewLoad->op_end());
1361   NewLoadOperands[0] = Ch;
1362   NewLoad =
1363       SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0);
1364   return NewLoad;
1365 }
1366 
1367 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1368   assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1369 
1370   SDValue Vec  = Op.getOperand(0);
1371   SDValue Part = Op.getOperand(1);
1372   SDValue Idx  = Op.getOperand(2);
1373   SDLoc dl(Op);
1374 
1375   // Store the value to a temporary stack slot, then LOAD the returned part.
1376   EVT VecVT = Vec.getValueType();
1377   SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
1378   int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1379   MachinePointerInfo PtrInfo =
1380       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1381 
1382   // First store the whole vector.
1383   SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo);
1384 
1385   // Then store the inserted part.
1386   SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1387 
1388   // Store the subvector.
1389   Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, MachinePointerInfo());
1390 
1391   // Finally, load the updated vector.
1392   return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo);
1393 }
1394 
1395 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1396   // We can't handle this case efficiently.  Allocate a sufficiently
1397   // aligned object on the stack, store each element into it, then load
1398   // the result as a vector.
1399   // Create the stack frame object.
1400   EVT VT = Node->getValueType(0);
1401   EVT EltVT = VT.getVectorElementType();
1402   SDLoc dl(Node);
1403   SDValue FIPtr = DAG.CreateStackTemporary(VT);
1404   int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1405   MachinePointerInfo PtrInfo =
1406       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1407 
1408   // Emit a store of each element to the stack slot.
1409   SmallVector<SDValue, 8> Stores;
1410   unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1411   assert(TypeByteSize > 0 && "Vector element type too small for stack store!");
1412   // Store (in the right endianness) the elements to memory.
1413   for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1414     // Ignore undef elements.
1415     if (Node->getOperand(i).isUndef()) continue;
1416 
1417     unsigned Offset = TypeByteSize*i;
1418 
1419     SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType());
1420     Idx = DAG.getMemBasePlusOffset(FIPtr, Idx, dl);
1421 
1422     // If the destination vector element type is narrower than the source
1423     // element type, only store the bits necessary.
1424     if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1425       Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1426                                          Node->getOperand(i), Idx,
1427                                          PtrInfo.getWithOffset(Offset), EltVT));
1428     } else
1429       Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1430                                     Idx, PtrInfo.getWithOffset(Offset)));
1431   }
1432 
1433   SDValue StoreChain;
1434   if (!Stores.empty())    // Not all undef elements?
1435     StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
1436   else
1437     StoreChain = DAG.getEntryNode();
1438 
1439   // Result is a load from the stack slot.
1440   return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo);
1441 }
1442 
1443 /// Bitcast a floating-point value to an integer value. Only bitcast the part
1444 /// containing the sign bit if the target has no integer value capable of
1445 /// holding all bits of the floating-point value.
1446 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State,
1447                                              const SDLoc &DL,
1448                                              SDValue Value) const {
1449   EVT FloatVT = Value.getValueType();
1450   unsigned NumBits = FloatVT.getSizeInBits();
1451   State.FloatVT = FloatVT;
1452   EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
1453   // Convert to an integer of the same size.
1454   if (TLI.isTypeLegal(IVT)) {
1455     State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value);
1456     State.SignMask = APInt::getSignMask(NumBits);
1457     State.SignBit = NumBits - 1;
1458     return;
1459   }
1460 
1461   auto &DataLayout = DAG.getDataLayout();
1462   // Store the float to memory, then load the sign part out as an integer.
1463   MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8);
1464   // First create a temporary that is aligned for both the load and store.
1465   SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1466   int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1467   // Then store the float to it.
1468   State.FloatPtr = StackPtr;
1469   MachineFunction &MF = DAG.getMachineFunction();
1470   State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI);
1471   State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr,
1472                              State.FloatPointerInfo);
1473 
1474   SDValue IntPtr;
1475   if (DataLayout.isBigEndian()) {
1476     assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1477     // Load out a legal integer with the same sign bit as the float.
1478     IntPtr = StackPtr;
1479     State.IntPointerInfo = State.FloatPointerInfo;
1480   } else {
1481     // Advance the pointer so that the loaded byte will contain the sign bit.
1482     unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1;
1483     IntPtr = DAG.getMemBasePlusOffset(StackPtr, ByteOffset, DL);
1484     State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI,
1485                                                              ByteOffset);
1486   }
1487 
1488   State.IntPtr = IntPtr;
1489   State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr,
1490                                   State.IntPointerInfo, MVT::i8);
1491   State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7);
1492   State.SignBit = 7;
1493 }
1494 
1495 /// Replace the integer value produced by getSignAsIntValue() with a new value
1496 /// and cast the result back to a floating-point type.
1497 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State,
1498                                               const SDLoc &DL,
1499                                               SDValue NewIntValue) const {
1500   if (!State.Chain)
1501     return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue);
1502 
1503   // Override the part containing the sign bit in the value stored on the stack.
1504   SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr,
1505                                     State.IntPointerInfo, MVT::i8);
1506   return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr,
1507                      State.FloatPointerInfo);
1508 }
1509 
1510 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const {
1511   SDLoc DL(Node);
1512   SDValue Mag = Node->getOperand(0);
1513   SDValue Sign = Node->getOperand(1);
1514 
1515   // Get sign bit into an integer value.
1516   FloatSignAsInt SignAsInt;
1517   getSignAsIntValue(SignAsInt, DL, Sign);
1518 
1519   EVT IntVT = SignAsInt.IntValue.getValueType();
1520   SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT);
1521   SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue,
1522                                 SignMask);
1523 
1524   // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X)
1525   EVT FloatVT = Mag.getValueType();
1526   if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) &&
1527       TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) {
1528     SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag);
1529     SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue);
1530     SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit,
1531                                 DAG.getConstant(0, DL, IntVT), ISD::SETNE);
1532     return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue);
1533   }
1534 
1535   // Transform Mag value to integer, and clear the sign bit.
1536   FloatSignAsInt MagAsInt;
1537   getSignAsIntValue(MagAsInt, DL, Mag);
1538   EVT MagVT = MagAsInt.IntValue.getValueType();
1539   SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT);
1540   SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue,
1541                                     ClearSignMask);
1542 
1543   // Get the signbit at the right position for MagAsInt.
1544   int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit;
1545   EVT ShiftVT = IntVT;
1546   if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) {
1547     SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit);
1548     ShiftVT = MagVT;
1549   }
1550   if (ShiftAmount > 0) {
1551     SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT);
1552     SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst);
1553   } else if (ShiftAmount < 0) {
1554     SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT);
1555     SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst);
1556   }
1557   if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) {
1558     SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit);
1559   }
1560 
1561   // Store the part with the modified sign and convert back to float.
1562   SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit);
1563   return modifySignAsInt(MagAsInt, DL, CopiedSign);
1564 }
1565 
1566 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const {
1567   SDLoc DL(Node);
1568   SDValue Value = Node->getOperand(0);
1569 
1570   // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal.
1571   EVT FloatVT = Value.getValueType();
1572   if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) {
1573     SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT);
1574     return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero);
1575   }
1576 
1577   // Transform value to integer, clear the sign bit and transform back.
1578   FloatSignAsInt ValueAsInt;
1579   getSignAsIntValue(ValueAsInt, DL, Value);
1580   EVT IntVT = ValueAsInt.IntValue.getValueType();
1581   SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT);
1582   SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue,
1583                                     ClearSignMask);
1584   return modifySignAsInt(ValueAsInt, DL, ClearedSign);
1585 }
1586 
1587 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1588                                            SmallVectorImpl<SDValue> &Results) {
1589   unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1590   assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1591           " not tell us which reg is the stack pointer!");
1592   SDLoc dl(Node);
1593   EVT VT = Node->getValueType(0);
1594   SDValue Tmp1 = SDValue(Node, 0);
1595   SDValue Tmp2 = SDValue(Node, 1);
1596   SDValue Tmp3 = Node->getOperand(2);
1597   SDValue Chain = Tmp1.getOperand(0);
1598 
1599   // Chain the dynamic stack allocation so that it doesn't modify the stack
1600   // pointer when other instructions are using the stack.
1601   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
1602 
1603   SDValue Size  = Tmp2.getOperand(1);
1604   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1605   Chain = SP.getValue(1);
1606   unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1607   unsigned StackAlign =
1608       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
1609   Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1610   if (Align > StackAlign)
1611     Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
1612                        DAG.getConstant(-(uint64_t)Align, dl, VT));
1613   Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1614 
1615   Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
1616                             DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
1617 
1618   Results.push_back(Tmp1);
1619   Results.push_back(Tmp2);
1620 }
1621 
1622 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current
1623 /// target.
1624 ///
1625 /// If the SETCC has been legalized using AND / OR, then the legalized node
1626 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
1627 /// will be set to false.
1628 ///
1629 /// If the SETCC has been legalized by using getSetCCSwappedOperands(),
1630 /// then the values of LHS and RHS will be swapped, CC will be set to the
1631 /// new condition, and NeedInvert will be set to false.
1632 ///
1633 /// If the SETCC has been legalized using the inverse condcode, then LHS and
1634 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert
1635 /// will be set to true. The caller must invert the result of the SETCC with
1636 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect
1637 /// of a true/false result.
1638 ///
1639 /// \returns true if the SetCC has been legalized, false if it hasn't.
1640 bool SelectionDAGLegalize::LegalizeSetCCCondCode(
1641     EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, bool &NeedInvert,
1642     const SDLoc &dl, SDValue &Chain, bool IsSignaling) {
1643   MVT OpVT = LHS.getSimpleValueType();
1644   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1645   NeedInvert = false;
1646   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1647   default: llvm_unreachable("Unknown condition code action!");
1648   case TargetLowering::Legal:
1649     // Nothing to do.
1650     break;
1651   case TargetLowering::Expand: {
1652     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
1653     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1654       std::swap(LHS, RHS);
1655       CC = DAG.getCondCode(InvCC);
1656       return true;
1657     }
1658     // Swapping operands didn't work. Try inverting the condition.
1659     bool NeedSwap = false;
1660     InvCC = getSetCCInverse(CCCode, OpVT);
1661     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1662       // If inverting the condition is not enough, try swapping operands
1663       // on top of it.
1664       InvCC = ISD::getSetCCSwappedOperands(InvCC);
1665       NeedSwap = true;
1666     }
1667     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1668       CC = DAG.getCondCode(InvCC);
1669       NeedInvert = true;
1670       if (NeedSwap)
1671         std::swap(LHS, RHS);
1672       return true;
1673     }
1674 
1675     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1676     unsigned Opc = 0;
1677     switch (CCCode) {
1678     default: llvm_unreachable("Don't know how to expand this condition!");
1679     case ISD::SETO:
1680         assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT)
1681             && "If SETO is expanded, SETOEQ must be legal!");
1682         CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
1683     case ISD::SETUO:
1684         assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT)
1685             && "If SETUO is expanded, SETUNE must be legal!");
1686         CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR;  break;
1687     case ISD::SETOEQ:
1688     case ISD::SETOGT:
1689     case ISD::SETOGE:
1690     case ISD::SETOLT:
1691     case ISD::SETOLE:
1692     case ISD::SETONE:
1693     case ISD::SETUEQ:
1694     case ISD::SETUNE:
1695     case ISD::SETUGT:
1696     case ISD::SETUGE:
1697     case ISD::SETULT:
1698     case ISD::SETULE:
1699         // If we are floating point, assign and break, otherwise fall through.
1700         if (!OpVT.isInteger()) {
1701           // We can use the 4th bit to tell if we are the unordered
1702           // or ordered version of the opcode.
1703           CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
1704           Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
1705           CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
1706           break;
1707         }
1708         // Fallthrough if we are unsigned integer.
1709         LLVM_FALLTHROUGH;
1710     case ISD::SETLE:
1711     case ISD::SETGT:
1712     case ISD::SETGE:
1713     case ISD::SETLT:
1714     case ISD::SETNE:
1715     case ISD::SETEQ:
1716       // If all combinations of inverting the condition and swapping operands
1717       // didn't work then we have no means to expand the condition.
1718       llvm_unreachable("Don't know how to expand this condition!");
1719     }
1720 
1721     SDValue SetCC1, SetCC2;
1722     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
1723       // If we aren't the ordered or unorder operation,
1724       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
1725       SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
1726       SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
1727     } else {
1728       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
1729       SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
1730       SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
1731     }
1732     if (Chain)
1733       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
1734                           SetCC2.getValue(1));
1735     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1736     RHS = SDValue();
1737     CC  = SDValue();
1738     return true;
1739   }
1740   }
1741   return false;
1742 }
1743 
1744 /// Emit a store/load combination to the stack.  This stores
1745 /// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1746 /// a load from the stack slot to DestVT, extending it if needed.
1747 /// The resultant code need not be legal.
1748 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1749                                                EVT DestVT, const SDLoc &dl) {
1750   return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode());
1751 }
1752 
1753 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1754                                                EVT DestVT, const SDLoc &dl,
1755                                                SDValue Chain) {
1756   // Create the stack frame object.
1757   unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment(
1758       SrcOp.getValueType().getTypeForEVT(*DAG.getContext()));
1759   SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1760 
1761   FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1762   int SPFI = StackPtrFI->getIndex();
1763   MachinePointerInfo PtrInfo =
1764       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
1765 
1766   unsigned SrcSize = SrcOp.getValueSizeInBits();
1767   unsigned SlotSize = SlotVT.getSizeInBits();
1768   unsigned DestSize = DestVT.getSizeInBits();
1769   Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1770   unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType);
1771 
1772   // Emit a store to the stack slot.  Use a truncstore if the input value is
1773   // later than DestVT.
1774   SDValue Store;
1775 
1776   if (SrcSize > SlotSize)
1777     Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo,
1778                               SlotVT, SrcAlign);
1779   else {
1780     assert(SrcSize == SlotSize && "Invalid store");
1781     Store =
1782         DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign);
1783   }
1784 
1785   // Result is a load from the stack slot.
1786   if (SlotSize == DestSize)
1787     return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign);
1788 
1789   assert(SlotSize < DestSize && "Unknown extension!");
1790   return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT,
1791                         DestAlign);
1792 }
1793 
1794 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1795   SDLoc dl(Node);
1796   // Create a vector sized/aligned stack slot, store the value to element #0,
1797   // then load the whole vector back out.
1798   SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1799 
1800   FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1801   int SPFI = StackPtrFI->getIndex();
1802 
1803   SDValue Ch = DAG.getTruncStore(
1804       DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr,
1805       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI),
1806       Node->getValueType(0).getVectorElementType());
1807   return DAG.getLoad(
1808       Node->getValueType(0), dl, Ch, StackPtr,
1809       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
1810 }
1811 
1812 static bool
1813 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG,
1814                      const TargetLowering &TLI, SDValue &Res) {
1815   unsigned NumElems = Node->getNumOperands();
1816   SDLoc dl(Node);
1817   EVT VT = Node->getValueType(0);
1818 
1819   // Try to group the scalars into pairs, shuffle the pairs together, then
1820   // shuffle the pairs of pairs together, etc. until the vector has
1821   // been built. This will work only if all of the necessary shuffle masks
1822   // are legal.
1823 
1824   // We do this in two phases; first to check the legality of the shuffles,
1825   // and next, assuming that all shuffles are legal, to create the new nodes.
