1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::Legalize method. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/CodeGen/ISDOpcodes.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/RuntimeLibcalls.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/SelectionDAGNodes.h" 28 #include "llvm/CodeGen/TargetFrameLowering.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/CodeGen/ValueTypes.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstdint> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "legalizedag" 57 58 namespace { 59 60 /// Keeps track of state when getting the sign of a floating-point value as an 61 /// integer. 62 struct FloatSignAsInt { 63 EVT FloatVT; 64 SDValue Chain; 65 SDValue FloatPtr; 66 SDValue IntPtr; 67 MachinePointerInfo IntPointerInfo; 68 MachinePointerInfo FloatPointerInfo; 69 SDValue IntValue; 70 APInt SignMask; 71 uint8_t SignBit; 72 }; 73 74 //===----------------------------------------------------------------------===// 75 /// This takes an arbitrary SelectionDAG as input and 76 /// hacks on it until the target machine can handle it. This involves 77 /// eliminating value sizes the machine cannot handle (promoting small sizes to 78 /// large sizes or splitting up large values into small values) as well as 79 /// eliminating operations the machine cannot handle. 80 /// 81 /// This code also does a small amount of optimization and recognition of idioms 82 /// as part of its processing. For example, if a target does not support a 83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 84 /// will attempt merge setcc and brc instructions into brcc's. 85 class SelectionDAGLegalize { 86 const TargetMachine &TM; 87 const TargetLowering &TLI; 88 SelectionDAG &DAG; 89 90 /// The set of nodes which have already been legalized. We hold a 91 /// reference to it in order to update as necessary on node deletion. 92 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 93 94 /// A set of all the nodes updated during legalization. 95 SmallSetVector<SDNode *, 16> *UpdatedNodes; 96 97 EVT getSetCCResultType(EVT VT) const { 98 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 99 } 100 101 // Libcall insertion helpers. 102 103 public: 104 SelectionDAGLegalize(SelectionDAG &DAG, 105 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 106 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 107 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 108 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 109 110 /// Legalizes the given operation. 111 void LegalizeOp(SDNode *Node); 112 113 private: 114 SDValue OptimizeFloatStore(StoreSDNode *ST); 115 116 void LegalizeLoadOps(SDNode *Node); 117 void LegalizeStoreOps(SDNode *Node); 118 119 /// Some targets cannot handle a variable 120 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 121 /// is necessary to spill the vector being inserted into to memory, perform 122 /// the insert there, and then read the result back. 123 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 124 const SDLoc &dl); 125 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 126 const SDLoc &dl); 127 128 /// Return a vector shuffle operation which 129 /// performs the same shuffe in terms of order or result bytes, but on a type 130 /// whose vector element type is narrower than the original shuffle type. 131 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 132 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 133 SDValue N1, SDValue N2, 134 ArrayRef<int> Mask) const; 135 136 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 137 bool &NeedInvert, const SDLoc &dl, SDValue &Chain, 138 bool IsSignaling = false); 139 140 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 141 142 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 143 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 144 RTLIB::Libcall Call_F128, 145 RTLIB::Libcall Call_PPCF128, 146 SmallVectorImpl<SDValue> &Results); 147 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 148 RTLIB::Libcall Call_I8, 149 RTLIB::Libcall Call_I16, 150 RTLIB::Libcall Call_I32, 151 RTLIB::Libcall Call_I64, 152 RTLIB::Libcall Call_I128); 153 void ExpandArgFPLibCall(SDNode *Node, 154 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, 155 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, 156 RTLIB::Libcall Call_PPCF128, 157 SmallVectorImpl<SDValue> &Results); 158 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 159 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 160 161 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 162 const SDLoc &dl); 163 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 164 const SDLoc &dl, SDValue ChainIn); 165 SDValue ExpandBUILD_VECTOR(SDNode *Node); 166 SDValue ExpandSPLAT_VECTOR(SDNode *Node); 167 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 168 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 169 SmallVectorImpl<SDValue> &Results); 170 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 171 SDValue Value) const; 172 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 173 SDValue NewIntValue) const; 174 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 175 SDValue ExpandFABS(SDNode *Node) const; 176 SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain); 177 void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl, 178 SmallVectorImpl<SDValue> &Results); 179 void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 180 SmallVectorImpl<SDValue> &Results); 181 182 SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl); 183 SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl); 184 185 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 186 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 187 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 188 189 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 190 SDValue ExpandConstant(ConstantSDNode *CP); 191 192 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 193 bool ExpandNode(SDNode *Node); 194 void ConvertNodeToLibcall(SDNode *Node); 195 void PromoteNode(SDNode *Node); 196 197 public: 198 // Node replacement helpers 199 200 void ReplacedNode(SDNode *N) { 201 LegalizedNodes.erase(N); 202 if (UpdatedNodes) 203 UpdatedNodes->insert(N); 204 } 205 206 void ReplaceNode(SDNode *Old, SDNode *New) { 207 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 208 dbgs() << " with: "; New->dump(&DAG)); 209 210 assert(Old->getNumValues() == New->getNumValues() && 211 "Replacing one node with another that produces a different number " 212 "of values!"); 213 DAG.ReplaceAllUsesWith(Old, New); 214 if (UpdatedNodes) 215 UpdatedNodes->insert(New); 216 ReplacedNode(Old); 217 } 218 219 void ReplaceNode(SDValue Old, SDValue New) { 220 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 221 dbgs() << " with: "; New->dump(&DAG)); 222 223 DAG.ReplaceAllUsesWith(Old, New); 224 if (UpdatedNodes) 225 UpdatedNodes->insert(New.getNode()); 226 ReplacedNode(Old.getNode()); 227 } 228 229 void ReplaceNode(SDNode *Old, const SDValue *New) { 230 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 231 232 DAG.ReplaceAllUsesWith(Old, New); 233 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 234 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); 235 New[i]->dump(&DAG)); 236 if (UpdatedNodes) 237 UpdatedNodes->insert(New[i].getNode()); 238 } 239 ReplacedNode(Old); 240 } 241 242 void ReplaceNodeWithValue(SDValue Old, SDValue New) { 243 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 244 dbgs() << " with: "; New->dump(&DAG)); 245 246 DAG.ReplaceAllUsesOfValueWith(Old, New); 247 if (UpdatedNodes) 248 UpdatedNodes->insert(New.getNode()); 249 ReplacedNode(Old.getNode()); 250 } 251 }; 252 253 } // end anonymous namespace 254 255 /// Return a vector shuffle operation which 256 /// performs the same shuffle in terms of order or result bytes, but on a type 257 /// whose vector element type is narrower than the original shuffle type. 258 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 259 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 260 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 261 ArrayRef<int> Mask) const { 262 unsigned NumMaskElts = VT.getVectorNumElements(); 263 unsigned NumDestElts = NVT.getVectorNumElements(); 264 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 265 266 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 267 268 if (NumEltsGrowth == 1) 269 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 270 271 SmallVector<int, 8> NewMask; 272 for (unsigned i = 0; i != NumMaskElts; ++i) { 273 int Idx = Mask[i]; 274 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 275 if (Idx < 0) 276 NewMask.push_back(-1); 277 else 278 NewMask.push_back(Idx * NumEltsGrowth + j); 279 } 280 } 281 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 282 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 283 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 284 } 285 286 /// Expands the ConstantFP node to an integer constant or 287 /// a load from the constant pool. 288 SDValue 289 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 290 bool Extend = false; 291 SDLoc dl(CFP); 292 293 // If a FP immediate is precise when represented as a float and if the 294 // target can do an extending load from float to double, we put it into 295 // the constant pool as a float, even if it's is statically typed as a 296 // double. This shrinks FP constants and canonicalizes them for targets where 297 // an FP extending load is the same cost as a normal load (such as on the x87 298 // fp stack or PPC FP unit). 299 EVT VT = CFP->getValueType(0); 300 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 301 if (!UseCP) { 302 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 303 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 304 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 305 } 306 307 APFloat APF = CFP->getValueAPF(); 308 EVT OrigVT = VT; 309 EVT SVT = VT; 310 311 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 312 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 313 if (!APF.isSignaling()) { 314 while (SVT != MVT::f32 && SVT != MVT::f16) { 315 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 316 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 317 // Only do this if the target has a native EXTLOAD instruction from 318 // smaller type. 319 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 320 TLI.ShouldShrinkFPConstant(OrigVT)) { 321 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 322 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 323 VT = SVT; 324 Extend = true; 325 } 326 } 327 } 328 329 SDValue CPIdx = 330 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 331 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 332 if (Extend) { 333 SDValue Result = DAG.getExtLoad( 334 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 335 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 336 Alignment); 337 return Result; 338 } 339 SDValue Result = DAG.getLoad( 340 OrigVT, dl, DAG.getEntryNode(), CPIdx, 341 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 342 return Result; 343 } 344 345 /// Expands the Constant node to a load from the constant pool. 346 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 347 SDLoc dl(CP); 348 EVT VT = CP->getValueType(0); 349 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 350 TLI.getPointerTy(DAG.getDataLayout())); 351 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 352 SDValue Result = DAG.getLoad( 353 VT, dl, DAG.getEntryNode(), CPIdx, 354 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 355 return Result; 356 } 357 358 /// Some target cannot handle a variable insertion index for the 359 /// INSERT_VECTOR_ELT instruction. In this case, it 360 /// is necessary to spill the vector being inserted into to memory, perform 361 /// the insert there, and then read the result back. 362 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 363 SDValue Val, 364 SDValue Idx, 365 const SDLoc &dl) { 366 SDValue Tmp1 = Vec; 367 SDValue Tmp2 = Val; 368 SDValue Tmp3 = Idx; 369 370 // If the target doesn't support this, we have to spill the input vector 371 // to a temporary stack slot, update the element, then reload it. This is 372 // badness. We could also load the value into a vector register (either 373 // with a "move to register" or "extload into register" instruction, then 374 // permute it into place, if the idx is a constant and if the idx is 375 // supported by the target. 376 EVT VT = Tmp1.getValueType(); 377 EVT EltVT = VT.getVectorElementType(); 378 SDValue StackPtr = DAG.CreateStackTemporary(VT); 379 380 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 381 382 // Store the vector. 383 SDValue Ch = DAG.getStore( 384 DAG.getEntryNode(), dl, Tmp1, StackPtr, 385 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 386 387 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 388 389 // Store the scalar value. 390 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT); 391 // Load the updated vector. 392 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 393 DAG.getMachineFunction(), SPFI)); 394 } 395 396 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 397 SDValue Idx, 398 const SDLoc &dl) { 399 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 400 // SCALAR_TO_VECTOR requires that the type of the value being inserted 401 // match the element type of the vector being created, except for 402 // integers in which case the inserted value can be over width. 403 EVT EltVT = Vec.getValueType().getVectorElementType(); 404 if (Val.getValueType() == EltVT || 405 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 406 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 407 Vec.getValueType(), Val); 408 409 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 410 // We generate a shuffle of InVec and ScVec, so the shuffle mask 411 // should be 0,1,2,3,4,5... with the appropriate element replaced with 412 // elt 0 of the RHS. 413 SmallVector<int, 8> ShufOps; 414 for (unsigned i = 0; i != NumElts; ++i) 415 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 416 417 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 418 } 419 } 420 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 421 } 422 423 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 424 if (!ISD::isNormalStore(ST)) 425 return SDValue(); 426 427 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); 428 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 429 // FIXME: We shouldn't do this for TargetConstantFP's. 430 // FIXME: move this to the DAG Combiner! Note that we can't regress due 431 // to phase ordering between legalized code and the dag combiner. This 432 // probably means that we need to integrate dag combiner and legalizer 433 // together. 434 // We generally can't do this one for long doubles. 435 SDValue Chain = ST->getChain(); 436 SDValue Ptr = ST->getBasePtr(); 437 unsigned Alignment = ST->getAlignment(); 438 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 439 AAMDNodes AAInfo = ST->getAAInfo(); 440 SDLoc dl(ST); 441 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 442 if (CFP->getValueType(0) == MVT::f32 && 443 TLI.isTypeLegal(MVT::i32)) { 444 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 445 bitcastToAPInt().zextOrTrunc(32), 446 SDLoc(CFP), MVT::i32); 447 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), Alignment, 448 MMOFlags, AAInfo); 449 } 450 451 if (CFP->getValueType(0) == MVT::f64) { 452 // If this target supports 64-bit registers, do a single 64-bit store. 453 if (TLI.isTypeLegal(MVT::i64)) { 454 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 455 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 456 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 457 Alignment, MMOFlags, AAInfo); 458 } 459 460 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 461 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 462 // stores. If the target supports neither 32- nor 64-bits, this 463 // xform is certainly not worth it. 464 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 465 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 466 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 467 if (DAG.getDataLayout().isBigEndian()) 468 std::swap(Lo, Hi); 469 470 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), Alignment, 471 MMOFlags, AAInfo); 472 Ptr = DAG.getMemBasePlusOffset(Ptr, 4, dl); 473 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 474 ST->getPointerInfo().getWithOffset(4), 475 MinAlign(Alignment, 4U), MMOFlags, AAInfo); 476 477 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 478 } 479 } 480 } 481 return SDValue(nullptr, 0); 482 } 483 484 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 485 StoreSDNode *ST = cast<StoreSDNode>(Node); 486 SDValue Chain = ST->getChain(); 487 SDValue Ptr = ST->getBasePtr(); 488 SDLoc dl(Node); 489 490 unsigned Alignment = ST->getAlignment(); 491 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 492 AAMDNodes AAInfo = ST->getAAInfo(); 493 494 if (!ST->isTruncatingStore()) { 495 LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); 496 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 497 ReplaceNode(ST, OptStore); 498 return; 499 } 500 501 SDValue Value = ST->getValue(); 502 MVT VT = Value.getSimpleValueType(); 503 switch (TLI.getOperationAction(ISD::STORE, VT)) { 504 default: llvm_unreachable("This action is not supported yet!"); 505 case TargetLowering::Legal: { 506 // If this is an unaligned store and the target doesn't support it, 507 // expand it. 508 EVT MemVT = ST->getMemoryVT(); 509 const DataLayout &DL = DAG.getDataLayout(); 510 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 511 *ST->getMemOperand())) { 512 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 513 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 514 ReplaceNode(SDValue(ST, 0), Result); 515 } else 516 LLVM_DEBUG(dbgs() << "Legal store\n"); 517 break; 518 } 519 case TargetLowering::Custom: { 520 LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); 521 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 522 if (Res && Res != SDValue(Node, 0)) 523 ReplaceNode(SDValue(Node, 0), Res); 524 return; 525 } 526 case TargetLowering::Promote: { 527 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 528 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 529 "Can only promote stores to same size type"); 530 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 531 SDValue Result = 532 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 533 Alignment, MMOFlags, AAInfo); 534 ReplaceNode(SDValue(Node, 0), Result); 535 break; 536 } 537 } 538 return; 539 } 540 541 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); 542 SDValue Value = ST->getValue(); 543 EVT StVT = ST->getMemoryVT(); 544 unsigned StWidth = StVT.getSizeInBits(); 545 auto &DL = DAG.getDataLayout(); 546 547 if (StWidth != StVT.getStoreSizeInBits()) { 548 // Promote to a byte-sized store with upper bits zero if not 549 // storing an integral number of bytes. For example, promote 550 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 551 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), 552 StVT.getStoreSizeInBits()); 553 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 554 SDValue Result = 555 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 556 Alignment, MMOFlags, AAInfo); 557 ReplaceNode(SDValue(Node, 0), Result); 558 } else if (StWidth & (StWidth - 1)) { 559 // If not storing a power-of-2 number of bits, expand as two stores. 560 assert(!StVT.isVector() && "Unsupported truncstore!"); 561 unsigned LogStWidth = Log2_32(StWidth); 562 assert(LogStWidth < 32); 563 unsigned RoundWidth = 1 << LogStWidth; 564 assert(RoundWidth < StWidth); 565 unsigned ExtraWidth = StWidth - RoundWidth; 566 assert(ExtraWidth < RoundWidth); 567 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 568 "Store size not an integral number of bytes!"); 569 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 570 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 571 SDValue Lo, Hi; 572 unsigned IncrementSize; 573 574 if (DL.isLittleEndian()) { 575 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 576 // Store the bottom RoundWidth bits. 577 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 578 RoundVT, Alignment, MMOFlags, AAInfo); 579 580 // Store the remaining ExtraWidth bits. 581 IncrementSize = RoundWidth / 8; 582 Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl); 583 Hi = DAG.getNode( 584 ISD::SRL, dl, Value.getValueType(), Value, 585 DAG.getConstant(RoundWidth, dl, 586 TLI.getShiftAmountTy(Value.getValueType(), DL))); 587 Hi = DAG.getTruncStore( 588 Chain, dl, Hi, Ptr, 589 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, 590 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); 591 } else { 592 // Big endian - avoid unaligned stores. 593 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 594 // Store the top RoundWidth bits. 595 Hi = DAG.getNode( 596 ISD::SRL, dl, Value.getValueType(), Value, 597 DAG.getConstant(ExtraWidth, dl, 598 TLI.getShiftAmountTy(Value.getValueType(), DL))); 599 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), 600 RoundVT, Alignment, MMOFlags, AAInfo); 601 602 // Store the remaining ExtraWidth bits. 603 IncrementSize = RoundWidth / 8; 604 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 605 DAG.getConstant(IncrementSize, dl, 606 Ptr.getValueType())); 607 Lo = DAG.getTruncStore( 608 Chain, dl, Value, Ptr, 609 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, 610 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); 611 } 612 613 // The order of the stores doesn't matter. 614 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 615 ReplaceNode(SDValue(Node, 0), Result); 616 } else { 617 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 618 default: llvm_unreachable("This action is not supported yet!"); 619 case TargetLowering::Legal: { 620 EVT MemVT = ST->getMemoryVT(); 621 // If this is an unaligned store and the target doesn't support it, 622 // expand it. 623 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 624 *ST->getMemOperand())) { 625 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 626 ReplaceNode(SDValue(ST, 0), Result); 627 } 628 break; 629 } 630 case TargetLowering::Custom: { 631 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 632 if (Res && Res != SDValue(Node, 0)) 633 ReplaceNode(SDValue(Node, 0), Res); 634 return; 635 } 636 case TargetLowering::Expand: 637 assert(!StVT.isVector() && 638 "Vector Stores are handled in LegalizeVectorOps"); 639 640 SDValue Result; 641 642 // TRUNCSTORE:i16 i32 -> STORE i16 643 if (TLI.isTypeLegal(StVT)) { 644 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 645 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 646 Alignment, MMOFlags, AAInfo); 647 } else { 648 // The in-memory type isn't legal. Truncate to the type it would promote 649 // to, and then do a truncstore. 