1 //===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::Legalize method. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/CodeGen/SelectionDAGNodes.h" 23 #include "llvm/IR/CallingConv.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DebugInfo.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetFrameLowering.h" 35 #include "llvm/Target/TargetLowering.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Target/TargetSubtargetInfo.h" 38 using namespace llvm; 39 40 #define DEBUG_TYPE "legalizedag" 41 42 namespace { 43 44 struct FloatSignAsInt; 45 46 //===----------------------------------------------------------------------===// 47 /// This takes an arbitrary SelectionDAG as input and 48 /// hacks on it until the target machine can handle it. This involves 49 /// eliminating value sizes the machine cannot handle (promoting small sizes to 50 /// large sizes or splitting up large values into small values) as well as 51 /// eliminating operations the machine cannot handle. 52 /// 53 /// This code also does a small amount of optimization and recognition of idioms 54 /// as part of its processing. For example, if a target does not support a 55 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 56 /// will attempt merge setcc and brc instructions into brcc's. 57 /// 58 class SelectionDAGLegalize { 59 const TargetMachine &TM; 60 const TargetLowering &TLI; 61 SelectionDAG &DAG; 62 63 /// \brief The set of nodes which have already been legalized. We hold a 64 /// reference to it in order to update as necessary on node deletion. 65 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 66 67 /// \brief A set of all the nodes updated during legalization. 68 SmallSetVector<SDNode *, 16> *UpdatedNodes; 69 70 EVT getSetCCResultType(EVT VT) const { 71 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 72 } 73 74 // Libcall insertion helpers. 75 76 public: 77 SelectionDAGLegalize(SelectionDAG &DAG, 78 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 79 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 80 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 81 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 82 83 /// \brief Legalizes the given operation. 84 void LegalizeOp(SDNode *Node); 85 86 private: 87 SDValue OptimizeFloatStore(StoreSDNode *ST); 88 89 void LegalizeLoadOps(SDNode *Node); 90 void LegalizeStoreOps(SDNode *Node); 91 92 /// Some targets cannot handle a variable 93 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 94 /// is necessary to spill the vector being inserted into to memory, perform 95 /// the insert there, and then read the result back. 96 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 97 const SDLoc &dl); 98 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 99 const SDLoc &dl); 100 101 /// Return a vector shuffle operation which 102 /// performs the same shuffe in terms of order or result bytes, but on a type 103 /// whose vector element type is narrower than the original shuffle type. 104 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 105 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 106 SDValue N1, SDValue N2, 107 ArrayRef<int> Mask) const; 108 109 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 110 bool &NeedInvert, const SDLoc &dl); 111 112 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 113 SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops, 114 unsigned NumOps, bool isSigned, const SDLoc &dl); 115 116 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC, 117 SDNode *Node, bool isSigned); 118 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 119 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 120 RTLIB::Libcall Call_F128, 121 RTLIB::Libcall Call_PPCF128); 122 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 123 RTLIB::Libcall Call_I8, 124 RTLIB::Libcall Call_I16, 125 RTLIB::Libcall Call_I32, 126 RTLIB::Libcall Call_I64, 127 RTLIB::Libcall Call_I128); 128 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 129 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 130 131 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 132 const SDLoc &dl); 133 SDValue ExpandBUILD_VECTOR(SDNode *Node); 134 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 135 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 136 SmallVectorImpl<SDValue> &Results); 137 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 138 SDValue Value) const; 139 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 140 SDValue NewIntValue) const; 141 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 142 SDValue ExpandFABS(SDNode *Node) const; 143 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT, 144 const SDLoc &dl); 145 