1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::Legalize method.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/CodeGen/ISDOpcodes.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/RuntimeLibcalls.h"
26 #include "llvm/CodeGen/SelectionDAG.h"
27 #include "llvm/CodeGen/SelectionDAGNodes.h"
28 #include "llvm/CodeGen/TargetFrameLowering.h"
29 #include "llvm/CodeGen/TargetLowering.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/CodeGen/ValueTypes.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstdint>
51 #include <tuple>
52 #include <utility>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "legalizedag"
57 
58 namespace {
59 
60 /// Keeps track of state when getting the sign of a floating-point value as an
61 /// integer.
62 struct FloatSignAsInt {
63   EVT FloatVT;
64   SDValue Chain;
65   SDValue FloatPtr;
66   SDValue IntPtr;
67   MachinePointerInfo IntPointerInfo;
68   MachinePointerInfo FloatPointerInfo;
69   SDValue IntValue;
70   APInt SignMask;
71   uint8_t SignBit;
72 };
73 
74 //===----------------------------------------------------------------------===//
75 /// This takes an arbitrary SelectionDAG as input and
76 /// hacks on it until the target machine can handle it.  This involves
77 /// eliminating value sizes the machine cannot handle (promoting small sizes to
78 /// large sizes or splitting up large values into small values) as well as
79 /// eliminating operations the machine cannot handle.
80 ///
81 /// This code also does a small amount of optimization and recognition of idioms
82 /// as part of its processing.  For example, if a target does not support a
83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
84 /// will attempt merge setcc and brc instructions into brcc's.
85 class SelectionDAGLegalize {
86   const TargetMachine &TM;
87   const TargetLowering &TLI;
88   SelectionDAG &DAG;
89 
90   /// The set of nodes which have already been legalized. We hold a
91   /// reference to it in order to update as necessary on node deletion.
92   SmallPtrSetImpl<SDNode *> &LegalizedNodes;
93 
94   /// A set of all the nodes updated during legalization.
95   SmallSetVector<SDNode *, 16> *UpdatedNodes;
96 
97   EVT getSetCCResultType(EVT VT) const {
98     return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
99   }
100 
101   // Libcall insertion helpers.
102 
103 public:
104   SelectionDAGLegalize(SelectionDAG &DAG,
105                        SmallPtrSetImpl<SDNode *> &LegalizedNodes,
106                        SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr)
107       : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG),
108         LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {}
109 
110   /// Legalizes the given operation.
111   void LegalizeOp(SDNode *Node);
112 
113 private:
114   SDValue OptimizeFloatStore(StoreSDNode *ST);
115 
116   void LegalizeLoadOps(SDNode *Node);
117   void LegalizeStoreOps(SDNode *Node);
118 
119   /// Some targets cannot handle a variable
120   /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
121   /// is necessary to spill the vector being inserted into to memory, perform
122   /// the insert there, and then read the result back.
123   SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
124                                          const SDLoc &dl);
125   SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx,
126                                   const SDLoc &dl);
127 
128   /// Return a vector shuffle operation which
129   /// performs the same shuffe in terms of order or result bytes, but on a type
130   /// whose vector element type is narrower than the original shuffle type.
131   /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
132   SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl,
133                                      SDValue N1, SDValue N2,
134                                      ArrayRef<int> Mask) const;
135 
136   bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
137                              bool &NeedInvert, const SDLoc &dl, SDValue &Chain,
138                              bool IsSignaling = false);
139 
140   SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
141 
142   void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
143                        RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
144                        RTLIB::Libcall Call_F128,
145                        RTLIB::Libcall Call_PPCF128,
146                        SmallVectorImpl<SDValue> &Results);
147   SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
148                            RTLIB::Libcall Call_I8,
149                            RTLIB::Libcall Call_I16,
150                            RTLIB::Libcall Call_I32,
151                            RTLIB::Libcall Call_I64,
152                            RTLIB::Libcall Call_I128);
153   void ExpandArgFPLibCall(SDNode *Node,
154                           RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64,
155                           RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128,
156                           RTLIB::Libcall Call_PPCF128,
157                           SmallVectorImpl<SDValue> &Results);
158   void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
159   void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
160 
161   SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
162                            const SDLoc &dl);
163   SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
164                            const SDLoc &dl, SDValue ChainIn);
165   SDValue ExpandBUILD_VECTOR(SDNode *Node);
166   SDValue ExpandSPLAT_VECTOR(SDNode *Node);
167   SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
168   void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
169                                 SmallVectorImpl<SDValue> &Results);
170   void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL,
171                          SDValue Value) const;
172   SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL,
173                           SDValue NewIntValue) const;
174   SDValue ExpandFCOPYSIGN(SDNode *Node) const;
175   SDValue ExpandFABS(SDNode *Node) const;
176   SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain);
177   void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl,
178                              SmallVectorImpl<SDValue> &Results);
179   void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl,
180                              SmallVectorImpl<SDValue> &Results);
181 
182   SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl);
183   SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl);
184 
185   SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
186   SDValue ExpandInsertToVectorThroughStack(SDValue Op);
187   SDValue ExpandVectorBuildThroughStack(SDNode* Node);
188 
189   SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
190   SDValue ExpandConstant(ConstantSDNode *CP);
191 
192   // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall
193   bool ExpandNode(SDNode *Node);
194   void ConvertNodeToLibcall(SDNode *Node);
195   void PromoteNode(SDNode *Node);
196 
197 public:
198   // Node replacement helpers
199 
200   void ReplacedNode(SDNode *N) {
201     LegalizedNodes.erase(N);
202     if (UpdatedNodes)
203       UpdatedNodes->insert(N);
204   }
205 
206   void ReplaceNode(SDNode *Old, SDNode *New) {
207     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
208                dbgs() << "     with:      "; New->dump(&DAG));
209 
210     assert(Old->getNumValues() == New->getNumValues() &&
211            "Replacing one node with another that produces a different number "
212            "of values!");
213     DAG.ReplaceAllUsesWith(Old, New);
214     if (UpdatedNodes)
215       UpdatedNodes->insert(New);
216     ReplacedNode(Old);
217   }
218 
219   void ReplaceNode(SDValue Old, SDValue New) {
220     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
221                dbgs() << "     with:      "; New->dump(&DAG));
222 
223     DAG.ReplaceAllUsesWith(Old, New);
224     if (UpdatedNodes)
225       UpdatedNodes->insert(New.getNode());
226     ReplacedNode(Old.getNode());
227   }
228 
229   void ReplaceNode(SDNode *Old, const SDValue *New) {
230     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG));
231 
232     DAG.ReplaceAllUsesWith(Old, New);
233     for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
234       LLVM_DEBUG(dbgs() << (i == 0 ? "     with:      " : "      and:      ");
235                  New[i]->dump(&DAG));
236       if (UpdatedNodes)
237         UpdatedNodes->insert(New[i].getNode());
238     }
239     ReplacedNode(Old);
240   }
241 
242   void ReplaceNodeWithValue(SDValue Old, SDValue New) {
243     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
244                dbgs() << "     with:      "; New->dump(&DAG));
245 
246     DAG.ReplaceAllUsesOfValueWith(Old, New);
247     if (UpdatedNodes)
248       UpdatedNodes->insert(New.getNode());
249     ReplacedNode(Old.getNode());
250   }
251 };
252 
253 } // end anonymous namespace
254 
255 /// Return a vector shuffle operation which
256 /// performs the same shuffle in terms of order or result bytes, but on a type
257 /// whose vector element type is narrower than the original shuffle type.
258 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
259 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType(
260     EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
261     ArrayRef<int> Mask) const {
262   unsigned NumMaskElts = VT.getVectorNumElements();
263   unsigned NumDestElts = NVT.getVectorNumElements();
264   unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
265 
266   assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
267 
268   if (NumEltsGrowth == 1)
269     return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask);
270 
271   SmallVector<int, 8> NewMask;
272   for (unsigned i = 0; i != NumMaskElts; ++i) {
273     int Idx = Mask[i];
274     for (unsigned j = 0; j != NumEltsGrowth; ++j) {
275       if (Idx < 0)
276         NewMask.push_back(-1);
277       else
278         NewMask.push_back(Idx * NumEltsGrowth + j);
279     }
280   }
281   assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
282   assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
283   return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask);
284 }
285 
286 /// Expands the ConstantFP node to an integer constant or
287 /// a load from the constant pool.
288 SDValue
289 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
290   bool Extend = false;
291   SDLoc dl(CFP);
292 
293   // If a FP immediate is precise when represented as a float and if the
294   // target can do an extending load from float to double, we put it into
295   // the constant pool as a float, even if it's is statically typed as a
296   // double.  This shrinks FP constants and canonicalizes them for targets where
297   // an FP extending load is the same cost as a normal load (such as on the x87
298   // fp stack or PPC FP unit).
299   EVT VT = CFP->getValueType(0);
300   ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
301   if (!UseCP) {
302     assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
303     return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl,
304                            (VT == MVT::f64) ? MVT::i64 : MVT::i32);
305   }
306 
307   APFloat APF = CFP->getValueAPF();
308   EVT OrigVT = VT;
309   EVT SVT = VT;
310 
311   // We don't want to shrink SNaNs. Converting the SNaN back to its real type
312   // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ).
313   if (!APF.isSignaling()) {
314     while (SVT != MVT::f32 && SVT != MVT::f16) {
315       SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
316       if (ConstantFPSDNode::isValueValidForType(SVT, APF) &&
317           // Only do this if the target has a native EXTLOAD instruction from
318           // smaller type.
319           TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) &&
320           TLI.ShouldShrinkFPConstant(OrigVT)) {
321         Type *SType = SVT.getTypeForEVT(*DAG.getContext());
322         LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
323         VT = SVT;
324         Extend = true;
325       }
326     }
327   }
328 
329   SDValue CPIdx =
330       DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout()));
331   Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
332   if (Extend) {
333     SDValue Result = DAG.getExtLoad(
334         ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx,
335         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT,
336         Alignment);
337     return Result;
338   }
339   SDValue Result = DAG.getLoad(
340       OrigVT, dl, DAG.getEntryNode(), CPIdx,
341       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
342   return Result;
343 }
344 
345 /// Expands the Constant node to a load from the constant pool.
346 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) {
347   SDLoc dl(CP);
348   EVT VT = CP->getValueType(0);
349   SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(),
350                                       TLI.getPointerTy(DAG.getDataLayout()));
351   Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
352   SDValue Result = DAG.getLoad(
353       VT, dl, DAG.getEntryNode(), CPIdx,
354       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
355   return Result;
356 }
357 
358 /// Some target cannot handle a variable insertion index for the
359 /// INSERT_VECTOR_ELT instruction.  In this case, it
360 /// is necessary to spill the vector being inserted into to memory, perform
361 /// the insert there, and then read the result back.
362 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec,
363                                                              SDValue Val,
364                                                              SDValue Idx,
365                                                              const SDLoc &dl) {
366   SDValue Tmp1 = Vec;
367   SDValue Tmp2 = Val;
368   SDValue Tmp3 = Idx;
369 
370   // If the target doesn't support this, we have to spill the input vector
371   // to a temporary stack slot, update the element, then reload it.  This is
372   // badness.  We could also load the value into a vector register (either
373   // with a "move to register" or "extload into register" instruction, then
374   // permute it into place, if the idx is a constant and if the idx is
375   // supported by the target.
376   EVT VT    = Tmp1.getValueType();
377   EVT EltVT = VT.getVectorElementType();
378   SDValue StackPtr = DAG.CreateStackTemporary(VT);
379 
380   int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
381 
382   // Store the vector.
383   SDValue Ch = DAG.getStore(
384       DAG.getEntryNode(), dl, Tmp1, StackPtr,
385       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
386 
387   SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3);
388 
389   // Store the scalar value.
390   Ch = DAG.getTruncStore(
391       Ch, dl, Tmp2, StackPtr2,
392       MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT);
393   // Load the updated vector.
394   return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack(
395                                                DAG.getMachineFunction(), SPFI));
396 }
397 
398 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
399                                                       SDValue Idx,
400                                                       const SDLoc &dl) {
401   if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
402     // SCALAR_TO_VECTOR requires that the type of the value being inserted
403     // match the element type of the vector being created, except for
404     // integers in which case the inserted value can be over width.
405     EVT EltVT = Vec.getValueType().getVectorElementType();
406     if (Val.getValueType() == EltVT ||
407         (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
408       SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
409                                   Vec.getValueType(), Val);
410 
411       unsigned NumElts = Vec.getValueType().getVectorNumElements();
412       // We generate a shuffle of InVec and ScVec, so the shuffle mask
413       // should be 0,1,2,3,4,5... with the appropriate element replaced with
414       // elt 0 of the RHS.
415       SmallVector<int, 8> ShufOps;
416       for (unsigned i = 0; i != NumElts; ++i)
417         ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
418 
419       return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps);
420     }
421   }
422   return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
423 }
424 
425 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
426   if (!ISD::isNormalStore(ST))
427     return SDValue();
428 
429   LLVM_DEBUG(dbgs() << "Optimizing float store operations\n");
430   // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
431   // FIXME: We shouldn't do this for TargetConstantFP's.
432   // FIXME: move this to the DAG Combiner!  Note that we can't regress due
433   // to phase ordering between legalized code and the dag combiner.  This
434   // probably means that we need to integrate dag combiner and legalizer
435   // together.
436   // We generally can't do this one for long doubles.
437   SDValue Chain = ST->getChain();
438   SDValue Ptr = ST->getBasePtr();
439   MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
440   AAMDNodes AAInfo = ST->getAAInfo();
441   SDLoc dl(ST);
442   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
443     if (CFP->getValueType(0) == MVT::f32 &&
444         TLI.isTypeLegal(MVT::i32)) {
445       SDValue Con = DAG.getConstant(CFP->getValueAPF().
446                                       bitcastToAPInt().zextOrTrunc(32),
447                                     SDLoc(CFP), MVT::i32);
448       return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
449                           ST->getOriginalAlign(), MMOFlags, AAInfo);
450     }
451 
452     if (CFP->getValueType(0) == MVT::f64) {
453       // If this target supports 64-bit registers, do a single 64-bit store.
454       if (TLI.isTypeLegal(MVT::i64)) {
455         SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
456                                       zextOrTrunc(64), SDLoc(CFP), MVT::i64);
457         return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
458                             ST->getOriginalAlign(), MMOFlags, AAInfo);
459       }
460 
461       if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
462         // Otherwise, if the target supports 32-bit registers, use 2 32-bit
463         // stores.  If the target supports neither 32- nor 64-bits, this
464         // xform is certainly not worth it.
465         const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt();
466         SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32);
467         SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32);
468         if (DAG.getDataLayout().isBigEndian())
469           std::swap(Lo, Hi);
470 
471         Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(),
472                           ST->getOriginalAlign(), MMOFlags, AAInfo);
473         Ptr = DAG.getMemBasePlusOffset(Ptr, 4, dl);
474         Hi = DAG.getStore(Chain, dl, Hi, Ptr,
475                           ST->getPointerInfo().getWithOffset(4),
476                           ST->getOriginalAlign(), MMOFlags, AAInfo);
477 
478         return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
479       }
480     }
481   }
482   return SDValue(nullptr, 0);
483 }
484 
485 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
486   StoreSDNode *ST = cast<StoreSDNode>(Node);
487   SDValue Chain = ST->getChain();
488   SDValue Ptr = ST->getBasePtr();
489   SDLoc dl(Node);
490 
491   MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
492   AAMDNodes AAInfo = ST->getAAInfo();
493 
494   if (!ST->isTruncatingStore()) {
495     LLVM_DEBUG(dbgs() << "Legalizing store operation\n");
496     if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
497       ReplaceNode(ST, OptStore);
498       return;
499     }
500 
501     SDValue Value = ST->getValue();
502     MVT VT = Value.getSimpleValueType();
503     switch (TLI.getOperationAction(ISD::STORE, VT)) {
504     default: llvm_unreachable("This action is not supported yet!");
505     case TargetLowering::Legal: {
506       // If this is an unaligned store and the target doesn't support it,
507       // expand it.
508       EVT MemVT = ST->getMemoryVT();
509       const DataLayout &DL = DAG.getDataLayout();
510       if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
511                                               *ST->getMemOperand())) {
512         LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n");
513         SDValue Result = TLI.expandUnalignedStore(ST, DAG);
514         ReplaceNode(SDValue(ST, 0), Result);
515       } else
516         LLVM_DEBUG(dbgs() << "Legal store\n");
517       break;
518     }
519     case TargetLowering::Custom: {
520       LLVM_DEBUG(dbgs() << "Trying custom lowering\n");
521       SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
522       if (Res && Res != SDValue(Node, 0))
523         ReplaceNode(SDValue(Node, 0), Res);
524       return;
525     }
526     case TargetLowering::Promote: {
527       MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
528       assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
529              "Can only promote stores to same size type");
530       Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
531       SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
532                                     ST->getOriginalAlign(), MMOFlags, AAInfo);
533       ReplaceNode(SDValue(Node, 0), Result);
534       break;
535     }
536     }
537     return;
538   }
539 
540   LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n");
541   SDValue Value = ST->getValue();
542   EVT StVT = ST->getMemoryVT();
543   unsigned StWidth = StVT.getSizeInBits();
544   auto &DL = DAG.getDataLayout();
545 
546   if (StWidth != StVT.getStoreSizeInBits()) {
547     // Promote to a byte-sized store with upper bits zero if not
548     // storing an integral number of bytes.  For example, promote
549     // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
550     EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
551                                 StVT.getStoreSizeInBits());
552     Value = DAG.getZeroExtendInReg(Value, dl, StVT);
553     SDValue Result =
554         DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT,
555                           ST->getOriginalAlign(), MMOFlags, AAInfo);
556     ReplaceNode(SDValue(Node, 0), Result);
557   } else if (StWidth & (StWidth - 1)) {
558     // If not storing a power-of-2 number of bits, expand as two stores.
559     assert(!StVT.isVector() && "Unsupported truncstore!");
560     unsigned LogStWidth = Log2_32(StWidth);
561     assert(LogStWidth < 32);
562     unsigned RoundWidth = 1 << LogStWidth;
563     assert(RoundWidth < StWidth);
564     unsigned ExtraWidth = StWidth - RoundWidth;
565     assert(ExtraWidth < RoundWidth);
566     assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
567            "Store size not an integral number of bytes!");
568     EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
569     EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
570     SDValue Lo, Hi;
571     unsigned IncrementSize;
572 
573     if (DL.isLittleEndian()) {
574       // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
575       // Store the bottom RoundWidth bits.
576       Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
577                              RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
578 
579       // Store the remaining ExtraWidth bits.
580       IncrementSize = RoundWidth / 8;
581       Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl);
582       Hi = DAG.getNode(
583           ISD::SRL, dl, Value.getValueType(), Value,
584           DAG.getConstant(RoundWidth, dl,
585                           TLI.getShiftAmountTy(Value.getValueType(), DL)));
586       Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
587                              ST->getPointerInfo().getWithOffset(IncrementSize),
588                              ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
589     } else {
590       // Big endian - avoid unaligned stores.
591       // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
592       // Store the top RoundWidth bits.
593       Hi = DAG.getNode(
594           ISD::SRL, dl, Value.getValueType(), Value,
595           DAG.getConstant(ExtraWidth, dl,
596                           TLI.getShiftAmountTy(Value.getValueType(), DL)));
597       Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT,
598                              ST->getOriginalAlign(), MMOFlags, AAInfo);
599 
600       // Store the remaining ExtraWidth bits.
601       IncrementSize = RoundWidth / 8;
602       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
603                         DAG.getConstant(IncrementSize, dl,
604                                         Ptr.getValueType()));
605       Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
606                              ST->getPointerInfo().getWithOffset(IncrementSize),
607                              ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
608     }
609 
610     // The order of the stores doesn't matter.
611     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
612     ReplaceNode(SDValue(Node, 0), Result);
613   } else {
614     switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
615     default: llvm_unreachable("This action is not supported yet!");
616     case TargetLowering::Legal: {
617       EVT MemVT = ST->getMemoryVT();
618       // If this is an unaligned store and the target doesn't support it,
619       // expand it.
620       if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
621                                               *ST->getMemOperand())) {
622         SDValue Result = TLI.expandUnalignedStore(ST, DAG);
623         ReplaceNode(SDValue(ST, 0), Result);
624       }
625       break;
626     }
627     case TargetLowering::Custom: {
628       SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
629       if (Res && Res != SDValue(Node, 0))
630         ReplaceNode(SDValue(Node, 0), Res);
631       return;
632     }
633     case TargetLowering::Expand:
634       assert(!StVT.isVector() &&
635              "Vector Stores are handled in LegalizeVectorOps");
636 
637       SDValue Result;
638 
639       // TRUNCSTORE:i16 i32 -> STORE i16
640       if (TLI.isTypeLegal(StVT)) {
641         Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
642         Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
643                               ST->getOriginalAlign(), MMOFlags, AAInfo);
644       } else {
645         // The in-memory type isn't legal. Truncate to the type it would promote
646         // to, and then do a truncstore.