650 Value = DAG.getNode(ISD::TRUNCATE, dl, 651 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 652 Value); 653 Result = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 654 StVT, Alignment, MMOFlags, AAInfo); 655 } 656 657 ReplaceNode(SDValue(Node, 0), Result); 658 break; 659 } 660 } 661 } 662 663 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 664 LoadSDNode *LD = cast<LoadSDNode>(Node); 665 SDValue Chain = LD->getChain(); // The chain. 666 SDValue Ptr = LD->getBasePtr(); // The base pointer. 667 SDValue Value; // The value returned by the load op. 668 SDLoc dl(Node); 669 670 ISD::LoadExtType ExtType = LD->getExtensionType(); 671 if (ExtType == ISD::NON_EXTLOAD) { 672 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 673 MVT VT = Node->getSimpleValueType(0); 674 SDValue RVal = SDValue(Node, 0); 675 SDValue RChain = SDValue(Node, 1); 676 677 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 678 default: llvm_unreachable("This action is not supported yet!"); 679 case TargetLowering::Legal: { 680 EVT MemVT = LD->getMemoryVT(); 681 const DataLayout &DL = DAG.getDataLayout(); 682 // If this is an unaligned load and the target doesn't support it, 683 // expand it. 684 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 685 *LD->getMemOperand())) { 686 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 687 } 688 break; 689 } 690 case TargetLowering::Custom: 691 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 692 RVal = Res; 693 RChain = Res.getValue(1); 694 } 695 break; 696 697 case TargetLowering::Promote: { 698 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 699 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 700 "Can only promote loads to same size type"); 701 702 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 703 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 704 RChain = Res.getValue(1); 705 break; 706 } 707 } 708 if (RChain.getNode() != Node) { 709 assert(RVal.getNode() != Node && "Load must be completely replaced"); 710 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 711 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 712 if (UpdatedNodes) { 713 UpdatedNodes->insert(RVal.getNode()); 714 UpdatedNodes->insert(RChain.getNode()); 715 } 716 ReplacedNode(Node); 717 } 718 return; 719 } 720 721 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); 722 EVT SrcVT = LD->getMemoryVT(); 723 unsigned SrcWidth = SrcVT.getSizeInBits(); 724 unsigned Alignment = LD->getAlignment(); 725 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 726 AAMDNodes AAInfo = LD->getAAInfo(); 727 728 if (SrcWidth != SrcVT.getStoreSizeInBits() && 729 // Some targets pretend to have an i1 loading operation, and actually 730 // load an i8. This trick is correct for ZEXTLOAD because the top 7 731 // bits are guaranteed to be zero; it helps the optimizers understand 732 // that these bits are zero. It is also useful for EXTLOAD, since it 733 // tells the optimizers that those bits are undefined. It would be 734 // nice to have an effective generic way of getting these benefits... 735 // Until such a way is found, don't insist on promoting i1 here. 736 (SrcVT != MVT::i1 || 737 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 738 TargetLowering::Promote)) { 739 // Promote to a byte-sized load if not loading an integral number of 740 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 741 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 742 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 743 SDValue Ch; 744 745 // The extra bits are guaranteed to be zero, since we stored them that 746 // way. A zext load from NVT thus automatically gives zext from SrcVT. 747 748 ISD::LoadExtType NewExtType = 749 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 750 751 SDValue Result = 752 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), Chain, Ptr, 753 LD->getPointerInfo(), NVT, Alignment, MMOFlags, AAInfo); 754 755 Ch = Result.getValue(1); // The chain. 756 757 if (ExtType == ISD::SEXTLOAD) 758 // Having the top bits zero doesn't help when sign extending. 759 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 760 Result.getValueType(), 761 Result, DAG.getValueType(SrcVT)); 762 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 763 // All the top bits are guaranteed to be zero - inform the optimizers. 764 Result = DAG.getNode(ISD::AssertZext, dl, 765 Result.getValueType(), Result, 766 DAG.getValueType(SrcVT)); 767 768 Value = Result; 769 Chain = Ch; 770 } else if (SrcWidth & (SrcWidth - 1)) { 771 // If not loading a power-of-2 number of bits, expand as two loads. 772 assert(!SrcVT.isVector() && "Unsupported extload!"); 773 unsigned LogSrcWidth = Log2_32(SrcWidth); 774 assert(LogSrcWidth < 32); 775 unsigned RoundWidth = 1 << LogSrcWidth; 776 assert(RoundWidth < SrcWidth); 777 unsigned ExtraWidth = SrcWidth - RoundWidth; 778 assert(ExtraWidth < RoundWidth); 779 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 780 "Load size not an integral number of bytes!"); 781 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 782 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 783 SDValue Lo, Hi, Ch; 784 unsigned IncrementSize; 785 auto &DL = DAG.getDataLayout(); 786 787 if (DL.isLittleEndian()) { 788 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 789 // Load the bottom RoundWidth bits. 790 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 791 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, 792 AAInfo); 793 794 // Load the remaining ExtraWidth bits. 795 IncrementSize = RoundWidth / 8; 796 Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl); 797 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 798 LD->getPointerInfo().getWithOffset(IncrementSize), 799 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, 800 AAInfo); 801 802 // Build a factor node to remember that this load is independent of 803 // the other one. 804 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 805 Hi.getValue(1)); 806 807 // Move the top bits to the right place. 808 Hi = DAG.getNode( 809 ISD::SHL, dl, Hi.getValueType(), Hi, 810 DAG.getConstant(RoundWidth, dl, 811 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 812 813 // Join the hi and lo parts. 814 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 815 } else { 816 // Big endian - avoid unaligned loads. 817 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 818 // Load the top RoundWidth bits. 819 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 820 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, 821 AAInfo); 822 823 // Load the remaining ExtraWidth bits. 824 IncrementSize = RoundWidth / 8; 825 Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl); 826 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 827 LD->getPointerInfo().getWithOffset(IncrementSize), 828 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, 829 AAInfo); 830 831 // Build a factor node to remember that this load is independent of 832 // the other one. 833 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 834 Hi.getValue(1)); 835 836 // Move the top bits to the right place. 837 Hi = DAG.getNode( 838 ISD::SHL, dl, Hi.getValueType(), Hi, 839 DAG.getConstant(ExtraWidth, dl, 840 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 841 842 // Join the hi and lo parts. 843 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 844 } 845 846 Chain = Ch; 847 } else { 848 bool isCustom = false; 849 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 850 SrcVT.getSimpleVT())) { 851 default: llvm_unreachable("This action is not supported yet!"); 852 case TargetLowering::Custom: 853 isCustom = true; 854 LLVM_FALLTHROUGH; 855 case TargetLowering::Legal: 856 Value = SDValue(Node, 0); 857 Chain = SDValue(Node, 1); 858 859 if (isCustom) { 860 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 861 Value = Res; 862 Chain = Res.getValue(1); 863 } 864 } else { 865 // If this is an unaligned load and the target doesn't support it, 866 // expand it. 867 EVT MemVT = LD->getMemoryVT(); 868 const DataLayout &DL = DAG.getDataLayout(); 869 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, 870 *LD->getMemOperand())) { 871 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 872 } 873 } 874 break; 875 876 case TargetLowering::Expand: { 877 EVT DestVT = Node->getValueType(0); 878 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 879 // If the source type is not legal, see if there is a legal extload to 880 // an intermediate type that we can then extend further. 881 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 882 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 883 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 884 // If we are loading a legal type, this is a non-extload followed by a 885 // full extend. 886 ISD::LoadExtType MidExtType = 887 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 888 889 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 890 SrcVT, LD->getMemOperand()); 891 unsigned ExtendOp = 892 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 893 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 894 Chain = Load.getValue(1); 895 break; 896 } 897 898 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 899 // normal undefined upper bits behavior to allow using an in-reg extend 900 // with the illegal FP type, so load as an integer and do the 901 // from-integer conversion. 902 if (SrcVT.getScalarType() == MVT::f16) { 903 EVT ISrcVT = SrcVT.changeTypeToInteger(); 904 EVT IDestVT = DestVT.changeTypeToInteger(); 905 EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 906 907 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain, 908 Ptr, ISrcVT, LD->getMemOperand()); 909 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 910 Chain = Result.getValue(1); 911 break; 912 } 913 } 914 915 assert(!SrcVT.isVector() && 916 "Vector Loads are handled in LegalizeVectorOps"); 917 918 // FIXME: This does not work for vectors on most targets. Sign- 919 // and zero-extend operations are currently folded into extending 920 // loads, whether they are legal or not, and then we end up here 921 // without any support for legalizing them. 922 assert(ExtType != ISD::EXTLOAD && 923 "EXTLOAD should always be supported!"); 924 // Turn the unsupported load into an EXTLOAD followed by an 925 // explicit zero/sign extend inreg. 926 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 927 Node->getValueType(0), 928 Chain, Ptr, SrcVT, 929 LD->getMemOperand()); 930 SDValue ValRes; 931 if (ExtType == ISD::SEXTLOAD) 932 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 933 Result.getValueType(), 934 Result, DAG.getValueType(SrcVT)); 935 else 936 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); 937 Value = ValRes; 938 Chain = Result.getValue(1); 939 break; 940 } 941 } 942 } 943 944 // Since loads produce two values, make sure to remember that we legalized 945 // both of them. 946 if (Chain.getNode() != Node) { 947 assert(Value.getNode() != Node && "Load must be completely replaced"); 948 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 949 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 950 if (UpdatedNodes) { 951 UpdatedNodes->insert(Value.getNode()); 952 UpdatedNodes->insert(Chain.getNode()); 953 } 954 ReplacedNode(Node); 955 } 956 } 957 958 /// Return a legal replacement for the given operation, with all legal operands. 959 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 960 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 961 962 // Allow illegal target nodes and illegal registers. 963 if (Node->getOpcode() == ISD::TargetConstant || 964 Node->getOpcode() == ISD::Register) 965 return; 966 967 #ifndef NDEBUG 968 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 969 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 970 TargetLowering::TypeLegal && 971 "Unexpected illegal type!"); 972 973 for (const SDValue &Op : Node->op_values()) 974 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 975 TargetLowering::TypeLegal || 976 Op.getOpcode() == ISD::TargetConstant || 977 Op.getOpcode() == ISD::Register) && 978 "Unexpected illegal type!"); 979 #endif 980 981 // Figure out the correct action; the way to query this varies by opcode 982 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 983 bool SimpleFinishLegalizing = true; 984 switch (Node->getOpcode()) { 985 case ISD::INTRINSIC_W_CHAIN: 986 case ISD::INTRINSIC_WO_CHAIN: 987 case ISD::INTRINSIC_VOID: 988 case ISD::STACKSAVE: 989 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 990 break; 991 case ISD::GET_DYNAMIC_AREA_OFFSET: 992 Action = TLI.getOperationAction(Node->getOpcode(), 993 Node->getValueType(0)); 994 break; 995 case ISD::VAARG: 996 Action = TLI.getOperationAction(Node->getOpcode(), 997 Node->getValueType(0)); 998 if (Action != TargetLowering::Promote) 999 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 1000 break; 1001 case ISD::FP_TO_FP16: 1002 case ISD::SINT_TO_FP: 1003 case ISD::UINT_TO_FP: 1004 case ISD::EXTRACT_VECTOR_ELT: 1005 case ISD::LROUND: 1006 case ISD::LLROUND: 1007 case ISD::LRINT: 1008 case ISD::LLRINT: 1009 Action = TLI.getOperationAction(Node->getOpcode(), 1010 Node->getOperand(0).getValueType()); 1011 break; 1012 case ISD::STRICT_FP_TO_FP16: 1013 case ISD::STRICT_SINT_TO_FP: 1014 case ISD::STRICT_UINT_TO_FP: 1015 case ISD::STRICT_LRINT: 1016 case ISD::STRICT_LLRINT: 1017 case ISD::STRICT_LROUND: 1018 case ISD::STRICT_LLROUND: 1019 // These pseudo-ops are the same as the other STRICT_ ops except 1020 // they are registered with setOperationAction() using the input type 1021 // instead of the output type. 1022 Action = TLI.getOperationAction(Node->getOpcode(), 1023 Node->getOperand(1).getValueType()); 1024 break; 1025 case ISD::SIGN_EXTEND_INREG: { 1026 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1027 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1028 break; 1029 } 1030 case ISD::ATOMIC_STORE: 1031 Action = TLI.getOperationAction(Node->getOpcode(), 1032 Node->getOperand(2).getValueType()); 1033 break; 1034 case ISD::SELECT_CC: 1035 case ISD::STRICT_FSETCC: 1036 case ISD::STRICT_FSETCCS: 1037 case ISD::SETCC: 1038 case ISD::BR_CC: { 1039 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 1040 Node->getOpcode() == ISD::STRICT_FSETCC ? 3 : 1041 Node->getOpcode() == ISD::STRICT_FSETCCS ? 3 : 1042 Node->getOpcode() == ISD::SETCC ? 2 : 1; 1043 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 1044 Node->getOpcode() == ISD::STRICT_FSETCC ? 1 : 1045 Node->getOpcode() == ISD::STRICT_FSETCCS ? 1 : 0; 1046 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1047 ISD::CondCode CCCode = 1048 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1049 Action = TLI.getCondCodeAction(CCCode, OpVT); 1050 if (Action == TargetLowering::Legal) { 1051 if (Node->getOpcode() == ISD::SELECT_CC) 1052 Action = TLI.getOperationAction(Node->getOpcode(), 1053 Node->getValueType(0)); 1054 else 1055 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1056 } 1057 break; 1058 } 1059 case ISD::LOAD: 1060 case ISD::STORE: 1061 // FIXME: Model these properly. LOAD and STORE are complicated, and 1062 // STORE expects the unlegalized operand in some cases. 1063 SimpleFinishLegalizing = false; 1064 break; 1065 case ISD::CALLSEQ_START: 1066 case ISD::CALLSEQ_END: 1067 // FIXME: This shouldn't be necessary. These nodes have special properties 1068 // dealing with the recursive nature of legalization. Removing this 1069 // special case should be done as part of making LegalizeDAG non-recursive. 1070 SimpleFinishLegalizing = false; 1071 break; 1072 case ISD::EXTRACT_ELEMENT: 1073 case ISD::FLT_ROUNDS_: 1074 case ISD::MERGE_VALUES: 1075 case ISD::EH_RETURN: 1076 case ISD::FRAME_TO_ARGS_OFFSET: 1077 case ISD::EH_DWARF_CFA: 1078 case ISD::EH_SJLJ_SETJMP: 1079 case ISD::EH_SJLJ_LONGJMP: 1080 case ISD::EH_SJLJ_SETUP_DISPATCH: 1081 // These operations lie about being legal: when they claim to be legal, 1082 // they should actually be expanded. 1083 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1084 if (Action == TargetLowering::Legal) 1085 Action = TargetLowering::Expand; 1086 break; 1087 case ISD::INIT_TRAMPOLINE: 1088 case ISD::ADJUST_TRAMPOLINE: 1089 case ISD::FRAMEADDR: 1090 case ISD::RETURNADDR: 1091 case ISD::ADDROFRETURNADDR: 1092 case ISD::SPONENTRY: 1093 // These operations lie about being legal: when they claim to be legal, 1094 // they should actually be custom-lowered. 1095 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1096 if (Action == TargetLowering::Legal) 1097 Action = TargetLowering::Custom; 1098 break; 1099 case ISD::READCYCLECOUNTER: 1100 // READCYCLECOUNTER returns an i64, even if type legalization might have 1101 // expanded that to several smaller types. 1102 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1103 break; 1104 case ISD::READ_REGISTER: 1105 case ISD::WRITE_REGISTER: 1106 // Named register is legal in the DAG, but blocked by register name 1107 // selection if not implemented by target (to chose the correct register) 1108 // They'll be converted to Copy(To/From)Reg. 1109 Action = TargetLowering::Legal; 1110 break; 1111 case ISD::DEBUGTRAP: 1112 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1113 if (Action == TargetLowering::Expand) { 1114 // replace ISD::DEBUGTRAP with ISD::TRAP 1115 SDValue NewVal; 1116 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1117 Node->getOperand(0)); 1118 ReplaceNode(Node, NewVal.getNode()); 1119 LegalizeOp(NewVal.getNode()); 1120 return; 1121 } 1122 break; 1123 case ISD::SADDSAT: 1124 case ISD::UADDSAT: 1125 case ISD::SSUBSAT: 1126 case ISD::USUBSAT: { 1127 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1128 break; 1129 } 1130 case ISD::SMULFIX: 1131 case ISD::SMULFIXSAT: 1132 case ISD::UMULFIX: 1133 case ISD::UMULFIXSAT: 1134 case ISD::SDIVFIX: 1135 case ISD::SDIVFIXSAT: 1136 case ISD::UDIVFIX: 1137 case ISD::UDIVFIXSAT: { 1138 unsigned Scale = Node->getConstantOperandVal(2); 1139 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 1140 Node->getValueType(0), Scale); 1141 break; 1142 } 1143 case ISD::MSCATTER: 1144 Action = TLI.getOperationAction(Node->getOpcode(), 1145 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 1146 break; 1147 case ISD::MSTORE: 1148 Action = TLI.getOperationAction(Node->getOpcode(), 1149 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 1150 break; 1151 case ISD::VECREDUCE_FADD: 1152 case ISD::VECREDUCE_FMUL: 1153 case ISD::VECREDUCE_ADD: 1154 case ISD::VECREDUCE_MUL: 1155 case ISD::VECREDUCE_AND: 1156 case ISD::VECREDUCE_OR: 1157 case ISD::VECREDUCE_XOR: 1158 case ISD::VECREDUCE_SMAX: 1159 case ISD::VECREDUCE_SMIN: 1160 case ISD::VECREDUCE_UMAX: 1161 case ISD::VECREDUCE_UMIN: 1162 case ISD::VECREDUCE_FMAX: 1163 case ISD::VECREDUCE_FMIN: 1164 Action = TLI.getOperationAction( 1165 Node->getOpcode(), Node->getOperand(0).getValueType()); 1166 break; 1167 default: 1168 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1169 Action = TargetLowering::Legal; 1170 } else { 1171 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1172 } 1173 break; 1174 } 1175 1176 if (SimpleFinishLegalizing) { 1177 SDNode *NewNode = Node; 1178 switch (Node->getOpcode()) { 1179 default: break; 1180 case ISD::SHL: 1181 case ISD::SRL: 1182 case ISD::SRA: 1183 case ISD::ROTL: 1184 case ISD::ROTR: { 1185 // Legalizing shifts/rotates requires adjusting the shift amount 1186 // to the appropriate width. 1187 SDValue Op0 = Node->getOperand(0); 1188 SDValue Op1 = Node->getOperand(1); 1189 if (!Op1.getValueType().isVector()) { 1190 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1191 // The getShiftAmountOperand() may create a new operand node or 1192 // return the existing one. If new operand is created we need 1193 // to update the parent node. 1194 // Do not try to legalize SAO here! It will be automatically legalized 1195 // in the next round. 1196 if (SAO != Op1) 1197 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1198 } 1199 } 1200 break; 1201 case ISD::FSHL: 1202 case ISD::FSHR: 1203 case ISD::SRL_PARTS: 1204 case ISD::SRA_PARTS: 1205 case ISD::SHL_PARTS: { 1206 // Legalizing shifts/rotates requires adjusting the shift amount 1207 // to the appropriate width. 1208 SDValue Op0 = Node->getOperand(0); 1209 SDValue Op1 = Node->getOperand(1); 1210 SDValue Op2 = Node->getOperand(2); 1211 if (!Op2.getValueType().isVector()) { 1212 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1213 // The getShiftAmountOperand() may create a new operand node or 1214 // return the existing one. If new operand is created we need 1215 // to update the parent node. 1216 if (SAO != Op2) 1217 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1218 } 1219 break; 1220 } 1221 } 1222 1223 if (NewNode != Node) { 1224 ReplaceNode(Node, NewNode); 1225 Node = NewNode; 1226 } 1227 switch (Action) { 1228 case TargetLowering::Legal: 1229 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 1230 return; 1231 case TargetLowering::Custom: 1232 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 1233 // FIXME: The handling for custom lowering with multiple results is 1234 // a complete mess. 1235 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1236 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1237 return; 1238 1239 if (Node->getNumValues() == 1) { 1240 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1241 // We can just directly replace this node with the lowered value. 