1826   for (int Phase = 0; Phase < 2; ++Phase) {
1827     SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals,
1828                                                               NewIntermedVals;
1829     for (unsigned i = 0; i < NumElems; ++i) {
1830       SDValue V = Node->getOperand(i);
1831       if (V.isUndef())
1832         continue;
1833 
1834       SDValue Vec;
1835       if (Phase)
1836         Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V);
1837       IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i)));
1838     }
1839 
1840     while (IntermedVals.size() > 2) {
1841       NewIntermedVals.clear();
1842       for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) {
1843         // This vector and the next vector are shuffled together (simply to
1844         // append the one to the other).
1845         SmallVector<int, 16> ShuffleVec(NumElems, -1);
1846 
1847         SmallVector<int, 16> FinalIndices;
1848         FinalIndices.reserve(IntermedVals[i].second.size() +
1849                              IntermedVals[i+1].second.size());
1850 
1851         int k = 0;
1852         for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f;
1853              ++j, ++k) {
1854           ShuffleVec[k] = j;
1855           FinalIndices.push_back(IntermedVals[i].second[j]);
1856         }
1857         for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f;
1858              ++j, ++k) {
1859           ShuffleVec[k] = NumElems + j;
1860           FinalIndices.push_back(IntermedVals[i+1].second[j]);
1861         }
1862 
1863         SDValue Shuffle;
1864         if (Phase)
1865           Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first,
1866                                          IntermedVals[i+1].first,
1867                                          ShuffleVec);
1868         else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1869           return false;
1870         NewIntermedVals.push_back(
1871             std::make_pair(Shuffle, std::move(FinalIndices)));
1872       }
1873 
1874       // If we had an odd number of defined values, then append the last
1875       // element to the array of new vectors.
1876       if ((IntermedVals.size() & 1) != 0)
1877         NewIntermedVals.push_back(IntermedVals.back());
1878 
1879       IntermedVals.swap(NewIntermedVals);
1880     }
1881 
1882     assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 &&
1883            "Invalid number of intermediate vectors");
1884     SDValue Vec1 = IntermedVals[0].first;
1885     SDValue Vec2;
1886     if (IntermedVals.size() > 1)
1887       Vec2 = IntermedVals[1].first;
1888     else if (Phase)
1889       Vec2 = DAG.getUNDEF(VT);
1890 
1891     SmallVector<int, 16> ShuffleVec(NumElems, -1);
1892     for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i)
1893       ShuffleVec[IntermedVals[0].second[i]] = i;
1894     for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i)
1895       ShuffleVec[IntermedVals[1].second[i]] = NumElems + i;
1896 
1897     if (Phase)
1898       Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
1899     else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1900       return false;
1901   }
1902 
1903   return true;
1904 }
1905 
1906 /// Expand a BUILD_VECTOR node on targets that don't
1907 /// support the operation, but do support the resultant vector type.
1908 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1909   unsigned NumElems = Node->getNumOperands();
1910   SDValue Value1, Value2;
1911   SDLoc dl(Node);
1912   EVT VT = Node->getValueType(0);
1913   EVT OpVT = Node->getOperand(0).getValueType();
1914   EVT EltVT = VT.getVectorElementType();
1915 
1916   // If the only non-undef value is the low element, turn this into a
1917   // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1918   bool isOnlyLowElement = true;
1919   bool MoreThanTwoValues = false;
1920   bool isConstant = true;
1921   for (unsigned i = 0; i < NumElems; ++i) {
1922     SDValue V = Node->getOperand(i);
1923     if (V.isUndef())
1924       continue;
1925     if (i > 0)
1926       isOnlyLowElement = false;
1927     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1928       isConstant = false;
1929 
1930     if (!Value1.getNode()) {
1931       Value1 = V;
1932     } else if (!Value2.getNode()) {
1933       if (V != Value1)
1934         Value2 = V;
1935     } else if (V != Value1 && V != Value2) {
1936       MoreThanTwoValues = true;
1937     }
1938   }
1939 
1940   if (!Value1.getNode())
1941     return DAG.getUNDEF(VT);
1942 
1943   if (isOnlyLowElement)
1944     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1945 
1946   // If all elements are constants, create a load from the constant pool.
1947   if (isConstant) {
1948     SmallVector<Constant*, 16> CV;
1949     for (unsigned i = 0, e = NumElems; i != e; ++i) {
1950       if (ConstantFPSDNode *V =
1951           dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1952         CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1953       } else if (ConstantSDNode *V =
1954                  dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1955         if (OpVT==EltVT)
1956           CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1957         else {
1958           // If OpVT and EltVT don't match, EltVT is not legal and the
1959           // element values have been promoted/truncated earlier.  Undo this;
1960           // we don't want a v16i8 to become a v16i32 for example.
1961           const ConstantInt *CI = V->getConstantIntValue();
1962           CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1963                                         CI->getZExtValue()));
1964         }
1965       } else {
1966         assert(Node->getOperand(i).isUndef());
1967         Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1968         CV.push_back(UndefValue::get(OpNTy));
1969       }
1970     }
1971     Constant *CP = ConstantVector::get(CV);
1972     SDValue CPIdx =
1973         DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout()));
1974     unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1975     return DAG.getLoad(
1976         VT, dl, DAG.getEntryNode(), CPIdx,
1977         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
1978         Alignment);
1979   }
1980 
1981   SmallSet<SDValue, 16> DefinedValues;
1982   for (unsigned i = 0; i < NumElems; ++i) {
1983     if (Node->getOperand(i).isUndef())
1984       continue;
1985     DefinedValues.insert(Node->getOperand(i));
1986   }
1987 
1988   if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) {
1989     if (!MoreThanTwoValues) {
1990       SmallVector<int, 8> ShuffleVec(NumElems, -1);
1991       for (unsigned i = 0; i < NumElems; ++i) {
1992         SDValue V = Node->getOperand(i);
1993         if (V.isUndef())
1994           continue;
1995         ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1996       }
1997       if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1998         // Get the splatted value into the low element of a vector register.
1999         SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
2000         SDValue Vec2;
2001         if (Value2.getNode())
2002           Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
2003         else
2004           Vec2 = DAG.getUNDEF(VT);
2005 
2006         // Return shuffle(LowValVec, undef, <0,0,0,0>)
2007         return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
2008       }
2009     } else {
2010       SDValue Res;
2011       if (ExpandBVWithShuffles(Node, DAG, TLI, Res))
2012         return Res;
2013     }
2014   }
2015 
2016   // Otherwise, we can't handle this case efficiently.
2017   return ExpandVectorBuildThroughStack(Node);
2018 }
2019 
2020 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) {
2021   SDLoc DL(Node);
2022   EVT VT = Node->getValueType(0);
2023   SDValue SplatVal = Node->getOperand(0);
2024 
2025   return DAG.getSplatBuildVector(VT, DL, SplatVal);
2026 }
2027 
2028 // Expand a node into a call to a libcall.  If the result value
2029 // does not fit into a register, return the lo part and set the hi part to the
2030 // by-reg argument.  If it does fit into a single register, return the result
2031 // and leave the Hi part unset.
2032 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
2033                                             bool isSigned) {
2034   TargetLowering::ArgListTy Args;
2035   TargetLowering::ArgListEntry Entry;
2036   for (const SDValue &Op : Node->op_values()) {
2037     EVT ArgVT = Op.getValueType();
2038     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2039     Entry.Node = Op;
2040     Entry.Ty = ArgTy;
2041     Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
2042     Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
2043     Args.push_back(Entry);
2044   }
2045   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2046                                          TLI.getPointerTy(DAG.getDataLayout()));
2047 
2048   EVT RetVT = Node->getValueType(0);
2049   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2050 
2051   // By default, the input chain to this libcall is the entry node of the
2052   // function. If the libcall is going to be emitted as a tail call then
2053   // TLI.isUsedByReturnOnly will change it to the right chain if the return
2054   // node which is being folded has a non-entry input chain.
2055   SDValue InChain = DAG.getEntryNode();
2056 
2057   // isTailCall may be true since the callee does not reference caller stack
2058   // frame. Check if it's in the right position and that the return types match.
2059   SDValue TCChain = InChain;
2060   const Function &F = DAG.getMachineFunction().getFunction();
2061   bool isTailCall =
2062       TLI.isInTailCallPosition(DAG, Node, TCChain) &&
2063       (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy());
2064   if (isTailCall)
2065     InChain = TCChain;
2066 
2067   TargetLowering::CallLoweringInfo CLI(DAG);
2068   bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned);
2069   CLI.setDebugLoc(SDLoc(Node))
2070       .setChain(InChain)
2071       .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2072                     std::move(Args))
2073       .setTailCall(isTailCall)
2074       .setSExtResult(signExtend)
2075       .setZExtResult(!signExtend)
2076       .setIsPostTypeLegalization(true);
2077 
2078   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2079 
2080   if (!CallInfo.second.getNode()) {
2081     LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG));
2082     // It's a tailcall, return the chain (which is the DAG root).
2083     return DAG.getRoot();
2084   }
2085 
2086   LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG));
2087   return CallInfo.first;
2088 }
2089 
2090 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2091                                            RTLIB::Libcall Call_F32,
2092                                            RTLIB::Libcall Call_F64,
2093                                            RTLIB::Libcall Call_F80,
2094                                            RTLIB::Libcall Call_F128,
2095                                            RTLIB::Libcall Call_PPCF128,
2096                                            SmallVectorImpl<SDValue> &Results) {
2097   RTLIB::Libcall LC;
2098   switch (Node->getSimpleValueType(0).SimpleTy) {
2099   default: llvm_unreachable("Unexpected request for libcall!");
2100   case MVT::f32: LC = Call_F32; break;
2101   case MVT::f64: LC = Call_F64; break;
2102   case MVT::f80: LC = Call_F80; break;
2103   case MVT::f128: LC = Call_F128; break;
2104   case MVT::ppcf128: LC = Call_PPCF128; break;
2105   }
2106 
2107   if (Node->isStrictFPOpcode()) {
2108     EVT RetVT = Node->getValueType(0);
2109     SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end());
2110     TargetLowering::MakeLibCallOptions CallOptions;
2111     // FIXME: This doesn't support tail calls.
2112     std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
2113                                                       Ops, CallOptions,
2114                                                       SDLoc(Node),
2115                                                       Node->getOperand(0));
2116     Results.push_back(Tmp.first);
2117     Results.push_back(Tmp.second);
2118   } else {
2119     SDValue Tmp = ExpandLibCall(LC, Node, false);
2120     Results.push_back(Tmp);
2121   }
2122 }
2123 
2124 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2125                                                RTLIB::Libcall Call_I8,
2126                                                RTLIB::Libcall Call_I16,
2127                                                RTLIB::Libcall Call_I32,
2128                                                RTLIB::Libcall Call_I64,
2129                                                RTLIB::Libcall Call_I128) {
2130   RTLIB::Libcall LC;
2131   switch (Node->getSimpleValueType(0).SimpleTy) {
2132   default: llvm_unreachable("Unexpected request for libcall!");
2133   case MVT::i8:   LC = Call_I8; break;
2134   case MVT::i16:  LC = Call_I16; break;
2135   case MVT::i32:  LC = Call_I32; break;
2136   case MVT::i64:  LC = Call_I64; break;
2137   case MVT::i128: LC = Call_I128; break;
2138   }
2139   return ExpandLibCall(LC, Node, isSigned);
2140 }
2141 
2142 /// Expand the node to a libcall based on first argument type (for instance
2143 /// lround and its variant).
2144 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node,
2145                                             RTLIB::Libcall Call_F32,
2146                                             RTLIB::Libcall Call_F64,
2147                                             RTLIB::Libcall Call_F80,
2148                                             RTLIB::Libcall Call_F128,
2149                                             RTLIB::Libcall Call_PPCF128,
2150                                             SmallVectorImpl<SDValue> &Results) {
2151   EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType();
2152 
2153   RTLIB::Libcall LC;
2154   switch (InVT.getSimpleVT().SimpleTy) {
2155   default: llvm_unreachable("Unexpected request for libcall!");
2156   case MVT::f32:     LC = Call_F32; break;
2157   case MVT::f64:     LC = Call_F64; break;
2158   case MVT::f80:     LC = Call_F80; break;
2159   case MVT::f128:    LC = Call_F128; break;
2160   case MVT::ppcf128: LC = Call_PPCF128; break;
2161   }
2162 
2163   if (Node->isStrictFPOpcode()) {
2164     EVT RetVT = Node->getValueType(0);
2165     SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end());
2166     TargetLowering::MakeLibCallOptions CallOptions;
2167     // FIXME: This doesn't support tail calls.
2168     std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
2169                                                       Ops, CallOptions,
2170                                                       SDLoc(Node),
2171                                                       Node->getOperand(0));
2172     Results.push_back(Tmp.first);
2173     Results.push_back(Tmp.second);
2174   } else {
2175     SDValue Tmp = ExpandLibCall(LC, Node, false);
2176     Results.push_back(Tmp);
2177   }
2178 }
2179 
2180 /// Issue libcalls to __{u}divmod to compute div / rem pairs.
2181 void
2182 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2183                                           SmallVectorImpl<SDValue> &Results) {
2184   unsigned Opcode = Node->getOpcode();
2185   bool isSigned = Opcode == ISD::SDIVREM;
2186 
2187   RTLIB::Libcall LC;
2188   switch (Node->getSimpleValueType(0).SimpleTy) {
2189   default: llvm_unreachable("Unexpected request for libcall!");
2190   case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2191   case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2192   case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2193   case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2194   case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2195   }
2196 
2197   // The input chain to this libcall is the entry node of the function.
2198   // Legalizing the call will automatically add the previous call to the
2199   // dependence.
2200   SDValue InChain = DAG.getEntryNode();
2201 
2202   EVT RetVT = Node->getValueType(0);
2203   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2204 
2205   TargetLowering::ArgListTy Args;
2206   TargetLowering::ArgListEntry Entry;
2207   for (const SDValue &Op : Node->op_values()) {
2208     EVT ArgVT = Op.getValueType();
2209     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2210     Entry.Node = Op;
2211     Entry.Ty = ArgTy;
2212     Entry.IsSExt = isSigned;
2213     Entry.IsZExt = !isSigned;
2214     Args.push_back(Entry);
2215   }
2216 
2217   // Also pass the return address of the remainder.
2218   SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2219   Entry.Node = FIPtr;
2220   Entry.Ty = RetTy->getPointerTo();
2221   Entry.IsSExt = isSigned;
2222   Entry.IsZExt = !isSigned;
2223   Args.push_back(Entry);
2224 
2225   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2226                                          TLI.getPointerTy(DAG.getDataLayout()));
2227 
2228   SDLoc dl(Node);
2229   TargetLowering::CallLoweringInfo CLI(DAG);
2230   CLI.setDebugLoc(dl)
2231       .setChain(InChain)
2232       .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2233                     std::move(Args))
2234       .setSExtResult(isSigned)
2235       .setZExtResult(!isSigned);
2236 
2237   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2238 
2239   // Remainder is loaded back from the stack frame.
2240   SDValue Rem =
2241       DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo());
2242   Results.push_back(CallInfo.first);
2243   Results.push_back(Rem);
2244 }
2245 
2246 /// Return true if sincos libcall is available.
2247 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
2248   RTLIB::Libcall LC;
2249   switch (Node->getSimpleValueType(0).SimpleTy) {
2250   default: llvm_unreachable("Unexpected request for libcall!");
2251   case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
2252   case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
2253   case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
2254   case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
2255   case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2256   }
2257   return TLI.getLibcallName(LC) != nullptr;
2258 }
2259 
2260 /// Only issue sincos libcall if both sin and cos are needed.
