1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::Legalize method. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/CodeGen/ISDOpcodes.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/RuntimeLibcalls.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/SelectionDAGNodes.h" 28 #include "llvm/CodeGen/TargetFrameLowering.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/CodeGen/ValueTypes.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstdint> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "legalizedag" 57 58 namespace { 59 60 /// Keeps track of state when getting the sign of a floating-point value as an 61 /// integer. 62 struct FloatSignAsInt { 63 EVT FloatVT; 64 SDValue Chain; 65 SDValue FloatPtr; 66 SDValue IntPtr; 67 MachinePointerInfo IntPointerInfo; 68 MachinePointerInfo FloatPointerInfo; 69 SDValue IntValue; 70 APInt SignMask; 71 uint8_t SignBit; 72 }; 73 74 //===----------------------------------------------------------------------===// 75 /// This takes an arbitrary SelectionDAG as input and 76 /// hacks on it until the target machine can handle it. This involves 77 /// eliminating value sizes the machine cannot handle (promoting small sizes to 78 /// large sizes or splitting up large values into small values) as well as 79 /// eliminating operations the machine cannot handle. 80 /// 81 /// This code also does a small amount of optimization and recognition of idioms 82 /// as part of its processing. For example, if a target does not support a 83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 84 /// will attempt merge setcc and brc instructions into brcc's. 85 class SelectionDAGLegalize { 86 const TargetMachine &TM; 87 const TargetLowering &TLI; 88 SelectionDAG &DAG; 89 90 /// The set of nodes which have already been legalized. We hold a 91 /// reference to it in order to update as necessary on node deletion. 92 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 93 94 /// A set of all the nodes updated during legalization. 95 SmallSetVector<SDNode *, 16> *UpdatedNodes; 96 97 EVT getSetCCResultType(EVT VT) const { 98 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 99 } 100 101 // Libcall insertion helpers. 102 103 public: 104 SelectionDAGLegalize(SelectionDAG &DAG, 105 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 106 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 107 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 108 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 109 110 /// Legalizes the given operation. 111 void LegalizeOp(SDNode *Node); 112 113 private: 114 SDValue OptimizeFloatStore(StoreSDNode *ST); 115 116 void LegalizeLoadOps(SDNode *Node); 117 void LegalizeStoreOps(SDNode *Node); 118 119 /// Some targets cannot handle a variable 120 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 121 /// is necessary to spill the vector being inserted into to memory, perform 122 /// the insert there, and then read the result back. 123 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 124 const SDLoc &dl); 125 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 126 const SDLoc &dl); 127 128 /// Return a vector shuffle operation which 129 /// performs the same shuffe in terms of order or result bytes, but on a type 130 /// whose vector element type is narrower than the original shuffle type. 131 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 132 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 133 SDValue N1, SDValue N2, 134 ArrayRef<int> Mask) const; 135 136 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 137 bool &NeedInvert, const SDLoc &dl, SDValue &Chain, 138 bool IsSignaling = false); 139 140 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 141 142 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 143 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 144 RTLIB::Libcall Call_F128, 145 RTLIB::Libcall Call_PPCF128, 146 SmallVectorImpl<SDValue> &Results); 147 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 148 RTLIB::Libcall Call_I8, 149 RTLIB::Libcall Call_I16, 150 RTLIB::Libcall Call_I32, 151 RTLIB::Libcall Call_I64, 152 RTLIB::Libcall Call_I128); 153 void ExpandArgFPLibCall(SDNode *Node, 154 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, 155 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, 156 RTLIB::Libcall Call_PPCF128, 157 SmallVectorImpl<SDValue> &Results); 158 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 159 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 160 161 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 162 const SDLoc &dl); 163 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 164 const SDLoc &dl, SDValue ChainIn); 165 SDValue ExpandBUILD_VECTOR(SDNode *Node); 166 SDValue ExpandSPLAT_VECTOR(SDNode *Node); 167 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 168 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 169 SmallVectorImpl<SDValue> &Results); 170 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 171 SDValue Value) const; 172 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 173 SDValue NewIntValue) const; 174 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 175 SDValue ExpandFABS(SDNode *Node) const; 176 SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain); 177 void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl, 178 SmallVectorImpl<SDValue> &Results); 179 void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 180 SmallVectorImpl<SDValue> &Results); 181 182 SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl); 183 SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl); 184 185 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 186 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 187 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 188 189 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 190 SDValue ExpandConstant(ConstantSDNode *CP); 191 192 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 193 bool ExpandNode(SDNode *Node); 194 void ConvertNodeToLibcall(SDNode *Node); 195 void PromoteNode(SDNode *Node); 196 197 public: 198 // Node replacement helpers 199 200 void ReplacedNode(SDNode *N) { 201 LegalizedNodes.erase(N); 202 if (UpdatedNodes) 203 UpdatedNodes->insert(N); 204 } 205 206 void ReplaceNode(SDNode *Old, SDNode *New) { 207 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 208 dbgs() << " with: "; New->dump(&DAG)); 209 210 assert(Old->getNumValues() == New->getNumValues() && 211 "Replacing one node with another that produces a different number " 212 "of values!"); 213 DAG.ReplaceAllUsesWith(Old, New); 214 if (UpdatedNodes) 215 UpdatedNodes->insert(New); 216 ReplacedNode(Old); 217 } 218 219 void ReplaceNode(SDValue Old, SDValue New) { 220 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 221 dbgs() << " with: "; New->dump(&DAG)); 222 223 DAG.ReplaceAllUsesWith(Old, New); 224 if (UpdatedNodes) 225 UpdatedNodes->insert(New.getNode()); 226 ReplacedNode(Old.getNode()); 227 } 228 229 void ReplaceNode(SDNode *Old, const SDValue *New) { 230 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 231 232 DAG.ReplaceAllUsesWith(Old, New); 233 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 234 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); 235 New[i]->dump(&DAG)); 236 if (UpdatedNodes) 237 UpdatedNodes->insert(New[i].getNode()); 238 } 239 ReplacedNode(Old); 240 } 241 242 void ReplaceNodeWithValue(SDValue Old, SDValue New) { 243 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 244 dbgs() << " with: "; New->dump(&DAG)); 245 246 DAG.ReplaceAllUsesOfValueWith(Old, New); 247 if (UpdatedNodes) 248 UpdatedNodes->insert(New.getNode()); 249 ReplacedNode(Old.getNode()); 250 } 251 }; 252 253 } // end anonymous namespace 254 255 /// Return a vector shuffle operation which 256 /// performs the same shuffle in terms of order or result bytes, but on a type 257 /// whose vector element type is narrower than the original shuffle type. 258 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 259 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 260 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 261 ArrayRef<int> Mask) const { 262 unsigned NumMaskElts = VT.getVectorNumElements(); 263 unsigned NumDestElts = NVT.getVectorNumElements(); 264 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 265 266 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 267 268 if (NumEltsGrowth == 1) 269 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 270 271 SmallVector<int, 8> NewMask; 272 for (unsigned i = 0; i != NumMaskElts; ++i) { 273 int Idx = Mask[i]; 274 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 275 if (Idx < 0) 276 NewMask.push_back(-1); 277 else 278 NewMask.push_back(Idx * NumEltsGrowth + j); 279 } 280 } 281 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 282 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 283 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 284 } 285 286 /// Expands the ConstantFP node to an integer constant or 287 /// a load from the constant pool. 288 SDValue 289 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 290 bool Extend = false; 291 SDLoc dl(CFP); 292 293 // If a FP immediate is precise when represented as a float and if the 294 // target can do an extending load from float to double, we put it into 295 // the constant pool as a float, even if it's is statically typed as a 296 // double. This shrinks FP constants and canonicalizes them for targets where 297 // an FP extending load is the same cost as a normal load (such as on the x87 298 // fp stack or PPC FP unit). 299 EVT VT = CFP->getValueType(0); 300 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 301 if (!UseCP) { 302 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 303 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 304 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 305 } 306 307 APFloat APF = CFP->getValueAPF(); 308 EVT OrigVT = VT; 309 EVT SVT = VT; 310 311 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 312 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 313 if (!APF.isSignaling()) { 314 while (SVT != MVT::f32 && SVT != MVT::f16) { 315 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 316 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 317 // Only do this if the target has a native EXTLOAD instruction from 318 // smaller type. 319 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 320 TLI.ShouldShrinkFPConstant(OrigVT)) { 321 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 322 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 323 VT = SVT; 324 Extend = true; 325 } 326 } 327 } 328 329 SDValue CPIdx = 330 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 331 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 332 if (Extend) { 333 SDValue Result = DAG.getExtLoad( 334 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 335 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 336 Alignment); 337 return Result; 338 } 339 SDValue Result = DAG.getLoad( 340 OrigVT, dl, DAG.getEntryNode(), CPIdx, 341 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 342 return Result; 343 } 344 345 /// Expands the Constant node to a load from the constant pool. 346 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 347 SDLoc dl(CP); 348 EVT VT = CP->getValueType(0); 349 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 350 TLI.getPointerTy(DAG.getDataLayout())); 351 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 352 SDValue Result = DAG.getLoad( 353 VT, dl, DAG.getEntryNode(), CPIdx, 354 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 355 return Result; 356 } 357 358 /// Some target cannot handle a variable insertion index for the 359 /// INSERT_VECTOR_ELT instruction. In this case, it 360 /// is necessary to spill the vector being inserted into to memory, perform 361 /// the insert there, and then read the result back. 362 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 363 SDValue Val, 364 SDValue Idx, 365 const SDLoc &dl) { 366 SDValue Tmp1 = Vec; 367 SDValue Tmp2 = Val; 368 SDValue Tmp3 = Idx; 369 370 // If the target doesn't support this, we have to spill the input vector 371 // to a temporary stack slot, update the element, then reload it. This is 372 // badness. We could also load the value into a vector register (either 373 // with a "move to register" or "extload into register" instruction, then 374 // permute it into place, if the idx is a constant and if the idx is 375 // supported by the target. 376 EVT VT = Tmp1.getValueType(); 377 EVT EltVT = VT.getVectorElementType(); 378 SDValue StackPtr = DAG.CreateStackTemporary(VT); 379 380 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 381 382 // Store the vector. 383 SDValue Ch = DAG.getStore( 384 DAG.getEntryNode(), dl, Tmp1, StackPtr, 385 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 386 387 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 388 389 // Store the scalar value. 390 Ch = DAG.getTruncStore( 391 Ch, dl, Tmp2, StackPtr2, 392 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT); 393 // Load the updated vector. 394 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 395 DAG.getMachineFunction(), SPFI)); 396 } 397 398 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 399 SDValue Idx, 400 const SDLoc &dl) { 401 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 402 // SCALAR_TO_VECTOR requires that the type of the value being inserted 403 // match the element type of the vector being created, except for 404 // integers in which case the inserted value can be over width. 405 EVT EltVT = Vec.getValueType().getVectorElementType(); 406 if (Val.getValueType() == EltVT || 407 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 408 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 409 Vec.getValueType(), Val); 410 411 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 412 // We generate a shuffle of InVec and ScVec, so the shuffle mask 413 // should be 0,1,2,3,4,5... with the appropriate element replaced with 414 // elt 0 of the RHS. 415 SmallVector<int, 8> ShufOps; 416 for (unsigned i = 0; i != NumElts; ++i) 417 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 418 419 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 420 } 421 } 422 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 423 } 424 425 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 426 if (!ISD::isNormalStore(ST)) 427 return SDValue(); 428 429 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); 430 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 431 // FIXME: We shouldn't do this for TargetConstantFP's. 432 // FIXME: move this to the DAG Combiner! Note that we can't regress due 433 // to phase ordering between legalized code and the dag combiner. This 434 // probably means that we need to integrate dag combiner and legalizer 435 // together. 436 // We generally can't do this one for long doubles. 437 SDValue Chain = ST->getChain(); 438 SDValue Ptr = ST->getBasePtr(); 439 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 440 AAMDNodes AAInfo = ST->getAAInfo(); 441 SDLoc dl(ST); 442 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 443 if (CFP->getValueType(0) == MVT::f32 && 444 TLI.isTypeLegal(MVT::i32)) { 445 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 446 bitcastToAPInt().zextOrTrunc(32), 447 SDLoc(CFP), MVT::i32); 448 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 449 ST->getOriginalAlign(), MMOFlags, AAInfo); 450 } 451 452 if (CFP->getValueType(0) == MVT::f64) { 453 // If this target supports 64-bit registers, do a single 64-bit store. 454 if (TLI.isTypeLegal(MVT::i64)) { 455 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 456 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 457 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 458 ST->getOriginalAlign(), MMOFlags, AAInfo); 459 } 460 461 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 462 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 463 // stores. If the target supports neither 32- nor 64-bits, this 464 // xform is certainly not worth it. 465 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 466 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 467 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 468 if (DAG.getDataLayout().isBigEndian()) 469 std::swap(Lo, Hi); 470 471 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), 472 ST->getOriginalAlign(), MMOFlags, AAInfo); 473 Ptr = DAG.getMemBasePlusOffset(Ptr, 4, dl); 474 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 475 ST->getPointerInfo().getWithOffset(4), 476 ST->getOriginalAlign(), MMOFlags, AAInfo); 477 478 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 479 } 480 } 481 } 482 return SDValue(nullptr, 0); 483 } 484 485 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 486 StoreSDNode *ST = cast<StoreSDNode>(Node); 487 SDValue Chain = ST->getChain(); 488 SDValue Ptr = ST->getBasePtr(); 489 SDLoc dl(Node); 490 491 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 492 AAMDNodes AAInfo = ST->getAAInfo(); 493 494 if (!ST->isTruncatingStore()) { 495 LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); 496 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 497 ReplaceNode(ST, OptStore); 498 return; 499 } 500 501 SDValue Value = ST->getValue(); 502 MVT VT = Value.getSimpleValueType(); 503 switch (TLI.getOperationAction(ISD::STORE, VT)) { 504 default: llvm_unreachable("This action is not supported yet!"); 505 case TargetLowering::Legal: { 506 // If this is an unaligned store and the target doesn't support it, 507 // expand it. 508 EVT MemVT = ST->getMemoryVT(); 509 const DataLayout &DL = DAG.getDataLayout(); 510 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 511 *ST->getMemOperand())) { 512 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 513 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 514 ReplaceNode(SDValue(ST, 0), Result); 515 } else 516 LLVM_DEBUG(dbgs() << "Legal store\n"); 517 break; 518 } 519 case TargetLowering::Custom: { 520 LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); 521 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 522 if (Res && Res != SDValue(Node, 0)) 523 ReplaceNode(SDValue(Node, 0), Res); 524 return; 525 } 526 case TargetLowering::Promote: { 527 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 528 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 529 "Can only promote stores to same size type"); 530 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 531 SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 532 ST->getOriginalAlign(), MMOFlags, AAInfo); 533 ReplaceNode(SDValue(Node, 0), Result); 534 break; 535 } 536 } 537 return; 538 } 539 540 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); 541 SDValue Value = ST->getValue(); 542 EVT StVT = ST->getMemoryVT(); 543 unsigned StWidth = StVT.getSizeInBits(); 544 auto &DL = DAG.getDataLayout(); 545 546 if (StWidth != StVT.getStoreSizeInBits()) { 547 // Promote to a byte-sized store with upper bits zero if not 548 // storing an integral number of bytes. For example, promote 549 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 550 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), 551 StVT.getStoreSizeInBits()); 552 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 553 SDValue Result = 554 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 555 ST->getOriginalAlign(), MMOFlags, AAInfo); 556 ReplaceNode(SDValue(Node, 0), Result); 557 } else if (StWidth & (StWidth - 1)) { 558 // If not storing a power-of-2 number of bits, expand as two stores. 559 assert(!StVT.isVector() && "Unsupported truncstore!"); 560 unsigned LogStWidth = Log2_32(StWidth); 561 assert(LogStWidth < 32); 562 unsigned RoundWidth = 1 << LogStWidth; 563 assert(RoundWidth < StWidth); 564 unsigned ExtraWidth = StWidth - RoundWidth; 565 assert(ExtraWidth < RoundWidth); 566 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 567 "Store size not an integral number of bytes!"); 568 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 569 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 570 SDValue Lo, Hi; 571 unsigned IncrementSize; 572 573 if (DL.isLittleEndian()) { 574 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 575 // Store the bottom RoundWidth bits. 576 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 577 RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 578 579 // Store the remaining ExtraWidth bits. 580 IncrementSize = RoundWidth / 8; 581 Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl); 582 Hi = DAG.getNode( 583 ISD::SRL, dl, Value.getValueType(), Value, 584 DAG.getConstant(RoundWidth, dl, 585 TLI.getShiftAmountTy(Value.getValueType(), DL))); 586 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, 587 ST->getPointerInfo().getWithOffset(IncrementSize), 588 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 589 } else { 590 // Big endian - avoid unaligned stores. 591 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 592 // Store the top RoundWidth bits. 593 Hi = DAG.getNode( 594 ISD::SRL, dl, Value.getValueType(), Value, 595 DAG.getConstant(ExtraWidth, dl, 596 TLI.getShiftAmountTy(Value.getValueType(), DL))); 597 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT, 598 ST->getOriginalAlign(), MMOFlags, AAInfo); 599 600 // Store the remaining ExtraWidth bits. 601 IncrementSize = RoundWidth / 8; 602 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 603 DAG.getConstant(IncrementSize, dl, 604 Ptr.getValueType())); 605 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, 606 ST->getPointerInfo().getWithOffset(IncrementSize), 607 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 608 } 609 610 // The order of the stores doesn't matter. 