647         Value = DAG.getNode(ISD::TRUNCATE, dl,
648                             TLI.getTypeToTransformTo(*DAG.getContext(), StVT),
649                             Value);
650         Result =
651             DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT,
652                               ST->getOriginalAlign(), MMOFlags, AAInfo);
653       }
654 
655       ReplaceNode(SDValue(Node, 0), Result);
656       break;
657     }
658   }
659 }
660 
661 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
662   LoadSDNode *LD = cast<LoadSDNode>(Node);
663   SDValue Chain = LD->getChain();  // The chain.
664   SDValue Ptr = LD->getBasePtr();  // The base pointer.
665   SDValue Value;                   // The value returned by the load op.
666   SDLoc dl(Node);
667 
668   ISD::LoadExtType ExtType = LD->getExtensionType();
669   if (ExtType == ISD::NON_EXTLOAD) {
670     LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n");
671     MVT VT = Node->getSimpleValueType(0);
672     SDValue RVal = SDValue(Node, 0);
673     SDValue RChain = SDValue(Node, 1);
674 
675     switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
676     default: llvm_unreachable("This action is not supported yet!");
677     case TargetLowering::Legal: {
678       EVT MemVT = LD->getMemoryVT();
679       const DataLayout &DL = DAG.getDataLayout();
680       // If this is an unaligned load and the target doesn't support it,
681       // expand it.
682       if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
683                                               *LD->getMemOperand())) {
684         std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG);
685       }
686       break;
687     }
688     case TargetLowering::Custom:
689       if (SDValue Res = TLI.LowerOperation(RVal, DAG)) {
690         RVal = Res;
691         RChain = Res.getValue(1);
692       }
693       break;
694 
695     case TargetLowering::Promote: {
696       MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
697       assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
698              "Can only promote loads to same size type");
699 
700       SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand());
701       RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
702       RChain = Res.getValue(1);
703       break;
704     }
705     }
706     if (RChain.getNode() != Node) {
707       assert(RVal.getNode() != Node && "Load must be completely replaced");
708       DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
709       DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
710       if (UpdatedNodes) {
711         UpdatedNodes->insert(RVal.getNode());
712         UpdatedNodes->insert(RChain.getNode());
713       }
714       ReplacedNode(Node);
715     }
716     return;
717   }
718 
719   LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n");
720   EVT SrcVT = LD->getMemoryVT();
721   unsigned SrcWidth = SrcVT.getSizeInBits();
722   MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
723   AAMDNodes AAInfo = LD->getAAInfo();
724 
725   if (SrcWidth != SrcVT.getStoreSizeInBits() &&
726       // Some targets pretend to have an i1 loading operation, and actually
727       // load an i8.  This trick is correct for ZEXTLOAD because the top 7
728       // bits are guaranteed to be zero; it helps the optimizers understand
729       // that these bits are zero.  It is also useful for EXTLOAD, since it
730       // tells the optimizers that those bits are undefined.  It would be
731       // nice to have an effective generic way of getting these benefits...
732       // Until such a way is found, don't insist on promoting i1 here.
733       (SrcVT != MVT::i1 ||
734        TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) ==
735          TargetLowering::Promote)) {
736     // Promote to a byte-sized load if not loading an integral number of
737     // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
738     unsigned NewWidth = SrcVT.getStoreSizeInBits();
739     EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
740     SDValue Ch;
741 
742     // The extra bits are guaranteed to be zero, since we stored them that
743     // way.  A zext load from NVT thus automatically gives zext from SrcVT.
744 
745     ISD::LoadExtType NewExtType =
746       ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
747 
748     SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
749                                     Chain, Ptr, LD->getPointerInfo(), NVT,
750                                     LD->getOriginalAlign(), MMOFlags, AAInfo);
751 
752     Ch = Result.getValue(1); // The chain.
753 
754     if (ExtType == ISD::SEXTLOAD)
755       // Having the top bits zero doesn't help when sign extending.
756       Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
757                            Result.getValueType(),
758                            Result, DAG.getValueType(SrcVT));
759     else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
760       // All the top bits are guaranteed to be zero - inform the optimizers.
761       Result = DAG.getNode(ISD::AssertZext, dl,
762                            Result.getValueType(), Result,
763                            DAG.getValueType(SrcVT));
764 
765     Value = Result;
766     Chain = Ch;
767   } else if (SrcWidth & (SrcWidth - 1)) {
768     // If not loading a power-of-2 number of bits, expand as two loads.
769     assert(!SrcVT.isVector() && "Unsupported extload!");
770     unsigned LogSrcWidth = Log2_32(SrcWidth);
771     assert(LogSrcWidth < 32);
772     unsigned RoundWidth = 1 << LogSrcWidth;
773     assert(RoundWidth < SrcWidth);
774     unsigned ExtraWidth = SrcWidth - RoundWidth;
775     assert(ExtraWidth < RoundWidth);
776     assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
777            "Load size not an integral number of bytes!");
778     EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
779     EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
780     SDValue Lo, Hi, Ch;
781     unsigned IncrementSize;
782     auto &DL = DAG.getDataLayout();
783 
784     if (DL.isLittleEndian()) {
785       // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
786       // Load the bottom RoundWidth bits.
787       Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
788                           LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(),
789                           MMOFlags, AAInfo);
790 
791       // Load the remaining ExtraWidth bits.
792       IncrementSize = RoundWidth / 8;
793       Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl);
794       Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
795                           LD->getPointerInfo().getWithOffset(IncrementSize),
796                           ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo);
797 
798       // Build a factor node to remember that this load is independent of
799       // the other one.
800       Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
801                        Hi.getValue(1));
802 
803       // Move the top bits to the right place.
804       Hi = DAG.getNode(
805           ISD::SHL, dl, Hi.getValueType(), Hi,
806           DAG.getConstant(RoundWidth, dl,
807                           TLI.getShiftAmountTy(Hi.getValueType(), DL)));
808 
809       // Join the hi and lo parts.
810       Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
811     } else {
812       // Big endian - avoid unaligned loads.
813       // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
814       // Load the top RoundWidth bits.
815       Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
816                           LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(),
817                           MMOFlags, AAInfo);
818 
819       // Load the remaining ExtraWidth bits.
820       IncrementSize = RoundWidth / 8;
821       Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl);
822       Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
823                           LD->getPointerInfo().getWithOffset(IncrementSize),
824                           ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo);
825 
826       // Build a factor node to remember that this load is independent of
827       // the other one.
828       Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
829                        Hi.getValue(1));
830 
831       // Move the top bits to the right place.
832       Hi = DAG.getNode(
833           ISD::SHL, dl, Hi.getValueType(), Hi,
834           DAG.getConstant(ExtraWidth, dl,
835                           TLI.getShiftAmountTy(Hi.getValueType(), DL)));
836 
837       // Join the hi and lo parts.
838       Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
839     }
840 
841     Chain = Ch;
842   } else {
843     bool isCustom = false;
844     switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0),
845                                  SrcVT.getSimpleVT())) {
846     default: llvm_unreachable("This action is not supported yet!");
847     case TargetLowering::Custom:
848       isCustom = true;
849       LLVM_FALLTHROUGH;
850     case TargetLowering::Legal:
851       Value = SDValue(Node, 0);
852       Chain = SDValue(Node, 1);
853 
854       if (isCustom) {
855         if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
856           Value = Res;
857           Chain = Res.getValue(1);
858         }
859       } else {
860         // If this is an unaligned load and the target doesn't support it,
861         // expand it.
862         EVT MemVT = LD->getMemoryVT();
863         const DataLayout &DL = DAG.getDataLayout();
864         if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT,
865                                     *LD->getMemOperand())) {
866           std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG);
867         }
868       }
869       break;
870 
871     case TargetLowering::Expand: {
872       EVT DestVT = Node->getValueType(0);
873       if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) {
874         // If the source type is not legal, see if there is a legal extload to
875         // an intermediate type that we can then extend further.
876         EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT());
877         if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT?
878             TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) {
879           // If we are loading a legal type, this is a non-extload followed by a
880           // full extend.
881           ISD::LoadExtType MidExtType =
882               (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType;
883 
884           SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr,
885                                         SrcVT, LD->getMemOperand());
886           unsigned ExtendOp =
887               ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType);
888           Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
889           Chain = Load.getValue(1);
890           break;
891         }
892 
893         // Handle the special case of fp16 extloads. EXTLOAD doesn't have the
894         // normal undefined upper bits behavior to allow using an in-reg extend
895         // with the illegal FP type, so load as an integer and do the
896         // from-integer conversion.
897         if (SrcVT.getScalarType() == MVT::f16) {
898           EVT ISrcVT = SrcVT.changeTypeToInteger();
899           EVT IDestVT = DestVT.changeTypeToInteger();
900           EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT());
901 
902           SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain,
903                                           Ptr, ISrcVT, LD->getMemOperand());
904           Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result);
905           Chain = Result.getValue(1);
906           break;
907         }
908       }
909 
910       assert(!SrcVT.isVector() &&
911              "Vector Loads are handled in LegalizeVectorOps");
912 
913       // FIXME: This does not work for vectors on most targets.  Sign-
914       // and zero-extend operations are currently folded into extending
915       // loads, whether they are legal or not, and then we end up here
916       // without any support for legalizing them.
917       assert(ExtType != ISD::EXTLOAD &&
918              "EXTLOAD should always be supported!");
919       // Turn the unsupported load into an EXTLOAD followed by an
920       // explicit zero/sign extend inreg.
921       SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl,
922                                       Node->getValueType(0),
923                                       Chain, Ptr, SrcVT,
924                                       LD->getMemOperand());
925       SDValue ValRes;
926       if (ExtType == ISD::SEXTLOAD)
927         ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
928                              Result.getValueType(),
929                              Result, DAG.getValueType(SrcVT));
930       else
931         ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
932       Value = ValRes;
933       Chain = Result.getValue(1);
934       break;
935     }
936     }
937   }
938 
939   // Since loads produce two values, make sure to remember that we legalized
940   // both of them.
941   if (Chain.getNode() != Node) {
942     assert(Value.getNode() != Node && "Load must be completely replaced");
943     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
944     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
945     if (UpdatedNodes) {
946       UpdatedNodes->insert(Value.getNode());
947       UpdatedNodes->insert(Chain.getNode());
948     }
949     ReplacedNode(Node);
950   }
951 }
952 
953 /// Return a legal replacement for the given operation, with all legal operands.
954 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
955   LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG));
956 
957   // Allow illegal target nodes and illegal registers.
958   if (Node->getOpcode() == ISD::TargetConstant ||
959       Node->getOpcode() == ISD::Register)
960     return;
961 
962 #ifndef NDEBUG
963   for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
964     assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
965              TargetLowering::TypeLegal &&
966            "Unexpected illegal type!");
967 
968   for (const SDValue &Op : Node->op_values())
969     assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) ==
970               TargetLowering::TypeLegal ||
971             Op.getOpcode() == ISD::TargetConstant ||
972             Op.getOpcode() == ISD::Register) &&
973             "Unexpected illegal type!");
974 #endif
975 
976   // Figure out the correct action; the way to query this varies by opcode
977   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
978   bool SimpleFinishLegalizing = true;
979   switch (Node->getOpcode()) {
980   case ISD::INTRINSIC_W_CHAIN:
981   case ISD::INTRINSIC_WO_CHAIN:
982   case ISD::INTRINSIC_VOID:
983   case ISD::STACKSAVE:
984     Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
985     break;
986   case ISD::GET_DYNAMIC_AREA_OFFSET:
987     Action = TLI.getOperationAction(Node->getOpcode(),
988                                     Node->getValueType(0));
989     break;
990   case ISD::VAARG:
991     Action = TLI.getOperationAction(Node->getOpcode(),
992                                     Node->getValueType(0));
993     if (Action != TargetLowering::Promote)
994       Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
995     break;
996   case ISD::FP_TO_FP16:
997   case ISD::SINT_TO_FP:
998   case ISD::UINT_TO_FP:
999   case ISD::EXTRACT_VECTOR_ELT:
1000   case ISD::LROUND:
1001   case ISD::LLROUND:
1002   case ISD::LRINT:
1003   case ISD::LLRINT:
1004     Action = TLI.getOperationAction(Node->getOpcode(),
1005                                     Node->getOperand(0).getValueType());
1006     break;
1007   case ISD::STRICT_FP_TO_FP16:
1008   case ISD::STRICT_SINT_TO_FP:
1009   case ISD::STRICT_UINT_TO_FP:
1010   case ISD::STRICT_LRINT:
1011   case ISD::STRICT_LLRINT:
1012   case ISD::STRICT_LROUND:
1013   case ISD::STRICT_LLROUND:
1014     // These pseudo-ops are the same as the other STRICT_ ops except
1015     // they are registered with setOperationAction() using the input type
1016     // instead of the output type.
1017     Action = TLI.getOperationAction(Node->getOpcode(),
1018                                     Node->getOperand(1).getValueType());
1019     break;
1020   case ISD::SIGN_EXTEND_INREG: {
1021     EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
1022     Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
1023     break;
1024   }
1025   case ISD::ATOMIC_STORE:
1026     Action = TLI.getOperationAction(Node->getOpcode(),
1027                                     Node->getOperand(2).getValueType());
1028     break;
1029   case ISD::SELECT_CC:
1030   case ISD::STRICT_FSETCC:
1031   case ISD::STRICT_FSETCCS:
1032   case ISD::SETCC:
1033   case ISD::BR_CC: {
1034     unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
1035                          Node->getOpcode() == ISD::STRICT_FSETCC ? 3 :
1036                          Node->getOpcode() == ISD::STRICT_FSETCCS ? 3 :
1037                          Node->getOpcode() == ISD::SETCC ? 2 : 1;
1038     unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 :
1039                               Node->getOpcode() == ISD::STRICT_FSETCC ? 1 :
1040                               Node->getOpcode() == ISD::STRICT_FSETCCS ? 1 : 0;
1041     MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
1042     ISD::CondCode CCCode =
1043         cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
1044     Action = TLI.getCondCodeAction(CCCode, OpVT);
1045     if (Action == TargetLowering::Legal) {
1046       if (Node->getOpcode() == ISD::SELECT_CC)
1047         Action = TLI.getOperationAction(Node->getOpcode(),
1048                                         Node->getValueType(0));
1049       else
1050         Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
1051     }
1052     break;
1053   }
1054   case ISD::LOAD:
1055   case ISD::STORE:
1056     // FIXME: Model these properly.  LOAD and STORE are complicated, and
1057     // STORE expects the unlegalized operand in some cases.
1058     SimpleFinishLegalizing = false;
1059     break;
1060   case ISD::CALLSEQ_START:
1061   case ISD::CALLSEQ_END:
1062     // FIXME: This shouldn't be necessary.  These nodes have special properties
1063     // dealing with the recursive nature of legalization.  Removing this
1064     // special case should be done as part of making LegalizeDAG non-recursive.
1065     SimpleFinishLegalizing = false;
1066     break;
1067   case ISD::EXTRACT_ELEMENT:
1068   case ISD::FLT_ROUNDS_:
1069   case ISD::MERGE_VALUES:
1070   case ISD::EH_RETURN:
1071   case ISD::FRAME_TO_ARGS_OFFSET:
1072   case ISD::EH_DWARF_CFA:
1073   case ISD::EH_SJLJ_SETJMP:
1074   case ISD::EH_SJLJ_LONGJMP:
1075   case ISD::EH_SJLJ_SETUP_DISPATCH:
1076     // These operations lie about being legal: when they claim to be legal,
1077     // they should actually be expanded.
1078     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1079     if (Action == TargetLowering::Legal)
1080       Action = TargetLowering::Expand;
1081     break;
1082   case ISD::INIT_TRAMPOLINE:
1083   case ISD::ADJUST_TRAMPOLINE:
1084   case ISD::FRAMEADDR:
1085   case ISD::RETURNADDR:
1086   case ISD::ADDROFRETURNADDR:
1087   case ISD::SPONENTRY:
1088     // These operations lie about being legal: when they claim to be legal,
1089     // they should actually be custom-lowered.
1090     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1091     if (Action == TargetLowering::Legal)
1092       Action = TargetLowering::Custom;
1093     break;
1094   case ISD::READCYCLECOUNTER:
1095     // READCYCLECOUNTER returns an i64, even if type legalization might have
1096     // expanded that to several smaller types.
1097     Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64);
1098     break;
1099   case ISD::READ_REGISTER:
1100   case ISD::WRITE_REGISTER:
1101     // Named register is legal in the DAG, but blocked by register name
1102     // selection if not implemented by target (to chose the correct register)
1103     // They'll be converted to Copy(To/From)Reg.
1104     Action = TargetLowering::Legal;
1105     break;
1106   case ISD::DEBUGTRAP:
1107     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1108     if (Action == TargetLowering::Expand) {
1109       // replace ISD::DEBUGTRAP with ISD::TRAP
1110       SDValue NewVal;
1111       NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
1112                            Node->getOperand(0));
1113       ReplaceNode(Node, NewVal.getNode());
1114       LegalizeOp(NewVal.getNode());
1115       return;
1116     }
1117     break;
1118   case ISD::SADDSAT:
1119   case ISD::UADDSAT:
1120   case ISD::SSUBSAT:
1121   case ISD::USUBSAT: {
1122     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1123     break;
1124   }
1125   case ISD::SMULFIX:
1126   case ISD::SMULFIXSAT:
1127   case ISD::UMULFIX:
1128   case ISD::UMULFIXSAT:
1129   case ISD::SDIVFIX:
1130   case ISD::SDIVFIXSAT:
1131   case ISD::UDIVFIX:
1132   case ISD::UDIVFIXSAT: {
1133     unsigned Scale = Node->getConstantOperandVal(2);
1134     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
1135                                               Node->getValueType(0), Scale);
1136     break;
1137   }
1138   case ISD::MSCATTER:
1139     Action = TLI.getOperationAction(Node->getOpcode(),
1140                     cast<MaskedScatterSDNode>(Node)->getValue().getValueType());
1141     break;
1142   case ISD::MSTORE:
1143     Action = TLI.getOperationAction(Node->getOpcode(),
1144                     cast<MaskedStoreSDNode>(Node)->getValue().getValueType());
1145     break;
1146   case ISD::VECREDUCE_FADD:
1147   case ISD::VECREDUCE_FMUL:
1148   case ISD::VECREDUCE_ADD:
1149   case ISD::VECREDUCE_MUL:
1150   case ISD::VECREDUCE_AND:
1151   case ISD::VECREDUCE_OR:
1152   case ISD::VECREDUCE_XOR:
1153   case ISD::VECREDUCE_SMAX:
1154   case ISD::VECREDUCE_SMIN:
1155   case ISD::VECREDUCE_UMAX:
1156   case ISD::VECREDUCE_UMIN:
1157   case ISD::VECREDUCE_FMAX:
1158   case ISD::VECREDUCE_FMIN:
1159     Action = TLI.getOperationAction(
1160         Node->getOpcode(), Node->getOperand(0).getValueType());
1161     break;
1162   default:
1163     if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1164       Action = TargetLowering::Legal;
1165     } else {
1166       Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1167     }
1168     break;
1169   }
1170 
1171   if (SimpleFinishLegalizing) {
1172     SDNode *NewNode = Node;
1173     switch (Node->getOpcode()) {
1174     default: break;
1175     case ISD::SHL:
1176     case ISD::SRL:
1177     case ISD::SRA:
1178     case ISD::ROTL:
1179     case ISD::ROTR: {
1180       // Legalizing shifts/rotates requires adjusting the shift amount
1181       // to the appropriate width.
1182       SDValue Op0 = Node->getOperand(0);
1183       SDValue Op1 = Node->getOperand(1);
1184       if (!Op1.getValueType().isVector()) {
1185         SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1);
1186         // The getShiftAmountOperand() may create a new operand node or
1187         // return the existing one. If new operand is created we need
1188         // to update the parent node.
1189         // Do not try to legalize SAO here! It will be automatically legalized
1190         // in the next round.
1191         if (SAO != Op1)
1192           NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO);
1193       }
1194     }
1195     break;
1196     case ISD::FSHL:
1197     case ISD::FSHR:
1198     case ISD::SRL_PARTS:
1199     case ISD::SRA_PARTS:
1200     case ISD::SHL_PARTS: {
1201       // Legalizing shifts/rotates requires adjusting the shift amount
1202       // to the appropriate width.
1203       SDValue Op0 = Node->getOperand(0);
1204       SDValue Op1 = Node->getOperand(1);
1205       SDValue Op2 = Node->getOperand(2);
1206       if (!Op2.getValueType().isVector()) {
1207         SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2);
1208         // The getShiftAmountOperand() may create a new operand node or
1209         // return the existing one. If new operand is created we need
1210         // to update the parent node.
1211         if (SAO != Op2)
1212           NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO);
1213       }
1214       break;
1215     }
1216     }
1217 
1218     if (NewNode != Node) {
1219       ReplaceNode(Node, NewNode);
1220       Node = NewNode;
1221     }
1222     switch (Action) {
1223     case TargetLowering::Legal:
1224       LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
1225       return;
1226     case TargetLowering::Custom:
1227       LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
1228       // FIXME: The handling for custom lowering with multiple results is
1229       // a complete mess.
1230       if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
1231         if (!(Res.getNode() != Node || Res.getResNo() != 0))
1232           return;
1233 
1234         if (Node->getNumValues() == 1) {
1235           LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1236           // We can just directly replace this node with the lowered value.