2261 static bool useSinCos(SDNode *Node) {
2262   unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
2263     ? ISD::FCOS : ISD::FSIN;
2264 
2265   SDValue Op0 = Node->getOperand(0);
2266   for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2267        UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2268     SDNode *User = *UI;
2269     if (User == Node)
2270       continue;
2271     // The other user might have been turned into sincos already.
2272     if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
2273       return true;
2274   }
2275   return false;
2276 }
2277 
2278 /// Issue libcalls to sincos to compute sin / cos pairs.
2279 void
2280 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
2281                                           SmallVectorImpl<SDValue> &Results) {
2282   RTLIB::Libcall LC;
2283   switch (Node->getSimpleValueType(0).SimpleTy) {
2284   default: llvm_unreachable("Unexpected request for libcall!");
2285   case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
2286   case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
2287   case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
2288   case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
2289   case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2290   }
2291 
2292   // The input chain to this libcall is the entry node of the function.
2293   // Legalizing the call will automatically add the previous call to the
2294   // dependence.
2295   SDValue InChain = DAG.getEntryNode();
2296 
2297   EVT RetVT = Node->getValueType(0);
2298   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2299 
2300   TargetLowering::ArgListTy Args;
2301   TargetLowering::ArgListEntry Entry;
2302 
2303   // Pass the argument.
2304   Entry.Node = Node->getOperand(0);
2305   Entry.Ty = RetTy;
2306   Entry.IsSExt = false;
2307   Entry.IsZExt = false;
2308   Args.push_back(Entry);
2309 
2310   // Pass the return address of sin.
2311   SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
2312   Entry.Node = SinPtr;
2313   Entry.Ty = RetTy->getPointerTo();
2314   Entry.IsSExt = false;
2315   Entry.IsZExt = false;
2316   Args.push_back(Entry);
2317 
2318   // Also pass the return address of the cos.
2319   SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
2320   Entry.Node = CosPtr;
2321   Entry.Ty = RetTy->getPointerTo();
2322   Entry.IsSExt = false;
2323   Entry.IsZExt = false;
2324   Args.push_back(Entry);
2325 
2326   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2327                                          TLI.getPointerTy(DAG.getDataLayout()));
2328 
2329   SDLoc dl(Node);
2330   TargetLowering::CallLoweringInfo CLI(DAG);
2331   CLI.setDebugLoc(dl).setChain(InChain).setLibCallee(
2332       TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee,
2333       std::move(Args));
2334 
2335   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2336 
2337   Results.push_back(
2338       DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo()));
2339   Results.push_back(
2340       DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo()));
2341 }
2342 
2343 /// This function is responsible for legalizing a
2344 /// INT_TO_FP operation of the specified operand when the target requests that
2345 /// we expand it.  At this point, we know that the result and operand types are
2346 /// legal for the target.
2347 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node,
2348                                                    SDValue &Chain) {
2349   bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP ||
2350                    Node->getOpcode() == ISD::SINT_TO_FP);
2351   EVT DestVT = Node->getValueType(0);
2352   SDLoc dl(Node);
2353   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
2354   SDValue Op0 = Node->getOperand(OpNo);
2355   EVT SrcVT = Op0.getValueType();
2356 
2357   // TODO: Should any fast-math-flags be set for the created nodes?
2358   LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n");
2359   if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
2360     LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double "
2361                          "expansion\n");
2362 
2363     // Get the stack frame index of a 8 byte buffer.
2364     SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2365 
2366     // word offset constant for Hi/Lo address computation
2367     SDValue WordOff = DAG.getConstant(sizeof(int), dl,
2368                                       StackSlot.getValueType());
2369     // set up Hi and Lo (into buffer) address based on endian
2370     SDValue Hi = StackSlot;
2371     SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(),
2372                              StackSlot, WordOff);
2373     if (DAG.getDataLayout().isLittleEndian())
2374       std::swap(Hi, Lo);
2375 
2376     // if signed map to unsigned space
2377     SDValue Op0Mapped;
2378     if (isSigned) {
2379       // constant used to invert sign bit (signed to unsigned mapping)
2380       SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32);
2381       Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2382     } else {
2383       Op0Mapped = Op0;
2384     }
2385     // store the lo of the constructed double - based on integer input
2386     SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo,
2387                                   MachinePointerInfo());
2388     // initial hi portion of constructed double
2389     SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32);
2390     // store the hi of the constructed double - biased exponent
2391     SDValue Store2 =
2392         DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo());
2393     // load the constructed double
2394     SDValue Load =
2395         DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo());
2396     // FP constant to bias correct the final result
2397     SDValue Bias = DAG.getConstantFP(isSigned ?
2398                                      BitsToDouble(0x4330000080000000ULL) :
2399                                      BitsToDouble(0x4330000000000000ULL),
2400                                      dl, MVT::f64);
2401     // Subtract the bias and get the final result.
2402     SDValue Sub;
2403     SDValue Result;
2404     if (Node->isStrictFPOpcode()) {
2405       Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other},
2406                         {Node->getOperand(0), Load, Bias});
2407       Chain = Sub.getValue(1);
2408       if (DestVT != Sub.getValueType()) {
2409         std::pair<SDValue, SDValue> ResultPair;
2410         ResultPair =
2411             DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT);
2412         Result = ResultPair.first;
2413         Chain = ResultPair.second;
2414       }
2415       else
2416         Result = Sub;
2417     } else {
2418       Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2419       Result = DAG.getFPExtendOrRound(Sub, dl, DestVT);
2420     }
2421     return Result;
2422   }
2423   // Code below here assumes !isSigned without checking again.
2424   assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2425 
2426   // TODO: Generalize this for use with other types.
2427   if ((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) {
2428     LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32\n");
2429     // For unsigned conversions, convert them to signed conversions using the
2430     // algorithm from the x86_64 __floatundisf in compiler_rt. That method
2431     // should be valid for i32->f32 as well.
2432 
2433     // TODO: This really should be implemented using a branch rather than a
2434     // select.  We happen to get lucky and machinesink does the right
2435     // thing most of the time.  This would be a good candidate for a
2436     // pseudo-op, or, even better, for whole-function isel.
2437     EVT SetCCVT = getSetCCResultType(SrcVT);
2438 
2439     SDValue SignBitTest = DAG.getSetCC(
2440         dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
2441 
2442     EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout());
2443     SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
2444     SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst);
2445     SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
2446     SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst);
2447     SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
2448 
2449     SDValue Slow, Fast;
2450     if (Node->isStrictFPOpcode()) {
2451       // In strict mode, we must avoid spurious exceptions, and therefore
2452       // must make sure to only emit a single STRICT_SINT_TO_FP.
2453       SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0);
2454       Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other },
2455                          { Node->getOperand(0), InCvt });
2456       Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other },
2457                          { Fast.getValue(1), Fast, Fast });
2458       Chain = Slow.getValue(1);
2459       // The STRICT_SINT_TO_FP inherits the exception mode from the
2460       // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can
2461       // never raise any exception.
2462       SDNodeFlags Flags;
2463       Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept());
2464       Fast->setFlags(Flags);
2465       Flags.setNoFPExcept(true);
2466       Slow->setFlags(Flags);
2467     } else {
2468       SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or);
2469       Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt);
2470       Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2471     }
2472 
2473     return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast);
2474   }
2475 
2476   // The following optimization is valid only if every value in SrcVT (when
2477   // treated as signed) is representable in DestVT.  Check that the mantissa
2478   // size of DestVT is >= than the number of bits in SrcVT -1.
2479   assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >=
2480              SrcVT.getSizeInBits() - 1 &&
2481          "Cannot perform lossless SINT_TO_FP!");
2482 
2483   SDValue Tmp1;
2484   if (Node->isStrictFPOpcode()) {
2485     Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other },
2486                        { Node->getOperand(0), Op0 });
2487   } else
2488     Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2489 
2490   SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0,
2491                                  DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
2492   SDValue Zero = DAG.getIntPtrConstant(0, dl),
2493           Four = DAG.getIntPtrConstant(4, dl);
2494   SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(),
2495                                     SignSet, Four, Zero);
2496 
2497   // If the sign bit of the integer is set, the large number will be treated
2498   // as a negative number.  To counteract this, the dynamic code adds an
2499   // offset depending on the data type.
2500   uint64_t FF;
2501   switch (SrcVT.getSimpleVT().SimpleTy) {
2502   default: llvm_unreachable("Unsupported integer type!");
2503   case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2504   case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2505   case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2506   case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2507   }
2508   if (DAG.getDataLayout().isLittleEndian())
2509     FF <<= 32;
2510   Constant *FudgeFactor = ConstantInt::get(
2511                                        Type::getInt64Ty(*DAG.getContext()), FF);
2512 
2513   SDValue CPIdx =
2514       DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout()));
2515   unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2516   CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset);
2517   Alignment = std::min(Alignment, 4u);
2518   SDValue FudgeInReg;
2519   if (DestVT == MVT::f32)
2520     FudgeInReg = DAG.getLoad(
2521         MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2522         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
2523         Alignment);
2524   else {
2525     SDValue Load = DAG.getExtLoad(
2526         ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx,
2527         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
2528         Alignment);
2529     HandleSDNode Handle(Load);
2530     LegalizeOp(Load.getNode());
2531     FudgeInReg = Handle.getValue();
2532   }
2533 
2534   if (Node->isStrictFPOpcode()) {
2535     SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other },
2536                                  { Tmp1.getValue(1), Tmp1, FudgeInReg });
2537     Chain = Result.getValue(1);
2538     return Result;
2539   }
2540 
2541   return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2542 }
2543 
2544 /// This function is responsible for legalizing a
2545 /// *INT_TO_FP operation of the specified operand when the target requests that
2546 /// we promote it.  At this point, we know that the result and operand types are
2547 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2548 /// operation that takes a larger input.
2549 void SelectionDAGLegalize::PromoteLegalINT_TO_FP(
2550     SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) {
2551   bool IsStrict = N->isStrictFPOpcode();
2552   bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP ||
2553                   N->getOpcode() == ISD::STRICT_SINT_TO_FP;
2554   EVT DestVT = N->getValueType(0);
2555   SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0);
2556   unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP;
2557   unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP;
2558 
2559   // First step, figure out the appropriate *INT_TO_FP operation to use.
2560   EVT NewInTy = LegalOp.getValueType();
2561 
2562   unsigned OpToUse = 0;
2563 
2564   // Scan for the appropriate larger type to use.
2565   while (true) {
2566     NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2567     assert(NewInTy.isInteger() && "Ran out of possibilities!");
2568 
2569     // If the target supports SINT_TO_FP of this type, use it.
2570     if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) {
2571       OpToUse = SIntOp;
2572       break;
2573     }
2574     if (IsSigned)
2575       continue;
2576 
2577     // If the target supports UINT_TO_FP of this type, use it.
2578     if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) {
2579       OpToUse = UIntOp;
2580       break;
2581     }
2582 
2583     // Otherwise, try a larger type.
2584   }
2585 
2586   // Okay, we found the operation and type to use.  Zero extend our input to the
2587   // desired type then run the operation on it.
2588   if (IsStrict) {
2589     SDValue Res =
2590         DAG.getNode(OpToUse, dl, {DestVT, MVT::Other},
2591                     {N->getOperand(0),
2592                      DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2593                                  dl, NewInTy, LegalOp)});
2594     Results.push_back(Res);
2595     Results.push_back(Res.getValue(1));
2596     return;
2597   }
2598 
2599   Results.push_back(
2600       DAG.getNode(OpToUse, dl, DestVT,
2601                   DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2602                               dl, NewInTy, LegalOp)));
2603 }
2604 
2605 /// This function is responsible for legalizing a
2606 /// FP_TO_*INT operation of the specified operand when the target requests that
2607 /// we promote it.  At this point, we know that the result and operand types are
2608 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2609 /// operation that returns a larger result.
2610 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl,
2611                                                  SmallVectorImpl<SDValue> &Results) {
2612   bool IsStrict = N->isStrictFPOpcode();
2613   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
2614                   N->getOpcode() == ISD::STRICT_FP_TO_SINT;
2615   EVT DestVT = N->getValueType(0);
2616   SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0);
2617   // First step, figure out the appropriate FP_TO*INT operation to use.
2618   EVT NewOutTy = DestVT;
2619 
2620   unsigned OpToUse = 0;
2621 
2622   // Scan for the appropriate larger type to use.
2623   while (true) {
2624     NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2625     assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2626 
2627     // A larger signed type can hold all unsigned values of the requested type,
2628     // so using FP_TO_SINT is valid
2629     OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT;
2630     if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy))
2631       break;
2632 
2633     // However, if the value may be < 0.0, we *must* use some FP_TO_SINT.
2634     OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT;
2635     if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy))
2636       break;
2637 
2638     // Otherwise, try a larger type.
2639   }
2640 
2641   // Okay, we found the operation and type to use.
2642   SDValue Operation;
2643   if (IsStrict) {
2644     SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other);
2645     Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp);
2646   } else
2647     Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2648 
2649   // Truncate the result of the extended FP_TO_*INT operation to the desired
2650   // size.
2651   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2652   Results.push_back(Trunc);
2653   if (IsStrict)
2654     Results.push_back(Operation.getValue(1));
2655 }
2656 
2657 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts.
2658 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) {
2659   EVT VT = Op.getValueType();
2660   EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2661   unsigned Sz = VT.getScalarSizeInBits();
2662 
2663   SDValue Tmp, Tmp2, Tmp3;
2664 
2665   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
2666   // and finally the i1 pairs.
2667   // TODO: We can easily support i4/i2 legal types if any target ever does.
2668   if (Sz >= 8 && isPowerOf2_32(Sz)) {
2669     // Create the masks - repeating the pattern every byte.
2670     APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0));
2671     APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC));
2672     APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA));
2673     APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F));
2674     APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33));
2675     APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55));
2676 
2677     // BSWAP if the type is wider than a single byte.
2678     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
2679 
2680     // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4)
2681     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT));
2682     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT));
2683     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT));
2684     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
2685     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2686 
2687     // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2)
2688     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT));
2689     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT));
2690     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT));
2691     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
2692     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2693 
2694     // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1)
2695     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT));
2696     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT));
2697     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT));
2698     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
2699     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2700     return Tmp;
2701   }
2702 
2703   Tmp = DAG.getConstant(0, dl, VT);
2704   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
2705     if (I < J)
2706       Tmp2 =
2707           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
2708     else
2709       Tmp2 =
2710           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
2711 
2712     APInt Shift(Sz, 1);
2713     Shift <<= J;
2714     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
2715     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
2716   }
2717 
2718   return Tmp;
2719 }
2720 
2721 /// Open code the operations for BSWAP of the specified operation.
2722 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) {
2723   EVT VT = Op.getValueType();
2724   EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2725   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2726   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
2727   default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2728   case MVT::i16:
2729     // Use a rotate by 8. This can be further expanded if necessary.