611 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 612 ReplaceNode(SDValue(Node, 0), Result); 613 } else { 614 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 615 default: llvm_unreachable("This action is not supported yet!"); 616 case TargetLowering::Legal: { 617 EVT MemVT = ST->getMemoryVT(); 618 // If this is an unaligned store and the target doesn't support it, 619 // expand it. 620 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 621 *ST->getMemOperand())) { 622 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 623 ReplaceNode(SDValue(ST, 0), Result); 624 } 625 break; 626 } 627 case TargetLowering::Custom: { 628 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 629 if (Res && Res != SDValue(Node, 0)) 630 ReplaceNode(SDValue(Node, 0), Res); 631 return; 632 } 633 case TargetLowering::Expand: 634 assert(!StVT.isVector() && 635 "Vector Stores are handled in LegalizeVectorOps"); 636 637 SDValue Result; 638 639 // TRUNCSTORE:i16 i32 -> STORE i16 640 if (TLI.isTypeLegal(StVT)) { 641 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 642 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 643 ST->getOriginalAlign(), MMOFlags, AAInfo); 644 } else { 645 // The in-memory type isn't legal. Truncate to the type it would promote 646 // to, and then do a truncstore. 647 Value = DAG.getNode(ISD::TRUNCATE, dl, 648 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 649 Value); 650 Result = 651 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT, 652 ST->getOriginalAlign(), MMOFlags, AAInfo); 653 } 654 655 ReplaceNode(SDValue(Node, 0), Result); 656 break; 657 } 658 } 659 } 660 661 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 662 LoadSDNode *LD = cast<LoadSDNode>(Node); 663 SDValue Chain = LD->getChain(); // The chain. 664 SDValue Ptr = LD->getBasePtr(); // The base pointer. 665 SDValue Value; // The value returned by the load op. 666 SDLoc dl(Node); 667 668 ISD::LoadExtType ExtType = LD->getExtensionType(); 669 if (ExtType == ISD::NON_EXTLOAD) { 670 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 671 MVT VT = Node->getSimpleValueType(0); 672 SDValue RVal = SDValue(Node, 0); 673 SDValue RChain = SDValue(Node, 1); 674 675 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 676 default: llvm_unreachable("This action is not supported yet!"); 677 case TargetLowering::Legal: { 678 EVT MemVT = LD->getMemoryVT(); 679 const DataLayout &DL = DAG.getDataLayout(); 680 // If this is an unaligned load and the target doesn't support it, 681 // expand it. 682 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 683 *LD->getMemOperand())) { 684 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 685 } 686 break; 687 } 688 case TargetLowering::Custom: 689 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 690 RVal = Res; 691 RChain = Res.getValue(1); 692 } 693 break; 694 695 case TargetLowering::Promote: { 696 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 697 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 698 "Can only promote loads to same size type"); 699 700 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 701 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 702 RChain = Res.getValue(1); 703 break; 704 } 705 } 706 if (RChain.getNode() != Node) { 707 assert(RVal.getNode() != Node && "Load must be completely replaced"); 708 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 709 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 710 if (UpdatedNodes) { 711 UpdatedNodes->insert(RVal.getNode()); 712 UpdatedNodes->insert(RChain.getNode()); 713 } 714 ReplacedNode(Node); 715 } 716 return; 717 } 718 719 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); 720 EVT SrcVT = LD->getMemoryVT(); 721 unsigned SrcWidth = SrcVT.getSizeInBits(); 722 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 723 AAMDNodes AAInfo = LD->getAAInfo(); 724 725 if (SrcWidth != SrcVT.getStoreSizeInBits() && 726 // Some targets pretend to have an i1 loading operation, and actually 727 // load an i8. This trick is correct for ZEXTLOAD because the top 7 728 // bits are guaranteed to be zero; it helps the optimizers understand 729 // that these bits are zero. It is also useful for EXTLOAD, since it 730 // tells the optimizers that those bits are undefined. It would be 731 // nice to have an effective generic way of getting these benefits... 732 // Until such a way is found, don't insist on promoting i1 here. 733 (SrcVT != MVT::i1 || 734 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 735 TargetLowering::Promote)) { 736 // Promote to a byte-sized load if not loading an integral number of 737 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 738 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 739 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 740 SDValue Ch; 741 742 // The extra bits are guaranteed to be zero, since we stored them that 743 // way. A zext load from NVT thus automatically gives zext from SrcVT. 744 745 ISD::LoadExtType NewExtType = 746 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 747 748 SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 749 Chain, Ptr, LD->getPointerInfo(), NVT, 750 LD->getOriginalAlign(), MMOFlags, AAInfo); 751 752 Ch = Result.getValue(1); // The chain. 753 754 if (ExtType == ISD::SEXTLOAD) 755 // Having the top bits zero doesn't help when sign extending. 756 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 757 Result.getValueType(), 758 Result, DAG.getValueType(SrcVT)); 759 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 760 // All the top bits are guaranteed to be zero - inform the optimizers. 761 Result = DAG.getNode(ISD::AssertZext, dl, 762 Result.getValueType(), Result, 763 DAG.getValueType(SrcVT)); 764 765 Value = Result; 766 Chain = Ch; 767 } else if (SrcWidth & (SrcWidth - 1)) { 768 // If not loading a power-of-2 number of bits, expand as two loads. 769 assert(!SrcVT.isVector() && "Unsupported extload!"); 770 unsigned LogSrcWidth = Log2_32(SrcWidth); 771 assert(LogSrcWidth < 32); 772 unsigned RoundWidth = 1 << LogSrcWidth; 773 assert(RoundWidth < SrcWidth); 774 unsigned ExtraWidth = SrcWidth - RoundWidth; 775 assert(ExtraWidth < RoundWidth); 776 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 777 "Load size not an integral number of bytes!"); 778 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 779 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 780 SDValue Lo, Hi, Ch; 781 unsigned IncrementSize; 782 auto &DL = DAG.getDataLayout(); 783 784 if (DL.isLittleEndian()) { 785 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 786 // Load the bottom RoundWidth bits. 787 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 788 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 789 MMOFlags, AAInfo); 790 791 // Load the remaining ExtraWidth bits. 792 IncrementSize = RoundWidth / 8; 793 Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl); 794 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 795 LD->getPointerInfo().getWithOffset(IncrementSize), 796 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 797 798 // Build a factor node to remember that this load is independent of 799 // the other one. 800 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 801 Hi.getValue(1)); 802 803 // Move the top bits to the right place. 804 Hi = DAG.getNode( 805 ISD::SHL, dl, Hi.getValueType(), Hi, 806 DAG.getConstant(RoundWidth, dl, 807 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 808 809 // Join the hi and lo parts. 810 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 811 } else { 812 // Big endian - avoid unaligned loads. 813 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 814 // Load the top RoundWidth bits. 815 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 816 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 817 MMOFlags, AAInfo); 818 819 // Load the remaining ExtraWidth bits. 820 IncrementSize = RoundWidth / 8; 821 Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl); 822 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 823 LD->getPointerInfo().getWithOffset(IncrementSize), 824 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 825 826 // Build a factor node to remember that this load is independent of 827 // the other one. 828 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 829 Hi.getValue(1)); 830 831 // Move the top bits to the right place. 832 Hi = DAG.getNode( 833 ISD::SHL, dl, Hi.getValueType(), Hi, 834 DAG.getConstant(ExtraWidth, dl, 835 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 836 837 // Join the hi and lo parts. 838 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 839 } 840 841 Chain = Ch; 842 } else { 843 bool isCustom = false; 844 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 845 SrcVT.getSimpleVT())) { 846 default: llvm_unreachable("This action is not supported yet!"); 847 case TargetLowering::Custom: 848 isCustom = true; 849 LLVM_FALLTHROUGH; 850 case TargetLowering::Legal: 851 Value = SDValue(Node, 0); 852 Chain = SDValue(Node, 1); 853 854 if (isCustom) { 855 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 856 Value = Res; 857 Chain = Res.getValue(1); 858 } 859 } else { 860 // If this is an unaligned load and the target doesn't support it, 861 // expand it. 862 EVT MemVT = LD->getMemoryVT(); 863 const DataLayout &DL = DAG.getDataLayout(); 864 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, 865 *LD->getMemOperand())) { 866 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 867 } 868 } 869 break; 870 871 case TargetLowering::Expand: { 872 EVT DestVT = Node->getValueType(0); 873 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 874 // If the source type is not legal, see if there is a legal extload to 875 // an intermediate type that we can then extend further. 876 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 877 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 878 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 879 // If we are loading a legal type, this is a non-extload followed by a 880 // full extend. 881 ISD::LoadExtType MidExtType = 882 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 883 884 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 885 SrcVT, LD->getMemOperand()); 886 unsigned ExtendOp = 887 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 888 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 889 Chain = Load.getValue(1); 890 break; 891 } 892 893 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 894 // normal undefined upper bits behavior to allow using an in-reg extend 895 // with the illegal FP type, so load as an integer and do the 896 // from-integer conversion. 897 if (SrcVT.getScalarType() == MVT::f16) { 898 EVT ISrcVT = SrcVT.changeTypeToInteger(); 899 EVT IDestVT = DestVT.changeTypeToInteger(); 900 EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 901 902 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain, 903 Ptr, ISrcVT, LD->getMemOperand()); 904 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 905 Chain = Result.getValue(1); 906 break; 907 } 908 } 909 910 assert(!SrcVT.isVector() && 911 "Vector Loads are handled in LegalizeVectorOps"); 912 913 // FIXME: This does not work for vectors on most targets. Sign- 914 // and zero-extend operations are currently folded into extending 915 // loads, whether they are legal or not, and then we end up here 916 // without any support for legalizing them. 917 assert(ExtType != ISD::EXTLOAD && 918 "EXTLOAD should always be supported!"); 919 // Turn the unsupported load into an EXTLOAD followed by an 920 // explicit zero/sign extend inreg. 921 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 922 Node->getValueType(0), 923 Chain, Ptr, SrcVT, 924 LD->getMemOperand()); 925 SDValue ValRes; 926 if (ExtType == ISD::SEXTLOAD) 927 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 928 Result.getValueType(), 929 Result, DAG.getValueType(SrcVT)); 930 else 931 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT); 932 Value = ValRes; 933 Chain = Result.getValue(1); 934 break; 935 } 936 } 937 } 938 939 // Since loads produce two values, make sure to remember that we legalized 940 // both of them. 941 if (Chain.getNode() != Node) { 942 assert(Value.getNode() != Node && "Load must be completely replaced"); 943 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 944 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 945 if (UpdatedNodes) { 946 UpdatedNodes->insert(Value.getNode()); 947 UpdatedNodes->insert(Chain.getNode()); 948 } 949 ReplacedNode(Node); 950 } 951 } 952 953 /// Return a legal replacement for the given operation, with all legal operands. 954 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 955 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 956 957 // Allow illegal target nodes and illegal registers. 958 if (Node->getOpcode() == ISD::TargetConstant || 959 Node->getOpcode() == ISD::Register) 960 return; 961 962 #ifndef NDEBUG 963 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 964 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 965 TargetLowering::TypeLegal && 966 "Unexpected illegal type!"); 967 968 for (const SDValue &Op : Node->op_values()) 969 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 970 TargetLowering::TypeLegal || 971 Op.getOpcode() == ISD::TargetConstant || 972 Op.getOpcode() == ISD::Register) && 973 "Unexpected illegal type!"); 974 #endif 975 976 // Figure out the correct action; the way to query this varies by opcode 977 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 978 bool SimpleFinishLegalizing = true; 979 switch (Node->getOpcode()) { 980 case ISD::INTRINSIC_W_CHAIN: 981 case ISD::INTRINSIC_WO_CHAIN: 982 case ISD::INTRINSIC_VOID: 983 case ISD::STACKSAVE: 984 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 985 break; 986 case ISD::GET_DYNAMIC_AREA_OFFSET: 987 Action = TLI.getOperationAction(Node->getOpcode(), 988 Node->getValueType(0)); 989 break; 990 case ISD::VAARG: 991 Action = TLI.getOperationAction(Node->getOpcode(), 992 Node->getValueType(0)); 993 if (Action != TargetLowering::Promote) 994 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 995 break; 996 case ISD::FP_TO_FP16: 997 case ISD::SINT_TO_FP: 998 case ISD::UINT_TO_FP: 999 case ISD::EXTRACT_VECTOR_ELT: 1000 case ISD::LROUND: 1001 case ISD::LLROUND: 1002 case ISD::LRINT: 1003 case ISD::LLRINT: 1004 Action = TLI.getOperationAction(Node->getOpcode(), 1005 Node->getOperand(0).getValueType()); 1006 break; 1007 case ISD::STRICT_FP_TO_FP16: 1008 case ISD::STRICT_SINT_TO_FP: 1009 case ISD::STRICT_UINT_TO_FP: 1010 case ISD::STRICT_LRINT: 1011 case ISD::STRICT_LLRINT: 1012 case ISD::STRICT_LROUND: 1013 case ISD::STRICT_LLROUND: 1014 // These pseudo-ops are the same as the other STRICT_ ops except 1015 // they are registered with setOperationAction() using the input type 1016 // instead of the output type. 1017 Action = TLI.getOperationAction(Node->getOpcode(), 1018 Node->getOperand(1).getValueType()); 1019 break; 1020 case ISD::SIGN_EXTEND_INREG: { 1021 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1022 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1023 break; 1024 } 1025 case ISD::ATOMIC_STORE: 1026 Action = TLI.getOperationAction(Node->getOpcode(), 1027 Node->getOperand(2).getValueType()); 1028 break; 1029 case ISD::SELECT_CC: 1030 case ISD::STRICT_FSETCC: 1031 case ISD::STRICT_FSETCCS: 1032 case ISD::SETCC: 1033 case ISD::BR_CC: { 1034 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 1035 Node->getOpcode() == ISD::STRICT_FSETCC ? 3 : 1036 Node->getOpcode() == ISD::STRICT_FSETCCS ? 3 : 1037 Node->getOpcode() == ISD::SETCC ? 2 : 1; 1038 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 1039 Node->getOpcode() == ISD::STRICT_FSETCC ? 1 : 1040 Node->getOpcode() == ISD::STRICT_FSETCCS ? 1 : 0; 1041 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1042 ISD::CondCode CCCode = 1043 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1044 Action = TLI.getCondCodeAction(CCCode, OpVT); 1045 if (Action == TargetLowering::Legal) { 1046 if (Node->getOpcode() == ISD::SELECT_CC) 1047 Action = TLI.getOperationAction(Node->getOpcode(), 1048 Node->getValueType(0)); 1049 else 1050 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1051 } 1052 break; 1053 } 1054 case ISD::LOAD: 1055 case ISD::STORE: 1056 // FIXME: Model these properly. LOAD and STORE are complicated, and 1057 // STORE expects the unlegalized operand in some cases. 1058 SimpleFinishLegalizing = false; 1059 break; 1060 case ISD::CALLSEQ_START: 1061 case ISD::CALLSEQ_END: 1062 // FIXME: This shouldn't be necessary. These nodes have special properties 1063 // dealing with the recursive nature of legalization. Removing this 1064 // special case should be done as part of making LegalizeDAG non-recursive. 1065 SimpleFinishLegalizing = false; 1066 break; 1067 case ISD::EXTRACT_ELEMENT: 1068 case ISD::FLT_ROUNDS_: 1069 case ISD::MERGE_VALUES: 1070 case ISD::EH_RETURN: 1071 case ISD::FRAME_TO_ARGS_OFFSET: 1072 case ISD::EH_DWARF_CFA: 1073 case ISD::EH_SJLJ_SETJMP: 1074 case ISD::EH_SJLJ_LONGJMP: 1075 case ISD::EH_SJLJ_SETUP_DISPATCH: 1076 // These operations lie about being legal: when they claim to be legal, 1077 // they should actually be expanded. 1078 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1079 if (Action == TargetLowering::Legal) 1080 Action = TargetLowering::Expand; 1081 break; 1082 case ISD::INIT_TRAMPOLINE: 1083 case ISD::ADJUST_TRAMPOLINE: 1084 case ISD::FRAMEADDR: 1085 case ISD::RETURNADDR: 1086 case ISD::ADDROFRETURNADDR: 1087 case ISD::SPONENTRY: 1088 // These operations lie about being legal: when they claim to be legal, 1089 // they should actually be custom-lowered. 1090 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1091 if (Action == TargetLowering::Legal) 1092 Action = TargetLowering::Custom; 1093 break; 1094 case ISD::READCYCLECOUNTER: 1095 // READCYCLECOUNTER returns an i64, even if type legalization might have 1096 // expanded that to several smaller types. 1097 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1098 break; 1099 case ISD::READ_REGISTER: 1100 case ISD::WRITE_REGISTER: 1101 // Named register is legal in the DAG, but blocked by register name 1102 // selection if not implemented by target (to chose the correct register) 1103 // They'll be converted to Copy(To/From)Reg. 1104 Action = TargetLowering::Legal; 1105 break; 1106 case ISD::DEBUGTRAP: 1107 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1108 if (Action == TargetLowering::Expand) { 1109 // replace ISD::DEBUGTRAP with ISD::TRAP 1110 SDValue NewVal; 1111 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1112 Node->getOperand(0)); 1113 ReplaceNode(Node, NewVal.getNode()); 1114 LegalizeOp(NewVal.getNode()); 1115 return; 1116 } 1117 break; 1118 case ISD::SADDSAT: 1119 case ISD::UADDSAT: 1120 case ISD::SSUBSAT: 1121 case ISD::USUBSAT: { 1122 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1123 break; 1124 } 1125 case ISD::SMULFIX: 1126 case ISD::SMULFIXSAT: 1127 case ISD::UMULFIX: 1128 case ISD::UMULFIXSAT: 1129 case ISD::SDIVFIX: 1130 case ISD::SDIVFIXSAT: 1131 case ISD::UDIVFIX: 1132 case ISD::UDIVFIXSAT: { 1133 unsigned Scale = Node->getConstantOperandVal(2); 1134 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 1135 Node->getValueType(0), Scale); 1136 break; 1137 } 1138 case ISD::MSCATTER: 1139 Action = TLI.getOperationAction(Node->getOpcode(), 1140 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 1141 break; 1142 case ISD::MSTORE: 1143 Action = TLI.getOperationAction(Node->getOpcode(), 1144 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 1145 break; 1146 case ISD::VECREDUCE_FADD: 1147 case ISD::VECREDUCE_FMUL: 1148 case ISD::VECREDUCE_ADD: 1149 case ISD::VECREDUCE_MUL: 1150 case ISD::VECREDUCE_AND: 1151 case ISD::VECREDUCE_OR: 1152 case ISD::VECREDUCE_XOR: 1153 case ISD::VECREDUCE_SMAX: 1154 case ISD::VECREDUCE_SMIN: 1155 case ISD::VECREDUCE_UMAX: 1156 case ISD::VECREDUCE_UMIN: 1157 case ISD::VECREDUCE_FMAX: 1158 case ISD::VECREDUCE_FMIN: 1159 Action = TLI.getOperationAction( 1160 Node->getOpcode(), Node->getOperand(0).getValueType()); 1161 break; 1162 default: 1163 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1164 Action = TargetLowering::Legal; 1165 } else { 1166 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1167 } 1168 break; 1169 } 1170 1171 if (SimpleFinishLegalizing) { 1172 SDNode *NewNode = Node; 1173 switch (Node->getOpcode()) { 1174 default: break; 1175 case ISD::SHL: 1176 case ISD::SRL: 1177 case ISD::SRA: 1178 case ISD::ROTL: 1179 case ISD::ROTR: { 1180 // Legalizing shifts/rotates requires adjusting the shift amount 1181 // to the appropriate width. 1182 SDValue Op0 = Node->getOperand(0); 1183 SDValue Op1 = Node->getOperand(1); 1184 if (!Op1.getValueType().isVector()) { 1185 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1186 // The getShiftAmountOperand() may create a new operand node or 1187 // return the existing one. If new operand is created we need 1188 // to update the parent node. 1189 // Do not try to legalize SAO here! It will be automatically legalized 1190 // in the next round. 1191 if (SAO != Op1) 1192 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1193 } 1194 } 1195 break; 1196 case ISD::FSHL: 1197 case ISD::FSHR: 1198 case ISD::SRL_PARTS: 1199 case ISD::SRA_PARTS: 1200 case ISD::SHL_PARTS: { 1201 // Legalizing shifts/rotates requires adjusting the shift amount 1202 // to the appropriate width. 1203 SDValue Op0 = Node->getOperand(0); 1204 SDValue Op1 = Node->getOperand(1); 1205 SDValue Op2 = Node->getOperand(2); 1206 if (!Op2.getValueType().isVector()) { 1207 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1208 // The getShiftAmountOperand() may create a new operand node or 1209 // return the existing one. If new operand is created we need 1210 // to update the parent node. 1211 if (SAO != Op2) 1212 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1213 } 1214 break; 1215 } 1216 } 1217 1218 if (NewNode != Node) { 1219 ReplaceNode(Node, NewNode); 1220 Node = NewNode; 1221 } 1222 switch (Action) { 1223 case TargetLowering::Legal: 1224 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 1225 return; 1226 case TargetLowering::Custom: 1227 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 1228 // FIXME: The handling for custom lowering with multiple results is 1229 // a complete mess. 1230 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1231 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1232 return; 1233 1234 if (Node->getNumValues() == 1) { 1235 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1236 // We can just directly replace this node with the lowered value. 