1237           ReplaceNode(SDValue(Node, 0), Res);
1238           return;
1239         }
1240 
1241         SmallVector<SDValue, 8> ResultVals;
1242         for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1243           ResultVals.push_back(Res.getValue(i));
1244         LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1245         ReplaceNode(Node, ResultVals.data());
1246         return;
1247       }
1248       LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
1249       LLVM_FALLTHROUGH;
1250     case TargetLowering::Expand:
1251       if (ExpandNode(Node))
1252         return;
1253       LLVM_FALLTHROUGH;
1254     case TargetLowering::LibCall:
1255       ConvertNodeToLibcall(Node);
1256       return;
1257     case TargetLowering::Promote:
1258       PromoteNode(Node);
1259       return;
1260     }
1261   }
1262 
1263   switch (Node->getOpcode()) {
1264   default:
1265 #ifndef NDEBUG
1266     dbgs() << "NODE: ";
1267     Node->dump( &DAG);
1268     dbgs() << "\n";
1269 #endif
1270     llvm_unreachable("Do not know how to legalize this operator!");
1271 
1272   case ISD::CALLSEQ_START:
1273   case ISD::CALLSEQ_END:
1274     break;
1275   case ISD::LOAD:
1276     return LegalizeLoadOps(Node);
1277   case ISD::STORE:
1278     return LegalizeStoreOps(Node);
1279   }
1280 }
1281 
1282 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1283   SDValue Vec = Op.getOperand(0);
1284   SDValue Idx = Op.getOperand(1);
1285   SDLoc dl(Op);
1286 
1287   // Before we generate a new store to a temporary stack slot, see if there is
1288   // already one that we can use. There often is because when we scalarize
1289   // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole
1290   // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in
1291   // the vector. If all are expanded here, we don't want one store per vector
1292   // element.
1293 
1294   // Caches for hasPredecessorHelper
1295   SmallPtrSet<const SDNode *, 32> Visited;
1296   SmallVector<const SDNode *, 16> Worklist;
1297   Visited.insert(Op.getNode());
1298   Worklist.push_back(Idx.getNode());
1299   SDValue StackPtr, Ch;
1300   for (SDNode::use_iterator UI = Vec.getNode()->use_begin(),
1301        UE = Vec.getNode()->use_end(); UI != UE; ++UI) {
1302     SDNode *User = *UI;
1303     if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) {
1304       if (ST->isIndexed() || ST->isTruncatingStore() ||
1305           ST->getValue() != Vec)
1306         continue;
1307 
1308       // Make sure that nothing else could have stored into the destination of
1309       // this store.
1310       if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode()))
1311         continue;
1312 
1313       // If the index is dependent on the store we will introduce a cycle when
1314       // creating the load (the load uses the index, and by replacing the chain
1315       // we will make the index dependent on the load). Also, the store might be
1316       // dependent on the extractelement and introduce a cycle when creating
1317       // the load.
1318       if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) ||
1319           ST->hasPredecessor(Op.getNode()))
1320         continue;
1321 
1322       StackPtr = ST->getBasePtr();
1323       Ch = SDValue(ST, 0);
1324       break;
1325     }
1326   }
1327 
1328   EVT VecVT = Vec.getValueType();
1329 
1330   if (!Ch.getNode()) {
1331     // Store the value to a temporary stack slot, then LOAD the returned part.
1332     StackPtr = DAG.CreateStackTemporary(VecVT);
1333     Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1334                       MachinePointerInfo());
1335   }
1336 
1337   StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1338 
1339   SDValue NewLoad;
1340 
1341   if (Op.getValueType().isVector())
1342     NewLoad =
1343         DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo());
1344   else
1345     NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1346                              MachinePointerInfo(),
1347                              VecVT.getVectorElementType());
1348 
1349   // Replace the chain going out of the store, by the one out of the load.
1350   DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1));
1351 
1352   // We introduced a cycle though, so update the loads operands, making sure
1353   // to use the original store's chain as an incoming chain.
1354   SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(),
1355                                           NewLoad->op_end());
1356   NewLoadOperands[0] = Ch;
1357   NewLoad =
1358       SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0);
1359   return NewLoad;
1360 }
1361 
1362 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1363   assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1364 
1365   SDValue Vec  = Op.getOperand(0);
1366   SDValue Part = Op.getOperand(1);
1367   SDValue Idx  = Op.getOperand(2);
1368   SDLoc dl(Op);
1369 
1370   // Store the value to a temporary stack slot, then LOAD the returned part.
1371   EVT VecVT = Vec.getValueType();
1372   SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
1373   int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1374   MachinePointerInfo PtrInfo =
1375       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1376 
1377   // First store the whole vector.
1378   SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo);
1379 
1380   // Then store the inserted part.
1381   SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1382 
1383   // Store the subvector.
1384   Ch = DAG.getStore(
1385       Ch, dl, Part, SubStackPtr,
1386       MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1387 
1388   // Finally, load the updated vector.
1389   return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo);
1390 }
1391 
1392 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1393   // We can't handle this case efficiently.  Allocate a sufficiently
1394   // aligned object on the stack, store each element into it, then load
1395   // the result as a vector.
1396   // Create the stack frame object.
1397   EVT VT = Node->getValueType(0);
1398   EVT EltVT = VT.getVectorElementType();
1399   SDLoc dl(Node);
1400   SDValue FIPtr = DAG.CreateStackTemporary(VT);
1401   int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1402   MachinePointerInfo PtrInfo =
1403       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1404 
1405   // Emit a store of each element to the stack slot.
1406   SmallVector<SDValue, 8> Stores;
1407   unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1408   assert(TypeByteSize > 0 && "Vector element type too small for stack store!");
1409   // Store (in the right endianness) the elements to memory.
1410   for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1411     // Ignore undef elements.
1412     if (Node->getOperand(i).isUndef()) continue;
1413 
1414     unsigned Offset = TypeByteSize*i;
1415 
1416     SDValue Idx = DAG.getMemBasePlusOffset(FIPtr, Offset, dl);
1417 
1418     // If the destination vector element type is narrower than the source
1419     // element type, only store the bits necessary.
1420     if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1421       Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1422                                          Node->getOperand(i), Idx,
1423                                          PtrInfo.getWithOffset(Offset), EltVT));
1424     } else
1425       Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1426                                     Idx, PtrInfo.getWithOffset(Offset)));
1427   }
1428 
1429   SDValue StoreChain;
1430   if (!Stores.empty())    // Not all undef elements?
1431     StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
1432   else
1433     StoreChain = DAG.getEntryNode();
1434 
1435   // Result is a load from the stack slot.
1436   return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo);
1437 }
1438 
1439 /// Bitcast a floating-point value to an integer value. Only bitcast the part
1440 /// containing the sign bit if the target has no integer value capable of
1441 /// holding all bits of the floating-point value.
1442 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State,
1443                                              const SDLoc &DL,
1444                                              SDValue Value) const {
1445   EVT FloatVT = Value.getValueType();
1446   unsigned NumBits = FloatVT.getSizeInBits();
1447   State.FloatVT = FloatVT;
1448   EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
1449   // Convert to an integer of the same size.
1450   if (TLI.isTypeLegal(IVT)) {
1451     State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value);
1452     State.SignMask = APInt::getSignMask(NumBits);
1453     State.SignBit = NumBits - 1;
1454     return;
1455   }
1456 
1457   auto &DataLayout = DAG.getDataLayout();
1458   // Store the float to memory, then load the sign part out as an integer.
1459   MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8);
1460   // First create a temporary that is aligned for both the load and store.
1461   SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1462   int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1463   // Then store the float to it.
1464   State.FloatPtr = StackPtr;
1465   MachineFunction &MF = DAG.getMachineFunction();
1466   State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI);
1467   State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr,
1468                              State.FloatPointerInfo);
1469 
1470   SDValue IntPtr;
1471   if (DataLayout.isBigEndian()) {
1472     assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1473     // Load out a legal integer with the same sign bit as the float.
1474     IntPtr = StackPtr;
1475     State.IntPointerInfo = State.FloatPointerInfo;
1476   } else {
1477     // Advance the pointer so that the loaded byte will contain the sign bit.
1478     unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1;
1479     IntPtr = DAG.getMemBasePlusOffset(StackPtr, ByteOffset, DL);
1480     State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI,
1481                                                              ByteOffset);
1482   }
1483 
1484   State.IntPtr = IntPtr;
1485   State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr,
1486                                   State.IntPointerInfo, MVT::i8);
1487   State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7);
1488   State.SignBit = 7;
1489 }
1490 
1491 /// Replace the integer value produced by getSignAsIntValue() with a new value
1492 /// and cast the result back to a floating-point type.
1493 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State,
1494                                               const SDLoc &DL,
1495                                               SDValue NewIntValue) const {
1496   if (!State.Chain)
1497     return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue);
1498 
1499   // Override the part containing the sign bit in the value stored on the stack.
1500   SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr,
1501                                     State.IntPointerInfo, MVT::i8);
1502   return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr,
1503                      State.FloatPointerInfo);
1504 }
1505 
1506 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const {
1507   SDLoc DL(Node);
1508   SDValue Mag = Node->getOperand(0);
1509   SDValue Sign = Node->getOperand(1);
1510 
1511   // Get sign bit into an integer value.
1512   FloatSignAsInt SignAsInt;
1513   getSignAsIntValue(SignAsInt, DL, Sign);
1514 
1515   EVT IntVT = SignAsInt.IntValue.getValueType();
1516   SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT);
1517   SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue,
1518                                 SignMask);
1519 
1520   // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X)
1521   EVT FloatVT = Mag.getValueType();
1522   if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) &&
1523       TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) {
1524     SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag);
1525     SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue);
1526     SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit,
1527                                 DAG.getConstant(0, DL, IntVT), ISD::SETNE);
1528     return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue);
1529   }
1530 
1531   // Transform Mag value to integer, and clear the sign bit.
1532   FloatSignAsInt MagAsInt;
1533   getSignAsIntValue(MagAsInt, DL, Mag);
1534   EVT MagVT = MagAsInt.IntValue.getValueType();
1535   SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT);
1536   SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue,
1537                                     ClearSignMask);
1538 
1539   // Get the signbit at the right position for MagAsInt.
1540   int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit;
1541   EVT ShiftVT = IntVT;
1542   if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) {
1543     SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit);
1544     ShiftVT = MagVT;
1545   }
1546   if (ShiftAmount > 0) {
1547     SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT);
1548     SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst);
1549   } else if (ShiftAmount < 0) {
1550     SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT);
1551     SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst);
1552   }
1553   if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) {
1554     SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit);
1555   }
1556 
1557   // Store the part with the modified sign and convert back to float.
1558   SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit);
1559   return modifySignAsInt(MagAsInt, DL, CopiedSign);
1560 }
1561 
1562 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const {
1563   SDLoc DL(Node);
1564   SDValue Value = Node->getOperand(0);
1565 
1566   // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal.
1567   EVT FloatVT = Value.getValueType();
1568   if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) {
1569     SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT);
1570     return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero);
1571   }
1572 
1573   // Transform value to integer, clear the sign bit and transform back.
1574   FloatSignAsInt ValueAsInt;
1575   getSignAsIntValue(ValueAsInt, DL, Value);
1576   EVT IntVT = ValueAsInt.IntValue.getValueType();
1577   SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT);
1578   SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue,
1579                                     ClearSignMask);
1580   return modifySignAsInt(ValueAsInt, DL, ClearedSign);
1581 }
1582 
1583 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1584                                            SmallVectorImpl<SDValue> &Results) {
1585   unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1586   assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1587           " not tell us which reg is the stack pointer!");
1588   SDLoc dl(Node);
1589   EVT VT = Node->getValueType(0);
1590   SDValue Tmp1 = SDValue(Node, 0);
1591   SDValue Tmp2 = SDValue(Node, 1);
1592   SDValue Tmp3 = Node->getOperand(2);
1593   SDValue Chain = Tmp1.getOperand(0);
1594 
1595   // Chain the dynamic stack allocation so that it doesn't modify the stack
1596   // pointer when other instructions are using the stack.
1597   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
1598 
1599   SDValue Size  = Tmp2.getOperand(1);
1600   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1601   Chain = SP.getValue(1);
1602   unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1603   unsigned StackAlign =
1604       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
1605   Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1606   if (Align > StackAlign)
1607     Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
1608                        DAG.getConstant(-(uint64_t)Align, dl, VT));
1609   Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1610 
1611   Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
1612                             DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
1613 
1614   Results.push_back(Tmp1);
1615   Results.push_back(Tmp2);
1616 }
1617 
1618 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current
1619 /// target.
1620 ///
1621 /// If the SETCC has been legalized using AND / OR, then the legalized node
1622 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
1623 /// will be set to false.
1624 ///
1625 /// If the SETCC has been legalized by using getSetCCSwappedOperands(),
1626 /// then the values of LHS and RHS will be swapped, CC will be set to the
1627 /// new condition, and NeedInvert will be set to false.
1628 ///
1629 /// If the SETCC has been legalized using the inverse condcode, then LHS and
1630 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert
1631 /// will be set to true. The caller must invert the result of the SETCC with
1632 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect
1633 /// of a true/false result.
1634 ///
1635 /// \returns true if the SetCC has been legalized, false if it hasn't.
1636 bool SelectionDAGLegalize::LegalizeSetCCCondCode(
1637     EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, bool &NeedInvert,
1638     const SDLoc &dl, SDValue &Chain, bool IsSignaling) {
1639   MVT OpVT = LHS.getSimpleValueType();
1640   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1641   NeedInvert = false;
1642   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1643   default: llvm_unreachable("Unknown condition code action!");
1644   case TargetLowering::Legal:
1645     // Nothing to do.
1646     break;
1647   case TargetLowering::Expand: {
1648     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
1649     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1650       std::swap(LHS, RHS);
1651       CC = DAG.getCondCode(InvCC);
1652       return true;
1653     }
1654     // Swapping operands didn't work. Try inverting the condition.
1655     bool NeedSwap = false;
1656     InvCC = getSetCCInverse(CCCode, OpVT);
1657     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1658       // If inverting the condition is not enough, try swapping operands
1659       // on top of it.
1660       InvCC = ISD::getSetCCSwappedOperands(InvCC);
1661       NeedSwap = true;
1662     }
1663     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1664       CC = DAG.getCondCode(InvCC);
1665       NeedInvert = true;
1666       if (NeedSwap)
1667         std::swap(LHS, RHS);
1668       return true;
1669     }
1670 
1671     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1672     unsigned Opc = 0;
1673     switch (CCCode) {
1674     default: llvm_unreachable("Don't know how to expand this condition!");
1675     case ISD::SETO:
1676         assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT)
1677             && "If SETO is expanded, SETOEQ must be legal!");
1678         CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
1679     case ISD::SETUO:
1680         assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT)
1681             && "If SETUO is expanded, SETUNE must be legal!");
1682         CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR;  break;
1683     case ISD::SETOEQ:
1684     case ISD::SETOGT:
1685     case ISD::SETOGE:
1686     case ISD::SETOLT:
1687     case ISD::SETOLE:
1688     case ISD::SETONE:
1689     case ISD::SETUEQ:
1690     case ISD::SETUNE:
1691     case ISD::SETUGT:
1692     case ISD::SETUGE:
1693     case ISD::SETULT:
1694     case ISD::SETULE:
1695         // If we are floating point, assign and break, otherwise fall through.
1696         if (!OpVT.isInteger()) {
1697           // We can use the 4th bit to tell if we are the unordered
1698           // or ordered version of the opcode.
1699           CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
1700           Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
1701           CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
1702           break;
1703         }
1704         // Fallthrough if we are unsigned integer.
1705         LLVM_FALLTHROUGH;
1706     case ISD::SETLE:
1707     case ISD::SETGT:
1708     case ISD::SETGE:
1709     case ISD::SETLT:
1710     case ISD::SETNE:
1711     case ISD::SETEQ:
1712       // If all combinations of inverting the condition and swapping operands
1713       // didn't work then we have no means to expand the condition.
1714       llvm_unreachable("Don't know how to expand this condition!");
1715     }
1716 
1717     SDValue SetCC1, SetCC2;
1718     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
1719       // If we aren't the ordered or unorder operation,
1720       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
1721       SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
1722       SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
1723     } else {
1724       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
1725       SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
1726       SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
1727     }
1728     if (Chain)
1729       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
1730                           SetCC2.getValue(1));
1731     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1732     RHS = SDValue();
1733     CC  = SDValue();
1734     return true;
1735   }
1736   }
1737   return false;
1738 }
1739 
1740 /// Emit a store/load combination to the stack.  This stores
1741 /// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1742 /// a load from the stack slot to DestVT, extending it if needed.
1743 /// The resultant code need not be legal.
1744 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1745                                                EVT DestVT, const SDLoc &dl) {
1746   return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode());
1747 }
1748 
1749 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1750                                                EVT DestVT, const SDLoc &dl,
1751                                                SDValue Chain) {
1752   // Create the stack frame object.
1753   unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment(
1754       SrcOp.getValueType().getTypeForEVT(*DAG.getContext()));
1755   SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1756 
1757   FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1758   int SPFI = StackPtrFI->getIndex();
1759   MachinePointerInfo PtrInfo =
1760       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
1761 
1762   unsigned SrcSize = SrcOp.getValueSizeInBits();
1763   unsigned SlotSize = SlotVT.getSizeInBits();
1764   unsigned DestSize = DestVT.getSizeInBits();
1765   Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1766   unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType);
1767 
1768   // Emit a store to the stack slot.  Use a truncstore if the input value is
1769   // later than DestVT.
1770   SDValue Store;
1771 
1772   if (SrcSize > SlotSize)
1773     Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo,
1774                               SlotVT, SrcAlign);
1775   else {
1776     assert(SrcSize == SlotSize && "Invalid store");
1777     Store =
1778         DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign);
1779   }
1780 
1781   // Result is a load from the stack slot.
1782   if (SlotSize == DestSize)
1783     return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign);
1784 
1785   assert(SlotSize < DestSize && "Unknown extension!");
1786   return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT,
1787                         DestAlign);
1788 }
1789 
1790 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1791   SDLoc dl(Node);
1792   // Create a vector sized/aligned stack slot, store the value to element #0,
1793   // then load the whole vector back out.
1794   SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1795 
1796   FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1797   int SPFI = StackPtrFI->getIndex();
1798 
1799   SDValue Ch = DAG.getTruncStore(
1800       DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr,
1801       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI),
1802       Node->getValueType(0).getVectorElementType());
1803   return DAG.getLoad(
1804       Node->getValueType(0), dl, Ch, StackPtr,
1805       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
1806 }
1807 
1808 static bool
1809 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG,
1810                      const TargetLowering &TLI, SDValue &Res) {
1811   unsigned NumElems = Node->getNumOperands();
1812   SDLoc dl(Node);
1813   EVT VT = Node->getValueType(0);
1814 
1815   // Try to group the scalars into pairs, shuffle the pairs together, then
1816   // shuffle the pairs of pairs together, etc. until the vector has
1817   // been built. This will work only if all of the necessary shuffle masks
1818   // are legal.
1819 
1820   // We do this in two phases; first to check the legality of the shuffles,
1821   // and next, assuming that all shuffles are legal, to create the new nodes.
1822   for (int Phase = 0; Phase < 2; ++Phase) {
1823     SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals,
1824                                                               NewIntermedVals;
1825     for (unsigned i = 0; i < NumElems; ++i) {
1826       SDValue V = Node->getOperand(i);
1827       if (V.isUndef())
1828         continue;
1829 
1830       SDValue Vec;
1831       if (Phase)
1832         Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V);
1833       IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i)));
1834     }
1835 
1836     while (IntermedVals.size() > 2) {
1837       NewIntermedVals.clear();
1838       for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) {
1839         // This vector and the next vector are shuffled together (simply to
1840         // append the one to the other).
1841         SmallVector<int, 16> ShuffleVec(NumElems, -1);
1842 
1843         SmallVector<int, 16> FinalIndices;
1844         FinalIndices.reserve(IntermedVals[i].second.size() +
1845                              IntermedVals[i+1].second.size());
1846 
1847         int k = 0;
1848         for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f;
1849              ++j, ++k) {
1850           ShuffleVec[k] = j;
1851           FinalIndices.push_back(IntermedVals[i].second[j]);
1852         }
1853         for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f;
1854              ++j, ++k) {
1855           ShuffleVec[k] = NumElems + j;
1856           FinalIndices.push_back(IntermedVals[i+1].second[j]);
1857         }
1858 
1859         SDValue Shuffle;
1860         if (Phase)
1861           Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first,
1862                                          IntermedVals[i+1].first,
1863                                          ShuffleVec);
1864         else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1865           return false;
1866         NewIntermedVals.push_back(
1867             std::make_pair(Shuffle, std::move(FinalIndices)));
1868       }
1869 
1870       // If we had an odd number of defined values, then append the last
1871       // element to the array of new vectors.