2730     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2731   case MVT::i32:
2732     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2733     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2734     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2735     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2736     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2737                        DAG.getConstant(0xFF0000, dl, VT));
2738     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
2739     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2740     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2741     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2742   case MVT::i64:
2743     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2744     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2745     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2746     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2747     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2748     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2749     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2750     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2751     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
2752                        DAG.getConstant(255ULL<<48, dl, VT));
2753     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
2754                        DAG.getConstant(255ULL<<40, dl, VT));
2755     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
2756                        DAG.getConstant(255ULL<<32, dl, VT));
2757     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
2758                        DAG.getConstant(255ULL<<24, dl, VT));
2759     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2760                        DAG.getConstant(255ULL<<16, dl, VT));
2761     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
2762                        DAG.getConstant(255ULL<<8 , dl, VT));
2763     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2764     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2765     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2766     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2767     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2768     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2769     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2770   }
2771 }
2772 
2773 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2774   LLVM_DEBUG(dbgs() << "Trying to expand node\n");
2775   SmallVector<SDValue, 8> Results;
2776   SDLoc dl(Node);
2777   SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2778   bool NeedInvert;
2779   switch (Node->getOpcode()) {
2780   case ISD::ABS:
2781     if (TLI.expandABS(Node, Tmp1, DAG))
2782       Results.push_back(Tmp1);
2783     break;
2784   case ISD::CTPOP:
2785     if (TLI.expandCTPOP(Node, Tmp1, DAG))
2786       Results.push_back(Tmp1);
2787     break;
2788   case ISD::CTLZ:
2789   case ISD::CTLZ_ZERO_UNDEF:
2790     if (TLI.expandCTLZ(Node, Tmp1, DAG))
2791       Results.push_back(Tmp1);
2792     break;
2793   case ISD::CTTZ:
2794   case ISD::CTTZ_ZERO_UNDEF:
2795     if (TLI.expandCTTZ(Node, Tmp1, DAG))
2796       Results.push_back(Tmp1);
2797     break;
2798   case ISD::BITREVERSE:
2799     Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl));
2800     break;
2801   case ISD::BSWAP:
2802     Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2803     break;
2804   case ISD::FRAMEADDR:
2805   case ISD::RETURNADDR:
2806   case ISD::FRAME_TO_ARGS_OFFSET:
2807     Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
2808     break;
2809   case ISD::EH_DWARF_CFA: {
2810     SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl,
2811                                         TLI.getPointerTy(DAG.getDataLayout()));
2812     SDValue Offset = DAG.getNode(ISD::ADD, dl,
2813                                  CfaArg.getValueType(),
2814                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
2815                                              CfaArg.getValueType()),
2816                                  CfaArg);
2817     SDValue FA = DAG.getNode(
2818         ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()),
2819         DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())));
2820     Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(),
2821                                   FA, Offset));
2822     break;
2823   }
2824   case ISD::FLT_ROUNDS_:
2825     Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0)));
2826     Results.push_back(Node->getOperand(0));
2827     break;
2828   case ISD::EH_RETURN:
2829   case ISD::EH_LABEL:
2830   case ISD::PREFETCH:
2831   case ISD::VAEND:
2832   case ISD::EH_SJLJ_LONGJMP:
2833     // If the target didn't expand these, there's nothing to do, so just
2834     // preserve the chain and be done.
2835     Results.push_back(Node->getOperand(0));
2836     break;
2837   case ISD::READCYCLECOUNTER:
2838     // If the target didn't expand this, just return 'zero' and preserve the
2839     // chain.
2840     Results.append(Node->getNumValues() - 1,
2841                    DAG.getConstant(0, dl, Node->getValueType(0)));
2842     Results.push_back(Node->getOperand(0));
2843     break;
2844   case ISD::EH_SJLJ_SETJMP:
2845     // If the target didn't expand this, just return 'zero' and preserve the
2846     // chain.
2847     Results.push_back(DAG.getConstant(0, dl, MVT::i32));
2848     Results.push_back(Node->getOperand(0));
2849     break;
2850   case ISD::ATOMIC_LOAD: {
2851     // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2852     SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0));
2853     SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2854     SDValue Swap = DAG.getAtomicCmpSwap(
2855         ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2856         Node->getOperand(0), Node->getOperand(1), Zero, Zero,
2857         cast<AtomicSDNode>(Node)->getMemOperand());
2858     Results.push_back(Swap.getValue(0));
2859     Results.push_back(Swap.getValue(1));
2860     break;
2861   }
2862   case ISD::ATOMIC_STORE: {
2863     // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2864     SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2865                                  cast<AtomicSDNode>(Node)->getMemoryVT(),
2866                                  Node->getOperand(0),
2867                                  Node->getOperand(1), Node->getOperand(2),
2868                                  cast<AtomicSDNode>(Node)->getMemOperand());
2869     Results.push_back(Swap.getValue(1));
2870     break;
2871   }
2872   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
2873     // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and
2874     // splits out the success value as a comparison. Expanding the resulting
2875     // ATOMIC_CMP_SWAP will produce a libcall.
2876     SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2877     SDValue Res = DAG.getAtomicCmpSwap(
2878         ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2879         Node->getOperand(0), Node->getOperand(1), Node->getOperand(2),
2880         Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand());
2881 
2882     SDValue ExtRes = Res;
2883     SDValue LHS = Res;
2884     SDValue RHS = Node->getOperand(1);
2885 
2886     EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT();
2887     EVT OuterType = Node->getValueType(0);
2888     switch (TLI.getExtendForAtomicOps()) {
2889     case ISD::SIGN_EXTEND:
2890       LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res,
2891                         DAG.getValueType(AtomicType));
2892       RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType,
2893                         Node->getOperand(2), DAG.getValueType(AtomicType));
2894       ExtRes = LHS;
2895       break;
2896     case ISD::ZERO_EXTEND:
2897       LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res,
2898                         DAG.getValueType(AtomicType));
2899       RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2900       ExtRes = LHS;
2901       break;
2902     case ISD::ANY_EXTEND:
2903       LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType);
2904       RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2905       break;
2906     default:
2907       llvm_unreachable("Invalid atomic op extension");
2908     }
2909 
2910     SDValue Success =
2911         DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ);
2912 
2913     Results.push_back(ExtRes.getValue(0));
2914     Results.push_back(Success);
2915     Results.push_back(Res.getValue(1));
2916     break;
2917   }
2918   case ISD::DYNAMIC_STACKALLOC:
2919     ExpandDYNAMIC_STACKALLOC(Node, Results);
2920     break;
2921   case ISD::MERGE_VALUES:
2922     for (unsigned i = 0; i < Node->getNumValues(); i++)
2923       Results.push_back(Node->getOperand(i));
2924     break;
2925   case ISD::UNDEF: {
2926     EVT VT = Node->getValueType(0);
2927     if (VT.isInteger())
2928       Results.push_back(DAG.getConstant(0, dl, VT));
2929     else {
2930       assert(VT.isFloatingPoint() && "Unknown value type!");
2931       Results.push_back(DAG.getConstantFP(0, dl, VT));
2932     }
2933     break;
2934   }
2935   case ISD::STRICT_FP_ROUND:
2936     // When strict mode is enforced we can't do expansion because it
2937     // does not honor the "strict" properties. Only libcall is allowed.
2938     if (TLI.isStrictFPEnabled())
2939       break;
2940     // We might as well mutate to FP_ROUND when FP_ROUND operation is legal
2941     // since this operation is more efficient than stack operation.
2942     if (TLI.getStrictFPOperationAction(Node->getOpcode(),
2943                                        Node->getValueType(0))
2944         == TargetLowering::Legal)
2945       break;
2946     // We fall back to use stack operation when the FP_ROUND operation
2947     // isn't available.
2948     Tmp1 = EmitStackConvert(Node->getOperand(1),
2949                             Node->getValueType(0),
2950                             Node->getValueType(0), dl, Node->getOperand(0));
2951     ReplaceNode(Node, Tmp1.getNode());
2952     LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n");
2953     return true;
2954   case ISD::FP_ROUND:
2955   case ISD::BITCAST:
2956     Tmp1 = EmitStackConvert(Node->getOperand(0),
2957                             Node->getValueType(0),
2958                             Node->getValueType(0), dl);
2959     Results.push_back(Tmp1);
2960     break;
2961   case ISD::STRICT_FP_EXTEND:
2962     // When strict mode is enforced we can't do expansion because it
2963     // does not honor the "strict" properties. Only libcall is allowed.
2964     if (TLI.isStrictFPEnabled())
2965       break;
2966     // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal
2967     // since this operation is more efficient than stack operation.
2968     if (TLI.getStrictFPOperationAction(Node->getOpcode(),
2969                                        Node->getValueType(0))
2970         == TargetLowering::Legal)
2971       break;
2972     // We fall back to use stack operation when the FP_EXTEND operation
2973     // isn't available.
2974     Tmp1 = EmitStackConvert(Node->getOperand(1),
2975                             Node->getOperand(1).getValueType(),
2976                             Node->getValueType(0), dl, Node->getOperand(0));
2977     ReplaceNode(Node, Tmp1.getNode());
2978     LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n");
2979     return true;
2980   case ISD::FP_EXTEND:
2981     Tmp1 = EmitStackConvert(Node->getOperand(0),
2982                             Node->getOperand(0).getValueType(),
2983                             Node->getValueType(0), dl);
2984     Results.push_back(Tmp1);
2985     break;
2986   case ISD::SIGN_EXTEND_INREG: {
2987     EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2988     EVT VT = Node->getValueType(0);
2989 
2990     // An in-register sign-extend of a boolean is a negation:
2991     // 'true' (1) sign-extended is -1.
2992     // 'false' (0) sign-extended is 0.
2993     // However, we must mask the high bits of the source operand because the
2994     // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero.
2995 
2996     // TODO: Do this for vectors too?
2997     if (ExtraVT.getSizeInBits() == 1) {
2998       SDValue One = DAG.getConstant(1, dl, VT);
2999       SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One);
3000       SDValue Zero = DAG.getConstant(0, dl, VT);
3001       SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And);
3002       Results.push_back(Neg);
3003       break;
3004     }
3005 
3006     // NOTE: we could fall back on load/store here too for targets without
3007     // SRA.  However, it is doubtful that any exist.
3008     EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
3009     unsigned BitsDiff = VT.getScalarSizeInBits() -
3010                         ExtraVT.getScalarSizeInBits();
3011     SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy);
3012     Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
3013                        Node->getOperand(0), ShiftCst);
3014     Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
3015     Results.push_back(Tmp1);
3016     break;
3017   }
3018   case ISD::UINT_TO_FP:
3019   case ISD::STRICT_UINT_TO_FP:
3020     if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) {
3021       Results.push_back(Tmp1);
3022       if (Node->isStrictFPOpcode())
3023         Results.push_back(Tmp2);
3024       break;
3025     }
3026     LLVM_FALLTHROUGH;
3027   case ISD::SINT_TO_FP:
3028   case ISD::STRICT_SINT_TO_FP:
3029     Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2);
3030     Results.push_back(Tmp1);
3031     if (Node->isStrictFPOpcode())
3032       Results.push_back(Tmp2);
3033     break;
3034   case ISD::FP_TO_SINT:
3035     if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG))
3036       Results.push_back(Tmp1);
3037     break;
3038   case ISD::STRICT_FP_TO_SINT:
3039     if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) {
3040       ReplaceNode(Node, Tmp1.getNode());
3041       LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n");
3042       return true;
3043     }
3044     break;
3045   case ISD::FP_TO_UINT:
3046     if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG))
3047       Results.push_back(Tmp1);
3048     break;
3049   case ISD::STRICT_FP_TO_UINT:
3050     if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) {
3051       // Relink the chain.
3052       DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2);
3053       // Replace the new UINT result.
3054       ReplaceNodeWithValue(SDValue(Node, 0), Tmp1);
3055       LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n");
3056       return true;
3057     }
3058     break;
3059   case ISD::VAARG:
3060     Results.push_back(DAG.expandVAArg(Node));
3061     Results.push_back(Results[0].getValue(1));
3062     break;
3063   case ISD::VACOPY:
3064     Results.push_back(DAG.expandVACopy(Node));
3065     break;
3066   case ISD::EXTRACT_VECTOR_ELT:
3067     if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
3068       // This must be an access of the only element.  Return it.
3069       Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
3070                          Node->getOperand(0));
3071     else
3072       Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
3073     Results.push_back(Tmp1);
3074     break;
3075   case ISD::EXTRACT_SUBVECTOR:
3076     Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
3077     break;
3078   case ISD::INSERT_SUBVECTOR:
3079     Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
3080     break;
3081   case ISD::CONCAT_VECTORS:
3082     Results.push_back(ExpandVectorBuildThroughStack(Node));
3083     break;
3084   case ISD::SCALAR_TO_VECTOR:
3085     Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
3086     break;
3087   case ISD::INSERT_VECTOR_ELT:
3088     Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
3089                                               Node->getOperand(1),
3090                                               Node->getOperand(2), dl));
3091     break;
3092   case ISD::VECTOR_SHUFFLE: {
3093     SmallVector<int, 32> NewMask;
3094     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
3095 
3096     EVT VT = Node->getValueType(0);
3097     EVT EltVT = VT.getVectorElementType();
3098     SDValue Op0 = Node->getOperand(0);
3099     SDValue Op1 = Node->getOperand(1);
3100     if (!TLI.isTypeLegal(EltVT)) {
3101       EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
3102 
3103       // BUILD_VECTOR operands are allowed to be wider than the element type.
3104       // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept
3105       // it.
3106       if (NewEltVT.bitsLT(EltVT)) {
3107         // Convert shuffle node.
3108         // If original node was v4i64 and the new EltVT is i32,
3109         // cast operands to v8i32 and re-build the mask.
3110 
3111         // Calculate new VT, the size of the new VT should be equal to original.
3112         EVT NewVT =
3113             EVT::getVectorVT(*DAG.getContext(), NewEltVT,
3114                              VT.getSizeInBits() / NewEltVT.getSizeInBits());
3115         assert(NewVT.bitsEq(VT));
3116 
3117         // cast operands to new VT
3118         Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
3119         Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
3120 
3121         // Convert the shuffle mask
3122         unsigned int factor =
3123                          NewVT.getVectorNumElements()/VT.getVectorNumElements();
3124 
3125         // EltVT gets smaller
3126         assert(factor > 0);
3127 
3128         for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
3129           if (Mask[i] < 0) {
3130             for (unsigned fi = 0; fi < factor; ++fi)
3131               NewMask.push_back(Mask[i]);
3132           }
3133           else {
3134             for (unsigned fi = 0; fi < factor; ++fi)
3135               NewMask.push_back(Mask[i]*factor+fi);
3136           }
3137         }
3138         Mask = NewMask;
3139         VT = NewVT;
3140       }
3141       EltVT = NewEltVT;
3142     }
3143     unsigned NumElems = VT.getVectorNumElements();
3144     SmallVector<SDValue, 16> Ops;
3145     for (unsigned i = 0; i != NumElems; ++i) {
3146       if (Mask[i] < 0) {
3147         Ops.push_back(DAG.getUNDEF(EltVT));
3148         continue;
3149       }
3150       unsigned Idx = Mask[i];
3151       if (Idx < NumElems)
3152         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
3153                                   DAG.getVectorIdxConstant(Idx, dl)));
3154       else
3155         Ops.push_back(
3156             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1,
3157                         DAG.getVectorIdxConstant(Idx - NumElems, dl)));
3158     }
3159 
3160     Tmp1 = DAG.getBuildVector(VT, dl, Ops);
3161     // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
3162     Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
3163     Results.push_back(Tmp1);
3164     break;
3165   }
3166   case ISD::EXTRACT_ELEMENT: {
3167     EVT OpTy = Node->getOperand(0).getValueType();
3168     if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3169       // 1 -> Hi
3170       Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3171                          DAG.getConstant(OpTy.getSizeInBits() / 2, dl,
3172                                          TLI.getShiftAmountTy(
3173                                              Node->getOperand(0).getValueType(),
3174                                              DAG.getDataLayout())));
3175       Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3176     } else {
3177       // 0 -> Lo
3178       Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3179                          Node->getOperand(0));
3180     }
3181     Results.push_back(Tmp1);
3182     break;
3183   }
3184   case ISD::STACKSAVE:
3185     // Expand to CopyFromReg if the target set
3186     // StackPointerRegisterToSaveRestore.
