1 //===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::Legalize method. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/CodeGen/SelectionDAGNodes.h" 23 #include "llvm/IR/CallingConv.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DebugInfo.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetFrameLowering.h" 35 #include "llvm/Target/TargetLowering.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Target/TargetSubtargetInfo.h" 38 using namespace llvm; 39 40 #define DEBUG_TYPE "legalizedag" 41 42 namespace { 43 44 struct FloatSignAsInt; 45 46 //===----------------------------------------------------------------------===// 47 /// This takes an arbitrary SelectionDAG as input and 48 /// hacks on it until the target machine can handle it. This involves 49 /// eliminating value sizes the machine cannot handle (promoting small sizes to 50 /// large sizes or splitting up large values into small values) as well as 51 /// eliminating operations the machine cannot handle. 52 /// 53 /// This code also does a small amount of optimization and recognition of idioms 54 /// as part of its processing. For example, if a target does not support a 55 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 56 /// will attempt merge setcc and brc instructions into brcc's. 57 /// 58 class SelectionDAGLegalize { 59 const TargetMachine &TM; 60 const TargetLowering &TLI; 61 SelectionDAG &DAG; 62 63 /// \brief The set of nodes which have already been legalized. We hold a 64 /// reference to it in order to update as necessary on node deletion. 65 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 66 67 /// \brief A set of all the nodes updated during legalization. 68 SmallSetVector<SDNode *, 16> *UpdatedNodes; 69 70 EVT getSetCCResultType(EVT VT) const { 71 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 72 } 73 74 // Libcall insertion helpers. 75 76 public: 77 SelectionDAGLegalize(SelectionDAG &DAG, 78 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 79 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 80 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 81 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 82 83 /// \brief Legalizes the given operation. 84 void LegalizeOp(SDNode *Node); 85 86 private: 87 SDValue OptimizeFloatStore(StoreSDNode *ST); 88 89 void LegalizeLoadOps(SDNode *Node); 90 void LegalizeStoreOps(SDNode *Node); 91 92 /// Some targets cannot handle a variable 93 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 94 /// is necessary to spill the vector being inserted into to memory, perform 95 /// the insert there, and then read the result back. 96 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 97 const SDLoc &dl); 98 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 99 const SDLoc &dl); 100 101 /// Return a vector shuffle operation which 102 /// performs the same shuffe in terms of order or result bytes, but on a type 103 /// whose vector element type is narrower than the original shuffle type. 104 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 105 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 106 SDValue N1, SDValue N2, 107 ArrayRef<int> Mask) const; 108 109 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 110 bool &NeedInvert, const SDLoc &dl); 111 112 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 113 SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops, 114 unsigned NumOps, bool isSigned, const SDLoc &dl); 115 116 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC, 117 SDNode *Node, bool isSigned); 118 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 119 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 120 RTLIB::Libcall Call_F128, 121 RTLIB::Libcall Call_PPCF128); 122 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 123 RTLIB::Libcall Call_I8, 124 RTLIB::Libcall Call_I16, 125 RTLIB::Libcall Call_I32, 126 RTLIB::Libcall Call_I64, 127 RTLIB::Libcall Call_I128); 128 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 129 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 130 131 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 132 const SDLoc &dl); 133 SDValue ExpandBUILD_VECTOR(SDNode *Node); 134 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 135 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 136 SmallVectorImpl<SDValue> &Results); 137 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 138 SDValue Value) const; 139 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 140 SDValue NewIntValue) const; 141 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 142 SDValue ExpandFABS(SDNode *Node) const; 143 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT, 144 const SDLoc &dl); 145 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, 146 const SDLoc &dl); 147 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, 148 const SDLoc &dl); 149 150 SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl); 151 SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl); 152 SDValue ExpandBitCount(unsigned Opc, SDValue Op, const SDLoc &dl); 153 154 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 155 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 156 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 157 158 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 159 SDValue ExpandConstant(ConstantSDNode *CP); 160 161 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 162 bool ExpandNode(SDNode *Node); 163 void ConvertNodeToLibcall(SDNode *Node); 164 void PromoteNode(SDNode *Node); 165 166 public: 167 // Node replacement helpers 168 void ReplacedNode(SDNode *N) { 169 LegalizedNodes.erase(N); 170 if (UpdatedNodes) 171 UpdatedNodes->insert(N); 172 } 173 void ReplaceNode(SDNode *Old, SDNode *New) { 174 DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 175 dbgs() << " with: "; New->dump(&DAG)); 176 177 assert(Old->getNumValues() == New->getNumValues() && 178 "Replacing one node with another that produces a different number " 179 "of values!"); 180 DAG.ReplaceAllUsesWith(Old, New); 181 if (UpdatedNodes) 182 UpdatedNodes->insert(New); 183 ReplacedNode(Old); 184 } 185 void ReplaceNode(SDValue Old, SDValue New) { 186 DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 187 dbgs() << " with: "; New->dump(&DAG)); 188 189 DAG.ReplaceAllUsesWith(Old, New); 190 if (UpdatedNodes) 191 UpdatedNodes->insert(New.getNode()); 192 ReplacedNode(Old.getNode()); 193 } 194 void ReplaceNode(SDNode *Old, const SDValue *New) { 195 DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 196 197 DAG.ReplaceAllUsesWith(Old, New); 198 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 199 DEBUG(dbgs() << (i == 0 ? " with: " 200 : " and: "); 201 New[i]->dump(&DAG)); 202 if (UpdatedNodes) 203 UpdatedNodes->insert(New[i].getNode()); 204 } 205 ReplacedNode(Old); 206 } 207 }; 208 } 209 210 /// Return a vector shuffle operation which 211 /// performs the same shuffe in terms of order or result bytes, but on a type 212 /// whose vector element type is narrower than the original shuffle type. 213 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 214 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 215 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 216 ArrayRef<int> Mask) const { 217 unsigned NumMaskElts = VT.getVectorNumElements(); 218 unsigned NumDestElts = NVT.getVectorNumElements(); 219 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 220 221 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 222 223 if (NumEltsGrowth == 1) 224 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 225 226 SmallVector<int, 8> NewMask; 227 for (unsigned i = 0; i != NumMaskElts; ++i) { 228 int Idx = Mask[i]; 229 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 230 if (Idx < 0) 231 NewMask.push_back(-1); 232 else 233 NewMask.push_back(Idx * NumEltsGrowth + j); 234 } 235 } 236 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 237 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 238 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 239 } 240 241 /// Expands the ConstantFP node to an integer constant or 242 /// a load from the constant pool. 243 SDValue 244 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 245 bool Extend = false; 246 SDLoc dl(CFP); 247 248 // If a FP immediate is precise when represented as a float and if the 249 // target can do an extending load from float to double, we put it into 250 // the constant pool as a float, even if it's is statically typed as a 251 // double. This shrinks FP constants and canonicalizes them for targets where 252 // an FP extending load is the same cost as a normal load (such as on the x87 253 // fp stack or PPC FP unit). 254 EVT VT = CFP->getValueType(0); 255 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 256 if (!UseCP) { 257 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 258 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 259 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 260 } 261 262 APFloat APF = CFP->getValueAPF(); 263 EVT OrigVT = VT; 264 EVT SVT = VT; 265 266 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 267 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 268 if (!APF.isSignaling()) { 269 while (SVT != MVT::f32 && SVT != MVT::f16) { 270 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 271 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 272 // Only do this if the target has a native EXTLOAD instruction from 273 // smaller type. 274 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 275 TLI.ShouldShrinkFPConstant(OrigVT)) { 276 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 277 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 278 VT = SVT; 279 Extend = true; 280 } 281 } 282 } 283 284 SDValue CPIdx = 285 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 286 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 287 if (Extend) { 288 SDValue Result = DAG.getExtLoad( 289 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 290 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 291 Alignment); 292 return Result; 293 } 294 SDValue Result = DAG.getLoad( 295 OrigVT, dl, DAG.getEntryNode(), CPIdx, 296 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 297 return Result; 298 } 299 300 /// Expands the Constant node to a load from the constant pool. 301 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 302 SDLoc dl(CP); 303 EVT VT = CP->getValueType(0); 304 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 305 TLI.getPointerTy(DAG.getDataLayout())); 306 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 307 SDValue Result = DAG.getLoad( 308 VT, dl, DAG.getEntryNode(), CPIdx, 309 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 310 return Result; 311 } 312 313 /// Some target cannot handle a variable insertion index for the 314 /// INSERT_VECTOR_ELT instruction. In this case, it 315 /// is necessary to spill the vector being inserted into to memory, perform 316 /// the insert there, and then read the result back. 317 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 318 SDValue Val, 319 SDValue Idx, 320 const SDLoc &dl) { 321 SDValue Tmp1 = Vec; 322 SDValue Tmp2 = Val; 323 SDValue Tmp3 = Idx; 324 325 // If the target doesn't support this, we have to spill the input vector 326 // to a temporary stack slot, update the element, then reload it. This is 327 // badness. We could also load the value into a vector register (either 328 // with a "move to register" or "extload into register" instruction, then 329 // permute it into place, if the idx is a constant and if the idx is 330 // supported by the target. 331 EVT VT = Tmp1.getValueType(); 332 EVT EltVT = VT.getVectorElementType(); 333 EVT IdxVT = Tmp3.getValueType(); 334 EVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 335 SDValue StackPtr = DAG.CreateStackTemporary(VT); 336 337 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 338 339 // Store the vector. 340 SDValue Ch = DAG.getStore( 341 DAG.getEntryNode(), dl, Tmp1, StackPtr, 342 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 343 344 // Truncate or zero extend offset to target pointer type. 345 Tmp3 = DAG.getZExtOrTrunc(Tmp3, dl, PtrVT); 346 // Add the offset to the index. 347 unsigned EltSize = EltVT.getSizeInBits()/8; 348 Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3, 349 DAG.getConstant(EltSize, dl, IdxVT)); 350 SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr); 351 // Store the scalar value. 352 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT); 353 // Load the updated vector. 354 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 355 DAG.getMachineFunction(), SPFI)); 356 } 357 358 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 359 SDValue Idx, 360 const SDLoc &dl) { 361 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 362 // SCALAR_TO_VECTOR requires that the type of the value being inserted 363 // match the element type of the vector being created, except for 364 // integers in which case the inserted value can be over width. 365 EVT EltVT = Vec.getValueType().getVectorElementType(); 366 if (Val.getValueType() == EltVT || 367 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 368 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 369 Vec.getValueType(), Val); 370 371 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 372 // We generate a shuffle of InVec and ScVec, so the shuffle mask 373 // should be 0,1,2,3,4,5... with the appropriate element replaced with 374 // elt 0 of the RHS. 375 SmallVector<int, 8> ShufOps; 376 for (unsigned i = 0; i != NumElts; ++i) 377 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 378 379 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 380 } 381 } 382 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 383 } 384 385 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 386 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 387 // FIXME: We shouldn't do this for TargetConstantFP's. 388 // FIXME: move this to the DAG Combiner! Note that we can't regress due 389 // to phase ordering between legalized code and the dag combiner. This 390 // probably means that we need to integrate dag combiner and legalizer 391 // together. 392 // We generally can't do this one for long doubles. 393 SDValue Chain = ST->getChain(); 394 SDValue Ptr = ST->getBasePtr(); 395 unsigned Alignment = ST->getAlignment(); 396 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 397 AAMDNodes AAInfo = ST->getAAInfo(); 398 SDLoc dl(ST); 399 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 400 if (CFP->getValueType(0) == MVT::f32 && 401 TLI.isTypeLegal(MVT::i32)) { 402 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 403 bitcastToAPInt().zextOrTrunc(32), 404 SDLoc(CFP), MVT::i32); 405 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), Alignment, 406 MMOFlags, AAInfo); 407 } 408 409 if (CFP->getValueType(0) == MVT::f64) { 410 // If this target supports 64-bit registers, do a single 64-bit store. 411 if (TLI.isTypeLegal(MVT::i64)) { 412 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 413 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 414 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 415 Alignment, MMOFlags, AAInfo); 416 } 417 418 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 419 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 420 // stores. If the target supports neither 32- nor 64-bits, this 421 // xform is certainly not worth it. 422 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 423 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 424 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 425 if (DAG.getDataLayout().isBigEndian()) 426 std::swap(Lo, Hi); 427 428 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), Alignment, 429 MMOFlags, AAInfo); 430 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 431 DAG.getConstant(4, dl, Ptr.getValueType())); 432 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 433 ST->getPointerInfo().getWithOffset(4), 434 MinAlign(Alignment, 4U), MMOFlags, AAInfo); 435 436 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 437 } 438 } 439 } 440 return SDValue(nullptr, 0); 441 } 442 443 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 444 StoreSDNode *ST = cast<StoreSDNode>(Node); 445 SDValue Chain = ST->getChain(); 446 SDValue Ptr = ST->getBasePtr(); 447 SDLoc dl(Node); 448 449 unsigned Alignment = ST->getAlignment(); 450 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 451 AAMDNodes AAInfo = ST->getAAInfo(); 452 453 if (!ST->isTruncatingStore()) { 454 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 455 ReplaceNode(ST, OptStore); 456 return; 457 } 458 459 { 460 SDValue Value = ST->getValue(); 461 MVT VT = Value.getSimpleValueType(); 462 switch (TLI.getOperationAction(ISD::STORE, VT)) { 463 default: llvm_unreachable("This action is not supported yet!"); 464 case TargetLowering::Legal: { 465 // If this is an unaligned store and the target doesn't support it, 466 // expand it. 467 EVT MemVT = ST->getMemoryVT(); 468 unsigned AS = ST->getAddressSpace(); 469 unsigned Align = ST->getAlignment(); 470 const DataLayout &DL = DAG.getDataLayout(); 471 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 472 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 473 ReplaceNode(SDValue(ST, 0), Result); 474 } 475 break; 476 } 477 case TargetLowering::Custom: { 478 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 479 if (Res && Res != SDValue(Node, 0)) 480 ReplaceNode(SDValue(Node, 0), Res); 481 return; 482 } 483 case TargetLowering::Promote: { 484 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 485 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 486 "Can only promote stores to same size type"); 487 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 488 SDValue Result = 489 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 490 Alignment, MMOFlags, AAInfo); 491 ReplaceNode(SDValue(Node, 0), Result); 492 break; 493 } 494 } 495 return; 496 } 497 } else { 498 SDValue Value = ST->getValue(); 499 500 EVT StVT = ST->getMemoryVT(); 501 unsigned StWidth = StVT.getSizeInBits(); 502 auto &DL = DAG.getDataLayout(); 503 504 if (StWidth != StVT.getStoreSizeInBits()) { 505 // Promote to a byte-sized store with upper bits zero if not 506 // storing an integral number of bytes. For example, promote 507 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 508 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), 509 StVT.getStoreSizeInBits()); 510 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 511 SDValue Result = 512 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 513 Alignment, MMOFlags, AAInfo); 514 ReplaceNode(SDValue(Node, 0), Result); 515 } else if (StWidth & (StWidth - 1)) { 516 // If not storing a power-of-2 number of bits, expand as two stores. 517 assert(!StVT.isVector() && "Unsupported truncstore!"); 518 unsigned RoundWidth = 1 << Log2_32(StWidth); 519 assert(RoundWidth < StWidth); 520 unsigned ExtraWidth = StWidth - RoundWidth; 521 assert(ExtraWidth < RoundWidth); 522 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 523 "Store size not an integral number of bytes!"); 524 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 525 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 526 SDValue Lo, Hi; 527 unsigned IncrementSize; 528 529 if (DL.isLittleEndian()) { 530 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 531 // Store the bottom RoundWidth bits. 532 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 533 RoundVT, Alignment, MMOFlags, AAInfo); 534 535 // Store the remaining ExtraWidth bits. 536 IncrementSize = RoundWidth / 8; 537 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 538 DAG.getConstant(IncrementSize, dl, 539 Ptr.getValueType())); 540 Hi = DAG.getNode( 541 ISD::SRL, dl, Value.getValueType(), Value, 542 DAG.getConstant(RoundWidth, dl, 543 TLI.getShiftAmountTy(Value.getValueType(), DL))); 544 Hi = DAG.getTruncStore( 545 Chain, dl, Hi, Ptr, 546 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, 547 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); 548 } else { 549 // Big endian - avoid unaligned stores. 550 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 551 // Store the top RoundWidth bits. 552 Hi = DAG.getNode( 553 ISD::SRL, dl, Value.getValueType(), Value, 554 DAG.getConstant(ExtraWidth, dl, 555 TLI.getShiftAmountTy(Value.getValueType(), DL))); 556 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), 557 RoundVT, Alignment, MMOFlags, AAInfo); 558 559 // Store the remaining ExtraWidth bits. 560 IncrementSize = RoundWidth / 8; 561 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 562 DAG.getConstant(IncrementSize, dl, 563 Ptr.getValueType())); 564 Lo = DAG.getTruncStore( 565 Chain, dl, Value, Ptr, 566 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, 567 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); 568 } 569 570 // The order of the stores doesn't matter. 