1237 ReplaceNode(SDValue(Node, 0), Res); 1238 return; 1239 } 1240 1241 SmallVector<SDValue, 8> ResultVals; 1242 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1243 ResultVals.push_back(Res.getValue(i)); 1244 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1245 ReplaceNode(Node, ResultVals.data()); 1246 return; 1247 } 1248 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 1249 LLVM_FALLTHROUGH; 1250 case TargetLowering::Expand: 1251 if (ExpandNode(Node)) 1252 return; 1253 LLVM_FALLTHROUGH; 1254 case TargetLowering::LibCall: 1255 ConvertNodeToLibcall(Node); 1256 return; 1257 case TargetLowering::Promote: 1258 PromoteNode(Node); 1259 return; 1260 } 1261 } 1262 1263 switch (Node->getOpcode()) { 1264 default: 1265 #ifndef NDEBUG 1266 dbgs() << "NODE: "; 1267 Node->dump( &DAG); 1268 dbgs() << "\n"; 1269 #endif 1270 llvm_unreachable("Do not know how to legalize this operator!"); 1271 1272 case ISD::CALLSEQ_START: 1273 case ISD::CALLSEQ_END: 1274 break; 1275 case ISD::LOAD: 1276 return LegalizeLoadOps(Node); 1277 case ISD::STORE: 1278 return LegalizeStoreOps(Node); 1279 } 1280 } 1281 1282 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1283 SDValue Vec = Op.getOperand(0); 1284 SDValue Idx = Op.getOperand(1); 1285 SDLoc dl(Op); 1286 1287 // Before we generate a new store to a temporary stack slot, see if there is 1288 // already one that we can use. There often is because when we scalarize 1289 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1290 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1291 // the vector. If all are expanded here, we don't want one store per vector 1292 // element. 1293 1294 // Caches for hasPredecessorHelper 1295 SmallPtrSet<const SDNode *, 32> Visited; 1296 SmallVector<const SDNode *, 16> Worklist; 1297 Visited.insert(Op.getNode()); 1298 Worklist.push_back(Idx.getNode()); 1299 SDValue StackPtr, Ch; 1300 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), 1301 UE = Vec.getNode()->use_end(); UI != UE; ++UI) { 1302 SDNode *User = *UI; 1303 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1304 if (ST->isIndexed() || ST->isTruncatingStore() || 1305 ST->getValue() != Vec) 1306 continue; 1307 1308 // Make sure that nothing else could have stored into the destination of 1309 // this store. 1310 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1311 continue; 1312 1313 // If the index is dependent on the store we will introduce a cycle when 1314 // creating the load (the load uses the index, and by replacing the chain 1315 // we will make the index dependent on the load). Also, the store might be 1316 // dependent on the extractelement and introduce a cycle when creating 1317 // the load. 1318 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1319 ST->hasPredecessor(Op.getNode())) 1320 continue; 1321 1322 StackPtr = ST->getBasePtr(); 1323 Ch = SDValue(ST, 0); 1324 break; 1325 } 1326 } 1327 1328 EVT VecVT = Vec.getValueType(); 1329 1330 if (!Ch.getNode()) { 1331 // Store the value to a temporary stack slot, then LOAD the returned part. 1332 StackPtr = DAG.CreateStackTemporary(VecVT); 1333 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1334 MachinePointerInfo()); 1335 } 1336 1337 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1338 1339 SDValue NewLoad; 1340 1341 if (Op.getValueType().isVector()) 1342 NewLoad = 1343 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); 1344 else 1345 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1346 MachinePointerInfo(), 1347 VecVT.getVectorElementType()); 1348 1349 // Replace the chain going out of the store, by the one out of the load. 1350 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1351 1352 // We introduced a cycle though, so update the loads operands, making sure 1353 // to use the original store's chain as an incoming chain. 1354 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1355 NewLoad->op_end()); 1356 NewLoadOperands[0] = Ch; 1357 NewLoad = 1358 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1359 return NewLoad; 1360 } 1361 1362 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1363 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1364 1365 SDValue Vec = Op.getOperand(0); 1366 SDValue Part = Op.getOperand(1); 1367 SDValue Idx = Op.getOperand(2); 1368 SDLoc dl(Op); 1369 1370 // Store the value to a temporary stack slot, then LOAD the returned part. 1371 EVT VecVT = Vec.getValueType(); 1372 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1373 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1374 MachinePointerInfo PtrInfo = 1375 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1376 1377 // First store the whole vector. 1378 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1379 1380 // Then store the inserted part. 1381 SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1382 1383 // Store the subvector. 1384 Ch = DAG.getStore( 1385 Ch, dl, Part, SubStackPtr, 1386 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1387 1388 // Finally, load the updated vector. 1389 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1390 } 1391 1392 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1393 // We can't handle this case efficiently. Allocate a sufficiently 1394 // aligned object on the stack, store each element into it, then load 1395 // the result as a vector. 1396 // Create the stack frame object. 1397 EVT VT = Node->getValueType(0); 1398 EVT EltVT = VT.getVectorElementType(); 1399 SDLoc dl(Node); 1400 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1401 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1402 MachinePointerInfo PtrInfo = 1403 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1404 1405 // Emit a store of each element to the stack slot. 1406 SmallVector<SDValue, 8> Stores; 1407 unsigned TypeByteSize = EltVT.getSizeInBits() / 8; 1408 assert(TypeByteSize > 0 && "Vector element type too small for stack store!"); 1409 // Store (in the right endianness) the elements to memory. 1410 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1411 // Ignore undef elements. 1412 if (Node->getOperand(i).isUndef()) continue; 1413 1414 unsigned Offset = TypeByteSize*i; 1415 1416 SDValue Idx = DAG.getMemBasePlusOffset(FIPtr, Offset, dl); 1417 1418 // If the destination vector element type is narrower than the source 1419 // element type, only store the bits necessary. 1420 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { 1421 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1422 Node->getOperand(i), Idx, 1423 PtrInfo.getWithOffset(Offset), EltVT)); 1424 } else 1425 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1426 Idx, PtrInfo.getWithOffset(Offset))); 1427 } 1428 1429 SDValue StoreChain; 1430 if (!Stores.empty()) // Not all undef elements? 1431 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1432 else 1433 StoreChain = DAG.getEntryNode(); 1434 1435 // Result is a load from the stack slot. 1436 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1437 } 1438 1439 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1440 /// containing the sign bit if the target has no integer value capable of 1441 /// holding all bits of the floating-point value. 1442 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1443 const SDLoc &DL, 1444 SDValue Value) const { 1445 EVT FloatVT = Value.getValueType(); 1446 unsigned NumBits = FloatVT.getSizeInBits(); 1447 State.FloatVT = FloatVT; 1448 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1449 // Convert to an integer of the same size. 1450 if (TLI.isTypeLegal(IVT)) { 1451 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1452 State.SignMask = APInt::getSignMask(NumBits); 1453 State.SignBit = NumBits - 1; 1454 return; 1455 } 1456 1457 auto &DataLayout = DAG.getDataLayout(); 1458 // Store the float to memory, then load the sign part out as an integer. 1459 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1460 // First create a temporary that is aligned for both the load and store. 1461 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1462 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1463 // Then store the float to it. 1464 State.FloatPtr = StackPtr; 1465 MachineFunction &MF = DAG.getMachineFunction(); 1466 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1467 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1468 State.FloatPointerInfo); 1469 1470 SDValue IntPtr; 1471 if (DataLayout.isBigEndian()) { 1472 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1473 // Load out a legal integer with the same sign bit as the float. 1474 IntPtr = StackPtr; 1475 State.IntPointerInfo = State.FloatPointerInfo; 1476 } else { 1477 // Advance the pointer so that the loaded byte will contain the sign bit. 1478 unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1; 1479 IntPtr = DAG.getMemBasePlusOffset(StackPtr, ByteOffset, DL); 1480 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1481 ByteOffset); 1482 } 1483 1484 State.IntPtr = IntPtr; 1485 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1486 State.IntPointerInfo, MVT::i8); 1487 State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7); 1488 State.SignBit = 7; 1489 } 1490 1491 /// Replace the integer value produced by getSignAsIntValue() with a new value 1492 /// and cast the result back to a floating-point type. 1493 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1494 const SDLoc &DL, 1495 SDValue NewIntValue) const { 1496 if (!State.Chain) 1497 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1498 1499 // Override the part containing the sign bit in the value stored on the stack. 1500 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1501 State.IntPointerInfo, MVT::i8); 1502 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1503 State.FloatPointerInfo); 1504 } 1505 1506 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1507 SDLoc DL(Node); 1508 SDValue Mag = Node->getOperand(0); 1509 SDValue Sign = Node->getOperand(1); 1510 1511 // Get sign bit into an integer value. 1512 FloatSignAsInt SignAsInt; 1513 getSignAsIntValue(SignAsInt, DL, Sign); 1514 1515 EVT IntVT = SignAsInt.IntValue.getValueType(); 1516 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1517 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1518 SignMask); 1519 1520 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1521 EVT FloatVT = Mag.getValueType(); 1522 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1523 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1524 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1525 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1526 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1527 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1528 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1529 } 1530 1531 // Transform Mag value to integer, and clear the sign bit. 1532 FloatSignAsInt MagAsInt; 1533 getSignAsIntValue(MagAsInt, DL, Mag); 1534 EVT MagVT = MagAsInt.IntValue.getValueType(); 1535 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1536 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1537 ClearSignMask); 1538 1539 // Get the signbit at the right position for MagAsInt. 1540 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1541 EVT ShiftVT = IntVT; 1542 if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) { 1543 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1544 ShiftVT = MagVT; 1545 } 1546 if (ShiftAmount > 0) { 1547 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); 1548 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); 1549 } else if (ShiftAmount < 0) { 1550 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); 1551 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); 1552 } 1553 if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) { 1554 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1555 } 1556 1557 // Store the part with the modified sign and convert back to float. 1558 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1559 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1560 } 1561 1562 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1563 SDLoc DL(Node); 1564 SDValue Value = Node->getOperand(0); 1565 1566 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1567 EVT FloatVT = Value.getValueType(); 1568 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1569 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1570 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1571 } 1572 1573 // Transform value to integer, clear the sign bit and transform back. 1574 FloatSignAsInt ValueAsInt; 1575 getSignAsIntValue(ValueAsInt, DL, Value); 1576 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1577 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1578 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1579 ClearSignMask); 1580 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1581 } 1582 1583 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1584 SmallVectorImpl<SDValue> &Results) { 1585 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1586 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1587 " not tell us which reg is the stack pointer!"); 1588 SDLoc dl(Node); 1589 EVT VT = Node->getValueType(0); 1590 SDValue Tmp1 = SDValue(Node, 0); 1591 SDValue Tmp2 = SDValue(Node, 1); 1592 SDValue Tmp3 = Node->getOperand(2); 1593 SDValue Chain = Tmp1.getOperand(0); 1594 1595 // Chain the dynamic stack allocation so that it doesn't modify the stack 1596 // pointer when other instructions are using the stack. 1597 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1598 1599 SDValue Size = Tmp2.getOperand(1); 1600 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1601 Chain = SP.getValue(1); 1602 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1603 const TargetFrameLowering *TFL = DAG.getSubtarget().getFrameLowering(); 1604 unsigned Opc = 1605 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 1606 ISD::ADD : ISD::SUB; 1607 1608 unsigned StackAlign = TFL->getStackAlignment(); 1609 Tmp1 = DAG.getNode(Opc, dl, VT, SP, Size); // Value 1610 if (Align > StackAlign) 1611 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1612 DAG.getConstant(-(uint64_t)Align, dl, VT)); 1613 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1614 1615 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1616 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1617 1618 Results.push_back(Tmp1); 1619 Results.push_back(Tmp2); 1620 } 1621 1622 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current 1623 /// target. 1624 /// 1625 /// If the SETCC has been legalized using AND / OR, then the legalized node 1626 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert 1627 /// will be set to false. 1628 /// 1629 /// If the SETCC has been legalized by using getSetCCSwappedOperands(), 1630 /// then the values of LHS and RHS will be swapped, CC will be set to the 1631 /// new condition, and NeedInvert will be set to false. 1632 /// 1633 /// If the SETCC has been legalized using the inverse condcode, then LHS and 1634 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert 1635 /// will be set to true. The caller must invert the result of the SETCC with 1636 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect 1637 /// of a true/false result. 1638 /// 1639 /// \returns true if the SetCC has been legalized, false if it hasn't. 1640 bool SelectionDAGLegalize::LegalizeSetCCCondCode( 1641 EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, bool &NeedInvert, 1642 const SDLoc &dl, SDValue &Chain, bool IsSignaling) { 1643 MVT OpVT = LHS.getSimpleValueType(); 1644 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1645 NeedInvert = false; 1646 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1647 default: llvm_unreachable("Unknown condition code action!"); 1648 case TargetLowering::Legal: 1649 // Nothing to do. 1650 break; 1651 case TargetLowering::Expand: { 1652 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 1653 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1654 std::swap(LHS, RHS); 1655 CC = DAG.getCondCode(InvCC); 1656 return true; 1657 } 1658 // Swapping operands didn't work. Try inverting the condition. 1659 bool NeedSwap = false; 1660 InvCC = getSetCCInverse(CCCode, OpVT); 1661 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1662 // If inverting the condition is not enough, try swapping operands 1663 // on top of it. 1664 InvCC = ISD::getSetCCSwappedOperands(InvCC); 1665 NeedSwap = true; 1666 } 1667 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1668 CC = DAG.getCondCode(InvCC); 1669 NeedInvert = true; 1670 if (NeedSwap) 1671 std::swap(LHS, RHS); 1672 return true; 1673 } 1674 1675 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1676 unsigned Opc = 0; 1677 switch (CCCode) { 1678 default: llvm_unreachable("Don't know how to expand this condition!"); 1679 case ISD::SETO: 1680 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) 1681 && "If SETO is expanded, SETOEQ must be legal!"); 1682 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; 1683 case ISD::SETUO: 1684 assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT) 1685 && "If SETUO is expanded, SETUNE must be legal!"); 1686 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break; 1687 case ISD::SETOEQ: 1688 case ISD::SETOGT: 1689 case ISD::SETOGE: 1690 case ISD::SETOLT: 1691 case ISD::SETOLE: 1692 case ISD::SETONE: 1693 case ISD::SETUEQ: 1694 case ISD::SETUNE: 1695 case ISD::SETUGT: 1696 case ISD::SETUGE: 1697 case ISD::SETULT: 1698 case ISD::SETULE: 1699 // If we are floating point, assign and break, otherwise fall through. 1700 if (!OpVT.isInteger()) { 1701 // We can use the 4th bit to tell if we are the unordered 1702 // or ordered version of the opcode. 1703 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 1704 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 1705 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 1706 break; 1707 } 1708 // Fallthrough if we are unsigned integer. 1709 LLVM_FALLTHROUGH; 1710 case ISD::SETLE: 1711 case ISD::SETGT: 1712 case ISD::SETGE: 1713 case ISD::SETLT: 1714 case ISD::SETNE: 1715 case ISD::SETEQ: 1716 // If all combinations of inverting the condition and swapping operands 1717 // didn't work then we have no means to expand the condition. 1718 llvm_unreachable("Don't know how to expand this condition!"); 1719 } 1720 1721 SDValue SetCC1, SetCC2; 1722 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 1723 // If we aren't the ordered or unorder operation, 1724 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 1725 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 1726 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 1727 } else { 1728 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 1729 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 1730 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 1731 } 1732 if (Chain) 1733 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 1734 SetCC2.getValue(1)); 1735 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1736 RHS = SDValue(); 1737 CC = SDValue(); 1738 return true; 1739 } 1740 } 1741 return false; 1742 } 1743 1744 /// Emit a store/load combination to the stack. This stores 1745 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1746 /// a load from the stack slot to DestVT, extending it if needed. 1747 /// The resultant code need not be legal. 1748 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1749 EVT DestVT, const SDLoc &dl) { 1750 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode()); 1751 } 1752 1753 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1754 EVT DestVT, const SDLoc &dl, 1755 SDValue Chain) { 1756 // Create the stack frame object. 1757 unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment( 1758 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1759 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 1760 1761 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1762 int SPFI = StackPtrFI->getIndex(); 1763 MachinePointerInfo PtrInfo = 1764 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1765 1766 unsigned SrcSize = SrcOp.getValueSizeInBits(); 1767 unsigned SlotSize = SlotVT.getSizeInBits(); 1768 unsigned DestSize = DestVT.getSizeInBits(); 1769 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1770 unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType); 1771 1772 // Emit a store to the stack slot. Use a truncstore if the input value is 1773 // later than DestVT. 1774 SDValue Store; 1775 1776 if (SrcSize > SlotSize) 1777 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo, 1778 SlotVT, SrcAlign); 1779 else { 1780 assert(SrcSize == SlotSize && "Invalid store"); 1781 Store = 1782 DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1783 } 1784 1785 // Result is a load from the stack slot. 1786 if (SlotSize == DestSize) 1787 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1788 1789 assert(SlotSize < DestSize && "Unknown extension!"); 1790 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1791 DestAlign); 1792 } 1793 1794 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1795 SDLoc dl(Node); 1796 // Create a vector sized/aligned stack slot, store the value to element #0, 1797 // then load the whole vector back out. 1798 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1799 1800 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1801 int SPFI = StackPtrFI->getIndex(); 1802 1803 SDValue Ch = DAG.getTruncStore( 1804 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1805 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1806 Node->getValueType(0).getVectorElementType()); 1807 return DAG.getLoad( 1808 Node->getValueType(0), dl, Ch, StackPtr, 1809 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1810 } 1811 1812 static bool 1813 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1814 const TargetLowering &TLI, SDValue &Res) { 1815 unsigned NumElems = Node->getNumOperands(); 1816 SDLoc dl(Node); 1817 EVT VT = Node->getValueType(0); 1818 1819 // Try to group the scalars into pairs, shuffle the pairs together, then 1820 // shuffle the pairs of pairs together, etc. until the vector has 1821 // been built. This will work only if all of the necessary shuffle masks 1822 // are legal. 