3187     if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3188       Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3189                                            Node->getValueType(0)));
3190       Results.push_back(Results[0].getValue(1));
3191     } else {
3192       Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3193       Results.push_back(Node->getOperand(0));
3194     }
3195     break;
3196   case ISD::STACKRESTORE:
3197     // Expand to CopyToReg if the target set
3198     // StackPointerRegisterToSaveRestore.
3199     if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3200       Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3201                                          Node->getOperand(1)));
3202     } else {
3203       Results.push_back(Node->getOperand(0));
3204     }
3205     break;
3206   case ISD::GET_DYNAMIC_AREA_OFFSET:
3207     Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
3208     Results.push_back(Results[0].getValue(0));
3209     break;
3210   case ISD::FCOPYSIGN:
3211     Results.push_back(ExpandFCOPYSIGN(Node));
3212     break;
3213   case ISD::FNEG:
3214     // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
3215     Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0));
3216     // TODO: If FNEG has fast-math-flags, propagate them to the FSUB.
3217     Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3218                        Node->getOperand(0));
3219     Results.push_back(Tmp1);
3220     break;
3221   case ISD::FABS:
3222     Results.push_back(ExpandFABS(Node));
3223     break;
3224   case ISD::SMIN:
3225   case ISD::SMAX:
3226   case ISD::UMIN:
3227   case ISD::UMAX: {
3228     // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
3229     ISD::CondCode Pred;
3230     switch (Node->getOpcode()) {
3231     default: llvm_unreachable("How did we get here?");
3232     case ISD::SMAX: Pred = ISD::SETGT; break;
3233     case ISD::SMIN: Pred = ISD::SETLT; break;
3234     case ISD::UMAX: Pred = ISD::SETUGT; break;
3235     case ISD::UMIN: Pred = ISD::SETULT; break;
3236     }
3237     Tmp1 = Node->getOperand(0);
3238     Tmp2 = Node->getOperand(1);
3239     Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred);
3240     Results.push_back(Tmp1);
3241     break;
3242   }
3243   case ISD::FMINNUM:
3244   case ISD::FMAXNUM: {
3245     if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG))
3246       Results.push_back(Expanded);
3247     break;
3248   }
3249   case ISD::FSIN:
3250   case ISD::FCOS: {
3251     EVT VT = Node->getValueType(0);
3252     // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
3253     // fcos which share the same operand and both are used.
3254     if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
3255          isSinCosLibcallAvailable(Node, TLI))
3256         && useSinCos(Node)) {
3257       SDVTList VTs = DAG.getVTList(VT, VT);
3258       Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
3259       if (Node->getOpcode() == ISD::FCOS)
3260         Tmp1 = Tmp1.getValue(1);
3261       Results.push_back(Tmp1);
3262     }
3263     break;
3264   }
3265   case ISD::FMAD:
3266     llvm_unreachable("Illegal fmad should never be formed");
3267 
3268   case ISD::FP16_TO_FP:
3269     if (Node->getValueType(0) != MVT::f32) {
3270       // We can extend to types bigger than f32 in two steps without changing
3271       // the result. Since "f16 -> f32" is much more commonly available, give
3272       // CodeGen the option of emitting that before resorting to a libcall.
3273       SDValue Res =
3274           DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0));
3275       Results.push_back(
3276           DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res));
3277     }
3278     break;
3279   case ISD::STRICT_FP16_TO_FP:
3280     if (Node->getValueType(0) != MVT::f32) {
3281       // We can extend to types bigger than f32 in two steps without changing
3282       // the result. Since "f16 -> f32" is much more commonly available, give
3283       // CodeGen the option of emitting that before resorting to a libcall.
3284       SDValue Res =
3285           DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other},
3286                       {Node->getOperand(0), Node->getOperand(1)});
3287       Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
3288                         {Node->getValueType(0), MVT::Other},
3289                         {Res.getValue(1), Res});
3290       Results.push_back(Res);
3291       Results.push_back(Res.getValue(1));
3292     }
3293     break;
3294   case ISD::FP_TO_FP16:
3295     LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n");
3296     if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) {
3297       SDValue Op = Node->getOperand(0);
3298       MVT SVT = Op.getSimpleValueType();
3299       if ((SVT == MVT::f64 || SVT == MVT::f80) &&
3300           TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) {
3301         // Under fastmath, we can expand this node into a fround followed by
3302         // a float-half conversion.
3303         SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op,
3304                                        DAG.getIntPtrConstant(0, dl));
3305         Results.push_back(
3306             DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal));
3307       }
3308     }
3309     break;
3310   case ISD::ConstantFP: {
3311     ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3312     // Check to see if this FP immediate is already legal.
3313     // If this is a legal constant, turn it into a TargetConstantFP node.
3314     if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0),
3315                           DAG.getMachineFunction().getFunction().hasOptSize()))
3316       Results.push_back(ExpandConstantFP(CFP, true));
3317     break;
3318   }
3319   case ISD::Constant: {
3320     ConstantSDNode *CP = cast<ConstantSDNode>(Node);
3321     Results.push_back(ExpandConstant(CP));
3322     break;
3323   }
3324   case ISD::FSUB: {
3325     EVT VT = Node->getValueType(0);
3326     if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3327         TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) {
3328       const SDNodeFlags Flags = Node->getFlags();
3329       Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3330       Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags);
3331       Results.push_back(Tmp1);
3332     }
3333     break;
3334   }
3335   case ISD::SUB: {
3336     EVT VT = Node->getValueType(0);
3337     assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3338            TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3339            "Don't know how to expand this subtraction!");
3340     Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3341                DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
3342                                VT));
3343     Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT));
3344     Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3345     break;
3346   }
3347   case ISD::UREM:
3348   case ISD::SREM: {
3349     EVT VT = Node->getValueType(0);
3350     bool isSigned = Node->getOpcode() == ISD::SREM;
3351     unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3352     unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3353     Tmp2 = Node->getOperand(0);
3354     Tmp3 = Node->getOperand(1);
3355     if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3356       SDVTList VTs = DAG.getVTList(VT, VT);
3357       Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3358       Results.push_back(Tmp1);
3359     } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3360       // X % Y -> X-X/Y*Y
3361       Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3362       Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3363       Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3364       Results.push_back(Tmp1);
3365     }
3366     break;
3367   }
3368   case ISD::UDIV:
3369   case ISD::SDIV: {
3370     bool isSigned = Node->getOpcode() == ISD::SDIV;
3371     unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3372     EVT VT = Node->getValueType(0);
3373     if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3374       SDVTList VTs = DAG.getVTList(VT, VT);
3375       Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3376                          Node->getOperand(1));
3377       Results.push_back(Tmp1);
3378     }
3379     break;
3380   }
3381   case ISD::MULHU:
3382   case ISD::MULHS: {
3383     unsigned ExpandOpcode =
3384         Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI;
3385     EVT VT = Node->getValueType(0);
3386     SDVTList VTs = DAG.getVTList(VT, VT);
3387 
3388     Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3389                        Node->getOperand(1));
3390     Results.push_back(Tmp1.getValue(1));
3391     break;
3392   }
3393   case ISD::UMUL_LOHI:
3394   case ISD::SMUL_LOHI: {
3395     SDValue LHS = Node->getOperand(0);
3396     SDValue RHS = Node->getOperand(1);
3397     MVT VT = LHS.getSimpleValueType();
3398     unsigned MULHOpcode =
3399         Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS;
3400 
3401     if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) {
3402       Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS));
3403       Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS));
3404       break;
3405     }
3406 
3407     SmallVector<SDValue, 4> Halves;
3408     EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext());
3409     assert(TLI.isTypeLegal(HalfType));
3410     if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves,
3411                            HalfType, DAG,
3412                            TargetLowering::MulExpansionKind::Always)) {
3413       for (unsigned i = 0; i < 2; ++i) {
3414         SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]);
3415         SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]);
3416         SDValue Shift = DAG.getConstant(
3417             HalfType.getScalarSizeInBits(), dl,
3418             TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3419         Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3420         Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3421       }
3422       break;
3423     }
3424     break;
3425   }
3426   case ISD::MUL: {
3427     EVT VT = Node->getValueType(0);
3428     SDVTList VTs = DAG.getVTList(VT, VT);
3429     // See if multiply or divide can be lowered using two-result operations.
3430     // We just need the low half of the multiply; try both the signed
3431     // and unsigned forms. If the target supports both SMUL_LOHI and
3432     // UMUL_LOHI, form a preference by checking which forms of plain
3433     // MULH it supports.
3434     bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3435     bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3436     bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3437     bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3438     unsigned OpToUse = 0;
3439     if (HasSMUL_LOHI && !HasMULHS) {
3440       OpToUse = ISD::SMUL_LOHI;
3441     } else if (HasUMUL_LOHI && !HasMULHU) {
3442       OpToUse = ISD::UMUL_LOHI;
3443     } else if (HasSMUL_LOHI) {
3444       OpToUse = ISD::SMUL_LOHI;
3445     } else if (HasUMUL_LOHI) {
3446       OpToUse = ISD::UMUL_LOHI;
3447     }
3448     if (OpToUse) {
3449       Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3450                                     Node->getOperand(1)));
3451       break;
3452     }
3453 
3454     SDValue Lo, Hi;
3455     EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext());
3456     if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) &&
3457         TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) &&
3458         TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
3459         TLI.isOperationLegalOrCustom(ISD::OR, VT) &&
3460         TLI.expandMUL(Node, Lo, Hi, HalfType, DAG,
3461                       TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) {
3462       Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3463       Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi);
3464       SDValue Shift =
3465           DAG.getConstant(HalfType.getSizeInBits(), dl,
3466                           TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3467       Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3468       Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3469     }
3470     break;
3471   }
3472   case ISD::FSHL:
3473   case ISD::FSHR:
3474     if (TLI.expandFunnelShift(Node, Tmp1, DAG))
3475       Results.push_back(Tmp1);
3476     break;
3477   case ISD::ROTL:
3478   case ISD::ROTR:
3479     if (TLI.expandROT(Node, Tmp1, DAG))
3480       Results.push_back(Tmp1);
3481     break;
3482   case ISD::SADDSAT:
3483   case ISD::UADDSAT:
3484   case ISD::SSUBSAT:
3485   case ISD::USUBSAT:
3486     Results.push_back(TLI.expandAddSubSat(Node, DAG));
3487     break;
3488   case ISD::SMULFIX:
3489   case ISD::SMULFIXSAT:
3490   case ISD::UMULFIX:
3491   case ISD::UMULFIXSAT:
3492     Results.push_back(TLI.expandFixedPointMul(Node, DAG));
3493     break;
3494   case ISD::SDIVFIX:
3495   case ISD::SDIVFIXSAT:
3496   case ISD::UDIVFIX:
3497   case ISD::UDIVFIXSAT:
3498     if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node),
3499                                             Node->getOperand(0),
3500                                             Node->getOperand(1),
3501                                             Node->getConstantOperandVal(2),
3502                                             DAG)) {
3503       Results.push_back(V);
3504       break;
3505     }
3506     // FIXME: We might want to retry here with a wider type if we fail, if that
3507     // type is legal.
3508     // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is
3509     // <= 128 (which is the case for all of the default Embedded-C types),
3510     // we will only get here with types and scales that we could always expand
3511     // if we were allowed to generate libcalls to division functions of illegal
3512     // type. But we cannot do that.
3513     llvm_unreachable("Cannot expand DIVFIX!");
3514   case ISD::ADDCARRY:
3515   case ISD::SUBCARRY: {
3516     SDValue LHS = Node->getOperand(0);
3517     SDValue RHS = Node->getOperand(1);
3518     SDValue Carry = Node->getOperand(2);
3519 
3520     bool IsAdd = Node->getOpcode() == ISD::ADDCARRY;
3521 
3522     // Initial add of the 2 operands.
3523     unsigned Op = IsAdd ? ISD::ADD : ISD::SUB;
3524     EVT VT = LHS.getValueType();
3525     SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS);
3526 
3527     // Initial check for overflow.
3528     EVT CarryType = Node->getValueType(1);
3529     EVT SetCCType = getSetCCResultType(Node->getValueType(0));
3530     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
3531     SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC);
3532 
3533     // Add of the sum and the carry.
3534     SDValue CarryExt =
3535         DAG.getZeroExtendInReg(DAG.getZExtOrTrunc(Carry, dl, VT), dl, MVT::i1);
3536     SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt);
3537 
3538     // Second check for overflow. If we are adding, we can only overflow if the
3539     // initial sum is all 1s ang the carry is set, resulting in a new sum of 0.
3540     // If we are subtracting, we can only overflow if the initial sum is 0 and
3541     // the carry is set, resulting in a new sum of all 1s.
3542     SDValue Zero = DAG.getConstant(0, dl, VT);
3543     SDValue Overflow2 =
3544         IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ)
3545               : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ);
3546     Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2,
3547                             DAG.getZExtOrTrunc(Carry, dl, SetCCType));
3548 
3549     SDValue ResultCarry =
3550         DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2);
3551 
3552     Results.push_back(Sum2);
3553     Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT));
3554     break;
3555   }
3556   case ISD::SADDO:
3557   case ISD::SSUBO: {
3558     SDValue Result, Overflow;
3559     TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
3560     Results.push_back(Result);
3561     Results.push_back(Overflow);
3562     break;
3563   }
3564   case ISD::UADDO:
3565   case ISD::USUBO: {
3566     SDValue Result, Overflow;
3567     TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
3568     Results.push_back(Result);
3569     Results.push_back(Overflow);
3570     break;
3571   }
3572   case ISD::UMULO:
3573   case ISD::SMULO: {
3574     SDValue Result, Overflow;
3575     if (TLI.expandMULO(Node, Result, Overflow, DAG)) {
3576       Results.push_back(Result);
3577       Results.push_back(Overflow);
3578     }
3579     break;
3580   }
3581   case ISD::BUILD_PAIR: {
3582     EVT PairTy = Node->getValueType(0);
3583     Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3584     Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3585     Tmp2 = DAG.getNode(
3586         ISD::SHL, dl, PairTy, Tmp2,
3587         DAG.getConstant(PairTy.getSizeInBits() / 2, dl,
3588                         TLI.getShiftAmountTy(PairTy, DAG.getDataLayout())));
3589     Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3590     break;
3591   }
3592   case ISD::SELECT:
3593     Tmp1 = Node->getOperand(0);
3594     Tmp2 = Node->getOperand(1);
3595     Tmp3 = Node->getOperand(2);
3596     if (Tmp1.getOpcode() == ISD::SETCC) {
3597       Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3598                              Tmp2, Tmp3,
3599                              cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3600     } else {
3601       Tmp1 = DAG.getSelectCC(dl, Tmp1,
3602                              DAG.getConstant(0, dl, Tmp1.getValueType()),
3603                              Tmp2, Tmp3, ISD::SETNE);
3604     }
3605     Tmp1->setFlags(Node->getFlags());
3606     Results.push_back(Tmp1);
3607     break;
3608   case ISD::BR_JT: {
3609     SDValue Chain = Node->getOperand(0);
3610     SDValue Table = Node->getOperand(1);
3611     SDValue Index = Node->getOperand(2);
3612 
3613     const DataLayout &TD = DAG.getDataLayout();
3614     EVT PTy = TLI.getPointerTy(TD);
3615 
3616     unsigned EntrySize =
3617       DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3618 
3619     // For power-of-two jumptable entry sizes convert multiplication to a shift.
3620     // This transformation needs to be done here since otherwise the MIPS
3621     // backend will end up emitting a three instruction multiply sequence
3622     // instead of a single shift and MSP430 will call a runtime function.