1872       if ((IntermedVals.size() & 1) != 0)
1873         NewIntermedVals.push_back(IntermedVals.back());
1874 
1875       IntermedVals.swap(NewIntermedVals);
1876     }
1877 
1878     assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 &&
1879            "Invalid number of intermediate vectors");
1880     SDValue Vec1 = IntermedVals[0].first;
1881     SDValue Vec2;
1882     if (IntermedVals.size() > 1)
1883       Vec2 = IntermedVals[1].first;
1884     else if (Phase)
1885       Vec2 = DAG.getUNDEF(VT);
1886 
1887     SmallVector<int, 16> ShuffleVec(NumElems, -1);
1888     for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i)
1889       ShuffleVec[IntermedVals[0].second[i]] = i;
1890     for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i)
1891       ShuffleVec[IntermedVals[1].second[i]] = NumElems + i;
1892 
1893     if (Phase)
1894       Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
1895     else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1896       return false;
1897   }
1898 
1899   return true;
1900 }
1901 
1902 /// Expand a BUILD_VECTOR node on targets that don't
1903 /// support the operation, but do support the resultant vector type.
1904 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1905   unsigned NumElems = Node->getNumOperands();
1906   SDValue Value1, Value2;
1907   SDLoc dl(Node);
1908   EVT VT = Node->getValueType(0);
1909   EVT OpVT = Node->getOperand(0).getValueType();
1910   EVT EltVT = VT.getVectorElementType();
1911 
1912   // If the only non-undef value is the low element, turn this into a
1913   // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1914   bool isOnlyLowElement = true;
1915   bool MoreThanTwoValues = false;
1916   bool isConstant = true;
1917   for (unsigned i = 0; i < NumElems; ++i) {
1918     SDValue V = Node->getOperand(i);
1919     if (V.isUndef())
1920       continue;
1921     if (i > 0)
1922       isOnlyLowElement = false;
1923     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1924       isConstant = false;
1925 
1926     if (!Value1.getNode()) {
1927       Value1 = V;
1928     } else if (!Value2.getNode()) {
1929       if (V != Value1)
1930         Value2 = V;
1931     } else if (V != Value1 && V != Value2) {
1932       MoreThanTwoValues = true;
1933     }
1934   }
1935 
1936   if (!Value1.getNode())
1937     return DAG.getUNDEF(VT);
1938 
1939   if (isOnlyLowElement)
1940     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1941 
1942   // If all elements are constants, create a load from the constant pool.
1943   if (isConstant) {
1944     SmallVector<Constant*, 16> CV;
1945     for (unsigned i = 0, e = NumElems; i != e; ++i) {
1946       if (ConstantFPSDNode *V =
1947           dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1948         CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1949       } else if (ConstantSDNode *V =
1950                  dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1951         if (OpVT==EltVT)
1952           CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1953         else {
1954           // If OpVT and EltVT don't match, EltVT is not legal and the
1955           // element values have been promoted/truncated earlier.  Undo this;
1956           // we don't want a v16i8 to become a v16i32 for example.
1957           const ConstantInt *CI = V->getConstantIntValue();
1958           CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1959                                         CI->getZExtValue()));
1960         }
1961       } else {
1962         assert(Node->getOperand(i).isUndef());
1963         Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1964         CV.push_back(UndefValue::get(OpNTy));
1965       }
1966     }
1967     Constant *CP = ConstantVector::get(CV);
1968     SDValue CPIdx =
1969         DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout()));
1970     Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
1971     return DAG.getLoad(
1972         VT, dl, DAG.getEntryNode(), CPIdx,
1973         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
1974         Alignment);
1975   }
1976 
1977   SmallSet<SDValue, 16> DefinedValues;
1978   for (unsigned i = 0; i < NumElems; ++i) {
1979     if (Node->getOperand(i).isUndef())
1980       continue;
1981     DefinedValues.insert(Node->getOperand(i));
1982   }
1983 
1984   if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) {
1985     if (!MoreThanTwoValues) {
1986       SmallVector<int, 8> ShuffleVec(NumElems, -1);
1987       for (unsigned i = 0; i < NumElems; ++i) {
1988         SDValue V = Node->getOperand(i);
1989         if (V.isUndef())
1990           continue;
1991         ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1992       }
1993       if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1994         // Get the splatted value into the low element of a vector register.
1995         SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1996         SDValue Vec2;
1997         if (Value2.getNode())
1998           Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1999         else
2000           Vec2 = DAG.getUNDEF(VT);
2001 
2002         // Return shuffle(LowValVec, undef, <0,0,0,0>)
2003         return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
2004       }
2005     } else {
2006       SDValue Res;
2007       if (ExpandBVWithShuffles(Node, DAG, TLI, Res))
2008         return Res;
2009     }
2010   }
2011 
2012   // Otherwise, we can't handle this case efficiently.
2013   return ExpandVectorBuildThroughStack(Node);
2014 }
2015 
2016 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) {
2017   SDLoc DL(Node);
2018   EVT VT = Node->getValueType(0);
2019   SDValue SplatVal = Node->getOperand(0);
2020 
2021   return DAG.getSplatBuildVector(VT, DL, SplatVal);
2022 }
2023 
2024 // Expand a node into a call to a libcall.  If the result value
2025 // does not fit into a register, return the lo part and set the hi part to the
2026 // by-reg argument.  If it does fit into a single register, return the result
2027 // and leave the Hi part unset.
2028 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
2029                                             bool isSigned) {
2030   TargetLowering::ArgListTy Args;
2031   TargetLowering::ArgListEntry Entry;
2032   for (const SDValue &Op : Node->op_values()) {
2033     EVT ArgVT = Op.getValueType();
2034     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2035     Entry.Node = Op;
2036     Entry.Ty = ArgTy;
2037     Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
2038     Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
2039     Args.push_back(Entry);
2040   }
2041   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2042                                          TLI.getPointerTy(DAG.getDataLayout()));
2043 
2044   EVT RetVT = Node->getValueType(0);
2045   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2046 
2047   // By default, the input chain to this libcall is the entry node of the
2048   // function. If the libcall is going to be emitted as a tail call then
2049   // TLI.isUsedByReturnOnly will change it to the right chain if the return
2050   // node which is being folded has a non-entry input chain.
2051   SDValue InChain = DAG.getEntryNode();
2052 
2053   // isTailCall may be true since the callee does not reference caller stack
2054   // frame. Check if it's in the right position and that the return types match.
2055   SDValue TCChain = InChain;
2056   const Function &F = DAG.getMachineFunction().getFunction();
2057   bool isTailCall =
2058       TLI.isInTailCallPosition(DAG, Node, TCChain) &&
2059       (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy());
2060   if (isTailCall)
2061     InChain = TCChain;
2062 
2063   TargetLowering::CallLoweringInfo CLI(DAG);
2064   bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned);
2065   CLI.setDebugLoc(SDLoc(Node))
2066       .setChain(InChain)
2067       .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2068                     std::move(Args))
2069       .setTailCall(isTailCall)
2070       .setSExtResult(signExtend)
2071       .setZExtResult(!signExtend)
2072       .setIsPostTypeLegalization(true);
2073 
2074   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2075 
2076   if (!CallInfo.second.getNode()) {
2077     LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG));
2078     // It's a tailcall, return the chain (which is the DAG root).
2079     return DAG.getRoot();
2080   }
2081 
2082   LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG));
2083   return CallInfo.first;
2084 }
2085 
2086 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2087                                            RTLIB::Libcall Call_F32,
2088                                            RTLIB::Libcall Call_F64,
2089                                            RTLIB::Libcall Call_F80,
2090                                            RTLIB::Libcall Call_F128,
2091                                            RTLIB::Libcall Call_PPCF128,
2092                                            SmallVectorImpl<SDValue> &Results) {
2093   RTLIB::Libcall LC;
2094   switch (Node->getSimpleValueType(0).SimpleTy) {
2095   default: llvm_unreachable("Unexpected request for libcall!");
2096   case MVT::f32: LC = Call_F32; break;
2097   case MVT::f64: LC = Call_F64; break;
2098   case MVT::f80: LC = Call_F80; break;
2099   case MVT::f128: LC = Call_F128; break;
2100   case MVT::ppcf128: LC = Call_PPCF128; break;
2101   }
2102 
2103   if (Node->isStrictFPOpcode()) {
2104     EVT RetVT = Node->getValueType(0);
2105     SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end());
2106     TargetLowering::MakeLibCallOptions CallOptions;
2107     // FIXME: This doesn't support tail calls.
2108     std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
2109                                                       Ops, CallOptions,
2110                                                       SDLoc(Node),
2111                                                       Node->getOperand(0));
2112     Results.push_back(Tmp.first);
2113     Results.push_back(Tmp.second);
2114   } else {
2115     SDValue Tmp = ExpandLibCall(LC, Node, false);
2116     Results.push_back(Tmp);
2117   }
2118 }
2119 
2120 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2121                                                RTLIB::Libcall Call_I8,
2122                                                RTLIB::Libcall Call_I16,
2123                                                RTLIB::Libcall Call_I32,
2124                                                RTLIB::Libcall Call_I64,
2125                                                RTLIB::Libcall Call_I128) {
2126   RTLIB::Libcall LC;
2127   switch (Node->getSimpleValueType(0).SimpleTy) {
2128   default: llvm_unreachable("Unexpected request for libcall!");
2129   case MVT::i8:   LC = Call_I8; break;
2130   case MVT::i16:  LC = Call_I16; break;
2131   case MVT::i32:  LC = Call_I32; break;
2132   case MVT::i64:  LC = Call_I64; break;
2133   case MVT::i128: LC = Call_I128; break;
2134   }
2135   return ExpandLibCall(LC, Node, isSigned);
2136 }
2137 
2138 /// Expand the node to a libcall based on first argument type (for instance
2139 /// lround and its variant).
2140 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node,
2141                                             RTLIB::Libcall Call_F32,
2142                                             RTLIB::Libcall Call_F64,
2143                                             RTLIB::Libcall Call_F80,
2144                                             RTLIB::Libcall Call_F128,
2145                                             RTLIB::Libcall Call_PPCF128,
2146                                             SmallVectorImpl<SDValue> &Results) {
2147   EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType();
2148 
2149   RTLIB::Libcall LC;
2150   switch (InVT.getSimpleVT().SimpleTy) {
2151   default: llvm_unreachable("Unexpected request for libcall!");
2152   case MVT::f32:     LC = Call_F32; break;
2153   case MVT::f64:     LC = Call_F64; break;
2154   case MVT::f80:     LC = Call_F80; break;
2155   case MVT::f128:    LC = Call_F128; break;
2156   case MVT::ppcf128: LC = Call_PPCF128; break;
2157   }
2158 
2159   if (Node->isStrictFPOpcode()) {
2160     EVT RetVT = Node->getValueType(0);
2161     SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end());
2162     TargetLowering::MakeLibCallOptions CallOptions;
2163     // FIXME: This doesn't support tail calls.
2164     std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
2165                                                       Ops, CallOptions,
2166                                                       SDLoc(Node),
2167                                                       Node->getOperand(0));
2168     Results.push_back(Tmp.first);
2169     Results.push_back(Tmp.second);
2170   } else {
2171     SDValue Tmp = ExpandLibCall(LC, Node, false);
2172     Results.push_back(Tmp);
2173   }
2174 }
2175 
2176 /// Issue libcalls to __{u}divmod to compute div / rem pairs.
2177 void
2178 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2179                                           SmallVectorImpl<SDValue> &Results) {
2180   unsigned Opcode = Node->getOpcode();
2181   bool isSigned = Opcode == ISD::SDIVREM;
2182 
2183   RTLIB::Libcall LC;
2184   switch (Node->getSimpleValueType(0).SimpleTy) {
2185   default: llvm_unreachable("Unexpected request for libcall!");
2186   case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2187   case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2188   case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2189   case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2190   case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2191   }
2192 
2193   // The input chain to this libcall is the entry node of the function.
2194   // Legalizing the call will automatically add the previous call to the
2195   // dependence.
2196   SDValue InChain = DAG.getEntryNode();
2197 
2198   EVT RetVT = Node->getValueType(0);
2199   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2200 
2201   TargetLowering::ArgListTy Args;
2202   TargetLowering::ArgListEntry Entry;
2203   for (const SDValue &Op : Node->op_values()) {
2204     EVT ArgVT = Op.getValueType();
2205     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2206     Entry.Node = Op;
2207     Entry.Ty = ArgTy;
2208     Entry.IsSExt = isSigned;
2209     Entry.IsZExt = !isSigned;
2210     Args.push_back(Entry);
2211   }
2212 
2213   // Also pass the return address of the remainder.
2214   SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2215   Entry.Node = FIPtr;
2216   Entry.Ty = RetTy->getPointerTo();
2217   Entry.IsSExt = isSigned;
2218   Entry.IsZExt = !isSigned;
2219   Args.push_back(Entry);
2220 
2221   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2222                                          TLI.getPointerTy(DAG.getDataLayout()));
2223 
2224   SDLoc dl(Node);
2225   TargetLowering::CallLoweringInfo CLI(DAG);
2226   CLI.setDebugLoc(dl)
2227       .setChain(InChain)
2228       .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2229                     std::move(Args))
2230       .setSExtResult(isSigned)
2231       .setZExtResult(!isSigned);
2232 
2233   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2234 
2235   // Remainder is loaded back from the stack frame.
2236   SDValue Rem =
2237       DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo());
2238   Results.push_back(CallInfo.first);
2239   Results.push_back(Rem);
2240 }
2241 
2242 /// Return true if sincos libcall is available.
2243 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
2244   RTLIB::Libcall LC;
2245   switch (Node->getSimpleValueType(0).SimpleTy) {
2246   default: llvm_unreachable("Unexpected request for libcall!");
2247   case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
2248   case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
2249   case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
2250   case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
2251   case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2252   }
2253   return TLI.getLibcallName(LC) != nullptr;
2254 }
2255 
2256 /// Only issue sincos libcall if both sin and cos are needed.
2257 static bool useSinCos(SDNode *Node) {
2258   unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
2259     ? ISD::FCOS : ISD::FSIN;
2260 
2261   SDValue Op0 = Node->getOperand(0);
2262   for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2263        UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2264     SDNode *User = *UI;
2265     if (User == Node)
2266       continue;
2267     // The other user might have been turned into sincos already.
2268     if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
2269       return true;
2270   }
2271   return false;
2272 }
2273 
2274 /// Issue libcalls to sincos to compute sin / cos pairs.
2275 void
2276 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
2277                                           SmallVectorImpl<SDValue> &Results) {
2278   RTLIB::Libcall LC;
2279   switch (Node->getSimpleValueType(0).SimpleTy) {
2280   default: llvm_unreachable("Unexpected request for libcall!");
2281   case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
2282   case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
2283   case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
2284   case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
2285   case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2286   }
2287 
2288   // The input chain to this libcall is the entry node of the function.
2289   // Legalizing the call will automatically add the previous call to the
2290   // dependence.
2291   SDValue InChain = DAG.getEntryNode();
2292 
2293   EVT RetVT = Node->getValueType(0);
2294   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2295 
2296   TargetLowering::ArgListTy Args;
2297   TargetLowering::ArgListEntry Entry;
2298 
2299   // Pass the argument.
2300   Entry.Node = Node->getOperand(0);
2301   Entry.Ty = RetTy;
2302   Entry.IsSExt = false;
2303   Entry.IsZExt = false;
2304   Args.push_back(Entry);
2305 
2306   // Pass the return address of sin.
2307   SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
2308   Entry.Node = SinPtr;
2309   Entry.Ty = RetTy->getPointerTo();
2310   Entry.IsSExt = false;
2311   Entry.IsZExt = false;
2312   Args.push_back(Entry);
2313 
2314   // Also pass the return address of the cos.
2315   SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
2316   Entry.Node = CosPtr;
2317   Entry.Ty = RetTy->getPointerTo();
2318   Entry.IsSExt = false;
2319   Entry.IsZExt = false;
2320   Args.push_back(Entry);
2321 
2322   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2323                                          TLI.getPointerTy(DAG.getDataLayout()));
2324 
2325   SDLoc dl(Node);
2326   TargetLowering::CallLoweringInfo CLI(DAG);
2327   CLI.setDebugLoc(dl).setChain(InChain).setLibCallee(
2328       TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee,
2329       std::move(Args));
2330 
2331   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2332 
2333   Results.push_back(
2334       DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo()));
2335   Results.push_back(
2336       DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo()));
2337 }
2338 
2339 /// This function is responsible for legalizing a
2340 /// INT_TO_FP operation of the specified operand when the target requests that
2341 /// we expand it.  At this point, we know that the result and operand types are
2342 /// legal for the target.
2343 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node,
2344                                                    SDValue &Chain) {
2345   bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP ||
2346                    Node->getOpcode() == ISD::SINT_TO_FP);
2347   EVT DestVT = Node->getValueType(0);
2348   SDLoc dl(Node);
2349   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
2350   SDValue Op0 = Node->getOperand(OpNo);
2351   EVT SrcVT = Op0.getValueType();
2352 
2353   // TODO: Should any fast-math-flags be set for the created nodes?
2354   LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n");
2355   if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
2356     LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double "
2357                          "expansion\n");
2358 
2359     // Get the stack frame index of a 8 byte buffer.
2360     SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2361 
2362     // set up Hi and Lo (into buffer) address based on endian
2363     SDValue Hi = StackSlot;
2364     SDValue Lo = DAG.getMemBasePlusOffset(StackSlot, 4, dl);
2365     if (DAG.getDataLayout().isLittleEndian())
2366       std::swap(Hi, Lo);
2367 
2368     // if signed map to unsigned space
2369     SDValue Op0Mapped;
2370     if (isSigned) {
2371       // constant used to invert sign bit (signed to unsigned mapping)
2372       SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32);
2373       Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2374     } else {
2375       Op0Mapped = Op0;
2376     }
2377     // store the lo of the constructed double - based on integer input
2378     SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo,
2379                                   MachinePointerInfo());
2380     // initial hi portion of constructed double
2381     SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32);
2382     // store the hi of the constructed double - biased exponent
2383     SDValue Store2 =
2384         DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo());
2385     // load the constructed double
2386     SDValue Load =
2387         DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo());
2388     // FP constant to bias correct the final result
2389     SDValue Bias = DAG.getConstantFP(isSigned ?
2390                                      BitsToDouble(0x4330000080000000ULL) :
2391                                      BitsToDouble(0x4330000000000000ULL),
2392                                      dl, MVT::f64);
2393     // Subtract the bias and get the final result.
2394     SDValue Sub;
2395     SDValue Result;
2396     if (Node->isStrictFPOpcode()) {
2397       Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other},
2398                         {Node->getOperand(0), Load, Bias});
2399       Chain = Sub.getValue(1);
2400       if (DestVT != Sub.getValueType()) {
2401         std::pair<SDValue, SDValue> ResultPair;
2402         ResultPair =
2403             DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT);
2404         Result = ResultPair.first;
2405         Chain = ResultPair.second;
2406       }
2407       else
2408         Result = Sub;
2409     } else {
2410       Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2411       Result = DAG.getFPExtendOrRound(Sub, dl, DestVT);
2412     }
2413     return Result;
2414   }
2415   // Code below here assumes !isSigned without checking again.
2416   assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2417 
2418   // TODO: Generalize this for use with other types.
2419   if ((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) {
2420     LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32\n");
2421     // For unsigned conversions, convert them to signed conversions using the
2422     // algorithm from the x86_64 __floatundisf in compiler_rt. That method
2423     // should be valid for i32->f32 as well.
2424 
2425     // TODO: This really should be implemented using a branch rather than a
2426     // select.  We happen to get lucky and machinesink does the right
2427     // thing most of the time.  This would be a good candidate for a
2428     // pseudo-op, or, even better, for whole-function isel.
2429     EVT SetCCVT = getSetCCResultType(SrcVT);
2430 
2431     SDValue SignBitTest = DAG.getSetCC(
2432         dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
2433 
2434     EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout());
2435     SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
2436     SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst);
2437     SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
2438     SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst);
2439     SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
2440 
2441     SDValue Slow, Fast;
2442     if (Node->isStrictFPOpcode()) {
2443       // In strict mode, we must avoid spurious exceptions, and therefore
2444       // must make sure to only emit a single STRICT_SINT_TO_FP.
2445       SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0);
2446       Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other },
2447                          { Node->getOperand(0), InCvt });
2448       Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other },
2449                          { Fast.getValue(1), Fast, Fast });
2450       Chain = Slow.getValue(1);
2451       // The STRICT_SINT_TO_FP inherits the exception mode from the
2452       // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can
2453       // never raise any exception.
2454       SDNodeFlags Flags;
2455       Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept());
2456       Fast->setFlags(Flags);
2457       Flags.setNoFPExcept(true);
2458       Slow->setFlags(Flags);
2459     } else {
2460       SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or);
2461       Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt);
2462       Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2463     }
2464 
2465     return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast);
2466   }
2467 
2468   // The following optimization is valid only if every value in SrcVT (when
2469   // treated as signed) is representable in DestVT.  Check that the mantissa
2470   // size of DestVT is >= than the number of bits in SrcVT -1.
2471   assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >=
2472              SrcVT.getSizeInBits() - 1 &&
2473          "Cannot perform lossless SINT_TO_FP!");
2474 
2475   SDValue Tmp1;
2476   if (Node->isStrictFPOpcode()) {
2477     Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other },
2478                        { Node->getOperand(0), Op0 });
2479   } else
2480     Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2481 
2482   SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0,
2483                                  DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
2484   SDValue Zero = DAG.getIntPtrConstant(0, dl),
2485           Four = DAG.getIntPtrConstant(4, dl);
2486   SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(),
2487                                     SignSet, Four, Zero);
2488 
2489   // If the sign bit of the integer is set, the large number will be treated
2490   // as a negative number.  To counteract this, the dynamic code adds an
2491   // offset depending on the data type.