1823 1824 // We do this in two phases; first to check the legality of the shuffles, 1825 // and next, assuming that all shuffles are legal, to create the new nodes. 1826 for (int Phase = 0; Phase < 2; ++Phase) { 1827 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1828 NewIntermedVals; 1829 for (unsigned i = 0; i < NumElems; ++i) { 1830 SDValue V = Node->getOperand(i); 1831 if (V.isUndef()) 1832 continue; 1833 1834 SDValue Vec; 1835 if (Phase) 1836 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1837 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1838 } 1839 1840 while (IntermedVals.size() > 2) { 1841 NewIntermedVals.clear(); 1842 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1843 // This vector and the next vector are shuffled together (simply to 1844 // append the one to the other). 1845 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1846 1847 SmallVector<int, 16> FinalIndices; 1848 FinalIndices.reserve(IntermedVals[i].second.size() + 1849 IntermedVals[i+1].second.size()); 1850 1851 int k = 0; 1852 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1853 ++j, ++k) { 1854 ShuffleVec[k] = j; 1855 FinalIndices.push_back(IntermedVals[i].second[j]); 1856 } 1857 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1858 ++j, ++k) { 1859 ShuffleVec[k] = NumElems + j; 1860 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1861 } 1862 1863 SDValue Shuffle; 1864 if (Phase) 1865 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1866 IntermedVals[i+1].first, 1867 ShuffleVec); 1868 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1869 return false; 1870 NewIntermedVals.push_back( 1871 std::make_pair(Shuffle, std::move(FinalIndices))); 1872 } 1873 1874 // If we had an odd number of defined values, then append the last 1875 // element to the array of new vectors. 1876 if ((IntermedVals.size() & 1) != 0) 1877 NewIntermedVals.push_back(IntermedVals.back()); 1878 1879 IntermedVals.swap(NewIntermedVals); 1880 } 1881 1882 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1883 "Invalid number of intermediate vectors"); 1884 SDValue Vec1 = IntermedVals[0].first; 1885 SDValue Vec2; 1886 if (IntermedVals.size() > 1) 1887 Vec2 = IntermedVals[1].first; 1888 else if (Phase) 1889 Vec2 = DAG.getUNDEF(VT); 1890 1891 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1892 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1893 ShuffleVec[IntermedVals[0].second[i]] = i; 1894 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1895 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1896 1897 if (Phase) 1898 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1899 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1900 return false; 1901 } 1902 1903 return true; 1904 } 1905 1906 /// Expand a BUILD_VECTOR node on targets that don't 1907 /// support the operation, but do support the resultant vector type. 1908 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1909 unsigned NumElems = Node->getNumOperands(); 1910 SDValue Value1, Value2; 1911 SDLoc dl(Node); 1912 EVT VT = Node->getValueType(0); 1913 EVT OpVT = Node->getOperand(0).getValueType(); 1914 EVT EltVT = VT.getVectorElementType(); 1915 1916 // If the only non-undef value is the low element, turn this into a 1917 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1918 bool isOnlyLowElement = true; 1919 bool MoreThanTwoValues = false; 1920 bool isConstant = true; 1921 for (unsigned i = 0; i < NumElems; ++i) { 1922 SDValue V = Node->getOperand(i); 1923 if (V.isUndef()) 1924 continue; 1925 if (i > 0) 1926 isOnlyLowElement = false; 1927 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1928 isConstant = false; 1929 1930 if (!Value1.getNode()) { 1931 Value1 = V; 1932 } else if (!Value2.getNode()) { 1933 if (V != Value1) 1934 Value2 = V; 1935 } else if (V != Value1 && V != Value2) { 1936 MoreThanTwoValues = true; 1937 } 1938 } 1939 1940 if (!Value1.getNode()) 1941 return DAG.getUNDEF(VT); 1942 1943 if (isOnlyLowElement) 1944 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1945 1946 // If all elements are constants, create a load from the constant pool. 1947 if (isConstant) { 1948 SmallVector<Constant*, 16> CV; 1949 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1950 if (ConstantFPSDNode *V = 1951 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1952 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1953 } else if (ConstantSDNode *V = 1954 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1955 if (OpVT==EltVT) 1956 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1957 else { 1958 // If OpVT and EltVT don't match, EltVT is not legal and the 1959 // element values have been promoted/truncated earlier. Undo this; 1960 // we don't want a v16i8 to become a v16i32 for example. 1961 const ConstantInt *CI = V->getConstantIntValue(); 1962 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1963 CI->getZExtValue())); 1964 } 1965 } else { 1966 assert(Node->getOperand(i).isUndef()); 1967 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1968 CV.push_back(UndefValue::get(OpNTy)); 1969 } 1970 } 1971 Constant *CP = ConstantVector::get(CV); 1972 SDValue CPIdx = 1973 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 1974 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 1975 return DAG.getLoad( 1976 VT, dl, DAG.getEntryNode(), CPIdx, 1977 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 1978 Alignment); 1979 } 1980 1981 SmallSet<SDValue, 16> DefinedValues; 1982 for (unsigned i = 0; i < NumElems; ++i) { 1983 if (Node->getOperand(i).isUndef()) 1984 continue; 1985 DefinedValues.insert(Node->getOperand(i)); 1986 } 1987 1988 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 1989 if (!MoreThanTwoValues) { 1990 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1991 for (unsigned i = 0; i < NumElems; ++i) { 1992 SDValue V = Node->getOperand(i); 1993 if (V.isUndef()) 1994 continue; 1995 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1996 } 1997 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1998 // Get the splatted value into the low element of a vector register. 1999 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 2000 SDValue Vec2; 2001 if (Value2.getNode()) 2002 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 2003 else 2004 Vec2 = DAG.getUNDEF(VT); 2005 2006 // Return shuffle(LowValVec, undef, <0,0,0,0>) 2007 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 2008 } 2009 } else { 2010 SDValue Res; 2011 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 2012 return Res; 2013 } 2014 } 2015 2016 // Otherwise, we can't handle this case efficiently. 2017 return ExpandVectorBuildThroughStack(Node); 2018 } 2019 2020 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) { 2021 SDLoc DL(Node); 2022 EVT VT = Node->getValueType(0); 2023 SDValue SplatVal = Node->getOperand(0); 2024 2025 return DAG.getSplatBuildVector(VT, DL, SplatVal); 2026 } 2027 2028 // Expand a node into a call to a libcall. If the result value 2029 // does not fit into a register, return the lo part and set the hi part to the 2030 // by-reg argument. If it does fit into a single register, return the result 2031 // and leave the Hi part unset. 2032 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2033 bool isSigned) { 2034 TargetLowering::ArgListTy Args; 2035 TargetLowering::ArgListEntry Entry; 2036 for (const SDValue &Op : Node->op_values()) { 2037 EVT ArgVT = Op.getValueType(); 2038 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2039 Entry.Node = Op; 2040 Entry.Ty = ArgTy; 2041 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2042 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2043 Args.push_back(Entry); 2044 } 2045 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2046 TLI.getPointerTy(DAG.getDataLayout())); 2047 2048 EVT RetVT = Node->getValueType(0); 2049 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2050 2051 // By default, the input chain to this libcall is the entry node of the 2052 // function. If the libcall is going to be emitted as a tail call then 2053 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2054 // node which is being folded has a non-entry input chain. 2055 SDValue InChain = DAG.getEntryNode(); 2056 2057 // isTailCall may be true since the callee does not reference caller stack 2058 // frame. Check if it's in the right position and that the return types match. 2059 SDValue TCChain = InChain; 2060 const Function &F = DAG.getMachineFunction().getFunction(); 2061 bool isTailCall = 2062 TLI.isInTailCallPosition(DAG, Node, TCChain) && 2063 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 2064 if (isTailCall) 2065 InChain = TCChain; 2066 2067 TargetLowering::CallLoweringInfo CLI(DAG); 2068 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2069 CLI.setDebugLoc(SDLoc(Node)) 2070 .setChain(InChain) 2071 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2072 std::move(Args)) 2073 .setTailCall(isTailCall) 2074 .setSExtResult(signExtend) 2075 .setZExtResult(!signExtend) 2076 .setIsPostTypeLegalization(true); 2077 2078 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2079 2080 if (!CallInfo.second.getNode()) { 2081 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG)); 2082 // It's a tailcall, return the chain (which is the DAG root). 2083 return DAG.getRoot(); 2084 } 2085 2086 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG)); 2087 return CallInfo.first; 2088 } 2089 2090 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2091 RTLIB::Libcall Call_F32, 2092 RTLIB::Libcall Call_F64, 2093 RTLIB::Libcall Call_F80, 2094 RTLIB::Libcall Call_F128, 2095 RTLIB::Libcall Call_PPCF128, 2096 SmallVectorImpl<SDValue> &Results) { 2097 RTLIB::Libcall LC; 2098 switch (Node->getSimpleValueType(0).SimpleTy) { 2099 default: llvm_unreachable("Unexpected request for libcall!"); 2100 case MVT::f32: LC = Call_F32; break; 2101 case MVT::f64: LC = Call_F64; break; 2102 case MVT::f80: LC = Call_F80; break; 2103 case MVT::f128: LC = Call_F128; break; 2104 case MVT::ppcf128: LC = Call_PPCF128; break; 2105 } 2106 2107 if (Node->isStrictFPOpcode()) { 2108 EVT RetVT = Node->getValueType(0); 2109 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); 2110 TargetLowering::MakeLibCallOptions CallOptions; 2111 // FIXME: This doesn't support tail calls. 2112 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2113 Ops, CallOptions, 2114 SDLoc(Node), 2115 Node->getOperand(0)); 2116 Results.push_back(Tmp.first); 2117 Results.push_back(Tmp.second); 2118 } else { 2119 SDValue Tmp = ExpandLibCall(LC, Node, false); 2120 Results.push_back(Tmp); 2121 } 2122 } 2123 2124 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2125 RTLIB::Libcall Call_I8, 2126 RTLIB::Libcall Call_I16, 2127 RTLIB::Libcall Call_I32, 2128 RTLIB::Libcall Call_I64, 2129 RTLIB::Libcall Call_I128) { 2130 RTLIB::Libcall LC; 2131 switch (Node->getSimpleValueType(0).SimpleTy) { 2132 default: llvm_unreachable("Unexpected request for libcall!"); 2133 case MVT::i8: LC = Call_I8; break; 2134 case MVT::i16: LC = Call_I16; break; 2135 case MVT::i32: LC = Call_I32; break; 2136 case MVT::i64: LC = Call_I64; break; 2137 case MVT::i128: LC = Call_I128; break; 2138 } 2139 return ExpandLibCall(LC, Node, isSigned); 2140 } 2141 2142 /// Expand the node to a libcall based on first argument type (for instance 2143 /// lround and its variant). 2144 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node, 2145 RTLIB::Libcall Call_F32, 2146 RTLIB::Libcall Call_F64, 2147 RTLIB::Libcall Call_F80, 2148 RTLIB::Libcall Call_F128, 2149 RTLIB::Libcall Call_PPCF128, 2150 SmallVectorImpl<SDValue> &Results) { 2151 EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType(); 2152 2153 RTLIB::Libcall LC; 2154 switch (InVT.getSimpleVT().SimpleTy) { 2155 default: llvm_unreachable("Unexpected request for libcall!"); 2156 case MVT::f32: LC = Call_F32; break; 2157 case MVT::f64: LC = Call_F64; break; 2158 case MVT::f80: LC = Call_F80; break; 2159 case MVT::f128: LC = Call_F128; break; 2160 case MVT::ppcf128: LC = Call_PPCF128; break; 2161 } 2162 2163 if (Node->isStrictFPOpcode()) { 2164 EVT RetVT = Node->getValueType(0); 2165 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); 2166 TargetLowering::MakeLibCallOptions CallOptions; 2167 // FIXME: This doesn't support tail calls. 2168 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2169 Ops, CallOptions, 2170 SDLoc(Node), 2171 Node->getOperand(0)); 2172 Results.push_back(Tmp.first); 2173 Results.push_back(Tmp.second); 2174 } else { 2175 SDValue Tmp = ExpandLibCall(LC, Node, false); 2176 Results.push_back(Tmp); 2177 } 2178 } 2179 2180 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2181 void 2182 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2183 SmallVectorImpl<SDValue> &Results) { 2184 unsigned Opcode = Node->getOpcode(); 2185 bool isSigned = Opcode == ISD::SDIVREM; 2186 2187 RTLIB::Libcall LC; 2188 switch (Node->getSimpleValueType(0).SimpleTy) { 2189 default: llvm_unreachable("Unexpected request for libcall!"); 2190 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2191 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2192 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2193 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2194 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2195 } 2196 2197 // The input chain to this libcall is the entry node of the function. 2198 // Legalizing the call will automatically add the previous call to the 2199 // dependence. 2200 SDValue InChain = DAG.getEntryNode(); 2201 2202 EVT RetVT = Node->getValueType(0); 2203 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2204 2205 TargetLowering::ArgListTy Args; 2206 TargetLowering::ArgListEntry Entry; 2207 for (const SDValue &Op : Node->op_values()) { 2208 EVT ArgVT = Op.getValueType(); 2209 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2210 Entry.Node = Op; 2211 Entry.Ty = ArgTy; 2212 Entry.IsSExt = isSigned; 2213 Entry.IsZExt = !isSigned; 2214 Args.push_back(Entry); 2215 } 2216 2217 // Also pass the return address of the remainder. 2218 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2219 Entry.Node = FIPtr; 2220 Entry.Ty = RetTy->getPointerTo(); 2221 Entry.IsSExt = isSigned; 2222 Entry.IsZExt = !isSigned; 2223 Args.push_back(Entry); 2224 2225 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2226 TLI.getPointerTy(DAG.getDataLayout())); 2227 2228 SDLoc dl(Node); 2229 TargetLowering::CallLoweringInfo CLI(DAG); 2230 CLI.setDebugLoc(dl) 2231 .setChain(InChain) 2232 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2233 std::move(Args)) 2234 .setSExtResult(isSigned) 2235 .setZExtResult(!isSigned); 2236 2237 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2238 2239 // Remainder is loaded back from the stack frame. 2240 SDValue Rem = 2241 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2242 Results.push_back(CallInfo.first); 2243 Results.push_back(Rem); 2244 } 2245 2246 /// Return true if sincos libcall is available. 2247 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2248 RTLIB::Libcall LC; 2249 switch (Node->getSimpleValueType(0).SimpleTy) { 2250 default: llvm_unreachable("Unexpected request for libcall!"); 2251 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2252 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2253 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2254 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2255 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2256 } 2257 return TLI.getLibcallName(LC) != nullptr; 2258 } 2259 2260 /// Only issue sincos libcall if both sin and cos are needed. 2261 static bool useSinCos(SDNode *Node) { 2262 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2263 ? ISD::FCOS : ISD::FSIN; 2264 2265 SDValue Op0 = Node->getOperand(0); 2266 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2267 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2268 SDNode *User = *UI; 2269 if (User == Node) 2270 continue; 2271 // The other user might have been turned into sincos already. 2272 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2273 return true; 2274 } 2275 return false; 2276 } 2277 2278 /// Issue libcalls to sincos to compute sin / cos pairs. 2279 void 2280 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2281 SmallVectorImpl<SDValue> &Results) { 2282 RTLIB::Libcall LC; 2283 switch (Node->getSimpleValueType(0).SimpleTy) { 2284 default: llvm_unreachable("Unexpected request for libcall!"); 2285 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2286 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2287 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2288 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2289 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2290 } 2291 2292 // The input chain to this libcall is the entry node of the function. 2293 // Legalizing the call will automatically add the previous call to the 2294 // dependence. 2295 SDValue InChain = DAG.getEntryNode(); 2296 2297 EVT RetVT = Node->getValueType(0); 2298 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2299 2300 TargetLowering::ArgListTy Args; 2301 TargetLowering::ArgListEntry Entry; 2302 2303 // Pass the argument. 2304 Entry.Node = Node->getOperand(0); 2305 Entry.Ty = RetTy; 2306 Entry.IsSExt = false; 2307 Entry.IsZExt = false; 2308 Args.push_back(Entry); 2309 2310 // Pass the return address of sin. 2311 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2312 Entry.Node = SinPtr; 2313 Entry.Ty = RetTy->getPointerTo(); 2314 Entry.IsSExt = false; 2315 Entry.IsZExt = false; 2316 Args.push_back(Entry); 2317 2318 // Also pass the return address of the cos. 2319 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2320 Entry.Node = CosPtr; 2321 Entry.Ty = RetTy->getPointerTo(); 2322 Entry.IsSExt = false; 2323 Entry.IsZExt = false; 2324 Args.push_back(Entry); 2325 2326 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2327 TLI.getPointerTy(DAG.getDataLayout())); 2328 2329 SDLoc dl(Node); 2330 TargetLowering::CallLoweringInfo CLI(DAG); 2331 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2332 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2333 std::move(Args)); 2334 2335 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2336 2337 Results.push_back( 2338 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2339 Results.push_back( 2340 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2341 } 2342 2343 /// This function is responsible for legalizing a 2344 /// INT_TO_FP operation of the specified operand when the target requests that 2345 /// we expand it. At this point, we know that the result and operand types are 2346 /// legal for the target. 2347 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node, 2348 SDValue &Chain) { 2349 bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 2350 Node->getOpcode() == ISD::SINT_TO_FP); 2351 EVT DestVT = Node->getValueType(0); 2352 SDLoc dl(Node); 2353 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 2354 SDValue Op0 = Node->getOperand(OpNo); 2355 EVT SrcVT = Op0.getValueType(); 2356 2357 // TODO: Should any fast-math-flags be set for the created nodes? 2358 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2359 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { 2360 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2361 "expansion\n"); 2362 2363 // Get the stack frame index of a 8 byte buffer. 2364 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2365 2366 SDValue Lo = Op0; 2367 // if signed map to unsigned space 2368 if (isSigned) { 2369 // Invert sign bit (signed to unsigned mapping). 2370 Lo = DAG.getNode(ISD::XOR, dl, MVT::i32, Lo, 2371 DAG.getConstant(0x80000000u, dl, MVT::i32)); 2372 } 2373 // Initial hi portion of constructed double. 2374 SDValue Hi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2375 2376 // If this a big endian target, swap the lo and high data. 2377 if (DAG.getDataLayout().isBigEndian()) 2378 std::swap(Lo, Hi); 2379 2380 SDValue MemChain = DAG.getEntryNode(); 2381 2382 // Store the lo of the constructed double. 2383 SDValue Store1 = DAG.getStore(MemChain, dl, Lo, StackSlot, 2384 MachinePointerInfo()); 2385 // Store the hi of the constructed double. 2386 SDValue HiPtr = DAG.getMemBasePlusOffset(StackSlot, 4, dl); 2387 SDValue Store2 = 2388 DAG.getStore(MemChain, dl, Hi, HiPtr, MachinePointerInfo()); 2389 MemChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 2390 2391 // load the constructed double 2392 SDValue Load = 2393 DAG.getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo()); 2394 // FP constant to bias correct the final result 2395 SDValue Bias = DAG.getConstantFP(isSigned ? 2396 BitsToDouble(0x4330000080000000ULL) : 2397 BitsToDouble(0x4330000000000000ULL), 2398 dl, MVT::f64); 2399 // Subtract the bias and get the final result. 2400 SDValue Sub; 2401 SDValue Result; 2402 if (Node->isStrictFPOpcode()) { 2403 Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other}, 2404 {Node->getOperand(0), Load, Bias}); 2405 Chain = Sub.getValue(1); 2406 if (DestVT != Sub.getValueType()) { 2407 std::pair<SDValue, SDValue> ResultPair; 2408 ResultPair = 2409 DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT); 2410 Result = ResultPair.first; 2411 Chain = ResultPair.second; 2412 } 2413 else 2414 Result = Sub; 2415 } else { 2416 Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2417 Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); 2418 } 2419 return Result; 2420 } 2421 // Code below here assumes !isSigned without checking again. 2422 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2423 2424 // TODO: Generalize this for use with other types. 