1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::Legalize method. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/CodeGen/ISDOpcodes.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/RuntimeLibcalls.h" 26 #include "llvm/CodeGen/SelectionDAG.h" 27 #include "llvm/CodeGen/SelectionDAGNodes.h" 28 #include "llvm/CodeGen/TargetFrameLowering.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/CodeGen/ValueTypes.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstdint> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "legalizedag" 57 58 namespace { 59 60 /// Keeps track of state when getting the sign of a floating-point value as an 61 /// integer. 62 struct FloatSignAsInt { 63 EVT FloatVT; 64 SDValue Chain; 65 SDValue FloatPtr; 66 SDValue IntPtr; 67 MachinePointerInfo IntPointerInfo; 68 MachinePointerInfo FloatPointerInfo; 69 SDValue IntValue; 70 APInt SignMask; 71 uint8_t SignBit; 72 }; 73 74 //===----------------------------------------------------------------------===// 75 /// This takes an arbitrary SelectionDAG as input and 76 /// hacks on it until the target machine can handle it. This involves 77 /// eliminating value sizes the machine cannot handle (promoting small sizes to 78 /// large sizes or splitting up large values into small values) as well as 79 /// eliminating operations the machine cannot handle. 80 /// 81 /// This code also does a small amount of optimization and recognition of idioms 82 /// as part of its processing. For example, if a target does not support a 83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 84 /// will attempt merge setcc and brc instructions into brcc's. 85 class SelectionDAGLegalize { 86 const TargetMachine &TM; 87 const TargetLowering &TLI; 88 SelectionDAG &DAG; 89 90 /// The set of nodes which have already been legalized. We hold a 91 /// reference to it in order to update as necessary on node deletion. 92 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 93 94 /// A set of all the nodes updated during legalization. 95 SmallSetVector<SDNode *, 16> *UpdatedNodes; 96 97 EVT getSetCCResultType(EVT VT) const { 98 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 99 } 100 101 // Libcall insertion helpers. 102 103 public: 104 SelectionDAGLegalize(SelectionDAG &DAG, 105 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 106 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 107 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 108 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 109 110 /// Legalizes the given operation. 111 void LegalizeOp(SDNode *Node); 112 113 private: 114 SDValue OptimizeFloatStore(StoreSDNode *ST); 115 116 void LegalizeLoadOps(SDNode *Node); 117 void LegalizeStoreOps(SDNode *Node); 118 119 /// Some targets cannot handle a variable 120 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 121 /// is necessary to spill the vector being inserted into to memory, perform 122 /// the insert there, and then read the result back. 123 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 124 const SDLoc &dl); 125 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 126 const SDLoc &dl); 127 128 /// Return a vector shuffle operation which 129 /// performs the same shuffe in terms of order or result bytes, but on a type 130 /// whose vector element type is narrower than the original shuffle type. 131 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 132 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 133 SDValue N1, SDValue N2, 134 ArrayRef<int> Mask) const; 135 136 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 137 bool &NeedInvert, const SDLoc &dl); 138 139 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 140 SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops, 141 unsigned NumOps, bool isSigned, const SDLoc &dl); 142 143 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC, 144 SDNode *Node, bool isSigned); 145 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 146 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 147 RTLIB::Libcall Call_F128, 148 RTLIB::Libcall Call_PPCF128); 149 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 150 RTLIB::Libcall Call_I8, 151 RTLIB::Libcall Call_I16, 152 RTLIB::Libcall Call_I32, 153 RTLIB::Libcall Call_I64, 154 RTLIB::Libcall Call_I128); 155 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 156 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 157 158 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 159 const SDLoc &dl); 160 SDValue ExpandBUILD_VECTOR(SDNode *Node); 161 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 162 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 163 SmallVectorImpl<SDValue> &Results); 164 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 165 SDValue Value) const; 166 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 167 SDValue NewIntValue) const; 168 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 169 SDValue ExpandFABS(SDNode *Node) const; 170 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT, 171 const SDLoc &dl); 172 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, 173 const SDLoc &dl); 174 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, 175 const SDLoc &dl); 176 177 SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl); 178 SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl); 179 SDValue ExpandBitCount(unsigned Opc, SDValue Op, const SDLoc &dl); 180 181 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 182 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 183 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 184 185 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 186 SDValue ExpandConstant(ConstantSDNode *CP); 187 188 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 189 bool ExpandNode(SDNode *Node); 190 void ConvertNodeToLibcall(SDNode *Node); 191 void PromoteNode(SDNode *Node); 192 193 public: 194 // Node replacement helpers 195 196 void ReplacedNode(SDNode *N) { 197 LegalizedNodes.erase(N); 198 if (UpdatedNodes) 199 UpdatedNodes->insert(N); 200 } 201 202 void ReplaceNode(SDNode *Old, SDNode *New) { 203 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 204 dbgs() << " with: "; New->dump(&DAG)); 205 206 assert(Old->getNumValues() == New->getNumValues() && 207 "Replacing one node with another that produces a different number " 208 "of values!"); 209 DAG.ReplaceAllUsesWith(Old, New); 210 if (UpdatedNodes) 211 UpdatedNodes->insert(New); 212 ReplacedNode(Old); 213 } 214 215 void ReplaceNode(SDValue Old, SDValue New) { 216 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 217 dbgs() << " with: "; New->dump(&DAG)); 218 219 DAG.ReplaceAllUsesWith(Old, New); 220 if (UpdatedNodes) 221 UpdatedNodes->insert(New.getNode()); 222 ReplacedNode(Old.getNode()); 223 } 224 225 void ReplaceNode(SDNode *Old, const SDValue *New) { 226 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 227 228 DAG.ReplaceAllUsesWith(Old, New); 229 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 230 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); 231 New[i]->dump(&DAG)); 232 if (UpdatedNodes) 233 UpdatedNodes->insert(New[i].getNode()); 234 } 235 ReplacedNode(Old); 236 } 237 }; 238 239 } // end anonymous namespace 240 241 /// Return a vector shuffle operation which 242 /// performs the same shuffe in terms of order or result bytes, but on a type 243 /// whose vector element type is narrower than the original shuffle type. 244 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 245 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 246 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 247 ArrayRef<int> Mask) const { 248 unsigned NumMaskElts = VT.getVectorNumElements(); 249 unsigned NumDestElts = NVT.getVectorNumElements(); 250 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 251 252 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 253 254 if (NumEltsGrowth == 1) 255 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 256 257 SmallVector<int, 8> NewMask; 258 for (unsigned i = 0; i != NumMaskElts; ++i) { 259 int Idx = Mask[i]; 260 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 261 if (Idx < 0) 262 NewMask.push_back(-1); 263 else 264 NewMask.push_back(Idx * NumEltsGrowth + j); 265 } 266 } 267 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 268 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 269 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 270 } 271 272 /// Expands the ConstantFP node to an integer constant or 273 /// a load from the constant pool. 274 SDValue 275 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 276 bool Extend = false; 277 SDLoc dl(CFP); 278 279 // If a FP immediate is precise when represented as a float and if the 280 // target can do an extending load from float to double, we put it into 281 // the constant pool as a float, even if it's is statically typed as a 282 // double. This shrinks FP constants and canonicalizes them for targets where 283 // an FP extending load is the same cost as a normal load (such as on the x87 284 // fp stack or PPC FP unit). 285 EVT VT = CFP->getValueType(0); 286 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 287 if (!UseCP) { 288 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 289 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 290 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 291 } 292 293 APFloat APF = CFP->getValueAPF(); 294 EVT OrigVT = VT; 295 EVT SVT = VT; 296 297 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 298 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 299 if (!APF.isSignaling()) { 300 while (SVT != MVT::f32 && SVT != MVT::f16) { 301 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 302 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 303 // Only do this if the target has a native EXTLOAD instruction from 304 // smaller type. 305 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 306 TLI.ShouldShrinkFPConstant(OrigVT)) { 307 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 308 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 309 VT = SVT; 310 Extend = true; 311 } 312 } 313 } 314 315 SDValue CPIdx = 316 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 317 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 318 if (Extend) { 319 SDValue Result = DAG.getExtLoad( 320 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 321 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 322 Alignment); 323 return Result; 324 } 325 SDValue Result = DAG.getLoad( 326 OrigVT, dl, DAG.getEntryNode(), CPIdx, 327 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 328 return Result; 329 } 330 331 /// Expands the Constant node to a load from the constant pool. 332 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 333 SDLoc dl(CP); 334 EVT VT = CP->getValueType(0); 335 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 336 TLI.getPointerTy(DAG.getDataLayout())); 337 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 338 SDValue Result = DAG.getLoad( 339 VT, dl, DAG.getEntryNode(), CPIdx, 340 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 341 return Result; 342 } 343 344 /// Some target cannot handle a variable insertion index for the 345 /// INSERT_VECTOR_ELT instruction. In this case, it 346 /// is necessary to spill the vector being inserted into to memory, perform 347 /// the insert there, and then read the result back. 348 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 349 SDValue Val, 350 SDValue Idx, 351 const SDLoc &dl) { 352 SDValue Tmp1 = Vec; 353 SDValue Tmp2 = Val; 354 SDValue Tmp3 = Idx; 355 356 // If the target doesn't support this, we have to spill the input vector 357 // to a temporary stack slot, update the element, then reload it. This is 358 // badness. We could also load the value into a vector register (either 359 // with a "move to register" or "extload into register" instruction, then 360 // permute it into place, if the idx is a constant and if the idx is 361 // supported by the target. 362 EVT VT = Tmp1.getValueType(); 363 EVT EltVT = VT.getVectorElementType(); 364 SDValue StackPtr = DAG.CreateStackTemporary(VT); 365 366 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 367 368 // Store the vector. 369 SDValue Ch = DAG.getStore( 370 DAG.getEntryNode(), dl, Tmp1, StackPtr, 371 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 372 373 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 374 375 // Store the scalar value. 376 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT); 377 // Load the updated vector. 378 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 379 DAG.getMachineFunction(), SPFI)); 380 } 381 382 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 383 SDValue Idx, 384 const SDLoc &dl) { 385 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 386 // SCALAR_TO_VECTOR requires that the type of the value being inserted 387 // match the element type of the vector being created, except for 388 // integers in which case the inserted value can be over width. 389 EVT EltVT = Vec.getValueType().getVectorElementType(); 390 if (Val.getValueType() == EltVT || 391 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 392 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 393 Vec.getValueType(), Val); 394 395 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 396 // We generate a shuffle of InVec and ScVec, so the shuffle mask 397 // should be 0,1,2,3,4,5... with the appropriate element replaced with 398 // elt 0 of the RHS. 399 SmallVector<int, 8> ShufOps; 400 for (unsigned i = 0; i != NumElts; ++i) 401 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 402 403 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 404 } 405 } 406 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 407 } 408 409 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 410 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); 411 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 412 // FIXME: We shouldn't do this for TargetConstantFP's. 413 // FIXME: move this to the DAG Combiner! Note that we can't regress due 414 // to phase ordering between legalized code and the dag combiner. This 415 // probably means that we need to integrate dag combiner and legalizer 416 // together. 417 // We generally can't do this one for long doubles. 418 SDValue Chain = ST->getChain(); 419 SDValue Ptr = ST->getBasePtr(); 420 unsigned Alignment = ST->getAlignment(); 421 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 422 AAMDNodes AAInfo = ST->getAAInfo(); 423 SDLoc dl(ST); 424 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 425 if (CFP->getValueType(0) == MVT::f32 && 426 TLI.isTypeLegal(MVT::i32)) { 427 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 428 bitcastToAPInt().zextOrTrunc(32), 429 SDLoc(CFP), MVT::i32); 430 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), Alignment, 431 MMOFlags, AAInfo); 432 } 433 434 if (CFP->getValueType(0) == MVT::f64) { 435 // If this target supports 64-bit registers, do a single 64-bit store. 436 if (TLI.isTypeLegal(MVT::i64)) { 437 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 438 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 439 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 440 Alignment, MMOFlags, AAInfo); 441 } 442 443 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 444 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 445 // stores. If the target supports neither 32- nor 64-bits, this 446 // xform is certainly not worth it. 447 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 448 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 449 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 450 if (DAG.getDataLayout().isBigEndian()) 451 std::swap(Lo, Hi); 452 453 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), Alignment, 454 MMOFlags, AAInfo); 455 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 456 DAG.getConstant(4, dl, Ptr.getValueType())); 457 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 458 ST->getPointerInfo().getWithOffset(4), 459 MinAlign(Alignment, 4U), MMOFlags, AAInfo); 460 461 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 462 } 463 } 464 } 465 return SDValue(nullptr, 0); 466 } 467 468 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 469 StoreSDNode *ST = cast<StoreSDNode>(Node); 470 SDValue Chain = ST->getChain(); 471 SDValue Ptr = ST->getBasePtr(); 472 SDLoc dl(Node); 473 474 unsigned Alignment = ST->getAlignment(); 475 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 476 AAMDNodes AAInfo = ST->getAAInfo(); 477 478 if (!ST->isTruncatingStore()) { 479 LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); 480 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 481 ReplaceNode(ST, OptStore); 482 return; 483 } 484 485 SDValue Value = ST->getValue(); 486 MVT VT = Value.getSimpleValueType(); 487 switch (TLI.getOperationAction(ISD::STORE, VT)) { 488 default: llvm_unreachable("This action is not supported yet!"); 489 case TargetLowering::Legal: { 490 // If this is an unaligned store and the target doesn't support it, 491 // expand it. 492 EVT MemVT = ST->getMemoryVT(); 493 unsigned AS = ST->getAddressSpace(); 494 unsigned Align = ST->getAlignment(); 495 const DataLayout &DL = DAG.getDataLayout(); 496 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 497 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 498 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 499 ReplaceNode(SDValue(ST, 0), Result); 500 } else 501 LLVM_DEBUG(dbgs() << "Legal store\n"); 502 break; 503 } 504 case TargetLowering::Custom: { 505 LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); 506 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 507 if (Res && Res != SDValue(Node, 0)) 508 ReplaceNode(SDValue(Node, 0), Res); 509 return; 510 } 511 case TargetLowering::Promote: { 512 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 513 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 514 "Can only promote stores to same size type"); 515 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 516 SDValue Result = 517 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 518 Alignment, MMOFlags, AAInfo); 519 ReplaceNode(SDValue(Node, 0), Result); 520 break; 521 } 522 } 523 return; 524 } 525 526 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); 527 SDValue Value = ST->getValue(); 528 EVT StVT = ST->getMemoryVT(); 529 unsigned StWidth = StVT.getSizeInBits(); 530 auto &DL = DAG.getDataLayout(); 531 532 if (StWidth != StVT.getStoreSizeInBits()) { 533 // Promote to a byte-sized store with upper bits zero if not 534 // storing an integral number of bytes. For example, promote 535 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 536 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), 537 StVT.getStoreSizeInBits()); 538 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 539 SDValue Result = 540 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 541 Alignment, MMOFlags, AAInfo); 542 ReplaceNode(SDValue(Node, 0), Result); 543 } else if (StWidth & (StWidth - 1)) { 544 // If not storing a power-of-2 number of bits, expand as two stores. 545 assert(!StVT.isVector() && "Unsupported truncstore!"); 546 unsigned RoundWidth = 1 << Log2_32(StWidth); 547 assert(RoundWidth < StWidth); 548 unsigned ExtraWidth = StWidth - RoundWidth; 549 assert(ExtraWidth < RoundWidth); 550 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 551 "Store size not an integral number of bytes!"); 552 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 553 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 554 SDValue Lo, Hi; 555 unsigned IncrementSize; 556 557 if (DL.isLittleEndian()) { 558 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 559 // Store the bottom RoundWidth bits. 560 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 561 RoundVT, Alignment, MMOFlags, AAInfo); 562 563 // Store the remaining ExtraWidth bits. 564 IncrementSize = RoundWidth / 8; 565 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 566 DAG.getConstant(IncrementSize, dl, 567 Ptr.getValueType())); 568 Hi = DAG.getNode( 569 ISD::SRL, dl, Value.getValueType(), Value, 570 DAG.getConstant(RoundWidth, dl, 571 TLI.getShiftAmountTy(Value.getValueType(), DL))); 572 Hi = DAG.getTruncStore( 573 Chain, dl, Hi, Ptr, 574 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, 575 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); 576 } else { 577 // Big endian - avoid unaligned stores. 578 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 579 // Store the top RoundWidth bits. 580 Hi = DAG.getNode( 581 ISD::SRL, dl, Value.getValueType(), Value, 582 DAG.getConstant(ExtraWidth, dl, 583 TLI.getShiftAmountTy(Value.getValueType(), DL))); 584 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), 585 RoundVT, Alignment, MMOFlags, AAInfo); 586 587 // Store the remaining ExtraWidth bits. 588 IncrementSize = RoundWidth / 8; 589 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 590 DAG.getConstant(IncrementSize, dl, 591 Ptr.getValueType())); 592 Lo = DAG.getTruncStore( 593 Chain, dl, Value, Ptr, 594 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, 595 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); 596 } 597 598 // The order of the stores doesn't matter. 