571 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 572 ReplaceNode(SDValue(Node, 0), Result); 573 } else { 574 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 575 default: llvm_unreachable("This action is not supported yet!"); 576 case TargetLowering::Legal: { 577 EVT MemVT = ST->getMemoryVT(); 578 unsigned AS = ST->getAddressSpace(); 579 unsigned Align = ST->getAlignment(); 580 // If this is an unaligned store and the target doesn't support it, 581 // expand it. 582 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 583 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 584 ReplaceNode(SDValue(ST, 0), Result); 585 } 586 break; 587 } 588 case TargetLowering::Custom: { 589 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 590 if (Res && Res != SDValue(Node, 0)) 591 ReplaceNode(SDValue(Node, 0), Res); 592 return; 593 } 594 case TargetLowering::Expand: 595 assert(!StVT.isVector() && 596 "Vector Stores are handled in LegalizeVectorOps"); 597 598 // TRUNCSTORE:i16 i32 -> STORE i16 599 assert(TLI.isTypeLegal(StVT) && 600 "Do not know how to expand this store!"); 601 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 602 SDValue Result = 603 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 604 Alignment, MMOFlags, AAInfo); 605 ReplaceNode(SDValue(Node, 0), Result); 606 break; 607 } 608 } 609 } 610 } 611 612 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 613 LoadSDNode *LD = cast<LoadSDNode>(Node); 614 SDValue Chain = LD->getChain(); // The chain. 615 SDValue Ptr = LD->getBasePtr(); // The base pointer. 616 SDValue Value; // The value returned by the load op. 617 SDLoc dl(Node); 618 619 ISD::LoadExtType ExtType = LD->getExtensionType(); 620 if (ExtType == ISD::NON_EXTLOAD) { 621 MVT VT = Node->getSimpleValueType(0); 622 SDValue RVal = SDValue(Node, 0); 623 SDValue RChain = SDValue(Node, 1); 624 625 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 626 default: llvm_unreachable("This action is not supported yet!"); 627 case TargetLowering::Legal: { 628 EVT MemVT = LD->getMemoryVT(); 629 unsigned AS = LD->getAddressSpace(); 630 unsigned Align = LD->getAlignment(); 631 const DataLayout &DL = DAG.getDataLayout(); 632 // If this is an unaligned load and the target doesn't support it, 633 // expand it. 634 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 635 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 636 } 637 break; 638 } 639 case TargetLowering::Custom: { 640 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 641 RVal = Res; 642 RChain = Res.getValue(1); 643 } 644 break; 645 } 646 case TargetLowering::Promote: { 647 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 648 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 649 "Can only promote loads to same size type"); 650 651 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 652 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 653 RChain = Res.getValue(1); 654 break; 655 } 656 } 657 if (RChain.getNode() != Node) { 658 assert(RVal.getNode() != Node && "Load must be completely replaced"); 659 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 660 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 661 if (UpdatedNodes) { 662 UpdatedNodes->insert(RVal.getNode()); 663 UpdatedNodes->insert(RChain.getNode()); 664 } 665 ReplacedNode(Node); 666 } 667 return; 668 } 669 670 EVT SrcVT = LD->getMemoryVT(); 671 unsigned SrcWidth = SrcVT.getSizeInBits(); 672 unsigned Alignment = LD->getAlignment(); 673 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 674 AAMDNodes AAInfo = LD->getAAInfo(); 675 676 if (SrcWidth != SrcVT.getStoreSizeInBits() && 677 // Some targets pretend to have an i1 loading operation, and actually 678 // load an i8. This trick is correct for ZEXTLOAD because the top 7 679 // bits are guaranteed to be zero; it helps the optimizers understand 680 // that these bits are zero. It is also useful for EXTLOAD, since it 681 // tells the optimizers that those bits are undefined. It would be 682 // nice to have an effective generic way of getting these benefits... 683 // Until such a way is found, don't insist on promoting i1 here. 684 (SrcVT != MVT::i1 || 685 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 686 TargetLowering::Promote)) { 687 // Promote to a byte-sized load if not loading an integral number of 688 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 689 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 690 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 691 SDValue Ch; 692 693 // The extra bits are guaranteed to be zero, since we stored them that 694 // way. A zext load from NVT thus automatically gives zext from SrcVT. 695 696 ISD::LoadExtType NewExtType = 697 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 698 699 SDValue Result = 700 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), Chain, Ptr, 701 LD->getPointerInfo(), NVT, Alignment, MMOFlags, AAInfo); 702 703 Ch = Result.getValue(1); // The chain. 704 705 if (ExtType == ISD::SEXTLOAD) 706 // Having the top bits zero doesn't help when sign extending. 707 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 708 Result.getValueType(), 709 Result, DAG.getValueType(SrcVT)); 710 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 711 // All the top bits are guaranteed to be zero - inform the optimizers. 712 Result = DAG.getNode(ISD::AssertZext, dl, 713 Result.getValueType(), Result, 714 DAG.getValueType(SrcVT)); 715 716 Value = Result; 717 Chain = Ch; 718 } else if (SrcWidth & (SrcWidth - 1)) { 719 // If not loading a power-of-2 number of bits, expand as two loads. 720 assert(!SrcVT.isVector() && "Unsupported extload!"); 721 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 722 assert(RoundWidth < SrcWidth); 723 unsigned ExtraWidth = SrcWidth - RoundWidth; 724 assert(ExtraWidth < RoundWidth); 725 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 726 "Load size not an integral number of bytes!"); 727 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 728 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 729 SDValue Lo, Hi, Ch; 730 unsigned IncrementSize; 731 auto &DL = DAG.getDataLayout(); 732 733 if (DL.isLittleEndian()) { 734 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 735 // Load the bottom RoundWidth bits. 736 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 737 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, 738 AAInfo); 739 740 // Load the remaining ExtraWidth bits. 741 IncrementSize = RoundWidth / 8; 742 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 743 DAG.getConstant(IncrementSize, dl, 744 Ptr.getValueType())); 745 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 746 LD->getPointerInfo().getWithOffset(IncrementSize), 747 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, 748 AAInfo); 749 750 // Build a factor node to remember that this load is independent of 751 // the other one. 752 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 753 Hi.getValue(1)); 754 755 // Move the top bits to the right place. 756 Hi = DAG.getNode( 757 ISD::SHL, dl, Hi.getValueType(), Hi, 758 DAG.getConstant(RoundWidth, dl, 759 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 760 761 // Join the hi and lo parts. 762 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 763 } else { 764 // Big endian - avoid unaligned loads. 765 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 766 // Load the top RoundWidth bits. 767 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 768 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, 769 AAInfo); 770 771 // Load the remaining ExtraWidth bits. 772 IncrementSize = RoundWidth / 8; 773 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 774 DAG.getConstant(IncrementSize, dl, 775 Ptr.getValueType())); 776 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 777 LD->getPointerInfo().getWithOffset(IncrementSize), 778 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, 779 AAInfo); 780 781 // Build a factor node to remember that this load is independent of 782 // the other one. 783 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 784 Hi.getValue(1)); 785 786 // Move the top bits to the right place. 787 Hi = DAG.getNode( 788 ISD::SHL, dl, Hi.getValueType(), Hi, 789 DAG.getConstant(ExtraWidth, dl, 790 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 791 792 // Join the hi and lo parts. 793 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 794 } 795 796 Chain = Ch; 797 } else { 798 bool isCustom = false; 799 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 800 SrcVT.getSimpleVT())) { 801 default: llvm_unreachable("This action is not supported yet!"); 802 case TargetLowering::Custom: 803 isCustom = true; 804 LLVM_FALLTHROUGH; 805 case TargetLowering::Legal: { 806 Value = SDValue(Node, 0); 807 Chain = SDValue(Node, 1); 808 809 if (isCustom) { 810 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 811 Value = Res; 812 Chain = Res.getValue(1); 813 } 814 } else { 815 // If this is an unaligned load and the target doesn't support it, 816 // expand it. 817 EVT MemVT = LD->getMemoryVT(); 818 unsigned AS = LD->getAddressSpace(); 819 unsigned Align = LD->getAlignment(); 820 const DataLayout &DL = DAG.getDataLayout(); 821 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 822 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 823 } 824 } 825 break; 826 } 827 case TargetLowering::Expand: 828 EVT DestVT = Node->getValueType(0); 829 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 830 // If the source type is not legal, see if there is a legal extload to 831 // an intermediate type that we can then extend further. 832 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 833 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 834 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 835 // If we are loading a legal type, this is a non-extload followed by a 836 // full extend. 837 ISD::LoadExtType MidExtType = 838 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 839 840 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 841 SrcVT, LD->getMemOperand()); 842 unsigned ExtendOp = 843 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 844 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 845 Chain = Load.getValue(1); 846 break; 847 } 848 849 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 850 // normal undefined upper bits behavior to allow using an in-reg extend 851 // with the illegal FP type, so load as an integer and do the 852 // from-integer conversion. 853 if (SrcVT.getScalarType() == MVT::f16) { 854 EVT ISrcVT = SrcVT.changeTypeToInteger(); 855 EVT IDestVT = DestVT.changeTypeToInteger(); 856 EVT LoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 857 858 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, LoadVT, 859 Chain, Ptr, ISrcVT, 860 LD->getMemOperand()); 861 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 862 Chain = Result.getValue(1); 863 break; 864 } 865 } 866 867 assert(!SrcVT.isVector() && 868 "Vector Loads are handled in LegalizeVectorOps"); 869 870 // FIXME: This does not work for vectors on most targets. Sign- 871 // and zero-extend operations are currently folded into extending 872 // loads, whether they are legal or not, and then we end up here 873 // without any support for legalizing them. 874 assert(ExtType != ISD::EXTLOAD && 875 "EXTLOAD should always be supported!"); 876 // Turn the unsupported load into an EXTLOAD followed by an 877 // explicit zero/sign extend inreg. 878 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 879 Node->getValueType(0), 880 Chain, Ptr, SrcVT, 881 LD->getMemOperand()); 882 SDValue ValRes; 883 if (ExtType == ISD::SEXTLOAD) 884 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 885 Result.getValueType(), 886 Result, DAG.getValueType(SrcVT)); 887 else 888 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); 889 Value = ValRes; 890 Chain = Result.getValue(1); 891 break; 892 } 893 } 894 895 // Since loads produce two values, make sure to remember that we legalized 896 // both of them. 897 if (Chain.getNode() != Node) { 898 assert(Value.getNode() != Node && "Load must be completely replaced"); 899 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 900 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 901 if (UpdatedNodes) { 902 UpdatedNodes->insert(Value.getNode()); 903 UpdatedNodes->insert(Chain.getNode()); 904 } 905 ReplacedNode(Node); 906 } 907 } 908 909 /// Return a legal replacement for the given operation, with all legal operands. 910 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 911 DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 912 913 if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 914 return; 915 916 #ifndef NDEBUG 917 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 918 assert((TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 919 TargetLowering::TypeLegal || 920 TLI.isTypeLegal(Node->getValueType(i))) && 921 "Unexpected illegal type!"); 922 923 for (const SDValue &Op : Node->op_values()) 924 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 925 TargetLowering::TypeLegal || 926 TLI.isTypeLegal(Op.getValueType()) || 927 Op.getOpcode() == ISD::TargetConstant) && 928 "Unexpected illegal type!"); 929 #endif 930 931 // Figure out the correct action; the way to query this varies by opcode 932 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 933 bool SimpleFinishLegalizing = true; 934 switch (Node->getOpcode()) { 935 case ISD::INTRINSIC_W_CHAIN: 936 case ISD::INTRINSIC_WO_CHAIN: 937 case ISD::INTRINSIC_VOID: 938 case ISD::STACKSAVE: 939 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 940 break; 941 case ISD::GET_DYNAMIC_AREA_OFFSET: 942 Action = TLI.getOperationAction(Node->getOpcode(), 943 Node->getValueType(0)); 944 break; 945 case ISD::VAARG: 946 Action = TLI.getOperationAction(Node->getOpcode(), 947 Node->getValueType(0)); 948 if (Action != TargetLowering::Promote) 949 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 950 break; 951 case ISD::FP_TO_FP16: 952 case ISD::SINT_TO_FP: 953 case ISD::UINT_TO_FP: 954 case ISD::EXTRACT_VECTOR_ELT: 955 Action = TLI.getOperationAction(Node->getOpcode(), 956 Node->getOperand(0).getValueType()); 957 break; 958 case ISD::FP_ROUND_INREG: 959 case ISD::SIGN_EXTEND_INREG: { 960 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 961 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 962 break; 963 } 964 case ISD::ATOMIC_STORE: { 965 Action = TLI.getOperationAction(Node->getOpcode(), 966 Node->getOperand(2).getValueType()); 967 break; 968 } 969 case ISD::SELECT_CC: 970 case ISD::SETCC: 971 case ISD::BR_CC: { 972 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 973 Node->getOpcode() == ISD::SETCC ? 2 : 974 Node->getOpcode() == ISD::SETCCE ? 3 : 1; 975 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; 976 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 977 ISD::CondCode CCCode = 978 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 979 Action = TLI.getCondCodeAction(CCCode, OpVT); 980 if (Action == TargetLowering::Legal) { 981 if (Node->getOpcode() == ISD::SELECT_CC) 982 Action = TLI.getOperationAction(Node->getOpcode(), 983 Node->getValueType(0)); 984 else 985 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 986 } 987 break; 988 } 989 case ISD::LOAD: 990 case ISD::STORE: 991 // FIXME: Model these properly. LOAD and STORE are complicated, and 992 // STORE expects the unlegalized operand in some cases. 993 SimpleFinishLegalizing = false; 994 break; 995 case ISD::CALLSEQ_START: 996 case ISD::CALLSEQ_END: 997 // FIXME: This shouldn't be necessary. These nodes have special properties 998 // dealing with the recursive nature of legalization. Removing this 999 // special case should be done as part of making LegalizeDAG non-recursive. 1000 SimpleFinishLegalizing = false; 1001 break; 1002 case ISD::EXTRACT_ELEMENT: 1003 case ISD::FLT_ROUNDS_: 1004 case ISD::FPOWI: 1005 case ISD::MERGE_VALUES: 1006 case ISD::EH_RETURN: 1007 case ISD::FRAME_TO_ARGS_OFFSET: 1008 case ISD::EH_DWARF_CFA: 1009 case ISD::EH_SJLJ_SETJMP: 1010 case ISD::EH_SJLJ_LONGJMP: 1011 case ISD::EH_SJLJ_SETUP_DISPATCH: 1012 // These operations lie about being legal: when they claim to be legal, 1013 // they should actually be expanded. 1014 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1015 if (Action == TargetLowering::Legal) 1016 Action = TargetLowering::Expand; 1017 break; 1018 case ISD::INIT_TRAMPOLINE: 1019 case ISD::ADJUST_TRAMPOLINE: 1020 case ISD::FRAMEADDR: 1021 case ISD::RETURNADDR: 1022 case ISD::ADDROFRETURNADDR: 1023 // These operations lie about being legal: when they claim to be legal, 1024 // they should actually be custom-lowered. 1025 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1026 if (Action == TargetLowering::Legal) 1027 Action = TargetLowering::Custom; 1028 break; 1029 case ISD::READCYCLECOUNTER: 1030 // READCYCLECOUNTER returns an i64, even if type legalization might have 1031 // expanded that to several smaller types. 1032 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1033 break; 1034 case ISD::READ_REGISTER: 1035 case ISD::WRITE_REGISTER: 1036 // Named register is legal in the DAG, but blocked by register name 1037 // selection if not implemented by target (to chose the correct register) 1038 // They'll be converted to Copy(To/From)Reg. 1039 Action = TargetLowering::Legal; 1040 break; 1041 case ISD::DEBUGTRAP: 1042 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1043 if (Action == TargetLowering::Expand) { 1044 // replace ISD::DEBUGTRAP with ISD::TRAP 1045 SDValue NewVal; 1046 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1047 Node->getOperand(0)); 1048 ReplaceNode(Node, NewVal.getNode()); 1049 LegalizeOp(NewVal.getNode()); 1050 return; 1051 } 1052 break; 1053 1054 default: 1055 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1056 Action = TargetLowering::Legal; 1057 } else { 1058 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1059 } 1060 break; 1061 } 1062 1063 if (SimpleFinishLegalizing) { 1064 SDNode *NewNode = Node; 1065 switch (Node->getOpcode()) { 1066 default: break; 1067 case ISD::SHL: 1068 case ISD::SRL: 1069 case ISD::SRA: 1070 case ISD::ROTL: 1071 case ISD::ROTR: { 1072 // Legalizing shifts/rotates requires adjusting the shift amount 1073 // to the appropriate width. 1074 SDValue Op0 = Node->getOperand(0); 1075 SDValue Op1 = Node->getOperand(1); 1076 if (!Op1.getValueType().isVector()) { 1077 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1078 // The getShiftAmountOperand() may create a new operand node or 1079 // return the existing one. If new operand is created we need 1080 // to update the parent node. 1081 // Do not try to legalize SAO here! It will be automatically legalized 1082 // in the next round. 1083 if (SAO != Op1) 1084 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1085 } 1086 } 1087 break; 1088 case ISD::SRL_PARTS: 1089 case ISD::SRA_PARTS: 1090 case ISD::SHL_PARTS: { 1091 // Legalizing shifts/rotates requires adjusting the shift amount 1092 // to the appropriate width. 1093 SDValue Op0 = Node->getOperand(0); 1094 SDValue Op1 = Node->getOperand(1); 1095 SDValue Op2 = Node->getOperand(2); 1096 if (!Op2.getValueType().isVector()) { 1097 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1098 // The getShiftAmountOperand() may create a new operand node or 1099 // return the existing one. If new operand is created we need 1100 // to update the parent node. 1101 if (SAO != Op2) 1102 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1103 } 1104 } 1105 break; 1106 } 1107 1108 if (NewNode != Node) { 1109 ReplaceNode(Node, NewNode); 1110 Node = NewNode; 1111 } 1112 switch (Action) { 1113 case TargetLowering::Legal: 1114 return; 1115 case TargetLowering::Custom: { 1116 // FIXME: The handling for custom lowering with multiple results is 1117 // a complete mess. 1118 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1119 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1120 return; 1121 1122 if (Node->getNumValues() == 1) { 1123 // We can just directly replace this node with the lowered value. 