1242 ReplaceNode(SDValue(Node, 0), Res); 1243 return; 1244 } 1245 1246 SmallVector<SDValue, 8> ResultVals; 1247 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1248 ResultVals.push_back(Res.getValue(i)); 1249 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1250 ReplaceNode(Node, ResultVals.data()); 1251 return; 1252 } 1253 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 1254 LLVM_FALLTHROUGH; 1255 case TargetLowering::Expand: 1256 if (ExpandNode(Node)) 1257 return; 1258 LLVM_FALLTHROUGH; 1259 case TargetLowering::LibCall: 1260 ConvertNodeToLibcall(Node); 1261 return; 1262 case TargetLowering::Promote: 1263 PromoteNode(Node); 1264 return; 1265 } 1266 } 1267 1268 switch (Node->getOpcode()) { 1269 default: 1270 #ifndef NDEBUG 1271 dbgs() << "NODE: "; 1272 Node->dump( &DAG); 1273 dbgs() << "\n"; 1274 #endif 1275 llvm_unreachable("Do not know how to legalize this operator!"); 1276 1277 case ISD::CALLSEQ_START: 1278 case ISD::CALLSEQ_END: 1279 break; 1280 case ISD::LOAD: 1281 return LegalizeLoadOps(Node); 1282 case ISD::STORE: 1283 return LegalizeStoreOps(Node); 1284 } 1285 } 1286 1287 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1288 SDValue Vec = Op.getOperand(0); 1289 SDValue Idx = Op.getOperand(1); 1290 SDLoc dl(Op); 1291 1292 // Before we generate a new store to a temporary stack slot, see if there is 1293 // already one that we can use. There often is because when we scalarize 1294 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1295 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1296 // the vector. If all are expanded here, we don't want one store per vector 1297 // element. 1298 1299 // Caches for hasPredecessorHelper 1300 SmallPtrSet<const SDNode *, 32> Visited; 1301 SmallVector<const SDNode *, 16> Worklist; 1302 Visited.insert(Op.getNode()); 1303 Worklist.push_back(Idx.getNode()); 1304 SDValue StackPtr, Ch; 1305 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), 1306 UE = Vec.getNode()->use_end(); UI != UE; ++UI) { 1307 SDNode *User = *UI; 1308 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1309 if (ST->isIndexed() || ST->isTruncatingStore() || 1310 ST->getValue() != Vec) 1311 continue; 1312 1313 // Make sure that nothing else could have stored into the destination of 1314 // this store. 1315 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1316 continue; 1317 1318 // If the index is dependent on the store we will introduce a cycle when 1319 // creating the load (the load uses the index, and by replacing the chain 1320 // we will make the index dependent on the load). Also, the store might be 1321 // dependent on the extractelement and introduce a cycle when creating 1322 // the load. 1323 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1324 ST->hasPredecessor(Op.getNode())) 1325 continue; 1326 1327 StackPtr = ST->getBasePtr(); 1328 Ch = SDValue(ST, 0); 1329 break; 1330 } 1331 } 1332 1333 EVT VecVT = Vec.getValueType(); 1334 1335 if (!Ch.getNode()) { 1336 // Store the value to a temporary stack slot, then LOAD the returned part. 1337 StackPtr = DAG.CreateStackTemporary(VecVT); 1338 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1339 MachinePointerInfo()); 1340 } 1341 1342 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1343 1344 SDValue NewLoad; 1345 1346 if (Op.getValueType().isVector()) 1347 NewLoad = 1348 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); 1349 else 1350 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1351 MachinePointerInfo(), 1352 VecVT.getVectorElementType()); 1353 1354 // Replace the chain going out of the store, by the one out of the load. 1355 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1356 1357 // We introduced a cycle though, so update the loads operands, making sure 1358 // to use the original store's chain as an incoming chain. 1359 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1360 NewLoad->op_end()); 1361 NewLoadOperands[0] = Ch; 1362 NewLoad = 1363 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1364 return NewLoad; 1365 } 1366 1367 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1368 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1369 1370 SDValue Vec = Op.getOperand(0); 1371 SDValue Part = Op.getOperand(1); 1372 SDValue Idx = Op.getOperand(2); 1373 SDLoc dl(Op); 1374 1375 // Store the value to a temporary stack slot, then LOAD the returned part. 1376 EVT VecVT = Vec.getValueType(); 1377 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1378 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1379 MachinePointerInfo PtrInfo = 1380 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1381 1382 // First store the whole vector. 1383 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1384 1385 // Then store the inserted part. 1386 SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1387 1388 // Store the subvector. 1389 Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, MachinePointerInfo()); 1390 1391 // Finally, load the updated vector. 1392 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1393 } 1394 1395 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1396 // We can't handle this case efficiently. Allocate a sufficiently 1397 // aligned object on the stack, store each element into it, then load 1398 // the result as a vector. 1399 // Create the stack frame object. 1400 EVT VT = Node->getValueType(0); 1401 EVT EltVT = VT.getVectorElementType(); 1402 SDLoc dl(Node); 1403 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1404 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1405 MachinePointerInfo PtrInfo = 1406 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1407 1408 // Emit a store of each element to the stack slot. 1409 SmallVector<SDValue, 8> Stores; 1410 unsigned TypeByteSize = EltVT.getSizeInBits() / 8; 1411 assert(TypeByteSize > 0 && "Vector element type too small for stack store!"); 1412 // Store (in the right endianness) the elements to memory. 1413 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1414 // Ignore undef elements. 1415 if (Node->getOperand(i).isUndef()) continue; 1416 1417 unsigned Offset = TypeByteSize*i; 1418 1419 SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType()); 1420 Idx = DAG.getMemBasePlusOffset(FIPtr, Idx, dl); 1421 1422 // If the destination vector element type is narrower than the source 1423 // element type, only store the bits necessary. 1424 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { 1425 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1426 Node->getOperand(i), Idx, 1427 PtrInfo.getWithOffset(Offset), EltVT)); 1428 } else 1429 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1430 Idx, PtrInfo.getWithOffset(Offset))); 1431 } 1432 1433 SDValue StoreChain; 1434 if (!Stores.empty()) // Not all undef elements? 1435 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1436 else 1437 StoreChain = DAG.getEntryNode(); 1438 1439 // Result is a load from the stack slot. 1440 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1441 } 1442 1443 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1444 /// containing the sign bit if the target has no integer value capable of 1445 /// holding all bits of the floating-point value. 1446 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1447 const SDLoc &DL, 1448 SDValue Value) const { 1449 EVT FloatVT = Value.getValueType(); 1450 unsigned NumBits = FloatVT.getSizeInBits(); 1451 State.FloatVT = FloatVT; 1452 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1453 // Convert to an integer of the same size. 1454 if (TLI.isTypeLegal(IVT)) { 1455 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1456 State.SignMask = APInt::getSignMask(NumBits); 1457 State.SignBit = NumBits - 1; 1458 return; 1459 } 1460 1461 auto &DataLayout = DAG.getDataLayout(); 1462 // Store the float to memory, then load the sign part out as an integer. 1463 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1464 // First create a temporary that is aligned for both the load and store. 1465 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1466 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1467 // Then store the float to it. 1468 State.FloatPtr = StackPtr; 1469 MachineFunction &MF = DAG.getMachineFunction(); 1470 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1471 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1472 State.FloatPointerInfo); 1473 1474 SDValue IntPtr; 1475 if (DataLayout.isBigEndian()) { 1476 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1477 // Load out a legal integer with the same sign bit as the float. 1478 IntPtr = StackPtr; 1479 State.IntPointerInfo = State.FloatPointerInfo; 1480 } else { 1481 // Advance the pointer so that the loaded byte will contain the sign bit. 1482 unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1; 1483 IntPtr = DAG.getMemBasePlusOffset(StackPtr, ByteOffset, DL); 1484 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1485 ByteOffset); 1486 } 1487 1488 State.IntPtr = IntPtr; 1489 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1490 State.IntPointerInfo, MVT::i8); 1491 State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7); 1492 State.SignBit = 7; 1493 } 1494 1495 /// Replace the integer value produced by getSignAsIntValue() with a new value 1496 /// and cast the result back to a floating-point type. 1497 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1498 const SDLoc &DL, 1499 SDValue NewIntValue) const { 1500 if (!State.Chain) 1501 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1502 1503 // Override the part containing the sign bit in the value stored on the stack. 1504 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1505 State.IntPointerInfo, MVT::i8); 1506 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1507 State.FloatPointerInfo); 1508 } 1509 1510 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1511 SDLoc DL(Node); 1512 SDValue Mag = Node->getOperand(0); 1513 SDValue Sign = Node->getOperand(1); 1514 1515 // Get sign bit into an integer value. 1516 FloatSignAsInt SignAsInt; 1517 getSignAsIntValue(SignAsInt, DL, Sign); 1518 1519 EVT IntVT = SignAsInt.IntValue.getValueType(); 1520 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1521 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1522 SignMask); 1523 1524 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1525 EVT FloatVT = Mag.getValueType(); 1526 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1527 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1528 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1529 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1530 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1531 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1532 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1533 } 1534 1535 // Transform Mag value to integer, and clear the sign bit. 1536 FloatSignAsInt MagAsInt; 1537 getSignAsIntValue(MagAsInt, DL, Mag); 1538 EVT MagVT = MagAsInt.IntValue.getValueType(); 1539 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1540 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1541 ClearSignMask); 1542 1543 // Get the signbit at the right position for MagAsInt. 1544 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1545 EVT ShiftVT = IntVT; 1546 if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) { 1547 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1548 ShiftVT = MagVT; 1549 } 1550 if (ShiftAmount > 0) { 1551 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); 1552 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); 1553 } else if (ShiftAmount < 0) { 1554 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); 1555 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); 1556 } 1557 if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) { 1558 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1559 } 1560 1561 // Store the part with the modified sign and convert back to float. 1562 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1563 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1564 } 1565 1566 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1567 SDLoc DL(Node); 1568 SDValue Value = Node->getOperand(0); 1569 1570 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1571 EVT FloatVT = Value.getValueType(); 1572 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1573 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1574 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1575 } 1576 1577 // Transform value to integer, clear the sign bit and transform back. 1578 FloatSignAsInt ValueAsInt; 1579 getSignAsIntValue(ValueAsInt, DL, Value); 1580 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1581 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1582 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1583 ClearSignMask); 1584 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1585 } 1586 1587 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1588 SmallVectorImpl<SDValue> &Results) { 1589 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1590 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1591 " not tell us which reg is the stack pointer!"); 1592 SDLoc dl(Node); 1593 EVT VT = Node->getValueType(0); 1594 SDValue Tmp1 = SDValue(Node, 0); 1595 SDValue Tmp2 = SDValue(Node, 1); 1596 SDValue Tmp3 = Node->getOperand(2); 1597 SDValue Chain = Tmp1.getOperand(0); 1598 1599 // Chain the dynamic stack allocation so that it doesn't modify the stack 1600 // pointer when other instructions are using the stack. 1601 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1602 1603 SDValue Size = Tmp2.getOperand(1); 1604 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1605 Chain = SP.getValue(1); 1606 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1607 unsigned StackAlign = 1608 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 1609 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 1610 if (Align > StackAlign) 1611 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1612 DAG.getConstant(-(uint64_t)Align, dl, VT)); 1613 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1614 1615 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1616 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1617 1618 Results.push_back(Tmp1); 1619 Results.push_back(Tmp2); 1620 } 1621 1622 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current 1623 /// target. 1624 /// 1625 /// If the SETCC has been legalized using AND / OR, then the legalized node 1626 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert 1627 /// will be set to false. 1628 /// 1629 /// If the SETCC has been legalized by using getSetCCSwappedOperands(), 1630 /// then the values of LHS and RHS will be swapped, CC will be set to the 1631 /// new condition, and NeedInvert will be set to false. 1632 /// 1633 /// If the SETCC has been legalized using the inverse condcode, then LHS and 1634 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert 1635 /// will be set to true. The caller must invert the result of the SETCC with 1636 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect 1637 /// of a true/false result. 1638 /// 1639 /// \returns true if the SetCC has been legalized, false if it hasn't. 1640 bool SelectionDAGLegalize::LegalizeSetCCCondCode( 1641 EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, bool &NeedInvert, 1642 const SDLoc &dl, SDValue &Chain, bool IsSignaling) { 1643 MVT OpVT = LHS.getSimpleValueType(); 1644 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1645 NeedInvert = false; 1646 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1647 default: llvm_unreachable("Unknown condition code action!"); 1648 case TargetLowering::Legal: 1649 // Nothing to do. 1650 break; 1651 case TargetLowering::Expand: { 1652 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 1653 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1654 std::swap(LHS, RHS); 1655 CC = DAG.getCondCode(InvCC); 1656 return true; 1657 } 1658 // Swapping operands didn't work. Try inverting the condition. 1659 bool NeedSwap = false; 1660 InvCC = getSetCCInverse(CCCode, OpVT); 1661 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1662 // If inverting the condition is not enough, try swapping operands 1663 // on top of it. 1664 InvCC = ISD::getSetCCSwappedOperands(InvCC); 1665 NeedSwap = true; 1666 } 1667 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1668 CC = DAG.getCondCode(InvCC); 1669 NeedInvert = true; 1670 if (NeedSwap) 1671 std::swap(LHS, RHS); 1672 return true; 1673 } 1674 1675 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1676 unsigned Opc = 0; 1677 switch (CCCode) { 1678 default: llvm_unreachable("Don't know how to expand this condition!"); 1679 case ISD::SETO: 1680 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) 1681 && "If SETO is expanded, SETOEQ must be legal!"); 1682 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; 1683 case ISD::SETUO: 1684 assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT) 1685 && "If SETUO is expanded, SETUNE must be legal!"); 1686 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break; 1687 case ISD::SETOEQ: 1688 case ISD::SETOGT: 1689 case ISD::SETOGE: 1690 case ISD::SETOLT: 1691 case ISD::SETOLE: 1692 case ISD::SETONE: 1693 case ISD::SETUEQ: 1694 case ISD::SETUNE: 1695 case ISD::SETUGT: 1696 case ISD::SETUGE: 1697 case ISD::SETULT: 1698 case ISD::SETULE: 1699 // If we are floating point, assign and break, otherwise fall through. 1700 if (!OpVT.isInteger()) { 1701 // We can use the 4th bit to tell if we are the unordered 1702 // or ordered version of the opcode. 1703 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 1704 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 1705 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 1706 break; 1707 } 1708 // Fallthrough if we are unsigned integer. 1709 LLVM_FALLTHROUGH; 1710 case ISD::SETLE: 1711 case ISD::SETGT: 1712 case ISD::SETGE: 1713 case ISD::SETLT: 1714 case ISD::SETNE: 1715 case ISD::SETEQ: 1716 // If all combinations of inverting the condition and swapping operands 1717 // didn't work then we have no means to expand the condition. 1718 llvm_unreachable("Don't know how to expand this condition!"); 1719 } 1720 1721 SDValue SetCC1, SetCC2; 1722 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 1723 // If we aren't the ordered or unorder operation, 1724 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 1725 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 1726 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 1727 } else { 1728 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 1729 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 1730 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 1731 } 1732 if (Chain) 1733 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 1734 SetCC2.getValue(1)); 1735 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1736 RHS = SDValue(); 1737 CC = SDValue(); 1738 return true; 1739 } 1740 } 1741 return false; 1742 } 1743 1744 /// Emit a store/load combination to the stack. This stores 1745 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1746 /// a load from the stack slot to DestVT, extending it if needed. 1747 /// The resultant code need not be legal. 1748 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1749 EVT DestVT, const SDLoc &dl) { 1750 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode()); 1751 } 1752 1753 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1754 EVT DestVT, const SDLoc &dl, 1755 SDValue Chain) { 1756 // Create the stack frame object. 1757 unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment( 1758 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1759 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 1760 1761 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1762 int SPFI = StackPtrFI->getIndex(); 1763 MachinePointerInfo PtrInfo = 1764 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1765 1766 unsigned SrcSize = SrcOp.getValueSizeInBits(); 1767 unsigned SlotSize = SlotVT.getSizeInBits(); 1768 unsigned DestSize = DestVT.getSizeInBits(); 1769 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1770 unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType); 1771 1772 // Emit a store to the stack slot. Use a truncstore if the input value is 1773 // later than DestVT. 1774 SDValue Store; 1775 1776 if (SrcSize > SlotSize) 1777 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo, 1778 SlotVT, SrcAlign); 1779 else { 1780 assert(SrcSize == SlotSize && "Invalid store"); 1781 Store = 1782 DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1783 } 1784 1785 // Result is a load from the stack slot. 1786 if (SlotSize == DestSize) 1787 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1788 1789 assert(SlotSize < DestSize && "Unknown extension!"); 1790 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1791 DestAlign); 1792 } 1793 1794 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1795 SDLoc dl(Node); 1796 // Create a vector sized/aligned stack slot, store the value to element #0, 1797 // then load the whole vector back out. 1798 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1799 1800 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1801 int SPFI = StackPtrFI->getIndex(); 1802 1803 SDValue Ch = DAG.getTruncStore( 1804 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1805 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1806 Node->getValueType(0).getVectorElementType()); 1807 return DAG.getLoad( 1808 Node->getValueType(0), dl, Ch, StackPtr, 1809 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1810 } 1811 1812 static bool 1813 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1814 const TargetLowering &TLI, SDValue &Res) { 1815 unsigned NumElems = Node->getNumOperands(); 1816 SDLoc dl(Node); 1817 EVT VT = Node->getValueType(0); 1818 1819 // Try to group the scalars into pairs, shuffle the pairs together, then 1820 // shuffle the pairs of pairs together, etc. until the vector has 1821 // been built. This will work only if all of the necessary shuffle masks 1822 // are legal. 1823 1824 // We do this in two phases; first to check the legality of the shuffles, 1825 // and next, assuming that all shuffles are legal, to create the new nodes. 1826 for (int Phase = 0; Phase < 2; ++Phase) { 1827 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1828 NewIntermedVals; 1829 for (unsigned i = 0; i < NumElems; ++i) { 1830 SDValue V = Node->getOperand(i); 1831 if (V.isUndef()) 1832 continue; 1833 1834 SDValue Vec; 1835 if (Phase) 1836 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1837 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1838 } 1839 1840 while (IntermedVals.size() > 2) { 1841 NewIntermedVals.clear(); 1842 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1843 // This vector and the next vector are shuffled together (simply to 1844 // append the one to the other). 