2425 if ((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) { 2426 LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32\n"); 2427 // For unsigned conversions, convert them to signed conversions using the 2428 // algorithm from the x86_64 __floatundisf in compiler_rt. That method 2429 // should be valid for i32->f32 as well. 2430 2431 // TODO: This really should be implemented using a branch rather than a 2432 // select. We happen to get lucky and machinesink does the right 2433 // thing most of the time. This would be a good candidate for a 2434 // pseudo-op, or, even better, for whole-function isel. 2435 EVT SetCCVT = getSetCCResultType(SrcVT); 2436 2437 SDValue SignBitTest = DAG.getSetCC( 2438 dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2439 2440 EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout()); 2441 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 2442 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst); 2443 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 2444 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst); 2445 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 2446 2447 SDValue Slow, Fast; 2448 if (Node->isStrictFPOpcode()) { 2449 // In strict mode, we must avoid spurious exceptions, and therefore 2450 // must make sure to only emit a single STRICT_SINT_TO_FP. 2451 SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0); 2452 Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2453 { Node->getOperand(0), InCvt }); 2454 Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2455 { Fast.getValue(1), Fast, Fast }); 2456 Chain = Slow.getValue(1); 2457 // The STRICT_SINT_TO_FP inherits the exception mode from the 2458 // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can 2459 // never raise any exception. 2460 SDNodeFlags Flags; 2461 Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept()); 2462 Fast->setFlags(Flags); 2463 Flags.setNoFPExcept(true); 2464 Slow->setFlags(Flags); 2465 } else { 2466 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or); 2467 Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt); 2468 Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2469 } 2470 2471 return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast); 2472 } 2473 2474 // The following optimization is valid only if every value in SrcVT (when 2475 // treated as signed) is representable in DestVT. Check that the mantissa 2476 // size of DestVT is >= than the number of bits in SrcVT -1. 2477 assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >= 2478 SrcVT.getSizeInBits() - 1 && 2479 "Cannot perform lossless SINT_TO_FP!"); 2480 2481 SDValue Tmp1; 2482 if (Node->isStrictFPOpcode()) { 2483 Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2484 { Node->getOperand(0), Op0 }); 2485 } else 2486 Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2487 2488 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, 2489 DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2490 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2491 Four = DAG.getIntPtrConstant(4, dl); 2492 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2493 SignSet, Four, Zero); 2494 2495 // If the sign bit of the integer is set, the large number will be treated 2496 // as a negative number. To counteract this, the dynamic code adds an 2497 // offset depending on the data type. 2498 uint64_t FF; 2499 switch (SrcVT.getSimpleVT().SimpleTy) { 2500 default: llvm_unreachable("Unsupported integer type!"); 2501 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2502 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2503 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2504 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2505 } 2506 if (DAG.getDataLayout().isLittleEndian()) 2507 FF <<= 32; 2508 Constant *FudgeFactor = ConstantInt::get( 2509 Type::getInt64Ty(*DAG.getContext()), FF); 2510 2511 SDValue CPIdx = 2512 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2513 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 2514 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2515 Alignment = commonAlignment(Alignment, 4); 2516 SDValue FudgeInReg; 2517 if (DestVT == MVT::f32) 2518 FudgeInReg = DAG.getLoad( 2519 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2520 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2521 Alignment); 2522 else { 2523 SDValue Load = DAG.getExtLoad( 2524 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2525 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2526 Alignment); 2527 HandleSDNode Handle(Load); 2528 LegalizeOp(Load.getNode()); 2529 FudgeInReg = Handle.getValue(); 2530 } 2531 2532 if (Node->isStrictFPOpcode()) { 2533 SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2534 { Tmp1.getValue(1), Tmp1, FudgeInReg }); 2535 Chain = Result.getValue(1); 2536 return Result; 2537 } 2538 2539 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2540 } 2541 2542 /// This function is responsible for legalizing a 2543 /// *INT_TO_FP operation of the specified operand when the target requests that 2544 /// we promote it. At this point, we know that the result and operand types are 2545 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2546 /// operation that takes a larger input. 2547 void SelectionDAGLegalize::PromoteLegalINT_TO_FP( 2548 SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) { 2549 bool IsStrict = N->isStrictFPOpcode(); 2550 bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP || 2551 N->getOpcode() == ISD::STRICT_SINT_TO_FP; 2552 EVT DestVT = N->getValueType(0); 2553 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2554 unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP; 2555 unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP; 2556 2557 // First step, figure out the appropriate *INT_TO_FP operation to use. 2558 EVT NewInTy = LegalOp.getValueType(); 2559 2560 unsigned OpToUse = 0; 2561 2562 // Scan for the appropriate larger type to use. 2563 while (true) { 2564 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2565 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2566 2567 // If the target supports SINT_TO_FP of this type, use it. 2568 if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) { 2569 OpToUse = SIntOp; 2570 break; 2571 } 2572 if (IsSigned) 2573 continue; 2574 2575 // If the target supports UINT_TO_FP of this type, use it. 2576 if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) { 2577 OpToUse = UIntOp; 2578 break; 2579 } 2580 2581 // Otherwise, try a larger type. 2582 } 2583 2584 // Okay, we found the operation and type to use. Zero extend our input to the 2585 // desired type then run the operation on it. 2586 if (IsStrict) { 2587 SDValue Res = 2588 DAG.getNode(OpToUse, dl, {DestVT, MVT::Other}, 2589 {N->getOperand(0), 2590 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2591 dl, NewInTy, LegalOp)}); 2592 Results.push_back(Res); 2593 Results.push_back(Res.getValue(1)); 2594 return; 2595 } 2596 2597 Results.push_back( 2598 DAG.getNode(OpToUse, dl, DestVT, 2599 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2600 dl, NewInTy, LegalOp))); 2601 } 2602 2603 /// This function is responsible for legalizing a 2604 /// FP_TO_*INT operation of the specified operand when the target requests that 2605 /// we promote it. At this point, we know that the result and operand types are 2606 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2607 /// operation that returns a larger result. 2608 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 2609 SmallVectorImpl<SDValue> &Results) { 2610 bool IsStrict = N->isStrictFPOpcode(); 2611 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 2612 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 2613 EVT DestVT = N->getValueType(0); 2614 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2615 // First step, figure out the appropriate FP_TO*INT operation to use. 2616 EVT NewOutTy = DestVT; 2617 2618 unsigned OpToUse = 0; 2619 2620 // Scan for the appropriate larger type to use. 2621 while (true) { 2622 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2623 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2624 2625 // A larger signed type can hold all unsigned values of the requested type, 2626 // so using FP_TO_SINT is valid 2627 OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT; 2628 if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2629 break; 2630 2631 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2632 OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT; 2633 if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2634 break; 2635 2636 // Otherwise, try a larger type. 2637 } 2638 2639 // Okay, we found the operation and type to use. 2640 SDValue Operation; 2641 if (IsStrict) { 2642 SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other); 2643 Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp); 2644 } else 2645 Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2646 2647 // Truncate the result of the extended FP_TO_*INT operation to the desired 2648 // size. 2649 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2650 Results.push_back(Trunc); 2651 if (IsStrict) 2652 Results.push_back(Operation.getValue(1)); 2653 } 2654 2655 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts. 2656 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) { 2657 EVT VT = Op.getValueType(); 2658 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2659 unsigned Sz = VT.getScalarSizeInBits(); 2660 2661 SDValue Tmp, Tmp2, Tmp3; 2662 2663 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 2664 // and finally the i1 pairs. 2665 // TODO: We can easily support i4/i2 legal types if any target ever does. 2666 if (Sz >= 8 && isPowerOf2_32(Sz)) { 2667 // Create the masks - repeating the pattern every byte. 2668 APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0)); 2669 APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC)); 2670 APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA)); 2671 APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 2672 APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33)); 2673 APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55)); 2674 2675 // BSWAP if the type is wider than a single byte. 2676 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 2677 2678 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) 2679 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); 2680 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); 2681 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT)); 2682 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 2683 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2684 2685 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) 2686 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); 2687 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); 2688 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT)); 2689 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 2690 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2691 2692 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) 2693 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); 2694 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); 2695 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT)); 2696 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 2697 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2698 return Tmp; 2699 } 2700 2701 Tmp = DAG.getConstant(0, dl, VT); 2702 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 2703 if (I < J) 2704 Tmp2 = 2705 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 2706 else 2707 Tmp2 = 2708 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 2709 2710 APInt Shift(Sz, 1); 2711 Shift <<= J; 2712 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 2713 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 2714 } 2715 2716 return Tmp; 2717 } 2718 2719 /// Open code the operations for BSWAP of the specified operation. 2720 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) { 2721 EVT VT = Op.getValueType(); 2722 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2723 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2724 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 2725 default: llvm_unreachable("Unhandled Expand type in BSWAP!"); 2726 case MVT::i16: 2727 // Use a rotate by 8. This can be further expanded if necessary. 2728 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2729 case MVT::i32: 2730 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2731 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2732 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2733 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2734 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2735 DAG.getConstant(0xFF0000, dl, VT)); 2736 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 2737 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2738 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2739 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2740 case MVT::i64: 2741 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2742 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2743 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2744 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2745 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2746 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2747 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2748 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2749 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 2750 DAG.getConstant(255ULL<<48, dl, VT)); 2751 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 2752 DAG.getConstant(255ULL<<40, dl, VT)); 2753 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 2754 DAG.getConstant(255ULL<<32, dl, VT)); 2755 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 2756 DAG.getConstant(255ULL<<24, dl, VT)); 2757 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2758 DAG.getConstant(255ULL<<16, dl, VT)); 2759 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 2760 DAG.getConstant(255ULL<<8 , dl, VT)); 2761 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2762 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2763 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2764 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2765 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2766 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2767 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2768 } 2769 } 2770 2771 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2772 LLVM_DEBUG(dbgs() << "Trying to expand node\n"); 2773 SmallVector<SDValue, 8> Results; 2774 SDLoc dl(Node); 2775 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2776 bool NeedInvert; 2777 switch (Node->getOpcode()) { 2778 case ISD::ABS: 2779 if (TLI.expandABS(Node, Tmp1, DAG)) 2780 Results.push_back(Tmp1); 2781 break; 2782 case ISD::CTPOP: 2783 if (TLI.expandCTPOP(Node, Tmp1, DAG)) 2784 Results.push_back(Tmp1); 2785 break; 2786 case ISD::CTLZ: 2787 case ISD::CTLZ_ZERO_UNDEF: 2788 if (TLI.expandCTLZ(Node, Tmp1, DAG)) 2789 Results.push_back(Tmp1); 2790 break; 2791 case ISD::CTTZ: 2792 case ISD::CTTZ_ZERO_UNDEF: 2793 if (TLI.expandCTTZ(Node, Tmp1, DAG)) 2794 Results.push_back(Tmp1); 2795 break; 2796 case ISD::BITREVERSE: 2797 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl)); 2798 break; 2799 case ISD::BSWAP: 2800 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2801 break; 2802 case ISD::FRAMEADDR: 2803 case ISD::RETURNADDR: 2804 case ISD::FRAME_TO_ARGS_OFFSET: 2805 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2806 break; 2807 case ISD::EH_DWARF_CFA: { 2808 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 2809 TLI.getPointerTy(DAG.getDataLayout())); 2810 SDValue Offset = DAG.getNode(ISD::ADD, dl, 2811 CfaArg.getValueType(), 2812 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 2813 CfaArg.getValueType()), 2814 CfaArg); 2815 SDValue FA = DAG.getNode( 2816 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 2817 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2818 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 2819 FA, Offset)); 2820 break; 2821 } 2822 case ISD::FLT_ROUNDS_: 2823 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2824 Results.push_back(Node->getOperand(0)); 2825 break; 2826 case ISD::EH_RETURN: 2827 case ISD::EH_LABEL: 2828 case ISD::PREFETCH: 2829 case ISD::VAEND: 2830 case ISD::EH_SJLJ_LONGJMP: 2831 // If the target didn't expand these, there's nothing to do, so just 2832 // preserve the chain and be done. 2833 Results.push_back(Node->getOperand(0)); 2834 break; 2835 case ISD::READCYCLECOUNTER: 2836 // If the target didn't expand this, just return 'zero' and preserve the 2837 // chain. 2838 Results.append(Node->getNumValues() - 1, 2839 DAG.getConstant(0, dl, Node->getValueType(0))); 2840 Results.push_back(Node->getOperand(0)); 2841 break; 2842 case ISD::EH_SJLJ_SETJMP: 2843 // If the target didn't expand this, just return 'zero' and preserve the 2844 // chain. 2845 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2846 Results.push_back(Node->getOperand(0)); 2847 break; 2848 case ISD::ATOMIC_LOAD: { 2849 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2850 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2851 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2852 SDValue Swap = DAG.getAtomicCmpSwap( 2853 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2854 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2855 cast<AtomicSDNode>(Node)->getMemOperand()); 2856 Results.push_back(Swap.getValue(0)); 2857 Results.push_back(Swap.getValue(1)); 2858 break; 2859 } 2860 case ISD::ATOMIC_STORE: { 2861 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2862 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2863 cast<AtomicSDNode>(Node)->getMemoryVT(), 2864 Node->getOperand(0), 2865 Node->getOperand(1), Node->getOperand(2), 2866 cast<AtomicSDNode>(Node)->getMemOperand()); 2867 Results.push_back(Swap.getValue(1)); 2868 break; 2869 } 2870 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 2871 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 2872 // splits out the success value as a comparison. Expanding the resulting 2873 // ATOMIC_CMP_SWAP will produce a libcall. 2874 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2875 SDValue Res = DAG.getAtomicCmpSwap( 2876 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2877 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 2878 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 2879 2880 SDValue ExtRes = Res; 2881 SDValue LHS = Res; 2882 SDValue RHS = Node->getOperand(1); 2883 2884 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 2885 EVT OuterType = Node->getValueType(0); 2886 switch (TLI.getExtendForAtomicOps()) { 2887 case ISD::SIGN_EXTEND: 2888 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 2889 DAG.getValueType(AtomicType)); 2890 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 2891 Node->getOperand(2), DAG.getValueType(AtomicType)); 2892 ExtRes = LHS; 2893 break; 2894 case ISD::ZERO_EXTEND: 2895 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 2896 DAG.getValueType(AtomicType)); 2897 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2898 ExtRes = LHS; 2899 break; 2900 case ISD::ANY_EXTEND: 2901 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 2902 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2903 break; 2904 default: 2905 llvm_unreachable("Invalid atomic op extension"); 2906 } 2907 2908 SDValue Success = 2909 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 2910 2911 Results.push_back(ExtRes.getValue(0)); 2912 Results.push_back(Success); 2913 Results.push_back(Res.getValue(1)); 2914 break; 2915 } 2916 case ISD::DYNAMIC_STACKALLOC: 2917 ExpandDYNAMIC_STACKALLOC(Node, Results); 2918 break; 2919 case ISD::MERGE_VALUES: 2920 for (unsigned i = 0; i < Node->getNumValues(); i++) 2921 Results.push_back(Node->getOperand(i)); 2922 break; 2923 case ISD::UNDEF: { 2924 EVT VT = Node->getValueType(0); 2925 if (VT.isInteger()) 2926 Results.push_back(DAG.getConstant(0, dl, VT)); 2927 else { 2928 assert(VT.isFloatingPoint() && "Unknown value type!"); 2929 Results.push_back(DAG.getConstantFP(0, dl, VT)); 2930 } 2931 break; 2932 } 2933 case ISD::STRICT_FP_ROUND: 2934 // When strict mode is enforced we can't do expansion because it 2935 // does not honor the "strict" properties. Only libcall is allowed. 2936 if (TLI.isStrictFPEnabled()) 2937 break; 2938 // We might as well mutate to FP_ROUND when FP_ROUND operation is legal 2939 // since this operation is more efficient than stack operation. 2940 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2941 Node->getValueType(0)) 2942 == TargetLowering::Legal) 2943 break; 2944 // We fall back to use stack operation when the FP_ROUND operation 2945 // isn't available. 2946 Tmp1 = EmitStackConvert(Node->getOperand(1), 2947 Node->getValueType(0), 2948 Node->getValueType(0), dl, Node->getOperand(0)); 2949 ReplaceNode(Node, Tmp1.getNode()); 2950 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n"); 2951 return true; 2952 case ISD::FP_ROUND: 2953 case ISD::BITCAST: 2954 Tmp1 = EmitStackConvert(Node->getOperand(0), 2955 Node->getValueType(0), 2956 Node->getValueType(0), dl); 2957 Results.push_back(Tmp1); 2958 break; 2959 case ISD::STRICT_FP_EXTEND: 2960 // When strict mode is enforced we can't do expansion because it 2961 // does not honor the "strict" properties. Only libcall is allowed. 2962 if (TLI.isStrictFPEnabled()) 2963 break; 2964 // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal 2965 // since this operation is more efficient than stack operation. 2966 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2967 Node->getValueType(0)) 2968 == TargetLowering::Legal) 2969 break; 2970 // We fall back to use stack operation when the FP_EXTEND operation 2971 // isn't available. 2972 Tmp1 = EmitStackConvert(Node->getOperand(1), 2973 Node->getOperand(1).getValueType(), 2974 Node->getValueType(0), dl, Node->getOperand(0)); 2975 ReplaceNode(Node, Tmp1.getNode()); 2976 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n"); 2977 return true; 2978 case ISD::FP_EXTEND: 2979 Tmp1 = EmitStackConvert(Node->getOperand(0), 2980 Node->getOperand(0).getValueType(), 2981 Node->getValueType(0), dl); 2982 Results.push_back(Tmp1); 2983 break; 2984 case ISD::SIGN_EXTEND_INREG: { 2985 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2986 EVT VT = Node->getValueType(0); 2987 2988 // An in-register sign-extend of a boolean is a negation: 2989 // 'true' (1) sign-extended is -1. 2990 // 'false' (0) sign-extended is 0. 