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, 146 const SDLoc &dl); 147 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, 148 const SDLoc &dl); 149 150 SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl); 151 SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl); 152 SDValue ExpandBitCount(unsigned Opc, SDValue Op, const SDLoc &dl); 153 154 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 155 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 156 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 157 158 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 159 SDValue ExpandConstant(ConstantSDNode *CP); 160 161 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 162 bool ExpandNode(SDNode *Node); 163 void ConvertNodeToLibcall(SDNode *Node); 164 void PromoteNode(SDNode *Node); 165 166 public: 167 // Node replacement helpers 168 void ReplacedNode(SDNode *N) { 169 LegalizedNodes.erase(N); 170 if (UpdatedNodes) 171 UpdatedNodes->insert(N); 172 } 173 void ReplaceNode(SDNode *Old, SDNode *New) { 174 DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 175 dbgs() << " with: "; New->dump(&DAG)); 176 177 assert(Old->getNumValues() == New->getNumValues() && 178 "Replacing one node with another that produces a different number " 179 "of values!"); 180 DAG.ReplaceAllUsesWith(Old, New); 181 if (UpdatedNodes) 182 UpdatedNodes->insert(New); 183 ReplacedNode(Old); 184 } 185 void ReplaceNode(SDValue Old, SDValue New) { 186 DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 187 dbgs() << " with: "; New->dump(&DAG)); 188 189 DAG.ReplaceAllUsesWith(Old, New); 190 if (UpdatedNodes) 191 UpdatedNodes->insert(New.getNode()); 192 ReplacedNode(Old.getNode()); 193 } 194 void ReplaceNode(SDNode *Old, const SDValue *New) { 195 DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 196 197 DAG.ReplaceAllUsesWith(Old, New); 198 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 199 DEBUG(dbgs() << (i == 0 ? " with: " 200 : " and: "); 201 New[i]->dump(&DAG)); 202 if (UpdatedNodes) 203 UpdatedNodes->insert(New[i].getNode()); 204 } 205 ReplacedNode(Old); 206 } 207 }; 208 } 209 210 /// Return a vector shuffle operation which 211 /// performs the same shuffe in terms of order or result bytes, but on a type 212 /// whose vector element type is narrower than the original shuffle type. 213 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 214 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 215 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 216 ArrayRef<int> Mask) const { 217 unsigned NumMaskElts = VT.getVectorNumElements(); 218 unsigned NumDestElts = NVT.getVectorNumElements(); 219 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 220 221 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 222 223 if (NumEltsGrowth == 1) 224 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 225 226 SmallVector<int, 8> NewMask; 227 for (unsigned i = 0; i != NumMaskElts; ++i) { 228 int Idx = Mask[i]; 229 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 230 if (Idx < 0) 231 NewMask.push_back(-1); 232 else 233 NewMask.push_back(Idx * NumEltsGrowth + j); 234 } 235 } 236 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 237 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 238 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 239 } 240 241 /// Expands the ConstantFP node to an integer constant or 242 /// a load from the constant pool. 243 SDValue 244 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 245 bool Extend = false; 246 SDLoc dl(CFP); 247 248 // If a FP immediate is precise when represented as a float and if the 249 // target can do an extending load from float to double, we put it into 250 // the constant pool as a float, even if it's is statically typed as a 251 // double. This shrinks FP constants and canonicalizes them for targets where 252 // an FP extending load is the same cost as a normal load (such as on the x87 253 // fp stack or PPC FP unit). 254 EVT VT = CFP->getValueType(0); 255 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 256 if (!UseCP) { 257 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 258 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 259 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 260 } 261 262 APFloat APF = CFP->getValueAPF(); 263 EVT OrigVT = VT; 264 EVT SVT = VT; 265 266 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 267 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 268 if (!APF.isSignaling()) { 269 while (SVT != MVT::f32 && SVT != MVT::f16) { 270 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 271 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 272 // Only do this if the target has a native EXTLOAD