1845 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1846 1847 SmallVector<int, 16> FinalIndices; 1848 FinalIndices.reserve(IntermedVals[i].second.size() + 1849 IntermedVals[i+1].second.size()); 1850 1851 int k = 0; 1852 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1853 ++j, ++k) { 1854 ShuffleVec[k] = j; 1855 FinalIndices.push_back(IntermedVals[i].second[j]); 1856 } 1857 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1858 ++j, ++k) { 1859 ShuffleVec[k] = NumElems + j; 1860 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1861 } 1862 1863 SDValue Shuffle; 1864 if (Phase) 1865 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1866 IntermedVals[i+1].first, 1867 ShuffleVec); 1868 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1869 return false; 1870 NewIntermedVals.push_back( 1871 std::make_pair(Shuffle, std::move(FinalIndices))); 1872 } 1873 1874 // If we had an odd number of defined values, then append the last 1875 // element to the array of new vectors. 1876 if ((IntermedVals.size() & 1) != 0) 1877 NewIntermedVals.push_back(IntermedVals.back()); 1878 1879 IntermedVals.swap(NewIntermedVals); 1880 } 1881 1882 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1883 "Invalid number of intermediate vectors"); 1884 SDValue Vec1 = IntermedVals[0].first; 1885 SDValue Vec2; 1886 if (IntermedVals.size() > 1) 1887 Vec2 = IntermedVals[1].first; 1888 else if (Phase) 1889 Vec2 = DAG.getUNDEF(VT); 1890 1891 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1892 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1893 ShuffleVec[IntermedVals[0].second[i]] = i; 1894 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1895 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1896 1897 if (Phase) 1898 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1899 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1900 return false; 1901 } 1902 1903 return true; 1904 } 1905 1906 /// Expand a BUILD_VECTOR node on targets that don't 1907 /// support the operation, but do support the resultant vector type. 1908 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1909 unsigned NumElems = Node->getNumOperands(); 1910 SDValue Value1, Value2; 1911 SDLoc dl(Node); 1912 EVT VT = Node->getValueType(0); 1913 EVT OpVT = Node->getOperand(0).getValueType(); 1914 EVT EltVT = VT.getVectorElementType(); 1915 1916 // If the only non-undef value is the low element, turn this into a 1917 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1918 bool isOnlyLowElement = true; 1919 bool MoreThanTwoValues = false; 1920 bool isConstant = true; 1921 for (unsigned i = 0; i < NumElems; ++i) { 1922 SDValue V = Node->getOperand(i); 1923 if (V.isUndef()) 1924 continue; 1925 if (i > 0) 1926 isOnlyLowElement = false; 1927 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1928 isConstant = false; 1929 1930 if (!Value1.getNode()) { 1931 Value1 = V; 1932 } else if (!Value2.getNode()) { 1933 if (V != Value1) 1934 Value2 = V; 1935 } else if (V != Value1 && V != Value2) { 1936 MoreThanTwoValues = true; 1937 } 1938 } 1939 1940 if (!Value1.getNode()) 1941 return DAG.getUNDEF(VT); 1942 1943 if (isOnlyLowElement) 1944 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1945 1946 // If all elements are constants, create a load from the constant pool. 1947 if (isConstant) { 1948 SmallVector<Constant*, 16> CV; 1949 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1950 if (ConstantFPSDNode *V = 1951 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1952 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1953 } else if (ConstantSDNode *V = 1954 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1955 if (OpVT==EltVT) 1956 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1957 else { 1958 // If OpVT and EltVT don't match, EltVT is not legal and the 1959 // element values have been promoted/truncated earlier. Undo this; 1960 // we don't want a v16i8 to become a v16i32 for example. 1961 const ConstantInt *CI = V->getConstantIntValue(); 1962 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1963 CI->getZExtValue())); 1964 } 1965 } else { 1966 assert(Node->getOperand(i).isUndef()); 1967 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1968 CV.push_back(UndefValue::get(OpNTy)); 1969 } 1970 } 1971 Constant *CP = ConstantVector::get(CV); 1972 SDValue CPIdx = 1973 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 1974 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 1975 return DAG.getLoad( 1976 VT, dl, DAG.getEntryNode(), CPIdx, 1977 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 1978 Alignment); 1979 } 1980 1981 SmallSet<SDValue, 16> DefinedValues; 1982 for (unsigned i = 0; i < NumElems; ++i) { 1983 if (Node->getOperand(i).isUndef()) 1984 continue; 1985 DefinedValues.insert(Node->getOperand(i)); 1986 } 1987 1988 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 1989 if (!MoreThanTwoValues) { 1990 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1991 for (unsigned i = 0; i < NumElems; ++i) { 1992 SDValue V = Node->getOperand(i); 1993 if (V.isUndef()) 1994 continue; 1995 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1996 } 1997 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1998 // Get the splatted value into the low element of a vector register. 1999 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 2000 SDValue Vec2; 2001 if (Value2.getNode()) 2002 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 2003 else 2004 Vec2 = DAG.getUNDEF(VT); 2005 2006 // Return shuffle(LowValVec, undef, <0,0,0,0>) 2007 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 2008 } 2009 } else { 2010 SDValue Res; 2011 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 2012 return Res; 2013 } 2014 } 2015 2016 // Otherwise, we can't handle this case efficiently. 2017 return ExpandVectorBuildThroughStack(Node); 2018 } 2019 2020 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) { 2021 SDLoc DL(Node); 2022 EVT VT = Node->getValueType(0); 2023 SDValue SplatVal = Node->getOperand(0); 2024 2025 return DAG.getSplatBuildVector(VT, DL, SplatVal); 2026 } 2027 2028 // Expand a node into a call to a libcall. If the result value 2029 // does not fit into a register, return the lo part and set the hi part to the 2030 // by-reg argument. If it does fit into a single register, return the result 2031 // and leave the Hi part unset. 2032 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2033 bool isSigned) { 2034 TargetLowering::ArgListTy Args; 2035 TargetLowering::ArgListEntry Entry; 2036 for (const SDValue &Op : Node->op_values()) { 2037 EVT ArgVT = Op.getValueType(); 2038 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2039 Entry.Node = Op; 2040 Entry.Ty = ArgTy; 2041 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2042 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2043 Args.push_back(Entry); 2044 } 2045 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2046 TLI.getPointerTy(DAG.getDataLayout())); 2047 2048 EVT RetVT = Node->getValueType(0); 2049 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2050 2051 // By default, the input chain to this libcall is the entry node of the 2052 // function. If the libcall is going to be emitted as a tail call then 2053 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2054 // node which is being folded has a non-entry input chain. 2055 SDValue InChain = DAG.getEntryNode(); 2056 2057 // isTailCall may be true since the callee does not reference caller stack 2058 // frame. Check if it's in the right position and that the return types match. 2059 SDValue TCChain = InChain; 2060 const Function &F = DAG.getMachineFunction().getFunction(); 2061 bool isTailCall = 2062 TLI.isInTailCallPosition(DAG, Node, TCChain) && 2063 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 2064 if (isTailCall) 2065 InChain = TCChain; 2066 2067 TargetLowering::CallLoweringInfo CLI(DAG); 2068 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2069 CLI.setDebugLoc(SDLoc(Node)) 2070 .setChain(InChain) 2071 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2072 std::move(Args)) 2073 .setTailCall(isTailCall) 2074 .setSExtResult(signExtend) 2075 .setZExtResult(!signExtend) 2076 .setIsPostTypeLegalization(true); 2077 2078 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2079 2080 if (!CallInfo.second.getNode()) { 2081 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG)); 2082 // It's a tailcall, return the chain (which is the DAG root). 2083 return DAG.getRoot(); 2084 } 2085 2086 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG)); 2087 return CallInfo.first; 2088 } 2089 2090 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2091 RTLIB::Libcall Call_F32, 2092 RTLIB::Libcall Call_F64, 2093 RTLIB::Libcall Call_F80, 2094 RTLIB::Libcall Call_F128, 2095 RTLIB::Libcall Call_PPCF128, 2096 SmallVectorImpl<SDValue> &Results) { 2097 RTLIB::Libcall LC; 2098 switch (Node->getSimpleValueType(0).SimpleTy) { 2099 default: llvm_unreachable("Unexpected request for libcall!"); 2100 case MVT::f32: LC = Call_F32; break; 2101 case MVT::f64: LC = Call_F64; break; 2102 case MVT::f80: LC = Call_F80; break; 2103 case MVT::f128: LC = Call_F128; break; 2104 case MVT::ppcf128: LC = Call_PPCF128; break; 2105 } 2106 2107 if (Node->isStrictFPOpcode()) { 2108 EVT RetVT = Node->getValueType(0); 2109 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); 2110 TargetLowering::MakeLibCallOptions CallOptions; 2111 // FIXME: This doesn't support tail calls. 2112 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2113 Ops, CallOptions, 2114 SDLoc(Node), 2115 Node->getOperand(0)); 2116 Results.push_back(Tmp.first); 2117 Results.push_back(Tmp.second); 2118 } else { 2119 SDValue Tmp = ExpandLibCall(LC, Node, false); 2120 Results.push_back(Tmp); 2121 } 2122 } 2123 2124 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2125 RTLIB::Libcall Call_I8, 2126 RTLIB::Libcall Call_I16, 2127 RTLIB::Libcall Call_I32, 2128 RTLIB::Libcall Call_I64, 2129 RTLIB::Libcall Call_I128) { 2130 RTLIB::Libcall LC; 2131 switch (Node->getSimpleValueType(0).SimpleTy) { 2132 default: llvm_unreachable("Unexpected request for libcall!"); 2133 case MVT::i8: LC = Call_I8; break; 2134 case MVT::i16: LC = Call_I16; break; 2135 case MVT::i32: LC = Call_I32; break; 2136 case MVT::i64: LC = Call_I64; break; 2137 case MVT::i128: LC = Call_I128; break; 2138 } 2139 return ExpandLibCall(LC, Node, isSigned); 2140 } 2141 2142 /// Expand the node to a libcall based on first argument type (for instance 2143 /// lround and its variant). 2144 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node, 2145 RTLIB::Libcall Call_F32, 2146 RTLIB::Libcall Call_F64, 2147 RTLIB::Libcall Call_F80, 2148 RTLIB::Libcall Call_F128, 2149 RTLIB::Libcall Call_PPCF128, 2150 SmallVectorImpl<SDValue> &Results) { 2151 EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType(); 2152 2153 RTLIB::Libcall LC; 2154 switch (InVT.getSimpleVT().SimpleTy) { 2155 default: llvm_unreachable("Unexpected request for libcall!"); 2156 case MVT::f32: LC = Call_F32; break; 2157 case MVT::f64: LC = Call_F64; break; 2158 case MVT::f80: LC = Call_F80; break; 2159 case MVT::f128: LC = Call_F128; break; 2160 case MVT::ppcf128: LC = Call_PPCF128; break; 2161 } 2162 2163 if (Node->isStrictFPOpcode()) { 2164 EVT RetVT = Node->getValueType(0); 2165 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); 2166 TargetLowering::MakeLibCallOptions CallOptions; 2167 // FIXME: This doesn't support tail calls. 2168 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2169 Ops, CallOptions, 2170 SDLoc(Node), 2171 Node->getOperand(0)); 2172 Results.push_back(Tmp.first); 2173 Results.push_back(Tmp.second); 2174 } else { 2175 SDValue Tmp = ExpandLibCall(LC, Node, false); 2176 Results.push_back(Tmp); 2177 } 2178 } 2179 2180 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2181 void 2182 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2183 SmallVectorImpl<SDValue> &Results) { 2184 unsigned Opcode = Node->getOpcode(); 2185 bool isSigned = Opcode == ISD::SDIVREM; 2186 2187 RTLIB::Libcall LC; 2188 switch (Node->getSimpleValueType(0).SimpleTy) { 2189 default: llvm_unreachable("Unexpected request for libcall!"); 2190 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2191 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2192 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2193 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2194 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2195 } 2196 2197 // The input chain to this libcall is the entry node of the function. 2198 // Legalizing the call will automatically add the previous call to the 2199 // dependence. 2200 SDValue InChain = DAG.getEntryNode(); 2201 2202 EVT RetVT = Node->getValueType(0); 2203 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2204 2205 TargetLowering::ArgListTy Args; 2206 TargetLowering::ArgListEntry Entry; 2207 for (const SDValue &Op : Node->op_values()) { 2208 EVT ArgVT = Op.getValueType(); 2209 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2210 Entry.Node = Op; 2211 Entry.Ty = ArgTy; 2212 Entry.IsSExt = isSigned; 2213 Entry.IsZExt = !isSigned; 2214 Args.push_back(Entry); 2215 } 2216 2217 // Also pass the return address of the remainder. 2218 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2219 Entry.Node = FIPtr; 2220 Entry.Ty = RetTy->getPointerTo(); 2221 Entry.IsSExt = isSigned; 2222 Entry.IsZExt = !isSigned; 2223 Args.push_back(Entry); 2224 2225 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2226 TLI.getPointerTy(DAG.getDataLayout())); 2227 2228 SDLoc dl(Node); 2229 TargetLowering::CallLoweringInfo CLI(DAG); 2230 CLI.setDebugLoc(dl) 2231 .setChain(InChain) 2232 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2233 std::move(Args)) 2234 .setSExtResult(isSigned) 2235 .setZExtResult(!isSigned); 2236 2237 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2238 2239 // Remainder is loaded back from the stack frame. 2240 SDValue Rem = 2241 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2242 Results.push_back(CallInfo.first); 2243 Results.push_back(Rem); 2244 } 2245 2246 /// Return true if sincos libcall is available. 2247 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2248 RTLIB::Libcall LC; 2249 switch (Node->getSimpleValueType(0).SimpleTy) { 2250 default: llvm_unreachable("Unexpected request for libcall!"); 2251 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2252 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2253 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2254 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2255 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2256 } 2257 return TLI.getLibcallName(LC) != nullptr; 2258 } 2259 2260 /// Only issue sincos libcall if both sin and cos are needed. 2261 static bool useSinCos(SDNode *Node) { 2262 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2263 ? ISD::FCOS : ISD::FSIN; 2264 2265 SDValue Op0 = Node->getOperand(0); 2266 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2267 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2268 SDNode *User = *UI; 2269 if (User == Node) 2270 continue; 2271 // The other user might have been turned into sincos already. 2272 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2273 return true; 2274 } 2275 return false; 2276 } 2277 2278 /// Issue libcalls to sincos to compute sin / cos pairs. 2279 void 2280 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2281 SmallVectorImpl<SDValue> &Results) { 2282 RTLIB::Libcall LC; 2283 switch (Node->getSimpleValueType(0).SimpleTy) { 2284 default: llvm_unreachable("Unexpected request for libcall!"); 2285 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2286 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2287 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2288 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2289 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2290 } 2291 2292 // The input chain to this libcall is the entry node of the function. 2293 // Legalizing the call will automatically add the previous call to the 2294 // dependence. 2295 SDValue InChain = DAG.getEntryNode(); 2296 2297 EVT RetVT = Node->getValueType(0); 2298 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2299 2300 TargetLowering::ArgListTy Args; 2301 TargetLowering::ArgListEntry Entry; 2302 2303 // Pass the argument. 2304 Entry.Node = Node->getOperand(0); 2305 Entry.Ty = RetTy; 2306 Entry.IsSExt = false; 2307 Entry.IsZExt = false; 2308 Args.push_back(Entry); 2309 2310 // Pass the return address of sin. 2311 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2312 Entry.Node = SinPtr; 2313 Entry.Ty = RetTy->getPointerTo(); 2314 Entry.IsSExt = false; 2315 Entry.IsZExt = false; 2316 Args.push_back(Entry); 2317 2318 // Also pass the return address of the cos. 2319 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2320 Entry.Node = CosPtr; 2321 Entry.Ty = RetTy->getPointerTo(); 2322 Entry.IsSExt = false; 2323 Entry.IsZExt = false; 2324 Args.push_back(Entry); 2325 2326 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2327 TLI.getPointerTy(DAG.getDataLayout())); 2328 2329 SDLoc dl(Node); 2330 TargetLowering::CallLoweringInfo CLI(DAG); 2331 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2332 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2333 std::move(Args)); 2334 2335 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2336 2337 Results.push_back( 2338 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2339 Results.push_back( 2340 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2341 } 2342 2343 /// This function is responsible for legalizing a 2344 /// INT_TO_FP operation of the specified operand when the target requests that 2345 /// we expand it. At this point, we know that the result and operand types are 2346 /// legal for the target. 2347 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node, 2348 SDValue &Chain) { 2349 bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 2350 Node->getOpcode() == ISD::SINT_TO_FP); 2351 EVT DestVT = Node->getValueType(0); 2352 SDLoc dl(Node); 2353 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 2354 SDValue Op0 = Node->getOperand(OpNo); 2355 EVT SrcVT = Op0.getValueType(); 2356 2357 // TODO: Should any fast-math-flags be set for the created nodes? 2358 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2359 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { 2360 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2361 "expansion\n"); 2362 2363 // Get the stack frame index of a 8 byte buffer. 2364 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2365 2366 // word offset constant for Hi/Lo address computation 2367 SDValue WordOff = DAG.getConstant(sizeof(int), dl, 2368 StackSlot.getValueType()); 2369 // set up Hi and Lo (into buffer) address based on endian 2370 SDValue Hi = StackSlot; 2371 SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(), 2372 StackSlot, WordOff); 2373 if (DAG.getDataLayout().isLittleEndian()) 2374 std::swap(Hi, Lo); 2375 2376 // if signed map to unsigned space 2377 SDValue Op0Mapped; 2378 if (isSigned) { 2379 // constant used to invert sign bit (signed to unsigned mapping) 2380 SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32); 2381 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); 2382 } else { 2383 Op0Mapped = Op0; 2384 } 2385 // store the lo of the constructed double - based on integer input 2386 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo, 2387 MachinePointerInfo()); 2388 // initial hi portion of constructed double 2389 SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2390 // store the hi of the constructed double - biased exponent 2391 SDValue Store2 = 2392 DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo()); 2393 // load the constructed double 2394 SDValue Load = 2395 DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo()); 2396 // FP constant to bias correct the final result 2397 SDValue Bias = DAG.getConstantFP(isSigned ? 2398 BitsToDouble(0x4330000080000000ULL) : 2399 BitsToDouble(0x4330000000000000ULL), 2400 dl, MVT::f64); 2401 // Subtract the bias and get the final result. 2402 SDValue Sub; 2403 SDValue Result; 2404 if (Node->isStrictFPOpcode()) { 2405 Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other}, 2406 {Node->getOperand(0), Load, Bias}); 2407 Chain = Sub.getValue(1); 2408 if (DestVT != Sub.getValueType()) { 2409 std::pair<SDValue, SDValue> ResultPair; 2410 ResultPair = 2411 DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT); 2412 Result = ResultPair.first; 2413 Chain = ResultPair.second; 2414 } 2415 else 2416 Result = Sub; 2417 } else { 2418 Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2419 Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); 2420 } 2421 return Result; 2422 } 2423 // Code below here assumes !isSigned without checking again. 2424 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2425 2426 // TODO: Generalize this for use with other types. 2427 if ((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) { 2428 LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32\n"); 2429 // For unsigned conversions, convert them to signed conversions using the 2430 // algorithm from the x86_64 __floatundisf in compiler_rt. That method 2431 // should be valid for i32->f32 as well. 2432 2433 // TODO: This really should be implemented using a branch rather than a 2434 // select. We happen to get lucky and machinesink does the right 2435 // thing most of the time. This would be a good candidate for a 2436 // pseudo-op, or, even better, for whole-function isel. 2437 EVT SetCCVT = getSetCCResultType(SrcVT); 2438 2439 SDValue SignBitTest = DAG.getSetCC( 2440 dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2441 2442 EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout()); 2443 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 2444 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst); 2445 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 2446 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst); 2447 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 2448 2449 SDValue Slow, Fast; 2450 if (Node->isStrictFPOpcode()) { 2451 // In strict mode, we must avoid spurious exceptions, and therefore 2452 // must make sure to only emit a single STRICT_SINT_TO_FP. 2453 SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0); 2454 Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2455 { Node->getOperand(0), InCvt }); 2456 Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2457 { Fast.getValue(1), Fast, Fast }); 2458 Chain = Slow.getValue(1); 2459 // The STRICT_SINT_TO_FP inherits the exception mode from the 2460 // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can 2461 // never raise any exception. 