1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::Legalize method.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/CodeGen/ISDOpcodes.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/RuntimeLibcalls.h"
26 #include "llvm/CodeGen/SelectionDAG.h"
27 #include "llvm/CodeGen/SelectionDAGNodes.h"
28 #include "llvm/CodeGen/TargetFrameLowering.h"
29 #include "llvm/CodeGen/TargetLowering.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/CodeGen/ValueTypes.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstdint>
51 #include <tuple>
52 #include <utility>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "legalizedag"
57 
58 namespace {
59 
60 /// Keeps track of state when getting the sign of a floating-point value as an
61 /// integer.
62 struct FloatSignAsInt {
63   EVT FloatVT;
64   SDValue Chain;
65   SDValue FloatPtr;
66   SDValue IntPtr;
67   MachinePointerInfo IntPointerInfo;
68   MachinePointerInfo FloatPointerInfo;
69   SDValue IntValue;
70   APInt SignMask;
71   uint8_t SignBit;
72 };
73 
74 //===----------------------------------------------------------------------===//
75 /// This takes an arbitrary SelectionDAG as input and
76 /// hacks on it until the target machine can handle it.  This involves
77 /// eliminating value sizes the machine cannot handle (promoting small sizes to
78 /// large sizes or splitting up large values into small values) as well as
79 /// eliminating operations the machine cannot handle.
80 ///
81 /// This code also does a small amount of optimization and recognition of idioms
82 /// as part of its processing.  For example, if a target does not support a
83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
84 /// will attempt merge setcc and brc instructions into brcc's.
85 class SelectionDAGLegalize {
86   const TargetMachine &TM;
87   const TargetLowering &TLI;
88   SelectionDAG &DAG;
89 
90   /// The set of nodes which have already been legalized. We hold a
91   /// reference to it in order to update as necessary on node deletion.
92   SmallPtrSetImpl<SDNode *> &LegalizedNodes;
93 
94   /// A set of all the nodes updated during legalization.
95   SmallSetVector<SDNode *, 16> *UpdatedNodes;
96 
97   EVT getSetCCResultType(EVT VT) const {
98     return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
99   }
100 
101   // Libcall insertion helpers.
102 
103 public:
104   SelectionDAGLegalize(SelectionDAG &DAG,
105                        SmallPtrSetImpl<SDNode *> &LegalizedNodes,
106                        SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr)
107       : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG),
108         LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {}
109 
110   /// Legalizes the given operation.
111   void LegalizeOp(SDNode *Node);
112 
113 private:
114   SDValue OptimizeFloatStore(StoreSDNode *ST);
115 
116   void LegalizeLoadOps(SDNode *Node);
117   void LegalizeStoreOps(SDNode *Node);
118 
119   /// Some targets cannot handle a variable
120   /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
121   /// is necessary to spill the vector being inserted into to memory, perform
122   /// the insert there, and then read the result back.
123   SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
124                                          const SDLoc &dl);
125   SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx,
126                                   const SDLoc &dl);
127 
128   /// Return a vector shuffle operation which
129   /// performs the same shuffe in terms of order or result bytes, but on a type
130   /// whose vector element type is narrower than the original shuffle type.
131   /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
132   SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl,
133                                      SDValue N1, SDValue N2,
134                                      ArrayRef<int> Mask) const;
135 
136   bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
137                              bool &NeedInvert, const SDLoc &dl, SDValue &Chain,
138                              bool IsSignaling = false);
139 
140   SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
141 
142   void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
143                        RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
144                        RTLIB::Libcall Call_F128,
145                        RTLIB::Libcall Call_PPCF128,
146                        SmallVectorImpl<SDValue> &Results);
147   SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
148                            RTLIB::Libcall Call_I8,
149                            RTLIB::Libcall Call_I16,
150                            RTLIB::Libcall Call_I32,
151                            RTLIB::Libcall Call_I64,
152                            RTLIB::Libcall Call_I128);
153   void ExpandArgFPLibCall(SDNode *Node,
154                           RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64,
155                           RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128,
156                           RTLIB::Libcall Call_PPCF128,
157                           SmallVectorImpl<SDValue> &Results);
158   void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
159   void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
160 
161   SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
162                            const SDLoc &dl);
163   SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
164                            const SDLoc &dl, SDValue ChainIn);
165   SDValue ExpandBUILD_VECTOR(SDNode *Node);
166   SDValue ExpandSPLAT_VECTOR(SDNode *Node);
167   SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
168   void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
169                                 SmallVectorImpl<SDValue> &Results);
170   void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL,
171                          SDValue Value) const;
172   SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL,
173                           SDValue NewIntValue) const;
174   SDValue ExpandFCOPYSIGN(SDNode *Node) const;
175   SDValue ExpandFABS(SDNode *Node) const;
176   SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain);
177   void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl,
178                              SmallVectorImpl<SDValue> &Results);
179   void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl,
180                              SmallVectorImpl<SDValue> &Results);
181 
182   SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl);
183   SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl);
184 
185   SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
186   SDValue ExpandInsertToVectorThroughStack(SDValue Op);
187   SDValue ExpandVectorBuildThroughStack(SDNode* Node);
188 
189   SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
190   SDValue ExpandConstant(ConstantSDNode *CP);
191 
192   // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall
193   bool ExpandNode(SDNode *Node);
194   void ConvertNodeToLibcall(SDNode *Node);
195   void PromoteNode(SDNode *Node);
196 
197 public:
198   // Node replacement helpers
199 
200   void ReplacedNode(SDNode *N) {
201     LegalizedNodes.erase(N);
202     if (UpdatedNodes)
203       UpdatedNodes->insert(N);
204   }
205 
206   void ReplaceNode(SDNode *Old, SDNode *New) {
207     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
208                dbgs() << "     with:      "; New->dump(&DAG));
209 
210     assert(Old->getNumValues() == New->getNumValues() &&
211            "Replacing one node with another that produces a different number "
212            "of values!");
213     DAG.ReplaceAllUsesWith(Old, New);
214     if (UpdatedNodes)
215       UpdatedNodes->insert(New);
216     ReplacedNode(Old);
217   }
218 
219   void ReplaceNode(SDValue Old, SDValue New) {
220     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
221                dbgs() << "     with:      "; New->dump(&DAG));
222 
223     DAG.ReplaceAllUsesWith(Old, New);
224     if (UpdatedNodes)
225       UpdatedNodes->insert(New.getNode());
226     ReplacedNode(Old.getNode());
227   }
228 
229   void ReplaceNode(SDNode *Old, const SDValue *New) {
230     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG));
231 
232     DAG.ReplaceAllUsesWith(Old, New);
233     for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
234       LLVM_DEBUG(dbgs() << (i == 0 ? "     with:      " : "      and:      ");
235                  New[i]->dump(&DAG));
236       if (UpdatedNodes)
237         UpdatedNodes->insert(New[i].getNode());
238     }
239     ReplacedNode(Old);
240   }
241 
242   void ReplaceNodeWithValue(SDValue Old, SDValue New) {
243     LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
244                dbgs() << "     with:      "; New->dump(&DAG));
245 
246     DAG.ReplaceAllUsesOfValueWith(Old, New);
247     if (UpdatedNodes)
248       UpdatedNodes->insert(New.getNode());
249     ReplacedNode(Old.getNode());
250   }
251 };
252 
253 } // end anonymous namespace
254 
255 /// Return a vector shuffle operation which
256 /// performs the same shuffle in terms of order or result bytes, but on a type
257 /// whose vector element type is narrower than the original shuffle type.
258 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
259 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType(
260     EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
261     ArrayRef<int> Mask) const {
262   unsigned NumMaskElts = VT.getVectorNumElements();
263   unsigned NumDestElts = NVT.getVectorNumElements();
264   unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
265 
266   assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
267 
268   if (NumEltsGrowth == 1)
269     return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask);
270 
271   SmallVector<int, 8> NewMask;
272   for (unsigned i = 0; i != NumMaskElts; ++i) {
273     int Idx = Mask[i];
274     for (unsigned j = 0; j != NumEltsGrowth; ++j) {
275       if (Idx < 0)
276         NewMask.push_back(-1);
277       else
278         NewMask.push_back(Idx * NumEltsGrowth + j);
279     }
280   }
281   assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
282   assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
283   return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask);
284 }
285 
286 /// Expands the ConstantFP node to an integer constant or
287 /// a load from the constant pool.
288 SDValue
289 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
290   bool Extend = false;
291   SDLoc dl(CFP);
292 
293   // If a FP immediate is precise when represented as a float and if the
294   // target can do an extending load from float to double, we put it into
295   // the constant pool as a float, even if it's is statically typed as a
296   // double.  This shrinks FP constants and canonicalizes them for targets where
297   // an FP extending load is the same cost as a normal load (such as on the x87
298   // fp stack or PPC FP unit).
299   EVT VT = CFP->getValueType(0);
300   ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
301   if (!UseCP) {
302     assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
303     return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl,
304                            (VT == MVT::f64) ? MVT::i64 : MVT::i32);
305   }
306 
307   APFloat APF = CFP->getValueAPF();
308   EVT OrigVT = VT;
309   EVT SVT = VT;
310 
311   // We don't want to shrink SNaNs. Converting the SNaN back to its real type
312   // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ).
313   if (!APF.isSignaling()) {
314     while (SVT != MVT::f32 && SVT != MVT::f16) {
315       SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
316       if (ConstantFPSDNode::isValueValidForType(SVT, APF) &&
317           // Only do this if the target has a native EXTLOAD instruction from
318           // smaller type.
319           TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) &&
320           TLI.ShouldShrinkFPConstant(OrigVT)) {
321         Type *SType = SVT.getTypeForEVT(*DAG.getContext());
322         LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
323         VT = SVT;
324         Extend = true;
325       }
326     }
327   }
328 
329   SDValue CPIdx =
330       DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout()));
331   Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
332   if (Extend) {
333     SDValue Result = DAG.getExtLoad(
334         ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx,
335         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT,
336         Alignment);
337     return Result;
338   }
339   SDValue Result = DAG.getLoad(
340       OrigVT, dl, DAG.getEntryNode(), CPIdx,
341       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
342   return Result;
343 }
344 
345 /// Expands the Constant node to a load from the constant pool.
346 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) {
347   SDLoc dl(CP);
348   EVT VT = CP->getValueType(0);
349   SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(),
350                                       TLI.getPointerTy(DAG.getDataLayout()));
351   Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
352   SDValue Result = DAG.getLoad(
353       VT, dl, DAG.getEntryNode(), CPIdx,
354       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
355   return Result;
356 }
357 
358 /// Some target cannot handle a variable insertion index for the
359 /// INSERT_VECTOR_ELT instruction.  In this case, it
360 /// is necessary to spill the vector being inserted into to memory, perform
361 /// the insert there, and then read the result back.
362 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec,
363                                                              SDValue Val,
364                                                              SDValue Idx,
365                                                              const SDLoc &dl) {
366   SDValue Tmp1 = Vec;
367   SDValue Tmp2 = Val;
368   SDValue Tmp3 = Idx;
369 
370   // If the target doesn't support this, we have to spill the input vector
371   // to a temporary stack slot, update the element, then reload it.  This is
372   // badness.  We could also load the value into a vector register (either
373   // with a "move to register" or "extload into register" instruction, then
374   // permute it into place, if the idx is a constant and if the idx is
375   // supported by the target.
376   EVT VT    = Tmp1.getValueType();
377   EVT EltVT = VT.getVectorElementType();
378   SDValue StackPtr = DAG.CreateStackTemporary(VT);
379 
380   int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
381 
382   // Store the vector.
383   SDValue Ch = DAG.getStore(
384       DAG.getEntryNode(), dl, Tmp1, StackPtr,
385       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
386 
387   SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3);
388 
389   // Store the scalar value.
390   Ch = DAG.getTruncStore(
391       Ch, dl, Tmp2, StackPtr2,
392       MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT);
393   // Load the updated vector.
394   return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack(
395                                                DAG.getMachineFunction(), SPFI));
396 }
397 
398 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
399                                                       SDValue Idx,
400                                                       const SDLoc &dl) {
401   if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
402     // SCALAR_TO_VECTOR requires that the type of the value being inserted
403     // match the element type of the vector being created, except for
404     // integers in which case the inserted value can be over width.
405     EVT EltVT = Vec.getValueType().getVectorElementType();
406     if (Val.getValueType() == EltVT ||
407         (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
408       SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
409                                   Vec.getValueType(), Val);
410 
411       unsigned NumElts = Vec.getValueType().getVectorNumElements();
412       // We generate a shuffle of InVec and ScVec, so the shuffle mask
413       // should be 0,1,2,3,4,5... with the appropriate element replaced with
414       // elt 0 of the RHS.
415       SmallVector<int, 8> ShufOps;
416       for (unsigned i = 0; i != NumElts; ++i)
417         ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
418 
419       return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps);
420     }
421   }
422   return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
423 }
424 
425 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
426   if (!ISD::isNormalStore(ST))
427     return SDValue();
428 
429   LLVM_DEBUG(dbgs() << "Optimizing float store operations\n");
430   // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
431   // FIXME: We shouldn't do this for TargetConstantFP's.
432   // FIXME: move this to the DAG Combiner!  Note that we can't regress due
433   // to phase ordering between legalized code and the dag combiner.  This
434   // probably means that we need to integrate dag combiner and legalizer
435   // together.
436   // We generally can't do this one for long doubles.
437   SDValue Chain = ST->getChain();
438   SDValue Ptr = ST->getBasePtr();
439   MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
440   AAMDNodes AAInfo = ST->getAAInfo();
441   SDLoc dl(ST);
442   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
443     if (CFP->getValueType(0) == MVT::f32 &&
444         TLI.isTypeLegal(MVT::i32)) {
445       SDValue Con = DAG.getConstant(CFP->getValueAPF().
446                                       bitcastToAPInt().zextOrTrunc(32),
447                                     SDLoc(CFP), MVT::i32);
448       return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
449                           ST->getOriginalAlign(), MMOFlags, AAInfo);
450     }
451 
452     if (CFP->getValueType(0) == MVT::f64) {
453       // If this target supports 64-bit registers, do a single 64-bit store.
454       if (TLI.isTypeLegal(MVT::i64)) {
455         SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
456                                       zextOrTrunc(64), SDLoc(CFP), MVT::i64);
457         return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
458                             ST->getOriginalAlign(), MMOFlags, AAInfo);
459       }
460 
461       if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
462         // Otherwise, if the target supports 32-bit registers, use 2 32-bit
463         // stores.  If the target supports neither 32- nor 64-bits, this
464         // xform is certainly not worth it.
465         const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt();
466         SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32);
467         SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32);
468         if (DAG.getDataLayout().isBigEndian())
469           std::swap(Lo, Hi);
470 
471         Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(),
472                           ST->getOriginalAlign(), MMOFlags, AAInfo);
473         Ptr = DAG.getMemBasePlusOffset(Ptr, 4, dl);
474         Hi = DAG.getStore(Chain, dl, Hi, Ptr,
475                           ST->getPointerInfo().getWithOffset(4),
476                           ST->getOriginalAlign(), MMOFlags, AAInfo);
477 
478         return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
479       }
480     }
481   }
482   return SDValue(nullptr, 0);
483 }
484 
485 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
486   StoreSDNode *ST = cast<StoreSDNode>(Node);
487   SDValue Chain = ST->getChain();
488   SDValue Ptr = ST->getBasePtr();
489   SDLoc dl(Node);
490 
491   MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
492   AAMDNodes AAInfo = ST->getAAInfo();
493 
494   if (!ST->isTruncatingStore()) {
495     LLVM_DEBUG(dbgs() << "Legalizing store operation\n");
496     if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
497       ReplaceNode(ST, OptStore);
498       return;
499     }
500 
501     SDValue Value = ST->getValue();
502     MVT VT = Value.getSimpleValueType();
503     switch (TLI.getOperationAction(ISD::STORE, VT)) {
504     default: llvm_unreachable("This action is not supported yet!");
505     case TargetLowering::Legal: {
506       // If this is an unaligned store and the target doesn't support it,
507       // expand it.
508       EVT MemVT = ST->getMemoryVT();
509       const DataLayout &DL = DAG.getDataLayout();
510       if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
511                                               *ST->getMemOperand())) {
512         LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n");
513         SDValue Result = TLI.expandUnalignedStore(ST, DAG);
514         ReplaceNode(SDValue(ST, 0), Result);
515       } else
516         LLVM_DEBUG(dbgs() << "Legal store\n");
517       break;
518     }
519     case TargetLowering::Custom: {
520       LLVM_DEBUG(dbgs() << "Trying custom lowering\n");
521       SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
522       if (Res && Res != SDValue(Node, 0))
523         ReplaceNode(SDValue(Node, 0), Res);
524       return;
525     }
526     case TargetLowering::Promote: {
527       MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
528       assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
529              "Can only promote stores to same size type");
530       Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
531       SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
532                                     ST->getOriginalAlign(), MMOFlags, AAInfo);
533       ReplaceNode(SDValue(Node, 0), Result);
534       break;
535     }
536     }
537     return;
538   }
539 
540   LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n");
541   SDValue Value = ST->getValue();
542   EVT StVT = ST->getMemoryVT();
543   unsigned StWidth = StVT.getSizeInBits();
544   auto &DL = DAG.getDataLayout();
545 
546   if (StWidth != StVT.getStoreSizeInBits()) {
547     // Promote to a byte-sized store with upper bits zero if not
548     // storing an integral number of bytes.  For example, promote
549     // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
550     EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
551                                 StVT.getStoreSizeInBits());
552     Value = DAG.getZeroExtendInReg(Value, dl, StVT);
553     SDValue Result =
554         DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT,
555                           ST->getOriginalAlign(), MMOFlags, AAInfo);
556     ReplaceNode(SDValue(Node, 0), Result);
557   } else if (StWidth & (StWidth - 1)) {
558     // If not storing a power-of-2 number of bits, expand as two stores.
559     assert(!StVT.isVector() && "Unsupported truncstore!");
560     unsigned LogStWidth = Log2_32(StWidth);
561     assert(LogStWidth < 32);
562     unsigned RoundWidth = 1 << LogStWidth;
563     assert(RoundWidth < StWidth);
564     unsigned ExtraWidth = StWidth - RoundWidth;
565     assert(ExtraWidth < RoundWidth);
566     assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
567            "Store size not an integral number of bytes!");
568     EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
569     EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
570     SDValue Lo, Hi;
571     unsigned IncrementSize;
572 
573     if (DL.isLittleEndian()) {
574       // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
575       // Store the bottom RoundWidth bits.
576       Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
577                              RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
578 
579       // Store the remaining ExtraWidth bits.
580       IncrementSize = RoundWidth / 8;
581       Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl);
582       Hi = DAG.getNode(
583           ISD::SRL, dl, Value.getValueType(), Value,
584           DAG.getConstant(RoundWidth, dl,
585                           TLI.getShiftAmountTy(Value.getValueType(), DL)));
586       Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
587                              ST->getPointerInfo().getWithOffset(IncrementSize),
588                              ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
589     } else {
590       // Big endian - avoid unaligned stores.
591       // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
592       // Store the top RoundWidth bits.
593       Hi = DAG.getNode(
594           ISD::SRL, dl, Value.getValueType(), Value,
595           DAG.getConstant(ExtraWidth, dl,
596                           TLI.getShiftAmountTy(Value.getValueType(), DL)));
597       Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT,
598                              ST->getOriginalAlign(), MMOFlags, AAInfo);
599 
600       // Store the remaining ExtraWidth bits.
601       IncrementSize = RoundWidth / 8;
602       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
603                         DAG.getConstant(IncrementSize, dl,
604                                         Ptr.getValueType()));
605       Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
606                              ST->getPointerInfo().getWithOffset(IncrementSize),
607                              ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
608     }
609 
610     // The order of the stores doesn't matter.
611     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
612     ReplaceNode(SDValue(Node, 0), Result);
613   } else {
614     switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
615     default: llvm_unreachable("This action is not supported yet!");
616     case TargetLowering::Legal: {
617       EVT MemVT = ST->getMemoryVT();
618       // If this is an unaligned store and the target doesn't support it,
619       // expand it.
620       if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
621                                               *ST->getMemOperand())) {
622         SDValue Result = TLI.expandUnalignedStore(ST, DAG);
623         ReplaceNode(SDValue(ST, 0), Result);
624       }
625       break;
626     }
627     case TargetLowering::Custom: {
628       SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
629       if (Res && Res != SDValue(Node, 0))
630         ReplaceNode(SDValue(Node, 0), Res);
631       return;
632     }
633     case TargetLowering::Expand:
634       assert(!StVT.isVector() &&
635              "Vector Stores are handled in LegalizeVectorOps");
636 
637       SDValue Result;
638 
639       // TRUNCSTORE:i16 i32 -> STORE i16
640       if (TLI.isTypeLegal(StVT)) {
641         Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
642         Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
643                               ST->getOriginalAlign(), MMOFlags, AAInfo);
644       } else {
645         // The in-memory type isn't legal. Truncate to the type it would promote
646         // to, and then do a truncstore.