2492   uint64_t FF;
2493   switch (SrcVT.getSimpleVT().SimpleTy) {
2494   default: llvm_unreachable("Unsupported integer type!");
2495   case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2496   case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2497   case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2498   case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2499   }
2500   if (DAG.getDataLayout().isLittleEndian())
2501     FF <<= 32;
2502   Constant *FudgeFactor = ConstantInt::get(
2503                                        Type::getInt64Ty(*DAG.getContext()), FF);
2504 
2505   SDValue CPIdx =
2506       DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout()));
2507   Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
2508   CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset);
2509   Alignment = commonAlignment(Alignment, 4);
2510   SDValue FudgeInReg;
2511   if (DestVT == MVT::f32)
2512     FudgeInReg = DAG.getLoad(
2513         MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2514         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
2515         Alignment);
2516   else {
2517     SDValue Load = DAG.getExtLoad(
2518         ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx,
2519         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
2520         Alignment);
2521     HandleSDNode Handle(Load);
2522     LegalizeOp(Load.getNode());
2523     FudgeInReg = Handle.getValue();
2524   }
2525 
2526   if (Node->isStrictFPOpcode()) {
2527     SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other },
2528                                  { Tmp1.getValue(1), Tmp1, FudgeInReg });
2529     Chain = Result.getValue(1);
2530     return Result;
2531   }
2532 
2533   return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2534 }
2535 
2536 /// This function is responsible for legalizing a
2537 /// *INT_TO_FP operation of the specified operand when the target requests that
2538 /// we promote it.  At this point, we know that the result and operand types are
2539 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2540 /// operation that takes a larger input.
2541 void SelectionDAGLegalize::PromoteLegalINT_TO_FP(
2542     SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) {
2543   bool IsStrict = N->isStrictFPOpcode();
2544   bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP ||
2545                   N->getOpcode() == ISD::STRICT_SINT_TO_FP;
2546   EVT DestVT = N->getValueType(0);
2547   SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0);
2548   unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP;
2549   unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP;
2550 
2551   // First step, figure out the appropriate *INT_TO_FP operation to use.
2552   EVT NewInTy = LegalOp.getValueType();
2553 
2554   unsigned OpToUse = 0;
2555 
2556   // Scan for the appropriate larger type to use.
2557   while (true) {
2558     NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2559     assert(NewInTy.isInteger() && "Ran out of possibilities!");
2560 
2561     // If the target supports SINT_TO_FP of this type, use it.
2562     if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) {
2563       OpToUse = SIntOp;
2564       break;
2565     }
2566     if (IsSigned)
2567       continue;
2568 
2569     // If the target supports UINT_TO_FP of this type, use it.
2570     if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) {
2571       OpToUse = UIntOp;
2572       break;
2573     }
2574 
2575     // Otherwise, try a larger type.
2576   }
2577 
2578   // Okay, we found the operation and type to use.  Zero extend our input to the
2579   // desired type then run the operation on it.
2580   if (IsStrict) {
2581     SDValue Res =
2582         DAG.getNode(OpToUse, dl, {DestVT, MVT::Other},
2583                     {N->getOperand(0),
2584                      DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2585                                  dl, NewInTy, LegalOp)});
2586     Results.push_back(Res);
2587     Results.push_back(Res.getValue(1));
2588     return;
2589   }
2590 
2591   Results.push_back(
2592       DAG.getNode(OpToUse, dl, DestVT,
2593                   DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2594                               dl, NewInTy, LegalOp)));
2595 }
2596 
2597 /// This function is responsible for legalizing a
2598 /// FP_TO_*INT operation of the specified operand when the target requests that
2599 /// we promote it.  At this point, we know that the result and operand types are
2600 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2601 /// operation that returns a larger result.
2602 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl,
2603                                                  SmallVectorImpl<SDValue> &Results) {
2604   bool IsStrict = N->isStrictFPOpcode();
2605   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
2606                   N->getOpcode() == ISD::STRICT_FP_TO_SINT;
2607   EVT DestVT = N->getValueType(0);
2608   SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0);
2609   // First step, figure out the appropriate FP_TO*INT operation to use.
2610   EVT NewOutTy = DestVT;
2611 
2612   unsigned OpToUse = 0;
2613 
2614   // Scan for the appropriate larger type to use.
2615   while (true) {
2616     NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2617     assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2618 
2619     // A larger signed type can hold all unsigned values of the requested type,
2620     // so using FP_TO_SINT is valid
2621     OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT;
2622     if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy))
2623       break;
2624 
2625     // However, if the value may be < 0.0, we *must* use some FP_TO_SINT.
2626     OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT;
2627     if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy))
2628       break;
2629 
2630     // Otherwise, try a larger type.
2631   }
2632 
2633   // Okay, we found the operation and type to use.
2634   SDValue Operation;
2635   if (IsStrict) {
2636     SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other);
2637     Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp);
2638   } else
2639     Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2640 
2641   // Truncate the result of the extended FP_TO_*INT operation to the desired
2642   // size.
2643   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2644   Results.push_back(Trunc);
2645   if (IsStrict)
2646     Results.push_back(Operation.getValue(1));
2647 }
2648 
2649 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts.
2650 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) {
2651   EVT VT = Op.getValueType();
2652   EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2653   unsigned Sz = VT.getScalarSizeInBits();
2654 
2655   SDValue Tmp, Tmp2, Tmp3;
2656 
2657   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
2658   // and finally the i1 pairs.
2659   // TODO: We can easily support i4/i2 legal types if any target ever does.
2660   if (Sz >= 8 && isPowerOf2_32(Sz)) {
2661     // Create the masks - repeating the pattern every byte.
2662     APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0));
2663     APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC));
2664     APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA));
2665     APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F));
2666     APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33));
2667     APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55));
2668 
2669     // BSWAP if the type is wider than a single byte.
2670     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
2671 
2672     // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4)
2673     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT));
2674     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT));
2675     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT));
2676     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
2677     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2678 
2679     // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2)
2680     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT));
2681     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT));
2682     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT));
2683     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
2684     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2685 
2686     // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1)
2687     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT));
2688     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT));
2689     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT));
2690     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
2691     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2692     return Tmp;
2693   }
2694 
2695   Tmp = DAG.getConstant(0, dl, VT);
2696   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
2697     if (I < J)
2698       Tmp2 =
2699           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
2700     else
2701       Tmp2 =
2702           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
2703 
2704     APInt Shift(Sz, 1);
2705     Shift <<= J;
2706     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
2707     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
2708   }
2709 
2710   return Tmp;
2711 }
2712 
2713 /// Open code the operations for BSWAP of the specified operation.
2714 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) {
2715   EVT VT = Op.getValueType();
2716   EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2717   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2718   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
2719   default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2720   case MVT::i16:
2721     // Use a rotate by 8. This can be further expanded if necessary.
2722     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2723   case MVT::i32:
2724     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2725     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2726     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2727     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2728     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2729                        DAG.getConstant(0xFF0000, dl, VT));
2730     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
2731     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2732     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2733     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2734   case MVT::i64:
2735     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2736     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2737     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2738     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2739     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2740     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2741     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2742     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2743     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
2744                        DAG.getConstant(255ULL<<48, dl, VT));
2745     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
2746                        DAG.getConstant(255ULL<<40, dl, VT));
2747     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
2748                        DAG.getConstant(255ULL<<32, dl, VT));
2749     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
2750                        DAG.getConstant(255ULL<<24, dl, VT));
2751     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2752                        DAG.getConstant(255ULL<<16, dl, VT));
2753     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
2754                        DAG.getConstant(255ULL<<8 , dl, VT));
2755     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2756     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2757     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2758     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2759     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2760     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2761     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2762   }
2763 }
2764 
2765 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2766   LLVM_DEBUG(dbgs() << "Trying to expand node\n");
2767   SmallVector<SDValue, 8> Results;
2768   SDLoc dl(Node);
2769   SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2770   bool NeedInvert;
2771   switch (Node->getOpcode()) {
2772   case ISD::ABS:
2773     if (TLI.expandABS(Node, Tmp1, DAG))
2774       Results.push_back(Tmp1);
2775     break;
2776   case ISD::CTPOP:
2777     if (TLI.expandCTPOP(Node, Tmp1, DAG))
2778       Results.push_back(Tmp1);
2779     break;
2780   case ISD::CTLZ:
2781   case ISD::CTLZ_ZERO_UNDEF:
2782     if (TLI.expandCTLZ(Node, Tmp1, DAG))
2783       Results.push_back(Tmp1);
2784     break;
2785   case ISD::CTTZ:
2786   case ISD::CTTZ_ZERO_UNDEF:
2787     if (TLI.expandCTTZ(Node, Tmp1, DAG))
2788       Results.push_back(Tmp1);
2789     break;
2790   case ISD::BITREVERSE:
2791     Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl));
2792     break;
2793   case ISD::BSWAP:
2794     Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2795     break;
2796   case ISD::FRAMEADDR:
2797   case ISD::RETURNADDR:
2798   case ISD::FRAME_TO_ARGS_OFFSET:
2799     Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
2800     break;
2801   case ISD::EH_DWARF_CFA: {
2802     SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl,
2803                                         TLI.getPointerTy(DAG.getDataLayout()));
2804     SDValue Offset = DAG.getNode(ISD::ADD, dl,
2805                                  CfaArg.getValueType(),
2806                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
2807                                              CfaArg.getValueType()),
2808                                  CfaArg);
2809     SDValue FA = DAG.getNode(
2810         ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()),
2811         DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())));
2812     Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(),
2813                                   FA, Offset));
2814     break;
2815   }
2816   case ISD::FLT_ROUNDS_:
2817     Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0)));
2818     Results.push_back(Node->getOperand(0));
2819     break;
2820   case ISD::EH_RETURN:
2821   case ISD::EH_LABEL:
2822   case ISD::PREFETCH:
2823   case ISD::VAEND:
2824   case ISD::EH_SJLJ_LONGJMP:
2825     // If the target didn't expand these, there's nothing to do, so just
2826     // preserve the chain and be done.
2827     Results.push_back(Node->getOperand(0));
2828     break;
2829   case ISD::READCYCLECOUNTER:
2830     // If the target didn't expand this, just return 'zero' and preserve the
2831     // chain.
2832     Results.append(Node->getNumValues() - 1,
2833                    DAG.getConstant(0, dl, Node->getValueType(0)));
2834     Results.push_back(Node->getOperand(0));
2835     break;
2836   case ISD::EH_SJLJ_SETJMP:
2837     // If the target didn't expand this, just return 'zero' and preserve the
2838     // chain.
2839     Results.push_back(DAG.getConstant(0, dl, MVT::i32));
2840     Results.push_back(Node->getOperand(0));
2841     break;
2842   case ISD::ATOMIC_LOAD: {
2843     // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2844     SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0));
2845     SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2846     SDValue Swap = DAG.getAtomicCmpSwap(
2847         ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2848         Node->getOperand(0), Node->getOperand(1), Zero, Zero,
2849         cast<AtomicSDNode>(Node)->getMemOperand());
2850     Results.push_back(Swap.getValue(0));
2851     Results.push_back(Swap.getValue(1));
2852     break;
2853   }
2854   case ISD::ATOMIC_STORE: {
2855     // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2856     SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2857                                  cast<AtomicSDNode>(Node)->getMemoryVT(),
2858                                  Node->getOperand(0),
2859                                  Node->getOperand(1), Node->getOperand(2),
2860                                  cast<AtomicSDNode>(Node)->getMemOperand());
2861     Results.push_back(Swap.getValue(1));
2862     break;
2863   }
2864   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
2865     // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and
2866     // splits out the success value as a comparison. Expanding the resulting
2867     // ATOMIC_CMP_SWAP will produce a libcall.
2868     SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2869     SDValue Res = DAG.getAtomicCmpSwap(
2870         ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2871         Node->getOperand(0), Node->getOperand(1), Node->getOperand(2),
2872         Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand());
2873 
2874     SDValue ExtRes = Res;
2875     SDValue LHS = Res;
2876     SDValue RHS = Node->getOperand(1);
2877 
2878     EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT();
2879     EVT OuterType = Node->getValueType(0);
2880     switch (TLI.getExtendForAtomicOps()) {
2881     case ISD::SIGN_EXTEND:
2882       LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res,
2883                         DAG.getValueType(AtomicType));
2884       RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType,
2885                         Node->getOperand(2), DAG.getValueType(AtomicType));
2886       ExtRes = LHS;
2887       break;
2888     case ISD::ZERO_EXTEND:
2889       LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res,
2890                         DAG.getValueType(AtomicType));
2891       RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2892       ExtRes = LHS;
2893       break;
2894     case ISD::ANY_EXTEND:
2895       LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType);
2896       RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2897       break;
2898     default:
2899       llvm_unreachable("Invalid atomic op extension");
2900     }
2901 
2902     SDValue Success =
2903         DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ);
2904 
2905     Results.push_back(ExtRes.getValue(0));
2906     Results.push_back(Success);
2907     Results.push_back(Res.getValue(1));
2908     break;
2909   }
2910   case ISD::DYNAMIC_STACKALLOC:
2911     ExpandDYNAMIC_STACKALLOC(Node, Results);
2912     break;
2913   case ISD::MERGE_VALUES:
2914     for (unsigned i = 0; i < Node->getNumValues(); i++)
2915       Results.push_back(Node->getOperand(i));
2916     break;
2917   case ISD::UNDEF: {
2918     EVT VT = Node->getValueType(0);
2919     if (VT.isInteger())
2920       Results.push_back(DAG.getConstant(0, dl, VT));
2921     else {
2922       assert(VT.isFloatingPoint() && "Unknown value type!");
2923       Results.push_back(DAG.getConstantFP(0, dl, VT));
2924     }
2925     break;
2926   }
2927   case ISD::STRICT_FP_ROUND:
2928     // When strict mode is enforced we can't do expansion because it
2929     // does not honor the "strict" properties. Only libcall is allowed.
2930     if (TLI.isStrictFPEnabled())
2931       break;
2932     // We might as well mutate to FP_ROUND when FP_ROUND operation is legal
2933     // since this operation is more efficient than stack operation.
2934     if (TLI.getStrictFPOperationAction(Node->getOpcode(),
2935                                        Node->getValueType(0))
2936         == TargetLowering::Legal)
2937       break;
2938     // We fall back to use stack operation when the FP_ROUND operation
2939     // isn't available.
2940     Tmp1 = EmitStackConvert(Node->getOperand(1),
2941                             Node->getValueType(0),
2942                             Node->getValueType(0), dl, Node->getOperand(0));
2943     ReplaceNode(Node, Tmp1.getNode());
2944     LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n");
2945     return true;
2946   case ISD::FP_ROUND:
2947   case ISD::BITCAST:
2948     Tmp1 = EmitStackConvert(Node->getOperand(0),
2949                             Node->getValueType(0),
2950                             Node->getValueType(0), dl);
2951     Results.push_back(Tmp1);
2952     break;
2953   case ISD::STRICT_FP_EXTEND:
2954     // When strict mode is enforced we can't do expansion because it
2955     // does not honor the "strict" properties. Only libcall is allowed.
2956     if (TLI.isStrictFPEnabled())
2957       break;
2958     // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal
2959     // since this operation is more efficient than stack operation.
2960     if (TLI.getStrictFPOperationAction(Node->getOpcode(),
2961                                        Node->getValueType(0))
2962         == TargetLowering::Legal)
2963       break;
2964     // We fall back to use stack operation when the FP_EXTEND operation
2965     // isn't available.
2966     Tmp1 = EmitStackConvert(Node->getOperand(1),
2967                             Node->getOperand(1).getValueType(),
2968                             Node->getValueType(0), dl, Node->getOperand(0));
2969     ReplaceNode(Node, Tmp1.getNode());
2970     LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n");
2971     return true;
2972   case ISD::FP_EXTEND:
2973     Tmp1 = EmitStackConvert(Node->getOperand(0),
2974                             Node->getOperand(0).getValueType(),
2975                             Node->getValueType(0), dl);
2976     Results.push_back(Tmp1);
2977     break;
2978   case ISD::SIGN_EXTEND_INREG: {
2979     EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2980     EVT VT = Node->getValueType(0);
2981 
2982     // An in-register sign-extend of a boolean is a negation:
2983     // 'true' (1) sign-extended is -1.
2984     // 'false' (0) sign-extended is 0.
2985     // However, we must mask the high bits of the source operand because the
2986     // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero.
2987 
2988     // TODO: Do this for vectors too?
2989     if (ExtraVT.getSizeInBits() == 1) {
2990       SDValue One = DAG.getConstant(1, dl, VT);
2991       SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One);
2992       SDValue Zero = DAG.getConstant(0, dl, VT);
2993       SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And);
2994       Results.push_back(Neg);
2995       break;
2996     }
2997 
2998     // NOTE: we could fall back on load/store here too for targets without
2999     // SRA.  However, it is doubtful that any exist.
3000     EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
3001     unsigned BitsDiff = VT.getScalarSizeInBits() -
3002                         ExtraVT.getScalarSizeInBits();
3003     SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy);
3004     Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
3005                        Node->getOperand(0), ShiftCst);
3006     Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
3007     Results.push_back(Tmp1);
3008     break;
3009   }
3010   case ISD::UINT_TO_FP:
3011   case ISD::STRICT_UINT_TO_FP:
3012     if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) {
3013       Results.push_back(Tmp1);
3014       if (Node->isStrictFPOpcode())
3015         Results.push_back(Tmp2);
3016       break;
3017     }
3018     LLVM_FALLTHROUGH;
3019   case ISD::SINT_TO_FP:
3020   case ISD::STRICT_SINT_TO_FP:
3021     Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2);
3022     Results.push_back(Tmp1);
3023     if (Node->isStrictFPOpcode())
3024       Results.push_back(Tmp2);
3025     break;
3026   case ISD::FP_TO_SINT:
3027     if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG))
3028       Results.push_back(Tmp1);
3029     break;
3030   case ISD::STRICT_FP_TO_SINT:
3031     if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) {
3032       ReplaceNode(Node, Tmp1.getNode());
3033       LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n");
3034       return true;
3035     }
3036     break;
3037   case ISD::FP_TO_UINT:
3038     if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG))
3039       Results.push_back(Tmp1);
3040     break;
3041   case ISD::STRICT_FP_TO_UINT:
3042     if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) {
3043       // Relink the chain.
3044       DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2);
3045       // Replace the new UINT result.
3046       ReplaceNodeWithValue(SDValue(Node, 0), Tmp1);
3047       LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n");
3048       return true;
3049     }
3050     break;
3051   case ISD::VAARG:
3052     Results.push_back(DAG.expandVAArg(Node));
3053     Results.push_back(Results[0].getValue(1));
3054     break;
3055   case ISD::VACOPY:
3056     Results.push_back(DAG.expandVACopy(Node));
3057     break;
3058   case ISD::EXTRACT_VECTOR_ELT:
3059     if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
3060       // This must be an access of the only element.  Return it.
3061       Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
3062                          Node->getOperand(0));
3063     else
3064       Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
3065     Results.push_back(Tmp1);
3066     break;
3067   case ISD::EXTRACT_SUBVECTOR:
3068     Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
3069     break;
3070   case ISD::INSERT_SUBVECTOR:
3071     Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
3072     break;
3073   case ISD::CONCAT_VECTORS:
3074     Results.push_back(ExpandVectorBuildThroughStack(Node));
3075     break;
3076   case ISD::SCALAR_TO_VECTOR:
3077     Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
3078     break;
3079   case ISD::INSERT_VECTOR_ELT:
3080     Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
3081                                               Node->getOperand(1),
3082                                               Node->getOperand(2), dl));
3083     break;
3084   case ISD::VECTOR_SHUFFLE: {
3085     SmallVector<int, 32> NewMask;
3086     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
3087 
3088     EVT VT = Node->getValueType(0);
3089     EVT EltVT = VT.getVectorElementType();
3090     SDValue Op0 = Node->getOperand(0);
3091     SDValue Op1 = Node->getOperand(1);
3092     if (!TLI.isTypeLegal(EltVT)) {
3093       EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
3094 
3095       // BUILD_VECTOR operands are allowed to be wider than the element type.
3096       // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept
3097       // it.
3098       if (NewEltVT.bitsLT(EltVT)) {
3099         // Convert shuffle node.
3100         // If original node was v4i64 and the new EltVT is i32,
3101         // cast operands to v8i32 and re-build the mask.
3102 
3103         // Calculate new VT, the size of the new VT should be equal to original.