1124 ReplaceNode(SDValue(Node, 0), Res); 1125 return; 1126 } 1127 1128 SmallVector<SDValue, 8> ResultVals; 1129 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1130 ResultVals.push_back(Res.getValue(i)); 1131 ReplaceNode(Node, ResultVals.data()); 1132 return; 1133 } 1134 LLVM_FALLTHROUGH; 1135 } 1136 case TargetLowering::Expand: 1137 if (ExpandNode(Node)) 1138 return; 1139 LLVM_FALLTHROUGH; 1140 case TargetLowering::LibCall: 1141 ConvertNodeToLibcall(Node); 1142 return; 1143 case TargetLowering::Promote: 1144 PromoteNode(Node); 1145 return; 1146 } 1147 } 1148 1149 switch (Node->getOpcode()) { 1150 default: 1151 #ifndef NDEBUG 1152 dbgs() << "NODE: "; 1153 Node->dump( &DAG); 1154 dbgs() << "\n"; 1155 #endif 1156 llvm_unreachable("Do not know how to legalize this operator!"); 1157 1158 case ISD::CALLSEQ_START: 1159 case ISD::CALLSEQ_END: 1160 break; 1161 case ISD::LOAD: { 1162 return LegalizeLoadOps(Node); 1163 } 1164 case ISD::STORE: { 1165 return LegalizeStoreOps(Node); 1166 } 1167 } 1168 } 1169 1170 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1171 SDValue Vec = Op.getOperand(0); 1172 SDValue Idx = Op.getOperand(1); 1173 SDLoc dl(Op); 1174 1175 // Before we generate a new store to a temporary stack slot, see if there is 1176 // already one that we can use. There often is because when we scalarize 1177 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1178 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1179 // the vector. If all are expanded here, we don't want one store per vector 1180 // element. 1181 1182 // Caches for hasPredecessorHelper 1183 SmallPtrSet<const SDNode *, 32> Visited; 1184 SmallVector<const SDNode *, 16> Worklist; 1185 Worklist.push_back(Idx.getNode()); 1186 SDValue StackPtr, Ch; 1187 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), 1188 UE = Vec.getNode()->use_end(); UI != UE; ++UI) { 1189 SDNode *User = *UI; 1190 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1191 if (ST->isIndexed() || ST->isTruncatingStore() || 1192 ST->getValue() != Vec) 1193 continue; 1194 1195 // Make sure that nothing else could have stored into the destination of 1196 // this store. 1197 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1198 continue; 1199 1200 // If the index is dependent on the store we will introduce a cycle when 1201 // creating the load (the load uses the index, and by replacing the chain 1202 // we will make the index dependent on the load). 1203 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist)) 1204 continue; 1205 1206 StackPtr = ST->getBasePtr(); 1207 Ch = SDValue(ST, 0); 1208 break; 1209 } 1210 } 1211 1212 if (!Ch.getNode()) { 1213 // Store the value to a temporary stack slot, then LOAD the returned part. 1214 StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 1215 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1216 MachinePointerInfo()); 1217 } 1218 1219 // Add the offset to the index. 1220 unsigned EltSize = Vec.getScalarValueSizeInBits() / 8; 1221 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 1222 DAG.getConstant(EltSize, SDLoc(Vec), Idx.getValueType())); 1223 1224 Idx = DAG.getZExtOrTrunc(Idx, dl, TLI.getPointerTy(DAG.getDataLayout())); 1225 StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr); 1226 1227 SDValue NewLoad; 1228 1229 if (Op.getValueType().isVector()) 1230 NewLoad = 1231 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); 1232 else 1233 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1234 MachinePointerInfo(), 1235 Vec.getValueType().getVectorElementType()); 1236 1237 // Replace the chain going out of the store, by the one out of the load. 1238 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1239 1240 // We introduced a cycle though, so update the loads operands, making sure 1241 // to use the original store's chain as an incoming chain. 1242 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1243 NewLoad->op_end()); 1244 NewLoadOperands[0] = Ch; 1245 NewLoad = 1246 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1247 return NewLoad; 1248 } 1249 1250 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1251 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1252 1253 SDValue Vec = Op.getOperand(0); 1254 SDValue Part = Op.getOperand(1); 1255 SDValue Idx = Op.getOperand(2); 1256 SDLoc dl(Op); 1257 1258 // Store the value to a temporary stack slot, then LOAD the returned part. 1259 1260 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 1261 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1262 MachinePointerInfo PtrInfo = 1263 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1264 1265 // First store the whole vector. 1266 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1267 1268 // Then store the inserted part. 1269 1270 // Add the offset to the index. 1271 unsigned EltSize = Vec.getScalarValueSizeInBits() / 8; 1272 1273 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 1274 DAG.getConstant(EltSize, SDLoc(Vec), Idx.getValueType())); 1275 Idx = DAG.getZExtOrTrunc(Idx, dl, TLI.getPointerTy(DAG.getDataLayout())); 1276 1277 SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, 1278 StackPtr); 1279 1280 // Store the subvector. 1281 Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, MachinePointerInfo()); 1282 1283 // Finally, load the updated vector. 1284 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1285 } 1286 1287 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1288 // We can't handle this case efficiently. Allocate a sufficiently 1289 // aligned object on the stack, store each element into it, then load 1290 // the result as a vector. 1291 // Create the stack frame object. 1292 EVT VT = Node->getValueType(0); 1293 EVT EltVT = VT.getVectorElementType(); 1294 SDLoc dl(Node); 1295 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1296 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1297 MachinePointerInfo PtrInfo = 1298 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1299 1300 // Emit a store of each element to the stack slot. 1301 SmallVector<SDValue, 8> Stores; 1302 unsigned TypeByteSize = EltVT.getSizeInBits() / 8; 1303 // Store (in the right endianness) the elements to memory. 1304 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1305 // Ignore undef elements. 1306 if (Node->getOperand(i).isUndef()) continue; 1307 1308 unsigned Offset = TypeByteSize*i; 1309 1310 SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType()); 1311 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); 1312 1313 // If the destination vector element type is narrower than the source 1314 // element type, only store the bits necessary. 1315 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { 1316 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1317 Node->getOperand(i), Idx, 1318 PtrInfo.getWithOffset(Offset), EltVT)); 1319 } else 1320 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1321 Idx, PtrInfo.getWithOffset(Offset))); 1322 } 1323 1324 SDValue StoreChain; 1325 if (!Stores.empty()) // Not all undef elements? 1326 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1327 else 1328 StoreChain = DAG.getEntryNode(); 1329 1330 // Result is a load from the stack slot. 1331 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1332 } 1333 1334 namespace { 1335 /// Keeps track of state when getting the sign of a floating-point value as an 1336 /// integer. 1337 struct FloatSignAsInt { 1338 EVT FloatVT; 1339 SDValue Chain; 1340 SDValue FloatPtr; 1341 SDValue IntPtr; 1342 MachinePointerInfo IntPointerInfo; 1343 MachinePointerInfo FloatPointerInfo; 1344 SDValue IntValue; 1345 APInt SignMask; 1346 uint8_t SignBit; 1347 }; 1348 } 1349 1350 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1351 /// containing the sign bit if the target has no integer value capable of 1352 /// holding all bits of the floating-point value. 1353 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1354 const SDLoc &DL, 1355 SDValue Value) const { 1356 EVT FloatVT = Value.getValueType(); 1357 unsigned NumBits = FloatVT.getSizeInBits(); 1358 State.FloatVT = FloatVT; 1359 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1360 // Convert to an integer of the same size. 1361 if (TLI.isTypeLegal(IVT)) { 1362 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1363 State.SignMask = APInt::getSignBit(NumBits); 1364 State.SignBit = NumBits - 1; 1365 return; 1366 } 1367 1368 auto &DataLayout = DAG.getDataLayout(); 1369 // Store the float to memory, then load the sign part out as an integer. 1370 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1371 // First create a temporary that is aligned for both the load and store. 1372 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1373 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1374 // Then store the float to it. 1375 State.FloatPtr = StackPtr; 1376 MachineFunction &MF = DAG.getMachineFunction(); 1377 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1378 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1379 State.FloatPointerInfo); 1380 1381 SDValue IntPtr; 1382 if (DataLayout.isBigEndian()) { 1383 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1384 // Load out a legal integer with the same sign bit as the float. 1385 IntPtr = StackPtr; 1386 State.IntPointerInfo = State.FloatPointerInfo; 1387 } else { 1388 // Advance the pointer so that the loaded byte will contain the sign bit. 1389 unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1; 1390 IntPtr = DAG.getNode(ISD::ADD, DL, StackPtr.getValueType(), StackPtr, 1391 DAG.getConstant(ByteOffset, DL, StackPtr.getValueType())); 1392 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1393 ByteOffset); 1394 } 1395 1396 State.IntPtr = IntPtr; 1397 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1398 State.IntPointerInfo, MVT::i8); 1399 State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7); 1400 State.SignBit = 7; 1401 } 1402 1403 /// Replace the integer value produced by getSignAsIntValue() with a new value 1404 /// and cast the result back to a floating-point type. 1405 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1406 const SDLoc &DL, 1407 SDValue NewIntValue) const { 1408 if (!State.Chain) 1409 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1410 1411 // Override the part containing the sign bit in the value stored on the stack. 1412 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1413 State.IntPointerInfo, MVT::i8); 1414 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1415 State.FloatPointerInfo); 1416 } 1417 1418 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1419 SDLoc DL(Node); 1420 SDValue Mag = Node->getOperand(0); 1421 SDValue Sign = Node->getOperand(1); 1422 1423 // Get sign bit into an integer value. 1424 FloatSignAsInt SignAsInt; 1425 getSignAsIntValue(SignAsInt, DL, Sign); 1426 1427 EVT IntVT = SignAsInt.IntValue.getValueType(); 1428 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1429 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1430 SignMask); 1431 1432 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1433 EVT FloatVT = Mag.getValueType(); 1434 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1435 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1436 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1437 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1438 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1439 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1440 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1441 } 1442 1443 // Transform Mag value to integer, and clear the sign bit. 1444 FloatSignAsInt MagAsInt; 1445 getSignAsIntValue(MagAsInt, DL, Mag); 1446 EVT MagVT = MagAsInt.IntValue.getValueType(); 1447 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1448 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1449 ClearSignMask); 1450 1451 // Get the signbit at the right position for MagAsInt. 1452 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1453 if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) { 1454 if (ShiftAmount > 0) { 1455 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, IntVT); 1456 SignBit = DAG.getNode(ISD::SRL, DL, IntVT, SignBit, ShiftCnst); 1457 } else if (ShiftAmount < 0) { 1458 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, IntVT); 1459 SignBit = DAG.getNode(ISD::SHL, DL, IntVT, SignBit, ShiftCnst); 1460 } 1461 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1462 } else if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) { 1463 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1464 if (ShiftAmount > 0) { 1465 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, MagVT); 1466 SignBit = DAG.getNode(ISD::SRL, DL, MagVT, SignBit, ShiftCnst); 1467 } else if (ShiftAmount < 0) { 1468 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, MagVT); 1469 SignBit = DAG.getNode(ISD::SHL, DL, MagVT, SignBit, ShiftCnst); 1470 } 1471 } 1472 1473 // Store the part with the modified sign and convert back to float. 1474 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1475 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1476 } 1477 1478 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1479 SDLoc DL(Node); 1480 SDValue Value = Node->getOperand(0); 1481 1482 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1483 EVT FloatVT = Value.getValueType(); 1484 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1485 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1486 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1487 } 1488 1489 // Transform value to integer, clear the sign bit and transform back. 1490 FloatSignAsInt ValueAsInt; 1491 getSignAsIntValue(ValueAsInt, DL, Value); 1492 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1493 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1494 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1495 ClearSignMask); 1496 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1497 } 1498 1499 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1500 SmallVectorImpl<SDValue> &Results) { 1501 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1502 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1503 " not tell us which reg is the stack pointer!"); 1504 SDLoc dl(Node); 1505 EVT VT = Node->getValueType(0); 1506 SDValue Tmp1 = SDValue(Node, 0); 1507 SDValue Tmp2 = SDValue(Node, 1); 1508 SDValue Tmp3 = Node->getOperand(2); 1509 SDValue Chain = Tmp1.getOperand(0); 1510 1511 // Chain the dynamic stack allocation so that it doesn't modify the stack 1512 // pointer when other instructions are using the stack. 1513 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, dl, true), dl); 1514 1515 SDValue Size = Tmp2.getOperand(1); 1516 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1517 Chain = SP.getValue(1); 1518 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1519 unsigned StackAlign = 1520 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 1521 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 1522 if (Align > StackAlign) 1523 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1524 DAG.getConstant(-(uint64_t)Align, dl, VT)); 1525 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1526 1527 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1528 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1529 1530 Results.push_back(Tmp1); 1531 Results.push_back(Tmp2); 1532 } 1533 1534 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current 1535 /// target. 1536 /// 1537 /// If the SETCC has been legalized using AND / OR, then the legalized node 1538 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert 1539 /// will be set to false. 1540 /// 1541 /// If the SETCC has been legalized by using getSetCCSwappedOperands(), 1542 /// then the values of LHS and RHS will be swapped, CC will be set to the 1543 /// new condition, and NeedInvert will be set to false. 1544 /// 1545 /// If the SETCC has been legalized using the inverse condcode, then LHS and 1546 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert 1547 /// will be set to true. The caller must invert the result of the SETCC with 1548 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect 1549 /// of a true/false result. 1550 /// 1551 /// \returns true if the SetCC has been legalized, false if it hasn't. 1552 bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, SDValue &LHS, 1553 SDValue &RHS, SDValue &CC, 1554 bool &NeedInvert, 1555 const SDLoc &dl) { 1556 MVT OpVT = LHS.getSimpleValueType(); 1557 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1558 NeedInvert = false; 1559 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1560 default: llvm_unreachable("Unknown condition code action!"); 1561 case TargetLowering::Legal: 1562 // Nothing to do. 1563 break; 1564 case TargetLowering::Expand: { 1565 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 1566 if (TLI.isCondCodeLegal(InvCC, OpVT)) { 1567 std::swap(LHS, RHS); 1568 CC = DAG.getCondCode(InvCC); 1569 return true; 1570 } 1571 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1572 unsigned Opc = 0; 1573 switch (CCCode) { 1574 default: llvm_unreachable("Don't know how to expand this condition!"); 1575 case ISD::SETO: 1576 assert(TLI.getCondCodeAction(ISD::SETOEQ, OpVT) 1577 == TargetLowering::Legal 1578 && "If SETO is expanded, SETOEQ must be legal!"); 1579 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; 1580 case ISD::SETUO: 1581 assert(TLI.getCondCodeAction(ISD::SETUNE, OpVT) 1582 == TargetLowering::Legal 1583 && "If SETUO is expanded, SETUNE must be legal!"); 1584 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break; 1585 case ISD::SETOEQ: 1586 case ISD::SETOGT: 1587 case ISD::SETOGE: 1588 case ISD::SETOLT: 1589 case ISD::SETOLE: 1590 case ISD::SETONE: 1591 case ISD::SETUEQ: 1592 case ISD::SETUNE: 1593 case ISD::SETUGT: 1594 case ISD::SETUGE: 1595 case ISD::SETULT: 1596 case ISD::SETULE: 1597 // If we are floating point, assign and break, otherwise fall through. 1598 if (!OpVT.isInteger()) { 1599 // We can use the 4th bit to tell if we are the unordered 1600 // or ordered version of the opcode. 1601 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 1602 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 1603 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 1604 break; 1605 } 1606 // Fallthrough if we are unsigned integer. 1607 LLVM_FALLTHROUGH; 1608 case ISD::SETLE: 1609 case ISD::SETGT: 1610 case ISD::SETGE: 1611 case ISD::SETLT: 1612 // We only support using the inverted operation, which is computed above 1613 // and not a different manner of supporting expanding these cases. 1614 llvm_unreachable("Don't know how to expand this condition!"); 1615 case ISD::SETNE: 1616 case ISD::SETEQ: 1617 // Try inverting the result of the inverse condition. 1618 InvCC = CCCode == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ; 1619 if (TLI.isCondCodeLegal(InvCC, OpVT)) { 1620 CC = DAG.getCondCode(InvCC); 1621 NeedInvert = true; 1622 return true; 1623 } 1624 // If inverting the condition didn't work then we have no means to expand 1625 // the condition. 1626 llvm_unreachable("Don't know how to expand this condition!"); 1627 } 1628 1629 SDValue SetCC1, SetCC2; 1630 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 1631 // If we aren't the ordered or unorder operation, 1632 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 1633 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); 1634 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); 1635 } else { 1636 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 1637 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1); 1638 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2); 1639 } 1640 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1641 RHS = SDValue(); 1642 CC = SDValue(); 1643 return true; 1644 } 1645 } 1646 return false; 1647 } 1648 1649 /// Emit a store/load combination to the stack. This stores 1650 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1651 /// a load from the stack slot to DestVT, extending it if needed. 1652 /// The resultant code need not be legal. 1653 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1654 EVT DestVT, const SDLoc &dl) { 1655 // Create the stack frame object. 1656 unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment( 1657 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1658 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 1659 1660 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1661 int SPFI = StackPtrFI->getIndex(); 1662 MachinePointerInfo PtrInfo = 1663 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1664 1665 unsigned SrcSize = SrcOp.getValueSizeInBits(); 1666 unsigned SlotSize = SlotVT.getSizeInBits(); 1667 unsigned DestSize = DestVT.getSizeInBits(); 1668 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1669 unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType); 1670 1671 // Emit a store to the stack slot. Use a truncstore if the input value is 1672 // later than DestVT. 