1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::Legalize method. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/CodeGen/ISDOpcodes.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/RuntimeLibcalls.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/SelectionDAGNodes.h" 28 #include "llvm/CodeGen/TargetFrameLowering.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/CodeGen/ValueTypes.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstdint> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "legalizedag" 57 58 namespace { 59 60 /// Keeps track of state when getting the sign of a floating-point value as an 61 /// integer. 62 struct FloatSignAsInt { 63 EVT FloatVT; 64 SDValue Chain; 65 SDValue FloatPtr; 66 SDValue IntPtr; 67 MachinePointerInfo IntPointerInfo; 68 MachinePointerInfo FloatPointerInfo; 69 SDValue IntValue; 70 APInt SignMask; 71 uint8_t SignBit; 72 }; 73 74 //===----------------------------------------------------------------------===// 75 /// This takes an arbitrary SelectionDAG as input and 76 /// hacks on it until the target machine can handle it. This involves 77 /// eliminating value sizes the machine cannot handle (promoting small sizes to 78 /// large sizes or splitting up large values into small values) as well as 79 /// eliminating operations the machine cannot handle. 80 /// 81 /// This code also does a small amount of optimization and recognition of idioms 82 /// as part of its processing. For example, if a target does not support a 83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 84 /// will attempt merge setcc and brc instructions into brcc's. 85 class SelectionDAGLegalize { 86 const TargetMachine &TM; 87 const TargetLowering &TLI; 88 SelectionDAG &DAG; 89 90 /// The set of nodes which have already been legalized. We hold a 91 /// reference to it in order to update as necessary on node deletion. 92 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 93 94 /// A set of all the nodes updated during legalization. 95 SmallSetVector<SDNode *, 16> *UpdatedNodes; 96 97 EVT getSetCCResultType(EVT VT) const { 98 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 99 } 100 101 // Libcall insertion helpers. 102 103 public: 104 SelectionDAGLegalize(SelectionDAG &DAG, 105 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 106 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 107 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 108 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 109 110 /// Legalizes the given operation. 111 void LegalizeOp(SDNode *Node); 112 113 private: 114 SDValue OptimizeFloatStore(StoreSDNode *ST); 115 116 void LegalizeLoadOps(SDNode *Node); 117 void LegalizeStoreOps(SDNode *Node); 118 119 /// Some targets cannot handle a variable 120 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 121 /// is necessary to spill the vector being inserted into to memory, perform 122 /// the insert there, and then read the result back. 123 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 124 const SDLoc &dl); 125 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 126 const SDLoc &dl); 127 128 /// Return a vector shuffle operation which 129 /// performs the same shuffe in terms of order or result bytes, but on a type 130 /// whose vector element type is narrower than the original shuffle type. 131 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 132 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 133 SDValue N1, SDValue N2, 134 ArrayRef<int> Mask) const; 135 136 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 137 bool &NeedInvert, const SDLoc &dl, SDValue &Chain, 138 bool IsSignaling = false); 139 140 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 141 142 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 143 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 144 RTLIB::Libcall Call_F128, 145 RTLIB::Libcall Call_PPCF128, 146 SmallVectorImpl<SDValue> &Results); 147 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 148 RTLIB::Libcall Call_I8, 149 RTLIB::Libcall Call_I16, 150 RTLIB::Libcall Call_I32, 151 RTLIB::Libcall Call_I64, 152 RTLIB::Libcall Call_I128); 153 void ExpandArgFPLibCall(SDNode *Node, 154 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, 155 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, 156 RTLIB::Libcall Call_PPCF128, 157 SmallVectorImpl<SDValue> &Results); 158 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 159 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 160 161 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 162 const SDLoc &dl); 163 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 164 const SDLoc &dl, SDValue ChainIn); 165 SDValue ExpandBUILD_VECTOR(SDNode *Node); 166 SDValue ExpandSPLAT_VECTOR(SDNode *Node); 167 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 168 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 169 SmallVectorImpl<SDValue> &Results); 170 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 171 SDValue Value) const; 172 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 173 SDValue NewIntValue) const; 174 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 175 SDValue ExpandFABS(SDNode *Node) const; 176 SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain); 177 void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl, 178 SmallVectorImpl<SDValue> &Results); 179 void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 180 SmallVectorImpl<SDValue> &Results); 181 182 SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl); 183 SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl); 184 185 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 186 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 187 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 188 189 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 190 SDValue ExpandConstant(ConstantSDNode *CP); 191 192 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 193 bool ExpandNode(SDNode *Node); 194 void ConvertNodeToLibcall(SDNode *Node); 195 void PromoteNode(SDNode *Node); 196 197 public: 198 // Node replacement helpers 199 200 void ReplacedNode(SDNode *N) { 201 LegalizedNodes.erase(N); 202 if (UpdatedNodes) 203 UpdatedNodes->insert(N); 204 } 205 206 void ReplaceNode(SDNode *Old, SDNode *New) { 207 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 208 dbgs() << " with: "; New->dump(&DAG)); 209 210 assert(Old->getNumValues() == New->getNumValues() && 211 "Replacing one node with another that produces a different number " 212 "of values!"); 213 DAG.ReplaceAllUsesWith(Old, New); 214 if (UpdatedNodes) 215 UpdatedNodes->insert(New); 216 ReplacedNode(Old); 217 } 218 219 void ReplaceNode(SDValue Old, SDValue New) { 220 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 221 dbgs() << " with: "; New->dump(&DAG)); 222 223 DAG.ReplaceAllUsesWith(Old, New); 224 if (UpdatedNodes) 225 UpdatedNodes->insert(New.getNode()); 226 ReplacedNode(Old.getNode()); 227 } 228 229 void ReplaceNode(SDNode *Old, const SDValue *New) { 230 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 231 232 DAG.ReplaceAllUsesWith(Old, New); 233 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 234 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); 235 New[i]->dump(&DAG)); 236 if (UpdatedNodes) 237 UpdatedNodes->insert(New[i].getNode()); 238 } 239 ReplacedNode(Old); 240 } 241 242 void ReplaceNodeWithValue(SDValue Old, SDValue New) { 243 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 244 dbgs() << " with: "; New->dump(&DAG)); 245 246 DAG.ReplaceAllUsesOfValueWith(Old, New); 247 if (UpdatedNodes) 248 UpdatedNodes->insert(New.getNode()); 249 ReplacedNode(Old.getNode()); 250 } 251 }; 252 253 } // end anonymous namespace 254 255 /// Return a vector shuffle operation which 256 /// performs the same shuffle in terms of order or result bytes, but on a type 257 /// whose vector element type is narrower than the original shuffle type. 258 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 259 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 260 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 261 ArrayRef<int> Mask) const { 262 unsigned NumMaskElts = VT.getVectorNumElements(); 263 unsigned NumDestElts = NVT.getVectorNumElements(); 264 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 265 266 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 267 268 if (NumEltsGrowth == 1) 269 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 270 271 SmallVector<int, 8> NewMask; 272 for (unsigned i = 0; i != NumMaskElts; ++i) { 273 int Idx = Mask[i]; 274 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 275 if (Idx < 0) 276 NewMask.push_back(-1); 277 else 278 NewMask.push_back(Idx * NumEltsGrowth + j); 279 } 280 } 281 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 282 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 283 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 284 } 285 286 /// Expands the ConstantFP node to an integer constant or 287 /// a load from the constant pool. 288 SDValue 289 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 290 bool Extend = false; 291 SDLoc dl(CFP); 292 293 // If a FP immediate is precise when represented as a float and if the 294 // target can do an extending load from float to double, we put it into 295 // the constant pool as a float, even if it's is statically typed as a 296 // double. This shrinks FP constants and canonicalizes them for targets where 297 // an FP extending load is the same cost as a normal load (such as on the x87 298 // fp stack or PPC FP unit). 299 EVT VT = CFP->getValueType(0); 300 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 301 if (!UseCP) { 302 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 303 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 304 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 305 } 306 307 APFloat APF = CFP->getValueAPF(); 308 EVT OrigVT = VT; 309 EVT SVT = VT; 310 311 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 312 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 313 if (!APF.isSignaling()) { 314 while (SVT != MVT::f32 && SVT != MVT::f16) { 315 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 316 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 317 // Only do this if the target has a native EXTLOAD instruction from 318 // smaller type. 319 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 320 TLI.ShouldShrinkFPConstant(OrigVT)) { 321 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 322 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 323 VT = SVT; 324 Extend = true; 325 } 326 } 327 } 328 329 SDValue CPIdx = 330 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 331 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 332 if (Extend) { 333 SDValue Result = DAG.getExtLoad( 334 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 335 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 336 Alignment); 337 return Result; 338 } 339 SDValue Result = DAG.getLoad( 340 OrigVT, dl, DAG.getEntryNode(), CPIdx, 341 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 342 return Result; 343 } 344 345 /// Expands the Constant node to a load from the constant pool. 346 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 347 SDLoc dl(CP); 348 EVT VT = CP->getValueType(0); 349 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 350 TLI.getPointerTy(DAG.getDataLayout())); 351 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 352 SDValue Result = DAG.getLoad( 353 VT, dl, DAG.getEntryNode(), CPIdx, 354 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 355 return Result; 356 } 357 358 /// Some target cannot handle a variable insertion index for the 359 /// INSERT_VECTOR_ELT instruction. In this case, it 360 /// is necessary to spill the vector being inserted into to memory, perform 361 /// the insert there, and then read the result back. 362 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 363 SDValue Val, 364 SDValue Idx, 365 const SDLoc &dl) { 366 SDValue Tmp1 = Vec; 367 SDValue Tmp2 = Val; 368 SDValue Tmp3 = Idx; 369 370 // If the target doesn't support this, we have to spill the input vector 371 // to a temporary stack slot, update the element, then reload it. This is 372 // badness. We could also load the value into a vector register (either 373 // with a "move to register" or "extload into register" instruction, then 374 // permute it into place, if the idx is a constant and if the idx is 375 // supported by the target. 376 EVT VT = Tmp1.getValueType(); 377 EVT EltVT = VT.getVectorElementType(); 378 SDValue StackPtr = DAG.CreateStackTemporary(VT); 379 380 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 381 382 // Store the vector. 383 SDValue Ch = DAG.getStore( 384 DAG.getEntryNode(), dl, Tmp1, StackPtr, 385 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 386 387 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 388 389 // Store the scalar value. 390 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT); 391 // Load the updated vector. 392 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 393 DAG.getMachineFunction(), SPFI)); 394 } 395 396 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 397 SDValue Idx, 398 const SDLoc &dl) { 399 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 400 // SCALAR_TO_VECTOR requires that the type of the value being inserted 401 // match the element type of the vector being created, except for 402 // integers in which case the inserted value can be over width. 403 EVT EltVT = Vec.getValueType().getVectorElementType(); 404 if (Val.getValueType() == EltVT || 405 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 406 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 407 Vec.getValueType(), Val); 408 409 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 410 // We generate a shuffle of InVec and ScVec, so the shuffle mask 411 // should be 0,1,2,3,4,5... with the appropriate element replaced with 412 // elt 0 of the RHS. 413 SmallVector<int, 8> ShufOps; 414 for (unsigned i = 0; i != NumElts; ++i) 415 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 416 417 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 418 } 419 } 420 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 421 } 422 423 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 424 if (!ISD::isNormalStore(ST)) 425 return SDValue(); 426 427 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); 428 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 429 // FIXME: We shouldn't do this for TargetConstantFP's. 430 // FIXME: move this to the DAG Combiner! Note that we can't regress due 431 // to phase ordering between legalized code and the dag combiner. This 432 // probably means that we need to integrate dag combiner and legalizer 433 // together. 434 // We generally can't do this one for long doubles. 435 SDValue Chain = ST->getChain(); 436 SDValue Ptr = ST->getBasePtr(); 437 unsigned Alignment = ST->getAlignment(); 438 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 439 AAMDNodes AAInfo = ST->getAAInfo(); 440 SDLoc dl(ST); 441 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 442 if (CFP->getValueType(0) == MVT::f32 && 443 TLI.isTypeLegal(MVT::i32)) { 444 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 445 bitcastToAPInt().zextOrTrunc(32), 446 SDLoc(CFP), MVT::i32); 447 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), Alignment, 448 MMOFlags, AAInfo); 449 } 450 451 if (CFP->getValueType(0) == MVT::f64) { 452 // If this target supports 64-bit registers, do a single 64-bit store. 453 if (TLI.isTypeLegal(MVT::i64)) { 454 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 455 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 456 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 457 Alignment, MMOFlags, AAInfo); 458 } 459 460 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 461 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 462 // stores. If the target supports neither 32- nor 64-bits, this 463 // xform is certainly not worth it. 464 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 465 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 466 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 467 if (DAG.getDataLayout().isBigEndian()) 468 std::swap(Lo, Hi); 469 470 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), Alignment, 471 MMOFlags, AAInfo); 472 Ptr = DAG.getMemBasePlusOffset(Ptr, 4, dl); 473 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 474 ST->getPointerInfo().getWithOffset(4), 475 MinAlign(Alignment, 4U), MMOFlags, AAInfo); 476 477 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 478 } 479 } 480 } 481 return SDValue(nullptr, 0); 482 } 483 484 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 485 StoreSDNode *ST = cast<StoreSDNode>(Node); 486 SDValue Chain = ST->getChain(); 487 SDValue Ptr = ST->getBasePtr(); 488 SDLoc dl(Node); 489 490 unsigned Alignment = ST->getAlignment(); 491 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 492 AAMDNodes AAInfo = ST->getAAInfo(); 493 494 if (!ST->isTruncatingStore()) { 495 LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); 496 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 497 ReplaceNode(ST, OptStore); 498 return; 499 } 500 501 SDValue Value = ST->getValue(); 502 MVT VT = Value.getSimpleValueType(); 503 switch (TLI.getOperationAction(ISD::STORE, VT)) { 504 default: llvm_unreachable("This action is not supported yet!"); 505 case TargetLowering::Legal: { 506 // If this is an unaligned store and the target doesn't support it, 507 // expand it. 508 EVT MemVT = ST->getMemoryVT(); 509 const DataLayout &DL = DAG.getDataLayout(); 510 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 511 *ST->getMemOperand())) { 512 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 513 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 514 ReplaceNode(SDValue(ST, 0), Result); 515 } else 516 LLVM_DEBUG(dbgs() << "Legal store\n"); 517 break; 518 } 519 case TargetLowering::Custom: { 520 LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); 521 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 522 if (Res && Res != SDValue(Node, 0)) 523 ReplaceNode(SDValue(Node, 0), Res); 524 return; 525 } 526 case TargetLowering::Promote: { 527 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 528 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 529 "Can only promote stores to same size type"); 530 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 531 SDValue Result = 532 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 533 Alignment, MMOFlags, AAInfo); 534 ReplaceNode(SDValue(Node, 0), Result); 535 break; 536 } 537 } 538 return; 539 } 540 541 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); 542 SDValue Value = ST->getValue(); 543 EVT StVT = ST->getMemoryVT(); 544 unsigned StWidth = StVT.getSizeInBits(); 545 auto &DL = DAG.getDataLayout(); 546 547 if (StWidth != StVT.getStoreSizeInBits()) { 548 // Promote to a byte-sized store with upper bits zero if not 549 // storing an integral number of bytes. For example, promote 550 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 551 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), 552 StVT.getStoreSizeInBits()); 553 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 554 SDValue Result = 555 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 556 Alignment, MMOFlags, AAInfo); 557 ReplaceNode(SDValue(Node, 0), Result); 558 } else if (StWidth & (StWidth - 1)) { 559 // If not storing a power-of-2 number of bits, expand as two stores. 560 assert(!StVT.isVector() && "Unsupported truncstore!"); 561 unsigned LogStWidth = Log2_32(StWidth); 562 assert(LogStWidth < 32); 563 unsigned RoundWidth = 1 << LogStWidth; 564 assert(RoundWidth < StWidth); 565 unsigned ExtraWidth = StWidth - RoundWidth; 566 assert(ExtraWidth < RoundWidth); 567 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 568 "Store size not an integral number of bytes!"); 569 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 570 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 571 SDValue Lo, Hi; 572 unsigned IncrementSize; 573 574 if (DL.isLittleEndian()) { 575 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 576 // Store the bottom RoundWidth bits. 577 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 578 RoundVT, Alignment, MMOFlags, AAInfo); 579 580 // Store the remaining ExtraWidth bits. 581 IncrementSize = RoundWidth / 8; 582 Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl); 583 Hi = DAG.getNode( 584 ISD::SRL, dl, Value.getValueType(), Value, 585 DAG.getConstant(RoundWidth, dl, 586 TLI.getShiftAmountTy(Value.getValueType(), DL))); 587 Hi = DAG.getTruncStore( 588 Chain, dl, Hi, Ptr, 589 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, 590 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); 591 } else { 592 // Big endian - avoid unaligned stores. 593 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 594 // Store the top RoundWidth bits. 595 Hi = DAG.getNode( 596 ISD::SRL, dl, Value.getValueType(), Value, 597 DAG.getConstant(ExtraWidth, dl, 598 TLI.getShiftAmountTy(Value.getValueType(), DL))); 599 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), 600 RoundVT, Alignment, MMOFlags, AAInfo); 601 602 // Store the remaining ExtraWidth bits. 603 IncrementSize = RoundWidth / 8; 604 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 605 DAG.getConstant(IncrementSize, dl, 606 Ptr.getValueType())); 607 Lo = DAG.getTruncStore( 608 Chain, dl, Value, Ptr, 609 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, 610 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); 611 } 612 613 // The order of the stores doesn't matter. 