647         Value = DAG.getNode(ISD::TRUNCATE, dl,
648                             TLI.getTypeToTransformTo(*DAG.getContext(), StVT),
649                             Value);
650         Result =
651             DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT,
652                               ST->getOriginalAlign(), MMOFlags, AAInfo);
653       }
654 
655       ReplaceNode(SDValue(Node, 0), Result);
656       break;
657     }
658   }
659 }
660 
661 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
662   LoadSDNode *LD = cast<LoadSDNode>(Node);
663   SDValue Chain = LD->getChain();  // The chain.
664   SDValue Ptr = LD->getBasePtr();  // The base pointer.
665   SDValue Value;                   // The value returned by the load op.
666   SDLoc dl(Node);
667 
668   ISD::LoadExtType ExtType = LD->getExtensionType();
669   if (ExtType == ISD::NON_EXTLOAD) {
670     LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n");
671     MVT VT = Node->getSimpleValueType(0);
672     SDValue RVal = SDValue(Node, 0);
673     SDValue RChain = SDValue(Node, 1);
674 
675     switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
676     default: llvm_unreachable("This action is not supported yet!");
677     case TargetLowering::Legal: {
678       EVT MemVT = LD->getMemoryVT();
679       const DataLayout &DL = DAG.getDataLayout();
680       // If this is an unaligned load and the target doesn't support it,
681       // expand it.
682       if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
683                                               *LD->getMemOperand())) {
684         std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG);
685       }
686       break;
687     }
688     case TargetLowering::Custom:
689       if (SDValue Res = TLI.LowerOperation(RVal, DAG)) {
690         RVal = Res;
691         RChain = Res.getValue(1);
692       }
693       break;
694 
695     case TargetLowering::Promote: {
696       MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
697       assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
698              "Can only promote loads to same size type");
699 
700       SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand());
701       RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
702       RChain = Res.getValue(1);
703       break;
704     }
705     }
706     if (RChain.getNode() != Node) {
707       assert(RVal.getNode() != Node && "Load must be completely replaced");
708       DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
709       DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
710       if (UpdatedNodes) {
711         UpdatedNodes->insert(RVal.getNode());
712         UpdatedNodes->insert(RChain.getNode());
713       }
714       ReplacedNode(Node);
715     }
716     return;
717   }
718 
719   LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n");
720   EVT SrcVT = LD->getMemoryVT();
721   unsigned SrcWidth = SrcVT.getSizeInBits();
722   MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
723   AAMDNodes AAInfo = LD->getAAInfo();
724 
725   if (SrcWidth != SrcVT.getStoreSizeInBits() &&
726       // Some targets pretend to have an i1 loading operation, and actually
727       // load an i8.  This trick is correct for ZEXTLOAD because the top 7
728       // bits are guaranteed to be zero; it helps the optimizers understand
729       // that these bits are zero.  It is also useful for EXTLOAD, since it
730       // tells the optimizers that those bits are undefined.  It would be
731       // nice to have an effective generic way of getting these benefits...
732       // Until such a way is found, don't insist on promoting i1 here.
733       (SrcVT != MVT::i1 ||
734        TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) ==
735          TargetLowering::Promote)) {
736     // Promote to a byte-sized load if not loading an integral number of
737     // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
738     unsigned NewWidth = SrcVT.getStoreSizeInBits();
739     EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
740     SDValue Ch;
741 
742     // The extra bits are guaranteed to be zero, since we stored them that
743     // way.  A zext load from NVT thus automatically gives zext from SrcVT.
744 
745     ISD::LoadExtType NewExtType =
746       ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
747 
748     SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
749                                     Chain, Ptr, LD->getPointerInfo(), NVT,
750                                     LD->getOriginalAlign(), MMOFlags, AAInfo);
751 
752     Ch = Result.getValue(1); // The chain.
753 
754     if (ExtType == ISD::SEXTLOAD)
755       // Having the top bits zero doesn't help when sign extending.
756       Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
757                            Result.getValueType(),
758                            Result, DAG.getValueType(SrcVT));
759     else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
760       // All the top bits are guaranteed to be zero - inform the optimizers.
761       Result = DAG.getNode(ISD::AssertZext, dl,
762                            Result.getValueType(), Result,
763                            DAG.getValueType(SrcVT));
764 
765     Value = Result;
766     Chain = Ch;
767   } else if (SrcWidth & (SrcWidth - 1)) {
768     // If not loading a power-of-2 number of bits, expand as two loads.
769     assert(!SrcVT.isVector() && "Unsupported extload!");
770     unsigned LogSrcWidth = Log2_32(SrcWidth);
771     assert(LogSrcWidth < 32);
772     unsigned RoundWidth = 1 << LogSrcWidth;
773     assert(RoundWidth < SrcWidth);
774     unsigned ExtraWidth = SrcWidth - RoundWidth;
775     assert(ExtraWidth < RoundWidth);
776     assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
777            "Load size not an integral number of bytes!");
778     EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
779     EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
780     SDValue Lo, Hi, Ch;
781     unsigned IncrementSize;
782     auto &DL = DAG.getDataLayout();
783 
784     if (DL.isLittleEndian()) {
785       // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
786       // Load the bottom RoundWidth bits.
787       Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
788                           LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(),
789                           MMOFlags, AAInfo);
790 
791       // Load the remaining ExtraWidth bits.
792       IncrementSize = RoundWidth / 8;
793       Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl);
794       Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
795                           LD->getPointerInfo().getWithOffset(IncrementSize),
796                           ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo);
797 
798       // Build a factor node to remember that this load is independent of
799       // the other one.
800       Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
801                        Hi.getValue(1));
802 
803       // Move the top bits to the right place.
804       Hi = DAG.getNode(
805           ISD::SHL, dl, Hi.getValueType(), Hi,
806           DAG.getConstant(RoundWidth, dl,
807                           TLI.getShiftAmountTy(Hi.getValueType(), DL)));
808 
809       // Join the hi and lo parts.
810       Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
811     } else {
812       // Big endian - avoid unaligned loads.
813       // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
814       // Load the top RoundWidth bits.
815       Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
816                           LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(),
817                           MMOFlags, AAInfo);
818 
819       // Load the remaining ExtraWidth bits.
820       IncrementSize = RoundWidth / 8;
821       Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl);
822       Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
823                           LD->getPointerInfo().getWithOffset(IncrementSize),
824                           ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo);
825 
826       // Build a factor node to remember that this load is independent of
827       // the other one.
828       Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
829                        Hi.getValue(1));
830 
831       // Move the top bits to the right place.
832       Hi = DAG.getNode(
833           ISD::SHL, dl, Hi.getValueType(), Hi,
834           DAG.getConstant(ExtraWidth, dl,
835                           TLI.getShiftAmountTy(Hi.getValueType(), DL)));
836 
837       // Join the hi and lo parts.
838       Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
839     }
840 
841     Chain = Ch;
842   } else {
843     bool isCustom = false;
844     switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0),
845                                  SrcVT.getSimpleVT())) {
846     default: llvm_unreachable("This action is not supported yet!");
847     case TargetLowering::Custom:
848       isCustom = true;
849       LLVM_FALLTHROUGH;
850     case TargetLowering::Legal:
851       Value = SDValue(Node, 0);
852       Chain = SDValue(Node, 1);
853 
854       if (isCustom) {
855         if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
856           Value = Res;
857           Chain = Res.getValue(1);
858         }
859       } else {
860         // If this is an unaligned load and the target doesn't support it,
861         // expand it.
862         EVT MemVT = LD->getMemoryVT();
863         const DataLayout &DL = DAG.getDataLayout();
864         if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT,
865                                     *LD->getMemOperand())) {
866           std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG);
867         }
868       }
869       break;
870 
871     case TargetLowering::Expand: {
872       EVT DestVT = Node->getValueType(0);
873       if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) {
874         // If the source type is not legal, see if there is a legal extload to
875         // an intermediate type that we can then extend further.
876         EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT());
877         if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT?
878             TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) {
879           // If we are loading a legal type, this is a non-extload followed by a
880           // full extend.
881           ISD::LoadExtType MidExtType =
882               (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType;
883 
884           SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr,
885                                         SrcVT, LD->getMemOperand());
886           unsigned ExtendOp =
887               ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType);
888           Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
889           Chain = Load.getValue(1);
890           break;
891         }
892 
893         // Handle the special case of fp16 extloads. EXTLOAD doesn't have the
894         // normal undefined upper bits behavior to allow using an in-reg extend
895         // with the illegal FP type, so load as an integer and do the
896         // from-integer conversion.
897         if (SrcVT.getScalarType() == MVT::f16) {
898           EVT ISrcVT = SrcVT.changeTypeToInteger();
899           EVT IDestVT = DestVT.changeTypeToInteger();
900           EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT());
901 
902           SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain,
903                                           Ptr, ISrcVT, LD->getMemOperand());
904           Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result);
905           Chain = Result.getValue(1);
906           break;
907         }
908       }
909 
910       assert(!SrcVT.isVector() &&
911              "Vector Loads are handled in LegalizeVectorOps");
912 
913       // FIXME: This does not work for vectors on most targets.  Sign-
914       // and zero-extend operations are currently folded into extending
915       // loads, whether they are legal or not, and then we end up here
916       // without any support for legalizing them.
917       assert(ExtType != ISD::EXTLOAD &&
918              "EXTLOAD should always be supported!");
919       // Turn the unsupported load into an EXTLOAD followed by an
920       // explicit zero/sign extend inreg.
921       SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl,
922                                       Node->getValueType(0),
923                                       Chain, Ptr, SrcVT,
924                                       LD->getMemOperand());
925       SDValue ValRes;
926       if (ExtType == ISD::SEXTLOAD)
927         ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
928                              Result.getValueType(),
929                              Result, DAG.getValueType(SrcVT));
930       else
931         ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
932       Value = ValRes;
933       Chain = Result.getValue(1);
934       break;
935     }
936     }
937   }
938 
939   // Since loads produce two values, make sure to remember that we legalized
940   // both of them.
941   if (Chain.getNode() != Node) {
942     assert(Value.getNode() != Node && "Load must be completely replaced");
943     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
944     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
945     if (UpdatedNodes) {
946       UpdatedNodes->insert(Value.getNode());
947       UpdatedNodes->insert(Chain.getNode());
948     }
949     ReplacedNode(Node);
950   }
951 }
952 
953 /// Return a legal replacement for the given operation, with all legal operands.
954 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
955   LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG));
956 
957   // Allow illegal target nodes and illegal registers.
958   if (Node->getOpcode() == ISD::TargetConstant ||
959       Node->getOpcode() == ISD::Register)
960     return;
961 
962 #ifndef NDEBUG
963   for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
964     assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
965              TargetLowering::TypeLegal &&
966            "Unexpected illegal type!");
967 
968   for (const SDValue &Op : Node->op_values())
969     assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) ==
970               TargetLowering::TypeLegal ||
971             Op.getOpcode() == ISD::TargetConstant ||
972             Op.getOpcode() == ISD::Register) &&
973             "Unexpected illegal type!");
974 #endif
975 
976   // Figure out the correct action; the way to query this varies by opcode
977   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
978   bool SimpleFinishLegalizing = true;
979   switch (Node->getOpcode()) {
980   case ISD::INTRINSIC_W_CHAIN:
981   case ISD::INTRINSIC_WO_CHAIN:
982   case ISD::INTRINSIC_VOID:
983   case ISD::STACKSAVE:
984     Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
985     break;
986   case ISD::GET_DYNAMIC_AREA_OFFSET:
987     Action = TLI.getOperationAction(Node->getOpcode(),
988                                     Node->getValueType(0));
989     break;
990   case ISD::VAARG:
991     Action = TLI.getOperationAction(Node->getOpcode(),
992                                     Node->getValueType(0));
993     if (Action != TargetLowering::Promote)
994       Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
995     break;
996   case ISD::FP_TO_FP16:
997   case ISD::SINT_TO_FP:
998   case ISD::UINT_TO_FP:
999   case ISD::EXTRACT_VECTOR_ELT:
1000   case ISD::LROUND:
1001   case ISD::LLROUND:
1002   case ISD::LRINT:
1003   case ISD::LLRINT:
1004     Action = TLI.getOperationAction(Node->getOpcode(),
1005                                     Node->getOperand(0).getValueType());
1006     break;
1007   case ISD::STRICT_FP_TO_FP16:
1008   case ISD::STRICT_SINT_TO_FP:
1009   case ISD::STRICT_UINT_TO_FP:
1010   case ISD::STRICT_LRINT:
1011   case ISD::STRICT_LLRINT:
1012   case ISD::STRICT_LROUND:
1013   case ISD::STRICT_LLROUND:
1014     // These pseudo-ops are the same as the other STRICT_ ops except
1015     // they are registered with setOperationAction() using the input type
1016     // instead of the output type.
1017     Action = TLI.getOperationAction(Node->getOpcode(),
1018                                     Node->getOperand(1).getValueType());
1019     break;
1020   case ISD::SIGN_EXTEND_INREG: {
1021     EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
1022     Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
1023     break;
1024   }
1025   case ISD::ATOMIC_STORE:
1026     Action = TLI.getOperationAction(Node->getOpcode(),
1027                                     Node->getOperand(2).getValueType());
1028     break;
1029   case ISD::SELECT_CC:
1030   case ISD::STRICT_FSETCC:
1031   case ISD::STRICT_FSETCCS:
1032   case ISD::SETCC:
1033   case ISD::BR_CC: {
1034     unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
1035                          Node->getOpcode() == ISD::STRICT_FSETCC ? 3 :
1036                          Node->getOpcode() == ISD::STRICT_FSETCCS ? 3 :
1037                          Node->getOpcode() == ISD::SETCC ? 2 : 1;
1038     unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 :
1039                               Node->getOpcode() == ISD::STRICT_FSETCC ? 1 :
1040                               Node->getOpcode() == ISD::STRICT_FSETCCS ? 1 : 0;
1041     MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
1042     ISD::CondCode CCCode =
1043         cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
1044     Action = TLI.getCondCodeAction(CCCode, OpVT);
1045     if (Action == TargetLowering::Legal) {
1046       if (Node->getOpcode() == ISD::SELECT_CC)
1047         Action = TLI.getOperationAction(Node->getOpcode(),
1048                                         Node->getValueType(0));
1049       else
1050         Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
1051     }
1052     break;
1053   }
1054   case ISD::LOAD:
1055   case ISD::STORE:
1056     // FIXME: Model these properly.  LOAD and STORE are complicated, and
1057     // STORE expects the unlegalized operand in some cases.
1058     SimpleFinishLegalizing = false;
1059     break;
1060   case ISD::CALLSEQ_START:
1061   case ISD::CALLSEQ_END:
1062     // FIXME: This shouldn't be necessary.  These nodes have special properties
1063     // dealing with the recursive nature of legalization.  Removing this
1064     // special case should be done as part of making LegalizeDAG non-recursive.
1065     SimpleFinishLegalizing = false;
1066     break;
1067   case ISD::EXTRACT_ELEMENT:
1068   case ISD::FLT_ROUNDS_:
1069   case ISD::MERGE_VALUES:
1070   case ISD::EH_RETURN:
1071   case ISD::FRAME_TO_ARGS_OFFSET:
1072   case ISD::EH_DWARF_CFA:
1073   case ISD::EH_SJLJ_SETJMP:
1074   case ISD::EH_SJLJ_LONGJMP:
1075   case ISD::EH_SJLJ_SETUP_DISPATCH:
1076     // These operations lie about being legal: when they claim to be legal,
1077     // they should actually be expanded.
1078     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1079     if (Action == TargetLowering::Legal)
1080       Action = TargetLowering::Expand;
1081     break;
1082   case ISD::INIT_TRAMPOLINE:
1083   case ISD::ADJUST_TRAMPOLINE:
1084   case ISD::FRAMEADDR:
1085   case ISD::RETURNADDR:
1086   case ISD::ADDROFRETURNADDR:
1087   case ISD::SPONENTRY:
1088     // These operations lie about being legal: when they claim to be legal,
1089     // they should actually be custom-lowered.
1090     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1091     if (Action == TargetLowering::Legal)
1092       Action = TargetLowering::Custom;
1093     break;
1094   case ISD::READCYCLECOUNTER:
1095     // READCYCLECOUNTER returns an i64, even if type legalization might have
1096     // expanded that to several smaller types.
1097     Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64);
1098     break;
1099   case ISD::READ_REGISTER:
1100   case ISD::WRITE_REGISTER:
1101     // Named register is legal in the DAG, but blocked by register name
1102     // selection if not implemented by target (to chose the correct register)
1103     // They'll be converted to Copy(To/From)Reg.
1104     Action = TargetLowering::Legal;
1105     break;
1106   case ISD::DEBUGTRAP:
1107     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1108     if (Action == TargetLowering::Expand) {
1109       // replace ISD::DEBUGTRAP with ISD::TRAP
1110       SDValue NewVal;
1111       NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
1112                            Node->getOperand(0));
1113       ReplaceNode(Node, NewVal.getNode());
1114       LegalizeOp(NewVal.getNode());
1115       return;
1116     }
1117     break;
1118   case ISD::SADDSAT:
1119   case ISD::UADDSAT:
1120   case ISD::SSUBSAT:
1121   case ISD::USUBSAT: {
1122     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1123     break;
1124   }
1125   case ISD::SMULFIX:
1126   case ISD::SMULFIXSAT:
1127   case ISD::UMULFIX:
1128   case ISD::UMULFIXSAT:
1129   case ISD::SDIVFIX:
1130   case ISD::SDIVFIXSAT:
1131   case ISD::UDIVFIX:
1132   case ISD::UDIVFIXSAT: {
1133     unsigned Scale = Node->getConstantOperandVal(2);
1134     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
1135                                               Node->getValueType(0), Scale);
1136     break;
1137   }
1138   case ISD::MSCATTER:
1139     Action = TLI.getOperationAction(Node->getOpcode(),
1140                     cast<MaskedScatterSDNode>(Node)->getValue().getValueType());
1141     break;
1142   case ISD::MSTORE:
1143     Action = TLI.getOperationAction(Node->getOpcode(),
1144                     cast<MaskedStoreSDNode>(Node)->getValue().getValueType());
1145     break;
1146   case ISD::VECREDUCE_FADD:
1147   case ISD::VECREDUCE_FMUL:
1148   case ISD::VECREDUCE_ADD:
1149   case ISD::VECREDUCE_MUL:
1150   case ISD::VECREDUCE_AND:
1151   case ISD::VECREDUCE_OR:
1152   case ISD::VECREDUCE_XOR:
1153   case ISD::VECREDUCE_SMAX:
1154   case ISD::VECREDUCE_SMIN:
1155   case ISD::VECREDUCE_UMAX:
1156   case ISD::VECREDUCE_UMIN:
1157   case ISD::VECREDUCE_FMAX:
1158   case ISD::VECREDUCE_FMIN:
1159     Action = TLI.getOperationAction(
1160         Node->getOpcode(), Node->getOperand(0).getValueType());
1161     break;
1162   default:
1163     if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1164       Action = TargetLowering::Legal;
1165     } else {
1166       Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1167     }
1168     break;
1169   }
1170 
1171   if (SimpleFinishLegalizing) {
1172     SDNode *NewNode = Node;
1173     switch (Node->getOpcode()) {
1174     default: break;
1175     case ISD::SHL:
1176     case ISD::SRL:
1177     case ISD::SRA:
1178     case ISD::ROTL:
1179     case ISD::ROTR: {
1180       // Legalizing shifts/rotates requires adjusting the shift amount
1181       // to the appropriate width.
1182       SDValue Op0 = Node->getOperand(0);
1183       SDValue Op1 = Node->getOperand(1);
1184       if (!Op1.getValueType().isVector()) {
1185         SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1);
1186         // The getShiftAmountOperand() may create a new operand node or
1187         // return the existing one. If new operand is created we need
1188         // to update the parent node.
1189         // Do not try to legalize SAO here! It will be automatically legalized
1190         // in the next round.
1191         if (SAO != Op1)
1192           NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO);
1193       }
1194     }
1195     break;
1196     case ISD::FSHL:
1197     case ISD::FSHR:
1198     case ISD::SRL_PARTS:
1199     case ISD::SRA_PARTS:
1200     case ISD::SHL_PARTS: {
1201       // Legalizing shifts/rotates requires adjusting the shift amount
1202       // to the appropriate width.
1203       SDValue Op0 = Node->getOperand(0);
1204       SDValue Op1 = Node->getOperand(1);
1205       SDValue Op2 = Node->getOperand(2);
1206       if (!Op2.getValueType().isVector()) {
1207         SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2);
1208         // The getShiftAmountOperand() may create a new operand node or
1209         // return the existing one. If new operand is created we need
1210         // to update the parent node.
1211         if (SAO != Op2)
1212           NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO);
1213       }
1214       break;
1215     }
1216     }
1217 
1218     if (NewNode != Node) {
1219       ReplaceNode(Node, NewNode);
1220       Node = NewNode;
1221     }
1222     switch (Action) {
1223     case TargetLowering::Legal:
1224       LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
1225       return;
1226     case TargetLowering::Custom:
1227       LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
1228       // FIXME: The handling for custom lowering with multiple results is
1229       // a complete mess.
1230       if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
1231         if (!(Res.getNode() != Node || Res.getResNo() != 0))
1232           return;
1233 
1234         if (Node->getNumValues() == 1) {
1235           LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1236           // We can just directly replace this node with the lowered value.