1673 SDValue Store; 1674 1675 if (SrcSize > SlotSize) 1676 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, PtrInfo, 1677 SlotVT, SrcAlign); 1678 else { 1679 assert(SrcSize == SlotSize && "Invalid store"); 1680 Store = 1681 DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1682 } 1683 1684 // Result is a load from the stack slot. 1685 if (SlotSize == DestSize) 1686 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1687 1688 assert(SlotSize < DestSize && "Unknown extension!"); 1689 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1690 DestAlign); 1691 } 1692 1693 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1694 SDLoc dl(Node); 1695 // Create a vector sized/aligned stack slot, store the value to element #0, 1696 // then load the whole vector back out. 1697 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1698 1699 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1700 int SPFI = StackPtrFI->getIndex(); 1701 1702 SDValue Ch = DAG.getTruncStore( 1703 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1704 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1705 Node->getValueType(0).getVectorElementType()); 1706 return DAG.getLoad( 1707 Node->getValueType(0), dl, Ch, StackPtr, 1708 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1709 } 1710 1711 static bool 1712 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1713 const TargetLowering &TLI, SDValue &Res) { 1714 unsigned NumElems = Node->getNumOperands(); 1715 SDLoc dl(Node); 1716 EVT VT = Node->getValueType(0); 1717 1718 // Try to group the scalars into pairs, shuffle the pairs together, then 1719 // shuffle the pairs of pairs together, etc. until the vector has 1720 // been built. This will work only if all of the necessary shuffle masks 1721 // are legal. 1722 1723 // We do this in two phases; first to check the legality of the shuffles, 1724 // and next, assuming that all shuffles are legal, to create the new nodes. 1725 for (int Phase = 0; Phase < 2; ++Phase) { 1726 SmallVector<std::pair<SDValue, SmallVector<int, 16> >, 16> IntermedVals, 1727 NewIntermedVals; 1728 for (unsigned i = 0; i < NumElems; ++i) { 1729 SDValue V = Node->getOperand(i); 1730 if (V.isUndef()) 1731 continue; 1732 1733 SDValue Vec; 1734 if (Phase) 1735 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1736 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1737 } 1738 1739 while (IntermedVals.size() > 2) { 1740 NewIntermedVals.clear(); 1741 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1742 // This vector and the next vector are shuffled together (simply to 1743 // append the one to the other). 1744 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1745 1746 SmallVector<int, 16> FinalIndices; 1747 FinalIndices.reserve(IntermedVals[i].second.size() + 1748 IntermedVals[i+1].second.size()); 1749 1750 int k = 0; 1751 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1752 ++j, ++k) { 1753 ShuffleVec[k] = j; 1754 FinalIndices.push_back(IntermedVals[i].second[j]); 1755 } 1756 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1757 ++j, ++k) { 1758 ShuffleVec[k] = NumElems + j; 1759 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1760 } 1761 1762 SDValue Shuffle; 1763 if (Phase) 1764 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1765 IntermedVals[i+1].first, 1766 ShuffleVec); 1767 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1768 return false; 1769 NewIntermedVals.push_back( 1770 std::make_pair(Shuffle, std::move(FinalIndices))); 1771 } 1772 1773 // If we had an odd number of defined values, then append the last 1774 // element to the array of new vectors. 1775 if ((IntermedVals.size() & 1) != 0) 1776 NewIntermedVals.push_back(IntermedVals.back()); 1777 1778 IntermedVals.swap(NewIntermedVals); 1779 } 1780 1781 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1782 "Invalid number of intermediate vectors"); 1783 SDValue Vec1 = IntermedVals[0].first; 1784 SDValue Vec2; 1785 if (IntermedVals.size() > 1) 1786 Vec2 = IntermedVals[1].first; 1787 else if (Phase) 1788 Vec2 = DAG.getUNDEF(VT); 1789 1790 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1791 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1792 ShuffleVec[IntermedVals[0].second[i]] = i; 1793 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1794 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1795 1796 if (Phase) 1797 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1798 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1799 return false; 1800 } 1801 1802 return true; 1803 } 1804 1805 /// Expand a BUILD_VECTOR node on targets that don't 1806 /// support the operation, but do support the resultant vector type. 1807 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1808 unsigned NumElems = Node->getNumOperands(); 1809 SDValue Value1, Value2; 1810 SDLoc dl(Node); 1811 EVT VT = Node->getValueType(0); 1812 EVT OpVT = Node->getOperand(0).getValueType(); 1813 EVT EltVT = VT.getVectorElementType(); 1814 1815 // If the only non-undef value is the low element, turn this into a 1816 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1817 bool isOnlyLowElement = true; 1818 bool MoreThanTwoValues = false; 1819 bool isConstant = true; 1820 for (unsigned i = 0; i < NumElems; ++i) { 1821 SDValue V = Node->getOperand(i); 1822 if (V.isUndef()) 1823 continue; 1824 if (i > 0) 1825 isOnlyLowElement = false; 1826 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1827 isConstant = false; 1828 1829 if (!Value1.getNode()) { 1830 Value1 = V; 1831 } else if (!Value2.getNode()) { 1832 if (V != Value1) 1833 Value2 = V; 1834 } else if (V != Value1 && V != Value2) { 1835 MoreThanTwoValues = true; 1836 } 1837 } 1838 1839 if (!Value1.getNode()) 1840 return DAG.getUNDEF(VT); 1841 1842 if (isOnlyLowElement) 1843 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1844 1845 // If all elements are constants, create a load from the constant pool. 1846 if (isConstant) { 1847 SmallVector<Constant*, 16> CV; 1848 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1849 if (ConstantFPSDNode *V = 1850 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1851 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1852 } else if (ConstantSDNode *V = 1853 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1854 if (OpVT==EltVT) 1855 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1856 else { 1857 // If OpVT and EltVT don't match, EltVT is not legal and the 1858 // element values have been promoted/truncated earlier. Undo this; 1859 // we don't want a v16i8 to become a v16i32 for example. 1860 const ConstantInt *CI = V->getConstantIntValue(); 1861 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1862 CI->getZExtValue())); 1863 } 1864 } else { 1865 assert(Node->getOperand(i).isUndef()); 1866 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1867 CV.push_back(UndefValue::get(OpNTy)); 1868 } 1869 } 1870 Constant *CP = ConstantVector::get(CV); 1871 SDValue CPIdx = 1872 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 1873 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 1874 return DAG.getLoad( 1875 VT, dl, DAG.getEntryNode(), CPIdx, 1876 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 1877 Alignment); 1878 } 1879 1880 SmallSet<SDValue, 16> DefinedValues; 1881 for (unsigned i = 0; i < NumElems; ++i) { 1882 if (Node->getOperand(i).isUndef()) 1883 continue; 1884 DefinedValues.insert(Node->getOperand(i)); 1885 } 1886 1887 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 1888 if (!MoreThanTwoValues) { 1889 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1890 for (unsigned i = 0; i < NumElems; ++i) { 1891 SDValue V = Node->getOperand(i); 1892 if (V.isUndef()) 1893 continue; 1894 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1895 } 1896 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1897 // Get the splatted value into the low element of a vector register. 1898 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1899 SDValue Vec2; 1900 if (Value2.getNode()) 1901 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 1902 else 1903 Vec2 = DAG.getUNDEF(VT); 1904 1905 // Return shuffle(LowValVec, undef, <0,0,0,0>) 1906 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1907 } 1908 } else { 1909 SDValue Res; 1910 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 1911 return Res; 1912 } 1913 } 1914 1915 // Otherwise, we can't handle this case efficiently. 1916 return ExpandVectorBuildThroughStack(Node); 1917 } 1918 1919 // Expand a node into a call to a libcall. If the result value 1920 // does not fit into a register, return the lo part and set the hi part to the 1921 // by-reg argument. If it does fit into a single register, return the result 1922 // and leave the Hi part unset. 1923 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 1924 bool isSigned) { 1925 TargetLowering::ArgListTy Args; 1926 TargetLowering::ArgListEntry Entry; 1927 for (const SDValue &Op : Node->op_values()) { 1928 EVT ArgVT = Op.getValueType(); 1929 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 1930 Entry.Node = Op; 1931 Entry.Ty = ArgTy; 1932 Entry.isSExt = isSigned; 1933 Entry.isZExt = !isSigned; 1934 Args.push_back(Entry); 1935 } 1936 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1937 TLI.getPointerTy(DAG.getDataLayout())); 1938 1939 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 1940 1941 // By default, the input chain to this libcall is the entry node of the 1942 // function. If the libcall is going to be emitted as a tail call then 1943 // TLI.isUsedByReturnOnly will change it to the right chain if the return 1944 // node which is being folded has a non-entry input chain. 1945 SDValue InChain = DAG.getEntryNode(); 1946 1947 // isTailCall may be true since the callee does not reference caller stack 1948 // frame. Check if it's in the right position and that the return types match. 1949 SDValue TCChain = InChain; 1950 const Function *F = DAG.getMachineFunction().getFunction(); 1951 bool isTailCall = 1952 TLI.isInTailCallPosition(DAG, Node, TCChain) && 1953 (RetTy == F->getReturnType() || F->getReturnType()->isVoidTy()); 1954 if (isTailCall) 1955 InChain = TCChain; 1956 1957 TargetLowering::CallLoweringInfo CLI(DAG); 1958 CLI.setDebugLoc(SDLoc(Node)).setChain(InChain) 1959 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 1960 .setTailCall(isTailCall).setSExtResult(isSigned).setZExtResult(!isSigned); 1961 1962 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 1963 1964 if (!CallInfo.second.getNode()) 1965 // It's a tailcall, return the chain (which is the DAG root). 1966 return DAG.getRoot(); 1967 1968 return CallInfo.first; 1969 } 1970 1971 /// Generate a libcall taking the given operands as arguments 1972 /// and returning a result of type RetVT. 1973 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, 1974 const SDValue *Ops, unsigned NumOps, 1975 bool isSigned, const SDLoc &dl) { 1976 TargetLowering::ArgListTy Args; 1977 Args.reserve(NumOps); 1978 1979 TargetLowering::ArgListEntry Entry; 1980 for (unsigned i = 0; i != NumOps; ++i) { 1981 Entry.Node = Ops[i]; 1982 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1983 Entry.isSExt = isSigned; 1984 Entry.isZExt = !isSigned; 1985 Args.push_back(Entry); 1986 } 1987 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1988 TLI.getPointerTy(DAG.getDataLayout())); 1989 1990 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 1991 1992 TargetLowering::CallLoweringInfo CLI(DAG); 1993 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) 1994 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 1995 .setSExtResult(isSigned).setZExtResult(!isSigned); 1996 1997 std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI); 1998 1999 return CallInfo.first; 2000 } 2001 2002 // Expand a node into a call to a libcall. Similar to 2003 // ExpandLibCall except that the first operand is the in-chain. 2004 std::pair<SDValue, SDValue> 2005 SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC, 2006 SDNode *Node, 2007 bool isSigned) { 2008 SDValue InChain = Node->getOperand(0); 2009 2010 TargetLowering::ArgListTy Args; 2011 TargetLowering::ArgListEntry Entry; 2012 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { 2013 EVT ArgVT = Node->getOperand(i).getValueType(); 2014 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2015 Entry.Node = Node->getOperand(i); 2016 Entry.Ty = ArgTy; 2017 Entry.isSExt = isSigned; 2018 Entry.isZExt = !isSigned; 2019 Args.push_back(Entry); 2020 } 2021 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2022 TLI.getPointerTy(DAG.getDataLayout())); 2023 2024 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 2025 2026 TargetLowering::CallLoweringInfo CLI(DAG); 2027 CLI.setDebugLoc(SDLoc(Node)).setChain(InChain) 2028 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 2029 .setSExtResult(isSigned).setZExtResult(!isSigned); 2030 2031 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2032 2033 return CallInfo; 2034 } 2035 2036 SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2037 RTLIB::Libcall Call_F32, 2038 RTLIB::Libcall Call_F64, 2039 RTLIB::Libcall Call_F80, 2040 RTLIB::Libcall Call_F128, 2041 RTLIB::Libcall Call_PPCF128) { 2042 RTLIB::Libcall LC; 2043 switch (Node->getSimpleValueType(0).SimpleTy) { 2044 default: llvm_unreachable("Unexpected request for libcall!"); 2045 case MVT::f32: LC = Call_F32; break; 2046 case MVT::f64: LC = Call_F64; break; 2047 case MVT::f80: LC = Call_F80; break; 2048 case MVT::f128: LC = Call_F128; break; 2049 case MVT::ppcf128: LC = Call_PPCF128; break; 2050 } 2051 return ExpandLibCall(LC, Node, false); 2052 } 2053 2054 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2055 RTLIB::Libcall Call_I8, 2056 RTLIB::Libcall Call_I16, 2057 RTLIB::Libcall Call_I32, 2058 RTLIB::Libcall Call_I64, 2059 RTLIB::Libcall Call_I128) { 2060 RTLIB::Libcall LC; 2061 switch (Node->getSimpleValueType(0).SimpleTy) { 2062 default: llvm_unreachable("Unexpected request for libcall!"); 2063 case MVT::i8: LC = Call_I8; break; 2064 case MVT::i16: LC = Call_I16; break; 2065 case MVT::i32: LC = Call_I32; break; 2066 case MVT::i64: LC = Call_I64; break; 2067 case MVT::i128: LC = Call_I128; break; 2068 } 2069 return ExpandLibCall(LC, Node, isSigned); 2070 } 2071 2072 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2073 void 2074 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2075 SmallVectorImpl<SDValue> &Results) { 2076 unsigned Opcode = Node->getOpcode(); 2077 bool isSigned = Opcode == ISD::SDIVREM; 2078 2079 RTLIB::Libcall LC; 2080 switch (Node->getSimpleValueType(0).SimpleTy) { 2081 default: llvm_unreachable("Unexpected request for libcall!"); 2082 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2083 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2084 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2085 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2086 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2087 } 2088 2089 // The input chain to this libcall is the entry node of the function. 2090 // Legalizing the call will automatically add the previous call to the 2091 // dependence. 2092 SDValue InChain = DAG.getEntryNode(); 2093 2094 EVT RetVT = Node->getValueType(0); 2095 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2096 2097 TargetLowering::ArgListTy Args; 2098 TargetLowering::ArgListEntry Entry; 2099 for (const SDValue &Op : Node->op_values()) { 2100 EVT ArgVT = Op.getValueType(); 2101 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2102 Entry.Node = Op; 2103 Entry.Ty = ArgTy; 2104 Entry.isSExt = isSigned; 2105 Entry.isZExt = !isSigned; 2106 Args.push_back(Entry); 2107 } 2108 2109 // Also pass the return address of the remainder. 2110 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2111 Entry.Node = FIPtr; 2112 Entry.Ty = RetTy->getPointerTo(); 2113 Entry.isSExt = isSigned; 2114 Entry.isZExt = !isSigned; 2115 Args.push_back(Entry); 2116 2117 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2118 TLI.getPointerTy(DAG.getDataLayout())); 2119 2120 SDLoc dl(Node); 2121 TargetLowering::CallLoweringInfo CLI(DAG); 2122 CLI.setDebugLoc(dl).setChain(InChain) 2123 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 2124 .setSExtResult(isSigned).setZExtResult(!isSigned); 2125 2126 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2127 2128 // Remainder is loaded back from the stack frame. 2129 SDValue Rem = 2130 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2131 Results.push_back(CallInfo.first); 2132 Results.push_back(Rem); 2133 } 2134 2135 /// Return true if sincos libcall is available. 2136 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2137 RTLIB::Libcall LC; 2138 switch (Node->getSimpleValueType(0).SimpleTy) { 2139 default: llvm_unreachable("Unexpected request for libcall!"); 2140 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2141 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2142 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2143 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2144 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2145 } 2146 return TLI.getLibcallName(LC) != nullptr; 2147 } 2148 2149 /// Return true if sincos libcall is available and can be used to combine sin 2150 /// and cos. 2151 static bool canCombineSinCosLibcall(SDNode *Node, const TargetLowering &TLI, 2152 const TargetMachine &TM) { 2153 if (!isSinCosLibcallAvailable(Node, TLI)) 2154 return false; 2155 // GNU sin/cos functions set errno while sincos does not. Therefore 2156 // combining sin and cos is only safe if unsafe-fpmath is enabled. 2157 if (TM.getTargetTriple().isGNUEnvironment() && !TM.Options.UnsafeFPMath) 2158 return false; 2159 return true; 2160 } 2161 2162 /// Only issue sincos libcall if both sin and cos are needed. 2163 static bool useSinCos(SDNode *Node) { 2164 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2165 ? ISD::FCOS : ISD::FSIN; 2166 2167 SDValue Op0 = Node->getOperand(0); 2168 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2169 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2170 SDNode *User = *UI; 2171 if (User == Node) 2172 continue; 2173 // The other user might have been turned into sincos already. 2174 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2175 return true; 2176 } 2177 return false; 2178 } 2179 2180 /// Issue libcalls to sincos to compute sin / cos pairs. 2181 void 2182 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2183 SmallVectorImpl<SDValue> &Results) { 2184 RTLIB::Libcall LC; 2185 switch (Node->getSimpleValueType(0).SimpleTy) { 2186 default: llvm_unreachable("Unexpected request for libcall!"); 2187 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2188 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2189 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2190 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2191 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2192 } 2193 2194 // The input chain to this libcall is the entry node of the function. 2195 // Legalizing the call will automatically add the previous call to the 2196 // dependence. 2197 SDValue InChain = DAG.getEntryNode(); 2198 2199 EVT RetVT = Node->getValueType(0); 2200 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2201 2202 TargetLowering::ArgListTy Args; 2203 TargetLowering::ArgListEntry Entry; 2204 2205 // Pass the argument. 2206 Entry.Node = Node->getOperand(0); 2207 Entry.Ty = RetTy; 2208 Entry.isSExt = false; 2209 Entry.isZExt = false; 2210 Args.push_back(Entry); 2211 2212 // Pass the return address of sin. 2213 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2214 Entry.Node = SinPtr; 2215 Entry.Ty = RetTy->getPointerTo(); 2216 Entry.isSExt = false; 2217 Entry.isZExt = false; 2218 Args.push_back(Entry); 2219 2220 // Also pass the return address of the cos. 2221 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2222 Entry.Node = CosPtr; 2223 Entry.Ty = RetTy->getPointerTo(); 2224 Entry.isSExt = false; 2225 Entry.isZExt = false; 2226 Args.push_back(Entry); 2227 2228 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2229 TLI.getPointerTy(DAG.getDataLayout())); 2230 2231 SDLoc dl(Node); 2232 TargetLowering::CallLoweringInfo CLI(DAG); 2233 CLI.setDebugLoc(dl).setChain(InChain) 2234 .setCallee(TLI.getLibcallCallingConv(LC), 2235 Type::getVoidTy(*DAG.getContext()), Callee, std::move(Args)); 2236 2237 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2238 2239 Results.push_back( 2240 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2241 Results.push_back( 2242 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2243 } 2244 2245 /// This function is responsible for legalizing a 2246 /// INT_TO_FP operation of the specified operand when the target requests that 2247 /// we expand it. At this point, we know that the result and operand types are 2248 /// legal for the target. 2249 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0, 2250 EVT DestVT, 2251 const SDLoc &dl) { 2252 // TODO: Should any fast-math-flags be set for the created nodes? 2253 2254 if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { 2255 // simple 32-bit [signed|unsigned] integer to float/double expansion 2256 2257 // Get the stack frame index of a 8 byte buffer. 