599 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 600 ReplaceNode(SDValue(Node, 0), Result); 601 } else { 602 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 603 default: llvm_unreachable("This action is not supported yet!"); 604 case TargetLowering::Legal: { 605 EVT MemVT = ST->getMemoryVT(); 606 unsigned AS = ST->getAddressSpace(); 607 unsigned Align = ST->getAlignment(); 608 // If this is an unaligned store and the target doesn't support it, 609 // expand it. 610 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 611 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 612 ReplaceNode(SDValue(ST, 0), Result); 613 } 614 break; 615 } 616 case TargetLowering::Custom: { 617 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 618 if (Res && Res != SDValue(Node, 0)) 619 ReplaceNode(SDValue(Node, 0), Res); 620 return; 621 } 622 case TargetLowering::Expand: 623 assert(!StVT.isVector() && 624 "Vector Stores are handled in LegalizeVectorOps"); 625 626 SDValue Result; 627 628 // TRUNCSTORE:i16 i32 -> STORE i16 629 if (TLI.isTypeLegal(StVT)) { 630 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 631 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 632 Alignment, MMOFlags, AAInfo); 633 } else { 634 // The in-memory type isn't legal. Truncate to the type it would promote 635 // to, and then do a truncstore. 636 Value = DAG.getNode(ISD::TRUNCATE, dl, 637 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 638 Value); 639 Result = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 640 StVT, Alignment, MMOFlags, AAInfo); 641 } 642 643 ReplaceNode(SDValue(Node, 0), Result); 644 break; 645 } 646 } 647 } 648 649 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 650 LoadSDNode *LD = cast<LoadSDNode>(Node); 651 SDValue Chain = LD->getChain(); // The chain. 652 SDValue Ptr = LD->getBasePtr(); // The base pointer. 653 SDValue Value; // The value returned by the load op. 654 SDLoc dl(Node); 655 656 ISD::LoadExtType ExtType = LD->getExtensionType(); 657 if (ExtType == ISD::NON_EXTLOAD) { 658 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 659 MVT VT = Node->getSimpleValueType(0); 660 SDValue RVal = SDValue(Node, 0); 661 SDValue RChain = SDValue(Node, 1); 662 663 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 664 default: llvm_unreachable("This action is not supported yet!"); 665 case TargetLowering::Legal: { 666 EVT MemVT = LD->getMemoryVT(); 667 unsigned AS = LD->getAddressSpace(); 668 unsigned Align = LD->getAlignment(); 669 const DataLayout &DL = DAG.getDataLayout(); 670 // If this is an unaligned load and the target doesn't support it, 671 // expand it. 672 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 673 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 674 } 675 break; 676 } 677 case TargetLowering::Custom: 678 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 679 RVal = Res; 680 RChain = Res.getValue(1); 681 } 682 break; 683 684 case TargetLowering::Promote: { 685 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 686 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 687 "Can only promote loads to same size type"); 688 689 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 690 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 691 RChain = Res.getValue(1); 692 break; 693 } 694 } 695 if (RChain.getNode() != Node) { 696 assert(RVal.getNode() != Node && "Load must be completely replaced"); 697 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 698 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 699 if (UpdatedNodes) { 700 UpdatedNodes->insert(RVal.getNode()); 701 UpdatedNodes->insert(RChain.getNode()); 702 } 703 ReplacedNode(Node); 704 } 705 return; 706 } 707 708 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); 709 EVT SrcVT = LD->getMemoryVT(); 710 unsigned SrcWidth = SrcVT.getSizeInBits(); 711 unsigned Alignment = LD->getAlignment(); 712 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 713 AAMDNodes AAInfo = LD->getAAInfo(); 714 715 if (SrcWidth != SrcVT.getStoreSizeInBits() && 716 // Some targets pretend to have an i1 loading operation, and actually 717 // load an i8. This trick is correct for ZEXTLOAD because the top 7 718 // bits are guaranteed to be zero; it helps the optimizers understand 719 // that these bits are zero. It is also useful for EXTLOAD, since it 720 // tells the optimizers that those bits are undefined. It would be 721 // nice to have an effective generic way of getting these benefits... 722 // Until such a way is found, don't insist on promoting i1 here. 723 (SrcVT != MVT::i1 || 724 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 725 TargetLowering::Promote)) { 726 // Promote to a byte-sized load if not loading an integral number of 727 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 728 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 729 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 730 SDValue Ch; 731 732 // The extra bits are guaranteed to be zero, since we stored them that 733 // way. A zext load from NVT thus automatically gives zext from SrcVT. 734 735 ISD::LoadExtType NewExtType = 736 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 737 738 SDValue Result = 739 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), Chain, Ptr, 740 LD->getPointerInfo(), NVT, Alignment, MMOFlags, AAInfo); 741 742 Ch = Result.getValue(1); // The chain. 743 744 if (ExtType == ISD::SEXTLOAD) 745 // Having the top bits zero doesn't help when sign extending. 746 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 747 Result.getValueType(), 748 Result, DAG.getValueType(SrcVT)); 749 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 750 // All the top bits are guaranteed to be zero - inform the optimizers. 751 Result = DAG.getNode(ISD::AssertZext, dl, 752 Result.getValueType(), Result, 753 DAG.getValueType(SrcVT)); 754 755 Value = Result; 756 Chain = Ch; 757 } else if (SrcWidth & (SrcWidth - 1)) { 758 // If not loading a power-of-2 number of bits, expand as two loads. 759 assert(!SrcVT.isVector() && "Unsupported extload!"); 760 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 761 assert(RoundWidth < SrcWidth); 762 unsigned ExtraWidth = SrcWidth - RoundWidth; 763 assert(ExtraWidth < RoundWidth); 764 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 765 "Load size not an integral number of bytes!"); 766 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 767 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 768 SDValue Lo, Hi, Ch; 769 unsigned IncrementSize; 770 auto &DL = DAG.getDataLayout(); 771 772 if (DL.isLittleEndian()) { 773 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 774 // Load the bottom RoundWidth bits. 775 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 776 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, 777 AAInfo); 778 779 // Load the remaining ExtraWidth bits. 780 IncrementSize = RoundWidth / 8; 781 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 782 DAG.getConstant(IncrementSize, dl, 783 Ptr.getValueType())); 784 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 785 LD->getPointerInfo().getWithOffset(IncrementSize), 786 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, 787 AAInfo); 788 789 // Build a factor node to remember that this load is independent of 790 // the other one. 791 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 792 Hi.getValue(1)); 793 794 // Move the top bits to the right place. 795 Hi = DAG.getNode( 796 ISD::SHL, dl, Hi.getValueType(), Hi, 797 DAG.getConstant(RoundWidth, dl, 798 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 799 800 // Join the hi and lo parts. 801 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 802 } else { 803 // Big endian - avoid unaligned loads. 804 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 805 // Load the top RoundWidth bits. 806 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 807 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, 808 AAInfo); 809 810 // Load the remaining ExtraWidth bits. 811 IncrementSize = RoundWidth / 8; 812 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 813 DAG.getConstant(IncrementSize, dl, 814 Ptr.getValueType())); 815 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 816 LD->getPointerInfo().getWithOffset(IncrementSize), 817 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, 818 AAInfo); 819 820 // Build a factor node to remember that this load is independent of 821 // the other one. 822 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 823 Hi.getValue(1)); 824 825 // Move the top bits to the right place. 826 Hi = DAG.getNode( 827 ISD::SHL, dl, Hi.getValueType(), Hi, 828 DAG.getConstant(ExtraWidth, dl, 829 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 830 831 // Join the hi and lo parts. 832 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 833 } 834 835 Chain = Ch; 836 } else { 837 bool isCustom = false; 838 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 839 SrcVT.getSimpleVT())) { 840 default: llvm_unreachable("This action is not supported yet!"); 841 case TargetLowering::Custom: 842 isCustom = true; 843 LLVM_FALLTHROUGH; 844 case TargetLowering::Legal: 845 Value = SDValue(Node, 0); 846 Chain = SDValue(Node, 1); 847 848 if (isCustom) { 849 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 850 Value = Res; 851 Chain = Res.getValue(1); 852 } 853 } else { 854 // If this is an unaligned load and the target doesn't support it, 855 // expand it. 856 EVT MemVT = LD->getMemoryVT(); 857 unsigned AS = LD->getAddressSpace(); 858 unsigned Align = LD->getAlignment(); 859 const DataLayout &DL = DAG.getDataLayout(); 860 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 861 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 862 } 863 } 864 break; 865 866 case TargetLowering::Expand: { 867 EVT DestVT = Node->getValueType(0); 868 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 869 // If the source type is not legal, see if there is a legal extload to 870 // an intermediate type that we can then extend further. 871 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 872 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 873 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 874 // If we are loading a legal type, this is a non-extload followed by a 875 // full extend. 876 ISD::LoadExtType MidExtType = 877 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 878 879 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 880 SrcVT, LD->getMemOperand()); 881 unsigned ExtendOp = 882 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 883 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 884 Chain = Load.getValue(1); 885 break; 886 } 887 888 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 889 // normal undefined upper bits behavior to allow using an in-reg extend 890 // with the illegal FP type, so load as an integer and do the 891 // from-integer conversion. 892 if (SrcVT.getScalarType() == MVT::f16) { 893 EVT ISrcVT = SrcVT.changeTypeToInteger(); 894 EVT IDestVT = DestVT.changeTypeToInteger(); 895 EVT LoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 896 897 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, LoadVT, 898 Chain, Ptr, ISrcVT, 899 LD->getMemOperand()); 900 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 901 Chain = Result.getValue(1); 902 break; 903 } 904 } 905 906 assert(!SrcVT.isVector() && 907 "Vector Loads are handled in LegalizeVectorOps"); 908 909 // FIXME: This does not work for vectors on most targets. Sign- 910 // and zero-extend operations are currently folded into extending 911 // loads, whether they are legal or not, and then we end up here 912 // without any support for legalizing them. 913 assert(ExtType != ISD::EXTLOAD && 914 "EXTLOAD should always be supported!"); 915 // Turn the unsupported load into an EXTLOAD followed by an 916 // explicit zero/sign extend inreg. 917 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 918 Node->getValueType(0), 919 Chain, Ptr, SrcVT, 920 LD->getMemOperand()); 921 SDValue ValRes; 922 if (ExtType == ISD::SEXTLOAD) 923 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 924 Result.getValueType(), 925 Result, DAG.getValueType(SrcVT)); 926 else 927 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); 928 Value = ValRes; 929 Chain = Result.getValue(1); 930 break; 931 } 932 } 933 } 934 935 // Since loads produce two values, make sure to remember that we legalized 936 // both of them. 937 if (Chain.getNode() != Node) { 938 assert(Value.getNode() != Node && "Load must be completely replaced"); 939 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 940 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 941 if (UpdatedNodes) { 942 UpdatedNodes->insert(Value.getNode()); 943 UpdatedNodes->insert(Chain.getNode()); 944 } 945 ReplacedNode(Node); 946 } 947 } 948 949 /// Return a legal replacement for the given operation, with all legal operands. 950 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 951 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 952 953 // Allow illegal target nodes and illegal registers. 954 if (Node->getOpcode() == ISD::TargetConstant || 955 Node->getOpcode() == ISD::Register) 956 return; 957 958 #ifndef NDEBUG 959 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 960 assert((TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 961 TargetLowering::TypeLegal || 962 TLI.isTypeLegal(Node->getValueType(i))) && 963 "Unexpected illegal type!"); 964 965 for (const SDValue &Op : Node->op_values()) 966 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 967 TargetLowering::TypeLegal || 968 TLI.isTypeLegal(Op.getValueType()) || 969 Op.getOpcode() == ISD::TargetConstant || 970 Op.getOpcode() == ISD::Register) && 971 "Unexpected illegal type!"); 972 #endif 973 974 // Figure out the correct action; the way to query this varies by opcode 975 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 976 bool SimpleFinishLegalizing = true; 977 switch (Node->getOpcode()) { 978 case ISD::INTRINSIC_W_CHAIN: 979 case ISD::INTRINSIC_WO_CHAIN: 980 case ISD::INTRINSIC_VOID: 981 case ISD::STACKSAVE: 982 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 983 break; 984 case ISD::GET_DYNAMIC_AREA_OFFSET: 985 Action = TLI.getOperationAction(Node->getOpcode(), 986 Node->getValueType(0)); 987 break; 988 case ISD::VAARG: 989 Action = TLI.getOperationAction(Node->getOpcode(), 990 Node->getValueType(0)); 991 if (Action != TargetLowering::Promote) 992 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 993 break; 994 case ISD::FP_TO_FP16: 995 case ISD::SINT_TO_FP: 996 case ISD::UINT_TO_FP: 997 case ISD::EXTRACT_VECTOR_ELT: 998 Action = TLI.getOperationAction(Node->getOpcode(), 999 Node->getOperand(0).getValueType()); 1000 break; 1001 case ISD::FP_ROUND_INREG: 1002 case ISD::SIGN_EXTEND_INREG: { 1003 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1004 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1005 break; 1006 } 1007 case ISD::ATOMIC_STORE: 1008 Action = TLI.getOperationAction(Node->getOpcode(), 1009 Node->getOperand(2).getValueType()); 1010 break; 1011 case ISD::SELECT_CC: 1012 case ISD::SETCC: 1013 case ISD::BR_CC: { 1014 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 1015 Node->getOpcode() == ISD::SETCC ? 2 : 1; 1016 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; 1017 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1018 ISD::CondCode CCCode = 1019 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1020 Action = TLI.getCondCodeAction(CCCode, OpVT); 1021 if (Action == TargetLowering::Legal) { 1022 if (Node->getOpcode() == ISD::SELECT_CC) 1023 Action = TLI.getOperationAction(Node->getOpcode(), 1024 Node->getValueType(0)); 1025 else 1026 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1027 } 1028 break; 1029 } 1030 case ISD::LOAD: 1031 case ISD::STORE: 1032 // FIXME: Model these properly. LOAD and STORE are complicated, and 1033 // STORE expects the unlegalized operand in some cases. 1034 SimpleFinishLegalizing = false; 1035 break; 1036 case ISD::CALLSEQ_START: 1037 case ISD::CALLSEQ_END: 1038 // FIXME: This shouldn't be necessary. These nodes have special properties 1039 // dealing with the recursive nature of legalization. Removing this 1040 // special case should be done as part of making LegalizeDAG non-recursive. 1041 SimpleFinishLegalizing = false; 1042 break; 1043 case ISD::EXTRACT_ELEMENT: 1044 case ISD::FLT_ROUNDS_: 1045 case ISD::MERGE_VALUES: 1046 case ISD::EH_RETURN: 1047 case ISD::FRAME_TO_ARGS_OFFSET: 1048 case ISD::EH_DWARF_CFA: 1049 case ISD::EH_SJLJ_SETJMP: 1050 case ISD::EH_SJLJ_LONGJMP: 1051 case ISD::EH_SJLJ_SETUP_DISPATCH: 1052 // These operations lie about being legal: when they claim to be legal, 1053 // they should actually be expanded. 1054 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1055 if (Action == TargetLowering::Legal) 1056 Action = TargetLowering::Expand; 1057 break; 1058 case ISD::INIT_TRAMPOLINE: 1059 case ISD::ADJUST_TRAMPOLINE: 1060 case ISD::FRAMEADDR: 1061 case ISD::RETURNADDR: 1062 case ISD::ADDROFRETURNADDR: 1063 // These operations lie about being legal: when they claim to be legal, 1064 // they should actually be custom-lowered. 1065 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1066 if (Action == TargetLowering::Legal) 1067 Action = TargetLowering::Custom; 1068 break; 1069 case ISD::READCYCLECOUNTER: 1070 // READCYCLECOUNTER returns an i64, even if type legalization might have 1071 // expanded that to several smaller types. 1072 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1073 break; 1074 case ISD::READ_REGISTER: 1075 case ISD::WRITE_REGISTER: 1076 // Named register is legal in the DAG, but blocked by register name 1077 // selection if not implemented by target (to chose the correct register) 1078 // They'll be converted to Copy(To/From)Reg. 1079 Action = TargetLowering::Legal; 1080 break; 1081 case ISD::DEBUGTRAP: 1082 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1083 if (Action == TargetLowering::Expand) { 1084 // replace ISD::DEBUGTRAP with ISD::TRAP 1085 SDValue NewVal; 1086 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1087 Node->getOperand(0)); 1088 ReplaceNode(Node, NewVal.getNode()); 1089 LegalizeOp(NewVal.getNode()); 1090 return; 1091 } 1092 break; 1093 case ISD::STRICT_FSQRT: 1094 case ISD::STRICT_FMA: 1095 case ISD::STRICT_FPOW: 1096 case ISD::STRICT_FPOWI: 1097 case ISD::STRICT_FSIN: 1098 case ISD::STRICT_FCOS: 1099 case ISD::STRICT_FEXP: 1100 case ISD::STRICT_FEXP2: 1101 case ISD::STRICT_FLOG: 1102 case ISD::STRICT_FLOG10: 1103 case ISD::STRICT_FLOG2: 1104 case ISD::STRICT_FRINT: 1105 case ISD::STRICT_FNEARBYINT: 1106 // These pseudo-ops get legalized as if they were their non-strict 1107 // equivalent. For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT 1108 // is also legal, but if ISD::FSQRT requires expansion then so does 1109 // ISD::STRICT_FSQRT. 1110 Action = TLI.getStrictFPOperationAction(Node->getOpcode(), 1111 Node->getValueType(0)); 1112 break; 1113 default: 1114 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1115 Action = TargetLowering::Legal; 1116 } else { 1117 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1118 } 1119 break; 1120 } 1121 1122 if (SimpleFinishLegalizing) { 1123 SDNode *NewNode = Node; 1124 switch (Node->getOpcode()) { 1125 default: break; 1126 case ISD::SHL: 1127 case ISD::SRL: 1128 case ISD::SRA: 1129 case ISD::ROTL: 1130 case ISD::ROTR: { 1131 // Legalizing shifts/rotates requires adjusting the shift amount 1132 // to the appropriate width. 1133 SDValue Op0 = Node->getOperand(0); 1134 SDValue Op1 = Node->getOperand(1); 1135 if (!Op1.getValueType().isVector()) { 1136 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1137 // The getShiftAmountOperand() may create a new operand node or 1138 // return the existing one. If new operand is created we need 1139 // to update the parent node. 1140 // Do not try to legalize SAO here! It will be automatically legalized 1141 // in the next round. 1142 if (SAO != Op1) 1143 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1144 } 1145 } 1146 break; 1147 case ISD::SRL_PARTS: 1148 case ISD::SRA_PARTS: 1149 case ISD::SHL_PARTS: { 1150 // Legalizing shifts/rotates requires adjusting the shift amount 1151 // to the appropriate width. 1152 SDValue Op0 = Node->getOperand(0); 1153 SDValue Op1 = Node->getOperand(1); 1154 SDValue Op2 = Node->getOperand(2); 1155 if (!Op2.getValueType().isVector()) { 1156 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1157 // The getShiftAmountOperand() may create a new operand node or 1158 // return the existing one. If new operand is created we need 1159 // to update the parent node. 1160 if (SAO != Op2) 1161 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1162 } 1163 break; 1164 } 1165 } 1166 1167 if (NewNode != Node) { 1168 ReplaceNode(Node, NewNode); 1169 Node = NewNode; 1170 } 1171 switch (Action) { 1172 case TargetLowering::Legal: 1173 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 1174 return; 1175 case TargetLowering::Custom: 1176 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 1177 // FIXME: The handling for custom lowering with multiple results is 1178 // a complete mess. 1179 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1180 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1181 return; 1182 1183 if (Node->getNumValues() == 1) { 1184 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1185 // We can just directly replace this node with the lowered value. 1186 ReplaceNode(SDValue(Node, 0), Res); 1187 return; 1188 } 1189 1190 SmallVector<SDValue, 8> ResultVals; 1191 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1192 ResultVals.push_back(Res.getValue(i)); 1193 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1194 ReplaceNode(Node, ResultVals.data()); 1195 return; 1196 } 1197 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 1198 LLVM_FALLTHROUGH; 1199 case TargetLowering::Expand: 1200 if (ExpandNode(Node)) 1201 return; 1202 LLVM_FALLTHROUGH; 1203 case TargetLowering::LibCall: 1204 ConvertNodeToLibcall(Node); 1205 return; 1206 case TargetLowering::Promote: 1207 PromoteNode(Node); 1208 return; 1209 } 1210 } 1211 1212 switch (Node->getOpcode()) { 1213 default: 1214 #ifndef NDEBUG 1215 dbgs() << "NODE: "; 1216 Node->dump( &DAG); 1217 dbgs() << "\n"; 1218 #endif 1219 llvm_unreachable("Do not know how to legalize this operator!"); 1220 1221 case ISD::CALLSEQ_START: 1222 case ISD::CALLSEQ_END: 1223 break; 1224 case ISD::LOAD: 1225 return LegalizeLoadOps(Node); 1226 case ISD::STORE: 1227 return LegalizeStoreOps(Node); 1228 } 1229 } 1230 1231 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1232 SDValue Vec = Op.getOperand(0); 1233 SDValue Idx = Op.getOperand(1); 1234 SDLoc dl(Op); 1235 1236 // Before we generate a new store to a temporary stack slot, see if there is 1237 // already one that we can use. There often is because when we scalarize 1238 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1239 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1240 // the vector. If all are expanded here, we don't want one store per vector 1241 // element. 