3623     if (llvm::isPowerOf2_32(EntrySize))
3624       Index = DAG.getNode(
3625           ISD::SHL, dl, Index.getValueType(), Index,
3626           DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType()));
3627     else
3628       Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
3629                           DAG.getConstant(EntrySize, dl, Index.getValueType()));
3630     SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(),
3631                                Index, Table);
3632 
3633     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3634     SDValue LD = DAG.getExtLoad(
3635         ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3636         MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT);
3637     Addr = LD;
3638     if (TLI.isJumpTableRelative()) {
3639       // For PIC, the sequence is:
3640       // BRIND(load(Jumptable + index) + RelocBase)
3641       // RelocBase can be JumpTable, GOT or some sort of global base.
3642       Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3643                           TLI.getPICJumpTableRelocBase(Table, DAG));
3644     }
3645 
3646     Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG);
3647     Results.push_back(Tmp1);
3648     break;
3649   }
3650   case ISD::BRCOND:
3651     // Expand brcond's setcc into its constituent parts and create a BR_CC
3652     // Node.
3653     Tmp1 = Node->getOperand(0);
3654     Tmp2 = Node->getOperand(1);
3655     if (Tmp2.getOpcode() == ISD::SETCC) {
3656       Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3657                          Tmp1, Tmp2.getOperand(2),
3658                          Tmp2.getOperand(0), Tmp2.getOperand(1),
3659                          Node->getOperand(2));
3660     } else {
3661       // We test only the i1 bit.  Skip the AND if UNDEF or another AND.
3662       if (Tmp2.isUndef() ||
3663           (Tmp2.getOpcode() == ISD::AND &&
3664            isa<ConstantSDNode>(Tmp2.getOperand(1)) &&
3665            cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1))
3666         Tmp3 = Tmp2;
3667       else
3668         Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3669                            DAG.getConstant(1, dl, Tmp2.getValueType()));
3670       Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3671                          DAG.getCondCode(ISD::SETNE), Tmp3,
3672                          DAG.getConstant(0, dl, Tmp3.getValueType()),
3673                          Node->getOperand(2));
3674     }
3675     Results.push_back(Tmp1);
3676     break;
3677   case ISD::SETCC:
3678   case ISD::STRICT_FSETCC:
3679   case ISD::STRICT_FSETCCS: {
3680     bool IsStrict = Node->getOpcode() != ISD::SETCC;
3681     bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS;
3682     SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
3683     unsigned Offset = IsStrict ? 1 : 0;
3684     Tmp1 = Node->getOperand(0 + Offset);
3685     Tmp2 = Node->getOperand(1 + Offset);
3686     Tmp3 = Node->getOperand(2 + Offset);
3687     bool Legalized =
3688         LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3,
3689                               NeedInvert, dl, Chain, IsSignaling);
3690 
3691     if (Legalized) {
3692       // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3693       // condition code, create a new SETCC node.
3694       if (Tmp3.getNode())
3695         Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3696                            Tmp1, Tmp2, Tmp3, Node->getFlags());
3697 
3698       // If we expanded the SETCC by inverting the condition code, then wrap
3699       // the existing SETCC in a NOT to restore the intended condition.
3700       if (NeedInvert)
3701         Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0));
3702 
3703       Results.push_back(Tmp1);
3704       if (IsStrict)
3705         Results.push_back(Chain);
3706 
3707       break;
3708     }
3709 
3710     // FIXME: It seems Legalized is false iff CCCode is Legal. I don't
3711     // understand if this code is useful for strict nodes.
3712     assert(!IsStrict && "Don't know how to expand for strict nodes.");
3713 
3714     // Otherwise, SETCC for the given comparison type must be completely
3715     // illegal; expand it into a SELECT_CC.
3716     EVT VT = Node->getValueType(0);
3717     int TrueValue;
3718     switch (TLI.getBooleanContents(Tmp1.getValueType())) {
3719     case TargetLowering::ZeroOrOneBooleanContent:
3720     case TargetLowering::UndefinedBooleanContent:
3721       TrueValue = 1;
3722       break;
3723     case TargetLowering::ZeroOrNegativeOneBooleanContent:
3724       TrueValue = -1;
3725       break;
3726     }
3727     Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3728                        DAG.getConstant(TrueValue, dl, VT),
3729                        DAG.getConstant(0, dl, VT),
3730                        Tmp3);
3731     Tmp1->setFlags(Node->getFlags());
3732     Results.push_back(Tmp1);
3733     break;
3734   }
3735   case ISD::SELECT_CC: {
3736     // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS
3737     Tmp1 = Node->getOperand(0);   // LHS
3738     Tmp2 = Node->getOperand(1);   // RHS
3739     Tmp3 = Node->getOperand(2);   // True
3740     Tmp4 = Node->getOperand(3);   // False
3741     EVT VT = Node->getValueType(0);
3742     SDValue Chain;
3743     SDValue CC = Node->getOperand(4);
3744     ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get();
3745 
3746     if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) {
3747       // If the condition code is legal, then we need to expand this
3748       // node using SETCC and SELECT.
3749       EVT CmpVT = Tmp1.getValueType();
3750       assert(!TLI.isOperationExpand(ISD::SELECT, VT) &&
3751              "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
3752              "expanded.");
3753       EVT CCVT = getSetCCResultType(CmpVT);
3754       SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags());
3755       Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4));
3756       break;
3757     }
3758 
3759     // SELECT_CC is legal, so the condition code must not be.
3760     bool Legalized = false;
3761     // Try to legalize by inverting the condition.  This is for targets that
3762     // might support an ordered version of a condition, but not the unordered
3763     // version (or vice versa).
3764     ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType());
3765     if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) {
3766       // Use the new condition code and swap true and false
3767       Legalized = true;
3768       Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC);
3769       Tmp1->setFlags(Node->getFlags());
3770     } else {
3771       // If The inverse is not legal, then try to swap the arguments using
3772       // the inverse condition code.
3773       ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC);
3774       if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) {
3775         // The swapped inverse condition is legal, so swap true and false,
3776         // lhs and rhs.
3777         Legalized = true;
3778         Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC);
3779         Tmp1->setFlags(Node->getFlags());
3780       }
3781     }
3782 
3783     if (!Legalized) {
3784       Legalized = LegalizeSetCCCondCode(getSetCCResultType(Tmp1.getValueType()),
3785                                         Tmp1, Tmp2, CC, NeedInvert, dl, Chain);
3786 
3787       assert(Legalized && "Can't legalize SELECT_CC with legal condition!");
3788 
3789       // If we expanded the SETCC by inverting the condition code, then swap
3790       // the True/False operands to match.
3791       if (NeedInvert)
3792         std::swap(Tmp3, Tmp4);
3793 
3794       // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3795       // condition code, create a new SELECT_CC node.
3796       if (CC.getNode()) {
3797         Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0),
3798                            Tmp1, Tmp2, Tmp3, Tmp4, CC);
3799       } else {
3800         Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType());
3801         CC = DAG.getCondCode(ISD::SETNE);
3802         Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1,
3803                            Tmp2, Tmp3, Tmp4, CC);
3804       }
3805       Tmp1->setFlags(Node->getFlags());
3806     }
3807     Results.push_back(Tmp1);
3808     break;
3809   }
3810   case ISD::BR_CC: {
3811     // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS
3812     SDValue Chain;
3813     Tmp1 = Node->getOperand(0);              // Chain
3814     Tmp2 = Node->getOperand(2);              // LHS
3815     Tmp3 = Node->getOperand(3);              // RHS
3816     Tmp4 = Node->getOperand(1);              // CC
3817 
3818     bool Legalized =
3819         LegalizeSetCCCondCode(getSetCCResultType(Tmp2.getValueType()), Tmp2,
3820                               Tmp3, Tmp4, NeedInvert, dl, Chain);
3821     (void)Legalized;
3822     assert(Legalized && "Can't legalize BR_CC with legal condition!");
3823 
3824     assert(!NeedInvert && "Don't know how to invert BR_CC!");
3825 
3826     // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
3827     // node.
3828     if (Tmp4.getNode()) {
3829       Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1,
3830                          Tmp4, Tmp2, Tmp3, Node->getOperand(4));
3831     } else {
3832       Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType());
3833       Tmp4 = DAG.getCondCode(ISD::SETNE);
3834       Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4,
3835                          Tmp2, Tmp3, Node->getOperand(4));
3836     }
3837     Results.push_back(Tmp1);
3838     break;
3839   }
3840   case ISD::BUILD_VECTOR:
3841     Results.push_back(ExpandBUILD_VECTOR(Node));
3842     break;
3843   case ISD::SPLAT_VECTOR:
3844     Results.push_back(ExpandSPLAT_VECTOR(Node));
3845     break;
3846   case ISD::SRA:
3847   case ISD::SRL:
3848   case ISD::SHL: {
3849     // Scalarize vector SRA/SRL/SHL.
3850     EVT VT = Node->getValueType(0);
3851     assert(VT.isVector() && "Unable to legalize non-vector shift");
3852     assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3853     unsigned NumElem = VT.getVectorNumElements();
3854 
3855     SmallVector<SDValue, 8> Scalars;
3856     for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3857       SDValue Ex =
3858           DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(),
3859                       Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl));
3860       SDValue Sh =
3861           DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(),
3862                       Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl));
3863       Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3864                                     VT.getScalarType(), Ex, Sh));
3865     }
3866 
3867     SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars);
3868     Results.push_back(Result);
3869     break;
3870   }
3871   case ISD::VECREDUCE_FADD:
3872   case ISD::VECREDUCE_FMUL:
3873   case ISD::VECREDUCE_ADD:
3874   case ISD::VECREDUCE_MUL:
3875   case ISD::VECREDUCE_AND:
3876   case ISD::VECREDUCE_OR:
3877   case ISD::VECREDUCE_XOR:
3878   case ISD::VECREDUCE_SMAX:
3879   case ISD::VECREDUCE_SMIN:
3880   case ISD::VECREDUCE_UMAX:
3881   case ISD::VECREDUCE_UMIN:
3882   case ISD::VECREDUCE_FMAX:
3883   case ISD::VECREDUCE_FMIN:
3884     Results.push_back(TLI.expandVecReduce(Node, DAG));
3885     break;
3886   case ISD::GLOBAL_OFFSET_TABLE:
3887   case ISD::GlobalAddress:
3888   case ISD::GlobalTLSAddress:
3889   case ISD::ExternalSymbol:
3890   case ISD::ConstantPool:
3891   case ISD::JumpTable:
3892   case ISD::INTRINSIC_W_CHAIN:
3893   case ISD::INTRINSIC_WO_CHAIN:
3894   case ISD::INTRINSIC_VOID:
3895     // FIXME: Custom lowering for these operations shouldn't return null!
3896     // Return true so that we don't call ConvertNodeToLibcall which also won't
3897     // do anything.
3898     return true;
3899   }
3900 
3901   if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) {
3902     // FIXME: We were asked to expand a strict floating-point operation,
3903     // but there is currently no expansion implemented that would preserve
3904     // the "strict" properties.  For now, we just fall back to the non-strict
3905     // version if that is legal on the target.  The actual mutation of the
3906     // operation will happen in SelectionDAGISel::DoInstructionSelection.
3907     switch (Node->getOpcode()) {
3908     default:
3909       if (TLI.getStrictFPOperationAction(Node->getOpcode(),
3910                                          Node->getValueType(0))
3911           == TargetLowering::Legal)
3912         return true;
3913       break;
3914     case ISD::STRICT_LRINT:
3915     case ISD::STRICT_LLRINT:
3916     case ISD::STRICT_LROUND:
3917     case ISD::STRICT_LLROUND:
3918       // These are registered by the operand type instead of the value
3919       // type. Reflect that here.
3920       if (TLI.getStrictFPOperationAction(Node->getOpcode(),
3921                                          Node->getOperand(1).getValueType())
3922           == TargetLowering::Legal)
3923         return true;
3924       break;
3925     }
3926   }
3927 
3928   // Replace the original node with the legalized result.
3929   if (Results.empty()) {
3930     LLVM_DEBUG(dbgs() << "Cannot expand node\n");
3931     return false;
3932   }
3933 
3934   LLVM_DEBUG(dbgs() << "Successfully expanded node\n");
3935   ReplaceNode(Node, Results.data());
3936   return true;
3937 }
3938 
3939 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) {
3940   LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n");
3941   SmallVector<SDValue, 8> Results;
3942   SDLoc dl(Node);
3943   // FIXME: Check flags on the node to see if we can use a finite call.
3944   unsigned Opc = Node->getOpcode();
3945   switch (Opc) {
3946   case ISD::ATOMIC_FENCE: {
3947     // If the target didn't lower this, lower it to '__sync_synchronize()' call
3948     // FIXME: handle "fence singlethread" more efficiently.
3949     TargetLowering::ArgListTy Args;
3950 
3951     TargetLowering::CallLoweringInfo CLI(DAG);
3952     CLI.setDebugLoc(dl)
3953         .setChain(Node->getOperand(0))
3954         .setLibCallee(
3955             CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3956             DAG.getExternalSymbol("__sync_synchronize",
3957                                   TLI.getPointerTy(DAG.getDataLayout())),
3958             std::move(Args));
3959 
3960     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3961 
3962     Results.push_back(CallResult.second);
3963     break;
3964   }
3965   // By default, atomic intrinsics are marked Legal and lowered. Targets
3966   // which don't support them directly, however, may want libcalls, in which
3967   // case they mark them Expand, and we get here.
3968   case ISD::ATOMIC_SWAP:
3969   case ISD::ATOMIC_LOAD_ADD:
3970   case ISD::ATOMIC_LOAD_SUB:
3971   case ISD::ATOMIC_LOAD_AND:
3972   case ISD::ATOMIC_LOAD_CLR:
3973   case ISD::ATOMIC_LOAD_OR:
3974   case ISD::ATOMIC_LOAD_XOR:
3975   case ISD::ATOMIC_LOAD_NAND:
3976   case ISD::ATOMIC_LOAD_MIN:
3977   case ISD::ATOMIC_LOAD_MAX:
3978   case ISD::ATOMIC_LOAD_UMIN:
3979   case ISD::ATOMIC_LOAD_UMAX:
3980   case ISD::ATOMIC_CMP_SWAP: {
3981     MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
3982     RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT);
3983     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!");
3984 
3985     EVT RetVT = Node->getValueType(0);
3986     SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end());
3987     TargetLowering::MakeLibCallOptions CallOptions;
3988     std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
3989                                                       Ops, CallOptions,
3990                                                       SDLoc(Node),
3991                                                       Node->getOperand(0));
3992     Results.push_back(Tmp.first);
3993     Results.push_back(Tmp.second);
3994     break;
3995   }
3996   case ISD::TRAP: {
3997     // If this operation is not supported, lower it to 'abort()' call
3998     TargetLowering::ArgListTy Args;
3999     TargetLowering::CallLoweringInfo CLI(DAG);
4000     CLI.setDebugLoc(dl)
4001         .setChain(Node->getOperand(0))
4002         .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
4003                       DAG.getExternalSymbol(
4004                           "abort", TLI.getPointerTy(DAG.getDataLayout())),
4005                       std::move(Args));
4006     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
4007 
4008     Results.push_back(CallResult.second);
4009     break;
4010   }
4011   case ISD::FMINNUM:
4012   case ISD::STRICT_FMINNUM:
4013     ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64,
4014                     RTLIB::FMIN_F80, RTLIB::FMIN_F128,
4015                     RTLIB::FMIN_PPCF128, Results);
4016     break;
4017   case ISD::FMAXNUM:
4018   case ISD::STRICT_FMAXNUM:
4019     ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64,
4020                     RTLIB::FMAX_F80, RTLIB::FMAX_F128,
4021                     RTLIB::FMAX_PPCF128, Results);
4022     break;
4023   case ISD::FSQRT:
4024   case ISD::STRICT_FSQRT:
4025     ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
4026                     RTLIB::SQRT_F80, RTLIB::SQRT_F128,
4027                     RTLIB::SQRT_PPCF128, Results);
4028     break;
4029   case ISD::FCBRT:
4030     ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64,
4031                     RTLIB::CBRT_F80, RTLIB::CBRT_F128,
4032                     RTLIB::CBRT_PPCF128, Results);
4033     break;
4034   case ISD::FSIN:
4035   case ISD::STRICT_FSIN:
4036     ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
4037                     RTLIB::SIN_F80, RTLIB::SIN_F128,
4038                     RTLIB::SIN_PPCF128, Results);
4039     break;
4040   case ISD::FCOS:
4041   case ISD::STRICT_FCOS:
4042     ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
4043                     RTLIB::COS_F80, RTLIB::COS_F128,
4044                     RTLIB::COS_PPCF128, Results);
4045     break;
4046   case ISD::FSINCOS:
4047     // Expand into sincos libcall.