2258 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2259 2260 // word offset constant for Hi/Lo address computation 2261 SDValue WordOff = DAG.getConstant(sizeof(int), dl, 2262 StackSlot.getValueType()); 2263 // set up Hi and Lo (into buffer) address based on endian 2264 SDValue Hi = StackSlot; 2265 SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(), 2266 StackSlot, WordOff); 2267 if (DAG.getDataLayout().isLittleEndian()) 2268 std::swap(Hi, Lo); 2269 2270 // if signed map to unsigned space 2271 SDValue Op0Mapped; 2272 if (isSigned) { 2273 // constant used to invert sign bit (signed to unsigned mapping) 2274 SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32); 2275 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); 2276 } else { 2277 Op0Mapped = Op0; 2278 } 2279 // store the lo of the constructed double - based on integer input 2280 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo, 2281 MachinePointerInfo()); 2282 // initial hi portion of constructed double 2283 SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2284 // store the hi of the constructed double - biased exponent 2285 SDValue Store2 = 2286 DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo()); 2287 // load the constructed double 2288 SDValue Load = 2289 DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo()); 2290 // FP constant to bias correct the final result 2291 SDValue Bias = DAG.getConstantFP(isSigned ? 2292 BitsToDouble(0x4330000080000000ULL) : 2293 BitsToDouble(0x4330000000000000ULL), 2294 dl, MVT::f64); 2295 // subtract the bias 2296 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2297 // final result 2298 SDValue Result; 2299 // handle final rounding 2300 if (DestVT == MVT::f64) { 2301 // do nothing 2302 Result = Sub; 2303 } else if (DestVT.bitsLT(MVT::f64)) { 2304 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, 2305 DAG.getIntPtrConstant(0, dl)); 2306 } else if (DestVT.bitsGT(MVT::f64)) { 2307 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); 2308 } 2309 return Result; 2310 } 2311 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2312 // Code below here assumes !isSigned without checking again. 2313 2314 // Implementation of unsigned i64 to f64 following the algorithm in 2315 // __floatundidf in compiler_rt. This implementation has the advantage 2316 // of performing rounding correctly, both in the default rounding mode 2317 // and in all alternate rounding modes. 2318 // TODO: Generalize this for use with other types. 2319 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) { 2320 SDValue TwoP52 = 2321 DAG.getConstant(UINT64_C(0x4330000000000000), dl, MVT::i64); 2322 SDValue TwoP84PlusTwoP52 = 2323 DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), dl, 2324 MVT::f64); 2325 SDValue TwoP84 = 2326 DAG.getConstant(UINT64_C(0x4530000000000000), dl, MVT::i64); 2327 2328 SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32); 2329 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, 2330 DAG.getConstant(32, dl, MVT::i64)); 2331 SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52); 2332 SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84); 2333 SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr); 2334 SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr); 2335 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, 2336 TwoP84PlusTwoP52); 2337 return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub); 2338 } 2339 2340 // Implementation of unsigned i64 to f32. 2341 // TODO: Generalize this for use with other types. 2342 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) { 2343 // For unsigned conversions, convert them to signed conversions using the 2344 // algorithm from the x86_64 __floatundidf in compiler_rt. 2345 if (!isSigned) { 2346 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0); 2347 2348 SDValue ShiftConst = DAG.getConstant( 2349 1, dl, TLI.getShiftAmountTy(Op0.getValueType(), DAG.getDataLayout())); 2350 SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst); 2351 SDValue AndConst = DAG.getConstant(1, dl, MVT::i64); 2352 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst); 2353 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr); 2354 2355 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or); 2356 SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt); 2357 2358 // TODO: This really should be implemented using a branch rather than a 2359 // select. We happen to get lucky and machinesink does the right 2360 // thing most of the time. This would be a good candidate for a 2361 //pseudo-op, or, even better, for whole-function isel. 2362 SDValue SignBitTest = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), 2363 Op0, DAG.getConstant(0, dl, MVT::i64), ISD::SETLT); 2364 return DAG.getSelect(dl, MVT::f32, SignBitTest, Slow, Fast); 2365 } 2366 2367 // Otherwise, implement the fully general conversion. 2368 2369 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2370 DAG.getConstant(UINT64_C(0xfffffffffffff800), dl, MVT::i64)); 2371 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, 2372 DAG.getConstant(UINT64_C(0x800), dl, MVT::i64)); 2373 SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2374 DAG.getConstant(UINT64_C(0x7ff), dl, MVT::i64)); 2375 SDValue Ne = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), And2, 2376 DAG.getConstant(UINT64_C(0), dl, MVT::i64), 2377 ISD::SETNE); 2378 SDValue Sel = DAG.getSelect(dl, MVT::i64, Ne, Or, Op0); 2379 SDValue Ge = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), Op0, 2380 DAG.getConstant(UINT64_C(0x0020000000000000), dl, 2381 MVT::i64), 2382 ISD::SETUGE); 2383 SDValue Sel2 = DAG.getSelect(dl, MVT::i64, Ge, Sel, Op0); 2384 EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType(), DAG.getDataLayout()); 2385 2386 SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2, 2387 DAG.getConstant(32, dl, SHVT)); 2388 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh); 2389 SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc); 2390 SDValue TwoP32 = 2391 DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), dl, 2392 MVT::f64); 2393 SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt); 2394 SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2); 2395 SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo); 2396 SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2); 2397 return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd, 2398 DAG.getIntPtrConstant(0, dl)); 2399 } 2400 2401 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2402 2403 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(Op0.getValueType()), 2404 Op0, 2405 DAG.getConstant(0, dl, Op0.getValueType()), 2406 ISD::SETLT); 2407 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2408 Four = DAG.getIntPtrConstant(4, dl); 2409 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2410 SignSet, Four, Zero); 2411 2412 // If the sign bit of the integer is set, the large number will be treated 2413 // as a negative number. To counteract this, the dynamic code adds an 2414 // offset depending on the data type. 2415 uint64_t FF; 2416 switch (Op0.getSimpleValueType().SimpleTy) { 2417 default: llvm_unreachable("Unsupported integer type!"); 2418 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2419 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2420 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2421 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2422 } 2423 if (DAG.getDataLayout().isLittleEndian()) 2424 FF <<= 32; 2425 Constant *FudgeFactor = ConstantInt::get( 2426 Type::getInt64Ty(*DAG.getContext()), FF); 2427 2428 SDValue CPIdx = 2429 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2430 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2431 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2432 Alignment = std::min(Alignment, 4u); 2433 SDValue FudgeInReg; 2434 if (DestVT == MVT::f32) 2435 FudgeInReg = DAG.getLoad( 2436 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2437 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2438 Alignment); 2439 else { 2440 SDValue Load = DAG.getExtLoad( 2441 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2442 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2443 Alignment); 2444 HandleSDNode Handle(Load); 2445 LegalizeOp(Load.getNode()); 2446 FudgeInReg = Handle.getValue(); 2447 } 2448 2449 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2450 } 2451 2452 /// This function is responsible for legalizing a 2453 /// *INT_TO_FP operation of the specified operand when the target requests that 2454 /// we promote it. At this point, we know that the result and operand types are 2455 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2456 /// operation that takes a larger input. 2457 SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, 2458 bool isSigned, 2459 const SDLoc &dl) { 2460 // First step, figure out the appropriate *INT_TO_FP operation to use. 2461 EVT NewInTy = LegalOp.getValueType(); 2462 2463 unsigned OpToUse = 0; 2464 2465 // Scan for the appropriate larger type to use. 2466 while (1) { 2467 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2468 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2469 2470 // If the target supports SINT_TO_FP of this type, use it. 2471 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { 2472 OpToUse = ISD::SINT_TO_FP; 2473 break; 2474 } 2475 if (isSigned) continue; 2476 2477 // If the target supports UINT_TO_FP of this type, use it. 2478 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { 2479 OpToUse = ISD::UINT_TO_FP; 2480 break; 2481 } 2482 2483 // Otherwise, try a larger type. 2484 } 2485 2486 // Okay, we found the operation and type to use. Zero extend our input to the 2487 // desired type then run the operation on it. 2488 return DAG.getNode(OpToUse, dl, DestVT, 2489 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2490 dl, NewInTy, LegalOp)); 2491 } 2492 2493 /// This function is responsible for legalizing a 2494 /// FP_TO_*INT operation of the specified operand when the target requests that 2495 /// we promote it. At this point, we know that the result and operand types are 2496 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2497 /// operation that returns a larger result. 2498 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, 2499 bool isSigned, 2500 const SDLoc &dl) { 2501 // First step, figure out the appropriate FP_TO*INT operation to use. 2502 EVT NewOutTy = DestVT; 2503 2504 unsigned OpToUse = 0; 2505 2506 // Scan for the appropriate larger type to use. 2507 while (1) { 2508 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2509 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2510 2511 // A larger signed type can hold all unsigned values of the requested type, 2512 // so using FP_TO_SINT is valid 2513 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { 2514 OpToUse = ISD::FP_TO_SINT; 2515 break; 2516 } 2517 2518 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2519 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { 2520 OpToUse = ISD::FP_TO_UINT; 2521 break; 2522 } 2523 2524 // Otherwise, try a larger type. 2525 } 2526 2527 2528 // Okay, we found the operation and type to use. 2529 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2530 2531 // Truncate the result of the extended FP_TO_*INT operation to the desired 2532 // size. 2533 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2534 } 2535 2536 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts. 2537 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) { 2538 EVT VT = Op.getValueType(); 2539 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2540 unsigned Sz = VT.getScalarSizeInBits(); 2541 2542 SDValue Tmp, Tmp2, Tmp3; 2543 2544 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 2545 // and finally the i1 pairs. 2546 // TODO: We can easily support i4/i2 legal types if any target ever does. 2547 if (Sz >= 8 && isPowerOf2_32(Sz)) { 2548 // Create the masks - repeating the pattern every byte. 2549 APInt MaskHi4(Sz, 0), MaskHi2(Sz, 0), MaskHi1(Sz, 0); 2550 APInt MaskLo4(Sz, 0), MaskLo2(Sz, 0), MaskLo1(Sz, 0); 2551 for (unsigned J = 0; J != Sz; J += 8) { 2552 MaskHi4 = MaskHi4.Or(APInt(Sz, 0xF0ull << J)); 2553 MaskLo4 = MaskLo4.Or(APInt(Sz, 0x0Full << J)); 2554 MaskHi2 = MaskHi2.Or(APInt(Sz, 0xCCull << J)); 2555 MaskLo2 = MaskLo2.Or(APInt(Sz, 0x33ull << J)); 2556 MaskHi1 = MaskHi1.Or(APInt(Sz, 0xAAull << J)); 2557 MaskLo1 = MaskLo1.Or(APInt(Sz, 0x55ull << J)); 2558 } 2559 2560 // BSWAP if the type is wider than a single byte. 2561 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 2562 2563 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) 2564 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); 2565 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); 2566 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, VT)); 2567 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, VT)); 2568 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2569 2570 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) 2571 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); 2572 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); 2573 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, VT)); 2574 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, VT)); 2575 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2576 2577 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) 2578 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); 2579 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); 2580 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, VT)); 2581 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, VT)); 2582 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2583 return Tmp; 2584 } 2585 2586 Tmp = DAG.getConstant(0, dl, VT); 2587 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 2588 if (I < J) 2589 Tmp2 = 2590 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 2591 else 2592 Tmp2 = 2593 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 2594 2595 APInt Shift(Sz, 1); 2596 Shift = Shift.shl(J); 2597 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 2598 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 2599 } 2600 2601 return Tmp; 2602 } 2603 2604 /// Open code the operations for BSWAP of the specified operation. 2605 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) { 2606 EVT VT = Op.getValueType(); 2607 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2608 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2609 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 2610 default: llvm_unreachable("Unhandled Expand type in BSWAP!"); 2611 case MVT::i16: 2612 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2613 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2614 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 2615 case MVT::i32: 2616 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2617 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2618 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2619 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2620 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2621 DAG.getConstant(0xFF0000, dl, VT)); 2622 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 2623 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2624 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2625 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2626 case MVT::i64: 2627 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2628 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2629 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2630 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2631 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2632 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2633 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2634 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2635 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 2636 DAG.getConstant(255ULL<<48, dl, VT)); 2637 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 2638 DAG.getConstant(255ULL<<40, dl, VT)); 2639 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 2640 DAG.getConstant(255ULL<<32, dl, VT)); 2641 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 2642 DAG.getConstant(255ULL<<24, dl, VT)); 2643 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2644 DAG.getConstant(255ULL<<16, dl, VT)); 2645 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 2646 DAG.getConstant(255ULL<<8 , dl, VT)); 2647 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2648 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2649 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2650 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2651 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2652 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2653 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2654 } 2655 } 2656 2657 /// Expand the specified bitcount instruction into operations. 2658 SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op, 2659 const SDLoc &dl) { 2660 switch (Opc) { 2661 default: llvm_unreachable("Cannot expand this yet!"); 2662 case ISD::CTPOP: { 2663 EVT VT = Op.getValueType(); 2664 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2665 unsigned Len = VT.getSizeInBits(); 2666 2667 assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 && 2668 "CTPOP not implemented for this type."); 2669 2670 // This is the "best" algorithm from 2671 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 2672 2673 SDValue Mask55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), 2674 dl, VT); 2675 SDValue Mask33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), 2676 dl, VT); 2677 SDValue Mask0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), 2678 dl, VT); 2679 SDValue Mask01 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), 2680 dl, VT); 2681 2682 // v = v - ((v >> 1) & 0x55555555...) 2683 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 2684 DAG.getNode(ISD::AND, dl, VT, 2685 DAG.getNode(ISD::SRL, dl, VT, Op, 2686 DAG.getConstant(1, dl, ShVT)), 2687 Mask55)); 2688 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 2689 Op = DAG.getNode(ISD::ADD, dl, VT, 2690 DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 2691 DAG.getNode(ISD::AND, dl, VT, 2692 DAG.getNode(ISD::SRL, dl, VT, Op, 2693 DAG.getConstant(2, dl, ShVT)), 2694 Mask33)); 2695 // v = (v + (v >> 4)) & 0x0F0F0F0F... 2696 Op = DAG.getNode(ISD::AND, dl, VT, 2697 DAG.getNode(ISD::ADD, dl, VT, Op, 2698 DAG.getNode(ISD::SRL, dl, VT, Op, 2699 DAG.getConstant(4, dl, ShVT))), 2700 Mask0F); 2701 // v = (v * 0x01010101...) >> (Len - 8) 2702 Op = DAG.getNode(ISD::SRL, dl, VT, 2703 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 2704 DAG.getConstant(Len - 8, dl, ShVT)); 2705 2706 return Op; 2707 } 2708 case ISD::CTLZ_ZERO_UNDEF: 2709 // This trivially expands to CTLZ. 2710 return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op); 2711 case ISD::CTLZ: { 2712 EVT VT = Op.getValueType(); 2713 unsigned len = VT.getSizeInBits(); 2714 2715 if (TLI.isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 2716 EVT SetCCVT = getSetCCResultType(VT); 2717 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 2718 SDValue Zero = DAG.getConstant(0, dl, VT); 2719 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 2720 return DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 2721 DAG.getConstant(len, dl, VT), CTLZ); 2722 } 2723 2724 // for now, we do this: 2725 // x = x | (x >> 1); 2726 // x = x | (x >> 2); 2727 // ... 