1242 1243 // Caches for hasPredecessorHelper 1244 SmallPtrSet<const SDNode *, 32> Visited; 1245 SmallVector<const SDNode *, 16> Worklist; 1246 Worklist.push_back(Idx.getNode()); 1247 SDValue StackPtr, Ch; 1248 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), 1249 UE = Vec.getNode()->use_end(); UI != UE; ++UI) { 1250 SDNode *User = *UI; 1251 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1252 if (ST->isIndexed() || ST->isTruncatingStore() || 1253 ST->getValue() != Vec) 1254 continue; 1255 1256 // Make sure that nothing else could have stored into the destination of 1257 // this store. 1258 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1259 continue; 1260 1261 // If the index is dependent on the store we will introduce a cycle when 1262 // creating the load (the load uses the index, and by replacing the chain 1263 // we will make the index dependent on the load). Also, the store might be 1264 // dependent on the extractelement and introduce a cycle when creating 1265 // the load. 1266 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1267 ST->hasPredecessor(Op.getNode())) 1268 continue; 1269 1270 StackPtr = ST->getBasePtr(); 1271 Ch = SDValue(ST, 0); 1272 break; 1273 } 1274 } 1275 1276 EVT VecVT = Vec.getValueType(); 1277 1278 if (!Ch.getNode()) { 1279 // Store the value to a temporary stack slot, then LOAD the returned part. 1280 StackPtr = DAG.CreateStackTemporary(VecVT); 1281 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1282 MachinePointerInfo()); 1283 } 1284 1285 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1286 1287 SDValue NewLoad; 1288 1289 if (Op.getValueType().isVector()) 1290 NewLoad = 1291 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); 1292 else 1293 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1294 MachinePointerInfo(), 1295 VecVT.getVectorElementType()); 1296 1297 // Replace the chain going out of the store, by the one out of the load. 1298 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1299 1300 // We introduced a cycle though, so update the loads operands, making sure 1301 // to use the original store's chain as an incoming chain. 1302 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1303 NewLoad->op_end()); 1304 NewLoadOperands[0] = Ch; 1305 NewLoad = 1306 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1307 return NewLoad; 1308 } 1309 1310 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1311 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1312 1313 SDValue Vec = Op.getOperand(0); 1314 SDValue Part = Op.getOperand(1); 1315 SDValue Idx = Op.getOperand(2); 1316 SDLoc dl(Op); 1317 1318 // Store the value to a temporary stack slot, then LOAD the returned part. 1319 EVT VecVT = Vec.getValueType(); 1320 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1321 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1322 MachinePointerInfo PtrInfo = 1323 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1324 1325 // First store the whole vector. 1326 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1327 1328 // Then store the inserted part. 1329 SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1330 1331 // Store the subvector. 1332 Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, MachinePointerInfo()); 1333 1334 // Finally, load the updated vector. 1335 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1336 } 1337 1338 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1339 // We can't handle this case efficiently. Allocate a sufficiently 1340 // aligned object on the stack, store each element into it, then load 1341 // the result as a vector. 1342 // Create the stack frame object. 1343 EVT VT = Node->getValueType(0); 1344 EVT EltVT = VT.getVectorElementType(); 1345 SDLoc dl(Node); 1346 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1347 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1348 MachinePointerInfo PtrInfo = 1349 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1350 1351 // Emit a store of each element to the stack slot. 1352 SmallVector<SDValue, 8> Stores; 1353 unsigned TypeByteSize = EltVT.getSizeInBits() / 8; 1354 // Store (in the right endianness) the elements to memory. 1355 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1356 // Ignore undef elements. 1357 if (Node->getOperand(i).isUndef()) continue; 1358 1359 unsigned Offset = TypeByteSize*i; 1360 1361 SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType()); 1362 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); 1363 1364 // If the destination vector element type is narrower than the source 1365 // element type, only store the bits necessary. 1366 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { 1367 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1368 Node->getOperand(i), Idx, 1369 PtrInfo.getWithOffset(Offset), EltVT)); 1370 } else 1371 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1372 Idx, PtrInfo.getWithOffset(Offset))); 1373 } 1374 1375 SDValue StoreChain; 1376 if (!Stores.empty()) // Not all undef elements? 1377 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1378 else 1379 StoreChain = DAG.getEntryNode(); 1380 1381 // Result is a load from the stack slot. 1382 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1383 } 1384 1385 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1386 /// containing the sign bit if the target has no integer value capable of 1387 /// holding all bits of the floating-point value. 1388 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1389 const SDLoc &DL, 1390 SDValue Value) const { 1391 EVT FloatVT = Value.getValueType(); 1392 unsigned NumBits = FloatVT.getSizeInBits(); 1393 State.FloatVT = FloatVT; 1394 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1395 // Convert to an integer of the same size. 1396 if (TLI.isTypeLegal(IVT)) { 1397 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1398 State.SignMask = APInt::getSignMask(NumBits); 1399 State.SignBit = NumBits - 1; 1400 return; 1401 } 1402 1403 auto &DataLayout = DAG.getDataLayout(); 1404 // Store the float to memory, then load the sign part out as an integer. 1405 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1406 // First create a temporary that is aligned for both the load and store. 1407 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1408 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1409 // Then store the float to it. 1410 State.FloatPtr = StackPtr; 1411 MachineFunction &MF = DAG.getMachineFunction(); 1412 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1413 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1414 State.FloatPointerInfo); 1415 1416 SDValue IntPtr; 1417 if (DataLayout.isBigEndian()) { 1418 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1419 // Load out a legal integer with the same sign bit as the float. 1420 IntPtr = StackPtr; 1421 State.IntPointerInfo = State.FloatPointerInfo; 1422 } else { 1423 // Advance the pointer so that the loaded byte will contain the sign bit. 1424 unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1; 1425 IntPtr = DAG.getNode(ISD::ADD, DL, StackPtr.getValueType(), StackPtr, 1426 DAG.getConstant(ByteOffset, DL, StackPtr.getValueType())); 1427 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1428 ByteOffset); 1429 } 1430 1431 State.IntPtr = IntPtr; 1432 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1433 State.IntPointerInfo, MVT::i8); 1434 State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7); 1435 State.SignBit = 7; 1436 } 1437 1438 /// Replace the integer value produced by getSignAsIntValue() with a new value 1439 /// and cast the result back to a floating-point type. 1440 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1441 const SDLoc &DL, 1442 SDValue NewIntValue) const { 1443 if (!State.Chain) 1444 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1445 1446 // Override the part containing the sign bit in the value stored on the stack. 1447 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1448 State.IntPointerInfo, MVT::i8); 1449 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1450 State.FloatPointerInfo); 1451 } 1452 1453 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1454 SDLoc DL(Node); 1455 SDValue Mag = Node->getOperand(0); 1456 SDValue Sign = Node->getOperand(1); 1457 1458 // Get sign bit into an integer value. 1459 FloatSignAsInt SignAsInt; 1460 getSignAsIntValue(SignAsInt, DL, Sign); 1461 1462 EVT IntVT = SignAsInt.IntValue.getValueType(); 1463 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1464 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1465 SignMask); 1466 1467 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1468 EVT FloatVT = Mag.getValueType(); 1469 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1470 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1471 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1472 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1473 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1474 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1475 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1476 } 1477 1478 // Transform Mag value to integer, and clear the sign bit. 1479 FloatSignAsInt MagAsInt; 1480 getSignAsIntValue(MagAsInt, DL, Mag); 1481 EVT MagVT = MagAsInt.IntValue.getValueType(); 1482 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1483 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1484 ClearSignMask); 1485 1486 // Get the signbit at the right position for MagAsInt. 1487 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1488 if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) { 1489 if (ShiftAmount > 0) { 1490 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, IntVT); 1491 SignBit = DAG.getNode(ISD::SRL, DL, IntVT, SignBit, ShiftCnst); 1492 } else if (ShiftAmount < 0) { 1493 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, IntVT); 1494 SignBit = DAG.getNode(ISD::SHL, DL, IntVT, SignBit, ShiftCnst); 1495 } 1496 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1497 } else if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) { 1498 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1499 if (ShiftAmount > 0) { 1500 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, MagVT); 1501 SignBit = DAG.getNode(ISD::SRL, DL, MagVT, SignBit, ShiftCnst); 1502 } else if (ShiftAmount < 0) { 1503 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, MagVT); 1504 SignBit = DAG.getNode(ISD::SHL, DL, MagVT, SignBit, ShiftCnst); 1505 } 1506 } 1507 1508 // Store the part with the modified sign and convert back to float. 1509 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1510 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1511 } 1512 1513 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1514 SDLoc DL(Node); 1515 SDValue Value = Node->getOperand(0); 1516 1517 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1518 EVT FloatVT = Value.getValueType(); 1519 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1520 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1521 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1522 } 1523 1524 // Transform value to integer, clear the sign bit and transform back. 1525 FloatSignAsInt ValueAsInt; 1526 getSignAsIntValue(ValueAsInt, DL, Value); 1527 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1528 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1529 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1530 ClearSignMask); 1531 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1532 } 1533 1534 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1535 SmallVectorImpl<SDValue> &Results) { 1536 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1537 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1538 " not tell us which reg is the stack pointer!"); 1539 SDLoc dl(Node); 1540 EVT VT = Node->getValueType(0); 1541 SDValue Tmp1 = SDValue(Node, 0); 1542 SDValue Tmp2 = SDValue(Node, 1); 1543 SDValue Tmp3 = Node->getOperand(2); 1544 SDValue Chain = Tmp1.getOperand(0); 1545 1546 // Chain the dynamic stack allocation so that it doesn't modify the stack 1547 // pointer when other instructions are using the stack. 1548 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1549 1550 SDValue Size = Tmp2.getOperand(1); 1551 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1552 Chain = SP.getValue(1); 1553 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1554 unsigned StackAlign = 1555 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 1556 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 1557 if (Align > StackAlign) 1558 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1559 DAG.getConstant(-(uint64_t)Align, dl, VT)); 1560 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1561 1562 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1563 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1564 1565 Results.push_back(Tmp1); 1566 Results.push_back(Tmp2); 1567 } 1568 1569 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current 1570 /// target. 1571 /// 1572 /// If the SETCC has been legalized using AND / OR, then the legalized node 1573 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert 1574 /// will be set to false. 1575 /// 1576 /// If the SETCC has been legalized by using getSetCCSwappedOperands(), 1577 /// then the values of LHS and RHS will be swapped, CC will be set to the 1578 /// new condition, and NeedInvert will be set to false. 1579 /// 1580 /// If the SETCC has been legalized using the inverse condcode, then LHS and 1581 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert 1582 /// will be set to true. The caller must invert the result of the SETCC with 1583 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect 1584 /// of a true/false result. 1585 /// 1586 /// \returns true if the SetCC has been legalized, false if it hasn't. 1587 bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, SDValue &LHS, 1588 SDValue &RHS, SDValue &CC, 1589 bool &NeedInvert, 1590 const SDLoc &dl) { 1591 MVT OpVT = LHS.getSimpleValueType(); 1592 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1593 NeedInvert = false; 1594 bool NeedSwap = false; 1595 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1596 default: llvm_unreachable("Unknown condition code action!"); 1597 case TargetLowering::Legal: 1598 // Nothing to do. 1599 break; 1600 case TargetLowering::Expand: { 1601 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 1602 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1603 std::swap(LHS, RHS); 1604 CC = DAG.getCondCode(InvCC); 1605 return true; 1606 } 1607 // Swapping operands didn't work. Try inverting the condition. 1608 InvCC = getSetCCInverse(CCCode, OpVT.isInteger()); 1609 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1610 // If inverting the condition is not enough, try swapping operands 1611 // on top of it. 1612 InvCC = ISD::getSetCCSwappedOperands(InvCC); 1613 NeedSwap = true; 1614 } 1615 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 1616 CC = DAG.getCondCode(InvCC); 1617 NeedInvert = true; 1618 if (NeedSwap) 1619 std::swap(LHS, RHS); 1620 return true; 1621 } 1622 1623 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1624 unsigned Opc = 0; 1625 switch (CCCode) { 1626 default: llvm_unreachable("Don't know how to expand this condition!"); 1627 case ISD::SETO: 1628 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) 1629 && "If SETO is expanded, SETOEQ must be legal!"); 1630 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; 1631 case ISD::SETUO: 1632 assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT) 1633 && "If SETUO is expanded, SETUNE must be legal!"); 1634 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break; 1635 case ISD::SETOEQ: 1636 case ISD::SETOGT: 1637 case ISD::SETOGE: 1638 case ISD::SETOLT: 1639 case ISD::SETOLE: 1640 case ISD::SETONE: 1641 case ISD::SETUEQ: 1642 case ISD::SETUNE: 1643 case ISD::SETUGT: 1644 case ISD::SETUGE: 1645 case ISD::SETULT: 1646 case ISD::SETULE: 1647 // If we are floating point, assign and break, otherwise fall through. 1648 if (!OpVT.isInteger()) { 1649 // We can use the 4th bit to tell if we are the unordered 1650 // or ordered version of the opcode. 1651 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 1652 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 1653 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 1654 break; 1655 } 1656 // Fallthrough if we are unsigned integer. 1657 LLVM_FALLTHROUGH; 1658 case ISD::SETLE: 1659 case ISD::SETGT: 1660 case ISD::SETGE: 1661 case ISD::SETLT: 1662 case ISD::SETNE: 1663 case ISD::SETEQ: 1664 // If all combinations of inverting the condition and swapping operands 1665 // didn't work then we have no means to expand the condition. 1666 llvm_unreachable("Don't know how to expand this condition!"); 1667 } 1668 1669 SDValue SetCC1, SetCC2; 1670 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 1671 // If we aren't the ordered or unorder operation, 1672 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 1673 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); 1674 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); 1675 } else { 1676 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 1677 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1); 1678 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2); 1679 } 1680 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1681 RHS = SDValue(); 1682 CC = SDValue(); 1683 return true; 1684 } 1685 } 1686 return false; 1687 } 1688 1689 /// Emit a store/load combination to the stack. This stores 1690 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1691 /// a load from the stack slot to DestVT, extending it if needed. 1692 /// The resultant code need not be legal. 1693 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1694 EVT DestVT, const SDLoc &dl) { 1695 // Create the stack frame object. 1696 unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment( 1697 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1698 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 1699 1700 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1701 int SPFI = StackPtrFI->getIndex(); 1702 MachinePointerInfo PtrInfo = 1703 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1704 1705 unsigned SrcSize = SrcOp.getValueSizeInBits(); 1706 unsigned SlotSize = SlotVT.getSizeInBits(); 1707 unsigned DestSize = DestVT.getSizeInBits(); 1708 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1709 unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType); 1710 1711 // Emit a store to the stack slot. Use a truncstore if the input value is 1712 // later than DestVT. 1713 SDValue Store; 1714 1715 if (SrcSize > SlotSize) 1716 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, PtrInfo, 1717 SlotVT, SrcAlign); 1718 else { 1719 assert(SrcSize == SlotSize && "Invalid store"); 1720 Store = 1721 DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1722 } 1723 1724 // Result is a load from the stack slot. 1725 if (SlotSize == DestSize) 1726 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1727 1728 assert(SlotSize < DestSize && "Unknown extension!"); 1729 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1730 DestAlign); 1731 } 1732 1733 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1734 SDLoc dl(Node); 1735 // Create a vector sized/aligned stack slot, store the value to element #0, 1736 // then load the whole vector back out. 1737 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1738 1739 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1740 int SPFI = StackPtrFI->getIndex(); 1741 1742 SDValue Ch = DAG.getTruncStore( 1743 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1744 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1745 Node->getValueType(0).getVectorElementType()); 1746 return DAG.getLoad( 1747 Node->getValueType(0), dl, Ch, StackPtr, 1748 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1749 } 1750 1751 static bool 1752 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1753 const TargetLowering &TLI, SDValue &Res) { 1754 unsigned NumElems = Node->getNumOperands(); 1755 SDLoc dl(Node); 1756 EVT VT = Node->getValueType(0); 1757 1758 // Try to group the scalars into pairs, shuffle the pairs together, then 1759 // shuffle the pairs of pairs together, etc. until the vector has 1760 // been built. This will work only if all of the necessary shuffle masks 1761 // are legal. 1762 1763 // We do this in two phases; first to check the legality of the shuffles, 1764 // and next, assuming that all shuffles are legal, to create the new nodes. 1765 for (int Phase = 0; Phase < 2; ++Phase) { 1766 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1767 NewIntermedVals; 1768 for (unsigned i = 0; i < NumElems; ++i) { 1769 SDValue V = Node->getOperand(i); 1770 if (V.isUndef()) 1771 continue; 1772 1773 SDValue Vec; 1774 if (Phase) 1775 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1776 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1777 } 1778 1779 while (IntermedVals.size() > 2) { 1780 NewIntermedVals.clear(); 1781 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1782 // This vector and the next vector are shuffled together (simply to 1783 // append the one to the other). 