1237           ReplaceNode(SDValue(Node, 0), Res);
1238           return;
1239         }
1240 
1241         SmallVector<SDValue, 8> ResultVals;
1242         for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1243           ResultVals.push_back(Res.getValue(i));
1244         LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1245         ReplaceNode(Node, ResultVals.data());
1246         return;
1247       }
1248       LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
1249       LLVM_FALLTHROUGH;
1250     case TargetLowering::Expand:
1251       if (ExpandNode(Node))
1252         return;
1253       LLVM_FALLTHROUGH;
1254     case TargetLowering::LibCall:
1255       ConvertNodeToLibcall(Node);
1256       return;
1257     case TargetLowering::Promote:
1258       PromoteNode(Node);
1259       return;
1260     }
1261   }
1262 
1263   switch (Node->getOpcode()) {
1264   default:
1265 #ifndef NDEBUG
1266     dbgs() << "NODE: ";
1267     Node->dump( &DAG);
1268     dbgs() << "\n";
1269 #endif
1270     llvm_unreachable("Do not know how to legalize this operator!");
1271 
1272   case ISD::CALLSEQ_START:
1273   case ISD::CALLSEQ_END:
1274     break;
1275   case ISD::LOAD:
1276     return LegalizeLoadOps(Node);
1277   case ISD::STORE:
1278     return LegalizeStoreOps(Node);
1279   }
1280 }
1281 
1282 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1283   SDValue Vec = Op.getOperand(0);
1284   SDValue Idx = Op.getOperand(1);
1285   SDLoc dl(Op);
1286 
1287   // Before we generate a new store to a temporary stack slot, see if there is
1288   // already one that we can use. There often is because when we scalarize
1289   // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole
1290   // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in
1291   // the vector. If all are expanded here, we don't want one store per vector
1292   // element.
1293 
1294   // Caches for hasPredecessorHelper
1295   SmallPtrSet<const SDNode *, 32> Visited;
1296   SmallVector<const SDNode *, 16> Worklist;
1297   Visited.insert(Op.getNode());
1298   Worklist.push_back(Idx.getNode());
1299   SDValue StackPtr, Ch;
1300   for (SDNode::use_iterator UI = Vec.getNode()->use_begin(),
1301        UE = Vec.getNode()->use_end(); UI != UE; ++UI) {
1302     SDNode *User = *UI;
1303     if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) {
1304       if (ST->isIndexed() || ST->isTruncatingStore() ||
1305           ST->getValue() != Vec)
1306         continue;
1307 
1308       // Make sure that nothing else could have stored into the destination of
1309       // this store.
1310       if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode()))
1311         continue;
1312 
1313       // If the index is dependent on the store we will introduce a cycle when
1314       // creating the load (the load uses the index, and by replacing the chain
1315       // we will make the index dependent on the load). Also, the store might be
1316       // dependent on the extractelement and introduce a cycle when creating
1317       // the load.
1318       if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) ||
1319           ST->hasPredecessor(Op.getNode()))
1320         continue;
1321 
1322       StackPtr = ST->getBasePtr();
1323       Ch = SDValue(ST, 0);
1324       break;
1325     }
1326   }
1327 
1328   EVT VecVT = Vec.getValueType();
1329 
1330   if (!Ch.getNode()) {
1331     // Store the value to a temporary stack slot, then LOAD the returned part.
1332     StackPtr = DAG.CreateStackTemporary(VecVT);
1333     Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1334                       MachinePointerInfo());
1335   }
1336 
1337   StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1338 
1339   SDValue NewLoad;
1340 
1341   if (Op.getValueType().isVector())
1342     NewLoad =
1343         DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo());
1344   else
1345     NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1346                              MachinePointerInfo(),
1347                              VecVT.getVectorElementType());
1348 
1349   // Replace the chain going out of the store, by the one out of the load.
1350   DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1));
1351 
1352   // We introduced a cycle though, so update the loads operands, making sure
1353   // to use the original store's chain as an incoming chain.
1354   SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(),
1355                                           NewLoad->op_end());
1356   NewLoadOperands[0] = Ch;
1357   NewLoad =
1358       SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0);
1359   return NewLoad;
1360 }
1361 
1362 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1363   assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1364 
1365   SDValue Vec  = Op.getOperand(0);
1366   SDValue Part = Op.getOperand(1);
1367   SDValue Idx  = Op.getOperand(2);
1368   SDLoc dl(Op);
1369 
1370   // Store the value to a temporary stack slot, then LOAD the returned part.
1371   EVT VecVT = Vec.getValueType();
1372   SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
1373   int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1374   MachinePointerInfo PtrInfo =
1375       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1376 
1377   // First store the whole vector.
1378   SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo);
1379 
1380   // Then store the inserted part.
1381   SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1382 
1383   // Store the subvector.
1384   Ch = DAG.getStore(
1385       Ch, dl, Part, SubStackPtr,
1386       MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1387 
1388   // Finally, load the updated vector.
1389   return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo);
1390 }
1391 
1392 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1393   // We can't handle this case efficiently.  Allocate a sufficiently
1394   // aligned object on the stack, store each element into it, then load
1395   // the result as a vector.
1396   // Create the stack frame object.
1397   EVT VT = Node->getValueType(0);
1398   EVT EltVT = VT.getVectorElementType();
1399   SDLoc dl(Node);
1400   SDValue FIPtr = DAG.CreateStackTemporary(VT);
1401   int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1402   MachinePointerInfo PtrInfo =
1403       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1404 
1405   // Emit a store of each element to the stack slot.
1406   SmallVector<SDValue, 8> Stores;
1407   unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1408   assert(TypeByteSize > 0 && "Vector element type too small for stack store!");
1409   // Store (in the right endianness) the elements to memory.
1410   for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1411     // Ignore undef elements.
1412     if (Node->getOperand(i).isUndef()) continue;
1413 
1414     unsigned Offset = TypeByteSize*i;
1415 
1416     SDValue Idx = DAG.getMemBasePlusOffset(FIPtr, Offset, dl);
1417 
1418     // If the destination vector element type is narrower than the source
1419     // element type, only store the bits necessary.
1420     if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1421       Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1422                                          Node->getOperand(i), Idx,
1423                                          PtrInfo.getWithOffset(Offset), EltVT));
1424     } else
1425       Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1426                                     Idx, PtrInfo.getWithOffset(Offset)));
1427   }
1428 
1429   SDValue StoreChain;
1430   if (!Stores.empty())    // Not all undef elements?
1431     StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
1432   else
1433     StoreChain = DAG.getEntryNode();
1434 
1435   // Result is a load from the stack slot.
1436   return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo);
1437 }
1438 
1439 /// Bitcast a floating-point value to an integer value. Only bitcast the part
1440 /// containing the sign bit if the target has no integer value capable of
1441 /// holding all bits of the floating-point value.
1442 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State,
1443                                              const SDLoc &DL,
1444                                              SDValue Value) const {
1445   EVT FloatVT = Value.getValueType();
1446   unsigned NumBits = FloatVT.getSizeInBits();
1447   State.FloatVT = FloatVT;
1448   EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
1449   // Convert to an integer of the same size.
1450   if (TLI.isTypeLegal(IVT)) {
1451     State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value);
1452     State.SignMask = APInt::getSignMask(NumBits);
1453     State.SignBit = NumBits - 1;
1454     return;
1455   }
1456 
1457   auto &DataLayout = DAG.getDataLayout();
1458   // Store the float to memory, then load the sign part out as an integer.
1459   MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8);
1460   // First create a temporary that is aligned for both the load and store.
1461   SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1462   int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1463   // Then store the float to it.
1464   State.FloatPtr = StackPtr;
1465   MachineFunction &MF = DAG.getMachineFunction();
1466   State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI);
1467   State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr,
1468                              State.FloatPointerInfo);
1469 
1470   SDValue IntPtr;
1471   if (DataLayout.isBigEndian()) {
1472     assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1473     // Load out a legal integer with the same sign bit as the float.
1474     IntPtr = StackPtr;
1475     State.IntPointerInfo = State.FloatPointerInfo;
1476   } else {
1477     // Advance the pointer so that the loaded byte will contain the sign bit.
1478     unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1;
1479     IntPtr = DAG.getMemBasePlusOffset(StackPtr, ByteOffset, DL);
1480     State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI,
1481                                                              ByteOffset);
1482   }
1483 
1484   State.IntPtr = IntPtr;
1485   State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr,
1486                                   State.IntPointerInfo, MVT::i8);
1487   State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7);
1488   State.SignBit = 7;
1489 }
1490 
1491 /// Replace the integer value produced by getSignAsIntValue() with a new value
1492 /// and cast the result back to a floating-point type.
1493 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State,
1494                                               const SDLoc &DL,
1495                                               SDValue NewIntValue) const {
1496   if (!State.Chain)
1497     return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue);
1498 
1499   // Override the part containing the sign bit in the value stored on the stack.
1500   SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr,
1501                                     State.IntPointerInfo, MVT::i8);
1502   return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr,
1503                      State.FloatPointerInfo);
1504 }
1505 
1506 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const {
1507   SDLoc DL(Node);
1508   SDValue Mag = Node->getOperand(0);
1509   SDValue Sign = Node->getOperand(1);
1510 
1511   // Get sign bit into an integer value.
1512   FloatSignAsInt SignAsInt;
1513   getSignAsIntValue(SignAsInt, DL, Sign);
1514 
1515   EVT IntVT = SignAsInt.IntValue.getValueType();
1516   SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT);
1517   SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue,
1518                                 SignMask);
1519 
1520   // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X)
1521   EVT FloatVT = Mag.getValueType();
1522   if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) &&
1523       TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) {
1524     SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag);
1525     SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue);
1526     SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit,
1527                                 DAG.getConstant(0, DL, IntVT), ISD::SETNE);
1528     return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue);
1529   }
1530 
1531   // Transform Mag value to integer, and clear the sign bit.
1532   FloatSignAsInt MagAsInt;
1533   getSignAsIntValue(MagAsInt, DL, Mag);
1534   EVT MagVT = MagAsInt.IntValue.getValueType();
1535   SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT);
1536   SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue,
1537                                     ClearSignMask);
1538 
1539   // Get the signbit at the right position for MagAsInt.
1540   int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit;
1541   EVT ShiftVT = IntVT;
1542   if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) {
1543     SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit);
1544     ShiftVT = MagVT;
1545   }
1546   if (ShiftAmount > 0) {
1547     SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT);
1548     SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst);
1549   } else if (ShiftAmount < 0) {
1550     SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT);
1551     SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst);
1552   }
1553   if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) {
1554     SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit);
1555   }
1556 
1557   // Store the part with the modified sign and convert back to float.
1558   SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit);
1559   return modifySignAsInt(MagAsInt, DL, CopiedSign);
1560 }
1561 
1562 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const {
1563   SDLoc DL(Node);
1564   SDValue Value = Node->getOperand(0);
1565 
1566   // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal.
1567   EVT FloatVT = Value.getValueType();
1568   if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) {
1569     SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT);
1570     return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero);
1571   }
1572 
1573   // Transform value to integer, clear the sign bit and transform back.
1574   FloatSignAsInt ValueAsInt;
1575   getSignAsIntValue(ValueAsInt, DL, Value);
1576   EVT IntVT = ValueAsInt.IntValue.getValueType();
1577   SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT);
1578   SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue,
1579                                     ClearSignMask);
1580   return modifySignAsInt(ValueAsInt, DL, ClearedSign);
1581 }
1582 
1583 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1584                                            SmallVectorImpl<SDValue> &Results) {
1585   unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1586   assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1587           " not tell us which reg is the stack pointer!");
1588   SDLoc dl(Node);
1589   EVT VT = Node->getValueType(0);
1590   SDValue Tmp1 = SDValue(Node, 0);
1591   SDValue Tmp2 = SDValue(Node, 1);
1592   SDValue Tmp3 = Node->getOperand(2);
1593   SDValue Chain = Tmp1.getOperand(0);
1594 
1595   // Chain the dynamic stack allocation so that it doesn't modify the stack
1596   // pointer when other instructions are using the stack.
1597   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
1598 
1599   SDValue Size  = Tmp2.getOperand(1);
1600   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1601   Chain = SP.getValue(1);
1602   unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1603   const TargetFrameLowering *TFL = DAG.getSubtarget().getFrameLowering();
1604   unsigned Opc =
1605     TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
1606     ISD::ADD : ISD::SUB;
1607 
1608   unsigned StackAlign = TFL->getStackAlignment();
1609   Tmp1 = DAG.getNode(Opc, dl, VT, SP, Size);       // Value
1610   if (Align > StackAlign)
1611     Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
1612                        DAG.getConstant(-(uint64_t)Align, dl, VT));
1613   Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1614 
1615   Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
1616                             DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
1617 
1618   Results.push_back(Tmp1);
1619   Results.push_back(Tmp2);
1620 }
1621 
1622 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current
1623 /// target.
1624 ///
1625 /// If the SETCC has been legalized using AND / OR, then the legalized node
1626 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
1627 /// will be set to false.
1628 ///
1629 /// If the SETCC has been legalized by using getSetCCSwappedOperands(),
1630 /// then the values of LHS and RHS will be swapped, CC will be set to the
1631 /// new condition, and NeedInvert will be set to false.
1632 ///
1633 /// If the SETCC has been legalized using the inverse condcode, then LHS and
1634 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert
1635 /// will be set to true. The caller must invert the result of the SETCC with
1636 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect
1637 /// of a true/false result.
1638 ///
1639 /// \returns true if the SetCC has been legalized, false if it hasn't.
1640 bool SelectionDAGLegalize::LegalizeSetCCCondCode(
1641     EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, bool &NeedInvert,
1642     const SDLoc &dl, SDValue &Chain, bool IsSignaling) {
1643   MVT OpVT = LHS.getSimpleValueType();
1644   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1645   NeedInvert = false;
1646   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1647   default: llvm_unreachable("Unknown condition code action!");
1648   case TargetLowering::Legal:
1649     // Nothing to do.
1650     break;
1651   case TargetLowering::Expand: {
1652     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
1653     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1654       std::swap(LHS, RHS);
1655       CC = DAG.getCondCode(InvCC);
1656       return true;
1657     }
1658     // Swapping operands didn't work. Try inverting the condition.
1659     bool NeedSwap = false;
1660     InvCC = getSetCCInverse(CCCode, OpVT);
1661     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1662       // If inverting the condition is not enough, try swapping operands
1663       // on top of it.
1664       InvCC = ISD::getSetCCSwappedOperands(InvCC);
1665       NeedSwap = true;
1666     }
1667     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1668       CC = DAG.getCondCode(InvCC);
1669       NeedInvert = true;
1670       if (NeedSwap)
1671         std::swap(LHS, RHS);
1672       return true;
1673     }
1674 
1675     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1676     unsigned Opc = 0;
1677     switch (CCCode) {
1678     default: llvm_unreachable("Don't know how to expand this condition!");
1679     case ISD::SETO:
1680         assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT)
1681             && "If SETO is expanded, SETOEQ must be legal!");
1682         CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
1683     case ISD::SETUO:
1684         assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT)
1685             && "If SETUO is expanded, SETUNE must be legal!");
1686         CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR;  break;
1687     case ISD::SETOEQ:
1688     case ISD::SETOGT:
1689     case ISD::SETOGE:
1690     case ISD::SETOLT:
1691     case ISD::SETOLE:
1692     case ISD::SETONE:
1693     case ISD::SETUEQ:
1694     case ISD::SETUNE:
1695     case ISD::SETUGT:
1696     case ISD::SETUGE:
1697     case ISD::SETULT:
1698     case ISD::SETULE:
1699         // If we are floating point, assign and break, otherwise fall through.
1700         if (!OpVT.isInteger()) {
1701           // We can use the 4th bit to tell if we are the unordered
1702           // or ordered version of the opcode.
1703           CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
1704           Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
1705           CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
1706           break;
1707         }
1708         // Fallthrough if we are unsigned integer.
1709         LLVM_FALLTHROUGH;
1710     case ISD::SETLE:
1711     case ISD::SETGT:
1712     case ISD::SETGE:
1713     case ISD::SETLT:
1714     case ISD::SETNE:
1715     case ISD::SETEQ:
1716       // If all combinations of inverting the condition and swapping operands
1717       // didn't work then we have no means to expand the condition.
1718       llvm_unreachable("Don't know how to expand this condition!");
1719     }
1720 
1721     SDValue SetCC1, SetCC2;
1722     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
1723       // If we aren't the ordered or unorder operation,
1724       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
1725       SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
1726       SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
1727     } else {
1728       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
1729       SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
1730       SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
1731     }
1732     if (Chain)
1733       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
1734                           SetCC2.getValue(1));
1735     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1736     RHS = SDValue();
1737     CC  = SDValue();
1738     return true;
1739   }
1740   }
1741   return false;
1742 }
1743 
1744 /// Emit a store/load combination to the stack.  This stores
1745 /// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1746 /// a load from the stack slot to DestVT, extending it if needed.
1747 /// The resultant code need not be legal.
1748 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1749                                                EVT DestVT, const SDLoc &dl) {
1750   return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode());
1751 }
1752 
1753 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1754                                                EVT DestVT, const SDLoc &dl,
1755                                                SDValue Chain) {
1756   // Create the stack frame object.
1757   unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment(
1758       SrcOp.getValueType().getTypeForEVT(*DAG.getContext()));
1759   SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1760 
1761   FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1762   int SPFI = StackPtrFI->getIndex();
1763   MachinePointerInfo PtrInfo =
1764       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
1765 
1766   unsigned SrcSize = SrcOp.getValueSizeInBits();
1767   unsigned SlotSize = SlotVT.getSizeInBits();
1768   unsigned DestSize = DestVT.getSizeInBits();
1769   Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1770   unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType);
1771 
1772   // Emit a store to the stack slot.  Use a truncstore if the input value is
1773   // later than DestVT.
1774   SDValue Store;
1775 
1776   if (SrcSize > SlotSize)
1777     Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo,
1778                               SlotVT, SrcAlign);
1779   else {
1780     assert(SrcSize == SlotSize && "Invalid store");
1781     Store =
1782         DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign);
1783   }
1784 
1785   // Result is a load from the stack slot.
1786   if (SlotSize == DestSize)
1787     return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign);
1788 
1789   assert(SlotSize < DestSize && "Unknown extension!");
1790   return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT,
1791                         DestAlign);
1792 }
1793 
1794 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1795   SDLoc dl(Node);
1796   // Create a vector sized/aligned stack slot, store the value to element #0,
1797   // then load the whole vector back out.
1798   SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1799 
1800   FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1801   int SPFI = StackPtrFI->getIndex();
1802 
1803   SDValue Ch = DAG.getTruncStore(
1804       DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr,
1805       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI),
1806       Node->getValueType(0).getVectorElementType());
1807   return DAG.getLoad(
1808       Node->getValueType(0), dl, Ch, StackPtr,
1809       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
1810 }
1811 
1812 static bool
1813 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG,
1814                      const TargetLowering &TLI, SDValue &Res) {
1815   unsigned NumElems = Node->getNumOperands();
1816   SDLoc dl(Node);
1817   EVT VT = Node->getValueType(0);
1818 
1819   // Try to group the scalars into pairs, shuffle the pairs together, then
1820   // shuffle the pairs of pairs together, etc. until the vector has
1821   // been built. This will work only if all of the necessary shuffle masks
1822   // are legal.
1823 
1824   // We do this in two phases; first to check the legality of the shuffles,
1825   // and next, assuming that all shuffles are legal, to create the new nodes.
1826   for (int Phase = 0; Phase < 2; ++Phase) {
1827     SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals,
1828                                                               NewIntermedVals;
1829     for (unsigned i = 0; i < NumElems; ++i) {
1830       SDValue V = Node->getOperand(i);
1831       if (V.isUndef())
1832         continue;
1833 
1834       SDValue Vec;
1835       if (Phase)
1836         Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V);
1837       IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i)));
1838     }
1839 
1840     while (IntermedVals.size() > 2) {
1841       NewIntermedVals.clear();
1842       for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) {
1843         // This vector and the next vector are shuffled together (simply to
1844         // append the one to the other).
1845         SmallVector<int, 16> ShuffleVec(NumElems, -1);
1846 
1847         SmallVector<int, 16> FinalIndices;
1848         FinalIndices.reserve(IntermedVals[i].second.size() +
1849                              IntermedVals[i+1].second.size());
1850 
1851         int k = 0;
1852         for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f;
1853              ++j, ++k) {
1854           ShuffleVec[k] = j;
1855           FinalIndices.push_back(IntermedVals[i].second[j]);
1856         }
1857         for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f;
1858              ++j, ++k) {
1859           ShuffleVec[k] = NumElems + j;
1860           FinalIndices.push_back(IntermedVals[i+1].second[j]);
1861         }
1862 
1863         SDValue Shuffle;
1864         if (Phase)
1865           Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first,
1866                                          IntermedVals[i+1].first,
1867                                          ShuffleVec);
1868         else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1869           return false;
1870         NewIntermedVals.push_back(
1871             std::make_pair(Shuffle, std::move(FinalIndices)));
1872       }
1873 
1874       // If we had an odd number of defined values, then append the last
1875       // element to the array of new vectors.