614 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 615 ReplaceNode(SDValue(Node, 0), Result); 616 } else { 617 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 618 default: llvm_unreachable("This action is not supported yet!"); 619 case TargetLowering::Legal: { 620 EVT MemVT = ST->getMemoryVT(); 621 // If this is an unaligned store and the target doesn't support it, 622 // expand it. 623 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 624 *ST->getMemOperand())) { 625 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 626 ReplaceNode(SDValue(ST, 0), Result); 627 } 628 break; 629 } 630 case TargetLowering::Custom: { 631 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 632 if (Res && Res != SDValue(Node, 0)) 633 ReplaceNode(SDValue(Node, 0), Res); 634 return; 635 } 636 case TargetLowering::Expand: 637 assert(!StVT.isVector() && 638 "Vector Stores are handled in LegalizeVectorOps"); 639 640 SDValue Result; 641 642 // TRUNCSTORE:i16 i32 -> STORE i16 643 if (TLI.isTypeLegal(StVT)) { 644 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 645 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 646 Alignment, MMOFlags, AAInfo); 647 } else { 648 // The in-memory type isn't legal. Truncate to the type it would promote 649 // to, and then do a truncstore. 650 Value = DAG.getNode(ISD::TRUNCATE, dl, 651 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 652 Value); 653 Result = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 654 StVT, Alignment, MMOFlags, AAInfo); 655 } 656 657 ReplaceNode(SDValue(Node, 0), Result); 658 break; 659 } 660 } 661 } 662 663 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 664 LoadSDNode *LD = cast<LoadSDNode>(Node); 665 SDValue Chain = LD->getChain(); // The chain. 666 SDValue Ptr = LD->getBasePtr(); // The base pointer. 667 SDValue Value; // The value returned by the load op. 668 SDLoc dl(Node); 669 670 ISD::LoadExtType ExtType = LD->getExtensionType(); 671 if (ExtType == ISD::NON_EXTLOAD) { 672 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 673 MVT VT = Node->getSimpleValueType(0); 674 SDValue RVal = SDValue(Node, 0); 675 SDValue RChain = SDValue(Node, 1); 676 677 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 678 default: llvm_unreachable("This action is not supported yet!"); 679 case TargetLowering::Legal: { 680 EVT MemVT = LD->getMemoryVT(); 681 const DataLayout &DL = DAG.getDataLayout(); 682 // If this is an unaligned load and the target doesn't support it, 683 // expand it. 684 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 685 *LD->getMemOperand())) { 686 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 687 } 688 break; 689 } 690 case TargetLowering::Custom: 691 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 692 RVal = Res; 693 RChain = Res.getValue(1); 694 } 695 break; 696 697 case TargetLowering::Promote: { 698 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 699 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 700 "Can only promote loads to same size type"); 701 702 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 703 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 704 RChain = Res.getValue(1); 705 break; 706 } 707 } 708 if (RChain.getNode() != Node) { 709 assert(RVal.getNode() != Node && "Load must be completely replaced"); 710 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 711 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 712 if (UpdatedNodes) { 713 UpdatedNodes->insert(RVal.getNode()); 714 UpdatedNodes->insert(RChain.getNode()); 715 } 716 ReplacedNode(Node); 717 } 718 return; 719 } 720 721 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); 722 EVT SrcVT = LD->getMemoryVT(); 723 unsigned SrcWidth = SrcVT.getSizeInBits(); 724 unsigned Alignment = LD->getAlignment(); 725 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 726 AAMDNodes AAInfo = LD->getAAInfo(); 727 728 if (SrcWidth != SrcVT.getStoreSizeInBits() && 729 // Some targets pretend to have an i1 loading operation, and actually 730 // load an i8. This trick is correct for ZEXTLOAD because the top 7 731 // bits are guaranteed to be zero; it helps the optimizers understand 732 // that these bits are zero. It is also useful for EXTLOAD, since it 733 // tells the optimizers that those bits are undefined. It would be 734 // nice to have an effective generic way of getting these benefits... 735 // Until such a way is found, don't insist on promoting i1 here. 736 (SrcVT != MVT::i1 || 737 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 738 TargetLowering::Promote)) { 739 // Promote to a byte-sized load if not loading an integral number of 740 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 741 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 742 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 743 SDValue Ch; 744 745 // The extra bits are guaranteed to be zero, since we stored them that 746 // way. A zext load from NVT thus automatically gives zext from SrcVT. 747 748 ISD::LoadExtType NewExtType = 749 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 750 751 SDValue Result = 752 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), Chain, Ptr, 753 LD->getPointerInfo(), NVT, Alignment, MMOFlags, AAInfo); 754 755 Ch = Result.getValue(1); // The chain. 756 757 if (ExtType == ISD::SEXTLOAD) 758 // Having the top bits zero doesn't help when sign extending. 759 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 760 Result.getValueType(), 761 Result, DAG.getValueType(SrcVT)); 762 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 763 // All the top bits are guaranteed to be zero - inform the optimizers. 764 Result = DAG.getNode(ISD::AssertZext, dl, 765 Result.getValueType(), Result, 766 DAG.getValueType(SrcVT)); 767 768 Value = Result; 769 Chain = Ch; 770 } else if (SrcWidth & (SrcWidth - 1)) { 771 // If not loading a power-of-2 number of bits, expand as two loads. 772 assert(!SrcVT.isVector() && "Unsupported extload!"); 773 unsigned LogSrcWidth = Log2_32(SrcWidth); 774 assert(LogSrcWidth < 32); 775 unsigned RoundWidth = 1 << LogSrcWidth; 776 assert(RoundWidth < SrcWidth); 777 unsigned ExtraWidth = SrcWidth - RoundWidth; 778 assert(ExtraWidth < RoundWidth); 779 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 780 "Load size not an integral number of bytes!"); 781 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 782 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 783 SDValue Lo, Hi, Ch; 784 unsigned IncrementSize; 785 auto &DL = DAG.getDataLayout(); 786 787 if (DL.isLittleEndian()) { 788 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 789 // Load the bottom RoundWidth bits. 790 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 791 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, 792 AAInfo); 793 794 // Load the remaining ExtraWidth bits. 795 IncrementSize = RoundWidth / 8; 796 Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl); 797 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 798 LD->getPointerInfo().getWithOffset(IncrementSize), 799 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, 800 AAInfo); 801 802 // Build a factor node to remember that this load is independent of 803 // the other one. 804 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 805 Hi.getValue(1)); 806 807 // Move the top bits to the right place. 808 Hi = DAG.getNode( 809 ISD::SHL, dl, Hi.getValueType(), Hi, 810 DAG.getConstant(RoundWidth, dl, 811 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 812 813 // Join the hi and lo parts. 814 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 815 } else { 816 // Big endian - avoid unaligned loads. 817 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 818 // Load the top RoundWidth bits. 819 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 820 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, 821 AAInfo); 822 823 // Load the remaining ExtraWidth bits. 824 IncrementSize = RoundWidth / 8; 825 Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl); 826 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 827 LD->getPointerInfo().getWithOffset(IncrementSize), 828 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, 829 AAInfo); 830 831 // Build a factor node to remember that this load is independent of 832 // the other one. 833 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 834 Hi.getValue(1)); 835 836 // Move the top bits to the right place. 837 Hi = DAG.getNode( 838 ISD::SHL, dl, Hi.getValueType(), Hi, 839 DAG.getConstant(ExtraWidth, dl, 840 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 841 842 // Join the hi and lo parts. 843 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 844 } 845 846 Chain = Ch; 847 } else { 848 bool isCustom = false; 849 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 850 SrcVT.getSimpleVT())) { 851 default: llvm_unreachable("This action is not supported yet!"); 852 case TargetLowering::Custom: 853 isCustom = true; 854 LLVM_FALLTHROUGH; 855 case TargetLowering::Legal: 856 Value = SDValue(Node, 0); 857 Chain = SDValue(Node, 1); 858 859 if (isCustom) { 860 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 861 Value = Res; 862 Chain = Res.getValue(1); 863 } 864 } else { 865 // If this is an unaligned load and the target doesn't support it, 866 // expand it. 867 EVT MemVT = LD->getMemoryVT(); 868 const DataLayout &DL = DAG.getDataLayout(); 869 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, 870 *LD->getMemOperand())) { 871 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 872 } 873 } 874 break; 875 876 case TargetLowering::Expand: { 877 EVT DestVT = Node->getValueType(0); 878 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 879 // If the source type is not legal, see if there is a legal extload to 880 // an intermediate type that we can then extend further. 881 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 882 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 883 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 884 // If we are loading a legal type, this is a non-extload followed by a 885 // full extend. 886 ISD::LoadExtType MidExtType = 887 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 888 889 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 890 SrcVT, LD->getMemOperand()); 891 unsigned ExtendOp = 892 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 893 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 894 Chain = Load.getValue(1); 895 break; 896 } 897 898 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 899 // normal undefined upper bits behavior to allow using an in-reg extend 900 // with the illegal FP type, so load as an integer and do the 901 // from-integer conversion. 902 if (SrcVT.getScalarType() == MVT::f16) { 903 EVT ISrcVT = SrcVT.changeTypeToInteger(); 904 EVT IDestVT = DestVT.changeTypeToInteger(); 905 EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 906 907 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain, 908 Ptr, ISrcVT, LD->getMemOperand()); 909 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 910 Chain = Result.getValue(1); 911 break; 912 } 913 } 914 915 assert(!SrcVT.isVector() && 916 "Vector Loads are handled in LegalizeVectorOps"); 917 918 // FIXME: This does not work for vectors on most targets. Sign- 919 // and zero-extend operations are currently folded into extending 920 // loads, whether they are legal or not, and then we end up here 921 // without any support for legalizing them. 922 assert(ExtType != ISD::EXTLOAD && 923 "EXTLOAD should always be supported!"); 924 // Turn the unsupported load into an EXTLOAD followed by an 925 // explicit zero/sign extend inreg. 926 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 927 Node->getValueType(0), 928 Chain, Ptr, SrcVT, 929 LD->getMemOperand()); 930 SDValue ValRes; 931 if (ExtType == ISD::SEXTLOAD) 932 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 933 Result.getValueType(), 934 Result, DAG.getValueType(SrcVT)); 935 else 936 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); 937 Value = ValRes; 938 Chain = Result.getValue(1); 939 break; 940 } 941 } 942 } 943 944 // Since loads produce two values, make sure to remember that we legalized 945 // both of them. 946 if (Chain.getNode() != Node) { 947 assert(Value.getNode() != Node && "Load must be completely replaced"); 948 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 949 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 950 if (UpdatedNodes) { 951 UpdatedNodes->insert(Value.getNode()); 952 UpdatedNodes->insert(Chain.getNode()); 953 } 954 ReplacedNode(Node); 955 } 956 } 957 958 /// Return a legal replacement for the given operation, with all legal operands. 959 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 960 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 961 962 // Allow illegal target nodes and illegal registers. 963 if (Node->getOpcode() == ISD::TargetConstant || 964 Node->getOpcode() == ISD::Register) 965 return; 966 967 #ifndef NDEBUG 968 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 969 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 970 TargetLowering::TypeLegal && 971 "Unexpected illegal type!"); 972 973 for (const SDValue &Op : Node->op_values()) 974 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 975 TargetLowering::TypeLegal || 976 Op.getOpcode() == ISD::TargetConstant || 977 Op.getOpcode() == ISD::Register) && 978 "Unexpected illegal type!"); 979 #endif 980 981 // Figure out the correct action; the way to query this varies by opcode 982 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 983 bool SimpleFinishLegalizing = true; 984 switch (Node->getOpcode()) { 985 case ISD::INTRINSIC_W_CHAIN: 986 case ISD::INTRINSIC_WO_CHAIN: 987 case ISD::INTRINSIC_VOID: 988 case ISD::STACKSAVE: 989 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 990 break; 991 case ISD::GET_DYNAMIC_AREA_OFFSET: 992 Action = TLI.getOperationAction(Node->getOpcode(), 993 Node->getValueType(0)); 994 break; 995 case ISD::VAARG: 996 Action = TLI.getOperationAction(Node->getOpcode(), 997 Node->getValueType(0)); 998 if (Action != TargetLowering::Promote) 999 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 1000 break; 1001 case ISD::FP_TO_FP16: 1002 case ISD::SINT_TO_FP: 1003 case ISD::UINT_TO_FP: 1004 case ISD::EXTRACT_VECTOR_ELT: 1005 case ISD::LROUND: 1006 case ISD::LLROUND: 1007 case ISD::LRINT: 1008 case ISD::LLRINT: 1009 Action = TLI.getOperationAction(Node->getOpcode(), 1010 Node->getOperand(0).getValueType()); 1011 break; 1012 case ISD::STRICT_SINT_TO_FP: 1013 case ISD::STRICT_UINT_TO_FP: 1014 case ISD::STRICT_LRINT: 1015 case ISD::STRICT_LLRINT: 1016 case ISD::STRICT_LROUND: 1017 case ISD::STRICT_LLROUND: 1018 // These pseudo-ops are the same as the other STRICT_ ops except 1019 // they are registered with setOperationAction() using the input type 1020 // instead of the output type. 1021 Action = TLI.getOperationAction(Node->getOpcode(), 1022 Node->getOperand(1).getValueType()); 1023 break; 1024 case ISD::SIGN_EXTEND_INREG: { 1025 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1026 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1027 break; 1028 } 1029 case ISD::ATOMIC_STORE: 1030 Action = TLI.getOperationAction(Node->getOpcode(), 1031 Node->getOperand(2).getValueType()); 1032 break; 1033 case ISD::SELECT_CC: 1034 case ISD::STRICT_FSETCC: 1035 case ISD::STRICT_FSETCCS: 1036 case ISD::SETCC: 1037 case ISD::BR_CC: { 1038 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 1039 Node->getOpcode() == ISD::STRICT_FSETCC ? 3 : 1040 Node->getOpcode() == ISD::STRICT_FSETCCS ? 3 : 1041 Node->getOpcode() == ISD::SETCC ? 2 : 1; 1042 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 1043 Node->getOpcode() == ISD::STRICT_FSETCC ? 1 : 1044 Node->getOpcode() == ISD::STRICT_FSETCCS ? 1 : 0; 1045 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1046 ISD::CondCode CCCode = 1047 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1048 Action = TLI.getCondCodeAction(CCCode, OpVT); 1049 if (Action == TargetLowering::Legal) { 1050 if (Node->getOpcode() == ISD::SELECT_CC) 1051 Action = TLI.getOperationAction(Node->getOpcode(), 1052 Node->getValueType(0)); 1053 else 1054 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1055 } 1056 break; 1057 } 1058 case ISD::LOAD: 1059 case ISD::STORE: 1060 // FIXME: Model these properly. LOAD and STORE are complicated, and 1061 // STORE expects the unlegalized operand in some cases. 1062 SimpleFinishLegalizing = false; 1063 break; 1064 case ISD::CALLSEQ_START: 1065 case ISD::CALLSEQ_END: 1066 // FIXME: This shouldn't be necessary. These nodes have special properties 1067 // dealing with the recursive nature of legalization. Removing this 1068 // special case should be done as part of making LegalizeDAG non-recursive. 1069 SimpleFinishLegalizing = false; 1070 break; 1071 case ISD::EXTRACT_ELEMENT: 1072 case ISD::FLT_ROUNDS_: 1073 case ISD::MERGE_VALUES: 1074 case ISD::EH_RETURN: 1075 case ISD::FRAME_TO_ARGS_OFFSET: 1076 case ISD::EH_DWARF_CFA: 1077 case ISD::EH_SJLJ_SETJMP: 1078 case ISD::EH_SJLJ_LONGJMP: 1079 case ISD::EH_SJLJ_SETUP_DISPATCH: 1080 // These operations lie about being legal: when they claim to be legal, 1081 // they should actually be expanded. 1082 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1083 if (Action == TargetLowering::Legal) 1084 Action = TargetLowering::Expand; 1085 break; 1086 case ISD::INIT_TRAMPOLINE: 1087 case ISD::ADJUST_TRAMPOLINE: 1088 case ISD::FRAMEADDR: 1089 case ISD::RETURNADDR: 1090 case ISD::ADDROFRETURNADDR: 1091 case ISD::SPONENTRY: 1092 // These operations lie about being legal: when they claim to be legal, 1093 // they should actually be custom-lowered. 1094 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1095 if (Action == TargetLowering::Legal) 1096 Action = TargetLowering::Custom; 1097 break; 1098 case ISD::READCYCLECOUNTER: 1099 // READCYCLECOUNTER returns an i64, even if type legalization might have 1100 // expanded that to several smaller types. 1101 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1102 break; 1103 case ISD::READ_REGISTER: 1104 case ISD::WRITE_REGISTER: 1105 // Named register is legal in the DAG, but blocked by register name 1106 // selection if not implemented by target (to chose the correct register) 1107 // They'll be converted to Copy(To/From)Reg. 1108 Action = TargetLowering::Legal; 1109 break; 1110 case ISD::DEBUGTRAP: 1111 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1112 if (Action == TargetLowering::Expand) { 1113 // replace ISD::DEBUGTRAP with ISD::TRAP 1114 SDValue NewVal; 1115 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1116 Node->getOperand(0)); 1117 ReplaceNode(Node, NewVal.getNode()); 1118 LegalizeOp(NewVal.getNode()); 1119 return; 1120 } 1121 break; 1122 case ISD::SADDSAT: 1123 case ISD::UADDSAT: 1124 case ISD::SSUBSAT: 1125 case ISD::USUBSAT: { 1126 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1127 break; 1128 } 1129 case ISD::SMULFIX: 1130 case ISD::SMULFIXSAT: 1131 case ISD::UMULFIX: 1132 case ISD::UMULFIXSAT: { 1133 unsigned Scale = Node->getConstantOperandVal(2); 1134 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 1135 Node->getValueType(0), Scale); 1136 break; 1137 } 1138 case ISD::MSCATTER: 1139 Action = TLI.getOperationAction(Node->getOpcode(), 1140 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 1141 break; 1142 case ISD::MSTORE: 1143 Action = TLI.getOperationAction(Node->getOpcode(), 1144 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 1145 break; 1146 case ISD::VECREDUCE_FADD: 1147 case ISD::VECREDUCE_FMUL: 1148 case ISD::VECREDUCE_ADD: 1149 case ISD::VECREDUCE_MUL: 1150 case ISD::VECREDUCE_AND: 1151 case ISD::VECREDUCE_OR: 1152 case ISD::VECREDUCE_XOR: 1153 case ISD::VECREDUCE_SMAX: 1154 case ISD::VECREDUCE_SMIN: 1155 case ISD::VECREDUCE_UMAX: 1156 case ISD::VECREDUCE_UMIN: 1157 case ISD::VECREDUCE_FMAX: 1158 case ISD::VECREDUCE_FMIN: 1159 Action = TLI.getOperationAction( 1160 Node->getOpcode(), Node->getOperand(0).getValueType()); 1161 break; 1162 default: 1163 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1164 Action = TargetLowering::Legal; 1165 } else { 1166 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1167 } 1168 break; 1169 } 1170 1171 if (SimpleFinishLegalizing) { 1172 SDNode *NewNode = Node; 1173 switch (Node->getOpcode()) { 1174 default: break; 1175 case ISD::SHL: 1176 case ISD::SRL: 1177 case ISD::SRA: 1178 case ISD::ROTL: 1179 case ISD::ROTR: { 1180 // Legalizing shifts/rotates requires adjusting the shift amount 1181 // to the appropriate width. 1182 SDValue Op0 = Node->getOperand(0); 1183 SDValue Op1 = Node->getOperand(1); 1184 if (!Op1.getValueType().isVector()) { 1185 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1186 // The getShiftAmountOperand() may create a new operand node or 1187 // return the existing one. If new operand is created we need 1188 // to update the parent node. 1189 // Do not try to legalize SAO here! It will be automatically legalized 1190 // in the next round. 1191 if (SAO != Op1) 1192 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1193 } 1194 } 1195 break; 1196 case ISD::FSHL: 1197 case ISD::FSHR: 1198 case ISD::SRL_PARTS: 1199 case ISD::SRA_PARTS: 1200 case ISD::SHL_PARTS: { 1201 // Legalizing shifts/rotates requires adjusting the shift amount 1202 // to the appropriate width. 