3104         EVT NewVT =
3105             EVT::getVectorVT(*DAG.getContext(), NewEltVT,
3106                              VT.getSizeInBits() / NewEltVT.getSizeInBits());
3107         assert(NewVT.bitsEq(VT));
3108 
3109         // cast operands to new VT
3110         Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
3111         Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
3112 
3113         // Convert the shuffle mask
3114         unsigned int factor =
3115                          NewVT.getVectorNumElements()/VT.getVectorNumElements();
3116 
3117         // EltVT gets smaller
3118         assert(factor > 0);
3119 
3120         for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
3121           if (Mask[i] < 0) {
3122             for (unsigned fi = 0; fi < factor; ++fi)
3123               NewMask.push_back(Mask[i]);
3124           }
3125           else {
3126             for (unsigned fi = 0; fi < factor; ++fi)
3127               NewMask.push_back(Mask[i]*factor+fi);
3128           }
3129         }
3130         Mask = NewMask;
3131         VT = NewVT;
3132       }
3133       EltVT = NewEltVT;
3134     }
3135     unsigned NumElems = VT.getVectorNumElements();
3136     SmallVector<SDValue, 16> Ops;
3137     for (unsigned i = 0; i != NumElems; ++i) {
3138       if (Mask[i] < 0) {
3139         Ops.push_back(DAG.getUNDEF(EltVT));
3140         continue;
3141       }
3142       unsigned Idx = Mask[i];
3143       if (Idx < NumElems)
3144         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
3145                                   DAG.getVectorIdxConstant(Idx, dl)));
3146       else
3147         Ops.push_back(
3148             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1,
3149                         DAG.getVectorIdxConstant(Idx - NumElems, dl)));
3150     }
3151 
3152     Tmp1 = DAG.getBuildVector(VT, dl, Ops);
3153     // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
3154     Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
3155     Results.push_back(Tmp1);
3156     break;
3157   }
3158   case ISD::EXTRACT_ELEMENT: {
3159     EVT OpTy = Node->getOperand(0).getValueType();
3160     if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3161       // 1 -> Hi
3162       Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3163                          DAG.getConstant(OpTy.getSizeInBits() / 2, dl,
3164                                          TLI.getShiftAmountTy(
3165                                              Node->getOperand(0).getValueType(),
3166                                              DAG.getDataLayout())));
3167       Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3168     } else {
3169       // 0 -> Lo
3170       Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3171                          Node->getOperand(0));
3172     }
3173     Results.push_back(Tmp1);
3174     break;
3175   }
3176   case ISD::STACKSAVE:
3177     // Expand to CopyFromReg if the target set
3178     // StackPointerRegisterToSaveRestore.
3179     if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3180       Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3181                                            Node->getValueType(0)));
3182       Results.push_back(Results[0].getValue(1));
3183     } else {
3184       Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3185       Results.push_back(Node->getOperand(0));
3186     }
3187     break;
3188   case ISD::STACKRESTORE:
3189     // Expand to CopyToReg if the target set
3190     // StackPointerRegisterToSaveRestore.
3191     if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3192       Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3193                                          Node->getOperand(1)));
3194     } else {
3195       Results.push_back(Node->getOperand(0));
3196     }
3197     break;
3198   case ISD::GET_DYNAMIC_AREA_OFFSET:
3199     Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
3200     Results.push_back(Results[0].getValue(0));
3201     break;
3202   case ISD::FCOPYSIGN:
3203     Results.push_back(ExpandFCOPYSIGN(Node));
3204     break;
3205   case ISD::FNEG:
3206     // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
3207     Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0));
3208     // TODO: If FNEG has fast-math-flags, propagate them to the FSUB.
3209     Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3210                        Node->getOperand(0));
3211     Results.push_back(Tmp1);
3212     break;
3213   case ISD::FABS:
3214     Results.push_back(ExpandFABS(Node));
3215     break;
3216   case ISD::SMIN:
3217   case ISD::SMAX:
3218   case ISD::UMIN:
3219   case ISD::UMAX: {
3220     // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
3221     ISD::CondCode Pred;
3222     switch (Node->getOpcode()) {
3223     default: llvm_unreachable("How did we get here?");
3224     case ISD::SMAX: Pred = ISD::SETGT; break;
3225     case ISD::SMIN: Pred = ISD::SETLT; break;
3226     case ISD::UMAX: Pred = ISD::SETUGT; break;
3227     case ISD::UMIN: Pred = ISD::SETULT; break;
3228     }
3229     Tmp1 = Node->getOperand(0);
3230     Tmp2 = Node->getOperand(1);
3231     Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred);
3232     Results.push_back(Tmp1);
3233     break;
3234   }
3235   case ISD::FMINNUM:
3236   case ISD::FMAXNUM: {
3237     if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG))
3238       Results.push_back(Expanded);
3239     break;
3240   }
3241   case ISD::FSIN:
3242   case ISD::FCOS: {
3243     EVT VT = Node->getValueType(0);
3244     // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
3245     // fcos which share the same operand and both are used.
3246     if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
3247          isSinCosLibcallAvailable(Node, TLI))
3248         && useSinCos(Node)) {
3249       SDVTList VTs = DAG.getVTList(VT, VT);
3250       Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
3251       if (Node->getOpcode() == ISD::FCOS)
3252         Tmp1 = Tmp1.getValue(1);
3253       Results.push_back(Tmp1);
3254     }
3255     break;
3256   }
3257   case ISD::FMAD:
3258     llvm_unreachable("Illegal fmad should never be formed");
3259 
3260   case ISD::FP16_TO_FP:
3261     if (Node->getValueType(0) != MVT::f32) {
3262       // We can extend to types bigger than f32 in two steps without changing
3263       // the result. Since "f16 -> f32" is much more commonly available, give
3264       // CodeGen the option of emitting that before resorting to a libcall.
3265       SDValue Res =
3266           DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0));
3267       Results.push_back(
3268           DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res));
3269     }
3270     break;
3271   case ISD::STRICT_FP16_TO_FP:
3272     if (Node->getValueType(0) != MVT::f32) {
3273       // We can extend to types bigger than f32 in two steps without changing
3274       // the result. Since "f16 -> f32" is much more commonly available, give
3275       // CodeGen the option of emitting that before resorting to a libcall.
3276       SDValue Res =
3277           DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other},
3278                       {Node->getOperand(0), Node->getOperand(1)});
3279       Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
3280                         {Node->getValueType(0), MVT::Other},
3281                         {Res.getValue(1), Res});
3282       Results.push_back(Res);
3283       Results.push_back(Res.getValue(1));
3284     }
3285     break;
3286   case ISD::FP_TO_FP16:
3287     LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n");
3288     if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) {
3289       SDValue Op = Node->getOperand(0);
3290       MVT SVT = Op.getSimpleValueType();
3291       if ((SVT == MVT::f64 || SVT == MVT::f80) &&
3292           TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) {
3293         // Under fastmath, we can expand this node into a fround followed by
3294         // a float-half conversion.
3295         SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op,
3296                                        DAG.getIntPtrConstant(0, dl));
3297         Results.push_back(
3298             DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal));
3299       }
3300     }
3301     break;
3302   case ISD::ConstantFP: {
3303     ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3304     // Check to see if this FP immediate is already legal.
3305     // If this is a legal constant, turn it into a TargetConstantFP node.
3306     if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0),
3307                           DAG.getMachineFunction().getFunction().hasOptSize()))
3308       Results.push_back(ExpandConstantFP(CFP, true));
3309     break;
3310   }
3311   case ISD::Constant: {
3312     ConstantSDNode *CP = cast<ConstantSDNode>(Node);
3313     Results.push_back(ExpandConstant(CP));
3314     break;
3315   }
3316   case ISD::FSUB: {
3317     EVT VT = Node->getValueType(0);
3318     if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3319         TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) {
3320       const SDNodeFlags Flags = Node->getFlags();
3321       Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3322       Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags);
3323       Results.push_back(Tmp1);
3324     }
3325     break;
3326   }
3327   case ISD::SUB: {
3328     EVT VT = Node->getValueType(0);
3329     assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3330            TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3331            "Don't know how to expand this subtraction!");
3332     Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3333                DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
3334                                VT));
3335     Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT));
3336     Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3337     break;
3338   }
3339   case ISD::UREM:
3340   case ISD::SREM: {
3341     EVT VT = Node->getValueType(0);
3342     bool isSigned = Node->getOpcode() == ISD::SREM;
3343     unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3344     unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3345     Tmp2 = Node->getOperand(0);
3346     Tmp3 = Node->getOperand(1);
3347     if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3348       SDVTList VTs = DAG.getVTList(VT, VT);
3349       Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3350       Results.push_back(Tmp1);
3351     } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3352       // X % Y -> X-X/Y*Y
3353       Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3354       Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3355       Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3356       Results.push_back(Tmp1);
3357     }
3358     break;
3359   }
3360   case ISD::UDIV:
3361   case ISD::SDIV: {
3362     bool isSigned = Node->getOpcode() == ISD::SDIV;
3363     unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3364     EVT VT = Node->getValueType(0);
3365     if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3366       SDVTList VTs = DAG.getVTList(VT, VT);
3367       Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3368                          Node->getOperand(1));
3369       Results.push_back(Tmp1);
3370     }
3371     break;
3372   }
3373   case ISD::MULHU:
3374   case ISD::MULHS: {
3375     unsigned ExpandOpcode =
3376         Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI;
3377     EVT VT = Node->getValueType(0);
3378     SDVTList VTs = DAG.getVTList(VT, VT);
3379 
3380     Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3381                        Node->getOperand(1));
3382     Results.push_back(Tmp1.getValue(1));
3383     break;
3384   }
3385   case ISD::UMUL_LOHI:
3386   case ISD::SMUL_LOHI: {
3387     SDValue LHS = Node->getOperand(0);
3388     SDValue RHS = Node->getOperand(1);
3389     MVT VT = LHS.getSimpleValueType();
3390     unsigned MULHOpcode =
3391         Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS;
3392 
3393     if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) {
3394       Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS));
3395       Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS));
3396       break;
3397     }
3398 
3399     SmallVector<SDValue, 4> Halves;
3400     EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext());
3401     assert(TLI.isTypeLegal(HalfType));
3402     if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves,
3403                            HalfType, DAG,
3404                            TargetLowering::MulExpansionKind::Always)) {
3405       for (unsigned i = 0; i < 2; ++i) {
3406         SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]);
3407         SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]);
3408         SDValue Shift = DAG.getConstant(
3409             HalfType.getScalarSizeInBits(), dl,
3410             TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3411         Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3412         Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3413       }
3414       break;
3415     }
3416     break;
3417   }
3418   case ISD::MUL: {
3419     EVT VT = Node->getValueType(0);
3420     SDVTList VTs = DAG.getVTList(VT, VT);
3421     // See if multiply or divide can be lowered using two-result operations.
3422     // We just need the low half of the multiply; try both the signed
3423     // and unsigned forms. If the target supports both SMUL_LOHI and
3424     // UMUL_LOHI, form a preference by checking which forms of plain
3425     // MULH it supports.
3426     bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3427     bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3428     bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3429     bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3430     unsigned OpToUse = 0;
3431     if (HasSMUL_LOHI && !HasMULHS) {
3432       OpToUse = ISD::SMUL_LOHI;
3433     } else if (HasUMUL_LOHI && !HasMULHU) {
3434       OpToUse = ISD::UMUL_LOHI;
3435     } else if (HasSMUL_LOHI) {
3436       OpToUse = ISD::SMUL_LOHI;
3437     } else if (HasUMUL_LOHI) {
3438       OpToUse = ISD::UMUL_LOHI;
3439     }
3440     if (OpToUse) {
3441       Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3442                                     Node->getOperand(1)));
3443       break;
3444     }
3445 
3446     SDValue Lo, Hi;
3447     EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext());
3448     if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) &&
3449         TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) &&
3450         TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
3451         TLI.isOperationLegalOrCustom(ISD::OR, VT) &&
3452         TLI.expandMUL(Node, Lo, Hi, HalfType, DAG,
3453                       TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) {
3454       Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3455       Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi);
3456       SDValue Shift =
3457           DAG.getConstant(HalfType.getSizeInBits(), dl,
3458                           TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3459       Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3460       Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3461     }
3462     break;
3463   }
3464   case ISD::FSHL:
3465   case ISD::FSHR:
3466     if (TLI.expandFunnelShift(Node, Tmp1, DAG))
3467       Results.push_back(Tmp1);
3468     break;
3469   case ISD::ROTL:
3470   case ISD::ROTR:
3471     if (TLI.expandROT(Node, Tmp1, DAG))
3472       Results.push_back(Tmp1);
3473     break;
3474   case ISD::SADDSAT:
3475   case ISD::UADDSAT:
3476   case ISD::SSUBSAT:
3477   case ISD::USUBSAT:
3478     Results.push_back(TLI.expandAddSubSat(Node, DAG));
3479     break;
3480   case ISD::SMULFIX:
3481   case ISD::SMULFIXSAT:
3482   case ISD::UMULFIX:
3483   case ISD::UMULFIXSAT:
3484     Results.push_back(TLI.expandFixedPointMul(Node, DAG));
3485     break;
3486   case ISD::SDIVFIX:
3487   case ISD::SDIVFIXSAT:
3488   case ISD::UDIVFIX:
3489   case ISD::UDIVFIXSAT:
3490     if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node),
3491                                             Node->getOperand(0),
3492                                             Node->getOperand(1),
3493                                             Node->getConstantOperandVal(2),
3494                                             DAG)) {
3495       Results.push_back(V);
3496       break;
3497     }
3498     // FIXME: We might want to retry here with a wider type if we fail, if that
3499     // type is legal.
3500     // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is
3501     // <= 128 (which is the case for all of the default Embedded-C types),
3502     // we will only get here with types and scales that we could always expand
3503     // if we were allowed to generate libcalls to division functions of illegal
3504     // type. But we cannot do that.
3505     llvm_unreachable("Cannot expand DIVFIX!");
3506   case ISD::ADDCARRY:
3507   case ISD::SUBCARRY: {
3508     SDValue LHS = Node->getOperand(0);
3509     SDValue RHS = Node->getOperand(1);
3510     SDValue Carry = Node->getOperand(2);
3511 
3512     bool IsAdd = Node->getOpcode() == ISD::ADDCARRY;
3513 
3514     // Initial add of the 2 operands.
3515     unsigned Op = IsAdd ? ISD::ADD : ISD::SUB;
3516     EVT VT = LHS.getValueType();
3517     SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS);
3518 
3519     // Initial check for overflow.
3520     EVT CarryType = Node->getValueType(1);
3521     EVT SetCCType = getSetCCResultType(Node->getValueType(0));
3522     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
3523     SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC);
3524 
3525     // Add of the sum and the carry.
3526     SDValue One = DAG.getConstant(1, dl, VT);
3527     SDValue CarryExt =
3528         DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One);
3529     SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt);
3530 
3531     // Second check for overflow. If we are adding, we can only overflow if the
3532     // initial sum is all 1s ang the carry is set, resulting in a new sum of 0.
3533     // If we are subtracting, we can only overflow if the initial sum is 0 and
3534     // the carry is set, resulting in a new sum of all 1s.
3535     SDValue Zero = DAG.getConstant(0, dl, VT);
3536     SDValue Overflow2 =
3537         IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ)
3538               : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ);
3539     Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2,
3540                             DAG.getZExtOrTrunc(Carry, dl, SetCCType));
3541 
3542     SDValue ResultCarry =
3543         DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2);
3544 
3545     Results.push_back(Sum2);
3546     Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT));
3547     break;
3548   }
3549   case ISD::SADDO:
3550   case ISD::SSUBO: {
3551     SDValue Result, Overflow;
3552     TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
3553     Results.push_back(Result);
3554     Results.push_back(Overflow);
3555     break;
3556   }
3557   case ISD::UADDO:
3558   case ISD::USUBO: {
3559     SDValue Result, Overflow;
3560     TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
3561     Results.push_back(Result);
3562     Results.push_back(Overflow);
3563     break;
3564   }
3565   case ISD::UMULO:
3566   case ISD::SMULO: {
3567     SDValue Result, Overflow;
3568     if (TLI.expandMULO(Node, Result, Overflow, DAG)) {
3569       Results.push_back(Result);
3570       Results.push_back(Overflow);
3571     }
3572     break;
3573   }
3574   case ISD::BUILD_PAIR: {
3575     EVT PairTy = Node->getValueType(0);
3576     Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3577     Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3578     Tmp2 = DAG.getNode(
3579         ISD::SHL, dl, PairTy, Tmp2,
3580         DAG.getConstant(PairTy.getSizeInBits() / 2, dl,
3581                         TLI.getShiftAmountTy(PairTy, DAG.getDataLayout())));
3582     Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3583     break;
3584   }
3585   case ISD::SELECT:
3586     Tmp1 = Node->getOperand(0);
3587     Tmp2 = Node->getOperand(1);
3588     Tmp3 = Node->getOperand(2);
3589     if (Tmp1.getOpcode() == ISD::SETCC) {
3590       Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3591                              Tmp2, Tmp3,
3592                              cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3593     } else {
3594       Tmp1 = DAG.getSelectCC(dl, Tmp1,
3595                              DAG.getConstant(0, dl, Tmp1.getValueType()),
3596                              Tmp2, Tmp3, ISD::SETNE);
3597     }
3598     Tmp1->setFlags(Node->getFlags());
3599     Results.push_back(Tmp1);
3600     break;
3601   case ISD::BR_JT: {
3602     SDValue Chain = Node->getOperand(0);
3603     SDValue Table = Node->getOperand(1);
3604     SDValue Index = Node->getOperand(2);
3605 
3606     const DataLayout &TD = DAG.getDataLayout();
3607     EVT PTy = TLI.getPointerTy(TD);
3608 
3609     unsigned EntrySize =
3610       DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3611 
3612     // For power-of-two jumptable entry sizes convert multiplication to a shift.
3613     // This transformation needs to be done here since otherwise the MIPS
3614     // backend will end up emitting a three instruction multiply sequence
3615     // instead of a single shift and MSP430 will call a runtime function.
3616     if (llvm::isPowerOf2_32(EntrySize))
3617       Index = DAG.getNode(
3618           ISD::SHL, dl, Index.getValueType(), Index,
3619           DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType()));
3620     else
3621       Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
3622                           DAG.getConstant(EntrySize, dl, Index.getValueType()));
3623     SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(),
3624                                Index, Table);
3625 
3626     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3627     SDValue LD = DAG.getExtLoad(
3628         ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3629         MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT);
3630     Addr = LD;
3631     if (TLI.isJumpTableRelative()) {
3632       // For PIC, the sequence is:
3633       // BRIND(load(Jumptable + index) + RelocBase)
3634       // RelocBase can be JumpTable, GOT or some sort of global base.
3635       Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3636                           TLI.getPICJumpTableRelocBase(Table, DAG));
3637     }
3638 
3639     Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG);
3640     Results.push_back(Tmp1);
3641     break;
3642   }
3643   case ISD::BRCOND:
3644     // Expand brcond's setcc into its constituent parts and create a BR_CC
3645     // Node.
3646     Tmp1 = Node->getOperand(0);
3647     Tmp2 = Node->getOperand(1);
3648     if (Tmp2.getOpcode() == ISD::SETCC) {
3649       Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3650                          Tmp1, Tmp2.getOperand(2),
3651                          Tmp2.getOperand(0), Tmp2.getOperand(1),
3652                          Node->getOperand(2));
3653     } else {
3654       // We test only the i1 bit.  Skip the AND if UNDEF or another AND.
3655       if (Tmp2.isUndef() ||
3656           (Tmp2.getOpcode() == ISD::AND &&
3657            isa<ConstantSDNode>(Tmp2.getOperand(1)) &&
3658            cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1))
3659         Tmp3 = Tmp2;
3660       else
3661         Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3662                            DAG.getConstant(1, dl, Tmp2.getValueType()));
3663       Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3664                          DAG.getCondCode(ISD::SETNE), Tmp3,
3665                          DAG.getConstant(0, dl, Tmp3.getValueType()),
3666                          Node->getOperand(2));
3667     }
3668     Results.push_back(Tmp1);
3669     break;
3670   case ISD::SETCC:
3671   case ISD::STRICT_FSETCC:
3672   case ISD::STRICT_FSETCCS: {
3673     bool IsStrict = Node->getOpcode() != ISD::SETCC;
3674     bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS;
3675     SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
3676     unsigned Offset = IsStrict ? 1 : 0;
3677     Tmp1 = Node->getOperand(0 + Offset);
3678     Tmp2 = Node->getOperand(1 + Offset);
3679     Tmp3 = Node->getOperand(2 + Offset);
3680     bool Legalized =
3681         LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3,
3682                               NeedInvert, dl, Chain, IsSignaling);
3683 
3684     if (Legalized) {
3685       // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3686       // condition code, create a new SETCC node.
3687       if (Tmp3.getNode())
3688         Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3689                            Tmp1, Tmp2, Tmp3, Node->getFlags());
3690 
3691       // If we expanded the SETCC by inverting the condition code, then wrap
3692       // the existing SETCC in a NOT to restore the intended condition.
3693       if (NeedInvert)
3694         Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0));
3695 
3696       Results.push_back(Tmp1);
3697       if (IsStrict)
3698         Results.push_back(Chain);
3699 
3700       break;
3701     }
3702 
3703     // FIXME: It seems Legalized is false iff CCCode is Legal. I don't
3704     // understand if this code is useful for strict nodes.
3705     assert(!IsStrict && "Don't know how to expand for strict nodes.");
3706 
3707     // Otherwise, SETCC for the given comparison type must be completely
3708     // illegal; expand it into a SELECT_CC.