1876       if ((IntermedVals.size() & 1) != 0)
1877         NewIntermedVals.push_back(IntermedVals.back());
1878 
1879       IntermedVals.swap(NewIntermedVals);
1880     }
1881 
1882     assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 &&
1883            "Invalid number of intermediate vectors");
1884     SDValue Vec1 = IntermedVals[0].first;
1885     SDValue Vec2;
1886     if (IntermedVals.size() > 1)
1887       Vec2 = IntermedVals[1].first;
1888     else if (Phase)
1889       Vec2 = DAG.getUNDEF(VT);
1890 
1891     SmallVector<int, 16> ShuffleVec(NumElems, -1);
1892     for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i)
1893       ShuffleVec[IntermedVals[0].second[i]] = i;
1894     for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i)
1895       ShuffleVec[IntermedVals[1].second[i]] = NumElems + i;
1896 
1897     if (Phase)
1898       Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
1899     else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1900       return false;
1901   }
1902 
1903   return true;
1904 }
1905 
1906 /// Expand a BUILD_VECTOR node on targets that don't
1907 /// support the operation, but do support the resultant vector type.
1908 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1909   unsigned NumElems = Node->getNumOperands();
1910   SDValue Value1, Value2;
1911   SDLoc dl(Node);
1912   EVT VT = Node->getValueType(0);
1913   EVT OpVT = Node->getOperand(0).getValueType();
1914   EVT EltVT = VT.getVectorElementType();
1915 
1916   // If the only non-undef value is the low element, turn this into a
1917   // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1918   bool isOnlyLowElement = true;
1919   bool MoreThanTwoValues = false;
1920   bool isConstant = true;
1921   for (unsigned i = 0; i < NumElems; ++i) {
1922     SDValue V = Node->getOperand(i);
1923     if (V.isUndef())
1924       continue;
1925     if (i > 0)
1926       isOnlyLowElement = false;
1927     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1928       isConstant = false;
1929 
1930     if (!Value1.getNode()) {
1931       Value1 = V;
1932     } else if (!Value2.getNode()) {
1933       if (V != Value1)
1934         Value2 = V;
1935     } else if (V != Value1 && V != Value2) {
1936       MoreThanTwoValues = true;
1937     }
1938   }
1939 
1940   if (!Value1.getNode())
1941     return DAG.getUNDEF(VT);
1942 
1943   if (isOnlyLowElement)
1944     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1945 
1946   // If all elements are constants, create a load from the constant pool.
1947   if (isConstant) {
1948     SmallVector<Constant*, 16> CV;
1949     for (unsigned i = 0, e = NumElems; i != e; ++i) {
1950       if (ConstantFPSDNode *V =
1951           dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1952         CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1953       } else if (ConstantSDNode *V =
1954                  dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1955         if (OpVT==EltVT)
1956           CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1957         else {
1958           // If OpVT and EltVT don't match, EltVT is not legal and the
1959           // element values have been promoted/truncated earlier.  Undo this;
1960           // we don't want a v16i8 to become a v16i32 for example.
1961           const ConstantInt *CI = V->getConstantIntValue();
1962           CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1963                                         CI->getZExtValue()));
1964         }
1965       } else {
1966         assert(Node->getOperand(i).isUndef());
1967         Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1968         CV.push_back(UndefValue::get(OpNTy));
1969       }
1970     }
1971     Constant *CP = ConstantVector::get(CV);
1972     SDValue CPIdx =
1973         DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout()));
1974     Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
1975     return DAG.getLoad(
1976         VT, dl, DAG.getEntryNode(), CPIdx,
1977         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
1978         Alignment);
1979   }
1980 
1981   SmallSet<SDValue, 16> DefinedValues;
1982   for (unsigned i = 0; i < NumElems; ++i) {
1983     if (Node->getOperand(i).isUndef())
1984       continue;
1985     DefinedValues.insert(Node->getOperand(i));
1986   }
1987 
1988   if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) {
1989     if (!MoreThanTwoValues) {
1990       SmallVector<int, 8> ShuffleVec(NumElems, -1);
1991       for (unsigned i = 0; i < NumElems; ++i) {
1992         SDValue V = Node->getOperand(i);
1993         if (V.isUndef())
1994           continue;
1995         ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1996       }
1997       if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1998         // Get the splatted value into the low element of a vector register.
1999         SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
2000         SDValue Vec2;
2001         if (Value2.getNode())
2002           Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
2003         else
2004           Vec2 = DAG.getUNDEF(VT);
2005 
2006         // Return shuffle(LowValVec, undef, <0,0,0,0>)
2007         return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
2008       }
2009     } else {
2010       SDValue Res;
2011       if (ExpandBVWithShuffles(Node, DAG, TLI, Res))
2012         return Res;
2013     }
2014   }
2015 
2016   // Otherwise, we can't handle this case efficiently.
2017   return ExpandVectorBuildThroughStack(Node);
2018 }
2019 
2020 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) {
2021   SDLoc DL(Node);
2022   EVT VT = Node->getValueType(0);
2023   SDValue SplatVal = Node->getOperand(0);
2024 
2025   return DAG.getSplatBuildVector(VT, DL, SplatVal);
2026 }
2027 
2028 // Expand a node into a call to a libcall.  If the result value
2029 // does not fit into a register, return the lo part and set the hi part to the
2030 // by-reg argument.  If it does fit into a single register, return the result
2031 // and leave the Hi part unset.
2032 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
2033                                             bool isSigned) {
2034   TargetLowering::ArgListTy Args;
2035   TargetLowering::ArgListEntry Entry;
2036   for (const SDValue &Op : Node->op_values()) {
2037     EVT ArgVT = Op.getValueType();
2038     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2039     Entry.Node = Op;
2040     Entry.Ty = ArgTy;
2041     Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
2042     Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
2043     Args.push_back(Entry);
2044   }
2045   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2046                                          TLI.getPointerTy(DAG.getDataLayout()));
2047 
2048   EVT RetVT = Node->getValueType(0);
2049   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2050 
2051   // By default, the input chain to this libcall is the entry node of the
2052   // function. If the libcall is going to be emitted as a tail call then
2053   // TLI.isUsedByReturnOnly will change it to the right chain if the return
2054   // node which is being folded has a non-entry input chain.
2055   SDValue InChain = DAG.getEntryNode();
2056 
2057   // isTailCall may be true since the callee does not reference caller stack
2058   // frame. Check if it's in the right position and that the return types match.
2059   SDValue TCChain = InChain;
2060   const Function &F = DAG.getMachineFunction().getFunction();
2061   bool isTailCall =
2062       TLI.isInTailCallPosition(DAG, Node, TCChain) &&
2063       (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy());
2064   if (isTailCall)
2065     InChain = TCChain;
2066 
2067   TargetLowering::CallLoweringInfo CLI(DAG);
2068   bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned);
2069   CLI.setDebugLoc(SDLoc(Node))
2070       .setChain(InChain)
2071       .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2072                     std::move(Args))
2073       .setTailCall(isTailCall)
2074       .setSExtResult(signExtend)
2075       .setZExtResult(!signExtend)
2076       .setIsPostTypeLegalization(true);
2077 
2078   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2079 
2080   if (!CallInfo.second.getNode()) {
2081     LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG));
2082     // It's a tailcall, return the chain (which is the DAG root).
2083     return DAG.getRoot();
2084   }
2085 
2086   LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG));
2087   return CallInfo.first;
2088 }
2089 
2090 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2091                                            RTLIB::Libcall Call_F32,
2092                                            RTLIB::Libcall Call_F64,
2093                                            RTLIB::Libcall Call_F80,
2094                                            RTLIB::Libcall Call_F128,
2095                                            RTLIB::Libcall Call_PPCF128,
2096                                            SmallVectorImpl<SDValue> &Results) {
2097   RTLIB::Libcall LC;
2098   switch (Node->getSimpleValueType(0).SimpleTy) {
2099   default: llvm_unreachable("Unexpected request for libcall!");
2100   case MVT::f32: LC = Call_F32; break;
2101   case MVT::f64: LC = Call_F64; break;
2102   case MVT::f80: LC = Call_F80; break;
2103   case MVT::f128: LC = Call_F128; break;
2104   case MVT::ppcf128: LC = Call_PPCF128; break;
2105   }
2106 
2107   if (Node->isStrictFPOpcode()) {
2108     EVT RetVT = Node->getValueType(0);
2109     SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end());
2110     TargetLowering::MakeLibCallOptions CallOptions;
2111     // FIXME: This doesn't support tail calls.
2112     std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
2113                                                       Ops, CallOptions,
2114                                                       SDLoc(Node),
2115                                                       Node->getOperand(0));
2116     Results.push_back(Tmp.first);
2117     Results.push_back(Tmp.second);
2118   } else {
2119     SDValue Tmp = ExpandLibCall(LC, Node, false);
2120     Results.push_back(Tmp);
2121   }
2122 }
2123 
2124 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2125                                                RTLIB::Libcall Call_I8,
2126                                                RTLIB::Libcall Call_I16,
2127                                                RTLIB::Libcall Call_I32,
2128                                                RTLIB::Libcall Call_I64,
2129                                                RTLIB::Libcall Call_I128) {
2130   RTLIB::Libcall LC;
2131   switch (Node->getSimpleValueType(0).SimpleTy) {
2132   default: llvm_unreachable("Unexpected request for libcall!");
2133   case MVT::i8:   LC = Call_I8; break;
2134   case MVT::i16:  LC = Call_I16; break;
2135   case MVT::i32:  LC = Call_I32; break;
2136   case MVT::i64:  LC = Call_I64; break;
2137   case MVT::i128: LC = Call_I128; break;
2138   }
2139   return ExpandLibCall(LC, Node, isSigned);
2140 }
2141 
2142 /// Expand the node to a libcall based on first argument type (for instance
2143 /// lround and its variant).
2144 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node,
2145                                             RTLIB::Libcall Call_F32,
2146                                             RTLIB::Libcall Call_F64,
2147                                             RTLIB::Libcall Call_F80,
2148                                             RTLIB::Libcall Call_F128,
2149                                             RTLIB::Libcall Call_PPCF128,
2150                                             SmallVectorImpl<SDValue> &Results) {
2151   EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType();
2152 
2153   RTLIB::Libcall LC;
2154   switch (InVT.getSimpleVT().SimpleTy) {
2155   default: llvm_unreachable("Unexpected request for libcall!");
2156   case MVT::f32:     LC = Call_F32; break;
2157   case MVT::f64:     LC = Call_F64; break;
2158   case MVT::f80:     LC = Call_F80; break;
2159   case MVT::f128:    LC = Call_F128; break;
2160   case MVT::ppcf128: LC = Call_PPCF128; break;
2161   }
2162 
2163   if (Node->isStrictFPOpcode()) {
2164     EVT RetVT = Node->getValueType(0);
2165     SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end());
2166     TargetLowering::MakeLibCallOptions CallOptions;
2167     // FIXME: This doesn't support tail calls.
2168     std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
2169                                                       Ops, CallOptions,
2170                                                       SDLoc(Node),
2171                                                       Node->getOperand(0));
2172     Results.push_back(Tmp.first);
2173     Results.push_back(Tmp.second);
2174   } else {
2175     SDValue Tmp = ExpandLibCall(LC, Node, false);
2176     Results.push_back(Tmp);
2177   }
2178 }
2179 
2180 /// Issue libcalls to __{u}divmod to compute div / rem pairs.
2181 void
2182 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2183                                           SmallVectorImpl<SDValue> &Results) {
2184   unsigned Opcode = Node->getOpcode();
2185   bool isSigned = Opcode == ISD::SDIVREM;
2186 
2187   RTLIB::Libcall LC;
2188   switch (Node->getSimpleValueType(0).SimpleTy) {
2189   default: llvm_unreachable("Unexpected request for libcall!");
2190   case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2191   case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2192   case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2193   case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2194   case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2195   }
2196 
2197   // The input chain to this libcall is the entry node of the function.
2198   // Legalizing the call will automatically add the previous call to the
2199   // dependence.
2200   SDValue InChain = DAG.getEntryNode();
2201 
2202   EVT RetVT = Node->getValueType(0);
2203   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2204 
2205   TargetLowering::ArgListTy Args;
2206   TargetLowering::ArgListEntry Entry;
2207   for (const SDValue &Op : Node->op_values()) {
2208     EVT ArgVT = Op.getValueType();
2209     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2210     Entry.Node = Op;
2211     Entry.Ty = ArgTy;
2212     Entry.IsSExt = isSigned;
2213     Entry.IsZExt = !isSigned;
2214     Args.push_back(Entry);
2215   }
2216 
2217   // Also pass the return address of the remainder.
2218   SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2219   Entry.Node = FIPtr;
2220   Entry.Ty = RetTy->getPointerTo();
2221   Entry.IsSExt = isSigned;
2222   Entry.IsZExt = !isSigned;
2223   Args.push_back(Entry);
2224 
2225   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2226                                          TLI.getPointerTy(DAG.getDataLayout()));
2227 
2228   SDLoc dl(Node);
2229   TargetLowering::CallLoweringInfo CLI(DAG);
2230   CLI.setDebugLoc(dl)
2231       .setChain(InChain)
2232       .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2233                     std::move(Args))
2234       .setSExtResult(isSigned)
2235       .setZExtResult(!isSigned);
2236 
2237   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2238 
2239   // Remainder is loaded back from the stack frame.
2240   SDValue Rem =
2241       DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo());
2242   Results.push_back(CallInfo.first);
2243   Results.push_back(Rem);
2244 }
2245 
2246 /// Return true if sincos libcall is available.
2247 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
2248   RTLIB::Libcall LC;
2249   switch (Node->getSimpleValueType(0).SimpleTy) {
2250   default: llvm_unreachable("Unexpected request for libcall!");
2251   case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
2252   case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
2253   case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
2254   case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
2255   case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2256   }
2257   return TLI.getLibcallName(LC) != nullptr;
2258 }
2259 
2260 /// Only issue sincos libcall if both sin and cos are needed.
2261 static bool useSinCos(SDNode *Node) {
2262   unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
2263     ? ISD::FCOS : ISD::FSIN;
2264 
2265   SDValue Op0 = Node->getOperand(0);
2266   for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2267        UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2268     SDNode *User = *UI;
2269     if (User == Node)
2270       continue;
2271     // The other user might have been turned into sincos already.
2272     if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
2273       return true;
2274   }
2275   return false;
2276 }
2277 
2278 /// Issue libcalls to sincos to compute sin / cos pairs.
2279 void
2280 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
2281                                           SmallVectorImpl<SDValue> &Results) {
2282   RTLIB::Libcall LC;
2283   switch (Node->getSimpleValueType(0).SimpleTy) {
2284   default: llvm_unreachable("Unexpected request for libcall!");
2285   case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
2286   case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
2287   case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
2288   case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
2289   case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2290   }
2291 
2292   // The input chain to this libcall is the entry node of the function.
2293   // Legalizing the call will automatically add the previous call to the
2294   // dependence.
2295   SDValue InChain = DAG.getEntryNode();
2296 
2297   EVT RetVT = Node->getValueType(0);
2298   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2299 
2300   TargetLowering::ArgListTy Args;
2301   TargetLowering::ArgListEntry Entry;
2302 
2303   // Pass the argument.
2304   Entry.Node = Node->getOperand(0);
2305   Entry.Ty = RetTy;
2306   Entry.IsSExt = false;
2307   Entry.IsZExt = false;
2308   Args.push_back(Entry);
2309 
2310   // Pass the return address of sin.
2311   SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
2312   Entry.Node = SinPtr;
2313   Entry.Ty = RetTy->getPointerTo();
2314   Entry.IsSExt = false;
2315   Entry.IsZExt = false;
2316   Args.push_back(Entry);
2317 
2318   // Also pass the return address of the cos.
2319   SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
2320   Entry.Node = CosPtr;
2321   Entry.Ty = RetTy->getPointerTo();
2322   Entry.IsSExt = false;
2323   Entry.IsZExt = false;
2324   Args.push_back(Entry);
2325 
2326   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2327                                          TLI.getPointerTy(DAG.getDataLayout()));
2328 
2329   SDLoc dl(Node);
2330   TargetLowering::CallLoweringInfo CLI(DAG);
2331   CLI.setDebugLoc(dl).setChain(InChain).setLibCallee(
2332       TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee,
2333       std::move(Args));
2334 
2335   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2336 
2337   Results.push_back(
2338       DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo()));
2339   Results.push_back(
2340       DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo()));
2341 }
2342 
2343 /// This function is responsible for legalizing a
2344 /// INT_TO_FP operation of the specified operand when the target requests that
2345 /// we expand it.  At this point, we know that the result and operand types are
2346 /// legal for the target.
2347 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node,
2348                                                    SDValue &Chain) {
2349   bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP ||
2350                    Node->getOpcode() == ISD::SINT_TO_FP);
2351   EVT DestVT = Node->getValueType(0);
2352   SDLoc dl(Node);
2353   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
2354   SDValue Op0 = Node->getOperand(OpNo);
2355   EVT SrcVT = Op0.getValueType();
2356 
2357   // TODO: Should any fast-math-flags be set for the created nodes?
2358   LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n");
2359   if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
2360     LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double "
2361                          "expansion\n");
2362 
2363     // Get the stack frame index of a 8 byte buffer.
2364     SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2365 
2366     SDValue Lo = Op0;
2367     // if signed map to unsigned space
2368     if (isSigned) {
2369       // Invert sign bit (signed to unsigned mapping).
2370       Lo = DAG.getNode(ISD::XOR, dl, MVT::i32, Lo,
2371                        DAG.getConstant(0x80000000u, dl, MVT::i32));
2372     }
2373     // Initial hi portion of constructed double.
2374     SDValue Hi = DAG.getConstant(0x43300000u, dl, MVT::i32);
2375 
2376     // If this a big endian target, swap the lo and high data.
2377     if (DAG.getDataLayout().isBigEndian())
2378       std::swap(Lo, Hi);
2379 
2380     SDValue MemChain = DAG.getEntryNode();
2381 
2382     // Store the lo of the constructed double.
2383     SDValue Store1 = DAG.getStore(MemChain, dl, Lo, StackSlot,
2384                                   MachinePointerInfo());
2385     // Store the hi of the constructed double.
2386     SDValue HiPtr = DAG.getMemBasePlusOffset(StackSlot, 4, dl);
2387     SDValue Store2 =
2388         DAG.getStore(MemChain, dl, Hi, HiPtr, MachinePointerInfo());
2389     MemChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
2390 
2391     // load the constructed double
2392     SDValue Load =
2393         DAG.getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo());
2394     // FP constant to bias correct the final result
2395     SDValue Bias = DAG.getConstantFP(isSigned ?
2396                                      BitsToDouble(0x4330000080000000ULL) :
2397                                      BitsToDouble(0x4330000000000000ULL),
2398                                      dl, MVT::f64);
2399     // Subtract the bias and get the final result.
2400     SDValue Sub;
2401     SDValue Result;
2402     if (Node->isStrictFPOpcode()) {
2403       Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other},
2404                         {Node->getOperand(0), Load, Bias});
2405       Chain = Sub.getValue(1);
2406       if (DestVT != Sub.getValueType()) {
2407         std::pair<SDValue, SDValue> ResultPair;
2408         ResultPair =
2409             DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT);
2410         Result = ResultPair.first;
2411         Chain = ResultPair.second;
2412       }
2413       else
2414         Result = Sub;
2415     } else {
2416       Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2417       Result = DAG.getFPExtendOrRound(Sub, dl, DestVT);
2418     }
2419     return Result;
2420   }
2421   // Code below here assumes !isSigned without checking again.
2422   assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2423 
2424   // TODO: Generalize this for use with other types.
2425   if ((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) {
2426     LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32\n");
2427     // For unsigned conversions, convert them to signed conversions using the
2428     // algorithm from the x86_64 __floatundisf in compiler_rt. That method
2429     // should be valid for i32->f32 as well.
2430 
2431     // TODO: This really should be implemented using a branch rather than a
2432     // select.  We happen to get lucky and machinesink does the right
2433     // thing most of the time.  This would be a good candidate for a
2434     // pseudo-op, or, even better, for whole-function isel.
2435     EVT SetCCVT = getSetCCResultType(SrcVT);
2436 
2437     SDValue SignBitTest = DAG.getSetCC(
2438         dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
2439 
2440     EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout());
2441     SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
2442     SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst);
2443     SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
2444     SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst);
2445     SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
2446 
2447     SDValue Slow, Fast;
2448     if (Node->isStrictFPOpcode()) {
2449       // In strict mode, we must avoid spurious exceptions, and therefore
2450       // must make sure to only emit a single STRICT_SINT_TO_FP.
2451       SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0);
2452       Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other },
2453                          { Node->getOperand(0), InCvt });
2454       Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other },
2455                          { Fast.getValue(1), Fast, Fast });
2456       Chain = Slow.getValue(1);
2457       // The STRICT_SINT_TO_FP inherits the exception mode from the
2458       // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can
2459       // never raise any exception.
2460       SDNodeFlags Flags;
2461       Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept());
2462       Fast->setFlags(Flags);
2463       Flags.setNoFPExcept(true);
2464       Slow->setFlags(Flags);
2465     } else {
2466       SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or);
2467       Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt);
2468       Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2469     }
2470 
2471     return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast);
2472   }
2473 
2474   // The following optimization is valid only if every value in SrcVT (when
2475   // treated as signed) is representable in DestVT.  Check that the mantissa
2476   // size of DestVT is >= than the number of bits in SrcVT -1.
2477   assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >=
2478              SrcVT.getSizeInBits() - 1 &&
2479          "Cannot perform lossless SINT_TO_FP!");
2480 
2481   SDValue Tmp1;
2482   if (Node->isStrictFPOpcode()) {
2483     Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other },
2484                        { Node->getOperand(0), Op0 });
2485   } else
2486     Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2487 
2488   SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0,
2489                                  DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
2490   SDValue Zero = DAG.getIntPtrConstant(0, dl),
2491           Four = DAG.getIntPtrConstant(4, dl);
2492   SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(),
2493                                     SignSet, Four, Zero);
2494 
2495   // If the sign bit of the integer is set, the large number will be treated
2496   // as a negative number.  To counteract this, the dynamic code adds an
2497   // offset depending on the data type.