1203 SDValue Op0 = Node->getOperand(0); 1204 SDValue Op1 = Node->getOperand(1); 1205 SDValue Op2 = Node->getOperand(2); 1206 if (!Op2.getValueType().isVector()) { 1207 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1208 // The getShiftAmountOperand() may create a new operand node or 1209 // return the existing one. If new operand is created we need 1210 // to update the parent node. 1211 if (SAO != Op2) 1212 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1213 } 1214 break; 1215 } 1216 } 1217 1218 if (NewNode != Node) { 1219 ReplaceNode(Node, NewNode); 1220 Node = NewNode; 1221 } 1222 switch (Action) { 1223 case TargetLowering::Legal: 1224 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 1225 return; 1226 case TargetLowering::Custom: 1227 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 1228 // FIXME: The handling for custom lowering with multiple results is 1229 // a complete mess. 1230 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1231 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1232 return; 1233 1234 if (Node->getNumValues() == 1) { 1235 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1236 // We can just directly replace this node with the lowered value. 1237 ReplaceNode(SDValue(Node, 0), Res); 1238 return; 1239 } 1240 1241 SmallVector<SDValue, 8> ResultVals; 1242 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1243 ResultVals.push_back(Res.getValue(i)); 1244 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1245 ReplaceNode(Node, ResultVals.data()); 1246 return; 1247 } 1248 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 1249 LLVM_FALLTHROUGH; 1250 case TargetLowering::Expand: 1251 if (ExpandNode(Node)) 1252 return; 1253 LLVM_FALLTHROUGH; 1254 case TargetLowering::LibCall: 1255 ConvertNodeToLibcall(Node); 1256 return; 1257 case TargetLowering::Promote: 1258 PromoteNode(Node); 1259 return; 1260 } 1261 } 1262 1263 switch (Node->getOpcode()) { 1264 default: 1265 #ifndef NDEBUG 1266 dbgs() << "NODE: "; 1267 Node->dump( &DAG); 1268 dbgs() << "\n"; 1269 #endif 1270 llvm_unreachable("Do not know how to legalize this operator!"); 1271 1272 case ISD::CALLSEQ_START: 1273 case ISD::CALLSEQ_END: 1274 break; 1275 case ISD::LOAD: 1276 return LegalizeLoadOps(Node); 1277 case ISD::STORE: 1278 return LegalizeStoreOps(Node); 1279 } 1280 } 1281 1282 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1283 SDValue Vec = Op.getOperand(0); 1284 SDValue Idx = Op.getOperand(1); 1285 SDLoc dl(Op); 1286 1287 // Before we generate a new store to a temporary stack slot, see if there is 1288 // already one that we can use. There often is because when we scalarize 1289 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1290 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1291 // the vector. If all are expanded here, we don't want one store per vector 1292 // element. 1293 1294 // Caches for hasPredecessorHelper 1295 SmallPtrSet<const SDNode *, 32> Visited; 1296 SmallVector<const SDNode *, 16> Worklist; 1297 Visited.insert(Op.getNode()); 1298 Worklist.push_back(Idx.getNode()); 1299 SDValue StackPtr, Ch; 1300 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), 1301 UE = Vec.getNode()->use_end(); UI != UE; ++UI) { 1302 SDNode *User = *UI; 1303 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1304 if (ST->isIndexed() || ST->isTruncatingStore() || 1305 ST->getValue() != Vec) 1306 continue; 1307 1308 // Make sure that nothing else could have stored into the destination of 1309 // this store. 1310 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1311 continue; 1312 1313 // If the index is dependent on the store we will introduce a cycle when 1314 // creating the load (the load uses the index, and by replacing the chain 1315 // we will make the index dependent on the load). Also, the store might be 1316 // dependent on the extractelement and introduce a cycle when creating 1317 // the load. 1318 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1319 ST->hasPredecessor(Op.getNode())) 1320 continue; 1321 1322 StackPtr = ST->getBasePtr(); 1323 Ch = SDValue(ST, 0); 1324 break; 1325 } 1326 } 1327 1328 EVT VecVT = Vec.getValueType(); 1329 1330 if (!Ch.getNode()) { 1331 // Store the value to a temporary stack slot, then LOAD the returned part. 1332 StackPtr = DAG.CreateStackTemporary(VecVT); 1333 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1334 MachinePointerInfo()); 1335 } 1336 1337 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1338 1339 SDValue NewLoad; 1340 1341 if (Op.getValueType().isVector()) 1342 NewLoad = 1343 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); 1344 else 1345 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1346 MachinePointerInfo(), 1347 VecVT.getVectorElementType()); 1348 1349 // Replace the chain going out of the store, by the one out of the load. 1350 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1351 1352 // We introduced a cycle though, so update the loads operands, making sure 1353 // to use the original store's chain as an incoming chain. 1354 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1355 NewLoad->op_end()); 1356 NewLoadOperands[0] = Ch; 1357 NewLoad = 1358 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1359 return NewLoad; 1360 } 1361 1362 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1363 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1364 1365 SDValue Vec = Op.getOperand(0); 1366 SDValue Part = Op.getOperand(1); 1367 SDValue Idx = Op.getOperand(2); 1368 SDLoc dl(Op); 1369 1370 // Store the value to a temporary stack slot, then LOAD the returned part. 1371 EVT VecVT = Vec.getValueType(); 1372 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1373 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1374 MachinePointerInfo PtrInfo = 1375 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1376 1377 // First store the whole vector. 1378 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1379 1380 // Then store the inserted part. 1381 SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1382 1383 // Store the subvector. 1384 Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, MachinePointerInfo()); 1385 1386 // Finally, load the updated vector. 1387 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1388 } 1389 1390 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1391 // We can't handle this case efficiently. Allocate a sufficiently 1392 // aligned object on the stack, store each element into it, then load 1393 // the result as a vector. 1394 // Create the stack frame object. 1395 EVT VT = Node->getValueType(0); 1396 EVT EltVT = VT.getVectorElementType(); 1397 SDLoc dl(Node); 1398 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1399 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1400 MachinePointerInfo PtrInfo = 1401 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1402 1403 // Emit a store of each element to the stack slot. 1404 SmallVector<SDValue, 8> Stores; 1405 unsigned TypeByteSize = EltVT.getSizeInBits() / 8; 1406 assert(TypeByteSize > 0 && "Vector element type too small for stack store!"); 1407 // Store (in the right endianness) the elements to memory. 1408 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1409 // Ignore undef elements. 1410 if (Node->getOperand(i).isUndef()) continue; 1411 1412 unsigned Offset = TypeByteSize*i; 1413 1414 SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType()); 1415 Idx = DAG.getMemBasePlusOffset(FIPtr, Idx, dl); 1416 1417 // If the destination vector element type is narrower than the source 1418 // element type, only store the bits necessary. 1419 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { 1420 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1421 Node->getOperand(i), Idx, 1422 PtrInfo.getWithOffset(Offset), EltVT)); 1423 } else 1424 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1425 Idx, PtrInfo.getWithOffset(Offset))); 1426 } 1427 1428 SDValue StoreChain; 1429 if (!Stores.empty()) // Not all undef elements? 1430 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1431 else 1432 StoreChain = DAG.getEntryNode(); 1433 1434 // Result is a load from the stack slot. 1435 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1436 } 1437 1438 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1439 /// containing the sign bit if the target has no integer value capable of 1440 /// holding all bits of the floating-point value. 1441 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1442 const SDLoc &DL, 1443 SDValue Value) const { 1444 EVT FloatVT = Value.getValueType(); 1445 unsigned NumBits = FloatVT.getSizeInBits(); 1446 State.FloatVT = FloatVT; 1447 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1448 // Convert to an integer of the same size. 1449 if (TLI.isTypeLegal(IVT)) { 1450 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1451 State.SignMask = APInt::getSignMask(NumBits); 1452 State.SignBit = NumBits - 1; 1453 return; 1454 } 1455 1456 auto &DataLayout = DAG.getDataLayout(); 1457 // Store the float to memory, then load the sign part out as an integer. 1458 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1459 // First create a temporary that is aligned for both the load and store. 1460 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1461 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1462 // Then store the float to it. 1463 State.FloatPtr = StackPtr; 1464 MachineFunction &MF = DAG.getMachineFunction(); 1465 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1466 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1467 State.FloatPointerInfo); 1468 1469 SDValue IntPtr; 1470 if (DataLayout.isBigEndian()) { 1471 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1472 // Load out a legal integer with the same sign bit as the float. 1473 IntPtr = StackPtr; 1474 State.IntPointerInfo = State.FloatPointerInfo; 1475 } else { 1476 // Advance the pointer so that the loaded byte will contain the sign bit. 1477 unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1; 1478 IntPtr = DAG.getMemBasePlusOffset(StackPtr, ByteOffset, DL); 1479 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1480 ByteOffset); 1481 } 1482 1483 State.IntPtr = IntPtr; 1484 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1485 State.IntPointerInfo, MVT::i8); 1486 State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7); 1487 State.SignBit = 7; 1488 } 1489 1490 /// Replace the integer value produced by getSignAsIntValue() with a new value 1491 /// and cast the result back to a floating-point type. 1492 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1493 const SDLoc &DL, 1494 SDValue NewIntValue) const { 1495 if (!State.Chain) 1496 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1497 1498 // Override the part containing the sign bit in the value stored on the stack. 1499 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1500 State.IntPointerInfo, MVT::i8); 1501 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1502 State.FloatPointerInfo); 1503 } 1504 1505 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1506 SDLoc DL(Node); 1507 SDValue Mag = Node->getOperand(0); 1508 SDValue Sign = Node->getOperand(1); 1509 1510 // Get sign bit into an integer value. 1511 FloatSignAsInt SignAsInt; 1512 getSignAsIntValue(SignAsInt, DL, Sign); 1513 1514 EVT IntVT = SignAsInt.IntValue.getValueType(); 1515 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1516 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1517 SignMask); 1518 1519 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1520 EVT FloatVT = Mag.getValueType(); 1521 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1522 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1523 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1524 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1525 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1526 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1527 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1528 } 1529 1530 // Transform Mag value to integer, and clear the sign bit. 1531 FloatSignAsInt MagAsInt; 1532 getSignAsIntValue(MagAsInt, DL, Mag); 1533 EVT MagVT = MagAsInt.IntValue.getValueType(); 1534 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1535 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1536 ClearSignMask); 1537 1538 // Get the signbit at the right position for MagAsInt. 1539 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1540 EVT ShiftVT = IntVT; 1541 if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) { 1542 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1543 ShiftVT = MagVT; 1544 } 1545 if (ShiftAmount > 0) { 1546 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); 1547 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); 1548 } else if (ShiftAmount < 0) { 1549 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); 1550 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); 1551 } 1552 if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) { 1553 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1554 } 1555 1556 // Store the part with the modified sign and convert back to float. 1557 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1558 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1559 } 1560 1561 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1562 SDLoc DL(Node); 1563 SDValue Value = Node->getOperand(0); 1564 1565 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1566 EVT FloatVT = Value.getValueType(); 1567 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1568 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1569 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1570 } 1571 1572 // Transform value to integer, clear the sign bit and transform back. 1573 FloatSignAsInt ValueAsInt; 1574 getSignAsIntValue(ValueAsInt, DL, Value); 1575 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1576 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1577 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1578 ClearSignMask); 1579 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1580 } 1581 1582 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1583 SmallVectorImpl<SDValue> &Results) { 1584 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1585 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1586 " not tell us which reg is the stack pointer!"); 1587 SDLoc dl(Node); 1588 EVT VT = Node->getValueType(0); 1589 SDValue Tmp1 = SDValue(Node, 0); 1590 SDValue Tmp2 = SDValue(Node, 1); 1591 SDValue Tmp3 = Node->getOperand(2); 1592 SDValue Chain = Tmp1.getOperand(0); 1593 1594 // Chain the dynamic stack allocation so that it doesn't modify the stack 1595 // pointer when other instructions are using the stack. 1596 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1597 1598 SDValue Size = Tmp2.getOperand(1); 1599 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1600 Chain = SP.getValue(1); 1601 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1602 unsigned StackAlign = 1603 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 1604 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 1605 if (Align > StackAlign) 1606 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1607 DAG.getConstant(-(uint64_t)Align, dl, VT)); 1608 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1609 1610 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1611 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1612 1613 Results.push_back(Tmp1); 1614 Results.push_back(Tmp2); 1615 } 1616 1617 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current 1618 /// target. 1619 /// 1620 /// If the SETCC has been legalized using AND / OR, then the legalized node 1621 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert 1622 /// will be set to false. 1623 /// 1624 /// If the SETCC has been legalized by using getSetCCSwappedOperands(), 1625 /// then the values of LHS and RHS will be swapped, CC will be set to the 1626 /// new condition, and NeedInvert will be set to false. 1627 /// 1628 /// If the SETCC has been legalized using the inverse condcode, then LHS and 1629 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert 1630 /// will be set to true. The caller must invert the result of the SETCC with 1631 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect 1632 /// of a true/false result. 1633 /// 1634 /// \returns true if the SetCC has been legalized, false if it hasn't. 1635 bool SelectionDAGLegalize::LegalizeSetCCCondCode( 1636 EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, bool &NeedInvert, 1637 const SDLoc &dl, SDValue &Chain, bool IsSignaling) { 1638 MVT OpVT = LHS.getSimpleValueType(); 1639 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1640 NeedInvert = false; 1641 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1642 default: llvm_unreachable("Unknown condition code action!"); 1643 case TargetLowering::Legal: 1644 // Nothing to do. 1645 break; 1646 case TargetLowering::Expand: { 1647 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 1648 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1649 std::swap(LHS, RHS); 1650 CC = DAG.getCondCode(InvCC); 1651 return true; 1652 } 1653 // Swapping operands didn't work. Try inverting the condition. 1654 bool NeedSwap = false; 1655 InvCC = getSetCCInverse(CCCode, OpVT); 1656 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1657 // If inverting the condition is not enough, try swapping operands 1658 // on top of it. 1659 InvCC = ISD::getSetCCSwappedOperands(InvCC); 1660 NeedSwap = true; 1661 } 1662 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1663 CC = DAG.getCondCode(InvCC); 1664 NeedInvert = true; 1665 if (NeedSwap) 1666 std::swap(LHS, RHS); 1667 return true; 1668 } 1669 1670 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1671 unsigned Opc = 0; 1672 switch (CCCode) { 1673 default: llvm_unreachable("Don't know how to expand this condition!"); 1674 case ISD::SETO: 1675 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) 1676 && "If SETO is expanded, SETOEQ must be legal!"); 1677 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; 1678 case ISD::SETUO: 1679 assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT) 1680 && "If SETUO is expanded, SETUNE must be legal!"); 1681 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break; 1682 case ISD::SETOEQ: 1683 case ISD::SETOGT: 1684 case ISD::SETOGE: 1685 case ISD::SETOLT: 1686 case ISD::SETOLE: 1687 case ISD::SETONE: 1688 case ISD::SETUEQ: 1689 case ISD::SETUNE: 1690 case ISD::SETUGT: 1691 case ISD::SETUGE: 1692 case ISD::SETULT: 1693 case ISD::SETULE: 1694 // If we are floating point, assign and break, otherwise fall through. 1695 if (!OpVT.isInteger()) { 1696 // We can use the 4th bit to tell if we are the unordered 1697 // or ordered version of the opcode. 1698 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 1699 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 1700 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 1701 break; 1702 } 1703 // Fallthrough if we are unsigned integer. 1704 LLVM_FALLTHROUGH; 1705 case ISD::SETLE: 1706 case ISD::SETGT: 1707 case ISD::SETGE: 1708 case ISD::SETLT: 1709 case ISD::SETNE: 1710 case ISD::SETEQ: 1711 // If all combinations of inverting the condition and swapping operands 1712 // didn't work then we have no means to expand the condition. 1713 llvm_unreachable("Don't know how to expand this condition!"); 1714 } 1715 1716 SDValue SetCC1, SetCC2; 1717 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 1718 // If we aren't the ordered or unorder operation, 1719 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 1720 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 1721 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 1722 } else { 1723 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 1724 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 1725 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 1726 } 1727 if (Chain) 1728 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 1729 SetCC2.getValue(1)); 1730 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1731 RHS = SDValue(); 1732 CC = SDValue(); 1733 return true; 1734 } 1735 } 1736 return false; 1737 } 1738 1739 /// Emit a store/load combination to the stack. This stores 1740 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1741 /// a load from the stack slot to DestVT, extending it if needed. 1742 /// The resultant code need not be legal. 1743 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1744 EVT DestVT, const SDLoc &dl) { 1745 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode()); 1746 } 1747 1748 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1749 EVT DestVT, const SDLoc &dl, 1750 SDValue Chain) { 1751 // Create the stack frame object. 1752 unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment( 1753 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1754 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 1755 1756 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1757 int SPFI = StackPtrFI->getIndex(); 1758 MachinePointerInfo PtrInfo = 1759 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1760 1761 unsigned SrcSize = SrcOp.getValueSizeInBits(); 1762 unsigned SlotSize = SlotVT.getSizeInBits(); 1763 unsigned DestSize = DestVT.getSizeInBits(); 1764 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1765 unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType); 1766 1767 // Emit a store to the stack slot. Use a truncstore if the input value is 1768 // later than DestVT. 