2462 SDNodeFlags Flags; 2463 Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept()); 2464 Fast->setFlags(Flags); 2465 Flags.setNoFPExcept(true); 2466 Slow->setFlags(Flags); 2467 } else { 2468 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or); 2469 Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt); 2470 Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2471 } 2472 2473 return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast); 2474 } 2475 2476 // The following optimization is valid only if every value in SrcVT (when 2477 // treated as signed) is representable in DestVT. Check that the mantissa 2478 // size of DestVT is >= than the number of bits in SrcVT -1. 2479 assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >= 2480 SrcVT.getSizeInBits() - 1 && 2481 "Cannot perform lossless SINT_TO_FP!"); 2482 2483 SDValue Tmp1; 2484 if (Node->isStrictFPOpcode()) { 2485 Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2486 { Node->getOperand(0), Op0 }); 2487 } else 2488 Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2489 2490 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, 2491 DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2492 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2493 Four = DAG.getIntPtrConstant(4, dl); 2494 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2495 SignSet, Four, Zero); 2496 2497 // If the sign bit of the integer is set, the large number will be treated 2498 // as a negative number. To counteract this, the dynamic code adds an 2499 // offset depending on the data type. 2500 uint64_t FF; 2501 switch (SrcVT.getSimpleVT().SimpleTy) { 2502 default: llvm_unreachable("Unsupported integer type!"); 2503 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2504 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2505 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2506 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2507 } 2508 if (DAG.getDataLayout().isLittleEndian()) 2509 FF <<= 32; 2510 Constant *FudgeFactor = ConstantInt::get( 2511 Type::getInt64Ty(*DAG.getContext()), FF); 2512 2513 SDValue CPIdx = 2514 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2515 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2516 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2517 Alignment = std::min(Alignment, 4u); 2518 SDValue FudgeInReg; 2519 if (DestVT == MVT::f32) 2520 FudgeInReg = DAG.getLoad( 2521 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2522 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2523 Alignment); 2524 else { 2525 SDValue Load = DAG.getExtLoad( 2526 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2527 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2528 Alignment); 2529 HandleSDNode Handle(Load); 2530 LegalizeOp(Load.getNode()); 2531 FudgeInReg = Handle.getValue(); 2532 } 2533 2534 if (Node->isStrictFPOpcode()) { 2535 SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2536 { Tmp1.getValue(1), Tmp1, FudgeInReg }); 2537 Chain = Result.getValue(1); 2538 return Result; 2539 } 2540 2541 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2542 } 2543 2544 /// This function is responsible for legalizing a 2545 /// *INT_TO_FP operation of the specified operand when the target requests that 2546 /// we promote it. At this point, we know that the result and operand types are 2547 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2548 /// operation that takes a larger input. 2549 void SelectionDAGLegalize::PromoteLegalINT_TO_FP( 2550 SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) { 2551 bool IsStrict = N->isStrictFPOpcode(); 2552 bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP || 2553 N->getOpcode() == ISD::STRICT_SINT_TO_FP; 2554 EVT DestVT = N->getValueType(0); 2555 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2556 unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP; 2557 unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP; 2558 2559 // First step, figure out the appropriate *INT_TO_FP operation to use. 2560 EVT NewInTy = LegalOp.getValueType(); 2561 2562 unsigned OpToUse = 0; 2563 2564 // Scan for the appropriate larger type to use. 2565 while (true) { 2566 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2567 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2568 2569 // If the target supports SINT_TO_FP of this type, use it. 2570 if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) { 2571 OpToUse = SIntOp; 2572 break; 2573 } 2574 if (IsSigned) 2575 continue; 2576 2577 // If the target supports UINT_TO_FP of this type, use it. 2578 if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) { 2579 OpToUse = UIntOp; 2580 break; 2581 } 2582 2583 // Otherwise, try a larger type. 2584 } 2585 2586 // Okay, we found the operation and type to use. Zero extend our input to the 2587 // desired type then run the operation on it. 2588 if (IsStrict) { 2589 SDValue Res = 2590 DAG.getNode(OpToUse, dl, {DestVT, MVT::Other}, 2591 {N->getOperand(0), 2592 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2593 dl, NewInTy, LegalOp)}); 2594 Results.push_back(Res); 2595 Results.push_back(Res.getValue(1)); 2596 return; 2597 } 2598 2599 Results.push_back( 2600 DAG.getNode(OpToUse, dl, DestVT, 2601 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2602 dl, NewInTy, LegalOp))); 2603 } 2604 2605 /// This function is responsible for legalizing a 2606 /// FP_TO_*INT operation of the specified operand when the target requests that 2607 /// we promote it. At this point, we know that the result and operand types are 2608 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2609 /// operation that returns a larger result. 2610 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 2611 SmallVectorImpl<SDValue> &Results) { 2612 bool IsStrict = N->isStrictFPOpcode(); 2613 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 2614 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 2615 EVT DestVT = N->getValueType(0); 2616 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2617 // First step, figure out the appropriate FP_TO*INT operation to use. 2618 EVT NewOutTy = DestVT; 2619 2620 unsigned OpToUse = 0; 2621 2622 // Scan for the appropriate larger type to use. 2623 while (true) { 2624 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2625 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2626 2627 // A larger signed type can hold all unsigned values of the requested type, 2628 // so using FP_TO_SINT is valid 2629 OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT; 2630 if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2631 break; 2632 2633 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2634 OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT; 2635 if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2636 break; 2637 2638 // Otherwise, try a larger type. 2639 } 2640 2641 // Okay, we found the operation and type to use. 2642 SDValue Operation; 2643 if (IsStrict) { 2644 SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other); 2645 Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp); 2646 } else 2647 Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2648 2649 // Truncate the result of the extended FP_TO_*INT operation to the desired 2650 // size. 2651 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2652 Results.push_back(Trunc); 2653 if (IsStrict) 2654 Results.push_back(Operation.getValue(1)); 2655 } 2656 2657 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts. 2658 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) { 2659 EVT VT = Op.getValueType(); 2660 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2661 unsigned Sz = VT.getScalarSizeInBits(); 2662 2663 SDValue Tmp, Tmp2, Tmp3; 2664 2665 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 2666 // and finally the i1 pairs. 2667 // TODO: We can easily support i4/i2 legal types if any target ever does. 2668 if (Sz >= 8 && isPowerOf2_32(Sz)) { 2669 // Create the masks - repeating the pattern every byte. 2670 APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0)); 2671 APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC)); 2672 APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA)); 2673 APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 2674 APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33)); 2675 APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55)); 2676 2677 // BSWAP if the type is wider than a single byte. 2678 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 2679 2680 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) 2681 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); 2682 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); 2683 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT)); 2684 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 2685 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2686 2687 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) 2688 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); 2689 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); 2690 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT)); 2691 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 2692 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2693 2694 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) 2695 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); 2696 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); 2697 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT)); 2698 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 2699 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2700 return Tmp; 2701 } 2702 2703 Tmp = DAG.getConstant(0, dl, VT); 2704 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 2705 if (I < J) 2706 Tmp2 = 2707 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 2708 else 2709 Tmp2 = 2710 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 2711 2712 APInt Shift(Sz, 1); 2713 Shift <<= J; 2714 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 2715 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 2716 } 2717 2718 return Tmp; 2719 } 2720 2721 /// Open code the operations for BSWAP of the specified operation. 2722 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) { 2723 EVT VT = Op.getValueType(); 2724 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2725 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2726 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 2727 default: llvm_unreachable("Unhandled Expand type in BSWAP!"); 2728 case MVT::i16: 2729 // Use a rotate by 8. This can be further expanded if necessary. 2730 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2731 case MVT::i32: 2732 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2733 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2734 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2735 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2736 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2737 DAG.getConstant(0xFF0000, dl, VT)); 2738 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 2739 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2740 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2741 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2742 case MVT::i64: 2743 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2744 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2745 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2746 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2747 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2748 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2749 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2750 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2751 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 2752 DAG.getConstant(255ULL<<48, dl, VT)); 2753 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 2754 DAG.getConstant(255ULL<<40, dl, VT)); 2755 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 2756 DAG.getConstant(255ULL<<32, dl, VT)); 2757 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 2758 DAG.getConstant(255ULL<<24, dl, VT)); 2759 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2760 DAG.getConstant(255ULL<<16, dl, VT)); 2761 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 2762 DAG.getConstant(255ULL<<8 , dl, VT)); 2763 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2764 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2765 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2766 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2767 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2768 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2769 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2770 } 2771 } 2772 2773 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2774 LLVM_DEBUG(dbgs() << "Trying to expand node\n"); 2775 SmallVector<SDValue, 8> Results; 2776 SDLoc dl(Node); 2777 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2778 bool NeedInvert; 2779 switch (Node->getOpcode()) { 2780 case ISD::ABS: 2781 if (TLI.expandABS(Node, Tmp1, DAG)) 2782 Results.push_back(Tmp1); 2783 break; 2784 case ISD::CTPOP: 2785 if (TLI.expandCTPOP(Node, Tmp1, DAG)) 2786 Results.push_back(Tmp1); 2787 break; 2788 case ISD::CTLZ: 2789 case ISD::CTLZ_ZERO_UNDEF: 2790 if (TLI.expandCTLZ(Node, Tmp1, DAG)) 2791 Results.push_back(Tmp1); 2792 break; 2793 case ISD::CTTZ: 2794 case ISD::CTTZ_ZERO_UNDEF: 2795 if (TLI.expandCTTZ(Node, Tmp1, DAG)) 2796 Results.push_back(Tmp1); 2797 break; 2798 case ISD::BITREVERSE: 2799 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl)); 2800 break; 2801 case ISD::BSWAP: 2802 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2803 break; 2804 case ISD::FRAMEADDR: 2805 case ISD::RETURNADDR: 2806 case ISD::FRAME_TO_ARGS_OFFSET: 2807 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2808 break; 2809 case ISD::EH_DWARF_CFA: { 2810 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 2811 TLI.getPointerTy(DAG.getDataLayout())); 2812 SDValue Offset = DAG.getNode(ISD::ADD, dl, 2813 CfaArg.getValueType(), 2814 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 2815 CfaArg.getValueType()), 2816 CfaArg); 2817 SDValue FA = DAG.getNode( 2818 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 2819 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2820 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 2821 FA, Offset)); 2822 break; 2823 } 2824 case ISD::FLT_ROUNDS_: 2825 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2826 break; 2827 case ISD::EH_RETURN: 2828 case ISD::EH_LABEL: 2829 case ISD::PREFETCH: 2830 case ISD::VAEND: 2831 case ISD::EH_SJLJ_LONGJMP: 2832 // If the target didn't expand these, there's nothing to do, so just 2833 // preserve the chain and be done. 2834 Results.push_back(Node->getOperand(0)); 2835 break; 2836 case ISD::READCYCLECOUNTER: 2837 // If the target didn't expand this, just return 'zero' and preserve the 2838 // chain. 2839 Results.append(Node->getNumValues() - 1, 2840 DAG.getConstant(0, dl, Node->getValueType(0))); 2841 Results.push_back(Node->getOperand(0)); 2842 break; 2843 case ISD::EH_SJLJ_SETJMP: 2844 // If the target didn't expand this, just return 'zero' and preserve the 2845 // chain. 2846 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2847 Results.push_back(Node->getOperand(0)); 2848 break; 2849 case ISD::ATOMIC_LOAD: { 2850 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2851 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2852 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2853 SDValue Swap = DAG.getAtomicCmpSwap( 2854 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2855 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2856 cast<AtomicSDNode>(Node)->getMemOperand()); 2857 Results.push_back(Swap.getValue(0)); 2858 Results.push_back(Swap.getValue(1)); 2859 break; 2860 } 2861 case ISD::ATOMIC_STORE: { 2862 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2863 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2864 cast<AtomicSDNode>(Node)->getMemoryVT(), 2865 Node->getOperand(0), 2866 Node->getOperand(1), Node->getOperand(2), 2867 cast<AtomicSDNode>(Node)->getMemOperand()); 2868 Results.push_back(Swap.getValue(1)); 2869 break; 2870 } 2871 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 2872 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 2873 // splits out the success value as a comparison. Expanding the resulting 2874 // ATOMIC_CMP_SWAP will produce a libcall. 2875 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2876 SDValue Res = DAG.getAtomicCmpSwap( 2877 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2878 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 2879 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 2880 2881 SDValue ExtRes = Res; 2882 SDValue LHS = Res; 2883 SDValue RHS = Node->getOperand(1); 2884 2885 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 2886 EVT OuterType = Node->getValueType(0); 2887 switch (TLI.getExtendForAtomicOps()) { 2888 case ISD::SIGN_EXTEND: 2889 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 2890 DAG.getValueType(AtomicType)); 2891 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 2892 Node->getOperand(2), DAG.getValueType(AtomicType)); 2893 ExtRes = LHS; 2894 break; 2895 case ISD::ZERO_EXTEND: 2896 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 2897 DAG.getValueType(AtomicType)); 2898 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2899 ExtRes = LHS; 2900 break; 2901 case ISD::ANY_EXTEND: 2902 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 2903 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2904 break; 2905 default: 2906 llvm_unreachable("Invalid atomic op extension"); 2907 } 2908 2909 SDValue Success = 2910 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 2911 2912 Results.push_back(ExtRes.getValue(0)); 2913 Results.push_back(Success); 2914 Results.push_back(Res.getValue(1)); 2915 break; 2916 } 2917 case ISD::DYNAMIC_STACKALLOC: 2918 ExpandDYNAMIC_STACKALLOC(Node, Results); 2919 break; 2920 case ISD::MERGE_VALUES: 2921 for (unsigned i = 0; i < Node->getNumValues(); i++) 2922 Results.push_back(Node->getOperand(i)); 2923 break; 2924 case ISD::UNDEF: { 2925 EVT VT = Node->getValueType(0); 2926 if (VT.isInteger()) 2927 Results.push_back(DAG.getConstant(0, dl, VT)); 2928 else { 2929 assert(VT.isFloatingPoint() && "Unknown value type!"); 2930 Results.push_back(DAG.getConstantFP(0, dl, VT)); 2931 } 2932 break; 2933 } 2934 case ISD::STRICT_FP_ROUND: 2935 // When strict mode is enforced we can't do expansion because it 2936 // does not honor the "strict" properties. Only libcall is allowed. 2937 if (TLI.isStrictFPEnabled()) 2938 break; 2939 // We might as well mutate to FP_ROUND when FP_ROUND operation is legal 2940 // since this operation is more efficient than stack operation. 2941 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2942 Node->getValueType(0)) 2943 == TargetLowering::Legal) 2944 break; 2945 // We fall back to use stack operation when the FP_ROUND operation 2946 // isn't available. 2947 Tmp1 = EmitStackConvert(Node->getOperand(1), 2948 Node->getValueType(0), 2949 Node->getValueType(0), dl, Node->getOperand(0)); 2950 ReplaceNode(Node, Tmp1.getNode()); 2951 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n"); 2952 return true; 2953 case ISD::FP_ROUND: 2954 case ISD::BITCAST: 2955 Tmp1 = EmitStackConvert(Node->getOperand(0), 2956 Node->getValueType(0), 2957 Node->getValueType(0), dl); 2958 Results.push_back(Tmp1); 2959 break; 2960 case ISD::STRICT_FP_EXTEND: 2961 // When strict mode is enforced we can't do expansion because it 2962 // does not honor the "strict" properties. Only libcall is allowed. 2963 if (TLI.isStrictFPEnabled()) 2964 break; 2965 // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal 2966 // since this operation is more efficient than stack operation. 2967 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2968 Node->getValueType(0)) 2969 == TargetLowering::Legal) 2970 break; 2971 // We fall back to use stack operation when the FP_EXTEND operation 2972 // isn't available. 2973 Tmp1 = EmitStackConvert(Node->getOperand(1), 2974 Node->getOperand(1).getValueType(), 2975 Node->getValueType(0), dl, Node->getOperand(0)); 2976 ReplaceNode(Node, Tmp1.getNode()); 2977 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n"); 2978 return true; 2979 case ISD::FP_EXTEND: 2980 Tmp1 = EmitStackConvert(Node->getOperand(0), 2981 Node->getOperand(0).getValueType(), 2982 Node->getValueType(0), dl); 2983 Results.push_back(Tmp1); 2984 break; 2985 case ISD::SIGN_EXTEND_INREG: { 2986 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2987 EVT VT = Node->getValueType(0); 2988 2989 // An in-register sign-extend of a boolean is a negation: 2990 // 'true' (1) sign-extended is -1. 2991 // 'false' (0) sign-extended is 0. 2992 // However, we must mask the high bits of the source operand because the 2993 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 2994 2995 // TODO: Do this for vectors too? 2996 if (ExtraVT.getSizeInBits() == 1) { 2997 SDValue One = DAG.getConstant(1, dl, VT); 2998 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 2999 SDValue Zero = DAG.getConstant(0, dl, VT); 3000 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 3001 Results.push_back(Neg); 3002 break; 3003 } 3004 3005 // NOTE: we could fall back on load/store here too for targets without 3006 // SRA. However, it is doubtful that any exist. 3007 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 3008 unsigned BitsDiff = VT.getScalarSizeInBits() - 3009 ExtraVT.getScalarSizeInBits(); 3010 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 3011 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 3012 Node->getOperand(0), ShiftCst); 3013 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 3014 Results.push_back(Tmp1); 3015 break; 3016 } 3017 case ISD::UINT_TO_FP: 3018 case ISD::STRICT_UINT_TO_FP: 3019 if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) { 3020 Results.push_back(Tmp1); 3021 if (Node->isStrictFPOpcode()) 3022 Results.push_back(Tmp2); 3023 break; 3024 } 3025 LLVM_FALLTHROUGH; 3026 case ISD::SINT_TO_FP: 3027 case ISD::STRICT_SINT_TO_FP: 3028 Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2); 3029 Results.push_back(Tmp1); 3030 if (Node->isStrictFPOpcode()) 3031 Results.push_back(Tmp2); 3032 break; 3033 case ISD::FP_TO_SINT: 3034 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 3035 Results.push_back(Tmp1); 3036 break; 3037 case ISD::STRICT_FP_TO_SINT: 3038 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) { 3039 ReplaceNode(Node, Tmp1.getNode()); 3040 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n"); 3041 return true; 3042 } 3043 break; 3044 case ISD::FP_TO_UINT: 3045 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) 3046 Results.push_back(Tmp1); 3047 break; 3048 case ISD::STRICT_FP_TO_UINT: 3049 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) { 3050 // Relink the chain. 