instruction from 273 // smaller type. 274 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 275 TLI.ShouldShrinkFPConstant(OrigVT)) { 276 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 277 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 278 VT = SVT; 279 Extend = true; 280 } 281 } 282 } 283 284 SDValue CPIdx = 285 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 286 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 287 if (Extend) { 288 SDValue Result = DAG.getExtLoad( 289 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 290 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 291 Alignment); 292 return Result; 293 } 294 SDValue Result = DAG.getLoad( 295 OrigVT, dl, DAG.getEntryNode(), CPIdx, 296 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 297 return Result; 298 } 299 300 /// Expands the Constant node to a load from the constant pool. 301 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 302 SDLoc dl(CP); 303 EVT VT = CP->getValueType(0); 304 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 305 TLI.getPointerTy(DAG.getDataLayout())); 306 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 307 SDValue Result = DAG.getLoad( 308 VT, dl, DAG.getEntryNode(), CPIdx, 309 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 310 return Result; 311 } 312 313 /// Some target cannot handle a variable insertion index for the 314 /// INSERT_VECTOR_ELT instruction. In this case, it 315 /// is necessary to spill the vector being inserted into to memory, perform 316 /// the insert there, and then read the result back. 317 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 318 SDValue Val, 319 SDValue Idx, 320 const SDLoc &dl) { 321 SDValue Tmp1 = Vec; 322 SDValue Tmp2 = Val; 323 SDValue Tmp3 = Idx; 324 325 // If the target doesn't support this, we have to spill the input vector 326 // to a temporary stack slot, update the element, then reload it. This is 327 // badness. We could also load the value into a vector register (either 328 // with a "move to register" or "extload into register" instruction, then 329 // permute it into place, if the idx is a constant and if the idx is 330 // supported by the target. 331 EVT VT = Tmp1.getValueType(); 332 EVT EltVT = VT.getVectorElementType(); 333 SDValue StackPtr = DAG.CreateStackTemporary(VT); 334 335 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 336 337 // Store the vector. 338 SDValue Ch = DAG.getStore( 339 DAG.getEntryNode(), dl, Tmp1, StackPtr, 340 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 341 342 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 343 344 // Store the scalar value. 345 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT); 346 // Load the updated vector. 347 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 348 DAG.getMachineFunction(), SPFI)); 349 } 350 351 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 352 SDValue Idx, 353 const SDLoc &dl) { 354 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 355 // SCALAR_TO_VECTOR requires that the type of the value being inserted 356 // match the element type of the vector being created, except for 357 // integers in which case the inserted value can be over width. 358 EVT EltVT = Vec.getValueType().getVectorElementType(); 359 if (Val.getValueType() == EltVT || 360 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 361 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 362 Vec.getValueType(), Val); 363 364 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 365 // We generate a shuffle of InVec and ScVec, so the shuffle mask 366 // should be 0,1,2,3,4,5... with the appropriate element replaced with 367 // elt 0 of the RHS. 368 SmallVector<int, 8> ShufOps; 369 for (unsigned i = 0; i != NumElts; ++i) 370 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 371 372 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 373 } 374 } 375 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 376 } 377 378 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 379 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 380 // FIXME: We shouldn't do this for TargetConstantFP's. 381 // FIXME: move this to the DAG Combiner! Note that we can't regress due 382 // to phase ordering between legalized code and the dag combiner. This 383 // probably means that we need to integrate dag combiner and legalizer 384 // together. 385 // We generally can't do this one for long doubles. 