2728 // x = x | (x >>16); 2729 // x = x | (x >>32); // for 64-bit input 2730 // return popcount(~x); 2731 // 2732 // Ref: "Hacker's Delight" by Henry Warren 2733 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2734 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 2735 SDValue Tmp3 = DAG.getConstant(1ULL << i, dl, ShVT); 2736 Op = DAG.getNode(ISD::OR, dl, VT, Op, 2737 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3)); 2738 } 2739 Op = DAG.getNOT(dl, Op, VT); 2740 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 2741 } 2742 case ISD::CTTZ_ZERO_UNDEF: 2743 // This trivially expands to CTTZ. 2744 return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op); 2745 case ISD::CTTZ: { 2746 // for now, we use: { return popcount(~x & (x - 1)); } 2747 // unless the target has ctlz but not ctpop, in which case we use: 2748 // { return 32 - nlz(~x & (x-1)); } 2749 // Ref: "Hacker's Delight" by Henry Warren 2750 EVT VT = Op.getValueType(); 2751 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT, 2752 DAG.getNOT(dl, Op, VT), 2753 DAG.getNode(ISD::SUB, dl, VT, Op, 2754 DAG.getConstant(1, dl, VT))); 2755 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 2756 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && 2757 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) 2758 return DAG.getNode(ISD::SUB, dl, VT, 2759 DAG.getConstant(VT.getSizeInBits(), dl, VT), 2760 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3)); 2761 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3); 2762 } 2763 } 2764 } 2765 2766 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2767 SmallVector<SDValue, 8> Results; 2768 SDLoc dl(Node); 2769 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2770 bool NeedInvert; 2771 switch (Node->getOpcode()) { 2772 case ISD::CTPOP: 2773 case ISD::CTLZ: 2774 case ISD::CTLZ_ZERO_UNDEF: 2775 case ISD::CTTZ: 2776 case ISD::CTTZ_ZERO_UNDEF: 2777 Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl); 2778 Results.push_back(Tmp1); 2779 break; 2780 case ISD::BITREVERSE: 2781 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl)); 2782 break; 2783 case ISD::BSWAP: 2784 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2785 break; 2786 case ISD::FRAMEADDR: 2787 case ISD::RETURNADDR: 2788 case ISD::FRAME_TO_ARGS_OFFSET: 2789 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2790 break; 2791 case ISD::EH_DWARF_CFA: { 2792 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 2793 TLI.getPointerTy(DAG.getDataLayout())); 2794 SDValue Offset = DAG.getNode(ISD::ADD, dl, 2795 CfaArg.getValueType(), 2796 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 2797 CfaArg.getValueType()), 2798 CfaArg); 2799 SDValue FA = DAG.getNode( 2800 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 2801 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2802 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 2803 FA, Offset)); 2804 break; 2805 } 2806 case ISD::FLT_ROUNDS_: 2807 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2808 break; 2809 case ISD::EH_RETURN: 2810 case ISD::EH_LABEL: 2811 case ISD::PREFETCH: 2812 case ISD::VAEND: 2813 case ISD::EH_SJLJ_LONGJMP: 2814 // If the target didn't expand these, there's nothing to do, so just 2815 // preserve the chain and be done. 2816 Results.push_back(Node->getOperand(0)); 2817 break; 2818 case ISD::READCYCLECOUNTER: 2819 // If the target didn't expand this, just return 'zero' and preserve the 2820 // chain. 2821 Results.append(Node->getNumValues() - 1, 2822 DAG.getConstant(0, dl, Node->getValueType(0))); 2823 Results.push_back(Node->getOperand(0)); 2824 break; 2825 case ISD::EH_SJLJ_SETJMP: 2826 // If the target didn't expand this, just return 'zero' and preserve the 2827 // chain. 2828 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2829 Results.push_back(Node->getOperand(0)); 2830 break; 2831 case ISD::ATOMIC_LOAD: { 2832 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2833 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2834 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2835 SDValue Swap = DAG.getAtomicCmpSwap( 2836 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2837 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2838 cast<AtomicSDNode>(Node)->getMemOperand(), 2839 cast<AtomicSDNode>(Node)->getOrdering(), 2840 cast<AtomicSDNode>(Node)->getOrdering(), 2841 cast<AtomicSDNode>(Node)->getSynchScope()); 2842 Results.push_back(Swap.getValue(0)); 2843 Results.push_back(Swap.getValue(1)); 2844 break; 2845 } 2846 case ISD::ATOMIC_STORE: { 2847 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2848 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2849 cast<AtomicSDNode>(Node)->getMemoryVT(), 2850 Node->getOperand(0), 2851 Node->getOperand(1), Node->getOperand(2), 2852 cast<AtomicSDNode>(Node)->getMemOperand(), 2853 cast<AtomicSDNode>(Node)->getOrdering(), 2854 cast<AtomicSDNode>(Node)->getSynchScope()); 2855 Results.push_back(Swap.getValue(1)); 2856 break; 2857 } 2858 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 2859 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 2860 // splits out the success value as a comparison. Expanding the resulting 2861 // ATOMIC_CMP_SWAP will produce a libcall. 2862 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2863 SDValue Res = DAG.getAtomicCmpSwap( 2864 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2865 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 2866 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand(), 2867 cast<AtomicSDNode>(Node)->getSuccessOrdering(), 2868 cast<AtomicSDNode>(Node)->getFailureOrdering(), 2869 cast<AtomicSDNode>(Node)->getSynchScope()); 2870 2871 SDValue ExtRes = Res; 2872 SDValue LHS = Res; 2873 SDValue RHS = Node->getOperand(1); 2874 2875 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 2876 EVT OuterType = Node->getValueType(0); 2877 switch (TLI.getExtendForAtomicOps()) { 2878 case ISD::SIGN_EXTEND: 2879 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 2880 DAG.getValueType(AtomicType)); 2881 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 2882 Node->getOperand(2), DAG.getValueType(AtomicType)); 2883 ExtRes = LHS; 2884 break; 2885 case ISD::ZERO_EXTEND: 2886 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 2887 DAG.getValueType(AtomicType)); 2888 RHS = DAG.getNode(ISD::ZERO_EXTEND, dl, OuterType, Node->getOperand(2)); 2889 ExtRes = LHS; 2890 break; 2891 case ISD::ANY_EXTEND: 2892 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 2893 RHS = DAG.getNode(ISD::ZERO_EXTEND, dl, OuterType, Node->getOperand(2)); 2894 break; 2895 default: 2896 llvm_unreachable("Invalid atomic op extension"); 2897 } 2898 2899 SDValue Success = 2900 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 2901 2902 Results.push_back(ExtRes.getValue(0)); 2903 Results.push_back(Success); 2904 Results.push_back(Res.getValue(1)); 2905 break; 2906 } 2907 case ISD::DYNAMIC_STACKALLOC: 2908 ExpandDYNAMIC_STACKALLOC(Node, Results); 2909 break; 2910 case ISD::MERGE_VALUES: 2911 for (unsigned i = 0; i < Node->getNumValues(); i++) 2912 Results.push_back(Node->getOperand(i)); 2913 break; 2914 case ISD::UNDEF: { 2915 EVT VT = Node->getValueType(0); 2916 if (VT.isInteger()) 2917 Results.push_back(DAG.getConstant(0, dl, VT)); 2918 else { 2919 assert(VT.isFloatingPoint() && "Unknown value type!"); 2920 Results.push_back(DAG.getConstantFP(0, dl, VT)); 2921 } 2922 break; 2923 } 2924 case ISD::FP_ROUND: 2925 case ISD::BITCAST: 2926 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 2927 Node->getValueType(0), dl); 2928 Results.push_back(Tmp1); 2929 break; 2930 case ISD::FP_EXTEND: 2931 Tmp1 = EmitStackConvert(Node->getOperand(0), 2932 Node->getOperand(0).getValueType(), 2933 Node->getValueType(0), dl); 2934 Results.push_back(Tmp1); 2935 break; 2936 case ISD::SIGN_EXTEND_INREG: { 2937 // NOTE: we could fall back on load/store here too for targets without 2938 // SAR. However, it is doubtful that any exist. 2939 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2940 EVT VT = Node->getValueType(0); 2941 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2942 if (VT.isVector()) 2943 ShiftAmountTy = VT; 2944 unsigned BitsDiff = VT.getScalarSizeInBits() - 2945 ExtraVT.getScalarSizeInBits(); 2946 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 2947 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 2948 Node->getOperand(0), ShiftCst); 2949 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 2950 Results.push_back(Tmp1); 2951 break; 2952 } 2953 case ISD::FP_ROUND_INREG: { 2954 // The only way we can lower this is to turn it into a TRUNCSTORE, 2955 // EXTLOAD pair, targeting a temporary location (a stack slot). 2956 2957 // NOTE: there is a choice here between constantly creating new stack 2958 // slots and always reusing the same one. We currently always create 2959 // new ones, as reuse may inhibit scheduling. 2960 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2961 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT, 2962 Node->getValueType(0), dl); 2963 Results.push_back(Tmp1); 2964 break; 2965 } 2966 case ISD::SINT_TO_FP: 2967 case ISD::UINT_TO_FP: 2968 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, 2969 Node->getOperand(0), Node->getValueType(0), dl); 2970 Results.push_back(Tmp1); 2971 break; 2972 case ISD::FP_TO_SINT: 2973 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 2974 Results.push_back(Tmp1); 2975 break; 2976 case ISD::FP_TO_UINT: { 2977 SDValue True, False; 2978 EVT VT = Node->getOperand(0).getValueType(); 2979 EVT NVT = Node->getValueType(0); 2980 APFloat apf(DAG.EVTToAPFloatSemantics(VT), 2981 APInt::getNullValue(VT.getSizeInBits())); 2982 APInt x = APInt::getSignBit(NVT.getSizeInBits()); 2983 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); 2984 Tmp1 = DAG.getConstantFP(apf, dl, VT); 2985 Tmp2 = DAG.getSetCC(dl, getSetCCResultType(VT), 2986 Node->getOperand(0), 2987 Tmp1, ISD::SETLT); 2988 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0)); 2989 // TODO: Should any fast-math-flags be set for the FSUB? 2990 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, 2991 DAG.getNode(ISD::FSUB, dl, VT, 2992 Node->getOperand(0), Tmp1)); 2993 False = DAG.getNode(ISD::XOR, dl, NVT, False, 2994 DAG.getConstant(x, dl, NVT)); 2995 Tmp1 = DAG.getSelect(dl, NVT, Tmp2, True, False); 2996 Results.push_back(Tmp1); 2997 break; 2998 } 2999 case ISD::VAARG: 3000 Results.push_back(DAG.expandVAArg(Node)); 3001 Results.push_back(Results[0].getValue(1)); 3002 break; 3003 case ISD::VACOPY: 3004 Results.push_back(DAG.expandVACopy(Node)); 3005 break; 3006 case ISD::EXTRACT_VECTOR_ELT: 3007 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 3008 // This must be an access of the only element. Return it. 3009 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 3010 Node->getOperand(0)); 3011 else 3012 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 3013 Results.push_back(Tmp1); 3014 break; 3015 case ISD::EXTRACT_SUBVECTOR: 3016 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 3017 break; 3018 case ISD::INSERT_SUBVECTOR: 3019 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 3020 break; 3021 case ISD::CONCAT_VECTORS: { 3022 Results.push_back(ExpandVectorBuildThroughStack(Node)); 3023 break; 3024 } 3025 case ISD::SCALAR_TO_VECTOR: 3026 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3027 break; 3028 case ISD::INSERT_VECTOR_ELT: 3029 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3030 Node->getOperand(1), 3031 Node->getOperand(2), dl)); 3032 break; 3033 case ISD::VECTOR_SHUFFLE: { 3034 SmallVector<int, 32> NewMask; 3035 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3036 3037 EVT VT = Node->getValueType(0); 3038 EVT EltVT = VT.getVectorElementType(); 3039 SDValue Op0 = Node->getOperand(0); 3040 SDValue Op1 = Node->getOperand(1); 3041 if (!TLI.isTypeLegal(EltVT)) { 3042 3043 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3044 3045 // BUILD_VECTOR operands are allowed to be wider than the element type. 3046 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 3047 // it. 3048 if (NewEltVT.bitsLT(EltVT)) { 3049 3050 // Convert shuffle node. 3051 // If original node was v4i64 and the new EltVT is i32, 3052 // cast operands to v8i32 and re-build the mask. 3053 3054 // Calculate new VT, the size of the new VT should be equal to original. 3055 EVT NewVT = 3056 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3057 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 3058 assert(NewVT.bitsEq(VT)); 3059 3060 // cast operands to new VT 3061 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3062 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3063 3064 // Convert the shuffle mask 3065 unsigned int factor = 3066 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3067 3068 // EltVT gets smaller 3069 assert(factor > 0); 3070 3071 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3072 if (Mask[i] < 0) { 3073 for (unsigned fi = 0; fi < factor; ++fi) 3074 NewMask.push_back(Mask[i]); 3075 } 3076 else { 3077 for (unsigned fi = 0; fi < factor; ++fi) 3078 NewMask.push_back(Mask[i]*factor+fi); 3079 } 3080 } 3081 Mask = NewMask; 3082 VT = NewVT; 3083 } 3084 EltVT = NewEltVT; 3085 } 3086 unsigned NumElems = VT.getVectorNumElements(); 3087 SmallVector<SDValue, 16> Ops; 3088 for (unsigned i = 0; i != NumElems; ++i) { 3089 if (Mask[i] < 0) { 3090 Ops.push_back(DAG.getUNDEF(EltVT)); 3091 continue; 3092 } 3093 unsigned Idx = Mask[i]; 3094 if (Idx < NumElems) 3095 Ops.push_back(DAG.getNode( 3096 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3097 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())))); 3098 else 3099 Ops.push_back(DAG.getNode( 3100 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3101 DAG.getConstant(Idx - NumElems, dl, 3102 TLI.getVectorIdxTy(DAG.getDataLayout())))); 3103 } 3104 3105 Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3106 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3107 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3108 Results.push_back(Tmp1); 3109 break; 3110 } 3111 case ISD::EXTRACT_ELEMENT: { 3112 EVT OpTy = Node->getOperand(0).getValueType(); 3113 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3114 // 1 -> Hi 3115 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3116 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3117 TLI.getShiftAmountTy( 3118 Node->getOperand(0).getValueType(), 3119 DAG.getDataLayout()))); 3120 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3121 } else { 3122 // 0 -> Lo 3123 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3124 Node->getOperand(0)); 3125 } 3126 Results.push_back(Tmp1); 3127 break; 3128 } 3129 case ISD::STACKSAVE: 3130 // Expand to CopyFromReg if the target set 3131 // StackPointerRegisterToSaveRestore. 3132 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3133 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3134 Node->getValueType(0))); 3135 Results.push_back(Results[0].getValue(1)); 3136 } else { 3137 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3138 Results.push_back(Node->getOperand(0)); 3139 } 3140 break; 3141 case ISD::STACKRESTORE: 3142 // Expand to CopyToReg if the target set 3143 // StackPointerRegisterToSaveRestore. 3144 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3145 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3146 Node->getOperand(1))); 3147 } else { 3148 Results.push_back(Node->getOperand(0)); 3149 } 3150 break; 3151 case ISD::GET_DYNAMIC_AREA_OFFSET: 3152 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3153 Results.push_back(Results[0].getValue(0)); 3154 break; 3155 case ISD::FCOPYSIGN: 3156 Results.push_back(ExpandFCOPYSIGN(Node)); 3157 break; 3158 case ISD::FNEG: 3159 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3160 Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0)); 3161 // TODO: If FNEG has fast-math-flags, propagate them to the FSUB. 3162 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, 3163 Node->getOperand(0)); 3164 Results.push_back(Tmp1); 3165 break; 3166 case ISD::FABS: 3167 Results.push_back(ExpandFABS(Node)); 3168 break; 3169 case ISD::SMIN: 3170 case ISD::SMAX: 3171 case ISD::UMIN: 3172 case ISD::UMAX: { 3173 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3174 ISD::CondCode Pred; 3175 switch (Node->getOpcode()) { 3176 default: llvm_unreachable("How did we get here?"); 3177 case ISD::SMAX: Pred = ISD::SETGT; break; 3178 case ISD::SMIN: Pred = ISD::SETLT; break; 3179 case ISD::UMAX: Pred = ISD::SETUGT; break; 3180 case ISD::UMIN: Pred = ISD::SETULT; break; 3181 } 3182 Tmp1 = Node->getOperand(0); 3183 Tmp2 = Node->getOperand(1); 3184 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3185 Results.push_back(Tmp1); 3186 break; 3187 } 3188 3189 case ISD::FSIN: 3190 case ISD::FCOS: { 3191 EVT VT = Node->getValueType(0); 3192 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3193 // fcos which share the same operand and both are used. 3194 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3195 canCombineSinCosLibcall(Node, TLI, TM)) 3196 && useSinCos(Node)) { 3197 SDVTList VTs = DAG.getVTList(VT, VT); 3198 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3199 if (Node->getOpcode() == ISD::FCOS) 3200 Tmp1 = Tmp1.getValue(1); 3201 Results.push_back(Tmp1); 3202 } 3203 break; 3204 } 3205 case ISD::FMAD: 3206 llvm_unreachable("Illegal fmad should never be formed"); 3207 3208 case ISD::FP16_TO_FP: 3209 if (Node->getValueType(0) != MVT::f32) { 3210 // We can extend to types bigger than f32 in two steps without changing 3211 // the result. Since "f16 -> f32" is much more commonly available, give 3212 // CodeGen the option of emitting that before resorting to a libcall. 3213 SDValue Res = 3214 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3215 Results.push_back( 3216 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3217 } 3218 break; 3219 case ISD::FP_TO_FP16: 3220 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3221 SDValue Op = Node->getOperand(0); 3222 MVT SVT = Op.getSimpleValueType(); 3223 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3224 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3225 // Under fastmath, we can expand this node into a fround followed by 3226 // a float-half conversion. 3227 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3228 DAG.getIntPtrConstant(0, dl)); 3229 Results.push_back( 3230 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3231 } 3232 } 3233 break; 3234 case ISD::ConstantFP: { 3235 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3236 // Check to see if this FP immediate is already legal. 3237 // If this is a legal constant, turn it into a TargetConstantFP node. 3238 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0))) 3239 Results.push_back(ExpandConstantFP(CFP, true)); 3240 break; 3241 } 3242 case ISD::Constant: { 3243 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3244 Results.push_back(ExpandConstant(CP)); 3245 break; 3246 } 3247 case ISD::FSUB: { 3248 EVT VT = Node->getValueType(0); 3249 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3250 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3251 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(Node)->Flags; 3252 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3253 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3254 Results.push_back(Tmp1); 3255 } 3256 break; 3257 } 3258 case ISD::SUB: { 3259 EVT VT = Node->getValueType(0); 3260 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3261 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3262 "Don't know how to expand this subtraction!"); 3263 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3264 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, 3265 VT)); 3266 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3267 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3268 break; 3269 } 3270 case ISD::UREM: 3271 case ISD::SREM: { 3272 EVT VT = Node->getValueType(0); 3273 bool isSigned = Node->getOpcode() == ISD::SREM; 3274 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 3275 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3276 Tmp2 = Node->getOperand(0); 3277 Tmp3 = Node->getOperand(1); 3278 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3279 SDVTList VTs = DAG.getVTList(VT, VT); 3280 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); 3281 Results.push_back(Tmp1); 3282 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { 3283 // X % Y -> X-X/Y*Y 3284 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); 3285 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); 3286 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); 3287 Results.push_back(Tmp1); 3288 } 3289 break; 3290 } 3291 case ISD::UDIV: 3292 case ISD::SDIV: { 3293 bool isSigned = Node->getOpcode() == ISD::SDIV; 3294 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3295 EVT VT = Node->getValueType(0); 3296 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3297 SDVTList VTs = DAG.getVTList(VT, VT); 3298 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3299 Node->getOperand(1)); 3300 Results.push_back(Tmp1); 3301 } 3302 break; 3303 } 3304 case ISD::MULHU: 3305 case ISD::MULHS: { 3306 unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : 3307 ISD::SMUL_LOHI; 3308 EVT VT = Node->getValueType(0); 3309 SDVTList VTs = DAG.getVTList(VT, VT); 3310 assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) && 3311 "If this wasn't legal, it shouldn't have been created!"); 3312 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3313 Node->getOperand(1)); 3314 Results.push_back(Tmp1.getValue(1)); 3315 break; 3316 } 3317 case ISD::MUL: { 3318 EVT VT = Node->getValueType(0); 3319 SDVTList VTs = DAG.getVTList(VT, VT); 3320 // See if multiply or divide can be lowered using two-result operations. 3321 // We just need the low half of the multiply; try both the signed 3322 // and unsigned forms. If the target supports both SMUL_LOHI and 3323 // UMUL_LOHI, form a preference by checking which forms of plain 3324 // MULH it supports. 