2498   uint64_t FF;
2499   switch (SrcVT.getSimpleVT().SimpleTy) {
2500   default: llvm_unreachable("Unsupported integer type!");
2501   case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2502   case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2503   case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2504   case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2505   }
2506   if (DAG.getDataLayout().isLittleEndian())
2507     FF <<= 32;
2508   Constant *FudgeFactor = ConstantInt::get(
2509                                        Type::getInt64Ty(*DAG.getContext()), FF);
2510 
2511   SDValue CPIdx =
2512       DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout()));
2513   Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
2514   CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset);
2515   Alignment = commonAlignment(Alignment, 4);
2516   SDValue FudgeInReg;
2517   if (DestVT == MVT::f32)
2518     FudgeInReg = DAG.getLoad(
2519         MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2520         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
2521         Alignment);
2522   else {
2523     SDValue Load = DAG.getExtLoad(
2524         ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx,
2525         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
2526         Alignment);
2527     HandleSDNode Handle(Load);
2528     LegalizeOp(Load.getNode());
2529     FudgeInReg = Handle.getValue();
2530   }
2531 
2532   if (Node->isStrictFPOpcode()) {
2533     SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other },
2534                                  { Tmp1.getValue(1), Tmp1, FudgeInReg });
2535     Chain = Result.getValue(1);
2536     return Result;
2537   }
2538 
2539   return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2540 }
2541 
2542 /// This function is responsible for legalizing a
2543 /// *INT_TO_FP operation of the specified operand when the target requests that
2544 /// we promote it.  At this point, we know that the result and operand types are
2545 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2546 /// operation that takes a larger input.
2547 void SelectionDAGLegalize::PromoteLegalINT_TO_FP(
2548     SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) {
2549   bool IsStrict = N->isStrictFPOpcode();
2550   bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP ||
2551                   N->getOpcode() == ISD::STRICT_SINT_TO_FP;
2552   EVT DestVT = N->getValueType(0);
2553   SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0);
2554   unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP;
2555   unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP;
2556 
2557   // First step, figure out the appropriate *INT_TO_FP operation to use.
2558   EVT NewInTy = LegalOp.getValueType();
2559 
2560   unsigned OpToUse = 0;
2561 
2562   // Scan for the appropriate larger type to use.
2563   while (true) {
2564     NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2565     assert(NewInTy.isInteger() && "Ran out of possibilities!");
2566 
2567     // If the target supports SINT_TO_FP of this type, use it.
2568     if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) {
2569       OpToUse = SIntOp;
2570       break;
2571     }
2572     if (IsSigned)
2573       continue;
2574 
2575     // If the target supports UINT_TO_FP of this type, use it.
2576     if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) {
2577       OpToUse = UIntOp;
2578       break;
2579     }
2580 
2581     // Otherwise, try a larger type.
2582   }
2583 
2584   // Okay, we found the operation and type to use.  Zero extend our input to the
2585   // desired type then run the operation on it.
2586   if (IsStrict) {
2587     SDValue Res =
2588         DAG.getNode(OpToUse, dl, {DestVT, MVT::Other},
2589                     {N->getOperand(0),
2590                      DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2591                                  dl, NewInTy, LegalOp)});
2592     Results.push_back(Res);
2593     Results.push_back(Res.getValue(1));
2594     return;
2595   }
2596 
2597   Results.push_back(
2598       DAG.getNode(OpToUse, dl, DestVT,
2599                   DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2600                               dl, NewInTy, LegalOp)));
2601 }
2602 
2603 /// This function is responsible for legalizing a
2604 /// FP_TO_*INT operation of the specified operand when the target requests that
2605 /// we promote it.  At this point, we know that the result and operand types are
2606 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2607 /// operation that returns a larger result.
2608 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl,
2609                                                  SmallVectorImpl<SDValue> &Results) {
2610   bool IsStrict = N->isStrictFPOpcode();
2611   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
2612                   N->getOpcode() == ISD::STRICT_FP_TO_SINT;
2613   EVT DestVT = N->getValueType(0);
2614   SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0);
2615   // First step, figure out the appropriate FP_TO*INT operation to use.
2616   EVT NewOutTy = DestVT;
2617 
2618   unsigned OpToUse = 0;
2619 
2620   // Scan for the appropriate larger type to use.
2621   while (true) {
2622     NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2623     assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2624 
2625     // A larger signed type can hold all unsigned values of the requested type,
2626     // so using FP_TO_SINT is valid
2627     OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT;
2628     if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy))
2629       break;
2630 
2631     // However, if the value may be < 0.0, we *must* use some FP_TO_SINT.
2632     OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT;
2633     if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy))
2634       break;
2635 
2636     // Otherwise, try a larger type.
2637   }
2638 
2639   // Okay, we found the operation and type to use.
2640   SDValue Operation;
2641   if (IsStrict) {
2642     SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other);
2643     Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp);
2644   } else
2645     Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2646 
2647   // Truncate the result of the extended FP_TO_*INT operation to the desired
2648   // size.
2649   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2650   Results.push_back(Trunc);
2651   if (IsStrict)
2652     Results.push_back(Operation.getValue(1));
2653 }
2654 
2655 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts.
2656 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) {
2657   EVT VT = Op.getValueType();
2658   EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2659   unsigned Sz = VT.getScalarSizeInBits();
2660 
2661   SDValue Tmp, Tmp2, Tmp3;
2662 
2663   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
2664   // and finally the i1 pairs.
2665   // TODO: We can easily support i4/i2 legal types if any target ever does.
2666   if (Sz >= 8 && isPowerOf2_32(Sz)) {
2667     // Create the masks - repeating the pattern every byte.
2668     APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0));
2669     APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC));
2670     APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA));
2671     APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F));
2672     APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33));
2673     APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55));
2674 
2675     // BSWAP if the type is wider than a single byte.
2676     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
2677 
2678     // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4)
2679     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT));
2680     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT));
2681     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT));
2682     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
2683     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2684 
2685     // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2)
2686     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT));
2687     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT));
2688     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT));
2689     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
2690     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2691 
2692     // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1)
2693     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT));
2694     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT));
2695     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT));
2696     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
2697     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2698     return Tmp;
2699   }
2700 
2701   Tmp = DAG.getConstant(0, dl, VT);
2702   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
2703     if (I < J)
2704       Tmp2 =
2705           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
2706     else
2707       Tmp2 =
2708           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
2709 
2710     APInt Shift(Sz, 1);
2711     Shift <<= J;
2712     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
2713     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
2714   }
2715 
2716   return Tmp;
2717 }
2718 
2719 /// Open code the operations for BSWAP of the specified operation.
2720 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) {
2721   EVT VT = Op.getValueType();
2722   EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2723   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2724   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
2725   default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2726   case MVT::i16:
2727     // Use a rotate by 8. This can be further expanded if necessary.
2728     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2729   case MVT::i32:
2730     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2731     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2732     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2733     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2734     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2735                        DAG.getConstant(0xFF0000, dl, VT));
2736     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
2737     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2738     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2739     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2740   case MVT::i64:
2741     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2742     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2743     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2744     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2745     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2746     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2747     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2748     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2749     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
2750                        DAG.getConstant(255ULL<<48, dl, VT));
2751     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
2752                        DAG.getConstant(255ULL<<40, dl, VT));
2753     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
2754                        DAG.getConstant(255ULL<<32, dl, VT));
2755     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
2756                        DAG.getConstant(255ULL<<24, dl, VT));
2757     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2758                        DAG.getConstant(255ULL<<16, dl, VT));
2759     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
2760                        DAG.getConstant(255ULL<<8 , dl, VT));
2761     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2762     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2763     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2764     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2765     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2766     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2767     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2768   }
2769 }
2770 
2771 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2772   LLVM_DEBUG(dbgs() << "Trying to expand node\n");
2773   SmallVector<SDValue, 8> Results;
2774   SDLoc dl(Node);
2775   SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2776   bool NeedInvert;
2777   switch (Node->getOpcode()) {
2778   case ISD::ABS:
2779     if (TLI.expandABS(Node, Tmp1, DAG))
2780       Results.push_back(Tmp1);
2781     break;
2782   case ISD::CTPOP:
2783     if (TLI.expandCTPOP(Node, Tmp1, DAG))
2784       Results.push_back(Tmp1);
2785     break;
2786   case ISD::CTLZ:
2787   case ISD::CTLZ_ZERO_UNDEF:
2788     if (TLI.expandCTLZ(Node, Tmp1, DAG))
2789       Results.push_back(Tmp1);
2790     break;
2791   case ISD::CTTZ:
2792   case ISD::CTTZ_ZERO_UNDEF:
2793     if (TLI.expandCTTZ(Node, Tmp1, DAG))
2794       Results.push_back(Tmp1);
2795     break;
2796   case ISD::BITREVERSE:
2797     Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl));
2798     break;
2799   case ISD::BSWAP:
2800     Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2801     break;
2802   case ISD::FRAMEADDR:
2803   case ISD::RETURNADDR:
2804   case ISD::FRAME_TO_ARGS_OFFSET:
2805     Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
2806     break;
2807   case ISD::EH_DWARF_CFA: {
2808     SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl,
2809                                         TLI.getPointerTy(DAG.getDataLayout()));
2810     SDValue Offset = DAG.getNode(ISD::ADD, dl,
2811                                  CfaArg.getValueType(),
2812                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
2813                                              CfaArg.getValueType()),
2814                                  CfaArg);
2815     SDValue FA = DAG.getNode(
2816         ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()),
2817         DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())));
2818     Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(),
2819                                   FA, Offset));
2820     break;
2821   }
2822   case ISD::FLT_ROUNDS_:
2823     Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0)));
2824     Results.push_back(Node->getOperand(0));
2825     break;
2826   case ISD::EH_RETURN:
2827   case ISD::EH_LABEL:
2828   case ISD::PREFETCH:
2829   case ISD::VAEND:
2830   case ISD::EH_SJLJ_LONGJMP:
2831     // If the target didn't expand these, there's nothing to do, so just
2832     // preserve the chain and be done.
2833     Results.push_back(Node->getOperand(0));
2834     break;
2835   case ISD::READCYCLECOUNTER:
2836     // If the target didn't expand this, just return 'zero' and preserve the
2837     // chain.
2838     Results.append(Node->getNumValues() - 1,
2839                    DAG.getConstant(0, dl, Node->getValueType(0)));
2840     Results.push_back(Node->getOperand(0));
2841     break;
2842   case ISD::EH_SJLJ_SETJMP:
2843     // If the target didn't expand this, just return 'zero' and preserve the
2844     // chain.
2845     Results.push_back(DAG.getConstant(0, dl, MVT::i32));
2846     Results.push_back(Node->getOperand(0));
2847     break;
2848   case ISD::ATOMIC_LOAD: {
2849     // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2850     SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0));
2851     SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2852     SDValue Swap = DAG.getAtomicCmpSwap(
2853         ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2854         Node->getOperand(0), Node->getOperand(1), Zero, Zero,
2855         cast<AtomicSDNode>(Node)->getMemOperand());
2856     Results.push_back(Swap.getValue(0));
2857     Results.push_back(Swap.getValue(1));
2858     break;
2859   }
2860   case ISD::ATOMIC_STORE: {
2861     // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2862     SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2863                                  cast<AtomicSDNode>(Node)->getMemoryVT(),
2864                                  Node->getOperand(0),
2865                                  Node->getOperand(1), Node->getOperand(2),
2866                                  cast<AtomicSDNode>(Node)->getMemOperand());
2867     Results.push_back(Swap.getValue(1));
2868     break;
2869   }
2870   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
2871     // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and
2872     // splits out the success value as a comparison. Expanding the resulting
2873     // ATOMIC_CMP_SWAP will produce a libcall.
2874     SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2875     SDValue Res = DAG.getAtomicCmpSwap(
2876         ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2877         Node->getOperand(0), Node->getOperand(1), Node->getOperand(2),
2878         Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand());
2879 
2880     SDValue ExtRes = Res;
2881     SDValue LHS = Res;
2882     SDValue RHS = Node->getOperand(1);
2883 
2884     EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT();
2885     EVT OuterType = Node->getValueType(0);
2886     switch (TLI.getExtendForAtomicOps()) {
2887     case ISD::SIGN_EXTEND:
2888       LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res,
2889                         DAG.getValueType(AtomicType));
2890       RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType,
2891                         Node->getOperand(2), DAG.getValueType(AtomicType));
2892       ExtRes = LHS;
2893       break;
2894     case ISD::ZERO_EXTEND:
2895       LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res,
2896                         DAG.getValueType(AtomicType));
2897       RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2898       ExtRes = LHS;
2899       break;
2900     case ISD::ANY_EXTEND:
2901       LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType);
2902       RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2903       break;
2904     default:
2905       llvm_unreachable("Invalid atomic op extension");
2906     }
2907 
2908     SDValue Success =
2909         DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ);
2910 
2911     Results.push_back(ExtRes.getValue(0));
2912     Results.push_back(Success);
2913     Results.push_back(Res.getValue(1));
2914     break;
2915   }
2916   case ISD::DYNAMIC_STACKALLOC:
2917     ExpandDYNAMIC_STACKALLOC(Node, Results);
2918     break;
2919   case ISD::MERGE_VALUES:
2920     for (unsigned i = 0; i < Node->getNumValues(); i++)
2921       Results.push_back(Node->getOperand(i));
2922     break;
2923   case ISD::UNDEF: {
2924     EVT VT = Node->getValueType(0);
2925     if (VT.isInteger())
2926       Results.push_back(DAG.getConstant(0, dl, VT));
2927     else {
2928       assert(VT.isFloatingPoint() && "Unknown value type!");
2929       Results.push_back(DAG.getConstantFP(0, dl, VT));
2930     }
2931     break;
2932   }
2933   case ISD::STRICT_FP_ROUND:
2934     // When strict mode is enforced we can't do expansion because it
2935     // does not honor the "strict" properties. Only libcall is allowed.
2936     if (TLI.isStrictFPEnabled())
2937       break;
2938     // We might as well mutate to FP_ROUND when FP_ROUND operation is legal
2939     // since this operation is more efficient than stack operation.
2940     if (TLI.getStrictFPOperationAction(Node->getOpcode(),
2941                                        Node->getValueType(0))
2942         == TargetLowering::Legal)
2943       break;
2944     // We fall back to use stack operation when the FP_ROUND operation
2945     // isn't available.
2946     Tmp1 = EmitStackConvert(Node->getOperand(1),
2947                             Node->getValueType(0),
2948                             Node->getValueType(0), dl, Node->getOperand(0));
2949     ReplaceNode(Node, Tmp1.getNode());
2950     LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n");
2951     return true;
2952   case ISD::FP_ROUND:
2953   case ISD::BITCAST:
2954     Tmp1 = EmitStackConvert(Node->getOperand(0),
2955                             Node->getValueType(0),
2956                             Node->getValueType(0), dl);
2957     Results.push_back(Tmp1);
2958     break;
2959   case ISD::STRICT_FP_EXTEND:
2960     // When strict mode is enforced we can't do expansion because it
2961     // does not honor the "strict" properties. Only libcall is allowed.
2962     if (TLI.isStrictFPEnabled())
2963       break;
2964     // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal
2965     // since this operation is more efficient than stack operation.
2966     if (TLI.getStrictFPOperationAction(Node->getOpcode(),
2967                                        Node->getValueType(0))
2968         == TargetLowering::Legal)
2969       break;
2970     // We fall back to use stack operation when the FP_EXTEND operation
2971     // isn't available.
2972     Tmp1 = EmitStackConvert(Node->getOperand(1),
2973                             Node->getOperand(1).getValueType(),
2974                             Node->getValueType(0), dl, Node->getOperand(0));
2975     ReplaceNode(Node, Tmp1.getNode());
2976     LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n");
2977     return true;
2978   case ISD::FP_EXTEND:
2979     Tmp1 = EmitStackConvert(Node->getOperand(0),
2980                             Node->getOperand(0).getValueType(),
2981                             Node->getValueType(0), dl);
2982     Results.push_back(Tmp1);
2983     break;
2984   case ISD::SIGN_EXTEND_INREG: {
2985     EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2986     EVT VT = Node->getValueType(0);
2987 
2988     // An in-register sign-extend of a boolean is a negation:
2989     // 'true' (1) sign-extended is -1.
2990     // 'false' (0) sign-extended is 0.
2991     // However, we must mask the high bits of the source operand because the
2992     // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero.
2993 
2994     // TODO: Do this for vectors too?
2995     if (ExtraVT.getSizeInBits() == 1) {
2996       SDValue One = DAG.getConstant(1, dl, VT);
2997       SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One);
2998       SDValue Zero = DAG.getConstant(0, dl, VT);
2999       SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And);
3000       Results.push_back(Neg);
3001       break;
3002     }
3003 
3004     // NOTE: we could fall back on load/store here too for targets without
3005     // SRA.  However, it is doubtful that any exist.
3006     EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
3007     unsigned BitsDiff = VT.getScalarSizeInBits() -
3008                         ExtraVT.getScalarSizeInBits();
3009     SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy);
3010     Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
3011                        Node->getOperand(0), ShiftCst);
3012     Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
3013     Results.push_back(Tmp1);
3014     break;
3015   }
3016   case ISD::UINT_TO_FP:
3017   case ISD::STRICT_UINT_TO_FP:
3018     if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) {
3019       Results.push_back(Tmp1);
3020       if (Node->isStrictFPOpcode())
3021         Results.push_back(Tmp2);
3022       break;
3023     }
3024     LLVM_FALLTHROUGH;
3025   case ISD::SINT_TO_FP:
3026   case ISD::STRICT_SINT_TO_FP:
3027     Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2);
3028     Results.push_back(Tmp1);
3029     if (Node->isStrictFPOpcode())
3030       Results.push_back(Tmp2);
3031     break;
3032   case ISD::FP_TO_SINT:
3033     if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG))
3034       Results.push_back(Tmp1);
3035     break;
3036   case ISD::STRICT_FP_TO_SINT:
3037     if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) {
3038       ReplaceNode(Node, Tmp1.getNode());
3039       LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n");
3040       return true;
3041     }
3042     break;
3043   case ISD::FP_TO_UINT:
3044     if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG))
3045       Results.push_back(Tmp1);
3046     break;
3047   case ISD::STRICT_FP_TO_UINT:
3048     if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) {
3049       // Relink the chain.
3050       DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2);
3051       // Replace the new UINT result.
3052       ReplaceNodeWithValue(SDValue(Node, 0), Tmp1);
3053       LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n");
3054       return true;
3055     }
3056     break;
3057   case ISD::VAARG:
3058     Results.push_back(DAG.expandVAArg(Node));
3059     Results.push_back(Results[0].getValue(1));
3060     break;
3061   case ISD::VACOPY:
3062     Results.push_back(DAG.expandVACopy(Node));
3063     break;
3064   case ISD::EXTRACT_VECTOR_ELT:
3065     if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
3066       // This must be an access of the only element.  Return it.
3067       Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
3068                          Node->getOperand(0));
3069     else
3070       Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
3071     Results.push_back(Tmp1);
3072     break;
3073   case ISD::EXTRACT_SUBVECTOR:
3074     Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
3075     break;
3076   case ISD::INSERT_SUBVECTOR:
3077     Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
3078     break;
3079   case ISD::CONCAT_VECTORS:
3080     Results.push_back(ExpandVectorBuildThroughStack(Node));
3081     break;
3082   case ISD::SCALAR_TO_VECTOR:
3083     Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
3084     break;
3085   case ISD::INSERT_VECTOR_ELT:
3086     Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
3087                                               Node->getOperand(1),
3088                                               Node->getOperand(2), dl));
3089     break;
3090   case ISD::VECTOR_SHUFFLE: {
3091     SmallVector<int, 32> NewMask;
3092     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
3093 
3094     EVT VT = Node->getValueType(0);
3095     EVT EltVT = VT.getVectorElementType();
3096     SDValue Op0 = Node->getOperand(0);
3097     SDValue Op1 = Node->getOperand(1);
3098     if (!TLI.isTypeLegal(EltVT)) {
3099       EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
3100 
3101       // BUILD_VECTOR operands are allowed to be wider than the element type.
3102       // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept
3103       // it.
3104       if (NewEltVT.bitsLT(EltVT)) {
3105         // Convert shuffle node.
3106         // If original node was v4i64 and the new EltVT is i32,
3107         // cast operands to v8i32 and re-build the mask.
3108 
3109         // Calculate new VT, the size of the new VT should be equal to original.