1769 SDValue Store; 1770 1771 if (SrcSize > SlotSize) 1772 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo, 1773 SlotVT, SrcAlign); 1774 else { 1775 assert(SrcSize == SlotSize && "Invalid store"); 1776 Store = 1777 DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1778 } 1779 1780 // Result is a load from the stack slot. 1781 if (SlotSize == DestSize) 1782 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1783 1784 assert(SlotSize < DestSize && "Unknown extension!"); 1785 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1786 DestAlign); 1787 } 1788 1789 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1790 SDLoc dl(Node); 1791 // Create a vector sized/aligned stack slot, store the value to element #0, 1792 // then load the whole vector back out. 1793 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1794 1795 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1796 int SPFI = StackPtrFI->getIndex(); 1797 1798 SDValue Ch = DAG.getTruncStore( 1799 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1800 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1801 Node->getValueType(0).getVectorElementType()); 1802 return DAG.getLoad( 1803 Node->getValueType(0), dl, Ch, StackPtr, 1804 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1805 } 1806 1807 static bool 1808 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1809 const TargetLowering &TLI, SDValue &Res) { 1810 unsigned NumElems = Node->getNumOperands(); 1811 SDLoc dl(Node); 1812 EVT VT = Node->getValueType(0); 1813 1814 // Try to group the scalars into pairs, shuffle the pairs together, then 1815 // shuffle the pairs of pairs together, etc. until the vector has 1816 // been built. This will work only if all of the necessary shuffle masks 1817 // are legal. 1818 1819 // We do this in two phases; first to check the legality of the shuffles, 1820 // and next, assuming that all shuffles are legal, to create the new nodes. 1821 for (int Phase = 0; Phase < 2; ++Phase) { 1822 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1823 NewIntermedVals; 1824 for (unsigned i = 0; i < NumElems; ++i) { 1825 SDValue V = Node->getOperand(i); 1826 if (V.isUndef()) 1827 continue; 1828 1829 SDValue Vec; 1830 if (Phase) 1831 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1832 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1833 } 1834 1835 while (IntermedVals.size() > 2) { 1836 NewIntermedVals.clear(); 1837 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1838 // This vector and the next vector are shuffled together (simply to 1839 // append the one to the other). 1840 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1841 1842 SmallVector<int, 16> FinalIndices; 1843 FinalIndices.reserve(IntermedVals[i].second.size() + 1844 IntermedVals[i+1].second.size()); 1845 1846 int k = 0; 1847 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1848 ++j, ++k) { 1849 ShuffleVec[k] = j; 1850 FinalIndices.push_back(IntermedVals[i].second[j]); 1851 } 1852 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1853 ++j, ++k) { 1854 ShuffleVec[k] = NumElems + j; 1855 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1856 } 1857 1858 SDValue Shuffle; 1859 if (Phase) 1860 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1861 IntermedVals[i+1].first, 1862 ShuffleVec); 1863 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1864 return false; 1865 NewIntermedVals.push_back( 1866 std::make_pair(Shuffle, std::move(FinalIndices))); 1867 } 1868 1869 // If we had an odd number of defined values, then append the last 1870 // element to the array of new vectors. 1871 if ((IntermedVals.size() & 1) != 0) 1872 NewIntermedVals.push_back(IntermedVals.back()); 1873 1874 IntermedVals.swap(NewIntermedVals); 1875 } 1876 1877 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1878 "Invalid number of intermediate vectors"); 1879 SDValue Vec1 = IntermedVals[0].first; 1880 SDValue Vec2; 1881 if (IntermedVals.size() > 1) 1882 Vec2 = IntermedVals[1].first; 1883 else if (Phase) 1884 Vec2 = DAG.getUNDEF(VT); 1885 1886 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1887 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1888 ShuffleVec[IntermedVals[0].second[i]] = i; 1889 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1890 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1891 1892 if (Phase) 1893 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1894 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1895 return false; 1896 } 1897 1898 return true; 1899 } 1900 1901 /// Expand a BUILD_VECTOR node on targets that don't 1902 /// support the operation, but do support the resultant vector type. 1903 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1904 unsigned NumElems = Node->getNumOperands(); 1905 SDValue Value1, Value2; 1906 SDLoc dl(Node); 1907 EVT VT = Node->getValueType(0); 1908 EVT OpVT = Node->getOperand(0).getValueType(); 1909 EVT EltVT = VT.getVectorElementType(); 1910 1911 // If the only non-undef value is the low element, turn this into a 1912 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1913 bool isOnlyLowElement = true; 1914 bool MoreThanTwoValues = false; 1915 bool isConstant = true; 1916 for (unsigned i = 0; i < NumElems; ++i) { 1917 SDValue V = Node->getOperand(i); 1918 if (V.isUndef()) 1919 continue; 1920 if (i > 0) 1921 isOnlyLowElement = false; 1922 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1923 isConstant = false; 1924 1925 if (!Value1.getNode()) { 1926 Value1 = V; 1927 } else if (!Value2.getNode()) { 1928 if (V != Value1) 1929 Value2 = V; 1930 } else if (V != Value1 && V != Value2) { 1931 MoreThanTwoValues = true; 1932 } 1933 } 1934 1935 if (!Value1.getNode()) 1936 return DAG.getUNDEF(VT); 1937 1938 if (isOnlyLowElement) 1939 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1940 1941 // If all elements are constants, create a load from the constant pool. 1942 if (isConstant) { 1943 SmallVector<Constant*, 16> CV; 1944 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1945 if (ConstantFPSDNode *V = 1946 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1947 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1948 } else if (ConstantSDNode *V = 1949 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1950 if (OpVT==EltVT) 1951 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1952 else { 1953 // If OpVT and EltVT don't match, EltVT is not legal and the 1954 // element values have been promoted/truncated earlier. Undo this; 1955 // we don't want a v16i8 to become a v16i32 for example. 1956 const ConstantInt *CI = V->getConstantIntValue(); 1957 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1958 CI->getZExtValue())); 1959 } 1960 } else { 1961 assert(Node->getOperand(i).isUndef()); 1962 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1963 CV.push_back(UndefValue::get(OpNTy)); 1964 } 1965 } 1966 Constant *CP = ConstantVector::get(CV); 1967 SDValue CPIdx = 1968 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 1969 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 1970 return DAG.getLoad( 1971 VT, dl, DAG.getEntryNode(), CPIdx, 1972 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 1973 Alignment); 1974 } 1975 1976 SmallSet<SDValue, 16> DefinedValues; 1977 for (unsigned i = 0; i < NumElems; ++i) { 1978 if (Node->getOperand(i).isUndef()) 1979 continue; 1980 DefinedValues.insert(Node->getOperand(i)); 1981 } 1982 1983 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 1984 if (!MoreThanTwoValues) { 1985 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1986 for (unsigned i = 0; i < NumElems; ++i) { 1987 SDValue V = Node->getOperand(i); 1988 if (V.isUndef()) 1989 continue; 1990 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1991 } 1992 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1993 // Get the splatted value into the low element of a vector register. 1994 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1995 SDValue Vec2; 1996 if (Value2.getNode()) 1997 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 1998 else 1999 Vec2 = DAG.getUNDEF(VT); 2000 2001 // Return shuffle(LowValVec, undef, <0,0,0,0>) 2002 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 2003 } 2004 } else { 2005 SDValue Res; 2006 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 2007 return Res; 2008 } 2009 } 2010 2011 // Otherwise, we can't handle this case efficiently. 2012 return ExpandVectorBuildThroughStack(Node); 2013 } 2014 2015 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) { 2016 SDLoc DL(Node); 2017 EVT VT = Node->getValueType(0); 2018 SDValue SplatVal = Node->getOperand(0); 2019 2020 return DAG.getSplatBuildVector(VT, DL, SplatVal); 2021 } 2022 2023 // Expand a node into a call to a libcall. If the result value 2024 // does not fit into a register, return the lo part and set the hi part to the 2025 // by-reg argument. If it does fit into a single register, return the result 2026 // and leave the Hi part unset. 2027 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2028 bool isSigned) { 2029 TargetLowering::ArgListTy Args; 2030 TargetLowering::ArgListEntry Entry; 2031 for (const SDValue &Op : Node->op_values()) { 2032 EVT ArgVT = Op.getValueType(); 2033 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2034 Entry.Node = Op; 2035 Entry.Ty = ArgTy; 2036 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2037 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2038 Args.push_back(Entry); 2039 } 2040 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2041 TLI.getPointerTy(DAG.getDataLayout())); 2042 2043 EVT RetVT = Node->getValueType(0); 2044 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2045 2046 // By default, the input chain to this libcall is the entry node of the 2047 // function. If the libcall is going to be emitted as a tail call then 2048 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2049 // node which is being folded has a non-entry input chain. 2050 SDValue InChain = DAG.getEntryNode(); 2051 2052 // isTailCall may be true since the callee does not reference caller stack 2053 // frame. Check if it's in the right position and that the return types match. 2054 SDValue TCChain = InChain; 2055 const Function &F = DAG.getMachineFunction().getFunction(); 2056 bool isTailCall = 2057 TLI.isInTailCallPosition(DAG, Node, TCChain) && 2058 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 2059 if (isTailCall) 2060 InChain = TCChain; 2061 2062 TargetLowering::CallLoweringInfo CLI(DAG); 2063 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2064 CLI.setDebugLoc(SDLoc(Node)) 2065 .setChain(InChain) 2066 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2067 std::move(Args)) 2068 .setTailCall(isTailCall) 2069 .setSExtResult(signExtend) 2070 .setZExtResult(!signExtend) 2071 .setIsPostTypeLegalization(true); 2072 2073 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2074 2075 if (!CallInfo.second.getNode()) { 2076 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG)); 2077 // It's a tailcall, return the chain (which is the DAG root). 2078 return DAG.getRoot(); 2079 } 2080 2081 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG)); 2082 return CallInfo.first; 2083 } 2084 2085 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2086 RTLIB::Libcall Call_F32, 2087 RTLIB::Libcall Call_F64, 2088 RTLIB::Libcall Call_F80, 2089 RTLIB::Libcall Call_F128, 2090 RTLIB::Libcall Call_PPCF128, 2091 SmallVectorImpl<SDValue> &Results) { 2092 RTLIB::Libcall LC; 2093 switch (Node->getSimpleValueType(0).SimpleTy) { 2094 default: llvm_unreachable("Unexpected request for libcall!"); 2095 case MVT::f32: LC = Call_F32; break; 2096 case MVT::f64: LC = Call_F64; break; 2097 case MVT::f80: LC = Call_F80; break; 2098 case MVT::f128: LC = Call_F128; break; 2099 case MVT::ppcf128: LC = Call_PPCF128; break; 2100 } 2101 2102 if (Node->isStrictFPOpcode()) { 2103 EVT RetVT = Node->getValueType(0); 2104 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); 2105 TargetLowering::MakeLibCallOptions CallOptions; 2106 // FIXME: This doesn't support tail calls. 2107 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2108 Ops, CallOptions, 2109 SDLoc(Node), 2110 Node->getOperand(0)); 2111 Results.push_back(Tmp.first); 2112 Results.push_back(Tmp.second); 2113 } else { 2114 SDValue Tmp = ExpandLibCall(LC, Node, false); 2115 Results.push_back(Tmp); 2116 } 2117 } 2118 2119 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2120 RTLIB::Libcall Call_I8, 2121 RTLIB::Libcall Call_I16, 2122 RTLIB::Libcall Call_I32, 2123 RTLIB::Libcall Call_I64, 2124 RTLIB::Libcall Call_I128) { 2125 RTLIB::Libcall LC; 2126 switch (Node->getSimpleValueType(0).SimpleTy) { 2127 default: llvm_unreachable("Unexpected request for libcall!"); 2128 case MVT::i8: LC = Call_I8; break; 2129 case MVT::i16: LC = Call_I16; break; 2130 case MVT::i32: LC = Call_I32; break; 2131 case MVT::i64: LC = Call_I64; break; 2132 case MVT::i128: LC = Call_I128; break; 2133 } 2134 return ExpandLibCall(LC, Node, isSigned); 2135 } 2136 2137 /// Expand the node to a libcall based on first argument type (for instance 2138 /// lround and its variant). 2139 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node, 2140 RTLIB::Libcall Call_F32, 2141 RTLIB::Libcall Call_F64, 2142 RTLIB::Libcall Call_F80, 2143 RTLIB::Libcall Call_F128, 2144 RTLIB::Libcall Call_PPCF128, 2145 SmallVectorImpl<SDValue> &Results) { 2146 EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType(); 2147 2148 RTLIB::Libcall LC; 2149 switch (InVT.getSimpleVT().SimpleTy) { 2150 default: llvm_unreachable("Unexpected request for libcall!"); 2151 case MVT::f32: LC = Call_F32; break; 2152 case MVT::f64: LC = Call_F64; break; 2153 case MVT::f80: LC = Call_F80; break; 2154 case MVT::f128: LC = Call_F128; break; 2155 case MVT::ppcf128: LC = Call_PPCF128; break; 2156 } 2157 2158 if (Node->isStrictFPOpcode()) { 2159 EVT RetVT = Node->getValueType(0); 2160 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); 2161 TargetLowering::MakeLibCallOptions CallOptions; 2162 // FIXME: This doesn't support tail calls. 2163 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2164 Ops, CallOptions, 2165 SDLoc(Node), 2166 Node->getOperand(0)); 2167 Results.push_back(Tmp.first); 2168 Results.push_back(Tmp.second); 2169 } else { 2170 SDValue Tmp = ExpandLibCall(LC, Node, false); 2171 Results.push_back(Tmp); 2172 } 2173 } 2174 2175 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2176 void 2177 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2178 SmallVectorImpl<SDValue> &Results) { 2179 unsigned Opcode = Node->getOpcode(); 2180 bool isSigned = Opcode == ISD::SDIVREM; 2181 2182 RTLIB::Libcall LC; 2183 switch (Node->getSimpleValueType(0).SimpleTy) { 2184 default: llvm_unreachable("Unexpected request for libcall!"); 2185 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2186 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2187 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2188 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2189 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2190 } 2191 2192 // The input chain to this libcall is the entry node of the function. 2193 // Legalizing the call will automatically add the previous call to the 2194 // dependence. 2195 SDValue InChain = DAG.getEntryNode(); 2196 2197 EVT RetVT = Node->getValueType(0); 2198 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2199 2200 TargetLowering::ArgListTy Args; 2201 TargetLowering::ArgListEntry Entry; 2202 for (const SDValue &Op : Node->op_values()) { 2203 EVT ArgVT = Op.getValueType(); 2204 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2205 Entry.Node = Op; 2206 Entry.Ty = ArgTy; 2207 Entry.IsSExt = isSigned; 2208 Entry.IsZExt = !isSigned; 2209 Args.push_back(Entry); 2210 } 2211 2212 // Also pass the return address of the remainder. 2213 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2214 Entry.Node = FIPtr; 2215 Entry.Ty = RetTy->getPointerTo(); 2216 Entry.IsSExt = isSigned; 2217 Entry.IsZExt = !isSigned; 2218 Args.push_back(Entry); 2219 2220 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2221 TLI.getPointerTy(DAG.getDataLayout())); 2222 2223 SDLoc dl(Node); 2224 TargetLowering::CallLoweringInfo CLI(DAG); 2225 CLI.setDebugLoc(dl) 2226 .setChain(InChain) 2227 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2228 std::move(Args)) 2229 .setSExtResult(isSigned) 2230 .setZExtResult(!isSigned); 2231 2232 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2233 2234 // Remainder is loaded back from the stack frame. 2235 SDValue Rem = 2236 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2237 Results.push_back(CallInfo.first); 2238 Results.push_back(Rem); 2239 } 2240 2241 /// Return true if sincos libcall is available. 2242 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2243 RTLIB::Libcall LC; 2244 switch (Node->getSimpleValueType(0).SimpleTy) { 2245 default: llvm_unreachable("Unexpected request for libcall!"); 2246 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2247 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2248 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2249 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2250 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2251 } 2252 return TLI.getLibcallName(LC) != nullptr; 2253 } 2254 2255 /// Only issue sincos libcall if both sin and cos are needed. 2256 static bool useSinCos(SDNode *Node) { 2257 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2258 ? ISD::FCOS : ISD::FSIN; 2259 2260 SDValue Op0 = Node->getOperand(0); 2261 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2262 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2263 SDNode *User = *UI; 2264 if (User == Node) 2265 continue; 2266 // The other user might have been turned into sincos already. 2267 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2268 return true; 2269 } 2270 return false; 2271 } 2272 2273 /// Issue libcalls to sincos to compute sin / cos pairs. 2274 void 2275 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2276 SmallVectorImpl<SDValue> &Results) { 2277 RTLIB::Libcall LC; 2278 switch (Node->getSimpleValueType(0).SimpleTy) { 2279 default: llvm_unreachable("Unexpected request for libcall!"); 2280 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2281 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2282 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2283 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2284 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2285 } 2286 2287 // The input chain to this libcall is the entry node of the function. 2288 // Legalizing the call will automatically add the previous call to the 2289 // dependence. 2290 SDValue InChain = DAG.getEntryNode(); 2291 2292 EVT RetVT = Node->getValueType(0); 2293 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2294 2295 TargetLowering::ArgListTy Args; 2296 TargetLowering::ArgListEntry Entry; 2297 2298 // Pass the argument. 2299 Entry.Node = Node->getOperand(0); 2300 Entry.Ty = RetTy; 2301 Entry.IsSExt = false; 2302 Entry.IsZExt = false; 2303 Args.push_back(Entry); 2304 2305 // Pass the return address of sin. 2306 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2307 Entry.Node = SinPtr; 2308 Entry.Ty = RetTy->getPointerTo(); 2309 Entry.IsSExt = false; 2310 Entry.IsZExt = false; 2311 Args.push_back(Entry); 2312 2313 // Also pass the return address of the cos. 2314 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2315 Entry.Node = CosPtr; 2316 Entry.Ty = RetTy->getPointerTo(); 2317 Entry.IsSExt = false; 2318 Entry.IsZExt = false; 2319 Args.push_back(Entry); 2320 2321 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2322 TLI.getPointerTy(DAG.getDataLayout())); 2323 2324 SDLoc dl(Node); 2325 TargetLowering::CallLoweringInfo CLI(DAG); 2326 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2327 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2328 std::move(Args)); 2329 2330 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2331 2332 Results.push_back( 2333 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2334 Results.push_back( 2335 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2336 } 2337 2338 /// This function is responsible for legalizing a 2339 /// INT_TO_FP operation of the specified operand when the target requests that 2340 /// we expand it. At this point, we know that the result and operand types are 2341 /// legal for the target. 2342 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node, 2343 SDValue &Chain) { 2344 bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 2345 Node->getOpcode() == ISD::SINT_TO_FP); 2346 EVT DestVT = Node->getValueType(0); 2347 SDLoc dl(Node); 2348 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 2349 SDValue Op0 = Node->getOperand(OpNo); 2350 EVT SrcVT = Op0.getValueType(); 2351 2352 // TODO: Should any fast-math-flags be set for the created nodes? 2353 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2354 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { 2355 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2356 "expansion\n"); 2357 2358 // Get the stack frame index of a 8 byte buffer. 2359 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2360 2361 // word offset constant for Hi/Lo address computation 2362 SDValue WordOff = DAG.getConstant(sizeof(int), dl, 2363 StackSlot.getValueType()); 2364 // set up Hi and Lo (into buffer) address based on endian 2365 SDValue Hi = StackSlot; 2366 SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(), 2367 StackSlot, WordOff); 2368 if (DAG.getDataLayout().isLittleEndian()) 2369 std::swap(Hi, Lo); 2370 2371 // if signed map to unsigned space 2372 SDValue Op0Mapped; 2373 if (isSigned) { 2374 // constant used to invert sign bit (signed to unsigned mapping) 2375 SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32); 2376 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); 2377 } else { 2378 Op0Mapped = Op0; 2379 } 2380 // store the lo of the constructed double - based on integer input 2381 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo, 2382 MachinePointerInfo()); 2383 // initial hi portion of constructed double 2384 SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2385 // store the hi of the constructed double - biased exponent 2386 SDValue Store2 = 2387 DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo()); 2388 // load the constructed double 2389 SDValue Load = 2390 DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo()); 2391 // FP constant to bias correct the final result 2392 SDValue Bias = DAG.getConstantFP(isSigned ? 2393 BitsToDouble(0x4330000080000000ULL) : 2394 BitsToDouble(0x4330000000000000ULL), 2395 dl, MVT::f64); 2396 // Subtract the bias and get the final result. 