3051 DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2); 3052 // Replace the new UINT result. 3053 ReplaceNodeWithValue(SDValue(Node, 0), Tmp1); 3054 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n"); 3055 return true; 3056 } 3057 break; 3058 case ISD::VAARG: 3059 Results.push_back(DAG.expandVAArg(Node)); 3060 Results.push_back(Results[0].getValue(1)); 3061 break; 3062 case ISD::VACOPY: 3063 Results.push_back(DAG.expandVACopy(Node)); 3064 break; 3065 case ISD::EXTRACT_VECTOR_ELT: 3066 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 3067 // This must be an access of the only element. Return it. 3068 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 3069 Node->getOperand(0)); 3070 else 3071 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 3072 Results.push_back(Tmp1); 3073 break; 3074 case ISD::EXTRACT_SUBVECTOR: 3075 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 3076 break; 3077 case ISD::INSERT_SUBVECTOR: 3078 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 3079 break; 3080 case ISD::CONCAT_VECTORS: 3081 Results.push_back(ExpandVectorBuildThroughStack(Node)); 3082 break; 3083 case ISD::SCALAR_TO_VECTOR: 3084 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3085 break; 3086 case ISD::INSERT_VECTOR_ELT: 3087 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3088 Node->getOperand(1), 3089 Node->getOperand(2), dl)); 3090 break; 3091 case ISD::VECTOR_SHUFFLE: { 3092 SmallVector<int, 32> NewMask; 3093 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3094 3095 EVT VT = Node->getValueType(0); 3096 EVT EltVT = VT.getVectorElementType(); 3097 SDValue Op0 = Node->getOperand(0); 3098 SDValue Op1 = Node->getOperand(1); 3099 if (!TLI.isTypeLegal(EltVT)) { 3100 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3101 3102 // BUILD_VECTOR operands are allowed to be wider than the element type. 3103 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 3104 // it. 3105 if (NewEltVT.bitsLT(EltVT)) { 3106 // Convert shuffle node. 3107 // If original node was v4i64 and the new EltVT is i32, 3108 // cast operands to v8i32 and re-build the mask. 3109 3110 // Calculate new VT, the size of the new VT should be equal to original. 3111 EVT NewVT = 3112 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3113 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 3114 assert(NewVT.bitsEq(VT)); 3115 3116 // cast operands to new VT 3117 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3118 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3119 3120 // Convert the shuffle mask 3121 unsigned int factor = 3122 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3123 3124 // EltVT gets smaller 3125 assert(factor > 0); 3126 3127 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3128 if (Mask[i] < 0) { 3129 for (unsigned fi = 0; fi < factor; ++fi) 3130 NewMask.push_back(Mask[i]); 3131 } 3132 else { 3133 for (unsigned fi = 0; fi < factor; ++fi) 3134 NewMask.push_back(Mask[i]*factor+fi); 3135 } 3136 } 3137 Mask = NewMask; 3138 VT = NewVT; 3139 } 3140 EltVT = NewEltVT; 3141 } 3142 unsigned NumElems = VT.getVectorNumElements(); 3143 SmallVector<SDValue, 16> Ops; 3144 for (unsigned i = 0; i != NumElems; ++i) { 3145 if (Mask[i] < 0) { 3146 Ops.push_back(DAG.getUNDEF(EltVT)); 3147 continue; 3148 } 3149 unsigned Idx = Mask[i]; 3150 if (Idx < NumElems) 3151 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3152 DAG.getVectorIdxConstant(Idx, dl))); 3153 else 3154 Ops.push_back( 3155 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3156 DAG.getVectorIdxConstant(Idx - NumElems, dl))); 3157 } 3158 3159 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 3160 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3161 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3162 Results.push_back(Tmp1); 3163 break; 3164 } 3165 case ISD::EXTRACT_ELEMENT: { 3166 EVT OpTy = Node->getOperand(0).getValueType(); 3167 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3168 // 1 -> Hi 3169 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3170 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3171 TLI.getShiftAmountTy( 3172 Node->getOperand(0).getValueType(), 3173 DAG.getDataLayout()))); 3174 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3175 } else { 3176 // 0 -> Lo 3177 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3178 Node->getOperand(0)); 3179 } 3180 Results.push_back(Tmp1); 3181 break; 3182 } 3183 case ISD::STACKSAVE: 3184 // Expand to CopyFromReg if the target set 3185 // StackPointerRegisterToSaveRestore. 3186 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3187 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3188 Node->getValueType(0))); 3189 Results.push_back(Results[0].getValue(1)); 3190 } else { 3191 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3192 Results.push_back(Node->getOperand(0)); 3193 } 3194 break; 3195 case ISD::STACKRESTORE: 3196 // Expand to CopyToReg if the target set 3197 // StackPointerRegisterToSaveRestore. 3198 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3199 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3200 Node->getOperand(1))); 3201 } else { 3202 Results.push_back(Node->getOperand(0)); 3203 } 3204 break; 3205 case ISD::GET_DYNAMIC_AREA_OFFSET: 3206 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3207 Results.push_back(Results[0].getValue(0)); 3208 break; 3209 case ISD::FCOPYSIGN: 3210 Results.push_back(ExpandFCOPYSIGN(Node)); 3211 break; 3212 case ISD::FNEG: 3213 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3214 Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0)); 3215 // TODO: If FNEG has fast-math-flags, propagate them to the FSUB. 3216 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, 3217 Node->getOperand(0)); 3218 Results.push_back(Tmp1); 3219 break; 3220 case ISD::FABS: 3221 Results.push_back(ExpandFABS(Node)); 3222 break; 3223 case ISD::SMIN: 3224 case ISD::SMAX: 3225 case ISD::UMIN: 3226 case ISD::UMAX: { 3227 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3228 ISD::CondCode Pred; 3229 switch (Node->getOpcode()) { 3230 default: llvm_unreachable("How did we get here?"); 3231 case ISD::SMAX: Pred = ISD::SETGT; break; 3232 case ISD::SMIN: Pred = ISD::SETLT; break; 3233 case ISD::UMAX: Pred = ISD::SETUGT; break; 3234 case ISD::UMIN: Pred = ISD::SETULT; break; 3235 } 3236 Tmp1 = Node->getOperand(0); 3237 Tmp2 = Node->getOperand(1); 3238 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3239 Results.push_back(Tmp1); 3240 break; 3241 } 3242 case ISD::FMINNUM: 3243 case ISD::FMAXNUM: { 3244 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) 3245 Results.push_back(Expanded); 3246 break; 3247 } 3248 case ISD::FSIN: 3249 case ISD::FCOS: { 3250 EVT VT = Node->getValueType(0); 3251 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3252 // fcos which share the same operand and both are used. 3253 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3254 isSinCosLibcallAvailable(Node, TLI)) 3255 && useSinCos(Node)) { 3256 SDVTList VTs = DAG.getVTList(VT, VT); 3257 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3258 if (Node->getOpcode() == ISD::FCOS) 3259 Tmp1 = Tmp1.getValue(1); 3260 Results.push_back(Tmp1); 3261 } 3262 break; 3263 } 3264 case ISD::FMAD: 3265 llvm_unreachable("Illegal fmad should never be formed"); 3266 3267 case ISD::FP16_TO_FP: 3268 if (Node->getValueType(0) != MVT::f32) { 3269 // We can extend to types bigger than f32 in two steps without changing 3270 // the result. Since "f16 -> f32" is much more commonly available, give 3271 // CodeGen the option of emitting that before resorting to a libcall. 3272 SDValue Res = 3273 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3274 Results.push_back( 3275 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3276 } 3277 break; 3278 case ISD::STRICT_FP16_TO_FP: 3279 if (Node->getValueType(0) != MVT::f32) { 3280 // We can extend to types bigger than f32 in two steps without changing 3281 // the result. Since "f16 -> f32" is much more commonly available, give 3282 // CodeGen the option of emitting that before resorting to a libcall. 3283 SDValue Res = 3284 DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other}, 3285 {Node->getOperand(0), Node->getOperand(1)}); 3286 Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 3287 {Node->getValueType(0), MVT::Other}, 3288 {Res.getValue(1), Res}); 3289 Results.push_back(Res); 3290 Results.push_back(Res.getValue(1)); 3291 } 3292 break; 3293 case ISD::FP_TO_FP16: 3294 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3295 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3296 SDValue Op = Node->getOperand(0); 3297 MVT SVT = Op.getSimpleValueType(); 3298 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3299 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3300 // Under fastmath, we can expand this node into a fround followed by 3301 // a float-half conversion. 3302 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3303 DAG.getIntPtrConstant(0, dl)); 3304 Results.push_back( 3305 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3306 } 3307 } 3308 break; 3309 case ISD::ConstantFP: { 3310 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3311 // Check to see if this FP immediate is already legal. 3312 // If this is a legal constant, turn it into a TargetConstantFP node. 3313 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0), 3314 DAG.getMachineFunction().getFunction().hasOptSize())) 3315 Results.push_back(ExpandConstantFP(CFP, true)); 3316 break; 3317 } 3318 case ISD::Constant: { 3319 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3320 Results.push_back(ExpandConstant(CP)); 3321 break; 3322 } 3323 case ISD::FSUB: { 3324 EVT VT = Node->getValueType(0); 3325 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3326 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3327 const SDNodeFlags Flags = Node->getFlags(); 3328 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3329 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3330 Results.push_back(Tmp1); 3331 } 3332 break; 3333 } 3334 case ISD::SUB: { 3335 EVT VT = Node->getValueType(0); 3336 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3337 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3338 "Don't know how to expand this subtraction!"); 3339 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3340 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, 3341 VT)); 3342 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3343 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3344 break; 3345 } 3346 case ISD::UREM: 3347 case ISD::SREM: { 3348 EVT VT = Node->getValueType(0); 3349 bool isSigned = Node->getOpcode() == ISD::SREM; 3350 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 3351 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3352 Tmp2 = Node->getOperand(0); 3353 Tmp3 = Node->getOperand(1); 3354 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3355 SDVTList VTs = DAG.getVTList(VT, VT); 3356 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); 3357 Results.push_back(Tmp1); 3358 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { 3359 // X % Y -> X-X/Y*Y 3360 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); 3361 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); 3362 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); 3363 Results.push_back(Tmp1); 3364 } 3365 break; 3366 } 3367 case ISD::UDIV: 3368 case ISD::SDIV: { 3369 bool isSigned = Node->getOpcode() == ISD::SDIV; 3370 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3371 EVT VT = Node->getValueType(0); 3372 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3373 SDVTList VTs = DAG.getVTList(VT, VT); 3374 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3375 Node->getOperand(1)); 3376 Results.push_back(Tmp1); 3377 } 3378 break; 3379 } 3380 case ISD::MULHU: 3381 case ISD::MULHS: { 3382 unsigned ExpandOpcode = 3383 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3384 EVT VT = Node->getValueType(0); 3385 SDVTList VTs = DAG.getVTList(VT, VT); 3386 3387 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3388 Node->getOperand(1)); 3389 Results.push_back(Tmp1.getValue(1)); 3390 break; 3391 } 3392 case ISD::UMUL_LOHI: 3393 case ISD::SMUL_LOHI: { 3394 SDValue LHS = Node->getOperand(0); 3395 SDValue RHS = Node->getOperand(1); 3396 MVT VT = LHS.getSimpleValueType(); 3397 unsigned MULHOpcode = 3398 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3399 3400 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3401 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3402 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3403 break; 3404 } 3405 3406 SmallVector<SDValue, 4> Halves; 3407 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3408 assert(TLI.isTypeLegal(HalfType)); 3409 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves, 3410 HalfType, DAG, 3411 TargetLowering::MulExpansionKind::Always)) { 3412 for (unsigned i = 0; i < 2; ++i) { 3413 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3414 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3415 SDValue Shift = DAG.getConstant( 3416 HalfType.getScalarSizeInBits(), dl, 3417 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3418 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3419 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3420 } 3421 break; 3422 } 3423 break; 3424 } 3425 case ISD::MUL: { 3426 EVT VT = Node->getValueType(0); 3427 SDVTList VTs = DAG.getVTList(VT, VT); 3428 // See if multiply or divide can be lowered using two-result operations. 3429 // We just need the low half of the multiply; try both the signed 3430 // and unsigned forms. If the target supports both SMUL_LOHI and 3431 // UMUL_LOHI, form a preference by checking which forms of plain 3432 // MULH it supports. 3433 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3434 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3435 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3436 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3437 unsigned OpToUse = 0; 3438 if (HasSMUL_LOHI && !HasMULHS) { 3439 OpToUse = ISD::SMUL_LOHI; 3440 } else if (HasUMUL_LOHI && !HasMULHU) { 3441 OpToUse = ISD::UMUL_LOHI; 3442 } else if (HasSMUL_LOHI) { 3443 OpToUse = ISD::SMUL_LOHI; 3444 } else if (HasUMUL_LOHI) { 3445 OpToUse = ISD::UMUL_LOHI; 3446 } 3447 if (OpToUse) { 3448 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3449 Node->getOperand(1))); 3450 break; 3451 } 3452 3453 SDValue Lo, Hi; 3454 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3455 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3456 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3457 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3458 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3459 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3460 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3461 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3462 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3463 SDValue Shift = 3464 DAG.getConstant(HalfType.getSizeInBits(), dl, 3465 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3466 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3467 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3468 } 3469 break; 3470 } 3471 case ISD::FSHL: 3472 case ISD::FSHR: 3473 if (TLI.expandFunnelShift(Node, Tmp1, DAG)) 3474 Results.push_back(Tmp1); 3475 break; 3476 case ISD::ROTL: 3477 case ISD::ROTR: 3478 if (TLI.expandROT(Node, Tmp1, DAG)) 3479 Results.push_back(Tmp1); 3480 break; 3481 case ISD::SADDSAT: 3482 case ISD::UADDSAT: 3483 case ISD::SSUBSAT: 3484 case ISD::USUBSAT: 3485 Results.push_back(TLI.expandAddSubSat(Node, DAG)); 3486 break; 3487 case ISD::SMULFIX: 3488 case ISD::SMULFIXSAT: 3489 case ISD::UMULFIX: 3490 case ISD::UMULFIXSAT: 3491 Results.push_back(TLI.expandFixedPointMul(Node, DAG)); 3492 break; 3493 case ISD::SDIVFIX: 3494 case ISD::SDIVFIXSAT: 3495 case ISD::UDIVFIX: 3496 case ISD::UDIVFIXSAT: 3497 if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node), 3498 Node->getOperand(0), 3499 Node->getOperand(1), 3500 Node->getConstantOperandVal(2), 3501 DAG)) { 3502 Results.push_back(V); 3503 break; 3504 } 3505 // FIXME: We might want to retry here with a wider type if we fail, if that 3506 // type is legal. 3507 // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is 3508 // <= 128 (which is the case for all of the default Embedded-C types), 3509 // we will only get here with types and scales that we could always expand 3510 // if we were allowed to generate libcalls to division functions of illegal 3511 // type. But we cannot do that. 3512 llvm_unreachable("Cannot expand DIVFIX!"); 3513 case ISD::ADDCARRY: 3514 case ISD::SUBCARRY: { 3515 SDValue LHS = Node->getOperand(0); 3516 SDValue RHS = Node->getOperand(1); 3517 SDValue Carry = Node->getOperand(2); 3518 3519 bool IsAdd = Node->getOpcode() == ISD::ADDCARRY; 3520 3521 // Initial add of the 2 operands. 3522 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB; 3523 EVT VT = LHS.getValueType(); 3524 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS); 3525 3526 // Initial check for overflow. 3527 EVT CarryType = Node->getValueType(1); 3528 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3529 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 3530 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3531 3532 // Add of the sum and the carry. 3533 SDValue CarryExt = 3534 DAG.getZeroExtendInReg(DAG.getZExtOrTrunc(Carry, dl, VT), dl, MVT::i1); 3535 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt); 3536 3537 // Second check for overflow. If we are adding, we can only overflow if the 3538 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0. 3539 // If we are subtracting, we can only overflow if the initial sum is 0 and 3540 // the carry is set, resulting in a new sum of all 1s. 3541 SDValue Zero = DAG.getConstant(0, dl, VT); 3542 SDValue Overflow2 = 3543 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ) 3544 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ); 3545 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2, 3546 DAG.getZExtOrTrunc(Carry, dl, SetCCType)); 3547 3548 SDValue ResultCarry = 3549 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2); 3550 3551 Results.push_back(Sum2); 3552 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT)); 3553 break; 3554 } 3555 case ISD::SADDO: 3556 case ISD::SSUBO: { 3557 SDValue Result, Overflow; 3558 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 3559 Results.push_back(Result); 3560 Results.push_back(Overflow); 3561 break; 3562 } 3563 case ISD::UADDO: 3564 case ISD::USUBO: { 3565 SDValue Result, Overflow; 3566 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 3567 Results.push_back(Result); 3568 Results.push_back(Overflow); 3569 break; 3570 } 3571 case ISD::UMULO: 3572 case ISD::SMULO: { 3573 SDValue Result, Overflow; 3574 if (TLI.expandMULO(Node, Result, Overflow, DAG)) { 3575 Results.push_back(Result); 3576 Results.push_back(Overflow); 3577 } 3578 break; 3579 } 3580 case ISD::BUILD_PAIR: { 3581 EVT PairTy = Node->getValueType(0); 3582 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3583 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3584 Tmp2 = DAG.getNode( 3585 ISD::SHL, dl, PairTy, Tmp2, 3586 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3587 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3588 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3589 break; 3590 } 3591 case ISD::SELECT: 3592 Tmp1 = Node->getOperand(0); 3593 Tmp2 = Node->getOperand(1); 3594 Tmp3 = Node->getOperand(2); 3595 if (Tmp1.getOpcode() == ISD::SETCC) { 3596 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3597 Tmp2, Tmp3, 3598 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3599 } else { 3600 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3601 DAG.getConstant(0, dl, Tmp1.getValueType()), 3602 Tmp2, Tmp3, ISD::SETNE); 3603 } 3604 Tmp1->setFlags(Node->getFlags()); 3605 Results.push_back(Tmp1); 3606 break; 3607 case ISD::BR_JT: { 3608 SDValue Chain = Node->getOperand(0); 3609 SDValue Table = Node->getOperand(1); 3610 SDValue Index = Node->getOperand(2); 3611 3612 const DataLayout &TD = DAG.getDataLayout(); 3613 EVT PTy = TLI.getPointerTy(TD); 3614 3615 unsigned EntrySize = 3616 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3617 3618 // For power-of-two jumptable entry sizes convert multiplication to a shift. 3619 // This transformation needs to be done here since otherwise the MIPS 3620 // backend will end up emitting a three instruction multiply sequence 3621 // instead of a single shift and MSP430 will call a runtime function. 