4048     ExpandSinCosLibCall(Node, Results);
4049     break;
4050   case ISD::FLOG:
4051   case ISD::STRICT_FLOG:
4052     ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80,
4053                     RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results);
4054     break;
4055   case ISD::FLOG2:
4056   case ISD::STRICT_FLOG2:
4057     ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80,
4058                     RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results);
4059     break;
4060   case ISD::FLOG10:
4061   case ISD::STRICT_FLOG10:
4062     ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80,
4063                     RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results);
4064     break;
4065   case ISD::FEXP:
4066   case ISD::STRICT_FEXP:
4067     ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80,
4068                     RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results);
4069     break;
4070   case ISD::FEXP2:
4071   case ISD::STRICT_FEXP2:
4072     ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80,
4073                     RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results);
4074     break;
4075   case ISD::FTRUNC:
4076   case ISD::STRICT_FTRUNC:
4077     ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
4078                     RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
4079                     RTLIB::TRUNC_PPCF128, Results);
4080     break;
4081   case ISD::FFLOOR:
4082   case ISD::STRICT_FFLOOR:
4083     ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
4084                     RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
4085                     RTLIB::FLOOR_PPCF128, Results);
4086     break;
4087   case ISD::FCEIL:
4088   case ISD::STRICT_FCEIL:
4089     ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
4090                     RTLIB::CEIL_F80, RTLIB::CEIL_F128,
4091                     RTLIB::CEIL_PPCF128, Results);
4092     break;
4093   case ISD::FRINT:
4094   case ISD::STRICT_FRINT:
4095     ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
4096                     RTLIB::RINT_F80, RTLIB::RINT_F128,
4097                     RTLIB::RINT_PPCF128, Results);
4098     break;
4099   case ISD::FNEARBYINT:
4100   case ISD::STRICT_FNEARBYINT:
4101     ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
4102                     RTLIB::NEARBYINT_F64,
4103                     RTLIB::NEARBYINT_F80,
4104                     RTLIB::NEARBYINT_F128,
4105                     RTLIB::NEARBYINT_PPCF128, Results);
4106     break;
4107   case ISD::FROUND:
4108   case ISD::STRICT_FROUND:
4109     ExpandFPLibCall(Node, RTLIB::ROUND_F32,
4110                     RTLIB::ROUND_F64,
4111                     RTLIB::ROUND_F80,
4112                     RTLIB::ROUND_F128,
4113                     RTLIB::ROUND_PPCF128, Results);
4114     break;
4115   case ISD::FPOWI:
4116   case ISD::STRICT_FPOWI: {
4117     RTLIB::Libcall LC;
4118     switch (Node->getSimpleValueType(0).SimpleTy) {
4119     default: llvm_unreachable("Unexpected request for libcall!");
4120     case MVT::f32: LC = RTLIB::POWI_F32; break;
4121     case MVT::f64: LC = RTLIB::POWI_F64; break;
4122     case MVT::f80: LC = RTLIB::POWI_F80; break;
4123     case MVT::f128: LC = RTLIB::POWI_F128; break;
4124     case MVT::ppcf128: LC = RTLIB::POWI_PPCF128; break;
4125     }
4126     if (!TLI.getLibcallName(LC)) {
4127       // Some targets don't have a powi libcall; use pow instead.
4128       SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node),
4129                                      Node->getValueType(0),
4130                                      Node->getOperand(1));
4131       Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node),
4132                                     Node->getValueType(0), Node->getOperand(0),
4133                                     Exponent));
4134       break;
4135     }
4136     ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
4137                     RTLIB::POWI_F80, RTLIB::POWI_F128,
4138                     RTLIB::POWI_PPCF128, Results);
4139     break;
4140   }
4141   case ISD::FPOW:
4142   case ISD::STRICT_FPOW:
4143     ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80,
4144                     RTLIB::POW_F128, RTLIB::POW_PPCF128, Results);
4145     break;
4146   case ISD::LROUND:
4147   case ISD::STRICT_LROUND:
4148     ExpandArgFPLibCall(Node, RTLIB::LROUND_F32,
4149                        RTLIB::LROUND_F64, RTLIB::LROUND_F80,
4150                        RTLIB::LROUND_F128,
4151                        RTLIB::LROUND_PPCF128, Results);
4152     break;
4153   case ISD::LLROUND:
4154   case ISD::STRICT_LLROUND:
4155     ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32,
4156                        RTLIB::LLROUND_F64, RTLIB::LLROUND_F80,
4157                        RTLIB::LLROUND_F128,
4158                        RTLIB::LLROUND_PPCF128, Results);
4159     break;
4160   case ISD::LRINT:
4161   case ISD::STRICT_LRINT:
4162     ExpandArgFPLibCall(Node, RTLIB::LRINT_F32,
4163                        RTLIB::LRINT_F64, RTLIB::LRINT_F80,
4164                        RTLIB::LRINT_F128,
4165                        RTLIB::LRINT_PPCF128, Results);
4166     break;
4167   case ISD::LLRINT:
4168   case ISD::STRICT_LLRINT:
4169     ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32,
4170                        RTLIB::LLRINT_F64, RTLIB::LLRINT_F80,
4171                        RTLIB::LLRINT_F128,
4172                        RTLIB::LLRINT_PPCF128, Results);
4173     break;
4174   case ISD::FDIV:
4175   case ISD::STRICT_FDIV:
4176     ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
4177                     RTLIB::DIV_F80, RTLIB::DIV_F128,
4178                     RTLIB::DIV_PPCF128, Results);
4179     break;
4180   case ISD::FREM:
4181   case ISD::STRICT_FREM:
4182     ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
4183                     RTLIB::REM_F80, RTLIB::REM_F128,
4184                     RTLIB::REM_PPCF128, Results);
4185     break;
4186   case ISD::FMA:
4187   case ISD::STRICT_FMA:
4188     ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
4189                     RTLIB::FMA_F80, RTLIB::FMA_F128,
4190                     RTLIB::FMA_PPCF128, Results);
4191     break;
4192   case ISD::FADD:
4193   case ISD::STRICT_FADD:
4194     ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64,
4195                     RTLIB::ADD_F80, RTLIB::ADD_F128,
4196                     RTLIB::ADD_PPCF128, Results);
4197     break;
4198   case ISD::FMUL:
4199   case ISD::STRICT_FMUL:
4200     ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64,
4201                     RTLIB::MUL_F80, RTLIB::MUL_F128,
4202                     RTLIB::MUL_PPCF128, Results);
4203     break;
4204   case ISD::FP16_TO_FP:
4205     if (Node->getValueType(0) == MVT::f32) {
4206       Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
4207     }
4208     break;
4209   case ISD::STRICT_FP16_TO_FP: {
4210     if (Node->getValueType(0) == MVT::f32) {
4211       TargetLowering::MakeLibCallOptions CallOptions;
4212       std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(
4213           DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions,
4214           SDLoc(Node), Node->getOperand(0));
4215       Results.push_back(Tmp.first);
4216       Results.push_back(Tmp.second);
4217     }
4218     break;
4219   }
4220   case ISD::FP_TO_FP16: {
4221     RTLIB::Libcall LC =
4222         RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16);
4223     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16");
4224     Results.push_back(ExpandLibCall(LC, Node, false));
4225     break;
4226   }
4227   case ISD::STRICT_FP_TO_FP16: {
4228     RTLIB::Libcall LC =
4229         RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16);
4230     assert(LC != RTLIB::UNKNOWN_LIBCALL &&
4231            "Unable to expand strict_fp_to_fp16");
4232     TargetLowering::MakeLibCallOptions CallOptions;
4233     std::pair<SDValue, SDValue> Tmp =
4234         TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1),
4235                         CallOptions, SDLoc(Node), Node->getOperand(0));
4236     Results.push_back(Tmp.first);
4237     Results.push_back(Tmp.second);
4238     break;
4239   }
4240   case ISD::FSUB:
4241   case ISD::STRICT_FSUB:
4242     ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64,
4243                     RTLIB::SUB_F80, RTLIB::SUB_F128,
4244                     RTLIB::SUB_PPCF128, Results);
4245     break;
4246   case ISD::SREM:
4247     Results.push_back(ExpandIntLibCall(Node, true,
4248                                        RTLIB::SREM_I8,
4249                                        RTLIB::SREM_I16, RTLIB::SREM_I32,
4250                                        RTLIB::SREM_I64, RTLIB::SREM_I128));
4251     break;
4252   case ISD::UREM:
4253     Results.push_back(ExpandIntLibCall(Node, false,
4254                                        RTLIB::UREM_I8,
4255                                        RTLIB::UREM_I16, RTLIB::UREM_I32,
4256                                        RTLIB::UREM_I64, RTLIB::UREM_I128));
4257     break;
4258   case ISD::SDIV:
4259     Results.push_back(ExpandIntLibCall(Node, true,
4260                                        RTLIB::SDIV_I8,
4261                                        RTLIB::SDIV_I16, RTLIB::SDIV_I32,
4262                                        RTLIB::SDIV_I64, RTLIB::SDIV_I128));
4263     break;
4264   case ISD::UDIV:
4265     Results.push_back(ExpandIntLibCall(Node, false,
4266                                        RTLIB::UDIV_I8,
4267                                        RTLIB::UDIV_I16, RTLIB::UDIV_I32,
4268                                        RTLIB::UDIV_I64, RTLIB::UDIV_I128));
4269     break;
4270   case ISD::SDIVREM:
4271   case ISD::UDIVREM:
4272     // Expand into divrem libcall
4273     ExpandDivRemLibCall(Node, Results);
4274     break;
4275   case ISD::MUL:
4276     Results.push_back(ExpandIntLibCall(Node, false,
4277                                        RTLIB::MUL_I8,
4278                                        RTLIB::MUL_I16, RTLIB::MUL_I32,
4279                                        RTLIB::MUL_I64, RTLIB::MUL_I128));
4280     break;
4281   case ISD::CTLZ_ZERO_UNDEF:
4282     switch (Node->getSimpleValueType(0).SimpleTy) {
4283     default:
4284       llvm_unreachable("LibCall explicitly requested, but not available");
4285     case MVT::i32:
4286       Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false));
4287       break;
4288     case MVT::i64:
4289       Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false));
4290       break;
4291     case MVT::i128:
4292       Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false));
4293       break;
4294     }
4295     break;
4296   }
4297 
4298   // Replace the original node with the legalized result.
4299   if (!Results.empty()) {
4300     LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n");
4301     ReplaceNode(Node, Results.data());
4302   } else
4303     LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n");
4304 }
4305 
4306 // Determine the vector type to use in place of an original scalar element when
4307 // promoting equally sized vectors.
4308 static MVT getPromotedVectorElementType(const TargetLowering &TLI,
4309                                         MVT EltVT, MVT NewEltVT) {
4310   unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits();
4311   MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt);
4312   assert(TLI.isTypeLegal(MidVT) && "unexpected");
4313   return MidVT;
4314 }
4315 
4316 void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
4317   LLVM_DEBUG(dbgs() << "Trying to promote node\n");
4318   SmallVector<SDValue, 8> Results;
4319   MVT OVT = Node->getSimpleValueType(0);
4320   if (Node->getOpcode() == ISD::UINT_TO_FP ||
4321       Node->getOpcode() == ISD::SINT_TO_FP ||
4322       Node->getOpcode() == ISD::SETCC ||
4323       Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
4324       Node->getOpcode() == ISD::INSERT_VECTOR_ELT) {
4325     OVT = Node->getOperand(0).getSimpleValueType();
4326   }
4327   if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP ||
4328       Node->getOpcode() == ISD::STRICT_SINT_TO_FP)
4329     OVT = Node->getOperand(1).getSimpleValueType();
4330   if (Node->getOpcode() == ISD::BR_CC)
4331     OVT = Node->getOperand(2).getSimpleValueType();
4332   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
4333   SDLoc dl(Node);
4334   SDValue Tmp1, Tmp2, Tmp3;
4335   switch (Node->getOpcode()) {
4336   case ISD::CTTZ:
4337   case ISD::CTTZ_ZERO_UNDEF:
4338   case ISD::CTLZ:
4339   case ISD::CTLZ_ZERO_UNDEF:
4340   case ISD::CTPOP:
4341     // Zero extend the argument unless its cttz, then use any_extend.
4342     if (Node->getOpcode() == ISD::CTTZ ||
4343         Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF)
4344       Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0));
4345     else
4346       Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4347 
4348     if (Node->getOpcode() == ISD::CTTZ) {
4349       // The count is the same in the promoted type except if the original
4350       // value was zero.  This can be handled by setting the bit just off
4351       // the top of the original type.
4352       auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(),
4353                                         OVT.getSizeInBits());
4354       Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1,
4355                          DAG.getConstant(TopBit, dl, NVT));
4356     }
4357     // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
4358     // already the correct result.
4359     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4360     if (Node->getOpcode() == ISD::CTLZ ||
4361         Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
4362       // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
4363       Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
4364                           DAG.getConstant(NVT.getSizeInBits() -
4365                                           OVT.getSizeInBits(), dl, NVT));
4366     }
4367     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4368     break;
4369   case ISD::BITREVERSE:
4370   case ISD::BSWAP: {
4371     unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
4372     Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4373     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4374     Tmp1 = DAG.getNode(
4375         ISD::SRL, dl, NVT, Tmp1,
4376         DAG.getConstant(DiffBits, dl,
4377                         TLI.getShiftAmountTy(NVT, DAG.getDataLayout())));
4378 
4379     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4380     break;
4381   }
4382   case ISD::FP_TO_UINT:
4383   case ISD::STRICT_FP_TO_UINT:
4384   case ISD::FP_TO_SINT:
4385   case ISD::STRICT_FP_TO_SINT:
4386     PromoteLegalFP_TO_INT(Node, dl, Results);
4387     break;
4388   case ISD::UINT_TO_FP:
4389   case ISD::STRICT_UINT_TO_FP:
4390   case ISD::SINT_TO_FP:
4391   case ISD::STRICT_SINT_TO_FP:
4392     PromoteLegalINT_TO_FP(Node, dl, Results);
4393     break;
4394   case ISD::VAARG: {
4395     SDValue Chain = Node->getOperand(0); // Get the chain.
4396     SDValue Ptr = Node->getOperand(1); // Get the pointer.
4397 
4398     unsigned TruncOp;
4399     if (OVT.isVector()) {
4400       TruncOp = ISD::BITCAST;
4401     } else {
4402       assert(OVT.isInteger()
4403         && "VAARG promotion is supported only for vectors or integer types");
4404       TruncOp = ISD::TRUNCATE;
4405     }
4406 
4407     // Perform the larger operation, then convert back
4408     Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
4409              Node->getConstantOperandVal(3));
4410     Chain = Tmp1.getValue(1);
4411 
4412     Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
4413 
4414     // Modified the chain result - switch anything that used the old chain to
4415     // use the new one.