1784 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1785 1786 SmallVector<int, 16> FinalIndices; 1787 FinalIndices.reserve(IntermedVals[i].second.size() + 1788 IntermedVals[i+1].second.size()); 1789 1790 int k = 0; 1791 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1792 ++j, ++k) { 1793 ShuffleVec[k] = j; 1794 FinalIndices.push_back(IntermedVals[i].second[j]); 1795 } 1796 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1797 ++j, ++k) { 1798 ShuffleVec[k] = NumElems + j; 1799 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1800 } 1801 1802 SDValue Shuffle; 1803 if (Phase) 1804 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1805 IntermedVals[i+1].first, 1806 ShuffleVec); 1807 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1808 return false; 1809 NewIntermedVals.push_back( 1810 std::make_pair(Shuffle, std::move(FinalIndices))); 1811 } 1812 1813 // If we had an odd number of defined values, then append the last 1814 // element to the array of new vectors. 1815 if ((IntermedVals.size() & 1) != 0) 1816 NewIntermedVals.push_back(IntermedVals.back()); 1817 1818 IntermedVals.swap(NewIntermedVals); 1819 } 1820 1821 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1822 "Invalid number of intermediate vectors"); 1823 SDValue Vec1 = IntermedVals[0].first; 1824 SDValue Vec2; 1825 if (IntermedVals.size() > 1) 1826 Vec2 = IntermedVals[1].first; 1827 else if (Phase) 1828 Vec2 = DAG.getUNDEF(VT); 1829 1830 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1831 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1832 ShuffleVec[IntermedVals[0].second[i]] = i; 1833 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1834 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1835 1836 if (Phase) 1837 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1838 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1839 return false; 1840 } 1841 1842 return true; 1843 } 1844 1845 /// Expand a BUILD_VECTOR node on targets that don't 1846 /// support the operation, but do support the resultant vector type. 1847 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1848 unsigned NumElems = Node->getNumOperands(); 1849 SDValue Value1, Value2; 1850 SDLoc dl(Node); 1851 EVT VT = Node->getValueType(0); 1852 EVT OpVT = Node->getOperand(0).getValueType(); 1853 EVT EltVT = VT.getVectorElementType(); 1854 1855 // If the only non-undef value is the low element, turn this into a 1856 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1857 bool isOnlyLowElement = true; 1858 bool MoreThanTwoValues = false; 1859 bool isConstant = true; 1860 for (unsigned i = 0; i < NumElems; ++i) { 1861 SDValue V = Node->getOperand(i); 1862 if (V.isUndef()) 1863 continue; 1864 if (i > 0) 1865 isOnlyLowElement = false; 1866 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1867 isConstant = false; 1868 1869 if (!Value1.getNode()) { 1870 Value1 = V; 1871 } else if (!Value2.getNode()) { 1872 if (V != Value1) 1873 Value2 = V; 1874 } else if (V != Value1 && V != Value2) { 1875 MoreThanTwoValues = true; 1876 } 1877 } 1878 1879 if (!Value1.getNode()) 1880 return DAG.getUNDEF(VT); 1881 1882 if (isOnlyLowElement) 1883 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1884 1885 // If all elements are constants, create a load from the constant pool. 1886 if (isConstant) { 1887 SmallVector<Constant*, 16> CV; 1888 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1889 if (ConstantFPSDNode *V = 1890 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1891 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1892 } else if (ConstantSDNode *V = 1893 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1894 if (OpVT==EltVT) 1895 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1896 else { 1897 // If OpVT and EltVT don't match, EltVT is not legal and the 1898 // element values have been promoted/truncated earlier. Undo this; 1899 // we don't want a v16i8 to become a v16i32 for example. 1900 const ConstantInt *CI = V->getConstantIntValue(); 1901 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1902 CI->getZExtValue())); 1903 } 1904 } else { 1905 assert(Node->getOperand(i).isUndef()); 1906 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1907 CV.push_back(UndefValue::get(OpNTy)); 1908 } 1909 } 1910 Constant *CP = ConstantVector::get(CV); 1911 SDValue CPIdx = 1912 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 1913 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 1914 return DAG.getLoad( 1915 VT, dl, DAG.getEntryNode(), CPIdx, 1916 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 1917 Alignment); 1918 } 1919 1920 SmallSet<SDValue, 16> DefinedValues; 1921 for (unsigned i = 0; i < NumElems; ++i) { 1922 if (Node->getOperand(i).isUndef()) 1923 continue; 1924 DefinedValues.insert(Node->getOperand(i)); 1925 } 1926 1927 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 1928 if (!MoreThanTwoValues) { 1929 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1930 for (unsigned i = 0; i < NumElems; ++i) { 1931 SDValue V = Node->getOperand(i); 1932 if (V.isUndef()) 1933 continue; 1934 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1935 } 1936 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1937 // Get the splatted value into the low element of a vector register. 1938 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1939 SDValue Vec2; 1940 if (Value2.getNode()) 1941 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 1942 else 1943 Vec2 = DAG.getUNDEF(VT); 1944 1945 // Return shuffle(LowValVec, undef, <0,0,0,0>) 1946 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1947 } 1948 } else { 1949 SDValue Res; 1950 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 1951 return Res; 1952 } 1953 } 1954 1955 // Otherwise, we can't handle this case efficiently. 1956 return ExpandVectorBuildThroughStack(Node); 1957 } 1958 1959 // Expand a node into a call to a libcall. If the result value 1960 // does not fit into a register, return the lo part and set the hi part to the 1961 // by-reg argument. If it does fit into a single register, return the result 1962 // and leave the Hi part unset. 1963 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 1964 bool isSigned) { 1965 TargetLowering::ArgListTy Args; 1966 TargetLowering::ArgListEntry Entry; 1967 for (const SDValue &Op : Node->op_values()) { 1968 EVT ArgVT = Op.getValueType(); 1969 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 1970 Entry.Node = Op; 1971 Entry.Ty = ArgTy; 1972 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 1973 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 1974 Args.push_back(Entry); 1975 } 1976 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1977 TLI.getPointerTy(DAG.getDataLayout())); 1978 1979 EVT RetVT = Node->getValueType(0); 1980 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 1981 1982 // By default, the input chain to this libcall is the entry node of the 1983 // function. If the libcall is going to be emitted as a tail call then 1984 // TLI.isUsedByReturnOnly will change it to the right chain if the return 1985 // node which is being folded has a non-entry input chain. 1986 SDValue InChain = DAG.getEntryNode(); 1987 1988 // isTailCall may be true since the callee does not reference caller stack 1989 // frame. Check if it's in the right position and that the return types match. 1990 SDValue TCChain = InChain; 1991 const Function &F = DAG.getMachineFunction().getFunction(); 1992 bool isTailCall = 1993 TLI.isInTailCallPosition(DAG, Node, TCChain) && 1994 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 1995 if (isTailCall) 1996 InChain = TCChain; 1997 1998 TargetLowering::CallLoweringInfo CLI(DAG); 1999 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2000 CLI.setDebugLoc(SDLoc(Node)) 2001 .setChain(InChain) 2002 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2003 std::move(Args)) 2004 .setTailCall(isTailCall) 2005 .setSExtResult(signExtend) 2006 .setZExtResult(!signExtend) 2007 .setIsPostTypeLegalization(true); 2008 2009 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2010 2011 if (!CallInfo.second.getNode()) { 2012 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump()); 2013 // It's a tailcall, return the chain (which is the DAG root). 2014 return DAG.getRoot(); 2015 } 2016 2017 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump()); 2018 return CallInfo.first; 2019 } 2020 2021 /// Generate a libcall taking the given operands as arguments 2022 /// and returning a result of type RetVT. 2023 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, 2024 const SDValue *Ops, unsigned NumOps, 2025 bool isSigned, const SDLoc &dl) { 2026 TargetLowering::ArgListTy Args; 2027 Args.reserve(NumOps); 2028 2029 TargetLowering::ArgListEntry Entry; 2030 for (unsigned i = 0; i != NumOps; ++i) { 2031 Entry.Node = Ops[i]; 2032 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 2033 Entry.IsSExt = isSigned; 2034 Entry.IsZExt = !isSigned; 2035 Args.push_back(Entry); 2036 } 2037 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2038 TLI.getPointerTy(DAG.getDataLayout())); 2039 2040 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2041 2042 TargetLowering::CallLoweringInfo CLI(DAG); 2043 CLI.setDebugLoc(dl) 2044 .setChain(DAG.getEntryNode()) 2045 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2046 std::move(Args)) 2047 .setSExtResult(isSigned) 2048 .setZExtResult(!isSigned) 2049 .setIsPostTypeLegalization(true); 2050 2051 std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI); 2052 2053 return CallInfo.first; 2054 } 2055 2056 // Expand a node into a call to a libcall. Similar to 2057 // ExpandLibCall except that the first operand is the in-chain. 2058 std::pair<SDValue, SDValue> 2059 SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC, 2060 SDNode *Node, 2061 bool isSigned) { 2062 SDValue InChain = Node->getOperand(0); 2063 2064 TargetLowering::ArgListTy Args; 2065 TargetLowering::ArgListEntry Entry; 2066 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { 2067 EVT ArgVT = Node->getOperand(i).getValueType(); 2068 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2069 Entry.Node = Node->getOperand(i); 2070 Entry.Ty = ArgTy; 2071 Entry.IsSExt = isSigned; 2072 Entry.IsZExt = !isSigned; 2073 Args.push_back(Entry); 2074 } 2075 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2076 TLI.getPointerTy(DAG.getDataLayout())); 2077 2078 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 2079 2080 TargetLowering::CallLoweringInfo CLI(DAG); 2081 CLI.setDebugLoc(SDLoc(Node)) 2082 .setChain(InChain) 2083 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2084 std::move(Args)) 2085 .setSExtResult(isSigned) 2086 .setZExtResult(!isSigned); 2087 2088 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2089 2090 return CallInfo; 2091 } 2092 2093 SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2094 RTLIB::Libcall Call_F32, 2095 RTLIB::Libcall Call_F64, 2096 RTLIB::Libcall Call_F80, 2097 RTLIB::Libcall Call_F128, 2098 RTLIB::Libcall Call_PPCF128) { 2099 if (Node->isStrictFPOpcode()) 2100 Node = DAG.mutateStrictFPToFP(Node); 2101 2102 RTLIB::Libcall LC; 2103 switch (Node->getSimpleValueType(0).SimpleTy) { 2104 default: llvm_unreachable("Unexpected request for libcall!"); 2105 case MVT::f32: LC = Call_F32; break; 2106 case MVT::f64: LC = Call_F64; break; 2107 case MVT::f80: LC = Call_F80; break; 2108 case MVT::f128: LC = Call_F128; break; 2109 case MVT::ppcf128: LC = Call_PPCF128; break; 2110 } 2111 return ExpandLibCall(LC, Node, false); 2112 } 2113 2114 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2115 RTLIB::Libcall Call_I8, 2116 RTLIB::Libcall Call_I16, 2117 RTLIB::Libcall Call_I32, 2118 RTLIB::Libcall Call_I64, 2119 RTLIB::Libcall Call_I128) { 2120 RTLIB::Libcall LC; 2121 switch (Node->getSimpleValueType(0).SimpleTy) { 2122 default: llvm_unreachable("Unexpected request for libcall!"); 2123 case MVT::i8: LC = Call_I8; break; 2124 case MVT::i16: LC = Call_I16; break; 2125 case MVT::i32: LC = Call_I32; break; 2126 case MVT::i64: LC = Call_I64; break; 2127 case MVT::i128: LC = Call_I128; break; 2128 } 2129 return ExpandLibCall(LC, Node, isSigned); 2130 } 2131 2132 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2133 void 2134 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2135 SmallVectorImpl<SDValue> &Results) { 2136 unsigned Opcode = Node->getOpcode(); 2137 bool isSigned = Opcode == ISD::SDIVREM; 2138 2139 RTLIB::Libcall LC; 2140 switch (Node->getSimpleValueType(0).SimpleTy) { 2141 default: llvm_unreachable("Unexpected request for libcall!"); 2142 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2143 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2144 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2145 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2146 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2147 } 2148 2149 // The input chain to this libcall is the entry node of the function. 2150 // Legalizing the call will automatically add the previous call to the 2151 // dependence. 2152 SDValue InChain = DAG.getEntryNode(); 2153 2154 EVT RetVT = Node->getValueType(0); 2155 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2156 2157 TargetLowering::ArgListTy Args; 2158 TargetLowering::ArgListEntry Entry; 2159 for (const SDValue &Op : Node->op_values()) { 2160 EVT ArgVT = Op.getValueType(); 2161 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2162 Entry.Node = Op; 2163 Entry.Ty = ArgTy; 2164 Entry.IsSExt = isSigned; 2165 Entry.IsZExt = !isSigned; 2166 Args.push_back(Entry); 2167 } 2168 2169 // Also pass the return address of the remainder. 2170 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2171 Entry.Node = FIPtr; 2172 Entry.Ty = RetTy->getPointerTo(); 2173 Entry.IsSExt = isSigned; 2174 Entry.IsZExt = !isSigned; 2175 Args.push_back(Entry); 2176 2177 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2178 TLI.getPointerTy(DAG.getDataLayout())); 2179 2180 SDLoc dl(Node); 2181 TargetLowering::CallLoweringInfo CLI(DAG); 2182 CLI.setDebugLoc(dl) 2183 .setChain(InChain) 2184 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2185 std::move(Args)) 2186 .setSExtResult(isSigned) 2187 .setZExtResult(!isSigned); 2188 2189 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2190 2191 // Remainder is loaded back from the stack frame. 2192 SDValue Rem = 2193 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2194 Results.push_back(CallInfo.first); 2195 Results.push_back(Rem); 2196 } 2197 2198 /// Return true if sincos libcall is available. 2199 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2200 RTLIB::Libcall LC; 2201 switch (Node->getSimpleValueType(0).SimpleTy) { 2202 default: llvm_unreachable("Unexpected request for libcall!"); 2203 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2204 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2205 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2206 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2207 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2208 } 2209 return TLI.getLibcallName(LC) != nullptr; 2210 } 2211 2212 /// Only issue sincos libcall if both sin and cos are needed. 2213 static bool useSinCos(SDNode *Node) { 2214 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2215 ? ISD::FCOS : ISD::FSIN; 2216 2217 SDValue Op0 = Node->getOperand(0); 2218 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2219 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2220 SDNode *User = *UI; 2221 if (User == Node) 2222 continue; 2223 // The other user might have been turned into sincos already. 2224 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2225 return true; 2226 } 2227 return false; 2228 } 2229 2230 /// Issue libcalls to sincos to compute sin / cos pairs. 2231 void 2232 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2233 SmallVectorImpl<SDValue> &Results) { 2234 RTLIB::Libcall LC; 2235 switch (Node->getSimpleValueType(0).SimpleTy) { 2236 default: llvm_unreachable("Unexpected request for libcall!"); 2237 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2238 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2239 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2240 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2241 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2242 } 2243 2244 // The input chain to this libcall is the entry node of the function. 2245 // Legalizing the call will automatically add the previous call to the 2246 // dependence. 2247 SDValue InChain = DAG.getEntryNode(); 2248 2249 EVT RetVT = Node->getValueType(0); 2250 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2251 2252 TargetLowering::ArgListTy Args; 2253 TargetLowering::ArgListEntry Entry; 2254 2255 // Pass the argument. 2256 Entry.Node = Node->getOperand(0); 2257 Entry.Ty = RetTy; 2258 Entry.IsSExt = false; 2259 Entry.IsZExt = false; 2260 Args.push_back(Entry); 2261 2262 // Pass the return address of sin. 2263 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2264 Entry.Node = SinPtr; 2265 Entry.Ty = RetTy->getPointerTo(); 2266 Entry.IsSExt = false; 2267 Entry.IsZExt = false; 2268 Args.push_back(Entry); 2269 2270 // Also pass the return address of the cos. 2271 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2272 Entry.Node = CosPtr; 2273 Entry.Ty = RetTy->getPointerTo(); 2274 Entry.IsSExt = false; 2275 Entry.IsZExt = false; 2276 Args.push_back(Entry); 2277 2278 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2279 TLI.getPointerTy(DAG.getDataLayout())); 2280 2281 SDLoc dl(Node); 2282 TargetLowering::CallLoweringInfo CLI(DAG); 2283 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2284 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2285 std::move(Args)); 2286 2287 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2288 2289 Results.push_back( 2290 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2291 Results.push_back( 2292 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2293 } 2294 2295 /// This function is responsible for legalizing a 2296 /// INT_TO_FP operation of the specified operand when the target requests that 2297 /// we expand it. At this point, we know that the result and operand types are 2298 /// legal for the target. 2299 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0, 2300 EVT DestVT, 2301 const SDLoc &dl) { 2302 // TODO: Should any fast-math-flags be set for the created nodes? 2303 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2304 if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { 2305 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2306 "expansion\n"); 2307 2308 // Get the stack frame index of a 8 byte buffer. 2309 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2310 2311 // word offset constant for Hi/Lo address computation 2312 SDValue WordOff = DAG.getConstant(sizeof(int), dl, 2313 StackSlot.getValueType()); 2314 // set up Hi and Lo (into buffer) address based on endian 2315 SDValue Hi = StackSlot; 2316 SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(), 2317 StackSlot, WordOff); 2318 if (DAG.getDataLayout().isLittleEndian()) 2319 std::swap(Hi, Lo); 2320 2321 // if signed map to unsigned space 2322 SDValue Op0Mapped; 2323 if (isSigned) { 2324 // constant used to invert sign bit (signed to unsigned mapping) 2325 SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32); 2326 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); 2327 } else { 2328 Op0Mapped = Op0; 2329 } 2330 // store the lo of the constructed double - based on integer input 2331 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo, 2332 MachinePointerInfo()); 2333 // initial hi portion of constructed double 2334 SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2335 // store the hi of the constructed double - biased exponent 2336 SDValue Store2 = 2337 DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo()); 2338 // load the constructed double 2339 SDValue Load = 2340 DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo()); 2341 // FP constant to bias correct the final result 2342 SDValue Bias = DAG.getConstantFP(isSigned ? 2343 BitsToDouble(0x4330000080000000ULL) : 2344 BitsToDouble(0x4330000000000000ULL), 2345 dl, MVT::f64); 2346 // subtract the bias 2347 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2348 // final result 2349 SDValue Result; 2350 // handle final rounding 2351 if (DestVT == MVT::f64) { 2352 // do nothing 2353 Result = Sub; 2354 } else if (DestVT.bitsLT(MVT::f64)) { 2355 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, 2356 DAG.getIntPtrConstant(0, dl)); 2357 } else if (DestVT.bitsGT(MVT::f64)) { 2358 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); 2359 } 2360 return Result; 2361 } 2362 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2363 // Code below here assumes !isSigned without checking again. 2364 2365 // Implementation of unsigned i64 to f64 following the algorithm in 2366 // __floatundidf in compiler_rt. This implementation has the advantage 2367 // of performing rounding correctly, both in the default rounding mode 2368 // and in all alternate rounding modes. 2369 // TODO: Generalize this for use with other types. 2370 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) { 2371 LLVM_DEBUG(dbgs() << "Converting unsigned i64 to f64\n"); 2372 SDValue TwoP52 = 2373 DAG.getConstant(UINT64_C(0x4330000000000000), dl, MVT::i64); 2374 SDValue TwoP84PlusTwoP52 = 2375 DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), dl, 2376 MVT::f64); 2377 SDValue TwoP84 = 2378 DAG.getConstant(UINT64_C(0x4530000000000000), dl, MVT::i64); 2379 2380 SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32); 2381 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, 2382 DAG.getConstant(32, dl, MVT::i64)); 2383 SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52); 2384 SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84); 2385 SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr); 2386 SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr); 2387 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, 2388 TwoP84PlusTwoP52); 2389 return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub); 2390 } 2391 2392 // TODO: Generalize this for use with other types. 