3110         EVT NewVT =
3111             EVT::getVectorVT(*DAG.getContext(), NewEltVT,
3112                              VT.getSizeInBits() / NewEltVT.getSizeInBits());
3113         assert(NewVT.bitsEq(VT));
3114 
3115         // cast operands to new VT
3116         Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
3117         Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
3118 
3119         // Convert the shuffle mask
3120         unsigned int factor =
3121                          NewVT.getVectorNumElements()/VT.getVectorNumElements();
3122 
3123         // EltVT gets smaller
3124         assert(factor > 0);
3125 
3126         for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
3127           if (Mask[i] < 0) {
3128             for (unsigned fi = 0; fi < factor; ++fi)
3129               NewMask.push_back(Mask[i]);
3130           }
3131           else {
3132             for (unsigned fi = 0; fi < factor; ++fi)
3133               NewMask.push_back(Mask[i]*factor+fi);
3134           }
3135         }
3136         Mask = NewMask;
3137         VT = NewVT;
3138       }
3139       EltVT = NewEltVT;
3140     }
3141     unsigned NumElems = VT.getVectorNumElements();
3142     SmallVector<SDValue, 16> Ops;
3143     for (unsigned i = 0; i != NumElems; ++i) {
3144       if (Mask[i] < 0) {
3145         Ops.push_back(DAG.getUNDEF(EltVT));
3146         continue;
3147       }
3148       unsigned Idx = Mask[i];
3149       if (Idx < NumElems)
3150         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
3151                                   DAG.getVectorIdxConstant(Idx, dl)));
3152       else
3153         Ops.push_back(
3154             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1,
3155                         DAG.getVectorIdxConstant(Idx - NumElems, dl)));
3156     }
3157 
3158     Tmp1 = DAG.getBuildVector(VT, dl, Ops);
3159     // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
3160     Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
3161     Results.push_back(Tmp1);
3162     break;
3163   }
3164   case ISD::EXTRACT_ELEMENT: {
3165     EVT OpTy = Node->getOperand(0).getValueType();
3166     if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3167       // 1 -> Hi
3168       Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3169                          DAG.getConstant(OpTy.getSizeInBits() / 2, dl,
3170                                          TLI.getShiftAmountTy(
3171                                              Node->getOperand(0).getValueType(),
3172                                              DAG.getDataLayout())));
3173       Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3174     } else {
3175       // 0 -> Lo
3176       Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3177                          Node->getOperand(0));
3178     }
3179     Results.push_back(Tmp1);
3180     break;
3181   }
3182   case ISD::STACKSAVE:
3183     // Expand to CopyFromReg if the target set
3184     // StackPointerRegisterToSaveRestore.
3185     if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3186       Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3187                                            Node->getValueType(0)));
3188       Results.push_back(Results[0].getValue(1));
3189     } else {
3190       Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3191       Results.push_back(Node->getOperand(0));
3192     }
3193     break;
3194   case ISD::STACKRESTORE:
3195     // Expand to CopyToReg if the target set
3196     // StackPointerRegisterToSaveRestore.
3197     if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3198       Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3199                                          Node->getOperand(1)));
3200     } else {
3201       Results.push_back(Node->getOperand(0));
3202     }
3203     break;
3204   case ISD::GET_DYNAMIC_AREA_OFFSET:
3205     Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
3206     Results.push_back(Results[0].getValue(0));
3207     break;
3208   case ISD::FCOPYSIGN:
3209     Results.push_back(ExpandFCOPYSIGN(Node));
3210     break;
3211   case ISD::FNEG:
3212     // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
3213     Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0));
3214     // TODO: If FNEG has fast-math-flags, propagate them to the FSUB.
3215     Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3216                        Node->getOperand(0));
3217     Results.push_back(Tmp1);
3218     break;
3219   case ISD::FABS:
3220     Results.push_back(ExpandFABS(Node));
3221     break;
3222   case ISD::SMIN:
3223   case ISD::SMAX:
3224   case ISD::UMIN:
3225   case ISD::UMAX: {
3226     // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
3227     ISD::CondCode Pred;
3228     switch (Node->getOpcode()) {
3229     default: llvm_unreachable("How did we get here?");
3230     case ISD::SMAX: Pred = ISD::SETGT; break;
3231     case ISD::SMIN: Pred = ISD::SETLT; break;
3232     case ISD::UMAX: Pred = ISD::SETUGT; break;
3233     case ISD::UMIN: Pred = ISD::SETULT; break;
3234     }
3235     Tmp1 = Node->getOperand(0);
3236     Tmp2 = Node->getOperand(1);
3237     Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred);
3238     Results.push_back(Tmp1);
3239     break;
3240   }
3241   case ISD::FMINNUM:
3242   case ISD::FMAXNUM: {
3243     if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG))
3244       Results.push_back(Expanded);
3245     break;
3246   }
3247   case ISD::FSIN:
3248   case ISD::FCOS: {
3249     EVT VT = Node->getValueType(0);
3250     // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
3251     // fcos which share the same operand and both are used.
3252     if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
3253          isSinCosLibcallAvailable(Node, TLI))
3254         && useSinCos(Node)) {
3255       SDVTList VTs = DAG.getVTList(VT, VT);
3256       Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
3257       if (Node->getOpcode() == ISD::FCOS)
3258         Tmp1 = Tmp1.getValue(1);
3259       Results.push_back(Tmp1);
3260     }
3261     break;
3262   }
3263   case ISD::FMAD:
3264     llvm_unreachable("Illegal fmad should never be formed");
3265 
3266   case ISD::FP16_TO_FP:
3267     if (Node->getValueType(0) != MVT::f32) {
3268       // We can extend to types bigger than f32 in two steps without changing
3269       // the result. Since "f16 -> f32" is much more commonly available, give
3270       // CodeGen the option of emitting that before resorting to a libcall.
3271       SDValue Res =
3272           DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0));
3273       Results.push_back(
3274           DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res));
3275     }
3276     break;
3277   case ISD::STRICT_FP16_TO_FP:
3278     if (Node->getValueType(0) != MVT::f32) {
3279       // We can extend to types bigger than f32 in two steps without changing
3280       // the result. Since "f16 -> f32" is much more commonly available, give
3281       // CodeGen the option of emitting that before resorting to a libcall.
3282       SDValue Res =
3283           DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other},
3284                       {Node->getOperand(0), Node->getOperand(1)});
3285       Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
3286                         {Node->getValueType(0), MVT::Other},
3287                         {Res.getValue(1), Res});
3288       Results.push_back(Res);
3289       Results.push_back(Res.getValue(1));
3290     }
3291     break;
3292   case ISD::FP_TO_FP16:
3293     LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n");
3294     if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) {
3295       SDValue Op = Node->getOperand(0);
3296       MVT SVT = Op.getSimpleValueType();
3297       if ((SVT == MVT::f64 || SVT == MVT::f80) &&
3298           TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) {
3299         // Under fastmath, we can expand this node into a fround followed by
3300         // a float-half conversion.
3301         SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op,
3302                                        DAG.getIntPtrConstant(0, dl));
3303         Results.push_back(
3304             DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal));
3305       }
3306     }
3307     break;
3308   case ISD::ConstantFP: {
3309     ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3310     // Check to see if this FP immediate is already legal.
3311     // If this is a legal constant, turn it into a TargetConstantFP node.
3312     if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0),
3313                           DAG.getMachineFunction().getFunction().hasOptSize()))
3314       Results.push_back(ExpandConstantFP(CFP, true));
3315     break;
3316   }
3317   case ISD::Constant: {
3318     ConstantSDNode *CP = cast<ConstantSDNode>(Node);
3319     Results.push_back(ExpandConstant(CP));
3320     break;
3321   }
3322   case ISD::FSUB: {
3323     EVT VT = Node->getValueType(0);
3324     if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3325         TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) {
3326       const SDNodeFlags Flags = Node->getFlags();
3327       Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3328       Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags);
3329       Results.push_back(Tmp1);
3330     }
3331     break;
3332   }
3333   case ISD::SUB: {
3334     EVT VT = Node->getValueType(0);
3335     assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3336            TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3337            "Don't know how to expand this subtraction!");
3338     Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3339                DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
3340                                VT));
3341     Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT));
3342     Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3343     break;
3344   }
3345   case ISD::UREM:
3346   case ISD::SREM: {
3347     EVT VT = Node->getValueType(0);
3348     bool isSigned = Node->getOpcode() == ISD::SREM;
3349     unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3350     unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3351     Tmp2 = Node->getOperand(0);
3352     Tmp3 = Node->getOperand(1);
3353     if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3354       SDVTList VTs = DAG.getVTList(VT, VT);
3355       Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3356       Results.push_back(Tmp1);
3357     } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3358       // X % Y -> X-X/Y*Y
3359       Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3360       Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3361       Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3362       Results.push_back(Tmp1);
3363     }
3364     break;
3365   }
3366   case ISD::UDIV:
3367   case ISD::SDIV: {
3368     bool isSigned = Node->getOpcode() == ISD::SDIV;
3369     unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3370     EVT VT = Node->getValueType(0);
3371     if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3372       SDVTList VTs = DAG.getVTList(VT, VT);
3373       Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3374                          Node->getOperand(1));
3375       Results.push_back(Tmp1);
3376     }
3377     break;
3378   }
3379   case ISD::MULHU:
3380   case ISD::MULHS: {
3381     unsigned ExpandOpcode =
3382         Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI;
3383     EVT VT = Node->getValueType(0);
3384     SDVTList VTs = DAG.getVTList(VT, VT);
3385 
3386     Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3387                        Node->getOperand(1));
3388     Results.push_back(Tmp1.getValue(1));
3389     break;
3390   }
3391   case ISD::UMUL_LOHI:
3392   case ISD::SMUL_LOHI: {
3393     SDValue LHS = Node->getOperand(0);
3394     SDValue RHS = Node->getOperand(1);
3395     MVT VT = LHS.getSimpleValueType();
3396     unsigned MULHOpcode =
3397         Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS;
3398 
3399     if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) {
3400       Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS));
3401       Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS));
3402       break;
3403     }
3404 
3405     SmallVector<SDValue, 4> Halves;
3406     EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext());
3407     assert(TLI.isTypeLegal(HalfType));
3408     if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves,
3409                            HalfType, DAG,
3410                            TargetLowering::MulExpansionKind::Always)) {
3411       for (unsigned i = 0; i < 2; ++i) {
3412         SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]);
3413         SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]);
3414         SDValue Shift = DAG.getConstant(
3415             HalfType.getScalarSizeInBits(), dl,
3416             TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3417         Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3418         Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3419       }
3420       break;
3421     }
3422     break;
3423   }
3424   case ISD::MUL: {
3425     EVT VT = Node->getValueType(0);
3426     SDVTList VTs = DAG.getVTList(VT, VT);
3427     // See if multiply or divide can be lowered using two-result operations.
3428     // We just need the low half of the multiply; try both the signed
3429     // and unsigned forms. If the target supports both SMUL_LOHI and
3430     // UMUL_LOHI, form a preference by checking which forms of plain
3431     // MULH it supports.
3432     bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3433     bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3434     bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3435     bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3436     unsigned OpToUse = 0;
3437     if (HasSMUL_LOHI && !HasMULHS) {
3438       OpToUse = ISD::SMUL_LOHI;
3439     } else if (HasUMUL_LOHI && !HasMULHU) {
3440       OpToUse = ISD::UMUL_LOHI;
3441     } else if (HasSMUL_LOHI) {
3442       OpToUse = ISD::SMUL_LOHI;
3443     } else if (HasUMUL_LOHI) {
3444       OpToUse = ISD::UMUL_LOHI;
3445     }
3446     if (OpToUse) {
3447       Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3448                                     Node->getOperand(1)));
3449       break;
3450     }
3451 
3452     SDValue Lo, Hi;
3453     EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext());
3454     if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) &&
3455         TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) &&
3456         TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
3457         TLI.isOperationLegalOrCustom(ISD::OR, VT) &&
3458         TLI.expandMUL(Node, Lo, Hi, HalfType, DAG,
3459                       TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) {
3460       Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3461       Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi);
3462       SDValue Shift =
3463           DAG.getConstant(HalfType.getSizeInBits(), dl,
3464                           TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3465       Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3466       Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3467     }
3468     break;
3469   }
3470   case ISD::FSHL:
3471   case ISD::FSHR:
3472     if (TLI.expandFunnelShift(Node, Tmp1, DAG))
3473       Results.push_back(Tmp1);
3474     break;
3475   case ISD::ROTL:
3476   case ISD::ROTR:
3477     if (TLI.expandROT(Node, Tmp1, DAG))
3478       Results.push_back(Tmp1);
3479     break;
3480   case ISD::SADDSAT:
3481   case ISD::UADDSAT:
3482   case ISD::SSUBSAT:
3483   case ISD::USUBSAT:
3484     Results.push_back(TLI.expandAddSubSat(Node, DAG));
3485     break;
3486   case ISD::SMULFIX:
3487   case ISD::SMULFIXSAT:
3488   case ISD::UMULFIX:
3489   case ISD::UMULFIXSAT:
3490     Results.push_back(TLI.expandFixedPointMul(Node, DAG));
3491     break;
3492   case ISD::SDIVFIX:
3493   case ISD::SDIVFIXSAT:
3494   case ISD::UDIVFIX:
3495   case ISD::UDIVFIXSAT:
3496     if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node),
3497                                             Node->getOperand(0),
3498                                             Node->getOperand(1),
3499                                             Node->getConstantOperandVal(2),
3500                                             DAG)) {
3501       Results.push_back(V);
3502       break;
3503     }
3504     // FIXME: We might want to retry here with a wider type if we fail, if that
3505     // type is legal.
3506     // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is
3507     // <= 128 (which is the case for all of the default Embedded-C types),
3508     // we will only get here with types and scales that we could always expand
3509     // if we were allowed to generate libcalls to division functions of illegal
3510     // type. But we cannot do that.
3511     llvm_unreachable("Cannot expand DIVFIX!");
3512   case ISD::ADDCARRY:
3513   case ISD::SUBCARRY: {
3514     SDValue LHS = Node->getOperand(0);
3515     SDValue RHS = Node->getOperand(1);
3516     SDValue Carry = Node->getOperand(2);
3517 
3518     bool IsAdd = Node->getOpcode() == ISD::ADDCARRY;
3519 
3520     // Initial add of the 2 operands.
3521     unsigned Op = IsAdd ? ISD::ADD : ISD::SUB;
3522     EVT VT = LHS.getValueType();
3523     SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS);
3524 
3525     // Initial check for overflow.
3526     EVT CarryType = Node->getValueType(1);
3527     EVT SetCCType = getSetCCResultType(Node->getValueType(0));
3528     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
3529     SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC);
3530 
3531     // Add of the sum and the carry.
3532     SDValue One = DAG.getConstant(1, dl, VT);
3533     SDValue CarryExt =
3534         DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One);
3535     SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt);
3536 
3537     // Second check for overflow. If we are adding, we can only overflow if the
3538     // initial sum is all 1s ang the carry is set, resulting in a new sum of 0.
3539     // If we are subtracting, we can only overflow if the initial sum is 0 and
3540     // the carry is set, resulting in a new sum of all 1s.
3541     SDValue Zero = DAG.getConstant(0, dl, VT);
3542     SDValue Overflow2 =
3543         IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ)
3544               : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ);
3545     Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2,
3546                             DAG.getZExtOrTrunc(Carry, dl, SetCCType));
3547 
3548     SDValue ResultCarry =
3549         DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2);
3550 
3551     Results.push_back(Sum2);
3552     Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT));
3553     break;
3554   }
3555   case ISD::SADDO:
3556   case ISD::SSUBO: {
3557     SDValue Result, Overflow;
3558     TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
3559     Results.push_back(Result);
3560     Results.push_back(Overflow);
3561     break;
3562   }
3563   case ISD::UADDO:
3564   case ISD::USUBO: {
3565     SDValue Result, Overflow;
3566     TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
3567     Results.push_back(Result);
3568     Results.push_back(Overflow);
3569     break;
3570   }
3571   case ISD::UMULO:
3572   case ISD::SMULO: {
3573     SDValue Result, Overflow;
3574     if (TLI.expandMULO(Node, Result, Overflow, DAG)) {
3575       Results.push_back(Result);
3576       Results.push_back(Overflow);
3577     }
3578     break;
3579   }
3580   case ISD::BUILD_PAIR: {
3581     EVT PairTy = Node->getValueType(0);
3582     Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3583     Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3584     Tmp2 = DAG.getNode(
3585         ISD::SHL, dl, PairTy, Tmp2,
3586         DAG.getConstant(PairTy.getSizeInBits() / 2, dl,
3587                         TLI.getShiftAmountTy(PairTy, DAG.getDataLayout())));
3588     Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3589     break;
3590   }
3591   case ISD::SELECT:
3592     Tmp1 = Node->getOperand(0);
3593     Tmp2 = Node->getOperand(1);
3594     Tmp3 = Node->getOperand(2);
3595     if (Tmp1.getOpcode() == ISD::SETCC) {
3596       Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3597                              Tmp2, Tmp3,
3598                              cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3599     } else {
3600       Tmp1 = DAG.getSelectCC(dl, Tmp1,
3601                              DAG.getConstant(0, dl, Tmp1.getValueType()),
3602                              Tmp2, Tmp3, ISD::SETNE);
3603     }
3604     Tmp1->setFlags(Node->getFlags());
3605     Results.push_back(Tmp1);
3606     break;
3607   case ISD::BR_JT: {
3608     SDValue Chain = Node->getOperand(0);
3609     SDValue Table = Node->getOperand(1);
3610     SDValue Index = Node->getOperand(2);
3611 
3612     const DataLayout &TD = DAG.getDataLayout();
3613     EVT PTy = TLI.getPointerTy(TD);
3614 
3615     unsigned EntrySize =
3616       DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3617 
3618     // For power-of-two jumptable entry sizes convert multiplication to a shift.
3619     // This transformation needs to be done here since otherwise the MIPS
3620     // backend will end up emitting a three instruction multiply sequence
3621     // instead of a single shift and MSP430 will call a runtime function.
3622     if (llvm::isPowerOf2_32(EntrySize))
3623       Index = DAG.getNode(
3624           ISD::SHL, dl, Index.getValueType(), Index,
3625           DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType()));
3626     else
3627       Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
3628                           DAG.getConstant(EntrySize, dl, Index.getValueType()));
3629     SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(),
3630                                Index, Table);
3631 
3632     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3633     SDValue LD = DAG.getExtLoad(
3634         ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3635         MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT);
3636     Addr = LD;
3637     if (TLI.isJumpTableRelative()) {
3638       // For PIC, the sequence is:
3639       // BRIND(load(Jumptable + index) + RelocBase)
3640       // RelocBase can be JumpTable, GOT or some sort of global base.
3641       Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3642                           TLI.getPICJumpTableRelocBase(Table, DAG));
3643     }
3644 
3645     Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG);
3646     Results.push_back(Tmp1);
3647     break;
3648   }
3649   case ISD::BRCOND:
3650     // Expand brcond's setcc into its constituent parts and create a BR_CC
3651     // Node.
3652     Tmp1 = Node->getOperand(0);
3653     Tmp2 = Node->getOperand(1);
3654     if (Tmp2.getOpcode() == ISD::SETCC) {
3655       Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3656                          Tmp1, Tmp2.getOperand(2),
3657                          Tmp2.getOperand(0), Tmp2.getOperand(1),
3658                          Node->getOperand(2));
3659     } else {
3660       // We test only the i1 bit.  Skip the AND if UNDEF or another AND.
3661       if (Tmp2.isUndef() ||
3662           (Tmp2.getOpcode() == ISD::AND &&
3663            isa<ConstantSDNode>(Tmp2.getOperand(1)) &&
3664            cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1))
3665         Tmp3 = Tmp2;
3666       else
3667         Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3668                            DAG.getConstant(1, dl, Tmp2.getValueType()));
3669       Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3670                          DAG.getCondCode(ISD::SETNE), Tmp3,
3671                          DAG.getConstant(0, dl, Tmp3.getValueType()),
3672                          Node->getOperand(2));
3673     }
3674     Results.push_back(Tmp1);
3675     break;
3676   case ISD::SETCC:
3677   case ISD::STRICT_FSETCC:
3678   case ISD::STRICT_FSETCCS: {
3679     bool IsStrict = Node->getOpcode() != ISD::SETCC;
3680     bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS;
3681     SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
3682     unsigned Offset = IsStrict ? 1 : 0;
3683     Tmp1 = Node->getOperand(0 + Offset);
3684     Tmp2 = Node->getOperand(1 + Offset);
3685     Tmp3 = Node->getOperand(2 + Offset);
3686     bool Legalized =
3687         LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3,
3688                               NeedInvert, dl, Chain, IsSignaling);
3689 
3690     if (Legalized) {
3691       // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3692       // condition code, create a new SETCC node.
3693       if (Tmp3.getNode())
3694         Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3695                            Tmp1, Tmp2, Tmp3, Node->getFlags());
3696 
3697       // If we expanded the SETCC by inverting the condition code, then wrap
3698       // the existing SETCC in a NOT to restore the intended condition.
3699       if (NeedInvert)
3700         Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0));
3701 
3702       Results.push_back(Tmp1);
3703       if (IsStrict)
3704         Results.push_back(Chain);
3705 
3706       break;
3707     }
3708 
3709     // FIXME: It seems Legalized is false iff CCCode is Legal. I don't
3710     // understand if this code is useful for strict nodes.
3711     assert(!IsStrict && "Don't know how to expand for strict nodes.");
3712 
3713     // Otherwise, SETCC for the given comparison type must be completely
3714     // illegal; expand it into a SELECT_CC.