3709     EVT VT = Node->getValueType(0);
3710     int TrueValue;
3711     switch (TLI.getBooleanContents(Tmp1.getValueType())) {
3712     case TargetLowering::ZeroOrOneBooleanContent:
3713     case TargetLowering::UndefinedBooleanContent:
3714       TrueValue = 1;
3715       break;
3716     case TargetLowering::ZeroOrNegativeOneBooleanContent:
3717       TrueValue = -1;
3718       break;
3719     }
3720     Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3721                        DAG.getConstant(TrueValue, dl, VT),
3722                        DAG.getConstant(0, dl, VT),
3723                        Tmp3);
3724     Tmp1->setFlags(Node->getFlags());
3725     Results.push_back(Tmp1);
3726     break;
3727   }
3728   case ISD::SELECT_CC: {
3729     // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS
3730     Tmp1 = Node->getOperand(0);   // LHS
3731     Tmp2 = Node->getOperand(1);   // RHS
3732     Tmp3 = Node->getOperand(2);   // True
3733     Tmp4 = Node->getOperand(3);   // False
3734     EVT VT = Node->getValueType(0);
3735     SDValue Chain;
3736     SDValue CC = Node->getOperand(4);
3737     ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get();
3738 
3739     if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) {
3740       // If the condition code is legal, then we need to expand this
3741       // node using SETCC and SELECT.
3742       EVT CmpVT = Tmp1.getValueType();
3743       assert(!TLI.isOperationExpand(ISD::SELECT, VT) &&
3744              "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
3745              "expanded.");
3746       EVT CCVT = getSetCCResultType(CmpVT);
3747       SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags());
3748       Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4));
3749       break;
3750     }
3751 
3752     // SELECT_CC is legal, so the condition code must not be.
3753     bool Legalized = false;
3754     // Try to legalize by inverting the condition.  This is for targets that
3755     // might support an ordered version of a condition, but not the unordered
3756     // version (or vice versa).
3757     ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType());
3758     if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) {
3759       // Use the new condition code and swap true and false
3760       Legalized = true;
3761       Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC);
3762       Tmp1->setFlags(Node->getFlags());
3763     } else {
3764       // If The inverse is not legal, then try to swap the arguments using
3765       // the inverse condition code.
3766       ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC);
3767       if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) {
3768         // The swapped inverse condition is legal, so swap true and false,
3769         // lhs and rhs.
3770         Legalized = true;
3771         Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC);
3772         Tmp1->setFlags(Node->getFlags());
3773       }
3774     }
3775 
3776     if (!Legalized) {
3777       Legalized = LegalizeSetCCCondCode(getSetCCResultType(Tmp1.getValueType()),
3778                                         Tmp1, Tmp2, CC, NeedInvert, dl, Chain);
3779 
3780       assert(Legalized && "Can't legalize SELECT_CC with legal condition!");
3781 
3782       // If we expanded the SETCC by inverting the condition code, then swap
3783       // the True/False operands to match.
3784       if (NeedInvert)
3785         std::swap(Tmp3, Tmp4);
3786 
3787       // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3788       // condition code, create a new SELECT_CC node.
3789       if (CC.getNode()) {
3790         Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0),
3791                            Tmp1, Tmp2, Tmp3, Tmp4, CC);
3792       } else {
3793         Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType());
3794         CC = DAG.getCondCode(ISD::SETNE);
3795         Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1,
3796                            Tmp2, Tmp3, Tmp4, CC);
3797       }
3798       Tmp1->setFlags(Node->getFlags());
3799     }
3800     Results.push_back(Tmp1);
3801     break;
3802   }
3803   case ISD::BR_CC: {
3804     // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS
3805     SDValue Chain;
3806     Tmp1 = Node->getOperand(0);              // Chain
3807     Tmp2 = Node->getOperand(2);              // LHS
3808     Tmp3 = Node->getOperand(3);              // RHS
3809     Tmp4 = Node->getOperand(1);              // CC
3810 
3811     bool Legalized =
3812         LegalizeSetCCCondCode(getSetCCResultType(Tmp2.getValueType()), Tmp2,
3813                               Tmp3, Tmp4, NeedInvert, dl, Chain);
3814     (void)Legalized;
3815     assert(Legalized && "Can't legalize BR_CC with legal condition!");
3816 
3817     assert(!NeedInvert && "Don't know how to invert BR_CC!");
3818 
3819     // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
3820     // node.
3821     if (Tmp4.getNode()) {
3822       Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1,
3823                          Tmp4, Tmp2, Tmp3, Node->getOperand(4));
3824     } else {
3825       Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType());
3826       Tmp4 = DAG.getCondCode(ISD::SETNE);
3827       Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4,
3828                          Tmp2, Tmp3, Node->getOperand(4));
3829     }
3830     Results.push_back(Tmp1);
3831     break;
3832   }
3833   case ISD::BUILD_VECTOR:
3834     Results.push_back(ExpandBUILD_VECTOR(Node));
3835     break;
3836   case ISD::SPLAT_VECTOR:
3837     Results.push_back(ExpandSPLAT_VECTOR(Node));
3838     break;
3839   case ISD::SRA:
3840   case ISD::SRL:
3841   case ISD::SHL: {
3842     // Scalarize vector SRA/SRL/SHL.
3843     EVT VT = Node->getValueType(0);
3844     assert(VT.isVector() && "Unable to legalize non-vector shift");
3845     assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3846     unsigned NumElem = VT.getVectorNumElements();
3847 
3848     SmallVector<SDValue, 8> Scalars;
3849     for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3850       SDValue Ex =
3851           DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(),
3852                       Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl));
3853       SDValue Sh =
3854           DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(),
3855                       Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl));
3856       Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3857                                     VT.getScalarType(), Ex, Sh));
3858     }
3859 
3860     SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars);
3861     Results.push_back(Result);
3862     break;
3863   }
3864   case ISD::VECREDUCE_FADD:
3865   case ISD::VECREDUCE_FMUL:
3866   case ISD::VECREDUCE_ADD:
3867   case ISD::VECREDUCE_MUL:
3868   case ISD::VECREDUCE_AND:
3869   case ISD::VECREDUCE_OR:
3870   case ISD::VECREDUCE_XOR:
3871   case ISD::VECREDUCE_SMAX:
3872   case ISD::VECREDUCE_SMIN:
3873   case ISD::VECREDUCE_UMAX:
3874   case ISD::VECREDUCE_UMIN:
3875   case ISD::VECREDUCE_FMAX:
3876   case ISD::VECREDUCE_FMIN:
3877     Results.push_back(TLI.expandVecReduce(Node, DAG));
3878     break;
3879   case ISD::GLOBAL_OFFSET_TABLE:
3880   case ISD::GlobalAddress:
3881   case ISD::GlobalTLSAddress:
3882   case ISD::ExternalSymbol:
3883   case ISD::ConstantPool:
3884   case ISD::JumpTable:
3885   case ISD::INTRINSIC_W_CHAIN:
3886   case ISD::INTRINSIC_WO_CHAIN:
3887   case ISD::INTRINSIC_VOID:
3888     // FIXME: Custom lowering for these operations shouldn't return null!
3889     // Return true so that we don't call ConvertNodeToLibcall which also won't
3890     // do anything.
3891     return true;
3892   }
3893 
3894   if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) {
3895     // FIXME: We were asked to expand a strict floating-point operation,
3896     // but there is currently no expansion implemented that would preserve
3897     // the "strict" properties.  For now, we just fall back to the non-strict
3898     // version if that is legal on the target.  The actual mutation of the
3899     // operation will happen in SelectionDAGISel::DoInstructionSelection.
3900     switch (Node->getOpcode()) {
3901     default:
3902       if (TLI.getStrictFPOperationAction(Node->getOpcode(),
3903                                          Node->getValueType(0))
3904           == TargetLowering::Legal)
3905         return true;
3906       break;
3907     case ISD::STRICT_LRINT:
3908     case ISD::STRICT_LLRINT:
3909     case ISD::STRICT_LROUND:
3910     case ISD::STRICT_LLROUND:
3911       // These are registered by the operand type instead of the value
3912       // type. Reflect that here.
3913       if (TLI.getStrictFPOperationAction(Node->getOpcode(),
3914                                          Node->getOperand(1).getValueType())
3915           == TargetLowering::Legal)
3916         return true;
3917       break;
3918     }
3919   }
3920 
3921   // Replace the original node with the legalized result.
3922   if (Results.empty()) {
3923     LLVM_DEBUG(dbgs() << "Cannot expand node\n");
3924     return false;
3925   }
3926 
3927   LLVM_DEBUG(dbgs() << "Successfully expanded node\n");
3928   ReplaceNode(Node, Results.data());
3929   return true;
3930 }
3931 
3932 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) {
3933   LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n");
3934   SmallVector<SDValue, 8> Results;
3935   SDLoc dl(Node);
3936   // FIXME: Check flags on the node to see if we can use a finite call.
3937   unsigned Opc = Node->getOpcode();
3938   switch (Opc) {
3939   case ISD::ATOMIC_FENCE: {
3940     // If the target didn't lower this, lower it to '__sync_synchronize()' call
3941     // FIXME: handle "fence singlethread" more efficiently.
3942     TargetLowering::ArgListTy Args;
3943 
3944     TargetLowering::CallLoweringInfo CLI(DAG);
3945     CLI.setDebugLoc(dl)
3946         .setChain(Node->getOperand(0))
3947         .setLibCallee(
3948             CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3949             DAG.getExternalSymbol("__sync_synchronize",
3950                                   TLI.getPointerTy(DAG.getDataLayout())),
3951             std::move(Args));
3952 
3953     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3954 
3955     Results.push_back(CallResult.second);
3956     break;
3957   }
3958   // By default, atomic intrinsics are marked Legal and lowered. Targets
3959   // which don't support them directly, however, may want libcalls, in which
3960   // case they mark them Expand, and we get here.
3961   case ISD::ATOMIC_SWAP:
3962   case ISD::ATOMIC_LOAD_ADD:
3963   case ISD::ATOMIC_LOAD_SUB:
3964   case ISD::ATOMIC_LOAD_AND:
3965   case ISD::ATOMIC_LOAD_CLR:
3966   case ISD::ATOMIC_LOAD_OR:
3967   case ISD::ATOMIC_LOAD_XOR:
3968   case ISD::ATOMIC_LOAD_NAND:
3969   case ISD::ATOMIC_LOAD_MIN:
3970   case ISD::ATOMIC_LOAD_MAX:
3971   case ISD::ATOMIC_LOAD_UMIN:
3972   case ISD::ATOMIC_LOAD_UMAX:
3973   case ISD::ATOMIC_CMP_SWAP: {
3974     MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
3975     RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT);
3976     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!");
3977 
3978     EVT RetVT = Node->getValueType(0);
3979     SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end());
3980     TargetLowering::MakeLibCallOptions CallOptions;
3981     std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
3982                                                       Ops, CallOptions,
3983                                                       SDLoc(Node),
3984                                                       Node->getOperand(0));
3985     Results.push_back(Tmp.first);
3986     Results.push_back(Tmp.second);
3987     break;
3988   }
3989   case ISD::TRAP: {
3990     // If this operation is not supported, lower it to 'abort()' call
3991     TargetLowering::ArgListTy Args;
3992     TargetLowering::CallLoweringInfo CLI(DAG);
3993     CLI.setDebugLoc(dl)
3994         .setChain(Node->getOperand(0))
3995         .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3996                       DAG.getExternalSymbol(
3997                           "abort", TLI.getPointerTy(DAG.getDataLayout())),
3998                       std::move(Args));
3999     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
4000 
4001     Results.push_back(CallResult.second);
4002     break;
4003   }
4004   case ISD::FMINNUM:
4005   case ISD::STRICT_FMINNUM:
4006     ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64,
4007                     RTLIB::FMIN_F80, RTLIB::FMIN_F128,
4008                     RTLIB::FMIN_PPCF128, Results);
4009     break;
4010   case ISD::FMAXNUM:
4011   case ISD::STRICT_FMAXNUM:
4012     ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64,
4013                     RTLIB::FMAX_F80, RTLIB::FMAX_F128,
4014                     RTLIB::FMAX_PPCF128, Results);
4015     break;
4016   case ISD::FSQRT:
4017   case ISD::STRICT_FSQRT:
4018     ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
4019                     RTLIB::SQRT_F80, RTLIB::SQRT_F128,
4020                     RTLIB::SQRT_PPCF128, Results);
4021     break;
4022   case ISD::FCBRT:
4023     ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64,
4024                     RTLIB::CBRT_F80, RTLIB::CBRT_F128,
4025                     RTLIB::CBRT_PPCF128, Results);
4026     break;
4027   case ISD::FSIN:
4028   case ISD::STRICT_FSIN:
4029     ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
4030                     RTLIB::SIN_F80, RTLIB::SIN_F128,
4031                     RTLIB::SIN_PPCF128, Results);
4032     break;
4033   case ISD::FCOS:
4034   case ISD::STRICT_FCOS:
4035     ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
4036                     RTLIB::COS_F80, RTLIB::COS_F128,
4037                     RTLIB::COS_PPCF128, Results);
4038     break;
4039   case ISD::FSINCOS:
4040     // Expand into sincos libcall.
4041     ExpandSinCosLibCall(Node, Results);
4042     break;
4043   case ISD::FLOG:
4044   case ISD::STRICT_FLOG:
4045     ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80,
4046                     RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results);
4047     break;
4048   case ISD::FLOG2:
4049   case ISD::STRICT_FLOG2:
4050     ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80,
4051                     RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results);
4052     break;
4053   case ISD::FLOG10:
4054   case ISD::STRICT_FLOG10:
4055     ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80,
4056                     RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results);
4057     break;
4058   case ISD::FEXP:
4059   case ISD::STRICT_FEXP:
4060     ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80,
4061                     RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results);
4062     break;
4063   case ISD::FEXP2:
4064   case ISD::STRICT_FEXP2:
4065     ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80,
4066                     RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results);
4067     break;
4068   case ISD::FTRUNC:
4069   case ISD::STRICT_FTRUNC:
4070     ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
4071                     RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
4072                     RTLIB::TRUNC_PPCF128, Results);
4073     break;
4074   case ISD::FFLOOR:
4075   case ISD::STRICT_FFLOOR:
4076     ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
4077                     RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
4078                     RTLIB::FLOOR_PPCF128, Results);
4079     break;
4080   case ISD::FCEIL:
4081   case ISD::STRICT_FCEIL:
4082     ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
4083                     RTLIB::CEIL_F80, RTLIB::CEIL_F128,
4084                     RTLIB::CEIL_PPCF128, Results);
4085     break;
4086   case ISD::FRINT:
4087   case ISD::STRICT_FRINT:
4088     ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
4089                     RTLIB::RINT_F80, RTLIB::RINT_F128,
4090                     RTLIB::RINT_PPCF128, Results);
4091     break;
4092   case ISD::FNEARBYINT:
4093   case ISD::STRICT_FNEARBYINT:
4094     ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
4095                     RTLIB::NEARBYINT_F64,
4096                     RTLIB::NEARBYINT_F80,
4097                     RTLIB::NEARBYINT_F128,
4098                     RTLIB::NEARBYINT_PPCF128, Results);
4099     break;
4100   case ISD::FROUND:
4101   case ISD::STRICT_FROUND:
4102     ExpandFPLibCall(Node, RTLIB::ROUND_F32,
4103                     RTLIB::ROUND_F64,
4104                     RTLIB::ROUND_F80,
4105                     RTLIB::ROUND_F128,
4106                     RTLIB::ROUND_PPCF128, Results);
4107     break;
4108   case ISD::FPOWI:
4109   case ISD::STRICT_FPOWI: {
4110     RTLIB::Libcall LC;
4111     switch (Node->getSimpleValueType(0).SimpleTy) {
4112     default: llvm_unreachable("Unexpected request for libcall!");
4113     case MVT::f32: LC = RTLIB::POWI_F32; break;
4114     case MVT::f64: LC = RTLIB::POWI_F64; break;
4115     case MVT::f80: LC = RTLIB::POWI_F80; break;
4116     case MVT::f128: LC = RTLIB::POWI_F128; break;
4117     case MVT::ppcf128: LC = RTLIB::POWI_PPCF128; break;
4118     }
4119     if (!TLI.getLibcallName(LC)) {
4120       // Some targets don't have a powi libcall; use pow instead.
4121       SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node),
4122                                      Node->getValueType(0),
4123                                      Node->getOperand(1));
4124       Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node),
4125                                     Node->getValueType(0), Node->getOperand(0),
4126                                     Exponent));
4127       break;
4128     }
4129     ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
4130                     RTLIB::POWI_F80, RTLIB::POWI_F128,
4131                     RTLIB::POWI_PPCF128, Results);
4132     break;
4133   }
4134   case ISD::FPOW:
4135   case ISD::STRICT_FPOW:
4136     ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80,
4137                     RTLIB::POW_F128, RTLIB::POW_PPCF128, Results);
4138     break;
4139   case ISD::LROUND:
4140   case ISD::STRICT_LROUND:
4141     ExpandArgFPLibCall(Node, RTLIB::LROUND_F32,
4142                        RTLIB::LROUND_F64, RTLIB::LROUND_F80,
4143                        RTLIB::LROUND_F128,
4144                        RTLIB::LROUND_PPCF128, Results);
4145     break;
4146   case ISD::LLROUND:
4147   case ISD::STRICT_LLROUND:
4148     ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32,
4149                        RTLIB::LLROUND_F64, RTLIB::LLROUND_F80,
4150                        RTLIB::LLROUND_F128,
4151                        RTLIB::LLROUND_PPCF128, Results);
4152     break;
4153   case ISD::LRINT:
4154   case ISD::STRICT_LRINT:
4155     ExpandArgFPLibCall(Node, RTLIB::LRINT_F32,
4156                        RTLIB::LRINT_F64, RTLIB::LRINT_F80,
4157                        RTLIB::LRINT_F128,
4158                        RTLIB::LRINT_PPCF128, Results);
4159     break;
4160   case ISD::LLRINT:
4161   case ISD::STRICT_LLRINT:
4162     ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32,
4163                        RTLIB::LLRINT_F64, RTLIB::LLRINT_F80,
4164                        RTLIB::LLRINT_F128,
4165                        RTLIB::LLRINT_PPCF128, Results);
4166     break;
4167   case ISD::FDIV:
4168   case ISD::STRICT_FDIV:
4169     ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
4170                     RTLIB::DIV_F80, RTLIB::DIV_F128,
4171                     RTLIB::DIV_PPCF128, Results);
4172     break;
4173   case ISD::FREM:
4174   case ISD::STRICT_FREM:
4175     ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
4176                     RTLIB::REM_F80, RTLIB::REM_F128,
4177                     RTLIB::REM_PPCF128, Results);
4178     break;
4179   case ISD::FMA:
4180   case ISD::STRICT_FMA:
4181     ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
4182                     RTLIB::FMA_F80, RTLIB::FMA_F128,
4183                     RTLIB::FMA_PPCF128, Results);
4184     break;
4185   case ISD::FADD:
4186   case ISD::STRICT_FADD:
4187     ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64,
4188                     RTLIB::ADD_F80, RTLIB::ADD_F128,
4189                     RTLIB::ADD_PPCF128, Results);
4190     break;
4191   case ISD::FMUL:
4192   case ISD::STRICT_FMUL:
4193     ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64,
4194                     RTLIB::MUL_F80, RTLIB::MUL_F128,
4195                     RTLIB::MUL_PPCF128, Results);
4196     break;
4197   case ISD::FP16_TO_FP:
4198     if (Node->getValueType(0) == MVT::f32) {
4199       Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
4200     }
4201     break;
4202   case ISD::STRICT_FP16_TO_FP: {
4203     if (Node->getValueType(0) == MVT::f32) {
4204       TargetLowering::MakeLibCallOptions CallOptions;
4205       std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(
4206           DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions,
4207           SDLoc(Node), Node->getOperand(0));
4208       Results.push_back(Tmp.first);
4209       Results.push_back(Tmp.second);
4210     }
4211     break;
4212   }
4213   case ISD::FP_TO_FP16: {
4214     RTLIB::Libcall LC =
4215         RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16);
4216     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16");
4217     Results.push_back(ExpandLibCall(LC, Node, false));
4218     break;
4219   }
4220   case ISD::STRICT_FP_TO_FP16: {
4221     RTLIB::Libcall LC =
4222         RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16);
4223     assert(LC != RTLIB::UNKNOWN_LIBCALL &&
4224            "Unable to expand strict_fp_to_fp16");
4225     TargetLowering::MakeLibCallOptions CallOptions;
4226     std::pair<SDValue, SDValue> Tmp =
4227         TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1),
4228                         CallOptions, SDLoc(Node), Node->getOperand(0));
4229     Results.push_back(Tmp.first);
4230     Results.push_back(Tmp.second);
4231     break;
4232   }
4233   case ISD::FSUB:
4234   case ISD::STRICT_FSUB:
4235     ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64,
4236                     RTLIB::SUB_F80, RTLIB::SUB_F128,
4237                     RTLIB::SUB_PPCF128, Results);
4238     break;
4239   case ISD::SREM:
4240     Results.push_back(ExpandIntLibCall(Node, true,
4241                                        RTLIB::SREM_I8,
4242                                        RTLIB::SREM_I16, RTLIB::SREM_I32,
4243                                        RTLIB::SREM_I64, RTLIB::SREM_I128));
4244     break;
4245   case ISD::UREM:
4246     Results.push_back(ExpandIntLibCall(Node, false,
4247                                        RTLIB::UREM_I8,
4248                                        RTLIB::UREM_I16, RTLIB::UREM_I32,
4249                                        RTLIB::UREM_I64, RTLIB::UREM_I128));
4250     break;
4251   case ISD::SDIV:
4252     Results.push_back(ExpandIntLibCall(Node, true,
4253                                        RTLIB::SDIV_I8,
4254                                        RTLIB::SDIV_I16, RTLIB::SDIV_I32,
4255                                        RTLIB::SDIV_I64, RTLIB::SDIV_I128));
4256     break;
4257   case ISD::UDIV:
4258     Results.push_back(ExpandIntLibCall(Node, false,
4259                                        RTLIB::UDIV_I8,
4260                                        RTLIB::UDIV_I16, RTLIB::UDIV_I32,
4261                                        RTLIB::UDIV_I64, RTLIB::UDIV_I128));
4262     break;
4263   case ISD::SDIVREM:
4264   case ISD::UDIVREM:
4265     // Expand into divrem libcall
4266     ExpandDivRemLibCall(Node, Results);
4267     break;
4268   case ISD::MUL:
4269     Results.push_back(ExpandIntLibCall(Node, false,
4270                                        RTLIB::MUL_I8,
4271                                        RTLIB::MUL_I16, RTLIB::MUL_I32,
4272                                        RTLIB::MUL_I64, RTLIB::MUL_I128));
4273     break;
4274   case ISD::CTLZ_ZERO_UNDEF:
4275     switch (Node->getSimpleValueType(0).SimpleTy) {
4276     default:
4277       llvm_unreachable("LibCall explicitly requested, but not available");
4278     case MVT::i32:
4279       Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false));
4280       break;
4281     case MVT::i64:
4282       Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false));
4283       break;
4284     case MVT::i128:
4285       Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false));
4286       break;
4287     }
4288     break;
4289   }
4290 
4291   // Replace the original node with the legalized result.