3325 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3326 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3327 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3328 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3329 unsigned OpToUse = 0; 3330 if (HasSMUL_LOHI && !HasMULHS) { 3331 OpToUse = ISD::SMUL_LOHI; 3332 } else if (HasUMUL_LOHI && !HasMULHU) { 3333 OpToUse = ISD::UMUL_LOHI; 3334 } else if (HasSMUL_LOHI) { 3335 OpToUse = ISD::SMUL_LOHI; 3336 } else if (HasUMUL_LOHI) { 3337 OpToUse = ISD::UMUL_LOHI; 3338 } 3339 if (OpToUse) { 3340 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3341 Node->getOperand(1))); 3342 break; 3343 } 3344 3345 SDValue Lo, Hi; 3346 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3347 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3348 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3349 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3350 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3351 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG)) { 3352 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3353 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3354 SDValue Shift = 3355 DAG.getConstant(HalfType.getSizeInBits(), dl, 3356 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3357 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3358 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3359 } 3360 break; 3361 } 3362 case ISD::SADDO: 3363 case ISD::SSUBO: { 3364 SDValue LHS = Node->getOperand(0); 3365 SDValue RHS = Node->getOperand(1); 3366 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? 3367 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3368 LHS, RHS); 3369 Results.push_back(Sum); 3370 EVT ResultType = Node->getValueType(1); 3371 EVT OType = getSetCCResultType(Node->getValueType(0)); 3372 3373 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 3374 3375 // LHSSign -> LHS >= 0 3376 // RHSSign -> RHS >= 0 3377 // SumSign -> Sum >= 0 3378 // 3379 // Add: 3380 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 3381 // Sub: 3382 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 3383 // 3384 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 3385 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 3386 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 3387 Node->getOpcode() == ISD::SADDO ? 3388 ISD::SETEQ : ISD::SETNE); 3389 3390 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); 3391 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 3392 3393 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 3394 Results.push_back(DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType)); 3395 break; 3396 } 3397 case ISD::UADDO: 3398 case ISD::USUBO: { 3399 SDValue LHS = Node->getOperand(0); 3400 SDValue RHS = Node->getOperand(1); 3401 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ? 3402 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3403 LHS, RHS); 3404 Results.push_back(Sum); 3405 3406 EVT ResultType = Node->getValueType(1); 3407 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3408 ISD::CondCode CC 3409 = Node->getOpcode() == ISD::UADDO ? ISD::SETULT : ISD::SETUGT; 3410 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3411 3412 Results.push_back(DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType)); 3413 break; 3414 } 3415 case ISD::UMULO: 3416 case ISD::SMULO: { 3417 EVT VT = Node->getValueType(0); 3418 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); 3419 SDValue LHS = Node->getOperand(0); 3420 SDValue RHS = Node->getOperand(1); 3421 SDValue BottomHalf; 3422 SDValue TopHalf; 3423 static const unsigned Ops[2][3] = 3424 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 3425 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 3426 bool isSigned = Node->getOpcode() == ISD::SMULO; 3427 if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 3428 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 3429 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 3430 } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 3431 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 3432 RHS); 3433 TopHalf = BottomHalf.getValue(1); 3434 } else if (TLI.isTypeLegal(WideVT)) { 3435 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 3436 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 3437 Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 3438 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3439 DAG.getIntPtrConstant(0, dl)); 3440 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3441 DAG.getIntPtrConstant(1, dl)); 3442 } else { 3443 // We can fall back to a libcall with an illegal type for the MUL if we 3444 // have a libcall big enough. 3445 // Also, we can fall back to a division in some cases, but that's a big 3446 // performance hit in the general case. 3447 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3448 if (WideVT == MVT::i16) 3449 LC = RTLIB::MUL_I16; 3450 else if (WideVT == MVT::i32) 3451 LC = RTLIB::MUL_I32; 3452 else if (WideVT == MVT::i64) 3453 LC = RTLIB::MUL_I64; 3454 else if (WideVT == MVT::i128) 3455 LC = RTLIB::MUL_I128; 3456 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 3457 3458 // The high part is obtained by SRA'ing all but one of the bits of low 3459 // part. 3460 unsigned LoSize = VT.getSizeInBits(); 3461 SDValue HiLHS = 3462 DAG.getNode(ISD::SRA, dl, VT, RHS, 3463 DAG.getConstant(LoSize - 1, dl, 3464 TLI.getPointerTy(DAG.getDataLayout()))); 3465 SDValue HiRHS = 3466 DAG.getNode(ISD::SRA, dl, VT, LHS, 3467 DAG.getConstant(LoSize - 1, dl, 3468 TLI.getPointerTy(DAG.getDataLayout()))); 3469 3470 // Here we're passing the 2 arguments explicitly as 4 arguments that are 3471 // pre-lowered to the correct types. This all depends upon WideVT not 3472 // being a legal type for the architecture and thus has to be split to 3473 // two arguments. 3474 SDValue Ret; 3475 if(DAG.getDataLayout().isLittleEndian()) { 3476 // Halves of WideVT are packed into registers in different order 3477 // depending on platform endianness. This is usually handled by 3478 // the C calling convention, but we can't defer to it in 3479 // the legalizer. 3480 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 3481 Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); 3482 } else { 3483 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 3484 Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); 3485 } 3486 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, 3487 DAG.getIntPtrConstant(0, dl)); 3488 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, 3489 DAG.getIntPtrConstant(1, dl)); 3490 // Ret is a node with an illegal type. Because such things are not 3491 // generally permitted during this phase of legalization, make sure the 3492 // node has no more uses. The above EXTRACT_ELEMENT nodes should have been 3493 // folded. 3494 assert(Ret->use_empty() && 3495 "Unexpected uses of illegally type from expanded lib call."); 3496 } 3497 3498 if (isSigned) { 3499 Tmp1 = DAG.getConstant( 3500 VT.getSizeInBits() - 1, dl, 3501 TLI.getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 3502 Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1); 3503 TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, Tmp1, 3504 ISD::SETNE); 3505 } else { 3506 TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, 3507 DAG.getConstant(0, dl, VT), ISD::SETNE); 3508 } 3509 Results.push_back(BottomHalf); 3510 Results.push_back(TopHalf); 3511 break; 3512 } 3513 case ISD::BUILD_PAIR: { 3514 EVT PairTy = Node->getValueType(0); 3515 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3516 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3517 Tmp2 = DAG.getNode( 3518 ISD::SHL, dl, PairTy, Tmp2, 3519 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3520 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3521 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3522 break; 3523 } 3524 case ISD::SELECT: 3525 Tmp1 = Node->getOperand(0); 3526 Tmp2 = Node->getOperand(1); 3527 Tmp3 = Node->getOperand(2); 3528 if (Tmp1.getOpcode() == ISD::SETCC) { 3529 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3530 Tmp2, Tmp3, 3531 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3532 } else { 3533 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3534 DAG.getConstant(0, dl, Tmp1.getValueType()), 3535 Tmp2, Tmp3, ISD::SETNE); 3536 } 3537 Results.push_back(Tmp1); 3538 break; 3539 case ISD::BR_JT: { 3540 SDValue Chain = Node->getOperand(0); 3541 SDValue Table = Node->getOperand(1); 3542 SDValue Index = Node->getOperand(2); 3543 3544 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 3545 3546 const DataLayout &TD = DAG.getDataLayout(); 3547 unsigned EntrySize = 3548 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3549 3550 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3551 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3552 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3553 Index, Table); 3554 3555 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3556 SDValue LD = DAG.getExtLoad( 3557 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3558 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3559 Addr = LD; 3560 if (TM.isPositionIndependent()) { 3561 // For PIC, the sequence is: 3562 // BRIND(load(Jumptable + index) + RelocBase) 3563 // RelocBase can be JumpTable, GOT or some sort of global base. 3564 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3565 TLI.getPICJumpTableRelocBase(Table, DAG)); 3566 } 3567 Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr); 3568 Results.push_back(Tmp1); 3569 break; 3570 } 3571 case ISD::BRCOND: 3572 // Expand brcond's setcc into its constituent parts and create a BR_CC 3573 // Node. 3574 Tmp1 = Node->getOperand(0); 3575 Tmp2 = Node->getOperand(1); 3576 if (Tmp2.getOpcode() == ISD::SETCC) { 3577 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3578 Tmp1, Tmp2.getOperand(2), 3579 Tmp2.getOperand(0), Tmp2.getOperand(1), 3580 Node->getOperand(2)); 3581 } else { 3582 // We test only the i1 bit. Skip the AND if UNDEF. 3583 Tmp3 = (Tmp2.isUndef()) ? Tmp2 : 3584 DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3585 DAG.getConstant(1, dl, Tmp2.getValueType())); 3586 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3587 DAG.getCondCode(ISD::SETNE), Tmp3, 3588 DAG.getConstant(0, dl, Tmp3.getValueType()), 3589 Node->getOperand(2)); 3590 } 3591 Results.push_back(Tmp1); 3592 break; 3593 case ISD::SETCC: { 3594 Tmp1 = Node->getOperand(0); 3595 Tmp2 = Node->getOperand(1); 3596 Tmp3 = Node->getOperand(2); 3597 bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, 3598 Tmp3, NeedInvert, dl); 3599 3600 if (Legalized) { 3601 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3602 // condition code, create a new SETCC node. 3603 if (Tmp3.getNode()) 3604 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3605 Tmp1, Tmp2, Tmp3); 3606 3607 // If we expanded the SETCC by inverting the condition code, then wrap 3608 // the existing SETCC in a NOT to restore the intended condition. 3609 if (NeedInvert) 3610 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3611 3612 Results.push_back(Tmp1); 3613 break; 3614 } 3615 3616 // Otherwise, SETCC for the given comparison type must be completely 3617 // illegal; expand it into a SELECT_CC. 3618 EVT VT = Node->getValueType(0); 3619 int TrueValue; 3620 switch (TLI.getBooleanContents(Tmp1->getValueType(0))) { 3621 case TargetLowering::ZeroOrOneBooleanContent: 3622 case TargetLowering::UndefinedBooleanContent: 3623 TrueValue = 1; 3624 break; 3625 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3626 TrueValue = -1; 3627 break; 3628 } 3629 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3630 DAG.getConstant(TrueValue, dl, VT), 3631 DAG.getConstant(0, dl, VT), 3632 Tmp3); 3633 Results.push_back(Tmp1); 3634 break; 3635 } 3636 case ISD::SELECT_CC: { 3637 Tmp1 = Node->getOperand(0); // LHS 3638 Tmp2 = Node->getOperand(1); // RHS 3639 Tmp3 = Node->getOperand(2); // True 3640 Tmp4 = Node->getOperand(3); // False 3641 EVT VT = Node->getValueType(0); 3642 SDValue CC = Node->getOperand(4); 3643 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3644 3645 if (TLI.isCondCodeLegal(CCOp, Tmp1.getSimpleValueType())) { 3646 // If the condition code is legal, then we need to expand this 3647 // node using SETCC and SELECT. 3648 EVT CmpVT = Tmp1.getValueType(); 3649 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3650 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3651 "expanded."); 3652 EVT CCVT = 3653 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT); 3654 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC); 3655 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3656 break; 3657 } 3658 3659 // SELECT_CC is legal, so the condition code must not be. 3660 bool Legalized = false; 3661 // Try to legalize by inverting the condition. This is for targets that 3662 // might support an ordered version of a condition, but not the unordered 3663 // version (or vice versa). 3664 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, 3665 Tmp1.getValueType().isInteger()); 3666 if (TLI.isCondCodeLegal(InvCC, Tmp1.getSimpleValueType())) { 3667 // Use the new condition code and swap true and false 3668 Legalized = true; 3669 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3670 } else { 3671 // If The inverse is not legal, then try to swap the arguments using 3672 // the inverse condition code. 3673 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3674 if (TLI.isCondCodeLegal(SwapInvCC, Tmp1.getSimpleValueType())) { 3675 // The swapped inverse condition is legal, so swap true and false, 3676 // lhs and rhs. 3677 Legalized = true; 3678 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3679 } 3680 } 3681 3682 if (!Legalized) { 3683 Legalized = LegalizeSetCCCondCode( 3684 getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert, 3685 dl); 3686 3687 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3688 3689 // If we expanded the SETCC by inverting the condition code, then swap 3690 // the True/False operands to match. 3691 if (NeedInvert) 3692 std::swap(Tmp3, Tmp4); 3693 3694 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3695 // condition code, create a new SELECT_CC node. 3696 if (CC.getNode()) { 3697 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3698 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3699 } else { 3700 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3701 CC = DAG.getCondCode(ISD::SETNE); 3702 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3703 Tmp2, Tmp3, Tmp4, CC); 3704 } 3705 } 3706 Results.push_back(Tmp1); 3707 break; 3708 } 3709 case ISD::BR_CC: { 3710 Tmp1 = Node->getOperand(0); // Chain 3711 Tmp2 = Node->getOperand(2); // LHS 3712 Tmp3 = Node->getOperand(3); // RHS 3713 Tmp4 = Node->getOperand(1); // CC 3714 3715 bool Legalized = LegalizeSetCCCondCode(getSetCCResultType( 3716 Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl); 3717 (void)Legalized; 3718 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3719 3720 // If we expanded the SETCC by inverting the condition code, then wrap 3721 // the existing SETCC in a NOT to restore the intended condition. 3722 if (NeedInvert) 3723 Tmp4 = DAG.getNOT(dl, Tmp4, Tmp4->getValueType(0)); 3724 3725 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3726 // node. 3727 if (Tmp4.getNode()) { 3728 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3729 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3730 } else { 3731 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3732 Tmp4 = DAG.getCondCode(ISD::SETNE); 3733 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3734 Tmp2, Tmp3, Node->getOperand(4)); 3735 } 3736 Results.push_back(Tmp1); 3737 break; 3738 } 3739 case ISD::BUILD_VECTOR: 3740 Results.push_back(ExpandBUILD_VECTOR(Node)); 3741 break; 3742 case ISD::SRA: 3743 case ISD::SRL: 3744 case ISD::SHL: { 3745 // Scalarize vector SRA/SRL/SHL. 3746 EVT VT = Node->getValueType(0); 3747 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3748 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3749 unsigned NumElem = VT.getVectorNumElements(); 3750 3751 SmallVector<SDValue, 8> Scalars; 3752 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3753 SDValue Ex = DAG.getNode( 3754 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0), 3755 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3756 SDValue Sh = DAG.getNode( 3757 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1), 3758 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3759 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3760 VT.getScalarType(), Ex, Sh)); 3761 } 3762 SDValue Result = 3763 DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0), Scalars); 3764 ReplaceNode(SDValue(Node, 0), Result); 3765 break; 3766 } 3767 case ISD::GLOBAL_OFFSET_TABLE: 3768 case ISD::GlobalAddress: 3769 case ISD::GlobalTLSAddress: 3770 case ISD::ExternalSymbol: 3771 case ISD::ConstantPool: 3772 case ISD::JumpTable: 3773 case ISD::INTRINSIC_W_CHAIN: 3774 case ISD::INTRINSIC_WO_CHAIN: 3775 case ISD::INTRINSIC_VOID: 3776 // FIXME: Custom lowering for these operations shouldn't return null! 3777 break; 3778 } 3779 3780 // Replace the original node with the legalized result. 3781 if (Results.empty()) 3782 return false; 3783 3784 ReplaceNode(Node, Results.data()); 3785 return true; 3786 } 3787 3788 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 3789 SmallVector<SDValue, 8> Results; 3790 SDLoc dl(Node); 3791 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 3792 unsigned Opc = Node->getOpcode(); 3793 switch (Opc) { 3794 case ISD::ATOMIC_FENCE: { 3795 // If the target didn't lower this, lower it to '__sync_synchronize()' call 3796 // FIXME: handle "fence singlethread" more efficiently. 3797 TargetLowering::ArgListTy Args; 3798 3799 TargetLowering::CallLoweringInfo CLI(DAG); 3800 CLI.setDebugLoc(dl) 3801 .setChain(Node->getOperand(0)) 3802 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3803 DAG.getExternalSymbol("__sync_synchronize", 3804 TLI.getPointerTy(DAG.getDataLayout())), 3805 std::move(Args)); 3806 3807 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3808 3809 Results.push_back(CallResult.second); 3810 break; 3811 } 3812 // By default, atomic intrinsics are marked Legal and lowered. Targets 3813 // which don't support them directly, however, may want libcalls, in which 3814 // case they mark them Expand, and we get here. 3815 case ISD::ATOMIC_SWAP: 3816 case ISD::ATOMIC_LOAD_ADD: 3817 case ISD::ATOMIC_LOAD_SUB: 3818 case ISD::ATOMIC_LOAD_AND: 3819 case ISD::ATOMIC_LOAD_OR: 3820 case ISD::ATOMIC_LOAD_XOR: 3821 case ISD::ATOMIC_LOAD_NAND: 3822 case ISD::ATOMIC_LOAD_MIN: 3823 case ISD::ATOMIC_LOAD_MAX: 3824 case ISD::ATOMIC_LOAD_UMIN: 3825 case ISD::ATOMIC_LOAD_UMAX: 3826 case ISD::ATOMIC_CMP_SWAP: { 3827 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 3828 RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT); 3829 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!"); 3830 3831 std::pair<SDValue, SDValue> Tmp = ExpandChainLibCall(LC, Node, false); 3832 Results.push_back(Tmp.first); 3833 Results.push_back(Tmp.second); 3834 break; 3835 } 3836 case ISD::TRAP: { 3837 // If this operation is not supported, lower it to 'abort()' call 3838 TargetLowering::ArgListTy Args; 3839 TargetLowering::CallLoweringInfo CLI(DAG); 3840 CLI.setDebugLoc(dl) 3841 .setChain(Node->getOperand(0)) 3842 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3843 DAG.getExternalSymbol("abort", 3844 TLI.getPointerTy(DAG.getDataLayout())), 3845 std::move(Args)); 3846 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3847 3848 Results.push_back(CallResult.second); 3849 break; 3850 } 3851 case ISD::FMINNUM: 3852 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 3853 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 3854 RTLIB::FMIN_PPCF128)); 3855 break; 3856 case ISD::FMAXNUM: 3857 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 3858 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 3859 RTLIB::FMAX_PPCF128)); 3860 break; 3861 case ISD::FSQRT: 3862 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3863 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 3864 RTLIB::SQRT_PPCF128)); 3865 break; 3866 case ISD::FSIN: 3867 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 3868 RTLIB::SIN_F80, RTLIB::SIN_F128, 3869 RTLIB::SIN_PPCF128)); 3870 break; 3871 case ISD::FCOS: 3872 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 3873 RTLIB::COS_F80, RTLIB::COS_F128, 3874 RTLIB::COS_PPCF128)); 3875 break; 3876 case ISD::FSINCOS: 3877 // Expand into sincos libcall. 