2991 // However, we must mask the high bits of the source operand because the 2992 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 2993 2994 // TODO: Do this for vectors too? 2995 if (ExtraVT.getSizeInBits() == 1) { 2996 SDValue One = DAG.getConstant(1, dl, VT); 2997 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 2998 SDValue Zero = DAG.getConstant(0, dl, VT); 2999 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 3000 Results.push_back(Neg); 3001 break; 3002 } 3003 3004 // NOTE: we could fall back on load/store here too for targets without 3005 // SRA. However, it is doubtful that any exist. 3006 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 3007 unsigned BitsDiff = VT.getScalarSizeInBits() - 3008 ExtraVT.getScalarSizeInBits(); 3009 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 3010 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 3011 Node->getOperand(0), ShiftCst); 3012 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 3013 Results.push_back(Tmp1); 3014 break; 3015 } 3016 case ISD::UINT_TO_FP: 3017 case ISD::STRICT_UINT_TO_FP: 3018 if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) { 3019 Results.push_back(Tmp1); 3020 if (Node->isStrictFPOpcode()) 3021 Results.push_back(Tmp2); 3022 break; 3023 } 3024 LLVM_FALLTHROUGH; 3025 case ISD::SINT_TO_FP: 3026 case ISD::STRICT_SINT_TO_FP: 3027 Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2); 3028 Results.push_back(Tmp1); 3029 if (Node->isStrictFPOpcode()) 3030 Results.push_back(Tmp2); 3031 break; 3032 case ISD::FP_TO_SINT: 3033 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 3034 Results.push_back(Tmp1); 3035 break; 3036 case ISD::STRICT_FP_TO_SINT: 3037 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) { 3038 ReplaceNode(Node, Tmp1.getNode()); 3039 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n"); 3040 return true; 3041 } 3042 break; 3043 case ISD::FP_TO_UINT: 3044 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) 3045 Results.push_back(Tmp1); 3046 break; 3047 case ISD::STRICT_FP_TO_UINT: 3048 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) { 3049 // Relink the chain. 3050 DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2); 3051 // Replace the new UINT result. 3052 ReplaceNodeWithValue(SDValue(Node, 0), Tmp1); 3053 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n"); 3054 return true; 3055 } 3056 break; 3057 case ISD::VAARG: 3058 Results.push_back(DAG.expandVAArg(Node)); 3059 Results.push_back(Results[0].getValue(1)); 3060 break; 3061 case ISD::VACOPY: 3062 Results.push_back(DAG.expandVACopy(Node)); 3063 break; 3064 case ISD::EXTRACT_VECTOR_ELT: 3065 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 3066 // This must be an access of the only element. Return it. 3067 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 3068 Node->getOperand(0)); 3069 else 3070 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 3071 Results.push_back(Tmp1); 3072 break; 3073 case ISD::EXTRACT_SUBVECTOR: 3074 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 3075 break; 3076 case ISD::INSERT_SUBVECTOR: 3077 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 3078 break; 3079 case ISD::CONCAT_VECTORS: 3080 Results.push_back(ExpandVectorBuildThroughStack(Node)); 3081 break; 3082 case ISD::SCALAR_TO_VECTOR: 3083 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3084 break; 3085 case ISD::INSERT_VECTOR_ELT: 3086 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3087 Node->getOperand(1), 3088 Node->getOperand(2), dl)); 3089 break; 3090 case ISD::VECTOR_SHUFFLE: { 3091 SmallVector<int, 32> NewMask; 3092 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3093 3094 EVT VT = Node->getValueType(0); 3095 EVT EltVT = VT.getVectorElementType(); 3096 SDValue Op0 = Node->getOperand(0); 3097 SDValue Op1 = Node->getOperand(1); 3098 if (!TLI.isTypeLegal(EltVT)) { 3099 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3100 3101 // BUILD_VECTOR operands are allowed to be wider than the element type. 3102 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 3103 // it. 3104 if (NewEltVT.bitsLT(EltVT)) { 3105 // Convert shuffle node. 3106 // If original node was v4i64 and the new EltVT is i32, 3107 // cast operands to v8i32 and re-build the mask. 3108 3109 // Calculate new VT, the size of the new VT should be equal to original. 3110 EVT NewVT = 3111 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3112 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 3113 assert(NewVT.bitsEq(VT)); 3114 3115 // cast operands to new VT 3116 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3117 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3118 3119 // Convert the shuffle mask 3120 unsigned int factor = 3121 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3122 3123 // EltVT gets smaller 3124 assert(factor > 0); 3125 3126 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3127 if (Mask[i] < 0) { 3128 for (unsigned fi = 0; fi < factor; ++fi) 3129 NewMask.push_back(Mask[i]); 3130 } 3131 else { 3132 for (unsigned fi = 0; fi < factor; ++fi) 3133 NewMask.push_back(Mask[i]*factor+fi); 3134 } 3135 } 3136 Mask = NewMask; 3137 VT = NewVT; 3138 } 3139 EltVT = NewEltVT; 3140 } 3141 unsigned NumElems = VT.getVectorNumElements(); 3142 SmallVector<SDValue, 16> Ops; 3143 for (unsigned i = 0; i != NumElems; ++i) { 3144 if (Mask[i] < 0) { 3145 Ops.push_back(DAG.getUNDEF(EltVT)); 3146 continue; 3147 } 3148 unsigned Idx = Mask[i]; 3149 if (Idx < NumElems) 3150 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3151 DAG.getVectorIdxConstant(Idx, dl))); 3152 else 3153 Ops.push_back( 3154 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3155 DAG.getVectorIdxConstant(Idx - NumElems, dl))); 3156 } 3157 3158 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 3159 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3160 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3161 Results.push_back(Tmp1); 3162 break; 3163 } 3164 case ISD::EXTRACT_ELEMENT: { 3165 EVT OpTy = Node->getOperand(0).getValueType(); 3166 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3167 // 1 -> Hi 3168 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3169 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3170 TLI.getShiftAmountTy( 3171 Node->getOperand(0).getValueType(), 3172 DAG.getDataLayout()))); 3173 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3174 } else { 3175 // 0 -> Lo 3176 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3177 Node->getOperand(0)); 3178 } 3179 Results.push_back(Tmp1); 3180 break; 3181 } 3182 case ISD::STACKSAVE: 3183 // Expand to CopyFromReg if the target set 3184 // StackPointerRegisterToSaveRestore. 3185 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3186 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3187 Node->getValueType(0))); 3188 Results.push_back(Results[0].getValue(1)); 3189 } else { 3190 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3191 Results.push_back(Node->getOperand(0)); 3192 } 3193 break; 3194 case ISD::STACKRESTORE: 3195 // Expand to CopyToReg if the target set 3196 // StackPointerRegisterToSaveRestore. 3197 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3198 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3199 Node->getOperand(1))); 3200 } else { 3201 Results.push_back(Node->getOperand(0)); 3202 } 3203 break; 3204 case ISD::GET_DYNAMIC_AREA_OFFSET: 3205 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3206 Results.push_back(Results[0].getValue(0)); 3207 break; 3208 case ISD::FCOPYSIGN: 3209 Results.push_back(ExpandFCOPYSIGN(Node)); 3210 break; 3211 case ISD::FNEG: 3212 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3213 Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0)); 3214 // TODO: If FNEG has fast-math-flags, propagate them to the FSUB. 3215 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, 3216 Node->getOperand(0)); 3217 Results.push_back(Tmp1); 3218 break; 3219 case ISD::FABS: 3220 Results.push_back(ExpandFABS(Node)); 3221 break; 3222 case ISD::SMIN: 3223 case ISD::SMAX: 3224 case ISD::UMIN: 3225 case ISD::UMAX: { 3226 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3227 ISD::CondCode Pred; 3228 switch (Node->getOpcode()) { 3229 default: llvm_unreachable("How did we get here?"); 3230 case ISD::SMAX: Pred = ISD::SETGT; break; 3231 case ISD::SMIN: Pred = ISD::SETLT; break; 3232 case ISD::UMAX: Pred = ISD::SETUGT; break; 3233 case ISD::UMIN: Pred = ISD::SETULT; break; 3234 } 3235 Tmp1 = Node->getOperand(0); 3236 Tmp2 = Node->getOperand(1); 3237 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3238 Results.push_back(Tmp1); 3239 break; 3240 } 3241 case ISD::FMINNUM: 3242 case ISD::FMAXNUM: { 3243 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) 3244 Results.push_back(Expanded); 3245 break; 3246 } 3247 case ISD::FSIN: 3248 case ISD::FCOS: { 3249 EVT VT = Node->getValueType(0); 3250 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3251 // fcos which share the same operand and both are used. 3252 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3253 isSinCosLibcallAvailable(Node, TLI)) 3254 && useSinCos(Node)) { 3255 SDVTList VTs = DAG.getVTList(VT, VT); 3256 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3257 if (Node->getOpcode() == ISD::FCOS) 3258 Tmp1 = Tmp1.getValue(1); 3259 Results.push_back(Tmp1); 3260 } 3261 break; 3262 } 3263 case ISD::FMAD: 3264 llvm_unreachable("Illegal fmad should never be formed"); 3265 3266 case ISD::FP16_TO_FP: 3267 if (Node->getValueType(0) != MVT::f32) { 3268 // We can extend to types bigger than f32 in two steps without changing 3269 // the result. Since "f16 -> f32" is much more commonly available, give 3270 // CodeGen the option of emitting that before resorting to a libcall. 3271 SDValue Res = 3272 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3273 Results.push_back( 3274 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3275 } 3276 break; 3277 case ISD::STRICT_FP16_TO_FP: 3278 if (Node->getValueType(0) != MVT::f32) { 3279 // We can extend to types bigger than f32 in two steps without changing 3280 // the result. Since "f16 -> f32" is much more commonly available, give 3281 // CodeGen the option of emitting that before resorting to a libcall. 3282 SDValue Res = 3283 DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other}, 3284 {Node->getOperand(0), Node->getOperand(1)}); 3285 Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 3286 {Node->getValueType(0), MVT::Other}, 3287 {Res.getValue(1), Res}); 3288 Results.push_back(Res); 3289 Results.push_back(Res.getValue(1)); 3290 } 3291 break; 3292 case ISD::FP_TO_FP16: 3293 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3294 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3295 SDValue Op = Node->getOperand(0); 3296 MVT SVT = Op.getSimpleValueType(); 3297 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3298 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3299 // Under fastmath, we can expand this node into a fround followed by 3300 // a float-half conversion. 3301 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3302 DAG.getIntPtrConstant(0, dl)); 3303 Results.push_back( 3304 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3305 } 3306 } 3307 break; 3308 case ISD::ConstantFP: { 3309 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3310 // Check to see if this FP immediate is already legal. 3311 // If this is a legal constant, turn it into a TargetConstantFP node. 3312 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0), 3313 DAG.getMachineFunction().getFunction().hasOptSize())) 3314 Results.push_back(ExpandConstantFP(CFP, true)); 3315 break; 3316 } 3317 case ISD::Constant: { 3318 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3319 Results.push_back(ExpandConstant(CP)); 3320 break; 3321 } 3322 case ISD::FSUB: { 3323 EVT VT = Node->getValueType(0); 3324 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3325 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3326 const SDNodeFlags Flags = Node->getFlags(); 3327 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3328 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3329 Results.push_back(Tmp1); 3330 } 3331 break; 3332 } 3333 case ISD::SUB: { 3334 EVT VT = Node->getValueType(0); 3335 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3336 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3337 "Don't know how to expand this subtraction!"); 3338 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3339 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, 3340 VT)); 3341 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3342 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3343 break; 3344 } 3345 case ISD::UREM: 3346 case ISD::SREM: 3347 if (TLI.expandREM(Node, Tmp1, DAG)) 3348 Results.push_back(Tmp1); 3349 break; 3350 case ISD::UDIV: 3351 case ISD::SDIV: { 3352 bool isSigned = Node->getOpcode() == ISD::SDIV; 3353 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3354 EVT VT = Node->getValueType(0); 3355 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3356 SDVTList VTs = DAG.getVTList(VT, VT); 3357 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3358 Node->getOperand(1)); 3359 Results.push_back(Tmp1); 3360 } 3361 break; 3362 } 3363 case ISD::MULHU: 3364 case ISD::MULHS: { 3365 unsigned ExpandOpcode = 3366 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3367 EVT VT = Node->getValueType(0); 3368 SDVTList VTs = DAG.getVTList(VT, VT); 3369 3370 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3371 Node->getOperand(1)); 3372 Results.push_back(Tmp1.getValue(1)); 3373 break; 3374 } 3375 case ISD::UMUL_LOHI: 3376 case ISD::SMUL_LOHI: { 3377 SDValue LHS = Node->getOperand(0); 3378 SDValue RHS = Node->getOperand(1); 3379 MVT VT = LHS.getSimpleValueType(); 3380 unsigned MULHOpcode = 3381 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3382 3383 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3384 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3385 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3386 break; 3387 } 3388 3389 SmallVector<SDValue, 4> Halves; 3390 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3391 assert(TLI.isTypeLegal(HalfType)); 3392 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves, 3393 HalfType, DAG, 3394 TargetLowering::MulExpansionKind::Always)) { 3395 for (unsigned i = 0; i < 2; ++i) { 3396 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3397 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3398 SDValue Shift = DAG.getConstant( 3399 HalfType.getScalarSizeInBits(), dl, 3400 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3401 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3402 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3403 } 3404 break; 3405 } 3406 break; 3407 } 3408 case ISD::MUL: { 3409 EVT VT = Node->getValueType(0); 3410 SDVTList VTs = DAG.getVTList(VT, VT); 3411 // See if multiply or divide can be lowered using two-result operations. 3412 // We just need the low half of the multiply; try both the signed 3413 // and unsigned forms. If the target supports both SMUL_LOHI and 3414 // UMUL_LOHI, form a preference by checking which forms of plain 3415 // MULH it supports. 3416 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3417 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3418 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3419 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3420 unsigned OpToUse = 0; 3421 if (HasSMUL_LOHI && !HasMULHS) { 3422 OpToUse = ISD::SMUL_LOHI; 3423 } else if (HasUMUL_LOHI && !HasMULHU) { 3424 OpToUse = ISD::UMUL_LOHI; 3425 } else if (HasSMUL_LOHI) { 3426 OpToUse = ISD::SMUL_LOHI; 3427 } else if (HasUMUL_LOHI) { 3428 OpToUse = ISD::UMUL_LOHI; 3429 } 3430 if (OpToUse) { 3431 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3432 Node->getOperand(1))); 3433 break; 3434 } 3435 3436 SDValue Lo, Hi; 3437 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3438 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3439 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3440 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3441 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3442 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3443 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3444 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3445 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3446 SDValue Shift = 3447 DAG.getConstant(HalfType.getSizeInBits(), dl, 3448 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3449 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3450 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3451 } 3452 break; 3453 } 3454 case ISD::FSHL: 3455 case ISD::FSHR: 3456 if (TLI.expandFunnelShift(Node, Tmp1, DAG)) 3457 Results.push_back(Tmp1); 3458 break; 3459 case ISD::ROTL: 3460 case ISD::ROTR: 3461 if (TLI.expandROT(Node, Tmp1, DAG)) 3462 Results.push_back(Tmp1); 3463 break; 3464 case ISD::SADDSAT: 3465 case ISD::UADDSAT: 3466 case ISD::SSUBSAT: 3467 case ISD::USUBSAT: 3468 Results.push_back(TLI.expandAddSubSat(Node, DAG)); 3469 break; 3470 case ISD::SMULFIX: 3471 case ISD::SMULFIXSAT: 3472 case ISD::UMULFIX: 3473 case ISD::UMULFIXSAT: 3474 Results.push_back(TLI.expandFixedPointMul(Node, DAG)); 3475 break; 3476 case ISD::SDIVFIX: 3477 case ISD::SDIVFIXSAT: 3478 case ISD::UDIVFIX: 3479 case ISD::UDIVFIXSAT: 3480 if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node), 3481 Node->getOperand(0), 3482 Node->getOperand(1), 3483 Node->getConstantOperandVal(2), 3484 DAG)) { 3485 Results.push_back(V); 3486 break; 3487 } 3488 // FIXME: We might want to retry here with a wider type if we fail, if that 3489 // type is legal. 3490 // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is 3491 // <= 128 (which is the case for all of the default Embedded-C types), 3492 // we will only get here with types and scales that we could always expand 3493 // if we were allowed to generate libcalls to division functions of illegal 3494 // type. But we cannot do that. 3495 llvm_unreachable("Cannot expand DIVFIX!"); 3496 case ISD::ADDCARRY: 3497 case ISD::SUBCARRY: { 3498 SDValue LHS = Node->getOperand(0); 3499 SDValue RHS = Node->getOperand(1); 3500 SDValue Carry = Node->getOperand(2); 3501 3502 bool IsAdd = Node->getOpcode() == ISD::ADDCARRY; 3503 3504 // Initial add of the 2 operands. 3505 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB; 3506 EVT VT = LHS.getValueType(); 3507 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS); 3508 3509 // Initial check for overflow. 3510 EVT CarryType = Node->getValueType(1); 3511 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3512 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 3513 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3514 3515 // Add of the sum and the carry. 3516 SDValue One = DAG.getConstant(1, dl, VT); 3517 SDValue CarryExt = 3518 DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One); 3519 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt); 3520 3521 // Second check for overflow. If we are adding, we can only overflow if the 3522 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0. 3523 // If we are subtracting, we can only overflow if the initial sum is 0 and 3524 // the carry is set, resulting in a new sum of all 1s. 3525 SDValue Zero = DAG.getConstant(0, dl, VT); 3526 SDValue Overflow2 = 3527 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ) 3528 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ); 3529 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2, 3530 DAG.getZExtOrTrunc(Carry, dl, SetCCType)); 3531 3532 SDValue ResultCarry = 3533 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2); 3534 3535 Results.push_back(Sum2); 3536 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT)); 3537 break; 3538 } 3539 case ISD::SADDO: 3540 case ISD::SSUBO: { 3541 SDValue Result, Overflow; 3542 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 3543 Results.push_back(Result); 3544 Results.push_back(Overflow); 3545 break; 3546 } 3547 case ISD::UADDO: 3548 case ISD::USUBO: { 3549 SDValue Result, Overflow; 3550 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 3551 Results.push_back(Result); 3552 Results.push_back(Overflow); 3553 break; 3554 } 3555 case ISD::UMULO: 3556 case ISD::SMULO: { 3557 SDValue Result, Overflow; 3558 if (TLI.expandMULO(Node, Result, Overflow, DAG)) { 3559 Results.push_back(Result); 3560 Results.push_back(Overflow); 3561 } 3562 break; 3563 } 3564 case ISD::BUILD_PAIR: { 3565 EVT PairTy = Node->getValueType(0); 3566 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3567 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3568 Tmp2 = DAG.getNode( 3569 ISD::SHL, dl, PairTy, Tmp2, 3570 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3571 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3572 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3573 break; 3574 } 3575 case ISD::SELECT: 3576 Tmp1 = Node->getOperand(0); 3577 Tmp2 = Node->getOperand(1); 3578 Tmp3 = Node->getOperand(2); 3579 if (Tmp1.getOpcode() == ISD::SETCC) { 3580 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3581 Tmp2, Tmp3, 3582 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3583 } else { 3584 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3585 DAG.getConstant(0, dl, Tmp1.getValueType()), 3586 Tmp2, Tmp3, ISD::SETNE); 3587 } 3588 Tmp1->setFlags(Node->getFlags()); 3589 Results.push_back(Tmp1); 3590 break; 3591 case ISD::BR_JT: { 3592 SDValue Chain = Node->getOperand(0); 3593 SDValue Table = Node->getOperand(1); 3594 SDValue Index = Node->getOperand(2); 3595 3596 const DataLayout &TD = DAG.getDataLayout(); 3597 EVT PTy = TLI.getPointerTy(TD); 3598 3599 unsigned EntrySize = 3600 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3601 3602 // For power-of-two jumptable entry sizes convert multiplication to a shift. 3603 // This transformation needs to be done here since otherwise the MIPS 3604 // backend will end up emitting a three instruction multiply sequence 3605 // instead of a single shift and MSP430 will call a runtime function. 