386 SDValue Chain = ST->getChain(); 387 SDValue Ptr = ST->getBasePtr(); 388 unsigned Alignment = ST->getAlignment(); 389 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 390 AAMDNodes AAInfo = ST->getAAInfo(); 391 SDLoc dl(ST); 392 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 393 if (CFP->getValueType(0) == MVT::f32 && 394 TLI.isTypeLegal(MVT::i32)) { 395 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 396 bitcastToAPInt().zextOrTrunc(32), 397 SDLoc(CFP), MVT::i32); 398 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), Alignment, 399 MMOFlags, AAInfo); 400 } 401 402 if (CFP->getValueType(0) == MVT::f64) { 403 // If this target supports 64-bit registers, do a single 64-bit store. 404 if (TLI.isTypeLegal(MVT::i64)) { 405 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 406 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 407 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 408 Alignment, MMOFlags, AAInfo); 409 } 410 411 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 412 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 413 // stores. If the target supports neither 32- nor 64-bits, this 414 // xform is certainly not worth it. 415 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 416 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 417 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 418 if (DAG.getDataLayout().isBigEndian()) 419 std::swap(Lo, Hi); 420 421 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), Alignment, 422 MMOFlags, AAInfo); 423 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 424 DAG.getConstant(4, dl, Ptr.getValueType())); 425 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 426 ST->getPointerInfo().getWithOffset(4), 427 MinAlign(Alignment, 4U), MMOFlags, AAInfo); 428 429 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 430 } 431 } 432 } 433 return SDValue(nullptr, 0); 434 } 435 436 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 437 StoreSDNode *ST = cast<StoreSDNode>(Node); 438 SDValue Chain = ST->getChain(); 439 SDValue Ptr = ST->getBasePtr(); 440 SDLoc dl(Node); 441 442 unsigned Alignment = ST->getAlignment(); 443 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 444 AAMDNodes AAInfo = ST->getAAInfo(); 445 446 if (!ST->isTruncatingStore()) { 447 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 448 ReplaceNode(ST, OptStore); 449 return; 450 } 451 452 { 453 SDValue Value = ST->getValue(); 454 MVT VT = Value.getSimpleValueType(); 455 switch (TLI.getOperationAction(ISD::STORE, VT)) { 456 default: llvm_unreachable("This action is not supported yet!"); 457 case TargetLowering::Legal: { 458 // If this is an unaligned store and the target doesn't support it, 459 // expand it. 460 EVT MemVT = ST->getMemoryVT(); 461 unsigned AS = ST->getAddressSpace(); 462 unsigned Align = ST->getAlignment(); 463 const DataLayout &DL = DAG.getDataLayout(); 464 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 465 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 466 ReplaceNode(SDValue(ST, 0), Result); 467 } 468 break; 469 } 470 case TargetLowering::Custom: { 471 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 472 if (Res && Res != SDValue(Node, 0)) 473 ReplaceNode(SDValue(Node, 0), Res); 474 return; 475 } 476 case TargetLowering::Promote: { 477 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 478 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 479 "Can only promote stores to same size type"); 480 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 481 SDValue Result = 482 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 483 Alignment, MMOFlags, AAInfo); 484 ReplaceNode(SDValue(Node, 0), Result); 485 break; 486 } 487 } 488 return; 489 } 490 } else { 491 SDValue Value = ST->getValue(); 492 493 EVT StVT = ST->getMemoryVT(); 494 unsigned StWidth = StVT.getSizeInBits(); 495 auto &DL = DAG.getDataLayout(); 496 497 if (StWidth != StVT.getStoreSizeInBits()) { 498 // Promote to a byte-sized store with upper bits zero if not 499 // storing an integral number of bytes. For example, promote 500 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 501 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), 502 StVT.getStoreSizeInBits()); 503 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 504 SDValue Result = 505 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 506 Alignment, MMOFlags, AAInfo); 507 ReplaceNode(SDValue(Node, 0), Result); 508 } else if (StWidth & (StWidth - 1)) { 509 // If not storing a power-of-2 number of bits, expand as two stores. 