4292   if (!Results.empty()) {
4293     LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n");
4294     ReplaceNode(Node, Results.data());
4295   } else
4296     LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n");
4297 }
4298 
4299 // Determine the vector type to use in place of an original scalar element when
4300 // promoting equally sized vectors.
4301 static MVT getPromotedVectorElementType(const TargetLowering &TLI,
4302                                         MVT EltVT, MVT NewEltVT) {
4303   unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits();
4304   MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt);
4305   assert(TLI.isTypeLegal(MidVT) && "unexpected");
4306   return MidVT;
4307 }
4308 
4309 void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
4310   LLVM_DEBUG(dbgs() << "Trying to promote node\n");
4311   SmallVector<SDValue, 8> Results;
4312   MVT OVT = Node->getSimpleValueType(0);
4313   if (Node->getOpcode() == ISD::UINT_TO_FP ||
4314       Node->getOpcode() == ISD::SINT_TO_FP ||
4315       Node->getOpcode() == ISD::SETCC ||
4316       Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
4317       Node->getOpcode() == ISD::INSERT_VECTOR_ELT) {
4318     OVT = Node->getOperand(0).getSimpleValueType();
4319   }
4320   if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP ||
4321       Node->getOpcode() == ISD::STRICT_SINT_TO_FP)
4322     OVT = Node->getOperand(1).getSimpleValueType();
4323   if (Node->getOpcode() == ISD::BR_CC)
4324     OVT = Node->getOperand(2).getSimpleValueType();
4325   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
4326   SDLoc dl(Node);
4327   SDValue Tmp1, Tmp2, Tmp3;
4328   switch (Node->getOpcode()) {
4329   case ISD::CTTZ:
4330   case ISD::CTTZ_ZERO_UNDEF:
4331   case ISD::CTLZ:
4332   case ISD::CTLZ_ZERO_UNDEF:
4333   case ISD::CTPOP:
4334     // Zero extend the argument unless its cttz, then use any_extend.
4335     if (Node->getOpcode() == ISD::CTTZ ||
4336         Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF)
4337       Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0));
4338     else
4339       Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4340 
4341     if (Node->getOpcode() == ISD::CTTZ) {
4342       // The count is the same in the promoted type except if the original
4343       // value was zero.  This can be handled by setting the bit just off
4344       // the top of the original type.
4345       auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(),
4346                                         OVT.getSizeInBits());
4347       Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1,
4348                          DAG.getConstant(TopBit, dl, NVT));
4349     }
4350     // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
4351     // already the correct result.
4352     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4353     if (Node->getOpcode() == ISD::CTLZ ||
4354         Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
4355       // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
4356       Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
4357                           DAG.getConstant(NVT.getSizeInBits() -
4358                                           OVT.getSizeInBits(), dl, NVT));
4359     }
4360     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4361     break;
4362   case ISD::BITREVERSE:
4363   case ISD::BSWAP: {
4364     unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
4365     Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4366     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4367     Tmp1 = DAG.getNode(
4368         ISD::SRL, dl, NVT, Tmp1,
4369         DAG.getConstant(DiffBits, dl,
4370                         TLI.getShiftAmountTy(NVT, DAG.getDataLayout())));
4371 
4372     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4373     break;
4374   }
4375   case ISD::FP_TO_UINT:
4376   case ISD::STRICT_FP_TO_UINT:
4377   case ISD::FP_TO_SINT:
4378   case ISD::STRICT_FP_TO_SINT:
4379     PromoteLegalFP_TO_INT(Node, dl, Results);
4380     break;
4381   case ISD::UINT_TO_FP:
4382   case ISD::STRICT_UINT_TO_FP:
4383   case ISD::SINT_TO_FP:
4384   case ISD::STRICT_SINT_TO_FP:
4385     PromoteLegalINT_TO_FP(Node, dl, Results);
4386     break;
4387   case ISD::VAARG: {
4388     SDValue Chain = Node->getOperand(0); // Get the chain.
4389     SDValue Ptr = Node->getOperand(1); // Get the pointer.
4390 
4391     unsigned TruncOp;
4392     if (OVT.isVector()) {
4393       TruncOp = ISD::BITCAST;
4394     } else {
4395       assert(OVT.isInteger()
4396         && "VAARG promotion is supported only for vectors or integer types");
4397       TruncOp = ISD::TRUNCATE;
4398     }
4399 
4400     // Perform the larger operation, then convert back
4401     Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
4402              Node->getConstantOperandVal(3));
4403     Chain = Tmp1.getValue(1);
4404 
4405     Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
4406 
4407     // Modified the chain result - switch anything that used the old chain to
4408     // use the new one.
4409     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
4410     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
4411     if (UpdatedNodes) {
4412       UpdatedNodes->insert(Tmp2.getNode());
4413       UpdatedNodes->insert(Chain.getNode());
4414     }
4415     ReplacedNode(Node);
4416     break;
4417   }
4418   case ISD::MUL:
4419   case ISD::SDIV:
4420   case ISD::SREM:
4421   case ISD::UDIV:
4422   case ISD::UREM:
4423   case ISD::AND:
4424   case ISD::OR:
4425   case ISD::XOR: {
4426     unsigned ExtOp, TruncOp;
4427     if (OVT.isVector()) {
4428       ExtOp   = ISD::BITCAST;
4429       TruncOp = ISD::BITCAST;
4430     } else {
4431       assert(OVT.isInteger() && "Cannot promote logic operation");
4432 
4433       switch (Node->getOpcode()) {
4434       default:
4435         ExtOp = ISD::ANY_EXTEND;
4436         break;
4437       case ISD::SDIV:
4438       case ISD::SREM:
4439         ExtOp = ISD::SIGN_EXTEND;
4440         break;
4441       case ISD::UDIV:
4442       case ISD::UREM:
4443         ExtOp = ISD::ZERO_EXTEND;
4444         break;
4445       }
4446       TruncOp = ISD::TRUNCATE;
4447     }
4448     // Promote each of the values to the new type.
4449     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4450     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4451     // Perform the larger operation, then convert back
4452     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4453     Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
4454     break;
4455   }
4456   case ISD::UMUL_LOHI:
4457   case ISD::SMUL_LOHI: {
4458     // Promote to a multiply in a wider integer type.
4459     unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND
4460                                                          : ISD::SIGN_EXTEND;
4461     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4462     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4463     Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2);
4464 
4465     auto &DL = DAG.getDataLayout();
4466     unsigned OriginalSize = OVT.getScalarSizeInBits();
4467     Tmp2 = DAG.getNode(
4468         ISD::SRL, dl, NVT, Tmp1,
4469         DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT)));
4470     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4471     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2));
4472     break;
4473   }
4474   case ISD::SELECT: {
4475     unsigned ExtOp, TruncOp;
4476     if (Node->getValueType(0).isVector() ||
4477         Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) {
4478       ExtOp   = ISD::BITCAST;
4479       TruncOp = ISD::BITCAST;
4480     } else if (Node->getValueType(0).isInteger()) {
4481       ExtOp   = ISD::ANY_EXTEND;
4482       TruncOp = ISD::TRUNCATE;
4483     } else {
4484       ExtOp   = ISD::FP_EXTEND;
4485       TruncOp = ISD::FP_ROUND;
4486     }
4487     Tmp1 = Node->getOperand(0);
4488     // Promote each of the values to the new type.
4489     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4490     Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4491     // Perform the larger operation, then round down.
4492     Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
4493     Tmp1->setFlags(Node->getFlags());
4494     if (TruncOp != ISD::FP_ROUND)
4495       Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
4496     else
4497       Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
4498                          DAG.getIntPtrConstant(0, dl));
4499     Results.push_back(Tmp1);
4500     break;
4501   }
4502   case ISD::VECTOR_SHUFFLE: {
4503     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
4504 
4505     // Cast the two input vectors.
4506     Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
4507     Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
4508 
4509     // Convert the shuffle mask to the right # elements.
4510     Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
4511     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
4512     Results.push_back(Tmp1);
4513     break;
4514   }
4515   case ISD::SETCC: {
4516     unsigned ExtOp = ISD::FP_EXTEND;
4517     if (NVT.isInteger()) {
4518       ISD::CondCode CCCode =
4519         cast<CondCodeSDNode>(Node->getOperand(2))->get();
4520       ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4521     }
4522     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4523     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4524     Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1,
4525                                   Tmp2, Node->getOperand(2), Node->getFlags()));
4526     break;
4527   }
4528   case ISD::BR_CC: {
4529     unsigned ExtOp = ISD::FP_EXTEND;
4530     if (NVT.isInteger()) {
4531       ISD::CondCode CCCode =
4532         cast<CondCodeSDNode>(Node->getOperand(1))->get();
4533       ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4534     }
4535     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4536     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3));
4537     Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0),
4538                                   Node->getOperand(0), Node->getOperand(1),
4539                                   Tmp1, Tmp2, Node->getOperand(4)));
4540     break;
4541   }
4542   case ISD::FADD:
4543   case ISD::FSUB:
4544   case ISD::FMUL:
4545   case ISD::FDIV:
4546   case ISD::FREM:
4547   case ISD::FMINNUM:
4548   case ISD::FMAXNUM:
4549   case ISD::FPOW:
4550     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4551     Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4552     Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2,
4553                        Node->getFlags());
4554     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4555                                   Tmp3, DAG.getIntPtrConstant(0, dl)));
4556     break;
4557   case ISD::STRICT_FREM:
4558   case ISD::STRICT_FPOW:
4559     Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4560                        {Node->getOperand(0), Node->getOperand(1)});
4561     Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4562                        {Node->getOperand(0), Node->getOperand(2)});
4563     Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1),
4564                        Tmp2.getValue(1));
4565     Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other},
4566                        {Tmp3, Tmp1, Tmp2});
4567     Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other},
4568                        {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)});
4569     Results.push_back(Tmp1);
4570     Results.push_back(Tmp1.getValue(1));
4571     break;
4572   case ISD::FMA:
4573     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4574     Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4575     Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2));
4576     Results.push_back(
4577         DAG.getNode(ISD::FP_ROUND, dl, OVT,
4578                     DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3),
4579                     DAG.getIntPtrConstant(0, dl)));
4580     break;
4581   case ISD::FCOPYSIGN:
4582   case ISD::FPOWI: {
4583     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4584     Tmp2 = Node->getOperand(1);
4585     Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4586 
4587     // fcopysign doesn't change anything but the sign bit, so
4588     //   (fp_round (fcopysign (fpext a), b))
4589     // is as precise as
4590     //   (fp_round (fpext a))
4591     // which is a no-op. Mark it as a TRUNCating FP_ROUND.
4592     const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN);
4593     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4594                                   Tmp3, DAG.getIntPtrConstant(isTrunc, dl)));
4595     break;
4596   }
4597   case ISD::FFLOOR:
4598   case ISD::FCEIL:
4599   case ISD::FRINT:
4600   case ISD::FNEARBYINT:
4601   case ISD::FROUND:
4602   case ISD::FTRUNC:
4603   case ISD::FNEG:
4604   case ISD::FSQRT:
4605   case ISD::FSIN:
4606   case ISD::FCOS:
4607   case ISD::FLOG:
4608   case ISD::FLOG2:
4609   case ISD::FLOG10:
4610   case ISD::FABS:
4611   case ISD::FEXP:
4612   case ISD::FEXP2:
4613     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4614     Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4615     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4616                                   Tmp2, DAG.getIntPtrConstant(0, dl)));
4617     break;
4618   case ISD::STRICT_FFLOOR:
4619   case ISD::STRICT_FCEIL:
4620   case ISD::STRICT_FSIN:
4621   case ISD::STRICT_FCOS:
4622   case ISD::STRICT_FLOG:
4623   case ISD::STRICT_FLOG10:
4624   case ISD::STRICT_FEXP:
4625     Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4626                        {Node->getOperand(0), Node->getOperand(1)});
4627     Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other},
4628                        {Tmp1.getValue(1), Tmp1});
4629     Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other},
4630                        {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)});
4631     Results.push_back(Tmp3);
4632     Results.push_back(Tmp3.getValue(1));
4633     break;
4634   case ISD::BUILD_VECTOR: {
4635     MVT EltVT = OVT.getVectorElementType();
4636     MVT NewEltVT = NVT.getVectorElementType();
4637 
4638     // Handle bitcasts to a different vector type with the same total bit size
4639     //
4640     // e.g. v2i64 = build_vector i64:x, i64:y => v4i32
4641     //  =>
4642     //  v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y))
4643 
4644     assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4645            "Invalid promote type for build_vector");
4646     assert(NewEltVT.bitsLT(EltVT) && "not handled");
4647 
4648     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4649 
4650     SmallVector<SDValue, 8> NewOps;
4651     for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) {
4652       SDValue Op = Node->getOperand(I);
4653       NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op));
4654     }
4655 
4656     SDLoc SL(Node);
4657     SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps);
4658     SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4659     Results.push_back(CvtVec);
4660     break;
4661   }
4662   case ISD::EXTRACT_VECTOR_ELT: {
4663     MVT EltVT = OVT.getVectorElementType();
4664     MVT NewEltVT = NVT.getVectorElementType();
4665 
4666     // Handle bitcasts to a different vector type with the same total bit size.
4667     //
4668     // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32
4669     //  =>
4670     //  v4i32:castx = bitcast x:v2i64
4671     //
4672     // i64 = bitcast
4673     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
4674     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
4675     //
4676 
4677     assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4678            "Invalid promote type for extract_vector_elt");
4679     assert(NewEltVT.bitsLT(EltVT) && "not handled");
4680 
4681     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4682     unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4683 
4684     SDValue Idx = Node->getOperand(1);
4685     EVT IdxVT = Idx.getValueType();
4686     SDLoc SL(Node);
4687     SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT);
4688     SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4689 
4690     SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4691 
4692     SmallVector<SDValue, 8> NewOps;
4693     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4694       SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4695       SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4696 
4697       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4698                                 CastVec, TmpIdx);
4699       NewOps.push_back(Elt);
4700     }
4701 
4702     SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps);
4703     Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec));
4704     break;
4705   }
4706   case ISD::INSERT_VECTOR_ELT: {
4707     MVT EltVT = OVT.getVectorElementType();
4708     MVT NewEltVT = NVT.getVectorElementType();
4709 
4710     // Handle bitcasts to a different vector type with the same total bit size
4711     //
4712     // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32
4713     //  =>
4714     //  v4i32:castx = bitcast x:v2i64
4715     //  v2i32:casty = bitcast y:i64
4716     //
4717     // v2i64 = bitcast
4718     //   (v4i32 insert_vector_elt
4719     //       (v4i32 insert_vector_elt v4i32:castx,
4720     //                                (extract_vector_elt casty, 0), 2 * z),
4721     //        (extract_vector_elt casty, 1), (2 * z + 1))
4722 
4723     assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4724            "Invalid promote type for insert_vector_elt");
4725     assert(NewEltVT.bitsLT(EltVT) && "not handled");
4726 
4727     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4728     unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4729 
4730     SDValue Val = Node->getOperand(1);
4731     SDValue Idx = Node->getOperand(2);
4732     EVT IdxVT = Idx.getValueType();
4733     SDLoc SL(Node);
4734 
4735     SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT);
4736     SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4737 
4738     SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4739     SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4740 
4741     SDValue NewVec = CastVec;
4742     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4743       SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4744       SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4745 
4746       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4747                                 CastVal, IdxOffset);
4748 
4749       NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT,
4750                            NewVec, Elt, InEltIdx);
4751     }
4752 
4753     Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec));
4754     break;
4755   }
4756   case ISD::SCALAR_TO_VECTOR: {
4757     MVT EltVT = OVT.getVectorElementType();
4758     MVT NewEltVT = NVT.getVectorElementType();
4759 
4760     // Handle bitcasts to different vector type with the same total bit size.
4761     //
4762     // e.g. v2i64 = scalar_to_vector x:i64
4763     //   =>
4764     //  concat_vectors (v2i32 bitcast x:i64), (v2i32 undef)
4765     //
4766 
4767     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4768     SDValue Val = Node->getOperand(0);
4769     SDLoc SL(Node);
4770 
4771     SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4772     SDValue Undef = DAG.getUNDEF(MidVT);
4773 
4774     SmallVector<SDValue, 8> NewElts;
4775     NewElts.push_back(CastVal);
4776     for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I)
4777       NewElts.push_back(Undef);
4778 
4779     SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts);
4780     SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4781     Results.push_back(CvtVec);
4782     break;
4783   }
4784   case ISD::ATOMIC_SWAP: {
4785     AtomicSDNode *AM = cast<AtomicSDNode>(Node);
4786     SDLoc SL(Node);
4787     SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal());
4788     assert(NVT.getSizeInBits() == OVT.getSizeInBits() &&
4789            "unexpected promotion type");
4790     assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() &&
4791            "unexpected atomic_swap with illegal type");
4792 
4793     SDValue NewAtomic
4794       = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT,
4795                       DAG.getVTList(NVT, MVT::Other),
4796                       { AM->getChain(), AM->getBasePtr(), CastVal },
4797                       AM->getMemOperand());
4798     Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic));
4799     Results.push_back(NewAtomic.getValue(1));
4800     break;
4801   }
4802   }
4803 
4804   // Replace the original node with the legalized result.
4805   if (!Results.empty()) {
4806     LLVM_DEBUG(dbgs() << "Successfully promoted node\n");
4807     ReplaceNode(Node, Results.data());
4808   } else
4809     LLVM_DEBUG(dbgs() << "Could not promote node\n");
4810 }
4811 
4812 /// This is the entry point for the file.
4813 void SelectionDAG::Legalize() {
4814   AssignTopologicalOrder();
4815 
4816   SmallPtrSet<SDNode *, 16> LegalizedNodes;
4817   // Use a delete listener to remove nodes which were deleted during
4818   // legalization from LegalizeNodes. This is needed to handle the situation
4819   // where a new node is allocated by the object pool to the same address of a
4820   // previously deleted node.
4821   DAGNodeDeletedListener DeleteListener(
4822       *this,
4823       [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); });
4824 
4825   SelectionDAGLegalize Legalizer(*this, LegalizedNodes);
4826 
4827   // Visit all the nodes. We start in topological order, so that we see
4828   // nodes with their original operands intact. Legalization can produce
4829   // new nodes which may themselves need to be legalized. Iterate until all
4830   // nodes have been legalized.
4831   while (true) {
4832     bool AnyLegalized = false;
4833     for (auto NI = allnodes_end(); NI != allnodes_begin();) {
4834       --NI;
4835 
4836       SDNode *N = &*NI;
4837       if (N->use_empty() && N != getRoot().getNode()) {
4838         ++NI;
4839         DeleteNode(N);
4840         continue;
4841       }
4842 
4843       if (LegalizedNodes.insert(N).second) {
4844         AnyLegalized = true;
4845         Legalizer.LegalizeOp(N);
4846 
4847         if (N->use_empty() && N != getRoot().getNode()) {
4848           ++NI;
4849           DeleteNode(N);
4850         }
4851       }
4852     }
4853     if (!AnyLegalized)
4854       break;
4855 
4856   }
4857 
4858   // Remove dead nodes now.
4859   RemoveDeadNodes();
4860 }
4861 
4862 bool SelectionDAG::LegalizeOp(SDNode *N,
4863                               SmallSetVector<SDNode *, 16> &UpdatedNodes) {
4864   SmallPtrSet<SDNode *, 16> LegalizedNodes;
4865   SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes);
4866 
4867   // Directly insert the node in question, and legalize it. This will recurse
4868   // as needed through operands.
4869   LegalizedNodes.insert(N);
4870   Legalizer.LegalizeOp(N);
4871 
4872   return LegalizedNodes.count(N);
4873 }
4874