4416     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
4417     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
4418     if (UpdatedNodes) {
4419       UpdatedNodes->insert(Tmp2.getNode());
4420       UpdatedNodes->insert(Chain.getNode());
4421     }
4422     ReplacedNode(Node);
4423     break;
4424   }
4425   case ISD::MUL:
4426   case ISD::SDIV:
4427   case ISD::SREM:
4428   case ISD::UDIV:
4429   case ISD::UREM:
4430   case ISD::AND:
4431   case ISD::OR:
4432   case ISD::XOR: {
4433     unsigned ExtOp, TruncOp;
4434     if (OVT.isVector()) {
4435       ExtOp   = ISD::BITCAST;
4436       TruncOp = ISD::BITCAST;
4437     } else {
4438       assert(OVT.isInteger() && "Cannot promote logic operation");
4439 
4440       switch (Node->getOpcode()) {
4441       default:
4442         ExtOp = ISD::ANY_EXTEND;
4443         break;
4444       case ISD::SDIV:
4445       case ISD::SREM:
4446         ExtOp = ISD::SIGN_EXTEND;
4447         break;
4448       case ISD::UDIV:
4449       case ISD::UREM:
4450         ExtOp = ISD::ZERO_EXTEND;
4451         break;
4452       }
4453       TruncOp = ISD::TRUNCATE;
4454     }
4455     // Promote each of the values to the new type.
4456     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4457     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4458     // Perform the larger operation, then convert back
4459     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4460     Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
4461     break;
4462   }
4463   case ISD::UMUL_LOHI:
4464   case ISD::SMUL_LOHI: {
4465     // Promote to a multiply in a wider integer type.
4466     unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND
4467                                                          : ISD::SIGN_EXTEND;
4468     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4469     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4470     Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2);
4471 
4472     auto &DL = DAG.getDataLayout();
4473     unsigned OriginalSize = OVT.getScalarSizeInBits();
4474     Tmp2 = DAG.getNode(
4475         ISD::SRL, dl, NVT, Tmp1,
4476         DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT)));
4477     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4478     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2));
4479     break;
4480   }
4481   case ISD::SELECT: {
4482     unsigned ExtOp, TruncOp;
4483     if (Node->getValueType(0).isVector() ||
4484         Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) {
4485       ExtOp   = ISD::BITCAST;
4486       TruncOp = ISD::BITCAST;
4487     } else if (Node->getValueType(0).isInteger()) {
4488       ExtOp   = ISD::ANY_EXTEND;
4489       TruncOp = ISD::TRUNCATE;
4490     } else {
4491       ExtOp   = ISD::FP_EXTEND;
4492       TruncOp = ISD::FP_ROUND;
4493     }
4494     Tmp1 = Node->getOperand(0);
4495     // Promote each of the values to the new type.
4496     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4497     Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4498     // Perform the larger operation, then round down.
4499     Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
4500     Tmp1->setFlags(Node->getFlags());
4501     if (TruncOp != ISD::FP_ROUND)
4502       Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
4503     else
4504       Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
4505                          DAG.getIntPtrConstant(0, dl));
4506     Results.push_back(Tmp1);
4507     break;
4508   }
4509   case ISD::VECTOR_SHUFFLE: {
4510     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
4511 
4512     // Cast the two input vectors.
4513     Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
4514     Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
4515 
4516     // Convert the shuffle mask to the right # elements.
4517     Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
4518     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
4519     Results.push_back(Tmp1);
4520     break;
4521   }
4522   case ISD::SETCC: {
4523     unsigned ExtOp = ISD::FP_EXTEND;
4524     if (NVT.isInteger()) {
4525       ISD::CondCode CCCode =
4526         cast<CondCodeSDNode>(Node->getOperand(2))->get();
4527       ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4528     }
4529     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4530     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4531     Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1,
4532                                   Tmp2, Node->getOperand(2), Node->getFlags()));
4533     break;
4534   }
4535   case ISD::BR_CC: {
4536     unsigned ExtOp = ISD::FP_EXTEND;
4537     if (NVT.isInteger()) {
4538       ISD::CondCode CCCode =
4539         cast<CondCodeSDNode>(Node->getOperand(1))->get();
4540       ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4541     }
4542     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4543     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3));
4544     Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0),
4545                                   Node->getOperand(0), Node->getOperand(1),
4546                                   Tmp1, Tmp2, Node->getOperand(4)));
4547     break;
4548   }
4549   case ISD::FADD:
4550   case ISD::FSUB:
4551   case ISD::FMUL:
4552   case ISD::FDIV:
4553   case ISD::FREM:
4554   case ISD::FMINNUM:
4555   case ISD::FMAXNUM:
4556   case ISD::FPOW:
4557     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4558     Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4559     Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2,
4560                        Node->getFlags());
4561     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4562                                   Tmp3, DAG.getIntPtrConstant(0, dl)));
4563     break;
4564   case ISD::STRICT_FREM:
4565   case ISD::STRICT_FPOW:
4566     Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4567                        {Node->getOperand(0), Node->getOperand(1)});
4568     Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4569                        {Node->getOperand(0), Node->getOperand(2)});
4570     Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1),
4571                        Tmp2.getValue(1));
4572     Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other},
4573                        {Tmp3, Tmp1, Tmp2});
4574     Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other},
4575                        {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)});
4576     Results.push_back(Tmp1);
4577     Results.push_back(Tmp1.getValue(1));
4578     break;
4579   case ISD::FMA:
4580     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4581     Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4582     Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2));
4583     Results.push_back(
4584         DAG.getNode(ISD::FP_ROUND, dl, OVT,
4585                     DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3),
4586                     DAG.getIntPtrConstant(0, dl)));
4587     break;
4588   case ISD::FCOPYSIGN:
4589   case ISD::FPOWI: {
4590     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4591     Tmp2 = Node->getOperand(1);
4592     Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4593 
4594     // fcopysign doesn't change anything but the sign bit, so
4595     //   (fp_round (fcopysign (fpext a), b))
4596     // is as precise as
4597     //   (fp_round (fpext a))
4598     // which is a no-op. Mark it as a TRUNCating FP_ROUND.
4599     const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN);
4600     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4601                                   Tmp3, DAG.getIntPtrConstant(isTrunc, dl)));
4602     break;
4603   }
4604   case ISD::FFLOOR:
4605   case ISD::FCEIL:
4606   case ISD::FRINT:
4607   case ISD::FNEARBYINT:
4608   case ISD::FROUND:
4609   case ISD::FTRUNC:
4610   case ISD::FNEG:
4611   case ISD::FSQRT:
4612   case ISD::FSIN:
4613   case ISD::FCOS:
4614   case ISD::FLOG:
4615   case ISD::FLOG2:
4616   case ISD::FLOG10:
4617   case ISD::FABS:
4618   case ISD::FEXP:
4619   case ISD::FEXP2:
4620     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4621     Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4622     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4623                                   Tmp2, DAG.getIntPtrConstant(0, dl)));
4624     break;
4625   case ISD::STRICT_FFLOOR:
4626   case ISD::STRICT_FCEIL:
4627   case ISD::STRICT_FSIN:
4628   case ISD::STRICT_FCOS:
4629   case ISD::STRICT_FLOG:
4630   case ISD::STRICT_FLOG10:
4631   case ISD::STRICT_FEXP:
4632     Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4633                        {Node->getOperand(0), Node->getOperand(1)});
4634     Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other},
4635                        {Tmp1.getValue(1), Tmp1});
4636     Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other},
4637                        {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)});
4638     Results.push_back(Tmp3);
4639     Results.push_back(Tmp3.getValue(1));
4640     break;
4641   case ISD::BUILD_VECTOR: {
4642     MVT EltVT = OVT.getVectorElementType();
4643     MVT NewEltVT = NVT.getVectorElementType();
4644 
4645     // Handle bitcasts to a different vector type with the same total bit size
4646     //
4647     // e.g. v2i64 = build_vector i64:x, i64:y => v4i32
4648     //  =>
4649     //  v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y))
4650 
4651     assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4652            "Invalid promote type for build_vector");
4653     assert(NewEltVT.bitsLT(EltVT) && "not handled");
4654 
4655     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4656 
4657     SmallVector<SDValue, 8> NewOps;
4658     for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) {
4659       SDValue Op = Node->getOperand(I);
4660       NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op));
4661     }
4662 
4663     SDLoc SL(Node);
4664     SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps);
4665     SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4666     Results.push_back(CvtVec);
4667     break;
4668   }
4669   case ISD::EXTRACT_VECTOR_ELT: {
4670     MVT EltVT = OVT.getVectorElementType();
4671     MVT NewEltVT = NVT.getVectorElementType();
4672 
4673     // Handle bitcasts to a different vector type with the same total bit size.
4674     //
4675     // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32
4676     //  =>
4677     //  v4i32:castx = bitcast x:v2i64
4678     //
4679     // i64 = bitcast
4680     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
4681     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
4682     //
4683 
4684     assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4685            "Invalid promote type for extract_vector_elt");
4686     assert(NewEltVT.bitsLT(EltVT) && "not handled");
4687 
4688     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4689     unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4690 
4691     SDValue Idx = Node->getOperand(1);
4692     EVT IdxVT = Idx.getValueType();
4693     SDLoc SL(Node);
4694     SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT);
4695     SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4696 
4697     SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4698 
4699     SmallVector<SDValue, 8> NewOps;
4700     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4701       SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4702       SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4703 
4704       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4705                                 CastVec, TmpIdx);
4706       NewOps.push_back(Elt);
4707     }
4708 
4709     SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps);
4710     Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec));
4711     break;
4712   }
4713   case ISD::INSERT_VECTOR_ELT: {
4714     MVT EltVT = OVT.getVectorElementType();
4715     MVT NewEltVT = NVT.getVectorElementType();
4716 
4717     // Handle bitcasts to a different vector type with the same total bit size
4718     //
4719     // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32
4720     //  =>
4721     //  v4i32:castx = bitcast x:v2i64
4722     //  v2i32:casty = bitcast y:i64
4723     //
4724     // v2i64 = bitcast
4725     //   (v4i32 insert_vector_elt
4726     //       (v4i32 insert_vector_elt v4i32:castx,
4727     //                                (extract_vector_elt casty, 0), 2 * z),
4728     //        (extract_vector_elt casty, 1), (2 * z + 1))
4729 
4730     assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4731            "Invalid promote type for insert_vector_elt");
4732     assert(NewEltVT.bitsLT(EltVT) && "not handled");
4733 
4734     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4735     unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4736 
4737     SDValue Val = Node->getOperand(1);
4738     SDValue Idx = Node->getOperand(2);
4739     EVT IdxVT = Idx.getValueType();
4740     SDLoc SL(Node);
4741 
4742     SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT);
4743     SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4744 
4745     SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4746     SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4747 
4748     SDValue NewVec = CastVec;
4749     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4750       SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4751       SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4752 
4753       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4754                                 CastVal, IdxOffset);
4755 
4756       NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT,
4757                            NewVec, Elt, InEltIdx);
4758     }
4759 
4760     Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec));
4761     break;
4762   }
4763   case ISD::SCALAR_TO_VECTOR: {
4764     MVT EltVT = OVT.getVectorElementType();
4765     MVT NewEltVT = NVT.getVectorElementType();
4766 
4767     // Handle bitcasts to different vector type with the same total bit size.
4768     //
4769     // e.g. v2i64 = scalar_to_vector x:i64
4770     //   =>
4771     //  concat_vectors (v2i32 bitcast x:i64), (v2i32 undef)
4772     //
4773 
4774     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4775     SDValue Val = Node->getOperand(0);
4776     SDLoc SL(Node);
4777 
4778     SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4779     SDValue Undef = DAG.getUNDEF(MidVT);
4780 
4781     SmallVector<SDValue, 8> NewElts;
4782     NewElts.push_back(CastVal);
4783     for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I)
4784       NewElts.push_back(Undef);
4785 
4786     SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts);
4787     SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4788     Results.push_back(CvtVec);
4789     break;
4790   }
4791   case ISD::ATOMIC_SWAP: {
4792     AtomicSDNode *AM = cast<AtomicSDNode>(Node);
4793     SDLoc SL(Node);
4794     SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal());
4795     assert(NVT.getSizeInBits() == OVT.getSizeInBits() &&
4796            "unexpected promotion type");
4797     assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() &&
4798            "unexpected atomic_swap with illegal type");
4799 
4800     SDValue NewAtomic
4801       = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT,
4802                       DAG.getVTList(NVT, MVT::Other),
4803                       { AM->getChain(), AM->getBasePtr(), CastVal },
4804                       AM->getMemOperand());
4805     Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic));
4806     Results.push_back(NewAtomic.getValue(1));
4807     break;
4808   }
4809   }
4810 
4811   // Replace the original node with the legalized result.
4812   if (!Results.empty()) {
4813     LLVM_DEBUG(dbgs() << "Successfully promoted node\n");
4814     ReplaceNode(Node, Results.data());
4815   } else
4816     LLVM_DEBUG(dbgs() << "Could not promote node\n");
4817 }
4818 
4819 /// This is the entry point for the file.
4820 void SelectionDAG::Legalize() {
4821   AssignTopologicalOrder();
4822 
4823   SmallPtrSet<SDNode *, 16> LegalizedNodes;
4824   // Use a delete listener to remove nodes which were deleted during
4825   // legalization from LegalizeNodes. This is needed to handle the situation
4826   // where a new node is allocated by the object pool to the same address of a
4827   // previously deleted node.
4828   DAGNodeDeletedListener DeleteListener(
4829       *this,
4830       [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); });
4831 
4832   SelectionDAGLegalize Legalizer(*this, LegalizedNodes);
4833 
4834   // Visit all the nodes. We start in topological order, so that we see
4835   // nodes with their original operands intact. Legalization can produce
4836   // new nodes which may themselves need to be legalized. Iterate until all
4837   // nodes have been legalized.
4838   while (true) {
4839     bool AnyLegalized = false;
4840     for (auto NI = allnodes_end(); NI != allnodes_begin();) {
4841       --NI;
4842 
4843       SDNode *N = &*NI;
4844       if (N->use_empty() && N != getRoot().getNode()) {
4845         ++NI;
4846         DeleteNode(N);
4847         continue;
4848       }
4849 
4850       if (LegalizedNodes.insert(N).second) {
4851         AnyLegalized = true;
4852         Legalizer.LegalizeOp(N);
4853 
4854         if (N->use_empty() && N != getRoot().getNode()) {
4855           ++NI;
4856           DeleteNode(N);
4857         }
4858       }
4859     }
4860     if (!AnyLegalized)
4861       break;
4862 
4863   }
4864 
4865   // Remove dead nodes now.
4866   RemoveDeadNodes();
4867 }
4868 
4869 bool SelectionDAG::LegalizeOp(SDNode *N,
4870                               SmallSetVector<SDNode *, 16> &UpdatedNodes) {
4871   SmallPtrSet<SDNode *, 16> LegalizedNodes;
4872   SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes);
4873 
4874   // Directly insert the node in question, and legalize it. This will recurse
4875   // as needed through operands.
4876   LegalizedNodes.insert(N);
4877   Legalizer.LegalizeOp(N);
4878 
4879   return LegalizedNodes.count(N);
4880 }
4881