2393 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) { 2394 LLVM_DEBUG(dbgs() << "Converting unsigned i64 to f32\n"); 2395 // For unsigned conversions, convert them to signed conversions using the 2396 // algorithm from the x86_64 __floatundidf in compiler_rt. 2397 if (!isSigned) { 2398 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0); 2399 2400 SDValue ShiftConst = DAG.getConstant( 2401 1, dl, TLI.getShiftAmountTy(Op0.getValueType(), DAG.getDataLayout())); 2402 SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst); 2403 SDValue AndConst = DAG.getConstant(1, dl, MVT::i64); 2404 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst); 2405 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr); 2406 2407 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or); 2408 SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt); 2409 2410 // TODO: This really should be implemented using a branch rather than a 2411 // select. We happen to get lucky and machinesink does the right 2412 // thing most of the time. This would be a good candidate for a 2413 //pseudo-op, or, even better, for whole-function isel. 2414 SDValue SignBitTest = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), 2415 Op0, DAG.getConstant(0, dl, MVT::i64), ISD::SETLT); 2416 return DAG.getSelect(dl, MVT::f32, SignBitTest, Slow, Fast); 2417 } 2418 2419 // Otherwise, implement the fully general conversion. 2420 2421 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2422 DAG.getConstant(UINT64_C(0xfffffffffffff800), dl, MVT::i64)); 2423 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, 2424 DAG.getConstant(UINT64_C(0x800), dl, MVT::i64)); 2425 SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2426 DAG.getConstant(UINT64_C(0x7ff), dl, MVT::i64)); 2427 SDValue Ne = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), And2, 2428 DAG.getConstant(UINT64_C(0), dl, MVT::i64), 2429 ISD::SETNE); 2430 SDValue Sel = DAG.getSelect(dl, MVT::i64, Ne, Or, Op0); 2431 SDValue Ge = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), Op0, 2432 DAG.getConstant(UINT64_C(0x0020000000000000), dl, 2433 MVT::i64), 2434 ISD::SETUGE); 2435 SDValue Sel2 = DAG.getSelect(dl, MVT::i64, Ge, Sel, Op0); 2436 EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType(), DAG.getDataLayout()); 2437 2438 SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2, 2439 DAG.getConstant(32, dl, SHVT)); 2440 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh); 2441 SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc); 2442 SDValue TwoP32 = 2443 DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), dl, 2444 MVT::f64); 2445 SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt); 2446 SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2); 2447 SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo); 2448 SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2); 2449 return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd, 2450 DAG.getIntPtrConstant(0, dl)); 2451 } 2452 2453 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2454 2455 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(Op0.getValueType()), 2456 Op0, 2457 DAG.getConstant(0, dl, Op0.getValueType()), 2458 ISD::SETLT); 2459 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2460 Four = DAG.getIntPtrConstant(4, dl); 2461 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2462 SignSet, Four, Zero); 2463 2464 // If the sign bit of the integer is set, the large number will be treated 2465 // as a negative number. To counteract this, the dynamic code adds an 2466 // offset depending on the data type. 2467 uint64_t FF; 2468 switch (Op0.getSimpleValueType().SimpleTy) { 2469 default: llvm_unreachable("Unsupported integer type!"); 2470 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2471 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2472 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2473 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2474 } 2475 if (DAG.getDataLayout().isLittleEndian()) 2476 FF <<= 32; 2477 Constant *FudgeFactor = ConstantInt::get( 2478 Type::getInt64Ty(*DAG.getContext()), FF); 2479 2480 SDValue CPIdx = 2481 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2482 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2483 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2484 Alignment = std::min(Alignment, 4u); 2485 SDValue FudgeInReg; 2486 if (DestVT == MVT::f32) 2487 FudgeInReg = DAG.getLoad( 2488 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2489 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2490 Alignment); 2491 else { 2492 SDValue Load = DAG.getExtLoad( 2493 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2494 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2495 Alignment); 2496 HandleSDNode Handle(Load); 2497 LegalizeOp(Load.getNode()); 2498 FudgeInReg = Handle.getValue(); 2499 } 2500 2501 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2502 } 2503 2504 /// This function is responsible for legalizing a 2505 /// *INT_TO_FP operation of the specified operand when the target requests that 2506 /// we promote it. At this point, we know that the result and operand types are 2507 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2508 /// operation that takes a larger input. 2509 SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, 2510 bool isSigned, 2511 const SDLoc &dl) { 2512 // First step, figure out the appropriate *INT_TO_FP operation to use. 2513 EVT NewInTy = LegalOp.getValueType(); 2514 2515 unsigned OpToUse = 0; 2516 2517 // Scan for the appropriate larger type to use. 2518 while (true) { 2519 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2520 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2521 2522 // If the target supports SINT_TO_FP of this type, use it. 2523 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { 2524 OpToUse = ISD::SINT_TO_FP; 2525 break; 2526 } 2527 if (isSigned) continue; 2528 2529 // If the target supports UINT_TO_FP of this type, use it. 2530 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { 2531 OpToUse = ISD::UINT_TO_FP; 2532 break; 2533 } 2534 2535 // Otherwise, try a larger type. 2536 } 2537 2538 // Okay, we found the operation and type to use. Zero extend our input to the 2539 // desired type then run the operation on it. 2540 return DAG.getNode(OpToUse, dl, DestVT, 2541 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2542 dl, NewInTy, LegalOp)); 2543 } 2544 2545 /// This function is responsible for legalizing a 2546 /// FP_TO_*INT operation of the specified operand when the target requests that 2547 /// we promote it. At this point, we know that the result and operand types are 2548 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2549 /// operation that returns a larger result. 2550 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, 2551 bool isSigned, 2552 const SDLoc &dl) { 2553 // First step, figure out the appropriate FP_TO*INT operation to use. 2554 EVT NewOutTy = DestVT; 2555 2556 unsigned OpToUse = 0; 2557 2558 // Scan for the appropriate larger type to use. 2559 while (true) { 2560 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2561 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2562 2563 // A larger signed type can hold all unsigned values of the requested type, 2564 // so using FP_TO_SINT is valid 2565 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { 2566 OpToUse = ISD::FP_TO_SINT; 2567 break; 2568 } 2569 2570 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2571 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { 2572 OpToUse = ISD::FP_TO_UINT; 2573 break; 2574 } 2575 2576 // Otherwise, try a larger type. 2577 } 2578 2579 // Okay, we found the operation and type to use. 2580 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2581 2582 // Truncate the result of the extended FP_TO_*INT operation to the desired 2583 // size. 2584 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2585 } 2586 2587 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts. 2588 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) { 2589 EVT VT = Op.getValueType(); 2590 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2591 unsigned Sz = VT.getScalarSizeInBits(); 2592 2593 SDValue Tmp, Tmp2, Tmp3; 2594 2595 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 2596 // and finally the i1 pairs. 2597 // TODO: We can easily support i4/i2 legal types if any target ever does. 2598 if (Sz >= 8 && isPowerOf2_32(Sz)) { 2599 // Create the masks - repeating the pattern every byte. 2600 APInt MaskHi4(Sz, 0), MaskHi2(Sz, 0), MaskHi1(Sz, 0); 2601 APInt MaskLo4(Sz, 0), MaskLo2(Sz, 0), MaskLo1(Sz, 0); 2602 for (unsigned J = 0; J != Sz; J += 8) { 2603 MaskHi4 = MaskHi4 | (0xF0ull << J); 2604 MaskLo4 = MaskLo4 | (0x0Full << J); 2605 MaskHi2 = MaskHi2 | (0xCCull << J); 2606 MaskLo2 = MaskLo2 | (0x33ull << J); 2607 MaskHi1 = MaskHi1 | (0xAAull << J); 2608 MaskLo1 = MaskLo1 | (0x55ull << J); 2609 } 2610 2611 // BSWAP if the type is wider than a single byte. 2612 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 2613 2614 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) 2615 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); 2616 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); 2617 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, VT)); 2618 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, VT)); 2619 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2620 2621 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) 2622 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); 2623 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); 2624 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, VT)); 2625 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, VT)); 2626 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2627 2628 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) 2629 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); 2630 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); 2631 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, VT)); 2632 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, VT)); 2633 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2634 return Tmp; 2635 } 2636 2637 Tmp = DAG.getConstant(0, dl, VT); 2638 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 2639 if (I < J) 2640 Tmp2 = 2641 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 2642 else 2643 Tmp2 = 2644 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 2645 2646 APInt Shift(Sz, 1); 2647 Shift <<= J; 2648 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 2649 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 2650 } 2651 2652 return Tmp; 2653 } 2654 2655 /// Open code the operations for BSWAP of the specified operation. 2656 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) { 2657 EVT VT = Op.getValueType(); 2658 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2659 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2660 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 2661 default: llvm_unreachable("Unhandled Expand type in BSWAP!"); 2662 case MVT::i16: 2663 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2664 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2665 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 2666 case MVT::i32: 2667 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2668 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2669 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2670 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2671 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2672 DAG.getConstant(0xFF0000, dl, VT)); 2673 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 2674 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2675 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2676 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2677 case MVT::i64: 2678 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2679 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2680 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2681 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2682 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2683 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2684 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2685 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2686 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 2687 DAG.getConstant(255ULL<<48, dl, VT)); 2688 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 2689 DAG.getConstant(255ULL<<40, dl, VT)); 2690 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 2691 DAG.getConstant(255ULL<<32, dl, VT)); 2692 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 2693 DAG.getConstant(255ULL<<24, dl, VT)); 2694 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2695 DAG.getConstant(255ULL<<16, dl, VT)); 2696 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 2697 DAG.getConstant(255ULL<<8 , dl, VT)); 2698 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2699 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2700 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2701 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2702 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2703 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2704 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2705 } 2706 } 2707 2708 /// Expand the specified bitcount instruction into operations. 2709 SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op, 2710 const SDLoc &dl) { 2711 switch (Opc) { 2712 default: llvm_unreachable("Cannot expand this yet!"); 2713 case ISD::CTPOP: { 2714 EVT VT = Op.getValueType(); 2715 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2716 unsigned Len = VT.getSizeInBits(); 2717 2718 assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 && 2719 "CTPOP not implemented for this type."); 2720 2721 // This is the "best" algorithm from 2722 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 2723 2724 SDValue Mask55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), 2725 dl, VT); 2726 SDValue Mask33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), 2727 dl, VT); 2728 SDValue Mask0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), 2729 dl, VT); 2730 SDValue Mask01 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), 2731 dl, VT); 2732 2733 // v = v - ((v >> 1) & 0x55555555...) 2734 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 2735 DAG.getNode(ISD::AND, dl, VT, 2736 DAG.getNode(ISD::SRL, dl, VT, Op, 2737 DAG.getConstant(1, dl, ShVT)), 2738 Mask55)); 2739 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 2740 Op = DAG.getNode(ISD::ADD, dl, VT, 2741 DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 2742 DAG.getNode(ISD::AND, dl, VT, 2743 DAG.getNode(ISD::SRL, dl, VT, Op, 2744 DAG.getConstant(2, dl, ShVT)), 2745 Mask33)); 2746 // v = (v + (v >> 4)) & 0x0F0F0F0F... 2747 Op = DAG.getNode(ISD::AND, dl, VT, 2748 DAG.getNode(ISD::ADD, dl, VT, Op, 2749 DAG.getNode(ISD::SRL, dl, VT, Op, 2750 DAG.getConstant(4, dl, ShVT))), 2751 Mask0F); 2752 // v = (v * 0x01010101...) >> (Len - 8) 2753 Op = DAG.getNode(ISD::SRL, dl, VT, 2754 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 2755 DAG.getConstant(Len - 8, dl, ShVT)); 2756 2757 return Op; 2758 } 2759 case ISD::CTLZ_ZERO_UNDEF: 2760 // This trivially expands to CTLZ. 2761 return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op); 2762 case ISD::CTLZ: { 2763 EVT VT = Op.getValueType(); 2764 unsigned Len = VT.getSizeInBits(); 2765 2766 if (TLI.isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 2767 EVT SetCCVT = getSetCCResultType(VT); 2768 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 2769 SDValue Zero = DAG.getConstant(0, dl, VT); 2770 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 2771 return DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 2772 DAG.getConstant(Len, dl, VT), CTLZ); 2773 } 2774 2775 // for now, we do this: 2776 // x = x | (x >> 1); 2777 // x = x | (x >> 2); 2778 // ... 2779 // x = x | (x >>16); 2780 // x = x | (x >>32); // for 64-bit input 2781 // return popcount(~x); 2782 // 2783 // Ref: "Hacker's Delight" by Henry Warren 2784 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2785 for (unsigned i = 0; (1U << i) <= (Len / 2); ++i) { 2786 SDValue Tmp3 = DAG.getConstant(1ULL << i, dl, ShVT); 2787 Op = DAG.getNode(ISD::OR, dl, VT, Op, 2788 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3)); 2789 } 2790 Op = DAG.getNOT(dl, Op, VT); 2791 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 2792 } 2793 case ISD::CTTZ_ZERO_UNDEF: 2794 // This trivially expands to CTTZ. 2795 return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op); 2796 case ISD::CTTZ: { 2797 EVT VT = Op.getValueType(); 2798 unsigned Len = VT.getSizeInBits(); 2799 2800 if (TLI.isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 2801 EVT SetCCVT = getSetCCResultType(VT); 2802 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 2803 SDValue Zero = DAG.getConstant(0, dl, VT); 2804 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 2805 return DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 2806 DAG.getConstant(Len, dl, VT), CTTZ); 2807 } 2808 2809 // for now, we use: { return popcount(~x & (x - 1)); } 2810 // unless the target has ctlz but not ctpop, in which case we use: 2811 // { return 32 - nlz(~x & (x-1)); } 2812 // Ref: "Hacker's Delight" by Henry Warren 2813 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT, 2814 DAG.getNOT(dl, Op, VT), 2815 DAG.getNode(ISD::SUB, dl, VT, Op, 2816 DAG.getConstant(1, dl, VT))); 2817 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 2818 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && 2819 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) 2820 return DAG.getNode(ISD::SUB, dl, VT, 2821 DAG.getConstant(VT.getSizeInBits(), dl, VT), 2822 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3)); 2823 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3); 2824 } 2825 } 2826 } 2827 2828 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2829 LLVM_DEBUG(dbgs() << "Trying to expand node\n"); 2830 SmallVector<SDValue, 8> Results; 2831 SDLoc dl(Node); 2832 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2833 bool NeedInvert; 2834 switch (Node->getOpcode()) { 2835 case ISD::CTPOP: 2836 case ISD::CTLZ: 2837 case ISD::CTLZ_ZERO_UNDEF: 2838 case ISD::CTTZ: 2839 case ISD::CTTZ_ZERO_UNDEF: 2840 Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl); 2841 Results.push_back(Tmp1); 2842 break; 2843 case ISD::BITREVERSE: 2844 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl)); 2845 break; 2846 case ISD::BSWAP: 2847 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2848 break; 2849 case ISD::FRAMEADDR: 2850 case ISD::RETURNADDR: 2851 case ISD::FRAME_TO_ARGS_OFFSET: 2852 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2853 break; 2854 case ISD::EH_DWARF_CFA: { 2855 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 2856 TLI.getPointerTy(DAG.getDataLayout())); 2857 SDValue Offset = DAG.getNode(ISD::ADD, dl, 2858 CfaArg.getValueType(), 2859 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 2860 CfaArg.getValueType()), 2861 CfaArg); 2862 SDValue FA = DAG.getNode( 2863 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 2864 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2865 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 2866 FA, Offset)); 2867 break; 2868 } 2869 case ISD::FLT_ROUNDS_: 2870 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2871 break; 2872 case ISD::EH_RETURN: 2873 case ISD::EH_LABEL: 2874 case ISD::PREFETCH: 2875 case ISD::VAEND: 2876 case ISD::EH_SJLJ_LONGJMP: 2877 // If the target didn't expand these, there's nothing to do, so just 2878 // preserve the chain and be done. 2879 Results.push_back(Node->getOperand(0)); 2880 break; 2881 case ISD::READCYCLECOUNTER: 2882 // If the target didn't expand this, just return 'zero' and preserve the 2883 // chain. 2884 Results.append(Node->getNumValues() - 1, 2885 DAG.getConstant(0, dl, Node->getValueType(0))); 2886 Results.push_back(Node->getOperand(0)); 2887 break; 2888 case ISD::EH_SJLJ_SETJMP: 2889 // If the target didn't expand this, just return 'zero' and preserve the 2890 // chain. 2891 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2892 Results.push_back(Node->getOperand(0)); 2893 break; 2894 case ISD::ATOMIC_LOAD: { 2895 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2896 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2897 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2898 SDValue Swap = DAG.getAtomicCmpSwap( 2899 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2900 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2901 cast<AtomicSDNode>(Node)->getMemOperand()); 2902 Results.push_back(Swap.getValue(0)); 2903 Results.push_back(Swap.getValue(1)); 2904 break; 2905 } 2906 case ISD::ATOMIC_STORE: { 2907 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2908 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2909 cast<AtomicSDNode>(Node)->getMemoryVT(), 2910 Node->getOperand(0), 2911 Node->getOperand(1), Node->getOperand(2), 2912 cast<AtomicSDNode>(Node)->getMemOperand()); 2913 Results.push_back(Swap.getValue(1)); 2914 break; 2915 } 2916 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 2917 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 2918 // splits out the success value as a comparison. Expanding the resulting 2919 // ATOMIC_CMP_SWAP will produce a libcall. 