3606 if (llvm::isPowerOf2_32(EntrySize)) 3607 Index = DAG.getNode( 3608 ISD::SHL, dl, Index.getValueType(), Index, 3609 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); 3610 else 3611 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3612 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3613 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3614 Index, Table); 3615 3616 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3617 SDValue LD = DAG.getExtLoad( 3618 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3619 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3620 Addr = LD; 3621 if (TLI.isJumpTableRelative()) { 3622 // For PIC, the sequence is: 3623 // BRIND(load(Jumptable + index) + RelocBase) 3624 // RelocBase can be JumpTable, GOT or some sort of global base. 3625 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3626 TLI.getPICJumpTableRelocBase(Table, DAG)); 3627 } 3628 3629 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); 3630 Results.push_back(Tmp1); 3631 break; 3632 } 3633 case ISD::BRCOND: 3634 // Expand brcond's setcc into its constituent parts and create a BR_CC 3635 // Node. 3636 Tmp1 = Node->getOperand(0); 3637 Tmp2 = Node->getOperand(1); 3638 if (Tmp2.getOpcode() == ISD::SETCC) { 3639 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3640 Tmp1, Tmp2.getOperand(2), 3641 Tmp2.getOperand(0), Tmp2.getOperand(1), 3642 Node->getOperand(2)); 3643 } else { 3644 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 3645 if (Tmp2.isUndef() || 3646 (Tmp2.getOpcode() == ISD::AND && 3647 isa<ConstantSDNode>(Tmp2.getOperand(1)) && 3648 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) 3649 Tmp3 = Tmp2; 3650 else 3651 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3652 DAG.getConstant(1, dl, Tmp2.getValueType())); 3653 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3654 DAG.getCondCode(ISD::SETNE), Tmp3, 3655 DAG.getConstant(0, dl, Tmp3.getValueType()), 3656 Node->getOperand(2)); 3657 } 3658 Results.push_back(Tmp1); 3659 break; 3660 case ISD::SETCC: 3661 case ISD::STRICT_FSETCC: 3662 case ISD::STRICT_FSETCCS: { 3663 bool IsStrict = Node->getOpcode() != ISD::SETCC; 3664 bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS; 3665 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 3666 unsigned Offset = IsStrict ? 1 : 0; 3667 Tmp1 = Node->getOperand(0 + Offset); 3668 Tmp2 = Node->getOperand(1 + Offset); 3669 Tmp3 = Node->getOperand(2 + Offset); 3670 bool Legalized = 3671 LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, 3672 NeedInvert, dl, Chain, IsSignaling); 3673 3674 if (Legalized) { 3675 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3676 // condition code, create a new SETCC node. 3677 if (Tmp3.getNode()) 3678 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3679 Tmp1, Tmp2, Tmp3, Node->getFlags()); 3680 3681 // If we expanded the SETCC by inverting the condition code, then wrap 3682 // the existing SETCC in a NOT to restore the intended condition. 3683 if (NeedInvert) 3684 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3685 3686 Results.push_back(Tmp1); 3687 if (IsStrict) 3688 Results.push_back(Chain); 3689 3690 break; 3691 } 3692 3693 // FIXME: It seems Legalized is false iff CCCode is Legal. I don't 3694 // understand if this code is useful for strict nodes. 3695 assert(!IsStrict && "Don't know how to expand for strict nodes."); 3696 3697 // Otherwise, SETCC for the given comparison type must be completely 3698 // illegal; expand it into a SELECT_CC. 3699 EVT VT = Node->getValueType(0); 3700 int TrueValue; 3701 switch (TLI.getBooleanContents(Tmp1.getValueType())) { 3702 case TargetLowering::ZeroOrOneBooleanContent: 3703 case TargetLowering::UndefinedBooleanContent: 3704 TrueValue = 1; 3705 break; 3706 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3707 TrueValue = -1; 3708 break; 3709 } 3710 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3711 DAG.getConstant(TrueValue, dl, VT), 3712 DAG.getConstant(0, dl, VT), 3713 Tmp3); 3714 Tmp1->setFlags(Node->getFlags()); 3715 Results.push_back(Tmp1); 3716 break; 3717 } 3718 case ISD::SELECT_CC: { 3719 // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS 3720 Tmp1 = Node->getOperand(0); // LHS 3721 Tmp2 = Node->getOperand(1); // RHS 3722 Tmp3 = Node->getOperand(2); // True 3723 Tmp4 = Node->getOperand(3); // False 3724 EVT VT = Node->getValueType(0); 3725 SDValue Chain; 3726 SDValue CC = Node->getOperand(4); 3727 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3728 3729 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 3730 // If the condition code is legal, then we need to expand this 3731 // node using SETCC and SELECT. 3732 EVT CmpVT = Tmp1.getValueType(); 3733 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3734 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3735 "expanded."); 3736 EVT CCVT = getSetCCResultType(CmpVT); 3737 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags()); 3738 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3739 break; 3740 } 3741 3742 // SELECT_CC is legal, so the condition code must not be. 3743 bool Legalized = false; 3744 // Try to legalize by inverting the condition. This is for targets that 3745 // might support an ordered version of a condition, but not the unordered 3746 // version (or vice versa). 3747 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType()); 3748 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 3749 // Use the new condition code and swap true and false 3750 Legalized = true; 3751 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3752 Tmp1->setFlags(Node->getFlags()); 3753 } else { 3754 // If The inverse is not legal, then try to swap the arguments using 3755 // the inverse condition code. 3756 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3757 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 3758 // The swapped inverse condition is legal, so swap true and false, 3759 // lhs and rhs. 3760 Legalized = true; 3761 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3762 Tmp1->setFlags(Node->getFlags()); 3763 } 3764 } 3765 3766 if (!Legalized) { 3767 Legalized = LegalizeSetCCCondCode(getSetCCResultType(Tmp1.getValueType()), 3768 Tmp1, Tmp2, CC, NeedInvert, dl, Chain); 3769 3770 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3771 3772 // If we expanded the SETCC by inverting the condition code, then swap 3773 // the True/False operands to match. 3774 if (NeedInvert) 3775 std::swap(Tmp3, Tmp4); 3776 3777 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3778 // condition code, create a new SELECT_CC node. 3779 if (CC.getNode()) { 3780 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3781 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3782 } else { 3783 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3784 CC = DAG.getCondCode(ISD::SETNE); 3785 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3786 Tmp2, Tmp3, Tmp4, CC); 3787 } 3788 Tmp1->setFlags(Node->getFlags()); 3789 } 3790 Results.push_back(Tmp1); 3791 break; 3792 } 3793 case ISD::BR_CC: { 3794 // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS 3795 SDValue Chain; 3796 Tmp1 = Node->getOperand(0); // Chain 3797 Tmp2 = Node->getOperand(2); // LHS 3798 Tmp3 = Node->getOperand(3); // RHS 3799 Tmp4 = Node->getOperand(1); // CC 3800 3801 bool Legalized = 3802 LegalizeSetCCCondCode(getSetCCResultType(Tmp2.getValueType()), Tmp2, 3803 Tmp3, Tmp4, NeedInvert, dl, Chain); 3804 (void)Legalized; 3805 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3806 3807 assert(!NeedInvert && "Don't know how to invert BR_CC!"); 3808 3809 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3810 // node. 3811 if (Tmp4.getNode()) { 3812 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3813 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3814 } else { 3815 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3816 Tmp4 = DAG.getCondCode(ISD::SETNE); 3817 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3818 Tmp2, Tmp3, Node->getOperand(4)); 3819 } 3820 Results.push_back(Tmp1); 3821 break; 3822 } 3823 case ISD::BUILD_VECTOR: 3824 Results.push_back(ExpandBUILD_VECTOR(Node)); 3825 break; 3826 case ISD::SPLAT_VECTOR: 3827 Results.push_back(ExpandSPLAT_VECTOR(Node)); 3828 break; 3829 case ISD::SRA: 3830 case ISD::SRL: 3831 case ISD::SHL: { 3832 // Scalarize vector SRA/SRL/SHL. 3833 EVT VT = Node->getValueType(0); 3834 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3835 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3836 unsigned NumElem = VT.getVectorNumElements(); 3837 3838 SmallVector<SDValue, 8> Scalars; 3839 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3840 SDValue Ex = 3841 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3842 Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl)); 3843 SDValue Sh = 3844 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3845 Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl)); 3846 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3847 VT.getScalarType(), Ex, Sh)); 3848 } 3849 3850 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 3851 Results.push_back(Result); 3852 break; 3853 } 3854 case ISD::VECREDUCE_FADD: 3855 case ISD::VECREDUCE_FMUL: 3856 case ISD::VECREDUCE_ADD: 3857 case ISD::VECREDUCE_MUL: 3858 case ISD::VECREDUCE_AND: 3859 case ISD::VECREDUCE_OR: 3860 case ISD::VECREDUCE_XOR: 3861 case ISD::VECREDUCE_SMAX: 3862 case ISD::VECREDUCE_SMIN: 3863 case ISD::VECREDUCE_UMAX: 3864 case ISD::VECREDUCE_UMIN: 3865 case ISD::VECREDUCE_FMAX: 3866 case ISD::VECREDUCE_FMIN: 3867 Results.push_back(TLI.expandVecReduce(Node, DAG)); 3868 break; 3869 case ISD::GLOBAL_OFFSET_TABLE: 3870 case ISD::GlobalAddress: 3871 case ISD::GlobalTLSAddress: 3872 case ISD::ExternalSymbol: 3873 case ISD::ConstantPool: 3874 case ISD::JumpTable: 3875 case ISD::INTRINSIC_W_CHAIN: 3876 case ISD::INTRINSIC_WO_CHAIN: 3877 case ISD::INTRINSIC_VOID: 3878 // FIXME: Custom lowering for these operations shouldn't return null! 3879 // Return true so that we don't call ConvertNodeToLibcall which also won't 3880 // do anything. 3881 return true; 3882 } 3883 3884 if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) { 3885 // FIXME: We were asked to expand a strict floating-point operation, 3886 // but there is currently no expansion implemented that would preserve 3887 // the "strict" properties. For now, we just fall back to the non-strict 3888 // version if that is legal on the target. The actual mutation of the 3889 // operation will happen in SelectionDAGISel::DoInstructionSelection. 3890 switch (Node->getOpcode()) { 3891 default: 3892 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3893 Node->getValueType(0)) 3894 == TargetLowering::Legal) 3895 return true; 3896 break; 3897 case ISD::STRICT_LRINT: 3898 case ISD::STRICT_LLRINT: 3899 case ISD::STRICT_LROUND: 3900 case ISD::STRICT_LLROUND: 3901 // These are registered by the operand type instead of the value 3902 // type. Reflect that here. 3903 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3904 Node->getOperand(1).getValueType()) 3905 == TargetLowering::Legal) 3906 return true; 3907 break; 3908 } 3909 } 3910 3911 // Replace the original node with the legalized result. 3912 if (Results.empty()) { 3913 LLVM_DEBUG(dbgs() << "Cannot expand node\n"); 3914 return false; 3915 } 3916 3917 LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); 3918 ReplaceNode(Node, Results.data()); 3919 return true; 3920 } 3921 3922 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 3923 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); 3924 SmallVector<SDValue, 8> Results; 3925 SDLoc dl(Node); 3926 // FIXME: Check flags on the node to see if we can use a finite call. 3927 unsigned Opc = Node->getOpcode(); 3928 switch (Opc) { 3929 case ISD::ATOMIC_FENCE: { 3930 // If the target didn't lower this, lower it to '__sync_synchronize()' call 3931 // FIXME: handle "fence singlethread" more efficiently. 3932 TargetLowering::ArgListTy Args; 3933 3934 TargetLowering::CallLoweringInfo CLI(DAG); 3935 CLI.setDebugLoc(dl) 3936 .setChain(Node->getOperand(0)) 3937 .setLibCallee( 3938 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3939 DAG.getExternalSymbol("__sync_synchronize", 3940 TLI.getPointerTy(DAG.getDataLayout())), 3941 std::move(Args)); 3942 3943 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3944 3945 Results.push_back(CallResult.second); 3946 break; 3947 } 3948 // By default, atomic intrinsics are marked Legal and lowered. Targets 3949 // which don't support them directly, however, may want libcalls, in which 3950 // case they mark them Expand, and we get here. 3951 case ISD::ATOMIC_SWAP: 3952 case ISD::ATOMIC_LOAD_ADD: 3953 case ISD::ATOMIC_LOAD_SUB: 3954 case ISD::ATOMIC_LOAD_AND: 3955 case ISD::ATOMIC_LOAD_CLR: 3956 case ISD::ATOMIC_LOAD_OR: 3957 case ISD::ATOMIC_LOAD_XOR: 3958 case ISD::ATOMIC_LOAD_NAND: 3959 case ISD::ATOMIC_LOAD_MIN: 3960 case ISD::ATOMIC_LOAD_MAX: 3961 case ISD::ATOMIC_LOAD_UMIN: 3962 case ISD::ATOMIC_LOAD_UMAX: 3963 case ISD::ATOMIC_CMP_SWAP: { 3964 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 3965 RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT); 3966 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!"); 3967 3968 EVT RetVT = Node->getValueType(0); 3969 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); 3970 TargetLowering::MakeLibCallOptions CallOptions; 3971 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 3972 Ops, CallOptions, 3973 SDLoc(Node), 3974 Node->getOperand(0)); 3975 Results.push_back(Tmp.first); 3976 Results.push_back(Tmp.second); 3977 break; 3978 } 3979 case ISD::TRAP: { 3980 // If this operation is not supported, lower it to 'abort()' call 3981 TargetLowering::ArgListTy Args; 3982 TargetLowering::CallLoweringInfo CLI(DAG); 3983 CLI.setDebugLoc(dl) 3984 .setChain(Node->getOperand(0)) 3985 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3986 DAG.getExternalSymbol( 3987 "abort", TLI.getPointerTy(DAG.getDataLayout())), 3988 std::move(Args)); 3989 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3990 3991 Results.push_back(CallResult.second); 3992 break; 3993 } 3994 case ISD::FMINNUM: 3995 case ISD::STRICT_FMINNUM: 3996 ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 3997 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 3998 RTLIB::FMIN_PPCF128, Results); 3999 break; 4000 case ISD::FMAXNUM: 4001 case ISD::STRICT_FMAXNUM: 4002 ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 4003 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 4004 RTLIB::FMAX_PPCF128, Results); 4005 break; 4006 case ISD::FSQRT: 4007 case ISD::STRICT_FSQRT: 4008 ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 4009 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 4010 RTLIB::SQRT_PPCF128, Results); 4011 break; 4012 case ISD::FCBRT: 4013 ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, 4014 RTLIB::CBRT_F80, RTLIB::CBRT_F128, 4015 RTLIB::CBRT_PPCF128, Results); 4016 break; 4017 case ISD::FSIN: 4018 case ISD::STRICT_FSIN: 4019 ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 4020 RTLIB::SIN_F80, RTLIB::SIN_F128, 4021 RTLIB::SIN_PPCF128, Results); 4022 break; 4023 case ISD::FCOS: 4024 case ISD::STRICT_FCOS: 4025 ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 4026 RTLIB::COS_F80, RTLIB::COS_F128, 4027 RTLIB::COS_PPCF128, Results); 4028 break; 4029 case ISD::FSINCOS: 4030 // Expand into sincos libcall. 4031 ExpandSinCosLibCall(Node, Results); 4032 break; 4033 case ISD::FLOG: 4034 case ISD::STRICT_FLOG: 4035 ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80, 4036 RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results); 4037 break; 4038 case ISD::FLOG2: 4039 case ISD::STRICT_FLOG2: 4040 ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80, 4041 RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results); 4042 break; 4043 case ISD::FLOG10: 4044 case ISD::STRICT_FLOG10: 4045 ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80, 4046 RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results); 4047 break; 4048 case ISD::FEXP: 4049 case ISD::STRICT_FEXP: 4050 ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80, 4051 RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results); 4052 break; 4053 case ISD::FEXP2: 4054 case ISD::STRICT_FEXP2: 4055 ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80, 4056 RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results); 4057 break; 4058 case ISD::FTRUNC: 4059 case ISD::STRICT_FTRUNC: 4060 ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 4061 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 4062 RTLIB::TRUNC_PPCF128, Results); 4063 break; 4064 case ISD::FFLOOR: 4065 case ISD::STRICT_FFLOOR: 4066 ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 4067 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 4068 RTLIB::FLOOR_PPCF128, Results); 4069 break; 4070 case ISD::FCEIL: 4071 case ISD::STRICT_FCEIL: 4072 ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 4073 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 4074 RTLIB::CEIL_PPCF128, Results); 4075 break; 4076 case ISD::FRINT: 4077 case ISD::STRICT_FRINT: 4078 ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 4079 RTLIB::RINT_F80, RTLIB::RINT_F128, 4080 RTLIB::RINT_PPCF128, Results); 4081 break; 4082 case ISD::FNEARBYINT: 4083 case ISD::STRICT_FNEARBYINT: 4084 ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 4085 RTLIB::NEARBYINT_F64, 4086 RTLIB::NEARBYINT_F80, 4087 RTLIB::NEARBYINT_F128, 4088 RTLIB::NEARBYINT_PPCF128, Results); 4089 break; 4090 case ISD::FROUND: 4091 case ISD::STRICT_FROUND: 4092 ExpandFPLibCall(Node, RTLIB::ROUND_F32, 4093 RTLIB::ROUND_F64, 4094 RTLIB::ROUND_F80, 4095 RTLIB::ROUND_F128, 4096 RTLIB::ROUND_PPCF128, Results); 4097 break; 4098 case ISD::FROUNDEVEN: 4099 case ISD::STRICT_FROUNDEVEN: 4100 ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32, 4101 RTLIB::ROUNDEVEN_F64, 4102 RTLIB::ROUNDEVEN_F80, 4103 RTLIB::ROUNDEVEN_F128, 4104 RTLIB::ROUNDEVEN_PPCF128, Results); 4105 break; 4106 case ISD::FPOWI: 4107 case ISD::STRICT_FPOWI: { 4108 RTLIB::Libcall LC; 4109 switch (Node->getSimpleValueType(0).SimpleTy) { 4110 default: llvm_unreachable("Unexpected request for libcall!"); 4111 case MVT::f32: LC = RTLIB::POWI_F32; break; 4112 case MVT::f64: LC = RTLIB::POWI_F64; break; 4113 case MVT::f80: LC = RTLIB::POWI_F80; break; 4114 case MVT::f128: LC = RTLIB::POWI_F128; break; 4115 case MVT::ppcf128: LC = RTLIB::POWI_PPCF128; break; 4116 } 4117 if (!TLI.getLibcallName(LC)) { 4118 // Some targets don't have a powi libcall; use pow instead. 4119 SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), 4120 Node->getValueType(0), 4121 Node->getOperand(1)); 4122 Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node), 4123 Node->getValueType(0), Node->getOperand(0), 4124 Exponent)); 4125 break; 4126 } 4127 ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 4128 RTLIB::POWI_F80, RTLIB::POWI_F128, 4129 RTLIB::POWI_PPCF128, Results); 4130 break; 4131 } 4132 case ISD::FPOW: 4133 case ISD::STRICT_FPOW: 4134 ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 4135 RTLIB::POW_F128, RTLIB::POW_PPCF128, Results); 4136 break; 4137 case ISD::LROUND: 4138 case ISD::STRICT_LROUND: 4139 ExpandArgFPLibCall(Node, RTLIB::LROUND_F32, 4140 RTLIB::LROUND_F64, RTLIB::LROUND_F80, 4141 RTLIB::LROUND_F128, 4142 RTLIB::LROUND_PPCF128, Results); 4143 break; 4144 case ISD::LLROUND: 4145 case ISD::STRICT_LLROUND: 4146 ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32, 4147 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, 4148 RTLIB::LLROUND_F128, 4149 RTLIB::LLROUND_PPCF128, Results); 4150 break; 4151 case ISD::LRINT: 4152 case ISD::STRICT_LRINT: 4153 ExpandArgFPLibCall(Node, RTLIB::LRINT_F32, 4154 RTLIB::LRINT_F64, RTLIB::LRINT_F80, 4155 RTLIB::LRINT_F128, 4156 RTLIB::LRINT_PPCF128, Results); 4157 break; 4158 case ISD::LLRINT: 4159 case ISD::STRICT_LLRINT: 4160 ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32, 4161 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80, 4162 RTLIB::LLRINT_F128, 4163 RTLIB::LLRINT_PPCF128, Results); 4164 break; 4165 case ISD::FDIV: 4166 case ISD::STRICT_FDIV: 4167 ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 4168 RTLIB::DIV_F80, RTLIB::DIV_F128, 4169 RTLIB::DIV_PPCF128, Results); 4170 break; 4171 case ISD::FREM: 4172 case ISD::STRICT_FREM: 4173 ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 4174 RTLIB::REM_F80, RTLIB::REM_F128, 4175 RTLIB::REM_PPCF128, Results); 4176 break; 4177 case ISD::FMA: 4178 case ISD::STRICT_FMA: 4179 ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 4180 RTLIB::FMA_F80, RTLIB::FMA_F128, 4181 RTLIB::FMA_PPCF128, Results); 4182 break; 4183 case ISD::FADD: 4184 case ISD::STRICT_FADD: 4185 ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 4186 RTLIB::ADD_F80, RTLIB::ADD_F128, 4187 RTLIB::ADD_PPCF128, Results); 4188 break; 4189 case ISD::FMUL: 4190 case ISD::STRICT_FMUL: 4191 ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 4192 RTLIB::MUL_F80, RTLIB::MUL_F128, 4193 RTLIB::MUL_PPCF128, Results); 4194 break; 4195 case ISD::FP16_TO_FP: 4196 if (Node->getValueType(0) == MVT::f32) { 4197 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 4198 } 4199 break; 4200 case ISD::STRICT_FP16_TO_FP: { 4201 if (Node->getValueType(0) == MVT::f32) { 4202 TargetLowering::MakeLibCallOptions CallOptions; 4203 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall( 4204 DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions, 4205 SDLoc(Node), Node->getOperand(0)); 4206 Results.push_back(Tmp.first); 4207 Results.push_back(Tmp.second); 4208 } 4209 break; 4210 } 4211 case ISD::FP_TO_FP16: { 4212 RTLIB::Libcall LC = 4213 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 4214 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 4215 Results.push_back(ExpandLibCall(LC, Node, false)); 4216 break; 4217 } 4218 case ISD::STRICT_FP_TO_FP16: { 4219 RTLIB::Libcall LC = 4220 RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16); 4221 assert(LC != RTLIB::UNKNOWN_LIBCALL && 4222 "Unable to expand strict_fp_to_fp16"); 4223 TargetLowering::MakeLibCallOptions CallOptions; 4224 std::pair<SDValue, SDValue> Tmp = 4225 TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1), 4226 CallOptions, SDLoc(Node), Node->getOperand(0)); 4227 Results.push_back(Tmp.first); 4228 Results.push_back(Tmp.second); 4229 break; 4230 } 4231 case ISD::FSUB: 4232 case ISD::STRICT_FSUB: 4233 ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4234 RTLIB::SUB_F80, RTLIB::SUB_F128, 4235 RTLIB::SUB_PPCF128, Results); 4236 break; 4237 case ISD::SREM: 4238 Results.push_back(ExpandIntLibCall(Node, true, 4239 RTLIB::SREM_I8, 4240 RTLIB::SREM_I16, RTLIB::SREM_I32, 4241 RTLIB::SREM_I64, RTLIB::SREM_I128)); 4242 break; 4243 case ISD::UREM: 4244 Results.push_back(ExpandIntLibCall(Node, false, 4245 RTLIB::UREM_I8, 4246 RTLIB::UREM_I16, RTLIB::UREM_I32, 4247 RTLIB::UREM_I64, RTLIB::UREM_I128)); 4248 break; 4249 case ISD::SDIV: 4250 Results.push_back(ExpandIntLibCall(Node, true, 4251 RTLIB::SDIV_I8, 4252 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4253 RTLIB::SDIV_I64, RTLIB::SDIV_I128)); 4254 break; 4255 case ISD::UDIV: 4256 Results.push_back(ExpandIntLibCall(Node, false, 4257 RTLIB::UDIV_I8, 4258 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4259 RTLIB::UDIV_I64, RTLIB::UDIV_I128)); 4260 break; 4261 case ISD::SDIVREM: 4262 case ISD::UDIVREM: 4263 // Expand into divrem libcall 4264 ExpandDivRemLibCall(Node, Results); 4265 break; 4266 case ISD::MUL: 4267 Results.push_back(ExpandIntLibCall(Node, false, 4268 RTLIB::MUL_I8, 4269 RTLIB::MUL_I16, RTLIB::MUL_I32, 4270 RTLIB::MUL_I64, RTLIB::MUL_I128)); 4271 break; 4272 case ISD::CTLZ_ZERO_UNDEF: 4273 switch (Node->getSimpleValueType(0).SimpleTy) { 4274 default: 4275 llvm_unreachable("LibCall explicitly requested, but not available"); 4276 case MVT::i32: 4277 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false)); 4278 break; 4279 case MVT::i64: 4280 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false)); 4281 break; 4282 case MVT::i128: 4283 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false)); 4284 break; 4285 } 4286 break; 4287 } 4288 4289 // Replace the original node with the legalized result. 