3715     EVT VT = Node->getValueType(0);
3716     int TrueValue;
3717     switch (TLI.getBooleanContents(Tmp1.getValueType())) {
3718     case TargetLowering::ZeroOrOneBooleanContent:
3719     case TargetLowering::UndefinedBooleanContent:
3720       TrueValue = 1;
3721       break;
3722     case TargetLowering::ZeroOrNegativeOneBooleanContent:
3723       TrueValue = -1;
3724       break;
3725     }
3726     Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3727                        DAG.getConstant(TrueValue, dl, VT),
3728                        DAG.getConstant(0, dl, VT),
3729                        Tmp3);
3730     Tmp1->setFlags(Node->getFlags());
3731     Results.push_back(Tmp1);
3732     break;
3733   }
3734   case ISD::SELECT_CC: {
3735     // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS
3736     Tmp1 = Node->getOperand(0);   // LHS
3737     Tmp2 = Node->getOperand(1);   // RHS
3738     Tmp3 = Node->getOperand(2);   // True
3739     Tmp4 = Node->getOperand(3);   // False
3740     EVT VT = Node->getValueType(0);
3741     SDValue Chain;
3742     SDValue CC = Node->getOperand(4);
3743     ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get();
3744 
3745     if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) {
3746       // If the condition code is legal, then we need to expand this
3747       // node using SETCC and SELECT.
3748       EVT CmpVT = Tmp1.getValueType();
3749       assert(!TLI.isOperationExpand(ISD::SELECT, VT) &&
3750              "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
3751              "expanded.");
3752       EVT CCVT = getSetCCResultType(CmpVT);
3753       SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags());
3754       Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4));
3755       break;
3756     }
3757 
3758     // SELECT_CC is legal, so the condition code must not be.
3759     bool Legalized = false;
3760     // Try to legalize by inverting the condition.  This is for targets that
3761     // might support an ordered version of a condition, but not the unordered
3762     // version (or vice versa).
3763     ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType());
3764     if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) {
3765       // Use the new condition code and swap true and false
3766       Legalized = true;
3767       Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC);
3768       Tmp1->setFlags(Node->getFlags());
3769     } else {
3770       // If The inverse is not legal, then try to swap the arguments using
3771       // the inverse condition code.
3772       ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC);
3773       if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) {
3774         // The swapped inverse condition is legal, so swap true and false,
3775         // lhs and rhs.
3776         Legalized = true;
3777         Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC);
3778         Tmp1->setFlags(Node->getFlags());
3779       }
3780     }
3781 
3782     if (!Legalized) {
3783       Legalized = LegalizeSetCCCondCode(getSetCCResultType(Tmp1.getValueType()),
3784                                         Tmp1, Tmp2, CC, NeedInvert, dl, Chain);
3785 
3786       assert(Legalized && "Can't legalize SELECT_CC with legal condition!");
3787 
3788       // If we expanded the SETCC by inverting the condition code, then swap
3789       // the True/False operands to match.
3790       if (NeedInvert)
3791         std::swap(Tmp3, Tmp4);
3792 
3793       // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3794       // condition code, create a new SELECT_CC node.
3795       if (CC.getNode()) {
3796         Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0),
3797                            Tmp1, Tmp2, Tmp3, Tmp4, CC);
3798       } else {
3799         Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType());
3800         CC = DAG.getCondCode(ISD::SETNE);
3801         Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1,
3802                            Tmp2, Tmp3, Tmp4, CC);
3803       }
3804       Tmp1->setFlags(Node->getFlags());
3805     }
3806     Results.push_back(Tmp1);
3807     break;
3808   }
3809   case ISD::BR_CC: {
3810     // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS
3811     SDValue Chain;
3812     Tmp1 = Node->getOperand(0);              // Chain
3813     Tmp2 = Node->getOperand(2);              // LHS
3814     Tmp3 = Node->getOperand(3);              // RHS
3815     Tmp4 = Node->getOperand(1);              // CC
3816 
3817     bool Legalized =
3818         LegalizeSetCCCondCode(getSetCCResultType(Tmp2.getValueType()), Tmp2,
3819                               Tmp3, Tmp4, NeedInvert, dl, Chain);
3820     (void)Legalized;
3821     assert(Legalized && "Can't legalize BR_CC with legal condition!");
3822 
3823     assert(!NeedInvert && "Don't know how to invert BR_CC!");
3824 
3825     // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
3826     // node.
3827     if (Tmp4.getNode()) {
3828       Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1,
3829                          Tmp4, Tmp2, Tmp3, Node->getOperand(4));
3830     } else {
3831       Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType());
3832       Tmp4 = DAG.getCondCode(ISD::SETNE);
3833       Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4,
3834                          Tmp2, Tmp3, Node->getOperand(4));
3835     }
3836     Results.push_back(Tmp1);
3837     break;
3838   }
3839   case ISD::BUILD_VECTOR:
3840     Results.push_back(ExpandBUILD_VECTOR(Node));
3841     break;
3842   case ISD::SPLAT_VECTOR:
3843     Results.push_back(ExpandSPLAT_VECTOR(Node));
3844     break;
3845   case ISD::SRA:
3846   case ISD::SRL:
3847   case ISD::SHL: {
3848     // Scalarize vector SRA/SRL/SHL.
3849     EVT VT = Node->getValueType(0);
3850     assert(VT.isVector() && "Unable to legalize non-vector shift");
3851     assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3852     unsigned NumElem = VT.getVectorNumElements();
3853 
3854     SmallVector<SDValue, 8> Scalars;
3855     for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3856       SDValue Ex =
3857           DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(),
3858                       Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl));
3859       SDValue Sh =
3860           DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(),
3861                       Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl));
3862       Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3863                                     VT.getScalarType(), Ex, Sh));
3864     }
3865 
3866     SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars);
3867     Results.push_back(Result);
3868     break;
3869   }
3870   case ISD::VECREDUCE_FADD:
3871   case ISD::VECREDUCE_FMUL:
3872   case ISD::VECREDUCE_ADD:
3873   case ISD::VECREDUCE_MUL:
3874   case ISD::VECREDUCE_AND:
3875   case ISD::VECREDUCE_OR:
3876   case ISD::VECREDUCE_XOR:
3877   case ISD::VECREDUCE_SMAX:
3878   case ISD::VECREDUCE_SMIN:
3879   case ISD::VECREDUCE_UMAX:
3880   case ISD::VECREDUCE_UMIN:
3881   case ISD::VECREDUCE_FMAX:
3882   case ISD::VECREDUCE_FMIN:
3883     Results.push_back(TLI.expandVecReduce(Node, DAG));
3884     break;
3885   case ISD::GLOBAL_OFFSET_TABLE:
3886   case ISD::GlobalAddress:
3887   case ISD::GlobalTLSAddress:
3888   case ISD::ExternalSymbol:
3889   case ISD::ConstantPool:
3890   case ISD::JumpTable:
3891   case ISD::INTRINSIC_W_CHAIN:
3892   case ISD::INTRINSIC_WO_CHAIN:
3893   case ISD::INTRINSIC_VOID:
3894     // FIXME: Custom lowering for these operations shouldn't return null!
3895     // Return true so that we don't call ConvertNodeToLibcall which also won't
3896     // do anything.
3897     return true;
3898   }
3899 
3900   if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) {
3901     // FIXME: We were asked to expand a strict floating-point operation,
3902     // but there is currently no expansion implemented that would preserve
3903     // the "strict" properties.  For now, we just fall back to the non-strict
3904     // version if that is legal on the target.  The actual mutation of the
3905     // operation will happen in SelectionDAGISel::DoInstructionSelection.
3906     switch (Node->getOpcode()) {
3907     default:
3908       if (TLI.getStrictFPOperationAction(Node->getOpcode(),
3909                                          Node->getValueType(0))
3910           == TargetLowering::Legal)
3911         return true;
3912       break;
3913     case ISD::STRICT_LRINT:
3914     case ISD::STRICT_LLRINT:
3915     case ISD::STRICT_LROUND:
3916     case ISD::STRICT_LLROUND:
3917       // These are registered by the operand type instead of the value
3918       // type. Reflect that here.
3919       if (TLI.getStrictFPOperationAction(Node->getOpcode(),
3920                                          Node->getOperand(1).getValueType())
3921           == TargetLowering::Legal)
3922         return true;
3923       break;
3924     }
3925   }
3926 
3927   // Replace the original node with the legalized result.
3928   if (Results.empty()) {
3929     LLVM_DEBUG(dbgs() << "Cannot expand node\n");
3930     return false;
3931   }
3932 
3933   LLVM_DEBUG(dbgs() << "Successfully expanded node\n");
3934   ReplaceNode(Node, Results.data());
3935   return true;
3936 }
3937 
3938 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) {
3939   LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n");
3940   SmallVector<SDValue, 8> Results;
3941   SDLoc dl(Node);
3942   // FIXME: Check flags on the node to see if we can use a finite call.
3943   unsigned Opc = Node->getOpcode();
3944   switch (Opc) {
3945   case ISD::ATOMIC_FENCE: {
3946     // If the target didn't lower this, lower it to '__sync_synchronize()' call
3947     // FIXME: handle "fence singlethread" more efficiently.
3948     TargetLowering::ArgListTy Args;
3949 
3950     TargetLowering::CallLoweringInfo CLI(DAG);
3951     CLI.setDebugLoc(dl)
3952         .setChain(Node->getOperand(0))
3953         .setLibCallee(
3954             CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3955             DAG.getExternalSymbol("__sync_synchronize",
3956                                   TLI.getPointerTy(DAG.getDataLayout())),
3957             std::move(Args));
3958 
3959     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3960 
3961     Results.push_back(CallResult.second);
3962     break;
3963   }
3964   // By default, atomic intrinsics are marked Legal and lowered. Targets
3965   // which don't support them directly, however, may want libcalls, in which
3966   // case they mark them Expand, and we get here.
3967   case ISD::ATOMIC_SWAP:
3968   case ISD::ATOMIC_LOAD_ADD:
3969   case ISD::ATOMIC_LOAD_SUB:
3970   case ISD::ATOMIC_LOAD_AND:
3971   case ISD::ATOMIC_LOAD_CLR:
3972   case ISD::ATOMIC_LOAD_OR:
3973   case ISD::ATOMIC_LOAD_XOR:
3974   case ISD::ATOMIC_LOAD_NAND:
3975   case ISD::ATOMIC_LOAD_MIN:
3976   case ISD::ATOMIC_LOAD_MAX:
3977   case ISD::ATOMIC_LOAD_UMIN:
3978   case ISD::ATOMIC_LOAD_UMAX:
3979   case ISD::ATOMIC_CMP_SWAP: {
3980     MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
3981     RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT);
3982     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!");
3983 
3984     EVT RetVT = Node->getValueType(0);
3985     SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end());
3986     TargetLowering::MakeLibCallOptions CallOptions;
3987     std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
3988                                                       Ops, CallOptions,
3989                                                       SDLoc(Node),
3990                                                       Node->getOperand(0));
3991     Results.push_back(Tmp.first);
3992     Results.push_back(Tmp.second);
3993     break;
3994   }
3995   case ISD::TRAP: {
3996     // If this operation is not supported, lower it to 'abort()' call
3997     TargetLowering::ArgListTy Args;
3998     TargetLowering::CallLoweringInfo CLI(DAG);
3999     CLI.setDebugLoc(dl)
4000         .setChain(Node->getOperand(0))
4001         .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
4002                       DAG.getExternalSymbol(
4003                           "abort", TLI.getPointerTy(DAG.getDataLayout())),
4004                       std::move(Args));
4005     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
4006 
4007     Results.push_back(CallResult.second);
4008     break;
4009   }
4010   case ISD::FMINNUM:
4011   case ISD::STRICT_FMINNUM:
4012     ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64,
4013                     RTLIB::FMIN_F80, RTLIB::FMIN_F128,
4014                     RTLIB::FMIN_PPCF128, Results);
4015     break;
4016   case ISD::FMAXNUM:
4017   case ISD::STRICT_FMAXNUM:
4018     ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64,
4019                     RTLIB::FMAX_F80, RTLIB::FMAX_F128,
4020                     RTLIB::FMAX_PPCF128, Results);
4021     break;
4022   case ISD::FSQRT:
4023   case ISD::STRICT_FSQRT:
4024     ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
4025                     RTLIB::SQRT_F80, RTLIB::SQRT_F128,
4026                     RTLIB::SQRT_PPCF128, Results);
4027     break;
4028   case ISD::FCBRT:
4029     ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64,
4030                     RTLIB::CBRT_F80, RTLIB::CBRT_F128,
4031                     RTLIB::CBRT_PPCF128, Results);
4032     break;
4033   case ISD::FSIN:
4034   case ISD::STRICT_FSIN:
4035     ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
4036                     RTLIB::SIN_F80, RTLIB::SIN_F128,
4037                     RTLIB::SIN_PPCF128, Results);
4038     break;
4039   case ISD::FCOS:
4040   case ISD::STRICT_FCOS:
4041     ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
4042                     RTLIB::COS_F80, RTLIB::COS_F128,
4043                     RTLIB::COS_PPCF128, Results);
4044     break;
4045   case ISD::FSINCOS:
4046     // Expand into sincos libcall.
4047     ExpandSinCosLibCall(Node, Results);
4048     break;
4049   case ISD::FLOG:
4050   case ISD::STRICT_FLOG:
4051     ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80,
4052                     RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results);
4053     break;
4054   case ISD::FLOG2:
4055   case ISD::STRICT_FLOG2:
4056     ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80,
4057                     RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results);
4058     break;
4059   case ISD::FLOG10:
4060   case ISD::STRICT_FLOG10:
4061     ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80,
4062                     RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results);
4063     break;
4064   case ISD::FEXP:
4065   case ISD::STRICT_FEXP:
4066     ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80,
4067                     RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results);
4068     break;
4069   case ISD::FEXP2:
4070   case ISD::STRICT_FEXP2:
4071     ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80,
4072                     RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results);
4073     break;
4074   case ISD::FTRUNC:
4075   case ISD::STRICT_FTRUNC:
4076     ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
4077                     RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
4078                     RTLIB::TRUNC_PPCF128, Results);
4079     break;
4080   case ISD::FFLOOR:
4081   case ISD::STRICT_FFLOOR:
4082     ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
4083                     RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
4084                     RTLIB::FLOOR_PPCF128, Results);
4085     break;
4086   case ISD::FCEIL:
4087   case ISD::STRICT_FCEIL:
4088     ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
4089                     RTLIB::CEIL_F80, RTLIB::CEIL_F128,
4090                     RTLIB::CEIL_PPCF128, Results);
4091     break;
4092   case ISD::FRINT:
4093   case ISD::STRICT_FRINT:
4094     ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
4095                     RTLIB::RINT_F80, RTLIB::RINT_F128,
4096                     RTLIB::RINT_PPCF128, Results);
4097     break;
4098   case ISD::FNEARBYINT:
4099   case ISD::STRICT_FNEARBYINT:
4100     ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
4101                     RTLIB::NEARBYINT_F64,
4102                     RTLIB::NEARBYINT_F80,
4103                     RTLIB::NEARBYINT_F128,
4104                     RTLIB::NEARBYINT_PPCF128, Results);
4105     break;
4106   case ISD::FROUND:
4107   case ISD::STRICT_FROUND:
4108     ExpandFPLibCall(Node, RTLIB::ROUND_F32,
4109                     RTLIB::ROUND_F64,
4110                     RTLIB::ROUND_F80,
4111                     RTLIB::ROUND_F128,
4112                     RTLIB::ROUND_PPCF128, Results);
4113     break;
4114   case ISD::FROUNDEVEN:
4115   case ISD::STRICT_FROUNDEVEN:
4116     ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32,
4117                     RTLIB::ROUNDEVEN_F64,
4118                     RTLIB::ROUNDEVEN_F80,
4119                     RTLIB::ROUNDEVEN_F128,
4120                     RTLIB::ROUNDEVEN_PPCF128, Results);
4121     break;
4122   case ISD::FPOWI:
4123   case ISD::STRICT_FPOWI: {
4124     RTLIB::Libcall LC;
4125     switch (Node->getSimpleValueType(0).SimpleTy) {
4126     default: llvm_unreachable("Unexpected request for libcall!");
4127     case MVT::f32: LC = RTLIB::POWI_F32; break;
4128     case MVT::f64: LC = RTLIB::POWI_F64; break;
4129     case MVT::f80: LC = RTLIB::POWI_F80; break;
4130     case MVT::f128: LC = RTLIB::POWI_F128; break;
4131     case MVT::ppcf128: LC = RTLIB::POWI_PPCF128; break;
4132     }
4133     if (!TLI.getLibcallName(LC)) {
4134       // Some targets don't have a powi libcall; use pow instead.
4135       SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node),
4136                                      Node->getValueType(0),
4137                                      Node->getOperand(1));
4138       Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node),
4139                                     Node->getValueType(0), Node->getOperand(0),
4140                                     Exponent));
4141       break;
4142     }
4143     ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
4144                     RTLIB::POWI_F80, RTLIB::POWI_F128,
4145                     RTLIB::POWI_PPCF128, Results);
4146     break;
4147   }
4148   case ISD::FPOW:
4149   case ISD::STRICT_FPOW:
4150     ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80,
4151                     RTLIB::POW_F128, RTLIB::POW_PPCF128, Results);
4152     break;
4153   case ISD::LROUND:
4154   case ISD::STRICT_LROUND:
4155     ExpandArgFPLibCall(Node, RTLIB::LROUND_F32,
4156                        RTLIB::LROUND_F64, RTLIB::LROUND_F80,
4157                        RTLIB::LROUND_F128,
4158                        RTLIB::LROUND_PPCF128, Results);
4159     break;
4160   case ISD::LLROUND:
4161   case ISD::STRICT_LLROUND:
4162     ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32,
4163                        RTLIB::LLROUND_F64, RTLIB::LLROUND_F80,
4164                        RTLIB::LLROUND_F128,
4165                        RTLIB::LLROUND_PPCF128, Results);
4166     break;
4167   case ISD::LRINT:
4168   case ISD::STRICT_LRINT:
4169     ExpandArgFPLibCall(Node, RTLIB::LRINT_F32,
4170                        RTLIB::LRINT_F64, RTLIB::LRINT_F80,
4171                        RTLIB::LRINT_F128,
4172                        RTLIB::LRINT_PPCF128, Results);
4173     break;
4174   case ISD::LLRINT:
4175   case ISD::STRICT_LLRINT:
4176     ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32,
4177                        RTLIB::LLRINT_F64, RTLIB::LLRINT_F80,
4178                        RTLIB::LLRINT_F128,
4179                        RTLIB::LLRINT_PPCF128, Results);
4180     break;
4181   case ISD::FDIV:
4182   case ISD::STRICT_FDIV:
4183     ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
4184                     RTLIB::DIV_F80, RTLIB::DIV_F128,
4185                     RTLIB::DIV_PPCF128, Results);
4186     break;
4187   case ISD::FREM:
4188   case ISD::STRICT_FREM:
4189     ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
4190                     RTLIB::REM_F80, RTLIB::REM_F128,
4191                     RTLIB::REM_PPCF128, Results);
4192     break;
4193   case ISD::FMA:
4194   case ISD::STRICT_FMA:
4195     ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
4196                     RTLIB::FMA_F80, RTLIB::FMA_F128,
4197                     RTLIB::FMA_PPCF128, Results);
4198     break;
4199   case ISD::FADD:
4200   case ISD::STRICT_FADD:
4201     ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64,
4202                     RTLIB::ADD_F80, RTLIB::ADD_F128,
4203                     RTLIB::ADD_PPCF128, Results);
4204     break;
4205   case ISD::FMUL:
4206   case ISD::STRICT_FMUL:
4207     ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64,
4208                     RTLIB::MUL_F80, RTLIB::MUL_F128,
4209                     RTLIB::MUL_PPCF128, Results);
4210     break;
4211   case ISD::FP16_TO_FP:
4212     if (Node->getValueType(0) == MVT::f32) {
4213       Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
4214     }
4215     break;
4216   case ISD::STRICT_FP16_TO_FP: {
4217     if (Node->getValueType(0) == MVT::f32) {
4218       TargetLowering::MakeLibCallOptions CallOptions;
4219       std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(
4220           DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions,
4221           SDLoc(Node), Node->getOperand(0));
4222       Results.push_back(Tmp.first);
4223       Results.push_back(Tmp.second);
4224     }
4225     break;
4226   }
4227   case ISD::FP_TO_FP16: {
4228     RTLIB::Libcall LC =
4229         RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16);
4230     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16");
4231     Results.push_back(ExpandLibCall(LC, Node, false));
4232     break;
4233   }
4234   case ISD::STRICT_FP_TO_FP16: {
4235     RTLIB::Libcall LC =
4236         RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16);
4237     assert(LC != RTLIB::UNKNOWN_LIBCALL &&
4238            "Unable to expand strict_fp_to_fp16");
4239     TargetLowering::MakeLibCallOptions CallOptions;
4240     std::pair<SDValue, SDValue> Tmp =
4241         TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1),
4242                         CallOptions, SDLoc(Node), Node->getOperand(0));
4243     Results.push_back(Tmp.first);
4244     Results.push_back(Tmp.second);
4245     break;
4246   }
4247   case ISD::FSUB:
4248   case ISD::STRICT_FSUB:
4249     ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64,
4250                     RTLIB::SUB_F80, RTLIB::SUB_F128,
4251                     RTLIB::SUB_PPCF128, Results);
4252     break;
4253   case ISD::SREM:
4254     Results.push_back(ExpandIntLibCall(Node, true,
4255                                        RTLIB::SREM_I8,
4256                                        RTLIB::SREM_I16, RTLIB::SREM_I32,
4257                                        RTLIB::SREM_I64, RTLIB::SREM_I128));
4258     break;
4259   case ISD::UREM:
4260     Results.push_back(ExpandIntLibCall(Node, false,
4261                                        RTLIB::UREM_I8,
4262                                        RTLIB::UREM_I16, RTLIB::UREM_I32,
4263                                        RTLIB::UREM_I64, RTLIB::UREM_I128));
4264     break;
4265   case ISD::SDIV:
4266     Results.push_back(ExpandIntLibCall(Node, true,
4267                                        RTLIB::SDIV_I8,
4268                                        RTLIB::SDIV_I16, RTLIB::SDIV_I32,
4269                                        RTLIB::SDIV_I64, RTLIB::SDIV_I128));
4270     break;
4271   case ISD::UDIV:
4272     Results.push_back(ExpandIntLibCall(Node, false,
4273                                        RTLIB::UDIV_I8,
4274                                        RTLIB::UDIV_I16, RTLIB::UDIV_I32,
4275                                        RTLIB::UDIV_I64, RTLIB::UDIV_I128));
4276     break;
4277   case ISD::SDIVREM:
4278   case ISD::UDIVREM:
4279     // Expand into divrem libcall
4280     ExpandDivRemLibCall(Node, Results);
4281     break;
4282   case ISD::MUL:
4283     Results.push_back(ExpandIntLibCall(Node, false,
4284                                        RTLIB::MUL_I8,
4285                                        RTLIB::MUL_I16, RTLIB::MUL_I32,
4286                                        RTLIB::MUL_I64, RTLIB::MUL_I128));
4287     break;
4288   case ISD::CTLZ_ZERO_UNDEF:
4289     switch (Node->getSimpleValueType(0).SimpleTy) {
4290     default:
4291       llvm_unreachable("LibCall explicitly requested, but not available");
4292     case MVT::i32:
4293       Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false));
4294       break;
4295     case MVT::i64:
4296       Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false));
4297       break;
4298     case MVT::i128:
4299       Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false));
4300       break;
4301     }
4302     break;
4303   }
4304 
4305   // Replace the original node with the legalized result.