3622 if (llvm::isPowerOf2_32(EntrySize)) 3623 Index = DAG.getNode( 3624 ISD::SHL, dl, Index.getValueType(), Index, 3625 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); 3626 else 3627 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3628 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3629 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3630 Index, Table); 3631 3632 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3633 SDValue LD = DAG.getExtLoad( 3634 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3635 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3636 Addr = LD; 3637 if (TLI.isJumpTableRelative()) { 3638 // For PIC, the sequence is: 3639 // BRIND(load(Jumptable + index) + RelocBase) 3640 // RelocBase can be JumpTable, GOT or some sort of global base. 3641 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3642 TLI.getPICJumpTableRelocBase(Table, DAG)); 3643 } 3644 3645 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); 3646 Results.push_back(Tmp1); 3647 break; 3648 } 3649 case ISD::BRCOND: 3650 // Expand brcond's setcc into its constituent parts and create a BR_CC 3651 // Node. 3652 Tmp1 = Node->getOperand(0); 3653 Tmp2 = Node->getOperand(1); 3654 if (Tmp2.getOpcode() == ISD::SETCC) { 3655 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3656 Tmp1, Tmp2.getOperand(2), 3657 Tmp2.getOperand(0), Tmp2.getOperand(1), 3658 Node->getOperand(2)); 3659 } else { 3660 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 3661 if (Tmp2.isUndef() || 3662 (Tmp2.getOpcode() == ISD::AND && 3663 isa<ConstantSDNode>(Tmp2.getOperand(1)) && 3664 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) 3665 Tmp3 = Tmp2; 3666 else 3667 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3668 DAG.getConstant(1, dl, Tmp2.getValueType())); 3669 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3670 DAG.getCondCode(ISD::SETNE), Tmp3, 3671 DAG.getConstant(0, dl, Tmp3.getValueType()), 3672 Node->getOperand(2)); 3673 } 3674 Results.push_back(Tmp1); 3675 break; 3676 case ISD::SETCC: 3677 case ISD::STRICT_FSETCC: 3678 case ISD::STRICT_FSETCCS: { 3679 bool IsStrict = Node->getOpcode() != ISD::SETCC; 3680 bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS; 3681 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 3682 unsigned Offset = IsStrict ? 1 : 0; 3683 Tmp1 = Node->getOperand(0 + Offset); 3684 Tmp2 = Node->getOperand(1 + Offset); 3685 Tmp3 = Node->getOperand(2 + Offset); 3686 bool Legalized = 3687 LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, 3688 NeedInvert, dl, Chain, IsSignaling); 3689 3690 if (Legalized) { 3691 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3692 // condition code, create a new SETCC node. 3693 if (Tmp3.getNode()) 3694 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3695 Tmp1, Tmp2, Tmp3, Node->getFlags()); 3696 3697 // If we expanded the SETCC by inverting the condition code, then wrap 3698 // the existing SETCC in a NOT to restore the intended condition. 3699 if (NeedInvert) 3700 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3701 3702 Results.push_back(Tmp1); 3703 if (IsStrict) 3704 Results.push_back(Chain); 3705 3706 break; 3707 } 3708 3709 // FIXME: It seems Legalized is false iff CCCode is Legal. I don't 3710 // understand if this code is useful for strict nodes. 3711 assert(!IsStrict && "Don't know how to expand for strict nodes."); 3712 3713 // Otherwise, SETCC for the given comparison type must be completely 3714 // illegal; expand it into a SELECT_CC. 3715 EVT VT = Node->getValueType(0); 3716 int TrueValue; 3717 switch (TLI.getBooleanContents(Tmp1.getValueType())) { 3718 case TargetLowering::ZeroOrOneBooleanContent: 3719 case TargetLowering::UndefinedBooleanContent: 3720 TrueValue = 1; 3721 break; 3722 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3723 TrueValue = -1; 3724 break; 3725 } 3726 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3727 DAG.getConstant(TrueValue, dl, VT), 3728 DAG.getConstant(0, dl, VT), 3729 Tmp3); 3730 Tmp1->setFlags(Node->getFlags()); 3731 Results.push_back(Tmp1); 3732 break; 3733 } 3734 case ISD::SELECT_CC: { 3735 // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS 3736 Tmp1 = Node->getOperand(0); // LHS 3737 Tmp2 = Node->getOperand(1); // RHS 3738 Tmp3 = Node->getOperand(2); // True 3739 Tmp4 = Node->getOperand(3); // False 3740 EVT VT = Node->getValueType(0); 3741 SDValue Chain; 3742 SDValue CC = Node->getOperand(4); 3743 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3744 3745 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 3746 // If the condition code is legal, then we need to expand this 3747 // node using SETCC and SELECT. 3748 EVT CmpVT = Tmp1.getValueType(); 3749 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3750 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3751 "expanded."); 3752 EVT CCVT = getSetCCResultType(CmpVT); 3753 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags()); 3754 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3755 break; 3756 } 3757 3758 // SELECT_CC is legal, so the condition code must not be. 3759 bool Legalized = false; 3760 // Try to legalize by inverting the condition. This is for targets that 3761 // might support an ordered version of a condition, but not the unordered 3762 // version (or vice versa). 3763 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType()); 3764 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 3765 // Use the new condition code and swap true and false 3766 Legalized = true; 3767 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3768 Tmp1->setFlags(Node->getFlags()); 3769 } else { 3770 // If The inverse is not legal, then try to swap the arguments using 3771 // the inverse condition code. 3772 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3773 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 3774 // The swapped inverse condition is legal, so swap true and false, 3775 // lhs and rhs. 3776 Legalized = true; 3777 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3778 Tmp1->setFlags(Node->getFlags()); 3779 } 3780 } 3781 3782 if (!Legalized) { 3783 Legalized = LegalizeSetCCCondCode(getSetCCResultType(Tmp1.getValueType()), 3784 Tmp1, Tmp2, CC, NeedInvert, dl, Chain); 3785 3786 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3787 3788 // If we expanded the SETCC by inverting the condition code, then swap 3789 // the True/False operands to match. 3790 if (NeedInvert) 3791 std::swap(Tmp3, Tmp4); 3792 3793 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3794 // condition code, create a new SELECT_CC node. 3795 if (CC.getNode()) { 3796 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3797 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3798 } else { 3799 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3800 CC = DAG.getCondCode(ISD::SETNE); 3801 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3802 Tmp2, Tmp3, Tmp4, CC); 3803 } 3804 Tmp1->setFlags(Node->getFlags()); 3805 } 3806 Results.push_back(Tmp1); 3807 break; 3808 } 3809 case ISD::BR_CC: { 3810 // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS 3811 SDValue Chain; 3812 Tmp1 = Node->getOperand(0); // Chain 3813 Tmp2 = Node->getOperand(2); // LHS 3814 Tmp3 = Node->getOperand(3); // RHS 3815 Tmp4 = Node->getOperand(1); // CC 3816 3817 bool Legalized = 3818 LegalizeSetCCCondCode(getSetCCResultType(Tmp2.getValueType()), Tmp2, 3819 Tmp3, Tmp4, NeedInvert, dl, Chain); 3820 (void)Legalized; 3821 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3822 3823 assert(!NeedInvert && "Don't know how to invert BR_CC!"); 3824 3825 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3826 // node. 3827 if (Tmp4.getNode()) { 3828 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3829 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3830 } else { 3831 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3832 Tmp4 = DAG.getCondCode(ISD::SETNE); 3833 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3834 Tmp2, Tmp3, Node->getOperand(4)); 3835 } 3836 Results.push_back(Tmp1); 3837 break; 3838 } 3839 case ISD::BUILD_VECTOR: 3840 Results.push_back(ExpandBUILD_VECTOR(Node)); 3841 break; 3842 case ISD::SPLAT_VECTOR: 3843 Results.push_back(ExpandSPLAT_VECTOR(Node)); 3844 break; 3845 case ISD::SRA: 3846 case ISD::SRL: 3847 case ISD::SHL: { 3848 // Scalarize vector SRA/SRL/SHL. 3849 EVT VT = Node->getValueType(0); 3850 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3851 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3852 unsigned NumElem = VT.getVectorNumElements(); 3853 3854 SmallVector<SDValue, 8> Scalars; 3855 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3856 SDValue Ex = 3857 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3858 Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl)); 3859 SDValue Sh = 3860 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3861 Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl)); 3862 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3863 VT.getScalarType(), Ex, Sh)); 3864 } 3865 3866 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 3867 Results.push_back(Result); 3868 break; 3869 } 3870 case ISD::VECREDUCE_FADD: 3871 case ISD::VECREDUCE_FMUL: 3872 case ISD::VECREDUCE_ADD: 3873 case ISD::VECREDUCE_MUL: 3874 case ISD::VECREDUCE_AND: 3875 case ISD::VECREDUCE_OR: 3876 case ISD::VECREDUCE_XOR: 3877 case ISD::VECREDUCE_SMAX: 3878 case ISD::VECREDUCE_SMIN: 3879 case ISD::VECREDUCE_UMAX: 3880 case ISD::VECREDUCE_UMIN: 3881 case ISD::VECREDUCE_FMAX: 3882 case ISD::VECREDUCE_FMIN: 3883 Results.push_back(TLI.expandVecReduce(Node, DAG)); 3884 break; 3885 case ISD::GLOBAL_OFFSET_TABLE: 3886 case ISD::GlobalAddress: 3887 case ISD::GlobalTLSAddress: 3888 case ISD::ExternalSymbol: 3889 case ISD::ConstantPool: 3890 case ISD::JumpTable: 3891 case ISD::INTRINSIC_W_CHAIN: 3892 case ISD::INTRINSIC_WO_CHAIN: 3893 case ISD::INTRINSIC_VOID: 3894 // FIXME: Custom lowering for these operations shouldn't return null! 3895 // Return true so that we don't call ConvertNodeToLibcall which also won't 3896 // do anything. 3897 return true; 3898 } 3899 3900 if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) { 3901 // FIXME: We were asked to expand a strict floating-point operation, 3902 // but there is currently no expansion implemented that would preserve 3903 // the "strict" properties. For now, we just fall back to the non-strict 3904 // version if that is legal on the target. The actual mutation of the 3905 // operation will happen in SelectionDAGISel::DoInstructionSelection. 3906 switch (Node->getOpcode()) { 3907 default: 3908 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3909 Node->getValueType(0)) 3910 == TargetLowering::Legal) 3911 return true; 3912 break; 3913 case ISD::STRICT_LRINT: 3914 case ISD::STRICT_LLRINT: 3915 case ISD::STRICT_LROUND: 3916 case ISD::STRICT_LLROUND: 3917 // These are registered by the operand type instead of the value 3918 // type. Reflect that here. 3919 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3920 Node->getOperand(1).getValueType()) 3921 == TargetLowering::Legal) 3922 return true; 3923 break; 3924 } 3925 } 3926 3927 // Replace the original node with the legalized result. 3928 if (Results.empty()) { 3929 LLVM_DEBUG(dbgs() << "Cannot expand node\n"); 3930 return false; 3931 } 3932 3933 LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); 3934 ReplaceNode(Node, Results.data()); 3935 return true; 3936 } 3937 3938 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 3939 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); 3940 SmallVector<SDValue, 8> Results; 3941 SDLoc dl(Node); 3942 // FIXME: Check flags on the node to see if we can use a finite call. 3943 bool CanUseFiniteLibCall = TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath; 3944 unsigned Opc = Node->getOpcode(); 3945 switch (Opc) { 3946 case ISD::ATOMIC_FENCE: { 3947 // If the target didn't lower this, lower it to '__sync_synchronize()' call 3948 // FIXME: handle "fence singlethread" more efficiently. 3949 TargetLowering::ArgListTy Args; 3950 3951 TargetLowering::CallLoweringInfo CLI(DAG); 3952 CLI.setDebugLoc(dl) 3953 .setChain(Node->getOperand(0)) 3954 .setLibCallee( 3955 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3956 DAG.getExternalSymbol("__sync_synchronize", 3957 TLI.getPointerTy(DAG.getDataLayout())), 3958 std::move(Args)); 3959 3960 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3961 3962 Results.push_back(CallResult.second); 3963 break; 3964 } 3965 // By default, atomic intrinsics are marked Legal and lowered. Targets 3966 // which don't support them directly, however, may want libcalls, in which 3967 // case they mark them Expand, and we get here. 3968 case ISD::ATOMIC_SWAP: 3969 case ISD::ATOMIC_LOAD_ADD: 3970 case ISD::ATOMIC_LOAD_SUB: 3971 case ISD::ATOMIC_LOAD_AND: 3972 case ISD::ATOMIC_LOAD_CLR: 3973 case ISD::ATOMIC_LOAD_OR: 3974 case ISD::ATOMIC_LOAD_XOR: 3975 case ISD::ATOMIC_LOAD_NAND: 3976 case ISD::ATOMIC_LOAD_MIN: 3977 case ISD::ATOMIC_LOAD_MAX: 3978 case ISD::ATOMIC_LOAD_UMIN: 3979 case ISD::ATOMIC_LOAD_UMAX: 3980 case ISD::ATOMIC_CMP_SWAP: { 3981 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 3982 RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT); 3983 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!"); 3984 3985 EVT RetVT = Node->getValueType(0); 3986 SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end()); 3987 TargetLowering::MakeLibCallOptions CallOptions; 3988 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 3989 Ops, CallOptions, 3990 SDLoc(Node), 3991 Node->getOperand(0)); 3992 Results.push_back(Tmp.first); 3993 Results.push_back(Tmp.second); 3994 break; 3995 } 3996 case ISD::TRAP: { 3997 // If this operation is not supported, lower it to 'abort()' call 3998 TargetLowering::ArgListTy Args; 3999 TargetLowering::CallLoweringInfo CLI(DAG); 4000 CLI.setDebugLoc(dl) 4001 .setChain(Node->getOperand(0)) 4002 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 4003 DAG.getExternalSymbol( 4004 "abort", TLI.getPointerTy(DAG.getDataLayout())), 4005 std::move(Args)); 4006 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 4007 4008 Results.push_back(CallResult.second); 4009 break; 4010 } 4011 case ISD::FMINNUM: 4012 case ISD::STRICT_FMINNUM: 4013 ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 4014 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 4015 RTLIB::FMIN_PPCF128, Results); 4016 break; 4017 case ISD::FMAXNUM: 4018 case ISD::STRICT_FMAXNUM: 4019 ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 4020 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 4021 RTLIB::FMAX_PPCF128, Results); 4022 break; 4023 case ISD::FSQRT: 4024 case ISD::STRICT_FSQRT: 4025 ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 4026 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 4027 RTLIB::SQRT_PPCF128, Results); 4028 break; 4029 case ISD::FCBRT: 4030 ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, 4031 RTLIB::CBRT_F80, RTLIB::CBRT_F128, 4032 RTLIB::CBRT_PPCF128, Results); 4033 break; 4034 case ISD::FSIN: 4035 case ISD::STRICT_FSIN: 4036 ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 4037 RTLIB::SIN_F80, RTLIB::SIN_F128, 4038 RTLIB::SIN_PPCF128, Results); 4039 break; 4040 case ISD::FCOS: 4041 case ISD::STRICT_FCOS: 4042 ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 4043 RTLIB::COS_F80, RTLIB::COS_F128, 4044 RTLIB::COS_PPCF128, Results); 4045 break; 4046 case ISD::FSINCOS: 4047 // Expand into sincos libcall. 4048 ExpandSinCosLibCall(Node, Results); 4049 break; 4050 case ISD::FLOG: 4051 case ISD::STRICT_FLOG: 4052 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log_finite)) 4053 ExpandFPLibCall(Node, RTLIB::LOG_FINITE_F32, 4054 RTLIB::LOG_FINITE_F64, 4055 RTLIB::LOG_FINITE_F80, 4056 RTLIB::LOG_FINITE_F128, 4057 RTLIB::LOG_FINITE_PPCF128, Results); 4058 else 4059 ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, 4060 RTLIB::LOG_F80, RTLIB::LOG_F128, 4061 RTLIB::LOG_PPCF128, Results); 4062 break; 4063 case ISD::FLOG2: 4064 case ISD::STRICT_FLOG2: 4065 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log2_finite)) 4066 ExpandFPLibCall(Node, RTLIB::LOG2_FINITE_F32, 4067 RTLIB::LOG2_FINITE_F64, 4068 RTLIB::LOG2_FINITE_F80, 4069 RTLIB::LOG2_FINITE_F128, 4070 RTLIB::LOG2_FINITE_PPCF128, Results); 4071 else 4072 ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 4073 RTLIB::LOG2_F80, RTLIB::LOG2_F128, 4074 RTLIB::LOG2_PPCF128, Results); 4075 break; 4076 case ISD::FLOG10: 4077 case ISD::STRICT_FLOG10: 4078 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log10_finite)) 4079 ExpandFPLibCall(Node, RTLIB::LOG10_FINITE_F32, 4080 RTLIB::LOG10_FINITE_F64, 4081 RTLIB::LOG10_FINITE_F80, 4082 RTLIB::LOG10_FINITE_F128, 4083 RTLIB::LOG10_FINITE_PPCF128, Results); 4084 else 4085 ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 4086 RTLIB::LOG10_F80, RTLIB::LOG10_F128, 4087 RTLIB::LOG10_PPCF128, Results); 4088 break; 4089 case ISD::FEXP: 4090 case ISD::STRICT_FEXP: 4091 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp_finite)) 4092 ExpandFPLibCall(Node, RTLIB::EXP_FINITE_F32, 4093 RTLIB::EXP_FINITE_F64, 4094 RTLIB::EXP_FINITE_F80, 4095 RTLIB::EXP_FINITE_F128, 4096 RTLIB::EXP_FINITE_PPCF128, Results); 4097 else 4098 ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, 4099 RTLIB::EXP_F80, RTLIB::EXP_F128, 4100 RTLIB::EXP_PPCF128, Results); 4101 break; 4102 case ISD::FEXP2: 4103 case ISD::STRICT_FEXP2: 4104 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp2_finite)) 4105 ExpandFPLibCall(Node, RTLIB::EXP2_FINITE_F32, 4106 RTLIB::EXP2_FINITE_F64, 4107 RTLIB::EXP2_FINITE_F80, 4108 RTLIB::EXP2_FINITE_F128, 4109 RTLIB::EXP2_FINITE_PPCF128, Results); 4110 else 4111 ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 4112 RTLIB::EXP2_F80, RTLIB::EXP2_F128, 4113 RTLIB::EXP2_PPCF128, Results); 4114 break; 4115 case ISD::FTRUNC: 4116 case ISD::STRICT_FTRUNC: 4117 ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 4118 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 4119 RTLIB::TRUNC_PPCF128, Results); 4120 break; 4121 case ISD::FFLOOR: 4122 case ISD::STRICT_FFLOOR: 4123 ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 4124 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 4125 RTLIB::FLOOR_PPCF128, Results); 4126 break; 4127 case ISD::FCEIL: 4128 case ISD::STRICT_FCEIL: 4129 ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 4130 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 4131 RTLIB::CEIL_PPCF128, Results); 4132 break; 4133 case ISD::FRINT: 4134 case ISD::STRICT_FRINT: 4135 ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 4136 RTLIB::RINT_F80, RTLIB::RINT_F128, 4137 RTLIB::RINT_PPCF128, Results); 4138 break; 4139 case ISD::FNEARBYINT: 4140 case ISD::STRICT_FNEARBYINT: 4141 ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 4142 RTLIB::NEARBYINT_F64, 4143 RTLIB::NEARBYINT_F80, 4144 RTLIB::NEARBYINT_F128, 4145 RTLIB::NEARBYINT_PPCF128, Results); 4146 break; 4147 case ISD::FROUND: 4148 case ISD::STRICT_FROUND: 4149 ExpandFPLibCall(Node, RTLIB::ROUND_F32, 4150 RTLIB::ROUND_F64, 4151 RTLIB::ROUND_F80, 4152 RTLIB::ROUND_F128, 4153 RTLIB::ROUND_PPCF128, Results); 4154 break; 4155 case ISD::FPOWI: 4156 case ISD::STRICT_FPOWI: { 4157 RTLIB::Libcall LC; 4158 switch (Node->getSimpleValueType(0).SimpleTy) { 4159 default: llvm_unreachable("Unexpected request for libcall!"); 4160 case MVT::f32: LC = RTLIB::POWI_F32; break; 4161 case MVT::f64: LC = RTLIB::POWI_F64; break; 4162 case MVT::f80: LC = RTLIB::POWI_F80; break; 4163 case MVT::f128: LC = RTLIB::POWI_F128; break; 4164 case MVT::ppcf128: LC = RTLIB::POWI_PPCF128; break; 4165 } 4166 if (!TLI.getLibcallName(LC)) { 4167 // Some targets don't have a powi libcall; use pow instead. 4168 SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), 4169 Node->getValueType(0), 4170 Node->getOperand(1)); 4171 Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node), 4172 Node->getValueType(0), Node->getOperand(0), 4173 Exponent)); 4174 break; 4175 } 4176 ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 4177 RTLIB::POWI_F80, RTLIB::POWI_F128, 4178 RTLIB::POWI_PPCF128, Results); 4179 break; 4180 } 4181 case ISD::FPOW: 4182 case ISD::STRICT_FPOW: 4183 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_pow_finite)) 4184 ExpandFPLibCall(Node, RTLIB::POW_FINITE_F32, 4185 RTLIB::POW_FINITE_F64, 4186 RTLIB::POW_FINITE_F80, 4187 RTLIB::POW_FINITE_F128, 4188 RTLIB::POW_FINITE_PPCF128, Results); 4189 else 4190 ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, 4191 RTLIB::POW_F80, RTLIB::POW_F128, 4192 RTLIB::POW_PPCF128, Results); 4193 break; 4194 case ISD::LROUND: 4195 case ISD::STRICT_LROUND: 4196 ExpandArgFPLibCall(Node, RTLIB::LROUND_F32, 4197 RTLIB::LROUND_F64, RTLIB::LROUND_F80, 4198 RTLIB::LROUND_F128, 4199 RTLIB::LROUND_PPCF128, Results); 4200 break; 4201 case ISD::LLROUND: 4202 case ISD::STRICT_LLROUND: 4203 ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32, 4204 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, 4205 RTLIB::LLROUND_F128, 4206 RTLIB::LLROUND_PPCF128, Results); 4207 break; 4208 case ISD::LRINT: 4209 case ISD::STRICT_LRINT: 4210 ExpandArgFPLibCall(Node, RTLIB::LRINT_F32, 4211 RTLIB::LRINT_F64, RTLIB::LRINT_F80, 4212 RTLIB::LRINT_F128, 4213 RTLIB::LRINT_PPCF128, Results); 4214 break; 4215 case ISD::LLRINT: 4216 case ISD::STRICT_LLRINT: 4217 ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32, 4218 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80, 4219 RTLIB::LLRINT_F128, 4220 RTLIB::LLRINT_PPCF128, Results); 4221 break; 4222 case ISD::FDIV: 4223 case ISD::STRICT_FDIV: 4224 ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 4225 RTLIB::DIV_F80, RTLIB::DIV_F128, 4226 RTLIB::DIV_PPCF128, Results); 4227 break; 4228 case ISD::FREM: 4229 case ISD::STRICT_FREM: 4230 ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 4231 RTLIB::REM_F80, RTLIB::REM_F128, 4232 RTLIB::REM_PPCF128, Results); 4233 break; 4234 case ISD::FMA: 4235 case ISD::STRICT_FMA: 4236 ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 4237 RTLIB::FMA_F80, RTLIB::FMA_F128, 4238 RTLIB::FMA_PPCF128, Results); 4239 break; 4240 case ISD::FADD: 4241 case ISD::STRICT_FADD: 4242 ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 4243 RTLIB::ADD_F80, RTLIB::ADD_F128, 4244 RTLIB::ADD_PPCF128, Results); 4245 break; 4246 case ISD::FMUL: 4247 case ISD::STRICT_FMUL: 4248 ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 4249 RTLIB::MUL_F80, RTLIB::MUL_F128, 4250 RTLIB::MUL_PPCF128, Results); 4251 break; 4252 case ISD::FP16_TO_FP: 4253 if (Node->getValueType(0) == MVT::f32) { 4254 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 4255 } 4256 break; 4257 case ISD::STRICT_FP16_TO_FP: { 4258 if (Node->getValueType(0) == MVT::f32) { 4259 TargetLowering::MakeLibCallOptions CallOptions; 4260 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall( 4261 DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions, 4262 SDLoc(Node), Node->getOperand(0)); 4263 Results.push_back(Tmp.first); 4264 Results.push_back(Tmp.second); 4265 } 4266 break; 4267 } 4268 case ISD::FP_TO_FP16: { 4269 RTLIB::Libcall LC = 4270 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 4271 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 4272 Results.push_back(ExpandLibCall(LC, Node, false)); 4273 break; 4274 } 4275 case ISD::STRICT_FP_TO_FP16: { 4276 RTLIB::Libcall LC = 4277 RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16); 4278 assert(LC != RTLIB::UNKNOWN_LIBCALL && 4279 "Unable to expand strict_fp_to_fp16"); 4280 TargetLowering::MakeLibCallOptions CallOptions; 4281 std::pair<SDValue, SDValue> Tmp = 4282 TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1), 4283 CallOptions, SDLoc(Node), Node->getOperand(0)); 4284 Results.push_back(Tmp.first); 4285 Results.push_back(Tmp.second); 4286 break; 4287 } 4288 case ISD::FSUB: 4289 case ISD::STRICT_FSUB: 4290 ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4291 RTLIB::SUB_F80, RTLIB::SUB_F128, 4292 RTLIB::SUB_PPCF128, Results); 4293 break; 4294 case ISD::SREM: 4295 Results.push_back(ExpandIntLibCall(Node, true, 4296 RTLIB::SREM_I8, 4297 RTLIB::SREM_I16, RTLIB::SREM_I32, 4298 RTLIB::SREM_I64, RTLIB::SREM_I128)); 4299 break; 4300 case ISD::UREM: 4301 Results.push_back(ExpandIntLibCall(Node, false, 4302 RTLIB::UREM_I8, 4303 RTLIB::UREM_I16, RTLIB::UREM_I32, 4304 RTLIB::UREM_I64, RTLIB::UREM_I128)); 4305 break; 4306 case ISD::SDIV: 4307 Results.push_back(ExpandIntLibCall(Node, true, 4308 RTLIB::SDIV_I8, 4309 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4310 RTLIB::SDIV_I64, RTLIB::SDIV_I128)); 4311 break; 4312 case ISD::UDIV: 4313 Results.push_back(ExpandIntLibCall(Node, false, 4314 RTLIB::UDIV_I8, 4315 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4316 RTLIB::UDIV_I64, RTLIB::UDIV_I128)); 4317 break; 4318 case ISD::SDIVREM: 4319 case ISD::UDIVREM: 4320 // Expand into divrem libcall 4321 ExpandDivRemLibCall(Node, Results); 4322 break; 4323 case ISD::MUL: 4324 Results.push_back(ExpandIntLibCall(Node, false, 4325 RTLIB::MUL_I8, 4326 RTLIB::MUL_I16, RTLIB::MUL_I32, 4327 RTLIB::MUL_I64, RTLIB::MUL_I128)); 4328 break; 4329 case ISD::CTLZ_ZERO_UNDEF: 4330 switch (Node->getSimpleValueType(0).SimpleTy) { 4331 default: 4332 llvm_unreachable("LibCall explicitly requested, but not available"); 4333 case MVT::i32: 4334 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false)); 4335 break; 4336 case MVT::i64: 4337 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false)); 4338 break; 4339 case MVT::i128: 4340 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false)); 4341 break; 4342 } 4343 break; 4344 } 4345 4346 // Replace the original node with the legalized result. 