510 assert(!StVT.isVector() && "Unsupported truncstore!"); 511 unsigned RoundWidth = 1 << Log2_32(StWidth); 512 assert(RoundWidth < StWidth); 513 unsigned ExtraWidth = StWidth - RoundWidth; 514 assert(ExtraWidth < RoundWidth); 515 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 516 "Store size not an integral number of bytes!"); 517 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 518 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 519 SDValue Lo, Hi; 520 unsigned IncrementSize; 521 522 if (DL.isLittleEndian()) { 523 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 524 // Store the bottom RoundWidth bits. 525 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 526 RoundVT, Alignment, MMOFlags, AAInfo); 527 528 // Store the remaining ExtraWidth bits. 529 IncrementSize = RoundWidth / 8; 530 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 531 DAG.getConstant(IncrementSize, dl, 532 Ptr.getValueType())); 533 Hi = DAG.getNode( 534 ISD::SRL, dl, Value.getValueType(), Value, 535 DAG.getConstant(RoundWidth, dl, 536 TLI.getShiftAmountTy(Value.getValueType(), DL))); 537 Hi = DAG.getTruncStore( 538 Chain, dl, Hi, Ptr, 539 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, 540 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); 541 } else { 542 // Big endian - avoid unaligned stores. 543 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 544 // Store the top RoundWidth bits. 545 Hi = DAG.getNode( 546 ISD::SRL, dl, Value.getValueType(), Value, 547 DAG.getConstant(ExtraWidth, dl, 548 TLI.getShiftAmountTy(Value.getValueType(), DL))); 549 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), 550 RoundVT, Alignment, MMOFlags, AAInfo); 551 552 // Store the remaining ExtraWidth bits. 553 IncrementSize = RoundWidth / 8; 554 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 555 DAG.getConstant(IncrementSize, dl, 556 Ptr.getValueType())); 557 Lo = DAG.getTruncStore( 558 Chain, dl, Value, Ptr, 559 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, 560 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); 561 } 562 563 // The order of the stores doesn't matter. 564 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 565 ReplaceNode(SDValue(Node, 0), Result); 566 } else { 567 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 568 default: llvm_unreachable("This action is not supported yet!"); 569 case TargetLowering::Legal: { 570 EVT MemVT = ST->getMemoryVT(); 571 unsigned AS = ST->getAddressSpace(); 572 unsigned Align = ST->getAlignment(); 573 // If this is an unaligned store and the target doesn't support it, 574 // expand it. 575 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 576 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 577 ReplaceNode(SDValue(ST, 0), Result); 578 } 579 break; 580 } 581 case TargetLowering::Custom: { 582 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 583 if (Res && Res != SDValue(Node, 0)) 584 ReplaceNode(SDValue(Node, 0), Res); 585 return; 586 } 587 case TargetLowering::Expand: 588 assert(!StVT.isVector() && 589 "Vector Stores are handled in LegalizeVectorOps"); 590 591 // TRUNCSTORE:i16 i32 -> STORE i16 592 assert(TLI.isTypeLegal(StVT) && 593 "Do not know how to expand this store!"); 594 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 595 SDValue Result = 596 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 597 Alignment, MMOFlags, AAInfo); 598 ReplaceNode(SDValue(Node, 0), Result); 599 break; 600 } 601 } 602 } 603 } 604 605 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 606 LoadSDNode *LD = cast<LoadSDNode>(Node); 607 SDValue Chain = LD->getChain(); // The chain. 608 SDValue Ptr = LD->getBasePtr(); // The base pointer. 609 SDValue Value; // The value returned by the load op. 610 SDLoc dl(Node); 611 612 ISD::LoadExtType ExtType = LD->getExtensionType(); 613 if (ExtType == ISD::NON_EXTLOAD) { 614 MVT VT = Node->getSimpleValueType(0); 615 SDValue RVal = SDValue(Node, 0); 616 SDValue RChain = SDValue(Node, 1); 617 618 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 619 default: llvm_unreachable("This action is not supported yet!"); 620 case TargetLowering::Legal: { 621 EVT MemVT = LD->getMemoryVT(); 622 unsigned AS = LD->getAddressSpace(); 623 unsigned Align = LD->getAlignment(); 624 const DataLayout &DL = DAG.getDataLayout(); 625 // If this is an unaligned load and the target doesn't support it, 626 // expand it. 627 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 628 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 629 } 630 break; 631 } 632 case TargetLowering::Custom: { 633 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 634 RVal = Res; 635 RChain = Res.getValue(1); 636 } 637 break; 638 } 639 case TargetLowering::Promote: { 640 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 641 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 642 "Can only promote loads to same size type"); 643 644 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 645 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 646 RChain = Res.getValue(1); 647 break; 648 } 649 } 650 if (RChain.getNode() != Node) { 651 assert(RVal.getNode() != Node && "Load must be completely replaced"); 652 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 653 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 654 if (UpdatedNodes) { 655 UpdatedNodes->insert(RVal.getNode()); 656 UpdatedNodes->insert(RChain.getNode()); 657 } 658 ReplacedNode(Node); 659 } 660 return; 661 } 662 663 EVT SrcVT = LD->getMemoryVT(); 664 unsigned SrcWidth = SrcVT.getSizeInBits(); 665 unsigned Alignment = LD->getAlignment(); 666 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 667 AAMDNodes AAInfo = LD->getAAInfo(); 668 669 if (SrcWidth != SrcVT.getStoreSizeInBits() && 670 // Some targets pretend to have an i1 loading operation, and actually 671 // load an i8. This trick is correct for ZEXTLOAD because the top 7 672 // bits are guaranteed to be zero; it helps the optimizers understand 673 // that these bits are zero. It is also useful for EXTLOAD, since it 674 // tells the optimizers that those bits are undefined. It would be 675 // nice to have an effective generic way of getting these benefits... 676 // Until such a way is found, don't insist on promoting i1 here. 677 (SrcVT != MVT::i1 || 678 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 679 TargetLowering::Promote)) { 680 // Promote to a byte-sized load if not loading an integral number of 681 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 682 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 683 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 684 SDValue Ch; 685 686 // The extra bits are guaranteed to be zero, since we stored them that 687 // way. A zext load from NVT thus automatically gives zext from SrcVT. 688 689 ISD::LoadExtType NewExtType = 690 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 691 692 SDValue Result = 693 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), Chain, Ptr, 694 LD->getPointerInfo(), NVT, Alignment, MMOFlags, AAInfo); 695 696 Ch = Result.getValue(1); // The chain. 697 698 if (ExtType == ISD::SEXTLOAD) 699 // Having the top bits zero doesn't help when sign extending. 700 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 701 Result.getValueType(), 702 Result, DAG.getValueType(SrcVT)); 703 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 704 // All the top bits are guaranteed to be zero - inform the optimizers. 705 Result = DAG.getNode(ISD::AssertZext, dl, 706 Result.getValueType(), Result, 707 DAG.getValueType(SrcVT)); 708 709 Value = Result; 710 Chain = Ch; 711 } else if (SrcWidth & (SrcWidth - 1)) { 712 // If not loading a power-of-2 number of bits, expand as two loads. 713 assert(!SrcVT.isVector() && "Unsupported extload!"); 714 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 715 assert(RoundWidth < SrcWidth); 716 unsigned ExtraWidth = SrcWidth - RoundWidth; 717 assert(ExtraWidth < RoundWidth); 718 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 719 "Load size not an integral number of bytes!"); 720 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 721 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 722 SDValue Lo, Hi, Ch; 723 unsigned IncrementSize; 724 auto &DL = DAG.getDataLayout(); 725 726 if (DL.isLittleEndian()) { 727 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 728 // Load the bottom RoundWidth bits. 729 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 730 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, 731 AAInfo); 732 733 // Load the remaining ExtraWidth bits. 734 IncrementSize = RoundWidth / 8; 735 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 736 DAG.getConstant(IncrementSize, dl, 737 Ptr.getValueType())); 738 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 739 LD->getPointerInfo().getWithOffset(IncrementSize), 740 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, 741 AAInfo); 742 743 // Build a factor node to remember that this load is independent of 744 // the other one. 745 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 746 Hi.getValue(1)); 747 748 // Move the top bits to the right place. 749 Hi = DAG.getNode( 750 ISD::SHL, dl, Hi.getValueType(), Hi, 751 DAG.getConstant(RoundWidth, dl, 752 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 753 754 // Join the hi and lo parts. 755 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 756 } else { 757 // Big endian - avoid unaligned loads. 