2920 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2921 SDValue Res = DAG.getAtomicCmpSwap( 2922 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2923 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 2924 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 2925 2926 SDValue ExtRes = Res; 2927 SDValue LHS = Res; 2928 SDValue RHS = Node->getOperand(1); 2929 2930 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 2931 EVT OuterType = Node->getValueType(0); 2932 switch (TLI.getExtendForAtomicOps()) { 2933 case ISD::SIGN_EXTEND: 2934 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 2935 DAG.getValueType(AtomicType)); 2936 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 2937 Node->getOperand(2), DAG.getValueType(AtomicType)); 2938 ExtRes = LHS; 2939 break; 2940 case ISD::ZERO_EXTEND: 2941 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 2942 DAG.getValueType(AtomicType)); 2943 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2944 ExtRes = LHS; 2945 break; 2946 case ISD::ANY_EXTEND: 2947 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 2948 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2949 break; 2950 default: 2951 llvm_unreachable("Invalid atomic op extension"); 2952 } 2953 2954 SDValue Success = 2955 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 2956 2957 Results.push_back(ExtRes.getValue(0)); 2958 Results.push_back(Success); 2959 Results.push_back(Res.getValue(1)); 2960 break; 2961 } 2962 case ISD::DYNAMIC_STACKALLOC: 2963 ExpandDYNAMIC_STACKALLOC(Node, Results); 2964 break; 2965 case ISD::MERGE_VALUES: 2966 for (unsigned i = 0; i < Node->getNumValues(); i++) 2967 Results.push_back(Node->getOperand(i)); 2968 break; 2969 case ISD::UNDEF: { 2970 EVT VT = Node->getValueType(0); 2971 if (VT.isInteger()) 2972 Results.push_back(DAG.getConstant(0, dl, VT)); 2973 else { 2974 assert(VT.isFloatingPoint() && "Unknown value type!"); 2975 Results.push_back(DAG.getConstantFP(0, dl, VT)); 2976 } 2977 break; 2978 } 2979 case ISD::FP_ROUND: 2980 case ISD::BITCAST: 2981 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 2982 Node->getValueType(0), dl); 2983 Results.push_back(Tmp1); 2984 break; 2985 case ISD::FP_EXTEND: 2986 Tmp1 = EmitStackConvert(Node->getOperand(0), 2987 Node->getOperand(0).getValueType(), 2988 Node->getValueType(0), dl); 2989 Results.push_back(Tmp1); 2990 break; 2991 case ISD::SIGN_EXTEND_INREG: { 2992 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2993 EVT VT = Node->getValueType(0); 2994 2995 // An in-register sign-extend of a boolean is a negation: 2996 // 'true' (1) sign-extended is -1. 2997 // 'false' (0) sign-extended is 0. 2998 // However, we must mask the high bits of the source operand because the 2999 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 3000 3001 // TODO: Do this for vectors too? 3002 if (ExtraVT.getSizeInBits() == 1) { 3003 SDValue One = DAG.getConstant(1, dl, VT); 3004 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 3005 SDValue Zero = DAG.getConstant(0, dl, VT); 3006 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 3007 Results.push_back(Neg); 3008 break; 3009 } 3010 3011 // NOTE: we could fall back on load/store here too for targets without 3012 // SRA. However, it is doubtful that any exist. 3013 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 3014 unsigned BitsDiff = VT.getScalarSizeInBits() - 3015 ExtraVT.getScalarSizeInBits(); 3016 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 3017 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 3018 Node->getOperand(0), ShiftCst); 3019 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 3020 Results.push_back(Tmp1); 3021 break; 3022 } 3023 case ISD::FP_ROUND_INREG: { 3024 // The only way we can lower this is to turn it into a TRUNCSTORE, 3025 // EXTLOAD pair, targeting a temporary location (a stack slot). 3026 3027 // NOTE: there is a choice here between constantly creating new stack 3028 // slots and always reusing the same one. We currently always create 3029 // new ones, as reuse may inhibit scheduling. 3030 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 3031 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT, 3032 Node->getValueType(0), dl); 3033 Results.push_back(Tmp1); 3034 break; 3035 } 3036 case ISD::SINT_TO_FP: 3037 case ISD::UINT_TO_FP: 3038 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, 3039 Node->getOperand(0), Node->getValueType(0), dl); 3040 Results.push_back(Tmp1); 3041 break; 3042 case ISD::FP_TO_SINT: 3043 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 3044 Results.push_back(Tmp1); 3045 break; 3046 case ISD::FP_TO_UINT: { 3047 SDValue True, False; 3048 EVT VT = Node->getOperand(0).getValueType(); 3049 EVT NVT = Node->getValueType(0); 3050 APFloat apf(DAG.EVTToAPFloatSemantics(VT), 3051 APInt::getNullValue(VT.getSizeInBits())); 3052 APInt x = APInt::getSignMask(NVT.getSizeInBits()); 3053 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); 3054 Tmp1 = DAG.getConstantFP(apf, dl, VT); 3055 Tmp2 = DAG.getSetCC(dl, getSetCCResultType(VT), 3056 Node->getOperand(0), 3057 Tmp1, ISD::SETLT); 3058 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0)); 3059 // TODO: Should any fast-math-flags be set for the FSUB? 3060 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, 3061 DAG.getNode(ISD::FSUB, dl, VT, 3062 Node->getOperand(0), Tmp1)); 3063 False = DAG.getNode(ISD::XOR, dl, NVT, False, 3064 DAG.getConstant(x, dl, NVT)); 3065 Tmp1 = DAG.getSelect(dl, NVT, Tmp2, True, False); 3066 Results.push_back(Tmp1); 3067 break; 3068 } 3069 case ISD::VAARG: 3070 Results.push_back(DAG.expandVAArg(Node)); 3071 Results.push_back(Results[0].getValue(1)); 3072 break; 3073 case ISD::VACOPY: 3074 Results.push_back(DAG.expandVACopy(Node)); 3075 break; 3076 case ISD::EXTRACT_VECTOR_ELT: 3077 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 3078 // This must be an access of the only element. Return it. 3079 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 3080 Node->getOperand(0)); 3081 else 3082 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 3083 Results.push_back(Tmp1); 3084 break; 3085 case ISD::EXTRACT_SUBVECTOR: 3086 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 3087 break; 3088 case ISD::INSERT_SUBVECTOR: 3089 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 3090 break; 3091 case ISD::CONCAT_VECTORS: 3092 Results.push_back(ExpandVectorBuildThroughStack(Node)); 3093 break; 3094 case ISD::SCALAR_TO_VECTOR: 3095 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3096 break; 3097 case ISD::INSERT_VECTOR_ELT: 3098 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3099 Node->getOperand(1), 3100 Node->getOperand(2), dl)); 3101 break; 3102 case ISD::VECTOR_SHUFFLE: { 3103 SmallVector<int, 32> NewMask; 3104 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3105 3106 EVT VT = Node->getValueType(0); 3107 EVT EltVT = VT.getVectorElementType(); 3108 SDValue Op0 = Node->getOperand(0); 3109 SDValue Op1 = Node->getOperand(1); 3110 if (!TLI.isTypeLegal(EltVT)) { 3111 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3112 3113 // BUILD_VECTOR operands are allowed to be wider than the element type. 3114 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 3115 // it. 3116 if (NewEltVT.bitsLT(EltVT)) { 3117 // Convert shuffle node. 3118 // If original node was v4i64 and the new EltVT is i32, 3119 // cast operands to v8i32 and re-build the mask. 3120 3121 // Calculate new VT, the size of the new VT should be equal to original. 3122 EVT NewVT = 3123 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3124 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 3125 assert(NewVT.bitsEq(VT)); 3126 3127 // cast operands to new VT 3128 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3129 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3130 3131 // Convert the shuffle mask 3132 unsigned int factor = 3133 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3134 3135 // EltVT gets smaller 3136 assert(factor > 0); 3137 3138 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3139 if (Mask[i] < 0) { 3140 for (unsigned fi = 0; fi < factor; ++fi) 3141 NewMask.push_back(Mask[i]); 3142 } 3143 else { 3144 for (unsigned fi = 0; fi < factor; ++fi) 3145 NewMask.push_back(Mask[i]*factor+fi); 3146 } 3147 } 3148 Mask = NewMask; 3149 VT = NewVT; 3150 } 3151 EltVT = NewEltVT; 3152 } 3153 unsigned NumElems = VT.getVectorNumElements(); 3154 SmallVector<SDValue, 16> Ops; 3155 for (unsigned i = 0; i != NumElems; ++i) { 3156 if (Mask[i] < 0) { 3157 Ops.push_back(DAG.getUNDEF(EltVT)); 3158 continue; 3159 } 3160 unsigned Idx = Mask[i]; 3161 if (Idx < NumElems) 3162 Ops.push_back(DAG.getNode( 3163 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3164 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())))); 3165 else 3166 Ops.push_back(DAG.getNode( 3167 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3168 DAG.getConstant(Idx - NumElems, dl, 3169 TLI.getVectorIdxTy(DAG.getDataLayout())))); 3170 } 3171 3172 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 3173 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3174 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3175 Results.push_back(Tmp1); 3176 break; 3177 } 3178 case ISD::EXTRACT_ELEMENT: { 3179 EVT OpTy = Node->getOperand(0).getValueType(); 3180 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3181 // 1 -> Hi 3182 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3183 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3184 TLI.getShiftAmountTy( 3185 Node->getOperand(0).getValueType(), 3186 DAG.getDataLayout()))); 3187 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3188 } else { 3189 // 0 -> Lo 3190 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3191 Node->getOperand(0)); 3192 } 3193 Results.push_back(Tmp1); 3194 break; 3195 } 3196 case ISD::STACKSAVE: 3197 // Expand to CopyFromReg if the target set 3198 // StackPointerRegisterToSaveRestore. 3199 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3200 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3201 Node->getValueType(0))); 3202 Results.push_back(Results[0].getValue(1)); 3203 } else { 3204 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3205 Results.push_back(Node->getOperand(0)); 3206 } 3207 break; 3208 case ISD::STACKRESTORE: 3209 // Expand to CopyToReg if the target set 3210 // StackPointerRegisterToSaveRestore. 3211 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3212 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3213 Node->getOperand(1))); 3214 } else { 3215 Results.push_back(Node->getOperand(0)); 3216 } 3217 break; 3218 case ISD::GET_DYNAMIC_AREA_OFFSET: 3219 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3220 Results.push_back(Results[0].getValue(0)); 3221 break; 3222 case ISD::FCOPYSIGN: 3223 Results.push_back(ExpandFCOPYSIGN(Node)); 3224 break; 3225 case ISD::FNEG: 3226 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3227 Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0)); 3228 // TODO: If FNEG has fast-math-flags, propagate them to the FSUB. 3229 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, 3230 Node->getOperand(0)); 3231 Results.push_back(Tmp1); 3232 break; 3233 case ISD::FABS: 3234 Results.push_back(ExpandFABS(Node)); 3235 break; 3236 case ISD::SMIN: 3237 case ISD::SMAX: 3238 case ISD::UMIN: 3239 case ISD::UMAX: { 3240 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3241 ISD::CondCode Pred; 3242 switch (Node->getOpcode()) { 3243 default: llvm_unreachable("How did we get here?"); 3244 case ISD::SMAX: Pred = ISD::SETGT; break; 3245 case ISD::SMIN: Pred = ISD::SETLT; break; 3246 case ISD::UMAX: Pred = ISD::SETUGT; break; 3247 case ISD::UMIN: Pred = ISD::SETULT; break; 3248 } 3249 Tmp1 = Node->getOperand(0); 3250 Tmp2 = Node->getOperand(1); 3251 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3252 Results.push_back(Tmp1); 3253 break; 3254 } 3255 3256 case ISD::FSIN: 3257 case ISD::FCOS: { 3258 EVT VT = Node->getValueType(0); 3259 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3260 // fcos which share the same operand and both are used. 3261 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3262 isSinCosLibcallAvailable(Node, TLI)) 3263 && useSinCos(Node)) { 3264 SDVTList VTs = DAG.getVTList(VT, VT); 3265 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3266 if (Node->getOpcode() == ISD::FCOS) 3267 Tmp1 = Tmp1.getValue(1); 3268 Results.push_back(Tmp1); 3269 } 3270 break; 3271 } 3272 case ISD::FMAD: 3273 llvm_unreachable("Illegal fmad should never be formed"); 3274 3275 case ISD::FP16_TO_FP: 3276 if (Node->getValueType(0) != MVT::f32) { 3277 // We can extend to types bigger than f32 in two steps without changing 3278 // the result. Since "f16 -> f32" is much more commonly available, give 3279 // CodeGen the option of emitting that before resorting to a libcall. 3280 SDValue Res = 3281 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3282 Results.push_back( 3283 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3284 } 3285 break; 3286 case ISD::FP_TO_FP16: 3287 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3288 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3289 SDValue Op = Node->getOperand(0); 3290 MVT SVT = Op.getSimpleValueType(); 3291 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3292 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3293 // Under fastmath, we can expand this node into a fround followed by 3294 // a float-half conversion. 3295 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3296 DAG.getIntPtrConstant(0, dl)); 3297 Results.push_back( 3298 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3299 } 3300 } 3301 break; 3302 case ISD::ConstantFP: { 3303 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3304 // Check to see if this FP immediate is already legal. 3305 // If this is a legal constant, turn it into a TargetConstantFP node. 3306 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0))) 3307 Results.push_back(ExpandConstantFP(CFP, true)); 3308 break; 3309 } 3310 case ISD::Constant: { 3311 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3312 Results.push_back(ExpandConstant(CP)); 3313 break; 3314 } 3315 case ISD::FSUB: { 3316 EVT VT = Node->getValueType(0); 3317 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3318 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3319 const SDNodeFlags Flags = Node->getFlags(); 3320 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3321 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3322 Results.push_back(Tmp1); 3323 } 3324 break; 3325 } 3326 case ISD::SUB: { 3327 EVT VT = Node->getValueType(0); 3328 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3329 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3330 "Don't know how to expand this subtraction!"); 3331 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3332 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, 3333 VT)); 3334 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3335 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3336 break; 3337 } 3338 case ISD::UREM: 3339 case ISD::SREM: { 3340 EVT VT = Node->getValueType(0); 3341 bool isSigned = Node->getOpcode() == ISD::SREM; 3342 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 3343 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3344 Tmp2 = Node->getOperand(0); 3345 Tmp3 = Node->getOperand(1); 3346 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3347 SDVTList VTs = DAG.getVTList(VT, VT); 3348 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); 3349 Results.push_back(Tmp1); 3350 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { 3351 // X % Y -> X-X/Y*Y 3352 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); 3353 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); 3354 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); 3355 Results.push_back(Tmp1); 3356 } 3357 break; 3358 } 3359 case ISD::UDIV: 3360 case ISD::SDIV: { 3361 bool isSigned = Node->getOpcode() == ISD::SDIV; 3362 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3363 EVT VT = Node->getValueType(0); 3364 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3365 SDVTList VTs = DAG.getVTList(VT, VT); 3366 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3367 Node->getOperand(1)); 3368 Results.push_back(Tmp1); 3369 } 3370 break; 3371 } 3372 case ISD::MULHU: 3373 case ISD::MULHS: { 3374 unsigned ExpandOpcode = 3375 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3376 EVT VT = Node->getValueType(0); 3377 SDVTList VTs = DAG.getVTList(VT, VT); 3378 3379 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3380 Node->getOperand(1)); 3381 Results.push_back(Tmp1.getValue(1)); 3382 break; 3383 } 3384 case ISD::UMUL_LOHI: 3385 case ISD::SMUL_LOHI: { 3386 SDValue LHS = Node->getOperand(0); 3387 SDValue RHS = Node->getOperand(1); 3388 MVT VT = LHS.getSimpleValueType(); 3389 unsigned MULHOpcode = 3390 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3391 3392 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3393 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3394 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3395 break; 3396 } 3397 3398 SmallVector<SDValue, 4> Halves; 3399 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3400 assert(TLI.isTypeLegal(HalfType)); 3401 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves, 3402 HalfType, DAG, 3403 TargetLowering::MulExpansionKind::Always)) { 3404 for (unsigned i = 0; i < 2; ++i) { 3405 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3406 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3407 SDValue Shift = DAG.getConstant( 3408 HalfType.getScalarSizeInBits(), dl, 3409 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3410 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3411 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3412 } 3413 break; 3414 } 3415 break; 3416 } 3417 case ISD::MUL: { 3418 EVT VT = Node->getValueType(0); 3419 SDVTList VTs = DAG.getVTList(VT, VT); 3420 // See if multiply or divide can be lowered using two-result operations. 3421 // We just need the low half of the multiply; try both the signed 3422 // and unsigned forms. If the target supports both SMUL_LOHI and 3423 // UMUL_LOHI, form a preference by checking which forms of plain 3424 // MULH it supports. 3425 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3426 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3427 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3428 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3429 unsigned OpToUse = 0; 3430 if (HasSMUL_LOHI && !HasMULHS) { 3431 OpToUse = ISD::SMUL_LOHI; 3432 } else if (HasUMUL_LOHI && !HasMULHU) { 3433 OpToUse = ISD::UMUL_LOHI; 3434 } else if (HasSMUL_LOHI) { 3435 OpToUse = ISD::SMUL_LOHI; 3436 } else if (HasUMUL_LOHI) { 3437 OpToUse = ISD::UMUL_LOHI; 3438 } 3439 if (OpToUse) { 3440 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3441 Node->getOperand(1))); 3442 break; 3443 } 3444 3445 SDValue Lo, Hi; 3446 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3447 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3448 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3449 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3450 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3451 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3452 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3453 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3454 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3455 SDValue Shift = 3456 DAG.getConstant(HalfType.getSizeInBits(), dl, 3457 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3458 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3459 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3460 } 3461 break; 3462 } 3463 case ISD::SADDO: 3464 case ISD::SSUBO: { 3465 SDValue LHS = Node->getOperand(0); 3466 SDValue RHS = Node->getOperand(1); 3467 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? 3468 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3469 LHS, RHS); 3470 Results.push_back(Sum); 3471 EVT ResultType = Node->getValueType(1); 3472 EVT OType = getSetCCResultType(Node->getValueType(0)); 3473 3474 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 3475 3476 // LHSSign -> LHS >= 0 3477 // RHSSign -> RHS >= 0 3478 // SumSign -> Sum >= 0 3479 // 3480 // Add: 3481 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 3482 // Sub: 3483 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 3484 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 3485 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 3486 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 3487 Node->getOpcode() == ISD::SADDO ? 3488 ISD::SETEQ : ISD::SETNE); 3489 3490 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); 3491 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 3492 3493 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 3494 Results.push_back(DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType)); 3495 break; 3496 } 3497 case ISD::UADDO: 3498 case ISD::USUBO: { 3499 SDValue LHS = Node->getOperand(0); 3500 SDValue RHS = Node->getOperand(1); 3501 bool IsAdd = Node->getOpcode() == ISD::UADDO; 3502 // If ADD/SUBCARRY is legal, use that instead. 