4347 if (!Results.empty()) { 4348 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); 4349 ReplaceNode(Node, Results.data()); 4350 } else 4351 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); 4352 } 4353 4354 // Determine the vector type to use in place of an original scalar element when 4355 // promoting equally sized vectors. 4356 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4357 MVT EltVT, MVT NewEltVT) { 4358 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4359 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4360 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4361 return MidVT; 4362 } 4363 4364 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4365 LLVM_DEBUG(dbgs() << "Trying to promote node\n"); 4366 SmallVector<SDValue, 8> Results; 4367 MVT OVT = Node->getSimpleValueType(0); 4368 if (Node->getOpcode() == ISD::UINT_TO_FP || 4369 Node->getOpcode() == ISD::SINT_TO_FP || 4370 Node->getOpcode() == ISD::SETCC || 4371 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4372 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4373 OVT = Node->getOperand(0).getSimpleValueType(); 4374 } 4375 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP || 4376 Node->getOpcode() == ISD::STRICT_SINT_TO_FP) 4377 OVT = Node->getOperand(1).getSimpleValueType(); 4378 if (Node->getOpcode() == ISD::BR_CC) 4379 OVT = Node->getOperand(2).getSimpleValueType(); 4380 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4381 SDLoc dl(Node); 4382 SDValue Tmp1, Tmp2, Tmp3; 4383 switch (Node->getOpcode()) { 4384 case ISD::CTTZ: 4385 case ISD::CTTZ_ZERO_UNDEF: 4386 case ISD::CTLZ: 4387 case ISD::CTLZ_ZERO_UNDEF: 4388 case ISD::CTPOP: 4389 // Zero extend the argument unless its cttz, then use any_extend. 4390 if (Node->getOpcode() == ISD::CTTZ || 4391 Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 4392 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 4393 else 4394 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4395 4396 if (Node->getOpcode() == ISD::CTTZ) { 4397 // The count is the same in the promoted type except if the original 4398 // value was zero. This can be handled by setting the bit just off 4399 // the top of the original type. 4400 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4401 OVT.getSizeInBits()); 4402 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4403 DAG.getConstant(TopBit, dl, NVT)); 4404 } 4405 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4406 // already the correct result. 4407 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4408 if (Node->getOpcode() == ISD::CTLZ || 4409 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4410 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4411 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4412 DAG.getConstant(NVT.getSizeInBits() - 4413 OVT.getSizeInBits(), dl, NVT)); 4414 } 4415 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4416 break; 4417 case ISD::BITREVERSE: 4418 case ISD::BSWAP: { 4419 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4420 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4421 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4422 Tmp1 = DAG.getNode( 4423 ISD::SRL, dl, NVT, Tmp1, 4424 DAG.getConstant(DiffBits, dl, 4425 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4426 4427 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4428 break; 4429 } 4430 case ISD::FP_TO_UINT: 4431 case ISD::STRICT_FP_TO_UINT: 4432 case ISD::FP_TO_SINT: 4433 case ISD::STRICT_FP_TO_SINT: 4434 PromoteLegalFP_TO_INT(Node, dl, Results); 4435 break; 4436 case ISD::UINT_TO_FP: 4437 case ISD::STRICT_UINT_TO_FP: 4438 case ISD::SINT_TO_FP: 4439 case ISD::STRICT_SINT_TO_FP: 4440 PromoteLegalINT_TO_FP(Node, dl, Results); 4441 break; 4442 case ISD::VAARG: { 4443 SDValue Chain = Node->getOperand(0); // Get the chain. 4444 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4445 4446 unsigned TruncOp; 4447 if (OVT.isVector()) { 4448 TruncOp = ISD::BITCAST; 4449 } else { 4450 assert(OVT.isInteger() 4451 && "VAARG promotion is supported only for vectors or integer types"); 4452 TruncOp = ISD::TRUNCATE; 4453 } 4454 4455 // Perform the larger operation, then convert back 4456 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4457 Node->getConstantOperandVal(3)); 4458 Chain = Tmp1.getValue(1); 4459 4460 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4461 4462 // Modified the chain result - switch anything that used the old chain to 4463 // use the new one. 4464 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4465 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4466 if (UpdatedNodes) { 4467 UpdatedNodes->insert(Tmp2.getNode()); 4468 UpdatedNodes->insert(Chain.getNode()); 4469 } 4470 ReplacedNode(Node); 4471 break; 4472 } 4473 case ISD::MUL: 4474 case ISD::SDIV: 4475 case ISD::SREM: 4476 case ISD::UDIV: 4477 case ISD::UREM: 4478 case ISD::AND: 4479 case ISD::OR: 4480 case ISD::XOR: { 4481 unsigned ExtOp, TruncOp; 4482 if (OVT.isVector()) { 4483 ExtOp = ISD::BITCAST; 4484 TruncOp = ISD::BITCAST; 4485 } else { 4486 assert(OVT.isInteger() && "Cannot promote logic operation"); 4487 4488 switch (Node->getOpcode()) { 4489 default: 4490 ExtOp = ISD::ANY_EXTEND; 4491 break; 4492 case ISD::SDIV: 4493 case ISD::SREM: 4494 ExtOp = ISD::SIGN_EXTEND; 4495 break; 4496 case ISD::UDIV: 4497 case ISD::UREM: 4498 ExtOp = ISD::ZERO_EXTEND; 4499 break; 4500 } 4501 TruncOp = ISD::TRUNCATE; 4502 } 4503 // Promote each of the values to the new type. 4504 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4505 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4506 // Perform the larger operation, then convert back 4507 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4508 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4509 break; 4510 } 4511 case ISD::UMUL_LOHI: 4512 case ISD::SMUL_LOHI: { 4513 // Promote to a multiply in a wider integer type. 4514 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 4515 : ISD::SIGN_EXTEND; 4516 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4517 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4518 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 4519 4520 auto &DL = DAG.getDataLayout(); 4521 unsigned OriginalSize = OVT.getScalarSizeInBits(); 4522 Tmp2 = DAG.getNode( 4523 ISD::SRL, dl, NVT, Tmp1, 4524 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 4525 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4526 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 4527 break; 4528 } 4529 case ISD::SELECT: { 4530 unsigned ExtOp, TruncOp; 4531 if (Node->getValueType(0).isVector() || 4532 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4533 ExtOp = ISD::BITCAST; 4534 TruncOp = ISD::BITCAST; 4535 } else if (Node->getValueType(0).isInteger()) { 4536 ExtOp = ISD::ANY_EXTEND; 4537 TruncOp = ISD::TRUNCATE; 4538 } else { 4539 ExtOp = ISD::FP_EXTEND; 4540 TruncOp = ISD::FP_ROUND; 4541 } 4542 Tmp1 = Node->getOperand(0); 4543 // Promote each of the values to the new type. 4544 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4545 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4546 // Perform the larger operation, then round down. 4547 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4548 Tmp1->setFlags(Node->getFlags()); 4549 if (TruncOp != ISD::FP_ROUND) 4550 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4551 else 4552 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4553 DAG.getIntPtrConstant(0, dl)); 4554 Results.push_back(Tmp1); 4555 break; 4556 } 4557 case ISD::VECTOR_SHUFFLE: { 4558 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4559 4560 // Cast the two input vectors. 4561 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4562 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4563 4564 // Convert the shuffle mask to the right # elements. 4565 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4566 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4567 Results.push_back(Tmp1); 4568 break; 4569 } 4570 case ISD::SETCC: { 4571 unsigned ExtOp = ISD::FP_EXTEND; 4572 if (NVT.isInteger()) { 4573 ISD::CondCode CCCode = 4574 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4575 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4576 } 4577 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4578 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4579 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, 4580 Tmp2, Node->getOperand(2), Node->getFlags())); 4581 break; 4582 } 4583 case ISD::BR_CC: { 4584 unsigned ExtOp = ISD::FP_EXTEND; 4585 if (NVT.isInteger()) { 4586 ISD::CondCode CCCode = 4587 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4588 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4589 } 4590 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4591 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4592 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4593 Node->getOperand(0), Node->getOperand(1), 4594 Tmp1, Tmp2, Node->getOperand(4))); 4595 break; 4596 } 4597 case ISD::FADD: 4598 case ISD::FSUB: 4599 case ISD::FMUL: 4600 case ISD::FDIV: 4601 case ISD::FREM: 4602 case ISD::FMINNUM: 4603 case ISD::FMAXNUM: 4604 case ISD::FPOW: 4605 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4606 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4607 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4608 Node->getFlags()); 4609 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4610 Tmp3, DAG.getIntPtrConstant(0, dl))); 4611 break; 4612 case ISD::STRICT_FREM: 4613 case ISD::STRICT_FPOW: 4614 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4615 {Node->getOperand(0), Node->getOperand(1)}); 4616 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4617 {Node->getOperand(0), Node->getOperand(2)}); 4618 Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 4619 Tmp2.getValue(1)); 4620 Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4621 {Tmp3, Tmp1, Tmp2}); 4622 Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4623 {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)}); 4624 Results.push_back(Tmp1); 4625 Results.push_back(Tmp1.getValue(1)); 4626 break; 4627 case ISD::FMA: 4628 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4629 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4630 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4631 Results.push_back( 4632 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4633 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4634 DAG.getIntPtrConstant(0, dl))); 4635 break; 4636 case ISD::FCOPYSIGN: 4637 case ISD::FPOWI: { 4638 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4639 Tmp2 = Node->getOperand(1); 4640 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4641 4642 // fcopysign doesn't change anything but the sign bit, so 4643 // (fp_round (fcopysign (fpext a), b)) 4644 // is as precise as 4645 // (fp_round (fpext a)) 4646 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4647 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4648 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4649 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4650 break; 4651 } 4652 case ISD::FFLOOR: 4653 case ISD::FCEIL: 4654 case ISD::FRINT: 4655 case ISD::FNEARBYINT: 4656 case ISD::FROUND: 4657 case ISD::FTRUNC: 4658 case ISD::FNEG: 4659 case ISD::FSQRT: 4660 case ISD::FSIN: 4661 case ISD::FCOS: 4662 case ISD::FLOG: 4663 case ISD::FLOG2: 4664 case ISD::FLOG10: 4665 case ISD::FABS: 4666 case ISD::FEXP: 4667 case ISD::FEXP2: 4668 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4669 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4670 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4671 Tmp2, DAG.getIntPtrConstant(0, dl))); 4672 break; 4673 case ISD::STRICT_FFLOOR: 4674 case ISD::STRICT_FCEIL: 4675 case ISD::STRICT_FSIN: 4676 case ISD::STRICT_FCOS: 4677 case ISD::STRICT_FLOG: 4678 case ISD::STRICT_FLOG10: 4679 case ISD::STRICT_FEXP: 4680 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4681 {Node->getOperand(0), Node->getOperand(1)}); 4682 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4683 {Tmp1.getValue(1), Tmp1}); 4684 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4685 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 4686 Results.push_back(Tmp3); 4687 Results.push_back(Tmp3.getValue(1)); 4688 break; 4689 case ISD::BUILD_VECTOR: { 4690 MVT EltVT = OVT.getVectorElementType(); 4691 MVT NewEltVT = NVT.getVectorElementType(); 4692 4693 // Handle bitcasts to a different vector type with the same total bit size 4694 // 4695 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4696 // => 4697 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4698 4699 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4700 "Invalid promote type for build_vector"); 4701 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4702 4703 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4704 4705 SmallVector<SDValue, 8> NewOps; 4706 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4707 SDValue Op = Node->getOperand(I); 4708 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4709 } 4710 4711 SDLoc SL(Node); 4712 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4713 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4714 Results.push_back(CvtVec); 4715 break; 4716 } 4717 case ISD::EXTRACT_VECTOR_ELT: { 4718 MVT EltVT = OVT.getVectorElementType(); 4719 MVT NewEltVT = NVT.getVectorElementType(); 4720 4721 // Handle bitcasts to a different vector type with the same total bit size. 4722 // 4723 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4724 // => 4725 // v4i32:castx = bitcast x:v2i64 4726 // 4727 // i64 = bitcast 4728 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4729 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4730 // 4731 4732 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4733 "Invalid promote type for extract_vector_elt"); 4734 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4735 4736 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4737 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4738 4739 SDValue Idx = Node->getOperand(1); 4740 EVT IdxVT = Idx.getValueType(); 4741 SDLoc SL(Node); 4742 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4743 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4744 4745 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4746 4747 SmallVector<SDValue, 8> NewOps; 4748 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4749 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4750 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4751 4752 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4753 CastVec, TmpIdx); 4754 NewOps.push_back(Elt); 4755 } 4756 4757 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 4758 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4759 break; 4760 } 4761 case ISD::INSERT_VECTOR_ELT: { 4762 MVT EltVT = OVT.getVectorElementType(); 4763 MVT NewEltVT = NVT.getVectorElementType(); 4764 4765 // Handle bitcasts to a different vector type with the same total bit size 4766 // 4767 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4768 // => 4769 // v4i32:castx = bitcast x:v2i64 4770 // v2i32:casty = bitcast y:i64 4771 // 4772 // v2i64 = bitcast 4773 // (v4i32 insert_vector_elt 4774 // (v4i32 insert_vector_elt v4i32:castx, 4775 // (extract_vector_elt casty, 0), 2 * z), 4776 // (extract_vector_elt casty, 1), (2 * z + 1)) 4777 4778 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4779 "Invalid promote type for insert_vector_elt"); 4780 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4781 4782 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4783 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4784 4785 SDValue Val = Node->getOperand(1); 4786 SDValue Idx = Node->getOperand(2); 4787 EVT IdxVT = Idx.getValueType(); 4788 SDLoc SL(Node); 4789 4790 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 4791 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4792 4793 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4794 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4795 4796 SDValue NewVec = CastVec; 4797 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4798 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4799 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4800 4801 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4802 CastVal, IdxOffset); 4803 4804 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 4805 NewVec, Elt, InEltIdx); 4806 } 4807 4808 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 4809 break; 4810 } 4811 case ISD::SCALAR_TO_VECTOR: { 4812 MVT EltVT = OVT.getVectorElementType(); 4813 MVT NewEltVT = NVT.getVectorElementType(); 4814 4815 // Handle bitcasts to different vector type with the same total bit size. 4816 // 4817 // e.g. v2i64 = scalar_to_vector x:i64 4818 // => 4819 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 4820 // 4821 4822 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4823 SDValue Val = Node->getOperand(0); 4824 SDLoc SL(Node); 4825 4826 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4827 SDValue Undef = DAG.getUNDEF(MidVT); 4828 4829 SmallVector<SDValue, 8> NewElts; 4830 NewElts.push_back(CastVal); 4831 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 4832 NewElts.push_back(Undef); 4833 4834 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 4835 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4836 Results.push_back(CvtVec); 4837 break; 4838 } 4839 case ISD::ATOMIC_SWAP: { 4840 AtomicSDNode *AM = cast<AtomicSDNode>(Node); 4841 SDLoc SL(Node); 4842 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal()); 4843 assert(NVT.getSizeInBits() == OVT.getSizeInBits() && 4844 "unexpected promotion type"); 4845 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && 4846 "unexpected atomic_swap with illegal type"); 4847 4848 SDValue NewAtomic 4849 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT, 4850 DAG.getVTList(NVT, MVT::Other), 4851 { AM->getChain(), AM->getBasePtr(), CastVal }, 4852 AM->getMemOperand()); 4853 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); 4854 Results.push_back(NewAtomic.getValue(1)); 4855 break; 4856 } 4857 } 4858 4859 // Replace the original node with the legalized result. 4860 if (!Results.empty()) { 4861 LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); 4862 ReplaceNode(Node, Results.data()); 4863 } else 4864 LLVM_DEBUG(dbgs() << "Could not promote node\n"); 4865 } 4866 4867 /// This is the entry point for the file. 4868 void SelectionDAG::Legalize() { 4869 AssignTopologicalOrder(); 4870 4871 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4872 // Use a delete listener to remove nodes which were deleted during 4873 // legalization from LegalizeNodes. This is needed to handle the situation 4874 // where a new node is allocated by the object pool to the same address of a 4875 // previously deleted node. 4876 DAGNodeDeletedListener DeleteListener( 4877 *this, 4878 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 4879 4880 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 4881 4882 // Visit all the nodes. We start in topological order, so that we see 4883 // nodes with their original operands intact. Legalization can produce 4884 // new nodes which may themselves need to be legalized. Iterate until all 4885 // nodes have been legalized. 4886 while (true) { 4887 bool AnyLegalized = false; 4888 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 4889 --NI; 4890 4891 SDNode *N = &*NI; 4892 if (N->use_empty() && N != getRoot().getNode()) { 4893 ++NI; 4894 DeleteNode(N); 4895 continue; 4896 } 4897 4898 if (LegalizedNodes.insert(N).second) { 4899 AnyLegalized = true; 4900 Legalizer.LegalizeOp(N); 4901 4902 if (N->use_empty() && N != getRoot().getNode()) { 4903 ++NI; 4904 DeleteNode(N); 4905 } 4906 } 4907 } 4908 if (!AnyLegalized) 4909 break; 4910 4911 } 4912 4913 // Remove dead nodes now. 4914 RemoveDeadNodes(); 4915 } 4916 4917 bool SelectionDAG::LegalizeOp(SDNode *N, 4918 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 4919 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4920 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 4921 4922 // Directly insert the node in question, and legalize it. This will recurse 4923 // as needed through operands. 4924 LegalizedNodes.insert(N); 4925 Legalizer.LegalizeOp(N); 4926 4927 return LegalizedNodes.count(N); 4928 } 4929