2397 SDValue Sub; 2398 SDValue Result; 2399 if (Node->isStrictFPOpcode()) { 2400 Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other}, 2401 {Node->getOperand(0), Load, Bias}); 2402 Chain = Sub.getValue(1); 2403 if (DestVT != Sub.getValueType()) { 2404 std::pair<SDValue, SDValue> ResultPair; 2405 ResultPair = 2406 DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT); 2407 Result = ResultPair.first; 2408 Chain = ResultPair.second; 2409 } 2410 else 2411 Result = Sub; 2412 } else { 2413 Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2414 Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); 2415 } 2416 return Result; 2417 } 2418 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2419 // Code below here assumes !isSigned without checking again. 2420 // FIXME: This can produce slightly incorrect results. See details in 2421 // FIXME: https://reviews.llvm.org/D69275 2422 2423 SDValue Tmp1; 2424 if (Node->isStrictFPOpcode()) { 2425 Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2426 { Node->getOperand(0), Op0 }); 2427 } else 2428 Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2429 2430 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, 2431 DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2432 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2433 Four = DAG.getIntPtrConstant(4, dl); 2434 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2435 SignSet, Four, Zero); 2436 2437 // If the sign bit of the integer is set, the large number will be treated 2438 // as a negative number. To counteract this, the dynamic code adds an 2439 // offset depending on the data type. 2440 uint64_t FF; 2441 switch (SrcVT.getSimpleVT().SimpleTy) { 2442 default: llvm_unreachable("Unsupported integer type!"); 2443 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2444 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2445 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2446 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2447 } 2448 if (DAG.getDataLayout().isLittleEndian()) 2449 FF <<= 32; 2450 Constant *FudgeFactor = ConstantInt::get( 2451 Type::getInt64Ty(*DAG.getContext()), FF); 2452 2453 SDValue CPIdx = 2454 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2455 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2456 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2457 Alignment = std::min(Alignment, 4u); 2458 SDValue FudgeInReg; 2459 if (DestVT == MVT::f32) 2460 FudgeInReg = DAG.getLoad( 2461 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2462 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2463 Alignment); 2464 else { 2465 SDValue Load = DAG.getExtLoad( 2466 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2467 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2468 Alignment); 2469 HandleSDNode Handle(Load); 2470 LegalizeOp(Load.getNode()); 2471 FudgeInReg = Handle.getValue(); 2472 } 2473 2474 if (Node->isStrictFPOpcode()) { 2475 SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2476 { Tmp1.getValue(1), Tmp1, FudgeInReg }); 2477 Chain = Result.getValue(1); 2478 return Result; 2479 } 2480 2481 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2482 } 2483 2484 /// This function is responsible for legalizing a 2485 /// *INT_TO_FP operation of the specified operand when the target requests that 2486 /// we promote it. At this point, we know that the result and operand types are 2487 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2488 /// operation that takes a larger input. 2489 void SelectionDAGLegalize::PromoteLegalINT_TO_FP( 2490 SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) { 2491 bool IsStrict = N->isStrictFPOpcode(); 2492 bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP || 2493 N->getOpcode() == ISD::STRICT_SINT_TO_FP; 2494 EVT DestVT = N->getValueType(0); 2495 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2496 unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP; 2497 unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP; 2498 2499 // First step, figure out the appropriate *INT_TO_FP operation to use. 2500 EVT NewInTy = LegalOp.getValueType(); 2501 2502 unsigned OpToUse = 0; 2503 2504 // Scan for the appropriate larger type to use. 2505 while (true) { 2506 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2507 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2508 2509 // If the target supports SINT_TO_FP of this type, use it. 2510 if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) { 2511 OpToUse = SIntOp; 2512 break; 2513 } 2514 if (IsSigned) 2515 continue; 2516 2517 // If the target supports UINT_TO_FP of this type, use it. 2518 if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) { 2519 OpToUse = UIntOp; 2520 break; 2521 } 2522 2523 // Otherwise, try a larger type. 2524 } 2525 2526 // Okay, we found the operation and type to use. Zero extend our input to the 2527 // desired type then run the operation on it. 2528 if (IsStrict) { 2529 SDValue Res = 2530 DAG.getNode(OpToUse, dl, {DestVT, MVT::Other}, 2531 {N->getOperand(0), 2532 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2533 dl, NewInTy, LegalOp)}); 2534 Results.push_back(Res); 2535 Results.push_back(Res.getValue(1)); 2536 return; 2537 } 2538 2539 Results.push_back( 2540 DAG.getNode(OpToUse, dl, DestVT, 2541 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2542 dl, NewInTy, LegalOp))); 2543 } 2544 2545 /// This function is responsible for legalizing a 2546 /// FP_TO_*INT operation of the specified operand when the target requests that 2547 /// we promote it. At this point, we know that the result and operand types are 2548 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2549 /// operation that returns a larger result. 2550 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 2551 SmallVectorImpl<SDValue> &Results) { 2552 bool IsStrict = N->isStrictFPOpcode(); 2553 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 2554 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 2555 EVT DestVT = N->getValueType(0); 2556 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2557 // First step, figure out the appropriate FP_TO*INT operation to use. 2558 EVT NewOutTy = DestVT; 2559 2560 unsigned OpToUse = 0; 2561 2562 // Scan for the appropriate larger type to use. 2563 while (true) { 2564 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2565 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2566 2567 // A larger signed type can hold all unsigned values of the requested type, 2568 // so using FP_TO_SINT is valid 2569 OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT; 2570 if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2571 break; 2572 2573 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2574 OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT; 2575 if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2576 break; 2577 2578 // Otherwise, try a larger type. 2579 } 2580 2581 // Okay, we found the operation and type to use. 2582 SDValue Operation; 2583 if (IsStrict) { 2584 SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other); 2585 Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp); 2586 } else 2587 Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2588 2589 // Truncate the result of the extended FP_TO_*INT operation to the desired 2590 // size. 2591 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2592 Results.push_back(Trunc); 2593 if (IsStrict) 2594 Results.push_back(Operation.getValue(1)); 2595 } 2596 2597 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts. 2598 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) { 2599 EVT VT = Op.getValueType(); 2600 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2601 unsigned Sz = VT.getScalarSizeInBits(); 2602 2603 SDValue Tmp, Tmp2, Tmp3; 2604 2605 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 2606 // and finally the i1 pairs. 2607 // TODO: We can easily support i4/i2 legal types if any target ever does. 2608 if (Sz >= 8 && isPowerOf2_32(Sz)) { 2609 // Create the masks - repeating the pattern every byte. 2610 APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0)); 2611 APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC)); 2612 APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA)); 2613 APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 2614 APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33)); 2615 APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55)); 2616 2617 // BSWAP if the type is wider than a single byte. 2618 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 2619 2620 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) 2621 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); 2622 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); 2623 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT)); 2624 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 2625 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2626 2627 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) 2628 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); 2629 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); 2630 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT)); 2631 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 2632 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2633 2634 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) 2635 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); 2636 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); 2637 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT)); 2638 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 2639 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2640 return Tmp; 2641 } 2642 2643 Tmp = DAG.getConstant(0, dl, VT); 2644 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 2645 if (I < J) 2646 Tmp2 = 2647 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 2648 else 2649 Tmp2 = 2650 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 2651 2652 APInt Shift(Sz, 1); 2653 Shift <<= J; 2654 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 2655 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 2656 } 2657 2658 return Tmp; 2659 } 2660 2661 /// Open code the operations for BSWAP of the specified operation. 2662 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) { 2663 EVT VT = Op.getValueType(); 2664 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2665 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2666 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 2667 default: llvm_unreachable("Unhandled Expand type in BSWAP!"); 2668 case MVT::i16: 2669 // Use a rotate by 8. This can be further expanded if necessary. 2670 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2671 case MVT::i32: 2672 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2673 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2674 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2675 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2676 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2677 DAG.getConstant(0xFF0000, dl, VT)); 2678 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 2679 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2680 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2681 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2682 case MVT::i64: 2683 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2684 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2685 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2686 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2687 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2688 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2689 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2690 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2691 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 2692 DAG.getConstant(255ULL<<48, dl, VT)); 2693 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 2694 DAG.getConstant(255ULL<<40, dl, VT)); 2695 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 2696 DAG.getConstant(255ULL<<32, dl, VT)); 2697 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 2698 DAG.getConstant(255ULL<<24, dl, VT)); 2699 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2700 DAG.getConstant(255ULL<<16, dl, VT)); 2701 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 2702 DAG.getConstant(255ULL<<8 , dl, VT)); 2703 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2704 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2705 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2706 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2707 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2708 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2709 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2710 } 2711 } 2712 2713 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2714 LLVM_DEBUG(dbgs() << "Trying to expand node\n"); 2715 SmallVector<SDValue, 8> Results; 2716 SDLoc dl(Node); 2717 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2718 bool NeedInvert; 2719 switch (Node->getOpcode()) { 2720 case ISD::ABS: 2721 if (TLI.expandABS(Node, Tmp1, DAG)) 2722 Results.push_back(Tmp1); 2723 break; 2724 case ISD::CTPOP: 2725 if (TLI.expandCTPOP(Node, Tmp1, DAG)) 2726 Results.push_back(Tmp1); 2727 break; 2728 case ISD::CTLZ: 2729 case ISD::CTLZ_ZERO_UNDEF: 2730 if (TLI.expandCTLZ(Node, Tmp1, DAG)) 2731 Results.push_back(Tmp1); 2732 break; 2733 case ISD::CTTZ: 2734 case ISD::CTTZ_ZERO_UNDEF: 2735 if (TLI.expandCTTZ(Node, Tmp1, DAG)) 2736 Results.push_back(Tmp1); 2737 break; 2738 case ISD::BITREVERSE: 2739 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl)); 2740 break; 2741 case ISD::BSWAP: 2742 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2743 break; 2744 case ISD::FRAMEADDR: 2745 case ISD::RETURNADDR: 2746 case ISD::FRAME_TO_ARGS_OFFSET: 2747 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2748 break; 2749 case ISD::EH_DWARF_CFA: { 2750 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 2751 TLI.getPointerTy(DAG.getDataLayout())); 2752 SDValue Offset = DAG.getNode(ISD::ADD, dl, 2753 CfaArg.getValueType(), 2754 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 2755 CfaArg.getValueType()), 2756 CfaArg); 2757 SDValue FA = DAG.getNode( 2758 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 2759 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2760 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 2761 FA, Offset)); 2762 break; 2763 } 2764 case ISD::FLT_ROUNDS_: 2765 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2766 break; 2767 case ISD::EH_RETURN: 2768 case ISD::EH_LABEL: 2769 case ISD::PREFETCH: 2770 case ISD::VAEND: 2771 case ISD::EH_SJLJ_LONGJMP: 2772 // If the target didn't expand these, there's nothing to do, so just 2773 // preserve the chain and be done. 2774 Results.push_back(Node->getOperand(0)); 2775 break; 2776 case ISD::READCYCLECOUNTER: 2777 // If the target didn't expand this, just return 'zero' and preserve the 2778 // chain. 2779 Results.append(Node->getNumValues() - 1, 2780 DAG.getConstant(0, dl, Node->getValueType(0))); 2781 Results.push_back(Node->getOperand(0)); 2782 break; 2783 case ISD::EH_SJLJ_SETJMP: 2784 // If the target didn't expand this, just return 'zero' and preserve the 2785 // chain. 2786 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2787 Results.push_back(Node->getOperand(0)); 2788 break; 2789 case ISD::ATOMIC_LOAD: { 2790 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2791 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2792 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2793 SDValue Swap = DAG.getAtomicCmpSwap( 2794 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2795 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2796 cast<AtomicSDNode>(Node)->getMemOperand()); 2797 Results.push_back(Swap.getValue(0)); 2798 Results.push_back(Swap.getValue(1)); 2799 break; 2800 } 2801 case ISD::ATOMIC_STORE: { 2802 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2803 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2804 cast<AtomicSDNode>(Node)->getMemoryVT(), 2805 Node->getOperand(0), 2806 Node->getOperand(1), Node->getOperand(2), 2807 cast<AtomicSDNode>(Node)->getMemOperand()); 2808 Results.push_back(Swap.getValue(1)); 2809 break; 2810 } 2811 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 2812 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 2813 // splits out the success value as a comparison. Expanding the resulting 2814 // ATOMIC_CMP_SWAP will produce a libcall. 2815 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2816 SDValue Res = DAG.getAtomicCmpSwap( 2817 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2818 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 2819 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 2820 2821 SDValue ExtRes = Res; 2822 SDValue LHS = Res; 2823 SDValue RHS = Node->getOperand(1); 2824 2825 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 2826 EVT OuterType = Node->getValueType(0); 2827 switch (TLI.getExtendForAtomicOps()) { 2828 case ISD::SIGN_EXTEND: 2829 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 2830 DAG.getValueType(AtomicType)); 2831 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 2832 Node->getOperand(2), DAG.getValueType(AtomicType)); 2833 ExtRes = LHS; 2834 break; 2835 case ISD::ZERO_EXTEND: 2836 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 2837 DAG.getValueType(AtomicType)); 2838 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2839 ExtRes = LHS; 2840 break; 2841 case ISD::ANY_EXTEND: 2842 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 2843 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2844 break; 2845 default: 2846 llvm_unreachable("Invalid atomic op extension"); 2847 } 2848 2849 SDValue Success = 2850 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 2851 2852 Results.push_back(ExtRes.getValue(0)); 2853 Results.push_back(Success); 2854 Results.push_back(Res.getValue(1)); 2855 break; 2856 } 2857 case ISD::DYNAMIC_STACKALLOC: 2858 ExpandDYNAMIC_STACKALLOC(Node, Results); 2859 break; 2860 case ISD::MERGE_VALUES: 2861 for (unsigned i = 0; i < Node->getNumValues(); i++) 2862 Results.push_back(Node->getOperand(i)); 2863 break; 2864 case ISD::UNDEF: { 2865 EVT VT = Node->getValueType(0); 2866 if (VT.isInteger()) 2867 Results.push_back(DAG.getConstant(0, dl, VT)); 2868 else { 2869 assert(VT.isFloatingPoint() && "Unknown value type!"); 2870 Results.push_back(DAG.getConstantFP(0, dl, VT)); 2871 } 2872 break; 2873 } 2874 case ISD::STRICT_FP_ROUND: 2875 // When strict mode is enforced we can't do expansion because it 2876 // does not honor the "strict" properties. Only libcall is allowed. 2877 if (TLI.isStrictFPEnabled()) 2878 break; 2879 // We might as well mutate to FP_ROUND when FP_ROUND operation is legal 2880 // since this operation is more efficient than stack operation. 2881 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2882 Node->getValueType(0)) 2883 == TargetLowering::Legal) 2884 break; 2885 // We fall back to use stack operation when the FP_ROUND operation 2886 // isn't available. 2887 Tmp1 = EmitStackConvert(Node->getOperand(1), 2888 Node->getValueType(0), 2889 Node->getValueType(0), dl, Node->getOperand(0)); 2890 ReplaceNode(Node, Tmp1.getNode()); 2891 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n"); 2892 return true; 2893 case ISD::FP_ROUND: 2894 case ISD::BITCAST: 2895 Tmp1 = EmitStackConvert(Node->getOperand(0), 2896 Node->getValueType(0), 2897 Node->getValueType(0), dl); 2898 Results.push_back(Tmp1); 2899 break; 2900 case ISD::STRICT_FP_EXTEND: 2901 // When strict mode is enforced we can't do expansion because it 2902 // does not honor the "strict" properties. Only libcall is allowed. 2903 if (TLI.isStrictFPEnabled()) 2904 break; 2905 // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal 2906 // since this operation is more efficient than stack operation. 2907 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2908 Node->getValueType(0)) 2909 == TargetLowering::Legal) 2910 break; 2911 // We fall back to use stack operation when the FP_EXTEND operation 2912 // isn't available. 2913 Tmp1 = EmitStackConvert(Node->getOperand(1), 2914 Node->getOperand(1).getValueType(), 2915 Node->getValueType(0), dl, Node->getOperand(0)); 2916 ReplaceNode(Node, Tmp1.getNode()); 2917 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n"); 2918 return true; 2919 case ISD::FP_EXTEND: 2920 Tmp1 = EmitStackConvert(Node->getOperand(0), 2921 Node->getOperand(0).getValueType(), 2922 Node->getValueType(0), dl); 2923 Results.push_back(Tmp1); 2924 break; 2925 case ISD::SIGN_EXTEND_INREG: { 2926 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2927 EVT VT = Node->getValueType(0); 2928 2929 // An in-register sign-extend of a boolean is a negation: 2930 // 'true' (1) sign-extended is -1. 2931 // 'false' (0) sign-extended is 0. 2932 // However, we must mask the high bits of the source operand because the 2933 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 2934 2935 // TODO: Do this for vectors too? 2936 if (ExtraVT.getSizeInBits() == 1) { 2937 SDValue One = DAG.getConstant(1, dl, VT); 2938 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 2939 SDValue Zero = DAG.getConstant(0, dl, VT); 2940 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 2941 Results.push_back(Neg); 2942 break; 2943 } 2944 2945 // NOTE: we could fall back on load/store here too for targets without 2946 // SRA. However, it is doubtful that any exist. 