3503 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 3504 if (TLI.isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 3505 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 3506 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 3507 { LHS, RHS, CarryIn }); 3508 Results.push_back(SDValue(NodeCarry.getNode(), 0)); 3509 Results.push_back(SDValue(NodeCarry.getNode(), 1)); 3510 break; 3511 } 3512 3513 SDValue Sum = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 3514 LHS.getValueType(), LHS, RHS); 3515 Results.push_back(Sum); 3516 3517 EVT ResultType = Node->getValueType(1); 3518 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3519 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 3520 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3521 3522 Results.push_back(DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType)); 3523 break; 3524 } 3525 case ISD::UMULO: 3526 case ISD::SMULO: { 3527 EVT VT = Node->getValueType(0); 3528 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); 3529 SDValue LHS = Node->getOperand(0); 3530 SDValue RHS = Node->getOperand(1); 3531 SDValue BottomHalf; 3532 SDValue TopHalf; 3533 static const unsigned Ops[2][3] = 3534 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 3535 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 3536 bool isSigned = Node->getOpcode() == ISD::SMULO; 3537 if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 3538 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 3539 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 3540 } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 3541 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 3542 RHS); 3543 TopHalf = BottomHalf.getValue(1); 3544 } else if (TLI.isTypeLegal(WideVT)) { 3545 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 3546 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 3547 Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 3548 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3549 DAG.getIntPtrConstant(0, dl)); 3550 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3551 DAG.getIntPtrConstant(1, dl)); 3552 } else { 3553 // We can fall back to a libcall with an illegal type for the MUL if we 3554 // have a libcall big enough. 3555 // Also, we can fall back to a division in some cases, but that's a big 3556 // performance hit in the general case. 3557 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3558 if (WideVT == MVT::i16) 3559 LC = RTLIB::MUL_I16; 3560 else if (WideVT == MVT::i32) 3561 LC = RTLIB::MUL_I32; 3562 else if (WideVT == MVT::i64) 3563 LC = RTLIB::MUL_I64; 3564 else if (WideVT == MVT::i128) 3565 LC = RTLIB::MUL_I128; 3566 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 3567 3568 SDValue HiLHS; 3569 SDValue HiRHS; 3570 if (isSigned) { 3571 // The high part is obtained by SRA'ing all but one of the bits of low 3572 // part. 3573 unsigned LoSize = VT.getSizeInBits(); 3574 HiLHS = 3575 DAG.getNode(ISD::SRA, dl, VT, LHS, 3576 DAG.getConstant(LoSize - 1, dl, 3577 TLI.getPointerTy(DAG.getDataLayout()))); 3578 HiRHS = 3579 DAG.getNode(ISD::SRA, dl, VT, RHS, 3580 DAG.getConstant(LoSize - 1, dl, 3581 TLI.getPointerTy(DAG.getDataLayout()))); 3582 } else { 3583 HiLHS = DAG.getConstant(0, dl, VT); 3584 HiRHS = DAG.getConstant(0, dl, VT); 3585 } 3586 3587 // Here we're passing the 2 arguments explicitly as 4 arguments that are 3588 // pre-lowered to the correct types. This all depends upon WideVT not 3589 // being a legal type for the architecture and thus has to be split to 3590 // two arguments. 3591 SDValue Ret; 3592 if(DAG.getDataLayout().isLittleEndian()) { 3593 // Halves of WideVT are packed into registers in different order 3594 // depending on platform endianness. This is usually handled by 3595 // the C calling convention, but we can't defer to it in 3596 // the legalizer. 3597 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 3598 Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); 3599 } else { 3600 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 3601 Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); 3602 } 3603 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 3604 "Ret value is a collection of constituent nodes holding result."); 3605 BottomHalf = Ret.getOperand(0); 3606 TopHalf = Ret.getOperand(1); 3607 } 3608 3609 if (isSigned) { 3610 Tmp1 = DAG.getConstant( 3611 VT.getSizeInBits() - 1, dl, 3612 TLI.getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 3613 Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1); 3614 TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, Tmp1, 3615 ISD::SETNE); 3616 } else { 3617 TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, 3618 DAG.getConstant(0, dl, VT), ISD::SETNE); 3619 } 3620 3621 // Truncate the result if SetCC returns a larger type than needed. 3622 EVT RType = Node->getValueType(1); 3623 if (RType.getSizeInBits() < TopHalf.getValueSizeInBits()) 3624 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, RType, TopHalf); 3625 3626 assert(RType.getSizeInBits() == TopHalf.getValueSizeInBits() && 3627 "Unexpected result type for S/UMULO legalization"); 3628 3629 Results.push_back(BottomHalf); 3630 Results.push_back(TopHalf); 3631 break; 3632 } 3633 case ISD::BUILD_PAIR: { 3634 EVT PairTy = Node->getValueType(0); 3635 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3636 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3637 Tmp2 = DAG.getNode( 3638 ISD::SHL, dl, PairTy, Tmp2, 3639 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3640 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3641 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3642 break; 3643 } 3644 case ISD::SELECT: 3645 Tmp1 = Node->getOperand(0); 3646 Tmp2 = Node->getOperand(1); 3647 Tmp3 = Node->getOperand(2); 3648 if (Tmp1.getOpcode() == ISD::SETCC) { 3649 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3650 Tmp2, Tmp3, 3651 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3652 } else { 3653 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3654 DAG.getConstant(0, dl, Tmp1.getValueType()), 3655 Tmp2, Tmp3, ISD::SETNE); 3656 } 3657 Results.push_back(Tmp1); 3658 break; 3659 case ISD::BR_JT: { 3660 SDValue Chain = Node->getOperand(0); 3661 SDValue Table = Node->getOperand(1); 3662 SDValue Index = Node->getOperand(2); 3663 3664 const DataLayout &TD = DAG.getDataLayout(); 3665 EVT PTy = TLI.getPointerTy(TD); 3666 3667 unsigned EntrySize = 3668 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3669 3670 // For power-of-two jumptable entry sizes convert multiplication to a shift. 3671 // This transformation needs to be done here since otherwise the MIPS 3672 // backend will end up emitting a three instruction multiply sequence 3673 // instead of a single shift and MSP430 will call a runtime function. 3674 if (llvm::isPowerOf2_32(EntrySize)) 3675 Index = DAG.getNode( 3676 ISD::SHL, dl, Index.getValueType(), Index, 3677 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); 3678 else 3679 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3680 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3681 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3682 Index, Table); 3683 3684 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3685 SDValue LD = DAG.getExtLoad( 3686 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3687 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3688 Addr = LD; 3689 if (TLI.isJumpTableRelative()) { 3690 // For PIC, the sequence is: 3691 // BRIND(load(Jumptable + index) + RelocBase) 3692 // RelocBase can be JumpTable, GOT or some sort of global base. 3693 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3694 TLI.getPICJumpTableRelocBase(Table, DAG)); 3695 } 3696 3697 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); 3698 Results.push_back(Tmp1); 3699 break; 3700 } 3701 case ISD::BRCOND: 3702 // Expand brcond's setcc into its constituent parts and create a BR_CC 3703 // Node. 3704 Tmp1 = Node->getOperand(0); 3705 Tmp2 = Node->getOperand(1); 3706 if (Tmp2.getOpcode() == ISD::SETCC) { 3707 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3708 Tmp1, Tmp2.getOperand(2), 3709 Tmp2.getOperand(0), Tmp2.getOperand(1), 3710 Node->getOperand(2)); 3711 } else { 3712 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 3713 if (Tmp2.isUndef() || 3714 (Tmp2.getOpcode() == ISD::AND && 3715 isa<ConstantSDNode>(Tmp2.getOperand(1)) && 3716 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) 3717 Tmp3 = Tmp2; 3718 else 3719 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3720 DAG.getConstant(1, dl, Tmp2.getValueType())); 3721 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3722 DAG.getCondCode(ISD::SETNE), Tmp3, 3723 DAG.getConstant(0, dl, Tmp3.getValueType()), 3724 Node->getOperand(2)); 3725 } 3726 Results.push_back(Tmp1); 3727 break; 3728 case ISD::SETCC: { 3729 Tmp1 = Node->getOperand(0); 3730 Tmp2 = Node->getOperand(1); 3731 Tmp3 = Node->getOperand(2); 3732 bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, 3733 Tmp3, NeedInvert, dl); 3734 3735 if (Legalized) { 3736 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3737 // condition code, create a new SETCC node. 3738 if (Tmp3.getNode()) 3739 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3740 Tmp1, Tmp2, Tmp3); 3741 3742 // If we expanded the SETCC by inverting the condition code, then wrap 3743 // the existing SETCC in a NOT to restore the intended condition. 3744 if (NeedInvert) 3745 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3746 3747 Results.push_back(Tmp1); 3748 break; 3749 } 3750 3751 // Otherwise, SETCC for the given comparison type must be completely 3752 // illegal; expand it into a SELECT_CC. 3753 EVT VT = Node->getValueType(0); 3754 int TrueValue; 3755 switch (TLI.getBooleanContents(Tmp1.getValueType())) { 3756 case TargetLowering::ZeroOrOneBooleanContent: 3757 case TargetLowering::UndefinedBooleanContent: 3758 TrueValue = 1; 3759 break; 3760 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3761 TrueValue = -1; 3762 break; 3763 } 3764 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3765 DAG.getConstant(TrueValue, dl, VT), 3766 DAG.getConstant(0, dl, VT), 3767 Tmp3); 3768 Results.push_back(Tmp1); 3769 break; 3770 } 3771 case ISD::SELECT_CC: { 3772 Tmp1 = Node->getOperand(0); // LHS 3773 Tmp2 = Node->getOperand(1); // RHS 3774 Tmp3 = Node->getOperand(2); // True 3775 Tmp4 = Node->getOperand(3); // False 3776 EVT VT = Node->getValueType(0); 3777 SDValue CC = Node->getOperand(4); 3778 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3779 3780 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 3781 // If the condition code is legal, then we need to expand this 3782 // node using SETCC and SELECT. 3783 EVT CmpVT = Tmp1.getValueType(); 3784 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3785 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3786 "expanded."); 3787 EVT CCVT = 3788 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT); 3789 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC); 3790 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3791 break; 3792 } 3793 3794 // SELECT_CC is legal, so the condition code must not be. 3795 bool Legalized = false; 3796 // Try to legalize by inverting the condition. This is for targets that 3797 // might support an ordered version of a condition, but not the unordered 3798 // version (or vice versa). 3799 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, 3800 Tmp1.getValueType().isInteger()); 3801 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 3802 // Use the new condition code and swap true and false 3803 Legalized = true; 3804 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3805 } else { 3806 // If The inverse is not legal, then try to swap the arguments using 3807 // the inverse condition code. 3808 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3809 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 3810 // The swapped inverse condition is legal, so swap true and false, 3811 // lhs and rhs. 3812 Legalized = true; 3813 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3814 } 3815 } 3816 3817 if (!Legalized) { 3818 Legalized = LegalizeSetCCCondCode( 3819 getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert, 3820 dl); 3821 3822 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3823 3824 // If we expanded the SETCC by inverting the condition code, then swap 3825 // the True/False operands to match. 3826 if (NeedInvert) 3827 std::swap(Tmp3, Tmp4); 3828 3829 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3830 // condition code, create a new SELECT_CC node. 3831 if (CC.getNode()) { 3832 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3833 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3834 } else { 3835 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3836 CC = DAG.getCondCode(ISD::SETNE); 3837 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3838 Tmp2, Tmp3, Tmp4, CC); 3839 } 3840 } 3841 Results.push_back(Tmp1); 3842 break; 3843 } 3844 case ISD::BR_CC: { 3845 Tmp1 = Node->getOperand(0); // Chain 3846 Tmp2 = Node->getOperand(2); // LHS 3847 Tmp3 = Node->getOperand(3); // RHS 3848 Tmp4 = Node->getOperand(1); // CC 3849 3850 bool Legalized = LegalizeSetCCCondCode(getSetCCResultType( 3851 Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl); 3852 (void)Legalized; 3853 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3854 3855 // If we expanded the SETCC by inverting the condition code, then wrap 3856 // the existing SETCC in a NOT to restore the intended condition. 3857 if (NeedInvert) 3858 Tmp4 = DAG.getNOT(dl, Tmp4, Tmp4->getValueType(0)); 3859 3860 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3861 // node. 3862 if (Tmp4.getNode()) { 3863 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3864 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3865 } else { 3866 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3867 Tmp4 = DAG.getCondCode(ISD::SETNE); 3868 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3869 Tmp2, Tmp3, Node->getOperand(4)); 3870 } 3871 Results.push_back(Tmp1); 3872 break; 3873 } 3874 case ISD::BUILD_VECTOR: 3875 Results.push_back(ExpandBUILD_VECTOR(Node)); 3876 break; 3877 case ISD::SRA: 3878 case ISD::SRL: 3879 case ISD::SHL: { 3880 // Scalarize vector SRA/SRL/SHL. 3881 EVT VT = Node->getValueType(0); 3882 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3883 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3884 unsigned NumElem = VT.getVectorNumElements(); 3885 3886 SmallVector<SDValue, 8> Scalars; 3887 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3888 SDValue Ex = DAG.getNode( 3889 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0), 3890 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3891 SDValue Sh = DAG.getNode( 3892 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1), 3893 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3894 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3895 VT.getScalarType(), Ex, Sh)); 3896 } 3897 3898 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 3899 ReplaceNode(SDValue(Node, 0), Result); 3900 break; 3901 } 3902 case ISD::GLOBAL_OFFSET_TABLE: 3903 case ISD::GlobalAddress: 3904 case ISD::GlobalTLSAddress: 3905 case ISD::ExternalSymbol: 3906 case ISD::ConstantPool: 3907 case ISD::JumpTable: 3908 case ISD::INTRINSIC_W_CHAIN: 3909 case ISD::INTRINSIC_WO_CHAIN: 3910 case ISD::INTRINSIC_VOID: 3911 // FIXME: Custom lowering for these operations shouldn't return null! 3912 break; 3913 } 3914 3915 // Replace the original node with the legalized result. 3916 if (Results.empty()) { 3917 LLVM_DEBUG(dbgs() << "Cannot expand node\n"); 3918 return false; 3919 } 3920 3921 LLVM_DEBUG(dbgs() << "Succesfully expanded node\n"); 3922 ReplaceNode(Node, Results.data()); 3923 return true; 3924 } 3925 3926 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 3927 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); 3928 SmallVector<SDValue, 8> Results; 3929 SDLoc dl(Node); 3930 // FIXME: Check flags on the node to see if we can use a finite call. 3931 bool CanUseFiniteLibCall = TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath; 3932 unsigned Opc = Node->getOpcode(); 3933 switch (Opc) { 3934 case ISD::ATOMIC_FENCE: { 3935 // If the target didn't lower this, lower it to '__sync_synchronize()' call 3936 // FIXME: handle "fence singlethread" more efficiently. 3937 TargetLowering::ArgListTy Args; 3938 3939 TargetLowering::CallLoweringInfo CLI(DAG); 3940 CLI.setDebugLoc(dl) 3941 .setChain(Node->getOperand(0)) 3942 .setLibCallee( 3943 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3944 DAG.getExternalSymbol("__sync_synchronize", 3945 TLI.getPointerTy(DAG.getDataLayout())), 3946 std::move(Args)); 3947 3948 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3949 3950 Results.push_back(CallResult.second); 3951 break; 3952 } 3953 // By default, atomic intrinsics are marked Legal and lowered. Targets 3954 // which don't support them directly, however, may want libcalls, in which 3955 // case they mark them Expand, and we get here. 3956 case ISD::ATOMIC_SWAP: 3957 case ISD::ATOMIC_LOAD_ADD: 3958 case ISD::ATOMIC_LOAD_SUB: 3959 case ISD::ATOMIC_LOAD_AND: 3960 case ISD::ATOMIC_LOAD_CLR: 3961 case ISD::ATOMIC_LOAD_OR: 3962 case ISD::ATOMIC_LOAD_XOR: 3963 case ISD::ATOMIC_LOAD_NAND: 3964 case ISD::ATOMIC_LOAD_MIN: 3965 case ISD::ATOMIC_LOAD_MAX: 3966 case ISD::ATOMIC_LOAD_UMIN: 3967 case ISD::ATOMIC_LOAD_UMAX: 3968 case ISD::ATOMIC_CMP_SWAP: { 3969 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 3970 RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT); 3971 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!"); 3972 3973 std::pair<SDValue, SDValue> Tmp = ExpandChainLibCall(LC, Node, false); 3974 Results.push_back(Tmp.first); 3975 Results.push_back(Tmp.second); 3976 break; 3977 } 3978 case ISD::TRAP: { 3979 // If this operation is not supported, lower it to 'abort()' call 3980 TargetLowering::ArgListTy Args; 3981 TargetLowering::CallLoweringInfo CLI(DAG); 3982 CLI.setDebugLoc(dl) 3983 .setChain(Node->getOperand(0)) 3984 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3985 DAG.getExternalSymbol( 3986 "abort", TLI.getPointerTy(DAG.getDataLayout())), 3987 std::move(Args)); 3988 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3989 3990 Results.push_back(CallResult.second); 3991 break; 3992 } 3993 case ISD::FMINNUM: 3994 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 3995 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 3996 RTLIB::FMIN_PPCF128)); 3997 break; 3998 case ISD::FMAXNUM: 3999 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 4000 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 4001 RTLIB::FMAX_PPCF128)); 4002 break; 4003 case ISD::FSQRT: 4004 case ISD::STRICT_FSQRT: 4005 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 4006 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 4007 RTLIB::SQRT_PPCF128)); 4008 break; 4009 case ISD::FSIN: 4010 case ISD::STRICT_FSIN: 4011 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 4012 RTLIB::SIN_F80, RTLIB::SIN_F128, 4013 RTLIB::SIN_PPCF128)); 4014 break; 4015 case ISD::FCOS: 4016 case ISD::STRICT_FCOS: 4017 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 4018 RTLIB::COS_F80, RTLIB::COS_F128, 4019 RTLIB::COS_PPCF128)); 4020 break; 4021 case ISD::FSINCOS: 4022 // Expand into sincos libcall. 