4290 if (!Results.empty()) { 4291 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); 4292 ReplaceNode(Node, Results.data()); 4293 } else 4294 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); 4295 } 4296 4297 // Determine the vector type to use in place of an original scalar element when 4298 // promoting equally sized vectors. 4299 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4300 MVT EltVT, MVT NewEltVT) { 4301 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4302 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4303 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4304 return MidVT; 4305 } 4306 4307 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4308 LLVM_DEBUG(dbgs() << "Trying to promote node\n"); 4309 SmallVector<SDValue, 8> Results; 4310 MVT OVT = Node->getSimpleValueType(0); 4311 if (Node->getOpcode() == ISD::UINT_TO_FP || 4312 Node->getOpcode() == ISD::SINT_TO_FP || 4313 Node->getOpcode() == ISD::SETCC || 4314 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4315 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4316 OVT = Node->getOperand(0).getSimpleValueType(); 4317 } 4318 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP || 4319 Node->getOpcode() == ISD::STRICT_SINT_TO_FP) 4320 OVT = Node->getOperand(1).getSimpleValueType(); 4321 if (Node->getOpcode() == ISD::BR_CC) 4322 OVT = Node->getOperand(2).getSimpleValueType(); 4323 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4324 SDLoc dl(Node); 4325 SDValue Tmp1, Tmp2, Tmp3; 4326 switch (Node->getOpcode()) { 4327 case ISD::CTTZ: 4328 case ISD::CTTZ_ZERO_UNDEF: 4329 case ISD::CTLZ: 4330 case ISD::CTLZ_ZERO_UNDEF: 4331 case ISD::CTPOP: 4332 // Zero extend the argument unless its cttz, then use any_extend. 4333 if (Node->getOpcode() == ISD::CTTZ || 4334 Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 4335 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 4336 else 4337 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4338 4339 if (Node->getOpcode() == ISD::CTTZ) { 4340 // The count is the same in the promoted type except if the original 4341 // value was zero. This can be handled by setting the bit just off 4342 // the top of the original type. 4343 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4344 OVT.getSizeInBits()); 4345 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4346 DAG.getConstant(TopBit, dl, NVT)); 4347 } 4348 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4349 // already the correct result. 4350 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4351 if (Node->getOpcode() == ISD::CTLZ || 4352 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4353 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4354 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4355 DAG.getConstant(NVT.getSizeInBits() - 4356 OVT.getSizeInBits(), dl, NVT)); 4357 } 4358 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4359 break; 4360 case ISD::BITREVERSE: 4361 case ISD::BSWAP: { 4362 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4363 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4364 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4365 Tmp1 = DAG.getNode( 4366 ISD::SRL, dl, NVT, Tmp1, 4367 DAG.getConstant(DiffBits, dl, 4368 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4369 4370 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4371 break; 4372 } 4373 case ISD::FP_TO_UINT: 4374 case ISD::STRICT_FP_TO_UINT: 4375 case ISD::FP_TO_SINT: 4376 case ISD::STRICT_FP_TO_SINT: 4377 PromoteLegalFP_TO_INT(Node, dl, Results); 4378 break; 4379 case ISD::UINT_TO_FP: 4380 case ISD::STRICT_UINT_TO_FP: 4381 case ISD::SINT_TO_FP: 4382 case ISD::STRICT_SINT_TO_FP: 4383 PromoteLegalINT_TO_FP(Node, dl, Results); 4384 break; 4385 case ISD::VAARG: { 4386 SDValue Chain = Node->getOperand(0); // Get the chain. 4387 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4388 4389 unsigned TruncOp; 4390 if (OVT.isVector()) { 4391 TruncOp = ISD::BITCAST; 4392 } else { 4393 assert(OVT.isInteger() 4394 && "VAARG promotion is supported only for vectors or integer types"); 4395 TruncOp = ISD::TRUNCATE; 4396 } 4397 4398 // Perform the larger operation, then convert back 4399 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4400 Node->getConstantOperandVal(3)); 4401 Chain = Tmp1.getValue(1); 4402 4403 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4404 4405 // Modified the chain result - switch anything that used the old chain to 4406 // use the new one. 4407 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4408 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4409 if (UpdatedNodes) { 4410 UpdatedNodes->insert(Tmp2.getNode()); 4411 UpdatedNodes->insert(Chain.getNode()); 4412 } 4413 ReplacedNode(Node); 4414 break; 4415 } 4416 case ISD::MUL: 4417 case ISD::SDIV: 4418 case ISD::SREM: 4419 case ISD::UDIV: 4420 case ISD::UREM: 4421 case ISD::AND: 4422 case ISD::OR: 4423 case ISD::XOR: { 4424 unsigned ExtOp, TruncOp; 4425 if (OVT.isVector()) { 4426 ExtOp = ISD::BITCAST; 4427 TruncOp = ISD::BITCAST; 4428 } else { 4429 assert(OVT.isInteger() && "Cannot promote logic operation"); 4430 4431 switch (Node->getOpcode()) { 4432 default: 4433 ExtOp = ISD::ANY_EXTEND; 4434 break; 4435 case ISD::SDIV: 4436 case ISD::SREM: 4437 ExtOp = ISD::SIGN_EXTEND; 4438 break; 4439 case ISD::UDIV: 4440 case ISD::UREM: 4441 ExtOp = ISD::ZERO_EXTEND; 4442 break; 4443 } 4444 TruncOp = ISD::TRUNCATE; 4445 } 4446 // Promote each of the values to the new type. 4447 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4448 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4449 // Perform the larger operation, then convert back 4450 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4451 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4452 break; 4453 } 4454 case ISD::UMUL_LOHI: 4455 case ISD::SMUL_LOHI: { 4456 // Promote to a multiply in a wider integer type. 4457 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 4458 : ISD::SIGN_EXTEND; 4459 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4460 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4461 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 4462 4463 auto &DL = DAG.getDataLayout(); 4464 unsigned OriginalSize = OVT.getScalarSizeInBits(); 4465 Tmp2 = DAG.getNode( 4466 ISD::SRL, dl, NVT, Tmp1, 4467 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 4468 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4469 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 4470 break; 4471 } 4472 case ISD::SELECT: { 4473 unsigned ExtOp, TruncOp; 4474 if (Node->getValueType(0).isVector() || 4475 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4476 ExtOp = ISD::BITCAST; 4477 TruncOp = ISD::BITCAST; 4478 } else if (Node->getValueType(0).isInteger()) { 4479 ExtOp = ISD::ANY_EXTEND; 4480 TruncOp = ISD::TRUNCATE; 4481 } else { 4482 ExtOp = ISD::FP_EXTEND; 4483 TruncOp = ISD::FP_ROUND; 4484 } 4485 Tmp1 = Node->getOperand(0); 4486 // Promote each of the values to the new type. 4487 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4488 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4489 // Perform the larger operation, then round down. 4490 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4491 Tmp1->setFlags(Node->getFlags()); 4492 if (TruncOp != ISD::FP_ROUND) 4493 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4494 else 4495 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4496 DAG.getIntPtrConstant(0, dl)); 4497 Results.push_back(Tmp1); 4498 break; 4499 } 4500 case ISD::VECTOR_SHUFFLE: { 4501 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4502 4503 // Cast the two input vectors. 4504 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4505 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4506 4507 // Convert the shuffle mask to the right # elements. 4508 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4509 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4510 Results.push_back(Tmp1); 4511 break; 4512 } 4513 case ISD::SETCC: { 4514 unsigned ExtOp = ISD::FP_EXTEND; 4515 if (NVT.isInteger()) { 4516 ISD::CondCode CCCode = 4517 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4518 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4519 } 4520 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4521 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4522 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, 4523 Tmp2, Node->getOperand(2), Node->getFlags())); 4524 break; 4525 } 4526 case ISD::BR_CC: { 4527 unsigned ExtOp = ISD::FP_EXTEND; 4528 if (NVT.isInteger()) { 4529 ISD::CondCode CCCode = 4530 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4531 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4532 } 4533 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4534 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4535 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4536 Node->getOperand(0), Node->getOperand(1), 4537 Tmp1, Tmp2, Node->getOperand(4))); 4538 break; 4539 } 4540 case ISD::FADD: 4541 case ISD::FSUB: 4542 case ISD::FMUL: 4543 case ISD::FDIV: 4544 case ISD::FREM: 4545 case ISD::FMINNUM: 4546 case ISD::FMAXNUM: 4547 case ISD::FPOW: 4548 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4549 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4550 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4551 Node->getFlags()); 4552 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4553 Tmp3, DAG.getIntPtrConstant(0, dl))); 4554 break; 4555 case ISD::STRICT_FREM: 4556 case ISD::STRICT_FPOW: 4557 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4558 {Node->getOperand(0), Node->getOperand(1)}); 4559 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4560 {Node->getOperand(0), Node->getOperand(2)}); 4561 Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 4562 Tmp2.getValue(1)); 4563 Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4564 {Tmp3, Tmp1, Tmp2}); 4565 Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4566 {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)}); 4567 Results.push_back(Tmp1); 4568 Results.push_back(Tmp1.getValue(1)); 4569 break; 4570 case ISD::FMA: 4571 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4572 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4573 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4574 Results.push_back( 4575 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4576 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4577 DAG.getIntPtrConstant(0, dl))); 4578 break; 4579 case ISD::FCOPYSIGN: 4580 case ISD::FPOWI: { 4581 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4582 Tmp2 = Node->getOperand(1); 4583 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4584 4585 // fcopysign doesn't change anything but the sign bit, so 4586 // (fp_round (fcopysign (fpext a), b)) 4587 // is as precise as 4588 // (fp_round (fpext a)) 4589 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4590 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4591 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4592 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4593 break; 4594 } 4595 case ISD::FFLOOR: 4596 case ISD::FCEIL: 4597 case ISD::FRINT: 4598 case ISD::FNEARBYINT: 4599 case ISD::FROUND: 4600 case ISD::FROUNDEVEN: 4601 case ISD::FTRUNC: 4602 case ISD::FNEG: 4603 case ISD::FSQRT: 4604 case ISD::FSIN: 4605 case ISD::FCOS: 4606 case ISD::FLOG: 4607 case ISD::FLOG2: 4608 case ISD::FLOG10: 4609 case ISD::FABS: 4610 case ISD::FEXP: 4611 case ISD::FEXP2: 4612 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4613 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4614 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4615 Tmp2, DAG.getIntPtrConstant(0, dl))); 4616 break; 4617 case ISD::STRICT_FFLOOR: 4618 case ISD::STRICT_FCEIL: 4619 case ISD::STRICT_FSIN: 4620 case ISD::STRICT_FCOS: 4621 case ISD::STRICT_FLOG: 4622 case ISD::STRICT_FLOG10: 4623 case ISD::STRICT_FEXP: 4624 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4625 {Node->getOperand(0), Node->getOperand(1)}); 4626 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4627 {Tmp1.getValue(1), Tmp1}); 4628 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4629 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 4630 Results.push_back(Tmp3); 4631 Results.push_back(Tmp3.getValue(1)); 4632 break; 4633 case ISD::BUILD_VECTOR: { 4634 MVT EltVT = OVT.getVectorElementType(); 4635 MVT NewEltVT = NVT.getVectorElementType(); 4636 4637 // Handle bitcasts to a different vector type with the same total bit size 4638 // 4639 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4640 // => 4641 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4642 4643 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4644 "Invalid promote type for build_vector"); 4645 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4646 4647 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4648 4649 SmallVector<SDValue, 8> NewOps; 4650 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4651 SDValue Op = Node->getOperand(I); 4652 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4653 } 4654 4655 SDLoc SL(Node); 4656 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4657 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4658 Results.push_back(CvtVec); 4659 break; 4660 } 4661 case ISD::EXTRACT_VECTOR_ELT: { 4662 MVT EltVT = OVT.getVectorElementType(); 4663 MVT NewEltVT = NVT.getVectorElementType(); 4664 4665 // Handle bitcasts to a different vector type with the same total bit size. 4666 // 4667 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4668 // => 4669 // v4i32:castx = bitcast x:v2i64 4670 // 4671 // i64 = bitcast 4672 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4673 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4674 // 4675 4676 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4677 "Invalid promote type for extract_vector_elt"); 4678 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4679 4680 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4681 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4682 4683 SDValue Idx = Node->getOperand(1); 4684 EVT IdxVT = Idx.getValueType(); 4685 SDLoc SL(Node); 4686 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4687 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4688 4689 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4690 4691 SmallVector<SDValue, 8> NewOps; 4692 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4693 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4694 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4695 4696 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4697 CastVec, TmpIdx); 4698 NewOps.push_back(Elt); 4699 } 4700 4701 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 4702 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4703 break; 4704 } 4705 case ISD::INSERT_VECTOR_ELT: { 4706 MVT EltVT = OVT.getVectorElementType(); 4707 MVT NewEltVT = NVT.getVectorElementType(); 4708 4709 // Handle bitcasts to a different vector type with the same total bit size 4710 // 4711 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4712 // => 4713 // v4i32:castx = bitcast x:v2i64 4714 // v2i32:casty = bitcast y:i64 4715 // 4716 // v2i64 = bitcast 4717 // (v4i32 insert_vector_elt 4718 // (v4i32 insert_vector_elt v4i32:castx, 4719 // (extract_vector_elt casty, 0), 2 * z), 4720 // (extract_vector_elt casty, 1), (2 * z + 1)) 4721 4722 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4723 "Invalid promote type for insert_vector_elt"); 4724 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4725 4726 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4727 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4728 4729 SDValue Val = Node->getOperand(1); 4730 SDValue Idx = Node->getOperand(2); 4731 EVT IdxVT = Idx.getValueType(); 4732 SDLoc SL(Node); 4733 4734 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 4735 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4736 4737 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4738 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4739 4740 SDValue NewVec = CastVec; 4741 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4742 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4743 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4744 4745 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4746 CastVal, IdxOffset); 4747 4748 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 4749 NewVec, Elt, InEltIdx); 4750 } 4751 4752 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 4753 break; 4754 } 4755 case ISD::SCALAR_TO_VECTOR: { 4756 MVT EltVT = OVT.getVectorElementType(); 4757 MVT NewEltVT = NVT.getVectorElementType(); 4758 4759 // Handle bitcasts to different vector type with the same total bit size. 4760 // 4761 // e.g. v2i64 = scalar_to_vector x:i64 4762 // => 4763 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 4764 // 4765 4766 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4767 SDValue Val = Node->getOperand(0); 4768 SDLoc SL(Node); 4769 4770 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4771 SDValue Undef = DAG.getUNDEF(MidVT); 4772 4773 SmallVector<SDValue, 8> NewElts; 4774 NewElts.push_back(CastVal); 4775 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 4776 NewElts.push_back(Undef); 4777 4778 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 4779 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4780 Results.push_back(CvtVec); 4781 break; 4782 } 4783 case ISD::ATOMIC_SWAP: { 4784 AtomicSDNode *AM = cast<AtomicSDNode>(Node); 4785 SDLoc SL(Node); 4786 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal()); 4787 assert(NVT.getSizeInBits() == OVT.getSizeInBits() && 4788 "unexpected promotion type"); 4789 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && 4790 "unexpected atomic_swap with illegal type"); 4791 4792 SDValue NewAtomic 4793 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT, 4794 DAG.getVTList(NVT, MVT::Other), 4795 { AM->getChain(), AM->getBasePtr(), CastVal }, 4796 AM->getMemOperand()); 4797 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); 4798 Results.push_back(NewAtomic.getValue(1)); 4799 break; 4800 } 4801 } 4802 4803 // Replace the original node with the legalized result. 4804 if (!Results.empty()) { 4805 LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); 4806 ReplaceNode(Node, Results.data()); 4807 } else 4808 LLVM_DEBUG(dbgs() << "Could not promote node\n"); 4809 } 4810 4811 /// This is the entry point for the file. 4812 void SelectionDAG::Legalize() { 4813 AssignTopologicalOrder(); 4814 4815 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4816 // Use a delete listener to remove nodes which were deleted during 4817 // legalization from LegalizeNodes. This is needed to handle the situation 4818 // where a new node is allocated by the object pool to the same address of a 4819 // previously deleted node. 4820 DAGNodeDeletedListener DeleteListener( 4821 *this, 4822 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 4823 4824 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 4825 4826 // Visit all the nodes. We start in topological order, so that we see 4827 // nodes with their original operands intact. Legalization can produce 4828 // new nodes which may themselves need to be legalized. Iterate until all 4829 // nodes have been legalized. 4830 while (true) { 4831 bool AnyLegalized = false; 4832 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 4833 --NI; 4834 4835 SDNode *N = &*NI; 4836 if (N->use_empty() && N != getRoot().getNode()) { 4837 ++NI; 4838 DeleteNode(N); 4839 continue; 4840 } 4841 4842 if (LegalizedNodes.insert(N).second) { 4843 AnyLegalized = true; 4844 Legalizer.LegalizeOp(N); 4845 4846 if (N->use_empty() && N != getRoot().getNode()) { 4847 ++NI; 4848 DeleteNode(N); 4849 } 4850 } 4851 } 4852 if (!AnyLegalized) 4853 break; 4854 4855 } 4856 4857 // Remove dead nodes now. 4858 RemoveDeadNodes(); 4859 } 4860 4861 bool SelectionDAG::LegalizeOp(SDNode *N, 4862 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 4863 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4864 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 4865 4866 // Directly insert the node in question, and legalize it. This will recurse 4867 // as needed through operands. 4868 LegalizedNodes.insert(N); 4869 Legalizer.LegalizeOp(N); 4870 4871 return LegalizedNodes.count(N); 4872 } 4873