2947 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2948 unsigned BitsDiff = VT.getScalarSizeInBits() - 2949 ExtraVT.getScalarSizeInBits(); 2950 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 2951 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 2952 Node->getOperand(0), ShiftCst); 2953 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 2954 Results.push_back(Tmp1); 2955 break; 2956 } 2957 case ISD::UINT_TO_FP: 2958 case ISD::STRICT_UINT_TO_FP: 2959 if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) { 2960 Results.push_back(Tmp1); 2961 if (Node->isStrictFPOpcode()) 2962 Results.push_back(Tmp2); 2963 break; 2964 } 2965 LLVM_FALLTHROUGH; 2966 case ISD::SINT_TO_FP: 2967 case ISD::STRICT_SINT_TO_FP: 2968 Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2); 2969 Results.push_back(Tmp1); 2970 if (Node->isStrictFPOpcode()) 2971 Results.push_back(Tmp2); 2972 break; 2973 case ISD::FP_TO_SINT: 2974 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 2975 Results.push_back(Tmp1); 2976 break; 2977 case ISD::STRICT_FP_TO_SINT: 2978 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) { 2979 ReplaceNode(Node, Tmp1.getNode()); 2980 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n"); 2981 return true; 2982 } 2983 break; 2984 case ISD::FP_TO_UINT: 2985 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) 2986 Results.push_back(Tmp1); 2987 break; 2988 case ISD::STRICT_FP_TO_UINT: 2989 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) { 2990 // Relink the chain. 2991 DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2); 2992 // Replace the new UINT result. 2993 ReplaceNodeWithValue(SDValue(Node, 0), Tmp1); 2994 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n"); 2995 return true; 2996 } 2997 break; 2998 case ISD::VAARG: 2999 Results.push_back(DAG.expandVAArg(Node)); 3000 Results.push_back(Results[0].getValue(1)); 3001 break; 3002 case ISD::VACOPY: 3003 Results.push_back(DAG.expandVACopy(Node)); 3004 break; 3005 case ISD::EXTRACT_VECTOR_ELT: 3006 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 3007 // This must be an access of the only element. Return it. 3008 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 3009 Node->getOperand(0)); 3010 else 3011 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 3012 Results.push_back(Tmp1); 3013 break; 3014 case ISD::EXTRACT_SUBVECTOR: 3015 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 3016 break; 3017 case ISD::INSERT_SUBVECTOR: 3018 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 3019 break; 3020 case ISD::CONCAT_VECTORS: 3021 Results.push_back(ExpandVectorBuildThroughStack(Node)); 3022 break; 3023 case ISD::SCALAR_TO_VECTOR: 3024 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3025 break; 3026 case ISD::INSERT_VECTOR_ELT: 3027 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3028 Node->getOperand(1), 3029 Node->getOperand(2), dl)); 3030 break; 3031 case ISD::VECTOR_SHUFFLE: { 3032 SmallVector<int, 32> NewMask; 3033 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3034 3035 EVT VT = Node->getValueType(0); 3036 EVT EltVT = VT.getVectorElementType(); 3037 SDValue Op0 = Node->getOperand(0); 3038 SDValue Op1 = Node->getOperand(1); 3039 if (!TLI.isTypeLegal(EltVT)) { 3040 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3041 3042 // BUILD_VECTOR operands are allowed to be wider than the element type. 3043 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 3044 // it. 3045 if (NewEltVT.bitsLT(EltVT)) { 3046 // Convert shuffle node. 3047 // If original node was v4i64 and the new EltVT is i32, 3048 // cast operands to v8i32 and re-build the mask. 3049 3050 // Calculate new VT, the size of the new VT should be equal to original. 3051 EVT NewVT = 3052 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3053 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 3054 assert(NewVT.bitsEq(VT)); 3055 3056 // cast operands to new VT 3057 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3058 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3059 3060 // Convert the shuffle mask 3061 unsigned int factor = 3062 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3063 3064 // EltVT gets smaller 3065 assert(factor > 0); 3066 3067 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3068 if (Mask[i] < 0) { 3069 for (unsigned fi = 0; fi < factor; ++fi) 3070 NewMask.push_back(Mask[i]); 3071 } 3072 else { 3073 for (unsigned fi = 0; fi < factor; ++fi) 3074 NewMask.push_back(Mask[i]*factor+fi); 3075 } 3076 } 3077 Mask = NewMask; 3078 VT = NewVT; 3079 } 3080 EltVT = NewEltVT; 3081 } 3082 unsigned NumElems = VT.getVectorNumElements(); 3083 SmallVector<SDValue, 16> Ops; 3084 for (unsigned i = 0; i != NumElems; ++i) { 3085 if (Mask[i] < 0) { 3086 Ops.push_back(DAG.getUNDEF(EltVT)); 3087 continue; 3088 } 3089 unsigned Idx = Mask[i]; 3090 if (Idx < NumElems) 3091 Ops.push_back(DAG.getNode( 3092 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3093 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())))); 3094 else 3095 Ops.push_back(DAG.getNode( 3096 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3097 DAG.getConstant(Idx - NumElems, dl, 3098 TLI.getVectorIdxTy(DAG.getDataLayout())))); 3099 } 3100 3101 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 3102 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3103 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3104 Results.push_back(Tmp1); 3105 break; 3106 } 3107 case ISD::EXTRACT_ELEMENT: { 3108 EVT OpTy = Node->getOperand(0).getValueType(); 3109 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3110 // 1 -> Hi 3111 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3112 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3113 TLI.getShiftAmountTy( 3114 Node->getOperand(0).getValueType(), 3115 DAG.getDataLayout()))); 3116 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3117 } else { 3118 // 0 -> Lo 3119 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3120 Node->getOperand(0)); 3121 } 3122 Results.push_back(Tmp1); 3123 break; 3124 } 3125 case ISD::STACKSAVE: 3126 // Expand to CopyFromReg if the target set 3127 // StackPointerRegisterToSaveRestore. 3128 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3129 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3130 Node->getValueType(0))); 3131 Results.push_back(Results[0].getValue(1)); 3132 } else { 3133 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3134 Results.push_back(Node->getOperand(0)); 3135 } 3136 break; 3137 case ISD::STACKRESTORE: 3138 // Expand to CopyToReg if the target set 3139 // StackPointerRegisterToSaveRestore. 3140 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3141 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3142 Node->getOperand(1))); 3143 } else { 3144 Results.push_back(Node->getOperand(0)); 3145 } 3146 break; 3147 case ISD::GET_DYNAMIC_AREA_OFFSET: 3148 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3149 Results.push_back(Results[0].getValue(0)); 3150 break; 3151 case ISD::FCOPYSIGN: 3152 Results.push_back(ExpandFCOPYSIGN(Node)); 3153 break; 3154 case ISD::FNEG: 3155 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3156 Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0)); 3157 // TODO: If FNEG has fast-math-flags, propagate them to the FSUB. 3158 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, 3159 Node->getOperand(0)); 3160 Results.push_back(Tmp1); 3161 break; 3162 case ISD::FABS: 3163 Results.push_back(ExpandFABS(Node)); 3164 break; 3165 case ISD::SMIN: 3166 case ISD::SMAX: 3167 case ISD::UMIN: 3168 case ISD::UMAX: { 3169 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3170 ISD::CondCode Pred; 3171 switch (Node->getOpcode()) { 3172 default: llvm_unreachable("How did we get here?"); 3173 case ISD::SMAX: Pred = ISD::SETGT; break; 3174 case ISD::SMIN: Pred = ISD::SETLT; break; 3175 case ISD::UMAX: Pred = ISD::SETUGT; break; 3176 case ISD::UMIN: Pred = ISD::SETULT; break; 3177 } 3178 Tmp1 = Node->getOperand(0); 3179 Tmp2 = Node->getOperand(1); 3180 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3181 Results.push_back(Tmp1); 3182 break; 3183 } 3184 case ISD::FMINNUM: 3185 case ISD::FMAXNUM: { 3186 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) 3187 Results.push_back(Expanded); 3188 break; 3189 } 3190 case ISD::FSIN: 3191 case ISD::FCOS: { 3192 EVT VT = Node->getValueType(0); 3193 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3194 // fcos which share the same operand and both are used. 3195 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3196 isSinCosLibcallAvailable(Node, TLI)) 3197 && useSinCos(Node)) { 3198 SDVTList VTs = DAG.getVTList(VT, VT); 3199 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3200 if (Node->getOpcode() == ISD::FCOS) 3201 Tmp1 = Tmp1.getValue(1); 3202 Results.push_back(Tmp1); 3203 } 3204 break; 3205 } 3206 case ISD::FMAD: 3207 llvm_unreachable("Illegal fmad should never be formed"); 3208 3209 case ISD::FP16_TO_FP: 3210 if (Node->getValueType(0) != MVT::f32) { 3211 // We can extend to types bigger than f32 in two steps without changing 3212 // the result. Since "f16 -> f32" is much more commonly available, give 3213 // CodeGen the option of emitting that before resorting to a libcall. 3214 SDValue Res = 3215 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3216 Results.push_back( 3217 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3218 } 3219 break; 3220 case ISD::FP_TO_FP16: 3221 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3222 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3223 SDValue Op = Node->getOperand(0); 3224 MVT SVT = Op.getSimpleValueType(); 3225 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3226 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3227 // Under fastmath, we can expand this node into a fround followed by 3228 // a float-half conversion. 3229 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3230 DAG.getIntPtrConstant(0, dl)); 3231 Results.push_back( 3232 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3233 } 3234 } 3235 break; 3236 case ISD::ConstantFP: { 3237 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3238 // Check to see if this FP immediate is already legal. 3239 // If this is a legal constant, turn it into a TargetConstantFP node. 3240 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0), 3241 DAG.getMachineFunction().getFunction().hasOptSize())) 3242 Results.push_back(ExpandConstantFP(CFP, true)); 3243 break; 3244 } 3245 case ISD::Constant: { 3246 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3247 Results.push_back(ExpandConstant(CP)); 3248 break; 3249 } 3250 case ISD::FSUB: { 3251 EVT VT = Node->getValueType(0); 3252 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3253 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3254 const SDNodeFlags Flags = Node->getFlags(); 3255 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3256 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3257 Results.push_back(Tmp1); 3258 } 3259 break; 3260 } 3261 case ISD::SUB: { 3262 EVT VT = Node->getValueType(0); 3263 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3264 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3265 "Don't know how to expand this subtraction!"); 3266 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3267 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, 3268 VT)); 3269 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3270 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3271 break; 3272 } 3273 case ISD::UREM: 3274 case ISD::SREM: { 3275 EVT VT = Node->getValueType(0); 3276 bool isSigned = Node->getOpcode() == ISD::SREM; 3277 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 3278 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3279 Tmp2 = Node->getOperand(0); 3280 Tmp3 = Node->getOperand(1); 3281 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3282 SDVTList VTs = DAG.getVTList(VT, VT); 3283 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); 3284 Results.push_back(Tmp1); 3285 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { 3286 // X % Y -> X-X/Y*Y 3287 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); 3288 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); 3289 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); 3290 Results.push_back(Tmp1); 3291 } 3292 break; 3293 } 3294 case ISD::UDIV: 3295 case ISD::SDIV: { 3296 bool isSigned = Node->getOpcode() == ISD::SDIV; 3297 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3298 EVT VT = Node->getValueType(0); 3299 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3300 SDVTList VTs = DAG.getVTList(VT, VT); 3301 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3302 Node->getOperand(1)); 3303 Results.push_back(Tmp1); 3304 } 3305 break; 3306 } 3307 case ISD::MULHU: 3308 case ISD::MULHS: { 3309 unsigned ExpandOpcode = 3310 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3311 EVT VT = Node->getValueType(0); 3312 SDVTList VTs = DAG.getVTList(VT, VT); 3313 3314 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3315 Node->getOperand(1)); 3316 Results.push_back(Tmp1.getValue(1)); 3317 break; 3318 } 3319 case ISD::UMUL_LOHI: 3320 case ISD::SMUL_LOHI: { 3321 SDValue LHS = Node->getOperand(0); 3322 SDValue RHS = Node->getOperand(1); 3323 MVT VT = LHS.getSimpleValueType(); 3324 unsigned MULHOpcode = 3325 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3326 3327 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3328 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3329 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3330 break; 3331 } 3332 3333 SmallVector<SDValue, 4> Halves; 3334 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3335 assert(TLI.isTypeLegal(HalfType)); 3336 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves, 3337 HalfType, DAG, 3338 TargetLowering::MulExpansionKind::Always)) { 3339 for (unsigned i = 0; i < 2; ++i) { 3340 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3341 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3342 SDValue Shift = DAG.getConstant( 3343 HalfType.getScalarSizeInBits(), dl, 3344 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3345 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3346 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3347 } 3348 break; 3349 } 3350 break; 3351 } 3352 case ISD::MUL: { 3353 EVT VT = Node->getValueType(0); 3354 SDVTList VTs = DAG.getVTList(VT, VT); 3355 // See if multiply or divide can be lowered using two-result operations. 3356 // We just need the low half of the multiply; try both the signed 3357 // and unsigned forms. If the target supports both SMUL_LOHI and 3358 // UMUL_LOHI, form a preference by checking which forms of plain 3359 // MULH it supports. 3360 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3361 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3362 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3363 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3364 unsigned OpToUse = 0; 3365 if (HasSMUL_LOHI && !HasMULHS) { 3366 OpToUse = ISD::SMUL_LOHI; 3367 } else if (HasUMUL_LOHI && !HasMULHU) { 3368 OpToUse = ISD::UMUL_LOHI; 3369 } else if (HasSMUL_LOHI) { 3370 OpToUse = ISD::SMUL_LOHI; 3371 } else if (HasUMUL_LOHI) { 3372 OpToUse = ISD::UMUL_LOHI; 3373 } 3374 if (OpToUse) { 3375 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3376 Node->getOperand(1))); 3377 break; 3378 } 3379 3380 SDValue Lo, Hi; 3381 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3382 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3383 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3384 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3385 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3386 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3387 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3388 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3389 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3390 SDValue Shift = 3391 DAG.getConstant(HalfType.getSizeInBits(), dl, 3392 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3393 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3394 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3395 } 3396 break; 3397 } 3398 case ISD::FSHL: 3399 case ISD::FSHR: 3400 if (TLI.expandFunnelShift(Node, Tmp1, DAG)) 3401 Results.push_back(Tmp1); 3402 break; 3403 case ISD::ROTL: 3404 case ISD::ROTR: 3405 if (TLI.expandROT(Node, Tmp1, DAG)) 3406 Results.push_back(Tmp1); 3407 break; 3408 case ISD::SADDSAT: 3409 case ISD::UADDSAT: 3410 case ISD::SSUBSAT: 3411 case ISD::USUBSAT: 3412 Results.push_back(TLI.expandAddSubSat(Node, DAG)); 3413 break; 3414 case ISD::SMULFIX: 3415 case ISD::SMULFIXSAT: 3416 case ISD::UMULFIX: 3417 case ISD::UMULFIXSAT: 3418 Results.push_back(TLI.expandFixedPointMul(Node, DAG)); 3419 break; 3420 case ISD::ADDCARRY: 3421 case ISD::SUBCARRY: { 3422 SDValue LHS = Node->getOperand(0); 3423 SDValue RHS = Node->getOperand(1); 3424 SDValue Carry = Node->getOperand(2); 3425 3426 bool IsAdd = Node->getOpcode() == ISD::ADDCARRY; 3427 3428 // Initial add of the 2 operands. 3429 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB; 3430 EVT VT = LHS.getValueType(); 3431 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS); 3432 3433 // Initial check for overflow. 3434 EVT CarryType = Node->getValueType(1); 3435 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3436 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 3437 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3438 3439 // Add of the sum and the carry. 3440 SDValue CarryExt = 3441 DAG.getZeroExtendInReg(DAG.getZExtOrTrunc(Carry, dl, VT), dl, MVT::i1); 3442 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt); 3443 3444 // Second check for overflow. If we are adding, we can only overflow if the 3445 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0. 3446 // If we are subtracting, we can only overflow if the initial sum is 0 and 3447 // the carry is set, resulting in a new sum of all 1s. 3448 SDValue Zero = DAG.getConstant(0, dl, VT); 3449 SDValue Overflow2 = 3450 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ) 3451 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ); 3452 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2, 3453 DAG.getZExtOrTrunc(Carry, dl, SetCCType)); 3454 3455 SDValue ResultCarry = 3456 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2); 3457 3458 Results.push_back(Sum2); 3459 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT)); 3460 break; 3461 } 3462 case ISD::SADDO: 3463 case ISD::SSUBO: { 3464 SDValue Result, Overflow; 3465 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 3466 Results.push_back(Result); 3467 Results.push_back(Overflow); 3468 break; 3469 } 3470 case ISD::UADDO: 3471 case ISD::USUBO: { 3472 SDValue Result, Overflow; 3473 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 3474 Results.push_back(Result); 3475 Results.push_back(Overflow); 3476 break; 3477 } 3478 case ISD::UMULO: 3479 case ISD::SMULO: { 3480 SDValue Result, Overflow; 3481 if (TLI.expandMULO(Node, Result, Overflow, DAG)) { 3482 Results.push_back(Result); 3483 Results.push_back(Overflow); 3484 } 3485 break; 3486 } 3487 case ISD::BUILD_PAIR: { 3488 EVT PairTy = Node->getValueType(0); 3489 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3490 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3491 Tmp2 = DAG.getNode( 3492 ISD::SHL, dl, PairTy, Tmp2, 3493 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3494 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3495 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3496 break; 3497 } 3498 case ISD::SELECT: 3499 Tmp1 = Node->getOperand(0); 3500 Tmp2 = Node->getOperand(1); 3501 Tmp3 = Node->getOperand(2); 3502 if (Tmp1.getOpcode() == ISD::SETCC) { 3503 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3504 Tmp2, Tmp3, 3505 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3506 } else { 3507 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3508 DAG.getConstant(0, dl, Tmp1.getValueType()), 3509 Tmp2, Tmp3, ISD::SETNE); 3510 } 3511 Tmp1->setFlags(Node->getFlags()); 3512 Results.push_back(Tmp1); 3513 break; 3514 case ISD::BR_JT: { 3515 SDValue Chain = Node->getOperand(0); 3516 SDValue Table = Node->getOperand(1); 3517 SDValue Index = Node->getOperand(2); 3518 3519 const DataLayout &TD = DAG.getDataLayout(); 3520 EVT PTy = TLI.getPointerTy(TD); 3521 3522 unsigned EntrySize = 3523 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3524 3525 // For power-of-two jumptable entry sizes convert multiplication to a shift. 3526 // This transformation needs to be done here since otherwise the MIPS 3527 // backend will end up emitting a three instruction multiply sequence 3528 // instead of a single shift and MSP430 will call a runtime function. 3529 if (llvm::isPowerOf2_32(EntrySize)) 3530 Index = DAG.getNode( 3531 ISD::SHL, dl, Index.getValueType(), Index, 3532 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); 3533 else 3534 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3535 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3536 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3537 Index, Table); 3538 3539 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3540 SDValue LD = DAG.getExtLoad( 3541 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3542 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3543 Addr = LD; 3544 if (TLI.isJumpTableRelative()) { 3545 // For PIC, the sequence is: 3546 // BRIND(load(Jumptable + index) + RelocBase) 3547 // RelocBase can be JumpTable, GOT or some sort of global base. 3548 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3549 TLI.getPICJumpTableRelocBase(Table, DAG)); 3550 } 3551 3552 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); 3553 Results.push_back(Tmp1); 3554 break; 3555 } 3556 case ISD::BRCOND: 3557 // Expand brcond's setcc into its constituent parts and create a BR_CC 3558 // Node. 3559 Tmp1 = Node->getOperand(0); 3560 Tmp2 = Node->getOperand(1); 3561 if (Tmp2.getOpcode() == ISD::SETCC) { 3562 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3563 Tmp1, Tmp2.getOperand(2), 3564 Tmp2.getOperand(0), Tmp2.getOperand(1), 3565 Node->getOperand(2)); 3566 } else { 3567 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 3568 if (Tmp2.isUndef() || 3569 (Tmp2.getOpcode() == ISD::AND && 3570 isa<ConstantSDNode>(Tmp2.getOperand(1)) && 3571 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) 3572 Tmp3 = Tmp2; 3573 else 3574 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3575 DAG.getConstant(1, dl, Tmp2.getValueType())); 3576 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3577 DAG.getCondCode(ISD::SETNE), Tmp3, 3578 DAG.getConstant(0, dl, Tmp3.getValueType()), 3579 Node->getOperand(2)); 3580 } 3581 Results.push_back(Tmp1); 3582 break; 3583 case ISD::SETCC: 3584 case ISD::STRICT_FSETCC: 3585 case ISD::STRICT_FSETCCS: { 3586 bool IsStrict = Node->getOpcode() != ISD::SETCC; 3587 bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS; 3588 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 3589 unsigned Offset = IsStrict ? 