4023 ExpandSinCosLibCall(Node, Results); 4024 break; 4025 case ISD::FLOG: 4026 case ISD::STRICT_FLOG: 4027 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log_finite)) 4028 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_FINITE_F32, 4029 RTLIB::LOG_FINITE_F64, 4030 RTLIB::LOG_FINITE_F80, 4031 RTLIB::LOG_FINITE_F128, 4032 RTLIB::LOG_FINITE_PPCF128)); 4033 else 4034 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, 4035 RTLIB::LOG_F80, RTLIB::LOG_F128, 4036 RTLIB::LOG_PPCF128)); 4037 break; 4038 case ISD::FLOG2: 4039 case ISD::STRICT_FLOG2: 4040 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log2_finite)) 4041 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_FINITE_F32, 4042 RTLIB::LOG2_FINITE_F64, 4043 RTLIB::LOG2_FINITE_F80, 4044 RTLIB::LOG2_FINITE_F128, 4045 RTLIB::LOG2_FINITE_PPCF128)); 4046 else 4047 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 4048 RTLIB::LOG2_F80, RTLIB::LOG2_F128, 4049 RTLIB::LOG2_PPCF128)); 4050 break; 4051 case ISD::FLOG10: 4052 case ISD::STRICT_FLOG10: 4053 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log10_finite)) 4054 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_FINITE_F32, 4055 RTLIB::LOG10_FINITE_F64, 4056 RTLIB::LOG10_FINITE_F80, 4057 RTLIB::LOG10_FINITE_F128, 4058 RTLIB::LOG10_FINITE_PPCF128)); 4059 else 4060 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 4061 RTLIB::LOG10_F80, RTLIB::LOG10_F128, 4062 RTLIB::LOG10_PPCF128)); 4063 break; 4064 case ISD::FEXP: 4065 case ISD::STRICT_FEXP: 4066 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp_finite)) 4067 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_FINITE_F32, 4068 RTLIB::EXP_FINITE_F64, 4069 RTLIB::EXP_FINITE_F80, 4070 RTLIB::EXP_FINITE_F128, 4071 RTLIB::EXP_FINITE_PPCF128)); 4072 else 4073 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, 4074 RTLIB::EXP_F80, RTLIB::EXP_F128, 4075 RTLIB::EXP_PPCF128)); 4076 break; 4077 case ISD::FEXP2: 4078 case ISD::STRICT_FEXP2: 4079 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp2_finite)) 4080 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_FINITE_F32, 4081 RTLIB::EXP2_FINITE_F64, 4082 RTLIB::EXP2_FINITE_F80, 4083 RTLIB::EXP2_FINITE_F128, 4084 RTLIB::EXP2_FINITE_PPCF128)); 4085 else 4086 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 4087 RTLIB::EXP2_F80, RTLIB::EXP2_F128, 4088 RTLIB::EXP2_PPCF128)); 4089 break; 4090 case ISD::FTRUNC: 4091 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 4092 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 4093 RTLIB::TRUNC_PPCF128)); 4094 break; 4095 case ISD::FFLOOR: 4096 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 4097 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 4098 RTLIB::FLOOR_PPCF128)); 4099 break; 4100 case ISD::FCEIL: 4101 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 4102 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 4103 RTLIB::CEIL_PPCF128)); 4104 break; 4105 case ISD::FRINT: 4106 case ISD::STRICT_FRINT: 4107 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 4108 RTLIB::RINT_F80, RTLIB::RINT_F128, 4109 RTLIB::RINT_PPCF128)); 4110 break; 4111 case ISD::FNEARBYINT: 4112 case ISD::STRICT_FNEARBYINT: 4113 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 4114 RTLIB::NEARBYINT_F64, 4115 RTLIB::NEARBYINT_F80, 4116 RTLIB::NEARBYINT_F128, 4117 RTLIB::NEARBYINT_PPCF128)); 4118 break; 4119 case ISD::FROUND: 4120 Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32, 4121 RTLIB::ROUND_F64, 4122 RTLIB::ROUND_F80, 4123 RTLIB::ROUND_F128, 4124 RTLIB::ROUND_PPCF128)); 4125 break; 4126 case ISD::FPOWI: 4127 case ISD::STRICT_FPOWI: 4128 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 4129 RTLIB::POWI_F80, RTLIB::POWI_F128, 4130 RTLIB::POWI_PPCF128)); 4131 break; 4132 case ISD::FPOW: 4133 case ISD::STRICT_FPOW: 4134 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_pow_finite)) 4135 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_FINITE_F32, 4136 RTLIB::POW_FINITE_F64, 4137 RTLIB::POW_FINITE_F80, 4138 RTLIB::POW_FINITE_F128, 4139 RTLIB::POW_FINITE_PPCF128)); 4140 else 4141 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, 4142 RTLIB::POW_F80, RTLIB::POW_F128, 4143 RTLIB::POW_PPCF128)); 4144 break; 4145 case ISD::FDIV: 4146 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 4147 RTLIB::DIV_F80, RTLIB::DIV_F128, 4148 RTLIB::DIV_PPCF128)); 4149 break; 4150 case ISD::FREM: 4151 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 4152 RTLIB::REM_F80, RTLIB::REM_F128, 4153 RTLIB::REM_PPCF128)); 4154 break; 4155 case ISD::FMA: 4156 case ISD::STRICT_FMA: 4157 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 4158 RTLIB::FMA_F80, RTLIB::FMA_F128, 4159 RTLIB::FMA_PPCF128)); 4160 break; 4161 case ISD::FADD: 4162 Results.push_back(ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 4163 RTLIB::ADD_F80, RTLIB::ADD_F128, 4164 RTLIB::ADD_PPCF128)); 4165 break; 4166 case ISD::FMUL: 4167 Results.push_back(ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 4168 RTLIB::MUL_F80, RTLIB::MUL_F128, 4169 RTLIB::MUL_PPCF128)); 4170 break; 4171 case ISD::FP16_TO_FP: 4172 if (Node->getValueType(0) == MVT::f32) { 4173 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 4174 } 4175 break; 4176 case ISD::FP_TO_FP16: { 4177 RTLIB::Libcall LC = 4178 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 4179 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 4180 Results.push_back(ExpandLibCall(LC, Node, false)); 4181 break; 4182 } 4183 case ISD::FSUB: 4184 Results.push_back(ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4185 RTLIB::SUB_F80, RTLIB::SUB_F128, 4186 RTLIB::SUB_PPCF128)); 4187 break; 4188 case ISD::SREM: 4189 Results.push_back(ExpandIntLibCall(Node, true, 4190 RTLIB::SREM_I8, 4191 RTLIB::SREM_I16, RTLIB::SREM_I32, 4192 RTLIB::SREM_I64, RTLIB::SREM_I128)); 4193 break; 4194 case ISD::UREM: 4195 Results.push_back(ExpandIntLibCall(Node, false, 4196 RTLIB::UREM_I8, 4197 RTLIB::UREM_I16, RTLIB::UREM_I32, 4198 RTLIB::UREM_I64, RTLIB::UREM_I128)); 4199 break; 4200 case ISD::SDIV: 4201 Results.push_back(ExpandIntLibCall(Node, true, 4202 RTLIB::SDIV_I8, 4203 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4204 RTLIB::SDIV_I64, RTLIB::SDIV_I128)); 4205 break; 4206 case ISD::UDIV: 4207 Results.push_back(ExpandIntLibCall(Node, false, 4208 RTLIB::UDIV_I8, 4209 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4210 RTLIB::UDIV_I64, RTLIB::UDIV_I128)); 4211 break; 4212 case ISD::SDIVREM: 4213 case ISD::UDIVREM: 4214 // Expand into divrem libcall 4215 ExpandDivRemLibCall(Node, Results); 4216 break; 4217 case ISD::MUL: 4218 Results.push_back(ExpandIntLibCall(Node, false, 4219 RTLIB::MUL_I8, 4220 RTLIB::MUL_I16, RTLIB::MUL_I32, 4221 RTLIB::MUL_I64, RTLIB::MUL_I128)); 4222 break; 4223 } 4224 4225 // Replace the original node with the legalized result. 4226 if (!Results.empty()) { 4227 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); 4228 ReplaceNode(Node, Results.data()); 4229 } else 4230 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); 4231 } 4232 4233 // Determine the vector type to use in place of an original scalar element when 4234 // promoting equally sized vectors. 4235 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4236 MVT EltVT, MVT NewEltVT) { 4237 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4238 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4239 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4240 return MidVT; 4241 } 4242 4243 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4244 LLVM_DEBUG(dbgs() << "Trying to promote node\n"); 4245 SmallVector<SDValue, 8> Results; 4246 MVT OVT = Node->getSimpleValueType(0); 4247 if (Node->getOpcode() == ISD::UINT_TO_FP || 4248 Node->getOpcode() == ISD::SINT_TO_FP || 4249 Node->getOpcode() == ISD::SETCC || 4250 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4251 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4252 OVT = Node->getOperand(0).getSimpleValueType(); 4253 } 4254 if (Node->getOpcode() == ISD::BR_CC) 4255 OVT = Node->getOperand(2).getSimpleValueType(); 4256 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4257 SDLoc dl(Node); 4258 SDValue Tmp1, Tmp2, Tmp3; 4259 switch (Node->getOpcode()) { 4260 case ISD::CTTZ: 4261 case ISD::CTTZ_ZERO_UNDEF: 4262 case ISD::CTLZ: 4263 case ISD::CTLZ_ZERO_UNDEF: 4264 case ISD::CTPOP: 4265 // Zero extend the argument. 4266 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4267 if (Node->getOpcode() == ISD::CTTZ) { 4268 // The count is the same in the promoted type except if the original 4269 // value was zero. This can be handled by setting the bit just off 4270 // the top of the original type. 4271 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4272 OVT.getSizeInBits()); 4273 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4274 DAG.getConstant(TopBit, dl, NVT)); 4275 } 4276 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4277 // already the correct result. 4278 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4279 if (Node->getOpcode() == ISD::CTLZ || 4280 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4281 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4282 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4283 DAG.getConstant(NVT.getSizeInBits() - 4284 OVT.getSizeInBits(), dl, NVT)); 4285 } 4286 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4287 break; 4288 case ISD::BITREVERSE: 4289 case ISD::BSWAP: { 4290 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4291 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4292 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4293 Tmp1 = DAG.getNode( 4294 ISD::SRL, dl, NVT, Tmp1, 4295 DAG.getConstant(DiffBits, dl, 4296 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4297 4298 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4299 break; 4300 } 4301 case ISD::FP_TO_UINT: 4302 case ISD::FP_TO_SINT: 4303 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), 4304 Node->getOpcode() == ISD::FP_TO_SINT, dl); 4305 Results.push_back(Tmp1); 4306 break; 4307 case ISD::UINT_TO_FP: 4308 case ISD::SINT_TO_FP: 4309 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), 4310 Node->getOpcode() == ISD::SINT_TO_FP, dl); 4311 Results.push_back(Tmp1); 4312 break; 4313 case ISD::VAARG: { 4314 SDValue Chain = Node->getOperand(0); // Get the chain. 4315 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4316 4317 unsigned TruncOp; 4318 if (OVT.isVector()) { 4319 TruncOp = ISD::BITCAST; 4320 } else { 4321 assert(OVT.isInteger() 4322 && "VAARG promotion is supported only for vectors or integer types"); 4323 TruncOp = ISD::TRUNCATE; 4324 } 4325 4326 // Perform the larger operation, then convert back 4327 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4328 Node->getConstantOperandVal(3)); 4329 Chain = Tmp1.getValue(1); 4330 4331 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4332 4333 // Modified the chain result - switch anything that used the old chain to 4334 // use the new one. 4335 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4336 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4337 if (UpdatedNodes) { 4338 UpdatedNodes->insert(Tmp2.getNode()); 4339 UpdatedNodes->insert(Chain.getNode()); 4340 } 4341 ReplacedNode(Node); 4342 break; 4343 } 4344 case ISD::MUL: 4345 case ISD::SDIV: 4346 case ISD::SREM: 4347 case ISD::UDIV: 4348 case ISD::UREM: 4349 case ISD::AND: 4350 case ISD::OR: 4351 case ISD::XOR: { 4352 unsigned ExtOp, TruncOp; 4353 if (OVT.isVector()) { 4354 ExtOp = ISD::BITCAST; 4355 TruncOp = ISD::BITCAST; 4356 } else { 4357 assert(OVT.isInteger() && "Cannot promote logic operation"); 4358 4359 switch (Node->getOpcode()) { 4360 default: 4361 ExtOp = ISD::ANY_EXTEND; 4362 break; 4363 case ISD::SDIV: 4364 case ISD::SREM: 4365 ExtOp = ISD::SIGN_EXTEND; 4366 break; 4367 case ISD::UDIV: 4368 case ISD::UREM: 4369 ExtOp = ISD::ZERO_EXTEND; 4370 break; 4371 } 4372 TruncOp = ISD::TRUNCATE; 4373 } 4374 // Promote each of the values to the new type. 4375 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4376 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4377 // Perform the larger operation, then convert back 4378 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4379 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4380 break; 4381 } 4382 case ISD::UMUL_LOHI: 4383 case ISD::SMUL_LOHI: { 4384 // Promote to a multiply in a wider integer type. 4385 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 4386 : ISD::SIGN_EXTEND; 4387 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4388 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4389 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 4390 4391 auto &DL = DAG.getDataLayout(); 4392 unsigned OriginalSize = OVT.getScalarSizeInBits(); 4393 Tmp2 = DAG.getNode( 4394 ISD::SRL, dl, NVT, Tmp1, 4395 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 4396 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4397 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 4398 break; 4399 } 4400 case ISD::SELECT: { 4401 unsigned ExtOp, TruncOp; 4402 if (Node->getValueType(0).isVector() || 4403 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4404 ExtOp = ISD::BITCAST; 4405 TruncOp = ISD::BITCAST; 4406 } else if (Node->getValueType(0).isInteger()) { 4407 ExtOp = ISD::ANY_EXTEND; 4408 TruncOp = ISD::TRUNCATE; 4409 } else { 4410 ExtOp = ISD::FP_EXTEND; 4411 TruncOp = ISD::FP_ROUND; 4412 } 4413 Tmp1 = Node->getOperand(0); 4414 // Promote each of the values to the new type. 4415 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4416 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4417 // Perform the larger operation, then round down. 4418 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4419 if (TruncOp != ISD::FP_ROUND) 4420 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4421 else 4422 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4423 DAG.getIntPtrConstant(0, dl)); 4424 Results.push_back(Tmp1); 4425 break; 4426 } 4427 case ISD::VECTOR_SHUFFLE: { 4428 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4429 4430 // Cast the two input vectors. 4431 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4432 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4433 4434 // Convert the shuffle mask to the right # elements. 4435 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4436 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4437 Results.push_back(Tmp1); 4438 break; 4439 } 4440 case ISD::SETCC: { 4441 unsigned ExtOp = ISD::FP_EXTEND; 4442 if (NVT.isInteger()) { 4443 ISD::CondCode CCCode = 4444 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4445 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4446 } 4447 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4448 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4449 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 4450 Tmp1, Tmp2, Node->getOperand(2))); 4451 break; 4452 } 4453 case ISD::BR_CC: { 4454 unsigned ExtOp = ISD::FP_EXTEND; 4455 if (NVT.isInteger()) { 4456 ISD::CondCode CCCode = 4457 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4458 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4459 } 4460 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4461 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4462 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4463 Node->getOperand(0), Node->getOperand(1), 4464 Tmp1, Tmp2, Node->getOperand(4))); 4465 break; 4466 } 4467 case ISD::FADD: 4468 case ISD::FSUB: 4469 case ISD::FMUL: 4470 case ISD::FDIV: 4471 case ISD::FREM: 4472 case ISD::FMINNUM: 4473 case ISD::FMAXNUM: 4474 case ISD::FPOW: 4475 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4476 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4477 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4478 Node->getFlags()); 4479 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4480 Tmp3, DAG.getIntPtrConstant(0, dl))); 4481 break; 4482 case ISD::FMA: 4483 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4484 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4485 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4486 Results.push_back( 4487 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4488 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4489 DAG.getIntPtrConstant(0, dl))); 4490 break; 4491 case ISD::FCOPYSIGN: 4492 case ISD::FPOWI: { 4493 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4494 Tmp2 = Node->getOperand(1); 4495 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4496 4497 // fcopysign doesn't change anything but the sign bit, so 4498 // (fp_round (fcopysign (fpext a), b)) 4499 // is as precise as 4500 // (fp_round (fpext a)) 4501 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4502 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4503 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4504 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4505 break; 4506 } 4507 case ISD::FFLOOR: 4508 case ISD::FCEIL: 4509 case ISD::FRINT: 4510 case ISD::FNEARBYINT: 4511 case ISD::FROUND: 4512 case ISD::FTRUNC: 4513 case ISD::FNEG: 4514 case ISD::FSQRT: 4515 case ISD::FSIN: 4516 case ISD::FCOS: 4517 case ISD::FLOG: 4518 case ISD::FLOG2: 4519 case ISD::FLOG10: 4520 case ISD::FABS: 4521 case ISD::FEXP: 4522 case ISD::FEXP2: 4523 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4524 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4525 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4526 Tmp2, DAG.getIntPtrConstant(0, dl))); 4527 break; 4528 case ISD::BUILD_VECTOR: { 4529 MVT EltVT = OVT.getVectorElementType(); 4530 MVT NewEltVT = NVT.getVectorElementType(); 4531 4532 // Handle bitcasts to a different vector type with the same total bit size 4533 // 4534 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4535 // => 4536 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4537 4538 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4539 "Invalid promote type for build_vector"); 4540 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4541 4542 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4543 4544 SmallVector<SDValue, 8> NewOps; 4545 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4546 SDValue Op = Node->getOperand(I); 4547 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4548 } 4549 4550 SDLoc SL(Node); 4551 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4552 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4553 Results.push_back(CvtVec); 4554 break; 4555 } 4556 case ISD::EXTRACT_VECTOR_ELT: { 4557 MVT EltVT = OVT.getVectorElementType(); 4558 MVT NewEltVT = NVT.getVectorElementType(); 4559 4560 // Handle bitcasts to a different vector type with the same total bit size. 4561 // 4562 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4563 // => 4564 // v4i32:castx = bitcast x:v2i64 4565 // 4566 // i64 = bitcast 4567 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4568 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4569 // 4570 4571 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4572 "Invalid promote type for extract_vector_elt"); 4573 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4574 4575 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4576 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4577 4578 SDValue Idx = Node->getOperand(1); 4579 EVT IdxVT = Idx.getValueType(); 4580 SDLoc SL(Node); 4581 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4582 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4583 4584 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4585 4586 SmallVector<SDValue, 8> NewOps; 4587 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4588 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4589 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4590 4591 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4592 CastVec, TmpIdx); 4593 NewOps.push_back(Elt); 4594 } 4595 4596 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 4597 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4598 break; 4599 } 4600 case ISD::INSERT_VECTOR_ELT: { 4601 MVT EltVT = OVT.getVectorElementType(); 4602 MVT NewEltVT = NVT.getVectorElementType(); 4603 4604 // Handle bitcasts to a different vector type with the same total bit size 4605 // 4606 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4607 // => 4608 // v4i32:castx = bitcast x:v2i64 4609 // v2i32:casty = bitcast y:i64 4610 // 4611 // v2i64 = bitcast 4612 // (v4i32 insert_vector_elt 4613 // (v4i32 insert_vector_elt v4i32:castx, 4614 // (extract_vector_elt casty, 0), 2 * z), 4615 // (extract_vector_elt casty, 1), (2 * z + 1)) 4616 4617 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4618 "Invalid promote type for insert_vector_elt"); 4619 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4620 4621 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4622 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4623 4624 SDValue Val = Node->getOperand(1); 4625 SDValue Idx = Node->getOperand(2); 4626 EVT IdxVT = Idx.getValueType(); 4627 SDLoc SL(Node); 4628 4629 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 4630 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4631 4632 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4633 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4634 4635 SDValue NewVec = CastVec; 4636 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4637 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4638 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4639 4640 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4641 CastVal, IdxOffset); 4642 4643 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 4644 NewVec, Elt, InEltIdx); 4645 } 4646 4647 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 4648 break; 4649 } 4650 case ISD::SCALAR_TO_VECTOR: { 4651 MVT EltVT = OVT.getVectorElementType(); 4652 MVT NewEltVT = NVT.getVectorElementType(); 4653 4654 // Handle bitcasts to different vector type with the same total bit size. 4655 // 4656 // e.g. v2i64 = scalar_to_vector x:i64 4657 // => 4658 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 4659 // 4660 4661 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4662 SDValue Val = Node->getOperand(0); 4663 SDLoc SL(Node); 4664 4665 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4666 SDValue Undef = DAG.getUNDEF(MidVT); 4667 4668 SmallVector<SDValue, 8> NewElts; 4669 NewElts.push_back(CastVal); 4670 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 4671 NewElts.push_back(Undef); 4672 4673 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 4674 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4675 Results.push_back(CvtVec); 4676 break; 4677 } 4678 } 4679 4680 // Replace the original node with the legalized result. 4681 if (!Results.empty()) { 4682 LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); 4683 ReplaceNode(Node, Results.data()); 4684 } else 4685 LLVM_DEBUG(dbgs() << "Could not promote node\n"); 4686 } 4687 4688 /// This is the entry point for the file. 4689 void SelectionDAG::Legalize() { 4690 AssignTopologicalOrder(); 4691 4692 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4693 // Use a delete listener to remove nodes which were deleted during 4694 // legalization from LegalizeNodes. This is needed to handle the situation 4695 // where a new node is allocated by the object pool to the same address of a 4696 // previously deleted node. 4697 DAGNodeDeletedListener DeleteListener( 4698 *this, 4699 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 4700 4701 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 4702 4703 // Visit all the nodes. We start in topological order, so that we see 4704 // nodes with their original operands intact. Legalization can produce 4705 // new nodes which may themselves need to be legalized. Iterate until all 4706 // nodes have been legalized. 4707 while (true) { 4708 bool AnyLegalized = false; 4709 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 4710 --NI; 4711 4712 SDNode *N = &*NI; 4713 if (N->use_empty() && N != getRoot().getNode()) { 4714 ++NI; 4715 DeleteNode(N); 4716 continue; 4717 } 4718 4719 if (LegalizedNodes.insert(N).second) { 4720 AnyLegalized = true; 4721 Legalizer.LegalizeOp(N); 4722 4723 if (N->use_empty() && N != getRoot().getNode()) { 4724 ++NI; 4725 DeleteNode(N); 4726 } 4727 } 4728 } 4729 if (!AnyLegalized) 4730 break; 4731 4732 } 4733 4734 // Remove dead nodes now. 4735 RemoveDeadNodes(); 4736 } 4737 4738 bool SelectionDAG::LegalizeOp(SDNode *N, 4739 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 4740 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4741 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 4742 4743 // Directly insert the node in question, and legalize it. This will recurse 4744 // as needed through operands. 4745 LegalizedNodes.insert(N); 4746 Legalizer.LegalizeOp(N); 4747 4748 return LegalizedNodes.count(N); 4749 } 4750