3878 ExpandSinCosLibCall(Node, Results); 3879 break; 3880 case ISD::FLOG: 3881 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, 3882 RTLIB::LOG_F80, RTLIB::LOG_F128, 3883 RTLIB::LOG_PPCF128)); 3884 break; 3885 case ISD::FLOG2: 3886 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 3887 RTLIB::LOG2_F80, RTLIB::LOG2_F128, 3888 RTLIB::LOG2_PPCF128)); 3889 break; 3890 case ISD::FLOG10: 3891 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 3892 RTLIB::LOG10_F80, RTLIB::LOG10_F128, 3893 RTLIB::LOG10_PPCF128)); 3894 break; 3895 case ISD::FEXP: 3896 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, 3897 RTLIB::EXP_F80, RTLIB::EXP_F128, 3898 RTLIB::EXP_PPCF128)); 3899 break; 3900 case ISD::FEXP2: 3901 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 3902 RTLIB::EXP2_F80, RTLIB::EXP2_F128, 3903 RTLIB::EXP2_PPCF128)); 3904 break; 3905 case ISD::FTRUNC: 3906 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 3907 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 3908 RTLIB::TRUNC_PPCF128)); 3909 break; 3910 case ISD::FFLOOR: 3911 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 3912 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 3913 RTLIB::FLOOR_PPCF128)); 3914 break; 3915 case ISD::FCEIL: 3916 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 3917 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 3918 RTLIB::CEIL_PPCF128)); 3919 break; 3920 case ISD::FRINT: 3921 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 3922 RTLIB::RINT_F80, RTLIB::RINT_F128, 3923 RTLIB::RINT_PPCF128)); 3924 break; 3925 case ISD::FNEARBYINT: 3926 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 3927 RTLIB::NEARBYINT_F64, 3928 RTLIB::NEARBYINT_F80, 3929 RTLIB::NEARBYINT_F128, 3930 RTLIB::NEARBYINT_PPCF128)); 3931 break; 3932 case ISD::FROUND: 3933 Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32, 3934 RTLIB::ROUND_F64, 3935 RTLIB::ROUND_F80, 3936 RTLIB::ROUND_F128, 3937 RTLIB::ROUND_PPCF128)); 3938 break; 3939 case ISD::FPOWI: 3940 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 3941 RTLIB::POWI_F80, RTLIB::POWI_F128, 3942 RTLIB::POWI_PPCF128)); 3943 break; 3944 case ISD::FPOW: 3945 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, 3946 RTLIB::POW_F80, RTLIB::POW_F128, 3947 RTLIB::POW_PPCF128)); 3948 break; 3949 case ISD::FDIV: 3950 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 3951 RTLIB::DIV_F80, RTLIB::DIV_F128, 3952 RTLIB::DIV_PPCF128)); 3953 break; 3954 case ISD::FREM: 3955 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 3956 RTLIB::REM_F80, RTLIB::REM_F128, 3957 RTLIB::REM_PPCF128)); 3958 break; 3959 case ISD::FMA: 3960 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 3961 RTLIB::FMA_F80, RTLIB::FMA_F128, 3962 RTLIB::FMA_PPCF128)); 3963 break; 3964 case ISD::FADD: 3965 Results.push_back(ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 3966 RTLIB::ADD_F80, RTLIB::ADD_F128, 3967 RTLIB::ADD_PPCF128)); 3968 break; 3969 case ISD::FMUL: 3970 Results.push_back(ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 3971 RTLIB::MUL_F80, RTLIB::MUL_F128, 3972 RTLIB::MUL_PPCF128)); 3973 break; 3974 case ISD::FP16_TO_FP: 3975 if (Node->getValueType(0) == MVT::f32) { 3976 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 3977 } 3978 break; 3979 case ISD::FP_TO_FP16: { 3980 RTLIB::Libcall LC = 3981 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 3982 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 3983 Results.push_back(ExpandLibCall(LC, Node, false)); 3984 break; 3985 } 3986 case ISD::FSUB: 3987 Results.push_back(ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 3988 RTLIB::SUB_F80, RTLIB::SUB_F128, 3989 RTLIB::SUB_PPCF128)); 3990 break; 3991 case ISD::SREM: 3992 Results.push_back(ExpandIntLibCall(Node, true, 3993 RTLIB::SREM_I8, 3994 RTLIB::SREM_I16, RTLIB::SREM_I32, 3995 RTLIB::SREM_I64, RTLIB::SREM_I128)); 3996 break; 3997 case ISD::UREM: 3998 Results.push_back(ExpandIntLibCall(Node, false, 3999 RTLIB::UREM_I8, 4000 RTLIB::UREM_I16, RTLIB::UREM_I32, 4001 RTLIB::UREM_I64, RTLIB::UREM_I128)); 4002 break; 4003 case ISD::SDIV: 4004 Results.push_back(ExpandIntLibCall(Node, true, 4005 RTLIB::SDIV_I8, 4006 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4007 RTLIB::SDIV_I64, RTLIB::SDIV_I128)); 4008 break; 4009 case ISD::UDIV: 4010 Results.push_back(ExpandIntLibCall(Node, false, 4011 RTLIB::UDIV_I8, 4012 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4013 RTLIB::UDIV_I64, RTLIB::UDIV_I128)); 4014 break; 4015 case ISD::SDIVREM: 4016 case ISD::UDIVREM: 4017 // Expand into divrem libcall 4018 ExpandDivRemLibCall(Node, Results); 4019 break; 4020 case ISD::MUL: 4021 Results.push_back(ExpandIntLibCall(Node, false, 4022 RTLIB::MUL_I8, 4023 RTLIB::MUL_I16, RTLIB::MUL_I32, 4024 RTLIB::MUL_I64, RTLIB::MUL_I128)); 4025 break; 4026 } 4027 4028 // Replace the original node with the legalized result. 4029 if (!Results.empty()) 4030 ReplaceNode(Node, Results.data()); 4031 } 4032 4033 // Determine the vector type to use in place of an original scalar element when 4034 // promoting equally sized vectors. 4035 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4036 MVT EltVT, MVT NewEltVT) { 4037 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4038 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4039 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4040 return MidVT; 4041 } 4042 4043 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4044 SmallVector<SDValue, 8> Results; 4045 MVT OVT = Node->getSimpleValueType(0); 4046 if (Node->getOpcode() == ISD::UINT_TO_FP || 4047 Node->getOpcode() == ISD::SINT_TO_FP || 4048 Node->getOpcode() == ISD::SETCC || 4049 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4050 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4051 OVT = Node->getOperand(0).getSimpleValueType(); 4052 } 4053 if (Node->getOpcode() == ISD::BR_CC) 4054 OVT = Node->getOperand(2).getSimpleValueType(); 4055 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4056 SDLoc dl(Node); 4057 SDValue Tmp1, Tmp2, Tmp3; 4058 switch (Node->getOpcode()) { 4059 case ISD::CTTZ: 4060 case ISD::CTTZ_ZERO_UNDEF: 4061 case ISD::CTLZ: 4062 case ISD::CTLZ_ZERO_UNDEF: 4063 case ISD::CTPOP: 4064 // Zero extend the argument. 4065 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4066 if (Node->getOpcode() == ISD::CTTZ) { 4067 // The count is the same in the promoted type except if the original 4068 // value was zero. This can be handled by setting the bit just off 4069 // the top of the original type. 4070 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4071 OVT.getSizeInBits()); 4072 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4073 DAG.getConstant(TopBit, dl, NVT)); 4074 } 4075 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4076 // already the correct result. 4077 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4078 if (Node->getOpcode() == ISD::CTLZ || 4079 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4080 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4081 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4082 DAG.getConstant(NVT.getSizeInBits() - 4083 OVT.getSizeInBits(), dl, NVT)); 4084 } 4085 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4086 break; 4087 case ISD::BITREVERSE: 4088 case ISD::BSWAP: { 4089 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4090 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4091 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4092 Tmp1 = DAG.getNode( 4093 ISD::SRL, dl, NVT, Tmp1, 4094 DAG.getConstant(DiffBits, dl, 4095 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4096 Results.push_back(Tmp1); 4097 break; 4098 } 4099 case ISD::FP_TO_UINT: 4100 case ISD::FP_TO_SINT: 4101 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), 4102 Node->getOpcode() == ISD::FP_TO_SINT, dl); 4103 Results.push_back(Tmp1); 4104 break; 4105 case ISD::UINT_TO_FP: 4106 case ISD::SINT_TO_FP: 4107 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), 4108 Node->getOpcode() == ISD::SINT_TO_FP, dl); 4109 Results.push_back(Tmp1); 4110 break; 4111 case ISD::VAARG: { 4112 SDValue Chain = Node->getOperand(0); // Get the chain. 4113 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4114 4115 unsigned TruncOp; 4116 if (OVT.isVector()) { 4117 TruncOp = ISD::BITCAST; 4118 } else { 4119 assert(OVT.isInteger() 4120 && "VAARG promotion is supported only for vectors or integer types"); 4121 TruncOp = ISD::TRUNCATE; 4122 } 4123 4124 // Perform the larger operation, then convert back 4125 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4126 Node->getConstantOperandVal(3)); 4127 Chain = Tmp1.getValue(1); 4128 4129 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4130 4131 // Modified the chain result - switch anything that used the old chain to 4132 // use the new one. 4133 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4134 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4135 if (UpdatedNodes) { 4136 UpdatedNodes->insert(Tmp2.getNode()); 4137 UpdatedNodes->insert(Chain.getNode()); 4138 } 4139 ReplacedNode(Node); 4140 break; 4141 } 4142 case ISD::AND: 4143 case ISD::OR: 4144 case ISD::XOR: { 4145 unsigned ExtOp, TruncOp; 4146 if (OVT.isVector()) { 4147 ExtOp = ISD::BITCAST; 4148 TruncOp = ISD::BITCAST; 4149 } else { 4150 assert(OVT.isInteger() && "Cannot promote logic operation"); 4151 ExtOp = ISD::ANY_EXTEND; 4152 TruncOp = ISD::TRUNCATE; 4153 } 4154 // Promote each of the values to the new type. 4155 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4156 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4157 // Perform the larger operation, then convert back 4158 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4159 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4160 break; 4161 } 4162 case ISD::SELECT: { 4163 unsigned ExtOp, TruncOp; 4164 if (Node->getValueType(0).isVector() || 4165 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4166 ExtOp = ISD::BITCAST; 4167 TruncOp = ISD::BITCAST; 4168 } else if (Node->getValueType(0).isInteger()) { 4169 ExtOp = ISD::ANY_EXTEND; 4170 TruncOp = ISD::TRUNCATE; 4171 } else { 4172 ExtOp = ISD::FP_EXTEND; 4173 TruncOp = ISD::FP_ROUND; 4174 } 4175 Tmp1 = Node->getOperand(0); 4176 // Promote each of the values to the new type. 4177 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4178 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4179 // Perform the larger operation, then round down. 4180 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4181 if (TruncOp != ISD::FP_ROUND) 4182 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4183 else 4184 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4185 DAG.getIntPtrConstant(0, dl)); 4186 Results.push_back(Tmp1); 4187 break; 4188 } 4189 case ISD::VECTOR_SHUFFLE: { 4190 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4191 4192 // Cast the two input vectors. 4193 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4194 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4195 4196 // Convert the shuffle mask to the right # elements. 4197 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4198 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4199 Results.push_back(Tmp1); 4200 break; 4201 } 4202 case ISD::SETCC: { 4203 unsigned ExtOp = ISD::FP_EXTEND; 4204 if (NVT.isInteger()) { 4205 ISD::CondCode CCCode = 4206 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4207 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4208 } 4209 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4210 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4211 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 4212 Tmp1, Tmp2, Node->getOperand(2))); 4213 break; 4214 } 4215 case ISD::BR_CC: { 4216 unsigned ExtOp = ISD::FP_EXTEND; 4217 if (NVT.isInteger()) { 4218 ISD::CondCode CCCode = 4219 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4220 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4221 } 4222 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4223 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4224 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4225 Node->getOperand(0), Node->getOperand(1), 4226 Tmp1, Tmp2, Node->getOperand(4))); 4227 break; 4228 } 4229 case ISD::FADD: 4230 case ISD::FSUB: 4231 case ISD::FMUL: 4232 case ISD::FDIV: 4233 case ISD::FREM: 4234 case ISD::FMINNUM: 4235 case ISD::FMAXNUM: 4236 case ISD::FPOW: { 4237 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4238 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4239 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4240 Node->getFlags()); 4241 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4242 Tmp3, DAG.getIntPtrConstant(0, dl))); 4243 break; 4244 } 4245 case ISD::FMA: { 4246 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4247 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4248 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4249 Results.push_back( 4250 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4251 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4252 DAG.getIntPtrConstant(0, dl))); 4253 break; 4254 } 4255 case ISD::FCOPYSIGN: 4256 case ISD::FPOWI: { 4257 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4258 Tmp2 = Node->getOperand(1); 4259 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4260 4261 // fcopysign doesn't change anything but the sign bit, so 4262 // (fp_round (fcopysign (fpext a), b)) 4263 // is as precise as 4264 // (fp_round (fpext a)) 4265 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4266 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4267 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4268 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4269 break; 4270 } 4271 case ISD::FFLOOR: 4272 case ISD::FCEIL: 4273 case ISD::FRINT: 4274 case ISD::FNEARBYINT: 4275 case ISD::FROUND: 4276 case ISD::FTRUNC: 4277 case ISD::FNEG: 4278 case ISD::FSQRT: 4279 case ISD::FSIN: 4280 case ISD::FCOS: 4281 case ISD::FLOG: 4282 case ISD::FLOG2: 4283 case ISD::FLOG10: 4284 case ISD::FABS: 4285 case ISD::FEXP: 4286 case ISD::FEXP2: { 4287 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4288 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4289 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4290 Tmp2, DAG.getIntPtrConstant(0, dl))); 4291 break; 4292 } 4293 case ISD::BUILD_VECTOR: { 4294 MVT EltVT = OVT.getVectorElementType(); 4295 MVT NewEltVT = NVT.getVectorElementType(); 4296 4297 // Handle bitcasts to a different vector type with the same total bit size 4298 // 4299 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4300 // => 4301 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4302 4303 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4304 "Invalid promote type for build_vector"); 4305 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4306 4307 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4308 4309 SmallVector<SDValue, 8> NewOps; 4310 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4311 SDValue Op = Node->getOperand(I); 4312 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4313 } 4314 4315 SDLoc SL(Node); 4316 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4317 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4318 Results.push_back(CvtVec); 4319 break; 4320 } 4321 case ISD::EXTRACT_VECTOR_ELT: { 4322 MVT EltVT = OVT.getVectorElementType(); 4323 MVT NewEltVT = NVT.getVectorElementType(); 4324 4325 // Handle bitcasts to a different vector type with the same total bit size. 4326 // 4327 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4328 // => 4329 // v4i32:castx = bitcast x:v2i64 4330 // 4331 // i64 = bitcast 4332 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4333 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4334 // 4335 4336 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4337 "Invalid promote type for extract_vector_elt"); 4338 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4339 4340 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4341 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4342 4343 SDValue Idx = Node->getOperand(1); 4344 EVT IdxVT = Idx.getValueType(); 4345 SDLoc SL(Node); 4346 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4347 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4348 4349 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4350 4351 SmallVector<SDValue, 8> NewOps; 4352 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4353 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4354 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4355 4356 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4357 CastVec, TmpIdx); 4358 NewOps.push_back(Elt); 4359 } 4360 4361 SDValue NewVec = DAG.getNode(ISD::BUILD_VECTOR, SL, MidVT, NewOps); 4362 4363 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4364 break; 4365 } 4366 case ISD::INSERT_VECTOR_ELT: { 4367 MVT EltVT = OVT.getVectorElementType(); 4368 MVT NewEltVT = NVT.getVectorElementType(); 4369 4370 // Handle bitcasts to a different vector type with the same total bit size 4371 // 4372 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4373 // => 4374 // v4i32:castx = bitcast x:v2i64 4375 // v2i32:casty = bitcast y:i64 4376 // 4377 // v2i64 = bitcast 4378 // (v4i32 insert_vector_elt 4379 // (v4i32 insert_vector_elt v4i32:castx, 4380 // (extract_vector_elt casty, 0), 2 * z), 4381 // (extract_vector_elt casty, 1), (2 * z + 1)) 4382 4383 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4384 "Invalid promote type for insert_vector_elt"); 4385 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4386 4387 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4388 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4389 4390 SDValue Val = Node->getOperand(1); 4391 SDValue Idx = Node->getOperand(2); 4392 EVT IdxVT = Idx.getValueType(); 4393 SDLoc SL(Node); 4394 4395 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 4396 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4397 4398 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4399 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4400 4401 SDValue NewVec = CastVec; 4402 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4403 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4404 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4405 4406 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4407 CastVal, IdxOffset); 4408 4409 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 4410 NewVec, Elt, InEltIdx); 4411 } 4412 4413 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 4414 break; 4415 } 4416 case ISD::SCALAR_TO_VECTOR: { 4417 MVT EltVT = OVT.getVectorElementType(); 4418 MVT NewEltVT = NVT.getVectorElementType(); 4419 4420 // Handle bitcasts to different vector type with the smae total bit size. 4421 // 4422 // e.g. v2i64 = scalar_to_vector x:i64 4423 // => 4424 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 4425 // 4426 4427 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4428 SDValue Val = Node->getOperand(0); 4429 SDLoc SL(Node); 4430 4431 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4432 SDValue Undef = DAG.getUNDEF(MidVT); 4433 4434 SmallVector<SDValue, 8> NewElts; 4435 NewElts.push_back(CastVal); 4436 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 4437 NewElts.push_back(Undef); 4438 4439 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 4440 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4441 Results.push_back(CvtVec); 4442 break; 4443 } 4444 } 4445 4446 // Replace the original node with the legalized result. 4447 if (!Results.empty()) 4448 ReplaceNode(Node, Results.data()); 4449 } 4450 4451 /// This is the entry point for the file. 4452 void SelectionDAG::Legalize() { 4453 AssignTopologicalOrder(); 4454 4455 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4456 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 4457 4458 // Visit all the nodes. We start in topological order, so that we see 4459 // nodes with their original operands intact. Legalization can produce 4460 // new nodes which may themselves need to be legalized. Iterate until all 4461 // nodes have been legalized. 4462 for (;;) { 4463 bool AnyLegalized = false; 4464 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 4465 --NI; 4466 4467 SDNode *N = &*NI; 4468 if (N->use_empty() && N != getRoot().getNode()) { 4469 ++NI; 4470 DeleteNode(N); 4471 continue; 4472 } 4473 4474 if (LegalizedNodes.insert(N).second) { 4475 AnyLegalized = true; 4476 Legalizer.LegalizeOp(N); 4477 4478 if (N->use_empty() && N != getRoot().getNode()) { 4479 ++NI; 4480 DeleteNode(N); 4481 } 4482 } 4483 } 4484 if (!AnyLegalized) 4485 break; 4486 4487 } 4488 4489 // Remove dead nodes now. 4490 RemoveDeadNodes(); 4491 } 4492 4493 bool SelectionDAG::LegalizeOp(SDNode *N, 4494 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 4495 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4496 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 4497 4498 // Directly insert the node in question, and legalize it. This will recurse 4499 // as needed through operands. 4500 LegalizedNodes.insert(N); 4501 Legalizer.LegalizeOp(N); 4502 4503 return LegalizedNodes.count(N); 4504 } 4505