1 : 0; 3590 Tmp1 = Node->getOperand(0 + Offset); 3591 Tmp2 = Node->getOperand(1 + Offset); 3592 Tmp3 = Node->getOperand(2 + Offset); 3593 bool Legalized = 3594 LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, 3595 NeedInvert, dl, Chain, IsSignaling); 3596 3597 if (Legalized) { 3598 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3599 // condition code, create a new SETCC node. 3600 if (Tmp3.getNode()) 3601 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3602 Tmp1, Tmp2, Tmp3, Node->getFlags()); 3603 3604 // If we expanded the SETCC by inverting the condition code, then wrap 3605 // the existing SETCC in a NOT to restore the intended condition. 3606 if (NeedInvert) 3607 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3608 3609 Results.push_back(Tmp1); 3610 if (IsStrict) 3611 Results.push_back(Chain); 3612 3613 break; 3614 } 3615 3616 // FIXME: It seems Legalized is false iff CCCode is Legal. I don't 3617 // understand if this code is useful for strict nodes. 3618 assert(!IsStrict && "Don't know how to expand for strict nodes."); 3619 3620 // Otherwise, SETCC for the given comparison type must be completely 3621 // illegal; expand it into a SELECT_CC. 3622 EVT VT = Node->getValueType(0); 3623 int TrueValue; 3624 switch (TLI.getBooleanContents(Tmp1.getValueType())) { 3625 case TargetLowering::ZeroOrOneBooleanContent: 3626 case TargetLowering::UndefinedBooleanContent: 3627 TrueValue = 1; 3628 break; 3629 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3630 TrueValue = -1; 3631 break; 3632 } 3633 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3634 DAG.getConstant(TrueValue, dl, VT), 3635 DAG.getConstant(0, dl, VT), 3636 Tmp3); 3637 Tmp1->setFlags(Node->getFlags()); 3638 Results.push_back(Tmp1); 3639 break; 3640 } 3641 case ISD::SELECT_CC: { 3642 // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS 3643 Tmp1 = Node->getOperand(0); // LHS 3644 Tmp2 = Node->getOperand(1); // RHS 3645 Tmp3 = Node->getOperand(2); // True 3646 Tmp4 = Node->getOperand(3); // False 3647 EVT VT = Node->getValueType(0); 3648 SDValue Chain; 3649 SDValue CC = Node->getOperand(4); 3650 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3651 3652 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 3653 // If the condition code is legal, then we need to expand this 3654 // node using SETCC and SELECT. 3655 EVT CmpVT = Tmp1.getValueType(); 3656 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3657 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3658 "expanded."); 3659 EVT CCVT = getSetCCResultType(CmpVT); 3660 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags()); 3661 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3662 break; 3663 } 3664 3665 // SELECT_CC is legal, so the condition code must not be. 3666 bool Legalized = false; 3667 // Try to legalize by inverting the condition. This is for targets that 3668 // might support an ordered version of a condition, but not the unordered 3669 // version (or vice versa). 3670 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType()); 3671 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 3672 // Use the new condition code and swap true and false 3673 Legalized = true; 3674 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3675 Tmp1->setFlags(Node->getFlags()); 3676 } else { 3677 // If The inverse is not legal, then try to swap the arguments using 3678 // the inverse condition code. 3679 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3680 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 3681 // The swapped inverse condition is legal, so swap true and false, 3682 // lhs and rhs. 3683 Legalized = true; 3684 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3685 Tmp1->setFlags(Node->getFlags()); 3686 } 3687 } 3688 3689 if (!Legalized) { 3690 Legalized = LegalizeSetCCCondCode(getSetCCResultType(Tmp1.getValueType()), 3691 Tmp1, Tmp2, CC, NeedInvert, dl, Chain); 3692 3693 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3694 3695 // If we expanded the SETCC by inverting the condition code, then swap 3696 // the True/False operands to match. 3697 if (NeedInvert) 3698 std::swap(Tmp3, Tmp4); 3699 3700 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3701 // condition code, create a new SELECT_CC node. 3702 if (CC.getNode()) { 3703 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3704 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3705 } else { 3706 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3707 CC = DAG.getCondCode(ISD::SETNE); 3708 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3709 Tmp2, Tmp3, Tmp4, CC); 3710 } 3711 Tmp1->setFlags(Node->getFlags()); 3712 } 3713 Results.push_back(Tmp1); 3714 break; 3715 } 3716 case ISD::BR_CC: { 3717 // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS 3718 SDValue Chain; 3719 Tmp1 = Node->getOperand(0); // Chain 3720 Tmp2 = Node->getOperand(2); // LHS 3721 Tmp3 = Node->getOperand(3); // RHS 3722 Tmp4 = Node->getOperand(1); // CC 3723 3724 bool Legalized = 3725 LegalizeSetCCCondCode(getSetCCResultType(Tmp2.getValueType()), Tmp2, 3726 Tmp3, Tmp4, NeedInvert, dl, Chain); 3727 (void)Legalized; 3728 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3729 3730 assert(!NeedInvert && "Don't know how to invert BR_CC!"); 3731 3732 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3733 // node. 3734 if (Tmp4.getNode()) { 3735 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3736 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3737 } else { 3738 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3739 Tmp4 = DAG.getCondCode(ISD::SETNE); 3740 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3741 Tmp2, Tmp3, Node->getOperand(4)); 3742 } 3743 Results.push_back(Tmp1); 3744 break; 3745 } 3746 case ISD::BUILD_VECTOR: 3747 Results.push_back(ExpandBUILD_VECTOR(Node)); 3748 break; 3749 case ISD::SPLAT_VECTOR: 3750 Results.push_back(ExpandSPLAT_VECTOR(Node)); 3751 break; 3752 case ISD::SRA: 3753 case ISD::SRL: 3754 case ISD::SHL: { 3755 // Scalarize vector SRA/SRL/SHL. 3756 EVT VT = Node->getValueType(0); 3757 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3758 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3759 unsigned NumElem = VT.getVectorNumElements(); 3760 3761 SmallVector<SDValue, 8> Scalars; 3762 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3763 SDValue Ex = DAG.getNode( 3764 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0), 3765 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3766 SDValue Sh = DAG.getNode( 3767 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1), 3768 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3769 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3770 VT.getScalarType(), Ex, Sh)); 3771 } 3772 3773 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 3774 Results.push_back(Result); 3775 break; 3776 } 3777 case ISD::VECREDUCE_FADD: 3778 case ISD::VECREDUCE_FMUL: 3779 case ISD::VECREDUCE_ADD: 3780 case ISD::VECREDUCE_MUL: 3781 case ISD::VECREDUCE_AND: 3782 case ISD::VECREDUCE_OR: 3783 case ISD::VECREDUCE_XOR: 3784 case ISD::VECREDUCE_SMAX: 3785 case ISD::VECREDUCE_SMIN: 3786 case ISD::VECREDUCE_UMAX: 3787 case ISD::VECREDUCE_UMIN: 3788 case ISD::VECREDUCE_FMAX: 3789 case ISD::VECREDUCE_FMIN: 3790 Results.push_back(TLI.expandVecReduce(Node, DAG)); 3791 break; 3792 case ISD::GLOBAL_OFFSET_TABLE: 3793 case ISD::GlobalAddress: 3794 case ISD::GlobalTLSAddress: 3795 case ISD::ExternalSymbol: 3796 case ISD::ConstantPool: 3797 case ISD::JumpTable: 3798 case ISD::INTRINSIC_W_CHAIN: 3799 case ISD::INTRINSIC_WO_CHAIN: 3800 case ISD::INTRINSIC_VOID: 3801 // FIXME: Custom lowering for these operations shouldn't return null! 3802 // Return true so that we don't call ConvertNodeToLibcall which also won't 3803 // do anything. 3804 return true; 3805 } 3806 3807 if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) { 3808 // FIXME: We were asked to expand a strict floating-point operation, 3809 // but there is currently no expansion implemented that would preserve 3810 // the "strict" properties. For now, we just fall back to the non-strict 3811 // version if that is legal on the target. The actual mutation of the 3812 // operation will happen in SelectionDAGISel::DoInstructionSelection. 3813 switch (Node->getOpcode()) { 3814 default: 3815 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3816 Node->getValueType(0)) 3817 == TargetLowering::Legal) 3818 return true; 3819 break; 3820 case ISD::STRICT_LRINT: 3821 case ISD::STRICT_LLRINT: 3822 case ISD::STRICT_LROUND: 3823 case ISD::STRICT_LLROUND: 3824 // These are registered by the operand type instead of the value 3825 // type. Reflect that here. 3826 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3827 Node->getOperand(1).getValueType()) 3828 == TargetLowering::Legal) 3829 return true; 3830 break; 3831 } 3832 } 3833 3834 // Replace the original node with the legalized result. 3835 if (Results.empty()) { 3836 LLVM_DEBUG(dbgs() << "Cannot expand node\n"); 3837 return false; 3838 } 3839 3840 LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); 3841 ReplaceNode(Node, Results.data()); 3842 return true; 3843 } 3844 3845 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 3846 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); 3847 SmallVector<SDValue, 8> Results; 3848 SDLoc dl(Node); 3849 // FIXME: Check flags on the node to see if we can use a finite call. 3850 bool CanUseFiniteLibCall = TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath; 3851 unsigned Opc = Node->getOpcode(); 3852 switch (Opc) { 3853 case ISD::ATOMIC_FENCE: { 3854 // If the target didn't lower this, lower it to '__sync_synchronize()' call 3855 // FIXME: handle "fence singlethread" more efficiently. 3856 TargetLowering::ArgListTy Args; 3857 3858 TargetLowering::CallLoweringInfo CLI(DAG); 3859 CLI.setDebugLoc(dl) 3860 .setChain(Node->getOperand(0)) 3861 .setLibCallee( 3862 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3863 DAG.getExternalSymbol("__sync_synchronize", 3864 TLI.getPointerTy(DAG.getDataLayout())), 3865 std::move(Args)); 3866 3867 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3868 3869 Results.push_back(CallResult.second); 3870 break; 3871 } 3872 // By default, atomic intrinsics are marked Legal and lowered. Targets 3873 // which don't support them directly, however, may want libcalls, in which 3874 // case they mark them Expand, and we get here. 3875 case ISD::ATOMIC_SWAP: 3876 case ISD::ATOMIC_LOAD_ADD: 3877 case ISD::ATOMIC_LOAD_SUB: 3878 case ISD::ATOMIC_LOAD_AND: 3879 case ISD::ATOMIC_LOAD_CLR: 3880 case ISD::ATOMIC_LOAD_OR: 3881 case ISD::ATOMIC_LOAD_XOR: 3882 case ISD::ATOMIC_LOAD_NAND: 3883 case ISD::ATOMIC_LOAD_MIN: 3884 case ISD::ATOMIC_LOAD_MAX: 3885 case ISD::ATOMIC_LOAD_UMIN: 3886 case ISD::ATOMIC_LOAD_UMAX: 3887 case ISD::ATOMIC_CMP_SWAP: { 3888 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 3889 RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT); 3890 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!"); 3891 3892 EVT RetVT = Node->getValueType(0); 3893 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); 3894 TargetLowering::MakeLibCallOptions CallOptions; 3895 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 3896 Ops, CallOptions, 3897 SDLoc(Node), 3898 Node->getOperand(0)); 3899 Results.push_back(Tmp.first); 3900 Results.push_back(Tmp.second); 3901 break; 3902 } 3903 case ISD::TRAP: { 3904 // If this operation is not supported, lower it to 'abort()' call 3905 TargetLowering::ArgListTy Args; 3906 TargetLowering::CallLoweringInfo CLI(DAG); 3907 CLI.setDebugLoc(dl) 3908 .setChain(Node->getOperand(0)) 3909 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3910 DAG.getExternalSymbol( 3911 "abort", TLI.getPointerTy(DAG.getDataLayout())), 3912 std::move(Args)); 3913 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3914 3915 Results.push_back(CallResult.second); 3916 break; 3917 } 3918 case ISD::FMINNUM: 3919 case ISD::STRICT_FMINNUM: 3920 ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 3921 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 3922 RTLIB::FMIN_PPCF128, Results); 3923 break; 3924 case ISD::FMAXNUM: 3925 case ISD::STRICT_FMAXNUM: 3926 ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 3927 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 3928 RTLIB::FMAX_PPCF128, Results); 3929 break; 3930 case ISD::FSQRT: 3931 case ISD::STRICT_FSQRT: 3932 ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3933 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 3934 RTLIB::SQRT_PPCF128, Results); 3935 break; 3936 case ISD::FCBRT: 3937 ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, 3938 RTLIB::CBRT_F80, RTLIB::CBRT_F128, 3939 RTLIB::CBRT_PPCF128, Results); 3940 break; 3941 case ISD::FSIN: 3942 case ISD::STRICT_FSIN: 3943 ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 3944 RTLIB::SIN_F80, RTLIB::SIN_F128, 3945 RTLIB::SIN_PPCF128, Results); 3946 break; 3947 case ISD::FCOS: 3948 case ISD::STRICT_FCOS: 3949 ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 3950 RTLIB::COS_F80, RTLIB::COS_F128, 3951 RTLIB::COS_PPCF128, Results); 3952 break; 3953 case ISD::FSINCOS: 3954 // Expand into sincos libcall. 3955 ExpandSinCosLibCall(Node, Results); 3956 break; 3957 case ISD::FLOG: 3958 case ISD::STRICT_FLOG: 3959 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log_finite)) 3960 ExpandFPLibCall(Node, RTLIB::LOG_FINITE_F32, 3961 RTLIB::LOG_FINITE_F64, 3962 RTLIB::LOG_FINITE_F80, 3963 RTLIB::LOG_FINITE_F128, 3964 RTLIB::LOG_FINITE_PPCF128, Results); 3965 else 3966 ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, 3967 RTLIB::LOG_F80, RTLIB::LOG_F128, 3968 RTLIB::LOG_PPCF128, Results); 3969 break; 3970 case ISD::FLOG2: 3971 case ISD::STRICT_FLOG2: 3972 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log2_finite)) 3973 ExpandFPLibCall(Node, RTLIB::LOG2_FINITE_F32, 3974 RTLIB::LOG2_FINITE_F64, 3975 RTLIB::LOG2_FINITE_F80, 3976 RTLIB::LOG2_FINITE_F128, 3977 RTLIB::LOG2_FINITE_PPCF128, Results); 3978 else 3979 ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 3980 RTLIB::LOG2_F80, RTLIB::LOG2_F128, 3981 RTLIB::LOG2_PPCF128, Results); 3982 break; 3983 case ISD::FLOG10: 3984 case ISD::STRICT_FLOG10: 3985 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log10_finite)) 3986 ExpandFPLibCall(Node, RTLIB::LOG10_FINITE_F32, 3987 RTLIB::LOG10_FINITE_F64, 3988 RTLIB::LOG10_FINITE_F80, 3989 RTLIB::LOG10_FINITE_F128, 3990 RTLIB::LOG10_FINITE_PPCF128, Results); 3991 else 3992 ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 3993 RTLIB::LOG10_F80, RTLIB::LOG10_F128, 3994 RTLIB::LOG10_PPCF128, Results); 3995 break; 3996 case ISD::FEXP: 3997 case ISD::STRICT_FEXP: 3998 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp_finite)) 3999 ExpandFPLibCall(Node, RTLIB::EXP_FINITE_F32, 4000 RTLIB::EXP_FINITE_F64, 4001 RTLIB::EXP_FINITE_F80, 4002 RTLIB::EXP_FINITE_F128, 4003 RTLIB::EXP_FINITE_PPCF128, Results); 4004 else 4005 ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, 4006 RTLIB::EXP_F80, RTLIB::EXP_F128, 4007 RTLIB::EXP_PPCF128, Results); 4008 break; 4009 case ISD::FEXP2: 4010 case ISD::STRICT_FEXP2: 4011 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp2_finite)) 4012 ExpandFPLibCall(Node, RTLIB::EXP2_FINITE_F32, 4013 RTLIB::EXP2_FINITE_F64, 4014 RTLIB::EXP2_FINITE_F80, 4015 RTLIB::EXP2_FINITE_F128, 4016 RTLIB::EXP2_FINITE_PPCF128, Results); 4017 else 4018 ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 4019 RTLIB::EXP2_F80, RTLIB::EXP2_F128, 4020 RTLIB::EXP2_PPCF128, Results); 4021 break; 4022 case ISD::FTRUNC: 4023 case ISD::STRICT_FTRUNC: 4024 ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 4025 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 4026 RTLIB::TRUNC_PPCF128, Results); 4027 break; 4028 case ISD::FFLOOR: 4029 case ISD::STRICT_FFLOOR: 4030 ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 4031 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 4032 RTLIB::FLOOR_PPCF128, Results); 4033 break; 4034 case ISD::FCEIL: 4035 case ISD::STRICT_FCEIL: 4036 ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 4037 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 4038 RTLIB::CEIL_PPCF128, Results); 4039 break; 4040 case ISD::FRINT: 4041 case ISD::STRICT_FRINT: 4042 ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 4043 RTLIB::RINT_F80, RTLIB::RINT_F128, 4044 RTLIB::RINT_PPCF128, Results); 4045 break; 4046 case ISD::FNEARBYINT: 4047 case ISD::STRICT_FNEARBYINT: 4048 ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 4049 RTLIB::NEARBYINT_F64, 4050 RTLIB::NEARBYINT_F80, 4051 RTLIB::NEARBYINT_F128, 4052 RTLIB::NEARBYINT_PPCF128, Results); 4053 break; 4054 case ISD::FROUND: 4055 case ISD::STRICT_FROUND: 4056 ExpandFPLibCall(Node, RTLIB::ROUND_F32, 4057 RTLIB::ROUND_F64, 4058 RTLIB::ROUND_F80, 4059 RTLIB::ROUND_F128, 4060 RTLIB::ROUND_PPCF128, Results); 4061 break; 4062 case ISD::FPOWI: 4063 case ISD::STRICT_FPOWI: { 4064 RTLIB::Libcall LC; 4065 switch (Node->getSimpleValueType(0).SimpleTy) { 4066 default: llvm_unreachable("Unexpected request for libcall!"); 4067 case MVT::f32: LC = RTLIB::POWI_F32; break; 4068 case MVT::f64: LC = RTLIB::POWI_F64; break; 4069 case MVT::f80: LC = RTLIB::POWI_F80; break; 4070 case MVT::f128: LC = RTLIB::POWI_F128; break; 4071 case MVT::ppcf128: LC = RTLIB::POWI_PPCF128; break; 4072 } 4073 if (!TLI.getLibcallName(LC)) { 4074 // Some targets don't have a powi libcall; use pow instead. 4075 SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), 4076 Node->getValueType(0), 4077 Node->getOperand(1)); 4078 Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node), 4079 Node->getValueType(0), Node->getOperand(0), 4080 Exponent)); 4081 break; 4082 } 4083 ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 4084 RTLIB::POWI_F80, RTLIB::POWI_F128, 4085 RTLIB::POWI_PPCF128, Results); 4086 break; 4087 } 4088 case ISD::FPOW: 4089 case ISD::STRICT_FPOW: 4090 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_pow_finite)) 4091 ExpandFPLibCall(Node, RTLIB::POW_FINITE_F32, 4092 RTLIB::POW_FINITE_F64, 4093 RTLIB::POW_FINITE_F80, 4094 RTLIB::POW_FINITE_F128, 4095 RTLIB::POW_FINITE_PPCF128, Results); 4096 else 4097 ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, 4098 RTLIB::POW_F80, RTLIB::POW_F128, 4099 RTLIB::POW_PPCF128, Results); 4100 break; 4101 case ISD::LROUND: 4102 case ISD::STRICT_LROUND: 4103 ExpandArgFPLibCall(Node, RTLIB::LROUND_F32, 4104 RTLIB::LROUND_F64, RTLIB::LROUND_F80, 4105 RTLIB::LROUND_F128, 4106 RTLIB::LROUND_PPCF128, Results); 4107 break; 4108 case ISD::LLROUND: 4109 case ISD::STRICT_LLROUND: 4110 ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32, 4111 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, 4112 RTLIB::LLROUND_F128, 4113 RTLIB::LLROUND_PPCF128, Results); 4114 break; 4115 case ISD::LRINT: 4116 case ISD::STRICT_LRINT: 4117 ExpandArgFPLibCall(Node, RTLIB::LRINT_F32, 4118 RTLIB::LRINT_F64, RTLIB::LRINT_F80, 4119 RTLIB::LRINT_F128, 4120 RTLIB::LRINT_PPCF128, Results); 4121 break; 4122 case ISD::LLRINT: 4123 case ISD::STRICT_LLRINT: 4124 ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32, 4125 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80, 4126 RTLIB::LLRINT_F128, 4127 RTLIB::LLRINT_PPCF128, Results); 4128 break; 4129 case ISD::FDIV: 4130 case ISD::STRICT_FDIV: 4131 ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 4132 RTLIB::DIV_F80, RTLIB::DIV_F128, 4133 RTLIB::DIV_PPCF128, Results); 4134 break; 4135 case ISD::FREM: 4136 case ISD::STRICT_FREM: 4137 ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 4138 RTLIB::REM_F80, RTLIB::REM_F128, 4139 RTLIB::REM_PPCF128, Results); 4140 break; 4141 case ISD::FMA: 4142 case ISD::STRICT_FMA: 4143 ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 4144 RTLIB::FMA_F80, RTLIB::FMA_F128, 4145 RTLIB::FMA_PPCF128, Results); 4146 break; 4147 case ISD::FADD: 4148 case ISD::STRICT_FADD: 4149 ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 4150 RTLIB::ADD_F80, RTLIB::ADD_F128, 4151 RTLIB::ADD_PPCF128, Results); 4152 break; 4153 case ISD::FMUL: 4154 case ISD::STRICT_FMUL: 4155 ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 4156 RTLIB::MUL_F80, RTLIB::MUL_F128, 4157 RTLIB::MUL_PPCF128, Results); 4158 break; 4159 case ISD::FP16_TO_FP: 4160 if (Node->getValueType(0) == MVT::f32) { 4161 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 4162 } 4163 break; 4164 case ISD::FP_TO_FP16: { 4165 RTLIB::Libcall LC = 4166 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 4167 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 4168 Results.push_back(ExpandLibCall(LC, Node, false)); 4169 break; 4170 } 4171 case ISD::FSUB: 4172 case ISD::STRICT_FSUB: 4173 ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4174 RTLIB::SUB_F80, RTLIB::SUB_F128, 4175 RTLIB::SUB_PPCF128, Results); 4176 break; 4177 case ISD::SREM: 4178 Results.push_back(ExpandIntLibCall(Node, true, 4179 RTLIB::SREM_I8, 4180 RTLIB::SREM_I16, RTLIB::SREM_I32, 4181 RTLIB::SREM_I64, RTLIB::SREM_I128)); 4182 break; 4183 case ISD::UREM: 4184 Results.push_back(ExpandIntLibCall(Node, false, 4185 RTLIB::UREM_I8, 4186 RTLIB::UREM_I16, RTLIB::UREM_I32, 4187 RTLIB::UREM_I64, RTLIB::UREM_I128)); 4188 break; 4189 case ISD::SDIV: 4190 Results.push_back(ExpandIntLibCall(Node, true, 4191 RTLIB::SDIV_I8, 4192 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4193 RTLIB::SDIV_I64, RTLIB::SDIV_I128)); 4194 break; 4195 case ISD::UDIV: 4196 Results.push_back(ExpandIntLibCall(Node, false, 4197 RTLIB::UDIV_I8, 4198 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4199 RTLIB::UDIV_I64, RTLIB::UDIV_I128)); 4200 break; 4201 case ISD::SDIVREM: 4202 case ISD::UDIVREM: 4203 // Expand into divrem libcall 4204 ExpandDivRemLibCall(Node, Results); 4205 break; 4206 case ISD::MUL: 4207 Results.push_back(ExpandIntLibCall(Node, false, 4208 RTLIB::MUL_I8, 4209 RTLIB::MUL_I16, RTLIB::MUL_I32, 4210 RTLIB::MUL_I64, RTLIB::MUL_I128)); 4211 break; 4212 case ISD::CTLZ_ZERO_UNDEF: 4213 switch (Node->getSimpleValueType(0).SimpleTy) { 4214 default: 4215 llvm_unreachable("LibCall explicitly requested, but not available"); 4216 case MVT::i32: 4217 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false)); 4218 break; 4219 case MVT::i64: 4220 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false)); 4221 break; 4222 case MVT::i128: 4223 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false)); 4224 break; 4225 } 4226 break; 4227 } 4228 4229 // Replace the original node with the legalized result. 