4306   if (!Results.empty()) {
4307     LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n");
4308     ReplaceNode(Node, Results.data());
4309   } else
4310     LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n");
4311 }
4312 
4313 // Determine the vector type to use in place of an original scalar element when
4314 // promoting equally sized vectors.
4315 static MVT getPromotedVectorElementType(const TargetLowering &TLI,
4316                                         MVT EltVT, MVT NewEltVT) {
4317   unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits();
4318   MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt);
4319   assert(TLI.isTypeLegal(MidVT) && "unexpected");
4320   return MidVT;
4321 }
4322 
4323 void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
4324   LLVM_DEBUG(dbgs() << "Trying to promote node\n");
4325   SmallVector<SDValue, 8> Results;
4326   MVT OVT = Node->getSimpleValueType(0);
4327   if (Node->getOpcode() == ISD::UINT_TO_FP ||
4328       Node->getOpcode() == ISD::SINT_TO_FP ||
4329       Node->getOpcode() == ISD::SETCC ||
4330       Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
4331       Node->getOpcode() == ISD::INSERT_VECTOR_ELT) {
4332     OVT = Node->getOperand(0).getSimpleValueType();
4333   }
4334   if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP ||
4335       Node->getOpcode() == ISD::STRICT_SINT_TO_FP)
4336     OVT = Node->getOperand(1).getSimpleValueType();
4337   if (Node->getOpcode() == ISD::BR_CC)
4338     OVT = Node->getOperand(2).getSimpleValueType();
4339   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
4340   SDLoc dl(Node);
4341   SDValue Tmp1, Tmp2, Tmp3;
4342   switch (Node->getOpcode()) {
4343   case ISD::CTTZ:
4344   case ISD::CTTZ_ZERO_UNDEF:
4345   case ISD::CTLZ:
4346   case ISD::CTLZ_ZERO_UNDEF:
4347   case ISD::CTPOP:
4348     // Zero extend the argument unless its cttz, then use any_extend.
4349     if (Node->getOpcode() == ISD::CTTZ ||
4350         Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF)
4351       Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0));
4352     else
4353       Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4354 
4355     if (Node->getOpcode() == ISD::CTTZ) {
4356       // The count is the same in the promoted type except if the original
4357       // value was zero.  This can be handled by setting the bit just off
4358       // the top of the original type.
4359       auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(),
4360                                         OVT.getSizeInBits());
4361       Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1,
4362                          DAG.getConstant(TopBit, dl, NVT));
4363     }
4364     // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
4365     // already the correct result.
4366     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4367     if (Node->getOpcode() == ISD::CTLZ ||
4368         Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
4369       // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
4370       Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
4371                           DAG.getConstant(NVT.getSizeInBits() -
4372                                           OVT.getSizeInBits(), dl, NVT));
4373     }
4374     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4375     break;
4376   case ISD::BITREVERSE:
4377   case ISD::BSWAP: {
4378     unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
4379     Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4380     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4381     Tmp1 = DAG.getNode(
4382         ISD::SRL, dl, NVT, Tmp1,
4383         DAG.getConstant(DiffBits, dl,
4384                         TLI.getShiftAmountTy(NVT, DAG.getDataLayout())));
4385 
4386     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4387     break;
4388   }
4389   case ISD::FP_TO_UINT:
4390   case ISD::STRICT_FP_TO_UINT:
4391   case ISD::FP_TO_SINT:
4392   case ISD::STRICT_FP_TO_SINT:
4393     PromoteLegalFP_TO_INT(Node, dl, Results);
4394     break;
4395   case ISD::UINT_TO_FP:
4396   case ISD::STRICT_UINT_TO_FP:
4397   case ISD::SINT_TO_FP:
4398   case ISD::STRICT_SINT_TO_FP:
4399     PromoteLegalINT_TO_FP(Node, dl, Results);
4400     break;
4401   case ISD::VAARG: {
4402     SDValue Chain = Node->getOperand(0); // Get the chain.
4403     SDValue Ptr = Node->getOperand(1); // Get the pointer.
4404 
4405     unsigned TruncOp;
4406     if (OVT.isVector()) {
4407       TruncOp = ISD::BITCAST;
4408     } else {
4409       assert(OVT.isInteger()
4410         && "VAARG promotion is supported only for vectors or integer types");
4411       TruncOp = ISD::TRUNCATE;
4412     }
4413 
4414     // Perform the larger operation, then convert back
4415     Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
4416              Node->getConstantOperandVal(3));
4417     Chain = Tmp1.getValue(1);
4418 
4419     Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
4420 
4421     // Modified the chain result - switch anything that used the old chain to
4422     // use the new one.
4423     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
4424     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
4425     if (UpdatedNodes) {
4426       UpdatedNodes->insert(Tmp2.getNode());
4427       UpdatedNodes->insert(Chain.getNode());
4428     }
4429     ReplacedNode(Node);
4430     break;
4431   }
4432   case ISD::MUL:
4433   case ISD::SDIV:
4434   case ISD::SREM:
4435   case ISD::UDIV:
4436   case ISD::UREM:
4437   case ISD::AND:
4438   case ISD::OR:
4439   case ISD::XOR: {
4440     unsigned ExtOp, TruncOp;
4441     if (OVT.isVector()) {
4442       ExtOp   = ISD::BITCAST;
4443       TruncOp = ISD::BITCAST;
4444     } else {
4445       assert(OVT.isInteger() && "Cannot promote logic operation");
4446 
4447       switch (Node->getOpcode()) {
4448       default:
4449         ExtOp = ISD::ANY_EXTEND;
4450         break;
4451       case ISD::SDIV:
4452       case ISD::SREM:
4453         ExtOp = ISD::SIGN_EXTEND;
4454         break;
4455       case ISD::UDIV:
4456       case ISD::UREM:
4457         ExtOp = ISD::ZERO_EXTEND;
4458         break;
4459       }
4460       TruncOp = ISD::TRUNCATE;
4461     }
4462     // Promote each of the values to the new type.
4463     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4464     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4465     // Perform the larger operation, then convert back
4466     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4467     Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
4468     break;
4469   }
4470   case ISD::UMUL_LOHI:
4471   case ISD::SMUL_LOHI: {
4472     // Promote to a multiply in a wider integer type.
4473     unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND
4474                                                          : ISD::SIGN_EXTEND;
4475     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4476     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4477     Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2);
4478 
4479     auto &DL = DAG.getDataLayout();
4480     unsigned OriginalSize = OVT.getScalarSizeInBits();
4481     Tmp2 = DAG.getNode(
4482         ISD::SRL, dl, NVT, Tmp1,
4483         DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT)));
4484     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4485     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2));
4486     break;
4487   }
4488   case ISD::SELECT: {
4489     unsigned ExtOp, TruncOp;
4490     if (Node->getValueType(0).isVector() ||
4491         Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) {
4492       ExtOp   = ISD::BITCAST;
4493       TruncOp = ISD::BITCAST;
4494     } else if (Node->getValueType(0).isInteger()) {
4495       ExtOp   = ISD::ANY_EXTEND;
4496       TruncOp = ISD::TRUNCATE;
4497     } else {
4498       ExtOp   = ISD::FP_EXTEND;
4499       TruncOp = ISD::FP_ROUND;
4500     }
4501     Tmp1 = Node->getOperand(0);
4502     // Promote each of the values to the new type.
4503     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4504     Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4505     // Perform the larger operation, then round down.
4506     Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
4507     Tmp1->setFlags(Node->getFlags());
4508     if (TruncOp != ISD::FP_ROUND)
4509       Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
4510     else
4511       Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
4512                          DAG.getIntPtrConstant(0, dl));
4513     Results.push_back(Tmp1);
4514     break;
4515   }
4516   case ISD::VECTOR_SHUFFLE: {
4517     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
4518 
4519     // Cast the two input vectors.
4520     Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
4521     Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
4522 
4523     // Convert the shuffle mask to the right # elements.
4524     Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
4525     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
4526     Results.push_back(Tmp1);
4527     break;
4528   }
4529   case ISD::SETCC: {
4530     unsigned ExtOp = ISD::FP_EXTEND;
4531     if (NVT.isInteger()) {
4532       ISD::CondCode CCCode =
4533         cast<CondCodeSDNode>(Node->getOperand(2))->get();
4534       ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4535     }
4536     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4537     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4538     Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1,
4539                                   Tmp2, Node->getOperand(2), Node->getFlags()));
4540     break;
4541   }
4542   case ISD::BR_CC: {
4543     unsigned ExtOp = ISD::FP_EXTEND;
4544     if (NVT.isInteger()) {
4545       ISD::CondCode CCCode =
4546         cast<CondCodeSDNode>(Node->getOperand(1))->get();
4547       ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4548     }
4549     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4550     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3));
4551     Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0),
4552                                   Node->getOperand(0), Node->getOperand(1),
4553                                   Tmp1, Tmp2, Node->getOperand(4)));
4554     break;
4555   }
4556   case ISD::FADD:
4557   case ISD::FSUB:
4558   case ISD::FMUL:
4559   case ISD::FDIV:
4560   case ISD::FREM:
4561   case ISD::FMINNUM:
4562   case ISD::FMAXNUM:
4563   case ISD::FPOW:
4564     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4565     Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4566     Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2,
4567                        Node->getFlags());
4568     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4569                                   Tmp3, DAG.getIntPtrConstant(0, dl)));
4570     break;
4571   case ISD::STRICT_FREM:
4572   case ISD::STRICT_FPOW:
4573     Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4574                        {Node->getOperand(0), Node->getOperand(1)});
4575     Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4576                        {Node->getOperand(0), Node->getOperand(2)});
4577     Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1),
4578                        Tmp2.getValue(1));
4579     Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other},
4580                        {Tmp3, Tmp1, Tmp2});
4581     Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other},
4582                        {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)});
4583     Results.push_back(Tmp1);
4584     Results.push_back(Tmp1.getValue(1));
4585     break;
4586   case ISD::FMA:
4587     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4588     Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4589     Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2));
4590     Results.push_back(
4591         DAG.getNode(ISD::FP_ROUND, dl, OVT,
4592                     DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3),
4593                     DAG.getIntPtrConstant(0, dl)));
4594     break;
4595   case ISD::FCOPYSIGN:
4596   case ISD::FPOWI: {
4597     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4598     Tmp2 = Node->getOperand(1);
4599     Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4600 
4601     // fcopysign doesn't change anything but the sign bit, so
4602     //   (fp_round (fcopysign (fpext a), b))
4603     // is as precise as
4604     //   (fp_round (fpext a))
4605     // which is a no-op. Mark it as a TRUNCating FP_ROUND.
4606     const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN);
4607     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4608                                   Tmp3, DAG.getIntPtrConstant(isTrunc, dl)));
4609     break;
4610   }
4611   case ISD::FFLOOR:
4612   case ISD::FCEIL:
4613   case ISD::FRINT:
4614   case ISD::FNEARBYINT:
4615   case ISD::FROUND:
4616   case ISD::FROUNDEVEN:
4617   case ISD::FTRUNC:
4618   case ISD::FNEG:
4619   case ISD::FSQRT:
4620   case ISD::FSIN:
4621   case ISD::FCOS:
4622   case ISD::FLOG:
4623   case ISD::FLOG2:
4624   case ISD::FLOG10:
4625   case ISD::FABS:
4626   case ISD::FEXP:
4627   case ISD::FEXP2:
4628     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4629     Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4630     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4631                                   Tmp2, DAG.getIntPtrConstant(0, dl)));
4632     break;
4633   case ISD::STRICT_FFLOOR:
4634   case ISD::STRICT_FCEIL:
4635   case ISD::STRICT_FSIN:
4636   case ISD::STRICT_FCOS:
4637   case ISD::STRICT_FLOG:
4638   case ISD::STRICT_FLOG10:
4639   case ISD::STRICT_FEXP:
4640     Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4641                        {Node->getOperand(0), Node->getOperand(1)});
4642     Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other},
4643                        {Tmp1.getValue(1), Tmp1});
4644     Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other},
4645                        {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)});
4646     Results.push_back(Tmp3);
4647     Results.push_back(Tmp3.getValue(1));
4648     break;
4649   case ISD::BUILD_VECTOR: {
4650     MVT EltVT = OVT.getVectorElementType();
4651     MVT NewEltVT = NVT.getVectorElementType();
4652 
4653     // Handle bitcasts to a different vector type with the same total bit size
4654     //
4655     // e.g. v2i64 = build_vector i64:x, i64:y => v4i32
4656     //  =>
4657     //  v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y))
4658 
4659     assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4660            "Invalid promote type for build_vector");
4661     assert(NewEltVT.bitsLT(EltVT) && "not handled");
4662 
4663     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4664 
4665     SmallVector<SDValue, 8> NewOps;
4666     for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) {
4667       SDValue Op = Node->getOperand(I);
4668       NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op));
4669     }
4670 
4671     SDLoc SL(Node);
4672     SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps);
4673     SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4674     Results.push_back(CvtVec);
4675     break;
4676   }
4677   case ISD::EXTRACT_VECTOR_ELT: {
4678     MVT EltVT = OVT.getVectorElementType();
4679     MVT NewEltVT = NVT.getVectorElementType();
4680 
4681     // Handle bitcasts to a different vector type with the same total bit size.
4682     //
4683     // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32
4684     //  =>
4685     //  v4i32:castx = bitcast x:v2i64
4686     //
4687     // i64 = bitcast
4688     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
4689     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
4690     //
4691 
4692     assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4693            "Invalid promote type for extract_vector_elt");
4694     assert(NewEltVT.bitsLT(EltVT) && "not handled");
4695 
4696     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4697     unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4698 
4699     SDValue Idx = Node->getOperand(1);
4700     EVT IdxVT = Idx.getValueType();
4701     SDLoc SL(Node);
4702     SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT);
4703     SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4704 
4705     SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4706 
4707     SmallVector<SDValue, 8> NewOps;
4708     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4709       SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4710       SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4711 
4712       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4713                                 CastVec, TmpIdx);
4714       NewOps.push_back(Elt);
4715     }
4716 
4717     SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps);
4718     Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec));
4719     break;
4720   }
4721   case ISD::INSERT_VECTOR_ELT: {
4722     MVT EltVT = OVT.getVectorElementType();
4723     MVT NewEltVT = NVT.getVectorElementType();
4724 
4725     // Handle bitcasts to a different vector type with the same total bit size
4726     //
4727     // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32
4728     //  =>
4729     //  v4i32:castx = bitcast x:v2i64
4730     //  v2i32:casty = bitcast y:i64
4731     //
4732     // v2i64 = bitcast
4733     //   (v4i32 insert_vector_elt
4734     //       (v4i32 insert_vector_elt v4i32:castx,
4735     //                                (extract_vector_elt casty, 0), 2 * z),
4736     //        (extract_vector_elt casty, 1), (2 * z + 1))
4737 
4738     assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4739            "Invalid promote type for insert_vector_elt");
4740     assert(NewEltVT.bitsLT(EltVT) && "not handled");
4741 
4742     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4743     unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4744 
4745     SDValue Val = Node->getOperand(1);
4746     SDValue Idx = Node->getOperand(2);
4747     EVT IdxVT = Idx.getValueType();
4748     SDLoc SL(Node);
4749 
4750     SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT);
4751     SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4752 
4753     SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4754     SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4755 
4756     SDValue NewVec = CastVec;
4757     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4758       SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4759       SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4760 
4761       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4762                                 CastVal, IdxOffset);
4763 
4764       NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT,
4765                            NewVec, Elt, InEltIdx);
4766     }
4767 
4768     Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec));
4769     break;
4770   }
4771   case ISD::SCALAR_TO_VECTOR: {
4772     MVT EltVT = OVT.getVectorElementType();
4773     MVT NewEltVT = NVT.getVectorElementType();
4774 
4775     // Handle bitcasts to different vector type with the same total bit size.
4776     //
4777     // e.g. v2i64 = scalar_to_vector x:i64
4778     //   =>
4779     //  concat_vectors (v2i32 bitcast x:i64), (v2i32 undef)
4780     //
4781 
4782     MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4783     SDValue Val = Node->getOperand(0);
4784     SDLoc SL(Node);
4785 
4786     SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4787     SDValue Undef = DAG.getUNDEF(MidVT);
4788 
4789     SmallVector<SDValue, 8> NewElts;
4790     NewElts.push_back(CastVal);
4791     for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I)
4792       NewElts.push_back(Undef);
4793 
4794     SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts);
4795     SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4796     Results.push_back(CvtVec);
4797     break;
4798   }
4799   case ISD::ATOMIC_SWAP: {
4800     AtomicSDNode *AM = cast<AtomicSDNode>(Node);
4801     SDLoc SL(Node);
4802     SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal());
4803     assert(NVT.getSizeInBits() == OVT.getSizeInBits() &&
4804            "unexpected promotion type");
4805     assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() &&
4806            "unexpected atomic_swap with illegal type");
4807 
4808     SDValue NewAtomic
4809       = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT,
4810                       DAG.getVTList(NVT, MVT::Other),
4811                       { AM->getChain(), AM->getBasePtr(), CastVal },
4812                       AM->getMemOperand());
4813     Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic));
4814     Results.push_back(NewAtomic.getValue(1));
4815     break;
4816   }
4817   }
4818 
4819   // Replace the original node with the legalized result.
4820   if (!Results.empty()) {
4821     LLVM_DEBUG(dbgs() << "Successfully promoted node\n");
4822     ReplaceNode(Node, Results.data());
4823   } else
4824     LLVM_DEBUG(dbgs() << "Could not promote node\n");
4825 }
4826 
4827 /// This is the entry point for the file.
4828 void SelectionDAG::Legalize() {
4829   AssignTopologicalOrder();
4830 
4831   SmallPtrSet<SDNode *, 16> LegalizedNodes;
4832   // Use a delete listener to remove nodes which were deleted during
4833   // legalization from LegalizeNodes. This is needed to handle the situation
4834   // where a new node is allocated by the object pool to the same address of a
4835   // previously deleted node.
4836   DAGNodeDeletedListener DeleteListener(
4837       *this,
4838       [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); });
4839 
4840   SelectionDAGLegalize Legalizer(*this, LegalizedNodes);
4841 
4842   // Visit all the nodes. We start in topological order, so that we see
4843   // nodes with their original operands intact. Legalization can produce
4844   // new nodes which may themselves need to be legalized. Iterate until all
4845   // nodes have been legalized.
4846   while (true) {
4847     bool AnyLegalized = false;
4848     for (auto NI = allnodes_end(); NI != allnodes_begin();) {
4849       --NI;
4850 
4851       SDNode *N = &*NI;
4852       if (N->use_empty() && N != getRoot().getNode()) {
4853         ++NI;
4854         DeleteNode(N);
4855         continue;
4856       }
4857 
4858       if (LegalizedNodes.insert(N).second) {
4859         AnyLegalized = true;
4860         Legalizer.LegalizeOp(N);
4861 
4862         if (N->use_empty() && N != getRoot().getNode()) {
4863           ++NI;
4864           DeleteNode(N);
4865         }
4866       }
4867     }
4868     if (!AnyLegalized)
4869       break;
4870 
4871   }
4872 
4873   // Remove dead nodes now.
4874   RemoveDeadNodes();
4875 }
4876 
4877 bool SelectionDAG::LegalizeOp(SDNode *N,
4878                               SmallSetVector<SDNode *, 16> &UpdatedNodes) {
4879   SmallPtrSet<SDNode *, 16> LegalizedNodes;
4880   SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes);
4881 
4882   // Directly insert the node in question, and legalize it. This will recurse
4883   // as needed through operands.
4884   LegalizedNodes.insert(N);
4885   Legalizer.LegalizeOp(N);
4886 
4887   return LegalizedNodes.count(N);
4888 }
4889