4230 if (!Results.empty()) { 4231 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); 4232 ReplaceNode(Node, Results.data()); 4233 } else 4234 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); 4235 } 4236 4237 // Determine the vector type to use in place of an original scalar element when 4238 // promoting equally sized vectors. 4239 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4240 MVT EltVT, MVT NewEltVT) { 4241 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4242 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4243 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4244 return MidVT; 4245 } 4246 4247 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4248 LLVM_DEBUG(dbgs() << "Trying to promote node\n"); 4249 SmallVector<SDValue, 8> Results; 4250 MVT OVT = Node->getSimpleValueType(0); 4251 if (Node->getOpcode() == ISD::UINT_TO_FP || 4252 Node->getOpcode() == ISD::SINT_TO_FP || 4253 Node->getOpcode() == ISD::SETCC || 4254 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4255 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4256 OVT = Node->getOperand(0).getSimpleValueType(); 4257 } 4258 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP || 4259 Node->getOpcode() == ISD::STRICT_SINT_TO_FP) 4260 OVT = Node->getOperand(1).getSimpleValueType(); 4261 if (Node->getOpcode() == ISD::BR_CC) 4262 OVT = Node->getOperand(2).getSimpleValueType(); 4263 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4264 SDLoc dl(Node); 4265 SDValue Tmp1, Tmp2, Tmp3; 4266 switch (Node->getOpcode()) { 4267 case ISD::CTTZ: 4268 case ISD::CTTZ_ZERO_UNDEF: 4269 case ISD::CTLZ: 4270 case ISD::CTLZ_ZERO_UNDEF: 4271 case ISD::CTPOP: 4272 // Zero extend the argument. 4273 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4274 if (Node->getOpcode() == ISD::CTTZ) { 4275 // The count is the same in the promoted type except if the original 4276 // value was zero. This can be handled by setting the bit just off 4277 // the top of the original type. 4278 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4279 OVT.getSizeInBits()); 4280 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4281 DAG.getConstant(TopBit, dl, NVT)); 4282 } 4283 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4284 // already the correct result. 4285 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4286 if (Node->getOpcode() == ISD::CTLZ || 4287 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4288 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4289 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4290 DAG.getConstant(NVT.getSizeInBits() - 4291 OVT.getSizeInBits(), dl, NVT)); 4292 } 4293 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4294 break; 4295 case ISD::BITREVERSE: 4296 case ISD::BSWAP: { 4297 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4298 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4299 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4300 Tmp1 = DAG.getNode( 4301 ISD::SRL, dl, NVT, Tmp1, 4302 DAG.getConstant(DiffBits, dl, 4303 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4304 4305 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4306 break; 4307 } 4308 case ISD::FP_TO_UINT: 4309 case ISD::STRICT_FP_TO_UINT: 4310 case ISD::FP_TO_SINT: 4311 case ISD::STRICT_FP_TO_SINT: 4312 PromoteLegalFP_TO_INT(Node, dl, Results); 4313 break; 4314 case ISD::UINT_TO_FP: 4315 case ISD::STRICT_UINT_TO_FP: 4316 case ISD::SINT_TO_FP: 4317 case ISD::STRICT_SINT_TO_FP: 4318 PromoteLegalINT_TO_FP(Node, dl, Results); 4319 break; 4320 case ISD::VAARG: { 4321 SDValue Chain = Node->getOperand(0); // Get the chain. 4322 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4323 4324 unsigned TruncOp; 4325 if (OVT.isVector()) { 4326 TruncOp = ISD::BITCAST; 4327 } else { 4328 assert(OVT.isInteger() 4329 && "VAARG promotion is supported only for vectors or integer types"); 4330 TruncOp = ISD::TRUNCATE; 4331 } 4332 4333 // Perform the larger operation, then convert back 4334 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4335 Node->getConstantOperandVal(3)); 4336 Chain = Tmp1.getValue(1); 4337 4338 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4339 4340 // Modified the chain result - switch anything that used the old chain to 4341 // use the new one. 4342 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4343 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4344 if (UpdatedNodes) { 4345 UpdatedNodes->insert(Tmp2.getNode()); 4346 UpdatedNodes->insert(Chain.getNode()); 4347 } 4348 ReplacedNode(Node); 4349 break; 4350 } 4351 case ISD::MUL: 4352 case ISD::SDIV: 4353 case ISD::SREM: 4354 case ISD::UDIV: 4355 case ISD::UREM: 4356 case ISD::AND: 4357 case ISD::OR: 4358 case ISD::XOR: { 4359 unsigned ExtOp, TruncOp; 4360 if (OVT.isVector()) { 4361 ExtOp = ISD::BITCAST; 4362 TruncOp = ISD::BITCAST; 4363 } else { 4364 assert(OVT.isInteger() && "Cannot promote logic operation"); 4365 4366 switch (Node->getOpcode()) { 4367 default: 4368 ExtOp = ISD::ANY_EXTEND; 4369 break; 4370 case ISD::SDIV: 4371 case ISD::SREM: 4372 ExtOp = ISD::SIGN_EXTEND; 4373 break; 4374 case ISD::UDIV: 4375 case ISD::UREM: 4376 ExtOp = ISD::ZERO_EXTEND; 4377 break; 4378 } 4379 TruncOp = ISD::TRUNCATE; 4380 } 4381 // Promote each of the values to the new type. 4382 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4383 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4384 // Perform the larger operation, then convert back 4385 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4386 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4387 break; 4388 } 4389 case ISD::UMUL_LOHI: 4390 case ISD::SMUL_LOHI: { 4391 // Promote to a multiply in a wider integer type. 4392 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 4393 : ISD::SIGN_EXTEND; 4394 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4395 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4396 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 4397 4398 auto &DL = DAG.getDataLayout(); 4399 unsigned OriginalSize = OVT.getScalarSizeInBits(); 4400 Tmp2 = DAG.getNode( 4401 ISD::SRL, dl, NVT, Tmp1, 4402 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 4403 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4404 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 4405 break; 4406 } 4407 case ISD::SELECT: { 4408 unsigned ExtOp, TruncOp; 4409 if (Node->getValueType(0).isVector() || 4410 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4411 ExtOp = ISD::BITCAST; 4412 TruncOp = ISD::BITCAST; 4413 } else if (Node->getValueType(0).isInteger()) { 4414 ExtOp = ISD::ANY_EXTEND; 4415 TruncOp = ISD::TRUNCATE; 4416 } else { 4417 ExtOp = ISD::FP_EXTEND; 4418 TruncOp = ISD::FP_ROUND; 4419 } 4420 Tmp1 = Node->getOperand(0); 4421 // Promote each of the values to the new type. 4422 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4423 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4424 // Perform the larger operation, then round down. 4425 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4426 Tmp1->setFlags(Node->getFlags()); 4427 if (TruncOp != ISD::FP_ROUND) 4428 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4429 else 4430 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4431 DAG.getIntPtrConstant(0, dl)); 4432 Results.push_back(Tmp1); 4433 break; 4434 } 4435 case ISD::VECTOR_SHUFFLE: { 4436 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4437 4438 // Cast the two input vectors. 4439 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4440 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4441 4442 // Convert the shuffle mask to the right # elements. 4443 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4444 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4445 Results.push_back(Tmp1); 4446 break; 4447 } 4448 case ISD::SETCC: { 4449 unsigned ExtOp = ISD::FP_EXTEND; 4450 if (NVT.isInteger()) { 4451 ISD::CondCode CCCode = 4452 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4453 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4454 } 4455 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4456 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4457 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, 4458 Tmp2, Node->getOperand(2), Node->getFlags())); 4459 break; 4460 } 4461 case ISD::BR_CC: { 4462 unsigned ExtOp = ISD::FP_EXTEND; 4463 if (NVT.isInteger()) { 4464 ISD::CondCode CCCode = 4465 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4466 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4467 } 4468 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4469 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4470 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4471 Node->getOperand(0), Node->getOperand(1), 4472 Tmp1, Tmp2, Node->getOperand(4))); 4473 break; 4474 } 4475 case ISD::FADD: 4476 case ISD::FSUB: 4477 case ISD::FMUL: 4478 case ISD::FDIV: 4479 case ISD::FREM: 4480 case ISD::FMINNUM: 4481 case ISD::FMAXNUM: 4482 case ISD::FPOW: 4483 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4484 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4485 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4486 Node->getFlags()); 4487 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4488 Tmp3, DAG.getIntPtrConstant(0, dl))); 4489 break; 4490 case ISD::STRICT_FREM: 4491 case ISD::STRICT_FPOW: 4492 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4493 {Node->getOperand(0), Node->getOperand(1)}); 4494 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4495 {Node->getOperand(0), Node->getOperand(2)}); 4496 Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 4497 Tmp2.getValue(1)); 4498 Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4499 {Tmp3, Tmp1, Tmp2}); 4500 Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4501 {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)}); 4502 Results.push_back(Tmp1); 4503 Results.push_back(Tmp1.getValue(1)); 4504 break; 4505 case ISD::FMA: 4506 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4507 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4508 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4509 Results.push_back( 4510 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4511 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4512 DAG.getIntPtrConstant(0, dl))); 4513 break; 4514 case ISD::FCOPYSIGN: 4515 case ISD::FPOWI: { 4516 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4517 Tmp2 = Node->getOperand(1); 4518 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4519 4520 // fcopysign doesn't change anything but the sign bit, so 4521 // (fp_round (fcopysign (fpext a), b)) 4522 // is as precise as 4523 // (fp_round (fpext a)) 4524 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4525 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4526 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4527 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4528 break; 4529 } 4530 case ISD::FFLOOR: 4531 case ISD::FCEIL: 4532 case ISD::FRINT: 4533 case ISD::FNEARBYINT: 4534 case ISD::FROUND: 4535 case ISD::FTRUNC: 4536 case ISD::FNEG: 4537 case ISD::FSQRT: 4538 case ISD::FSIN: 4539 case ISD::FCOS: 4540 case ISD::FLOG: 4541 case ISD::FLOG2: 4542 case ISD::FLOG10: 4543 case ISD::FABS: 4544 case ISD::FEXP: 4545 case ISD::FEXP2: 4546 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4547 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4548 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4549 Tmp2, DAG.getIntPtrConstant(0, dl))); 4550 break; 4551 case ISD::STRICT_FFLOOR: 4552 case ISD::STRICT_FCEIL: 4553 case ISD::STRICT_FSIN: 4554 case ISD::STRICT_FCOS: 4555 case ISD::STRICT_FLOG: 4556 case ISD::STRICT_FLOG10: 4557 case ISD::STRICT_FEXP: 4558 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4559 {Node->getOperand(0), Node->getOperand(1)}); 4560 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4561 {Tmp1.getValue(1), Tmp1}); 4562 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4563 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 4564 Results.push_back(Tmp3); 4565 Results.push_back(Tmp3.getValue(1)); 4566 break; 4567 case ISD::BUILD_VECTOR: { 4568 MVT EltVT = OVT.getVectorElementType(); 4569 MVT NewEltVT = NVT.getVectorElementType(); 4570 4571 // Handle bitcasts to a different vector type with the same total bit size 4572 // 4573 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4574 // => 4575 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4576 4577 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4578 "Invalid promote type for build_vector"); 4579 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4580 4581 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4582 4583 SmallVector<SDValue, 8> NewOps; 4584 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4585 SDValue Op = Node->getOperand(I); 4586 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4587 } 4588 4589 SDLoc SL(Node); 4590 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4591 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4592 Results.push_back(CvtVec); 4593 break; 4594 } 4595 case ISD::EXTRACT_VECTOR_ELT: { 4596 MVT EltVT = OVT.getVectorElementType(); 4597 MVT NewEltVT = NVT.getVectorElementType(); 4598 4599 // Handle bitcasts to a different vector type with the same total bit size. 4600 // 4601 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4602 // => 4603 // v4i32:castx = bitcast x:v2i64 4604 // 4605 // i64 = bitcast 4606 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4607 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4608 // 4609 4610 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4611 "Invalid promote type for extract_vector_elt"); 4612 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4613 4614 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4615 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4616 4617 SDValue Idx = Node->getOperand(1); 4618 EVT IdxVT = Idx.getValueType(); 4619 SDLoc SL(Node); 4620 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4621 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4622 4623 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4624 4625 SmallVector<SDValue, 8> NewOps; 4626 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4627 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4628 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4629 4630 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4631 CastVec, TmpIdx); 4632 NewOps.push_back(Elt); 4633 } 4634 4635 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 4636 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4637 break; 4638 } 4639 case ISD::INSERT_VECTOR_ELT: { 4640 MVT EltVT = OVT.getVectorElementType(); 4641 MVT NewEltVT = NVT.getVectorElementType(); 4642 4643 // Handle bitcasts to a different vector type with the same total bit size 4644 // 4645 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4646 // => 4647 // v4i32:castx = bitcast x:v2i64 4648 // v2i32:casty = bitcast y:i64 4649 // 4650 // v2i64 = bitcast 4651 // (v4i32 insert_vector_elt 4652 // (v4i32 insert_vector_elt v4i32:castx, 4653 // (extract_vector_elt casty, 0), 2 * z), 4654 // (extract_vector_elt casty, 1), (2 * z + 1)) 4655 4656 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4657 "Invalid promote type for insert_vector_elt"); 4658 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4659 4660 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4661 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4662 4663 SDValue Val = Node->getOperand(1); 4664 SDValue Idx = Node->getOperand(2); 4665 EVT IdxVT = Idx.getValueType(); 4666 SDLoc SL(Node); 4667 4668 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 4669 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4670 4671 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4672 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4673 4674 SDValue NewVec = CastVec; 4675 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4676 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4677 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4678 4679 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4680 CastVal, IdxOffset); 4681 4682 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 4683 NewVec, Elt, InEltIdx); 4684 } 4685 4686 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 4687 break; 4688 } 4689 case ISD::SCALAR_TO_VECTOR: { 4690 MVT EltVT = OVT.getVectorElementType(); 4691 MVT NewEltVT = NVT.getVectorElementType(); 4692 4693 // Handle bitcasts to different vector type with the same total bit size. 4694 // 4695 // e.g. v2i64 = scalar_to_vector x:i64 4696 // => 4697 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 4698 // 4699 4700 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4701 SDValue Val = Node->getOperand(0); 4702 SDLoc SL(Node); 4703 4704 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4705 SDValue Undef = DAG.getUNDEF(MidVT); 4706 4707 SmallVector<SDValue, 8> NewElts; 4708 NewElts.push_back(CastVal); 4709 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 4710 NewElts.push_back(Undef); 4711 4712 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 4713 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4714 Results.push_back(CvtVec); 4715 break; 4716 } 4717 case ISD::ATOMIC_SWAP: { 4718 AtomicSDNode *AM = cast<AtomicSDNode>(Node); 4719 SDLoc SL(Node); 4720 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal()); 4721 assert(NVT.getSizeInBits() == OVT.getSizeInBits() && 4722 "unexpected promotion type"); 4723 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && 4724 "unexpected atomic_swap with illegal type"); 4725 4726 SDValue NewAtomic 4727 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT, 4728 DAG.getVTList(NVT, MVT::Other), 4729 { AM->getChain(), AM->getBasePtr(), CastVal }, 4730 AM->getMemOperand()); 4731 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); 4732 Results.push_back(NewAtomic.getValue(1)); 4733 break; 4734 } 4735 } 4736 4737 // Replace the original node with the legalized result. 4738 if (!Results.empty()) { 4739 LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); 4740 ReplaceNode(Node, Results.data()); 4741 } else 4742 LLVM_DEBUG(dbgs() << "Could not promote node\n"); 4743 } 4744 4745 /// This is the entry point for the file. 4746 void SelectionDAG::Legalize() { 4747 AssignTopologicalOrder(); 4748 4749 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4750 // Use a delete listener to remove nodes which were deleted during 4751 // legalization from LegalizeNodes. This is needed to handle the situation 4752 // where a new node is allocated by the object pool to the same address of a 4753 // previously deleted node. 4754 DAGNodeDeletedListener DeleteListener( 4755 *this, 4756 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 4757 4758 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 4759 4760 // Visit all the nodes. We start in topological order, so that we see 4761 // nodes with their original operands intact. Legalization can produce 4762 // new nodes which may themselves need to be legalized. Iterate until all 4763 // nodes have been legalized. 4764 while (true) { 4765 bool AnyLegalized = false; 4766 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 4767 --NI; 4768 4769 SDNode *N = &*NI; 4770 if (N->use_empty() && N != getRoot().getNode()) { 4771 ++NI; 4772 DeleteNode(N); 4773 continue; 4774 } 4775 4776 if (LegalizedNodes.insert(N).second) { 4777 AnyLegalized = true; 4778 Legalizer.LegalizeOp(N); 4779 4780 if (N->use_empty() && N != getRoot().getNode()) { 4781 ++NI; 4782 DeleteNode(N); 4783 } 4784 } 4785 } 4786 if (!AnyLegalized) 4787 break; 4788 4789 } 4790 4791 // Remove dead nodes now. 4792 RemoveDeadNodes(); 4793 } 4794 4795 bool SelectionDAG::LegalizeOp(SDNode *N, 4796 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 4797 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4798 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 4799 4800 // Directly insert the node in question, and legalize it. This will recurse 4801 // as needed through operands. 4802 LegalizedNodes.insert(N); 4803 Legalizer.LegalizeOp(N); 4804 4805 return LegalizedNodes.count(N); 4806 } 4807