758 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 759 // Load the top RoundWidth bits. 760 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 761 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, 762 AAInfo); 763 764 // Load the remaining ExtraWidth bits. 765 IncrementSize = RoundWidth / 8; 766 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 767 DAG.getConstant(IncrementSize, dl, 768 Ptr.getValueType())); 769 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 770 LD->getPointerInfo().getWithOffset(IncrementSize), 771 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, 772 AAInfo); 773 774 // Build a factor node to remember that this load is independent of 775 // the other one. 776 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 777 Hi.getValue(1)); 778 779 // Move the top bits to the right place. 780 Hi = DAG.getNode( 781 ISD::SHL, dl, Hi.getValueType(), Hi, 782 DAG.getConstant(ExtraWidth, dl, 783 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 784 785 // Join the hi and lo parts. 786 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 787 } 788 789 Chain = Ch; 790 } else { 791 bool isCustom = false; 792 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 793 SrcVT.getSimpleVT())) { 794 default: llvm_unreachable("This action is not supported yet!"); 795 case TargetLowering::Custom: 796 isCustom = true; 797 LLVM_FALLTHROUGH; 798 case TargetLowering::Legal: { 799 Value = SDValue(Node, 0); 800 Chain = SDValue(Node, 1); 801 802 if (isCustom) { 803 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 804 Value = Res; 805 Chain = Res.getValue(1); 806 } 807 } else { 808 // If this is an unaligned load and the target doesn't support it, 809 // expand it. 810 EVT MemVT = LD->getMemoryVT(); 811 unsigned AS = LD->getAddressSpace(); 812 unsigned Align = LD->getAlignment(); 813 const DataLayout &DL = DAG.getDataLayout(); 814 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { 815 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 816 } 817 } 818 break; 819 } 820 case TargetLowering::Expand: 821 EVT DestVT = Node->getValueType(0); 822 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 823 // If the source type is not legal, see if there is a legal extload to 824 // an intermediate type that we can then extend further. 825 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 826 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 827 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 828 // If we are loading a legal type, this is a non-extload followed by a 829 // full extend. 830 ISD::LoadExtType MidExtType = 831 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 832 833 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 834 SrcVT, LD->getMemOperand()); 835 unsigned ExtendOp = 836 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 837 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 838 Chain = Load.getValue(1); 839 break; 840 } 841 842 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 843 // normal undefined upper bits behavior to allow using an in-reg extend 844 // with the illegal FP type, so load as an integer and do the 845 // from-integer conversion. 846 if (SrcVT.getScalarType() == MVT::f16) { 847 EVT ISrcVT = SrcVT.changeTypeToInteger(); 848 EVT IDestVT = DestVT.changeTypeToInteger(); 849 EVT LoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 850 851 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, LoadVT, 852 Chain, Ptr, ISrcVT, 853 LD->getMemOperand()); 854 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 855 Chain = Result.getValue(1); 856 break; 857 } 858 } 859 860 assert(!SrcVT.isVector() && 861 "Vector Loads are handled in LegalizeVectorOps"); 862 863 // FIXME: This does not work for vectors on most targets. Sign- 864 // and zero-extend operations are currently folded into extending 865 // loads, whether they are legal or not, and then we end up here 866 // without any support for legalizing them. 867 assert(ExtType != ISD::EXTLOAD && 868 "EXTLOAD should always be supported!"); 869 // Turn the unsupported load into an EXTLOAD followed by an 870 // explicit zero/sign extend inreg. 871 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 872 Node->getValueType(0), 873 Chain, Ptr, SrcVT, 874 LD->getMemOperand()); 875 SDValue ValRes; 876 if (ExtType == ISD::SEXTLOAD) 877 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 878 Result.getValueType(), 879 Result, DAG.getValueType(SrcVT)); 880 else 881 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); 882 Value = ValRes; 883 Chain = Result.getValue(1); 884 break; 885 } 886 } 887 888 // Since loads produce two values, make sure to remember that we legalized 889 // both of them. 890 if (Chain.getNode() != Node) { 891 assert(Value.getNode() != Node && "Load must be completely replaced"); 892 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 893 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 894 if (UpdatedNodes) { 895 UpdatedNodes->insert(Value.getNode()); 896 UpdatedNodes->insert(Chain.getNode()); 897 } 898 ReplacedNode(Node); 899 } 900 } 901 902 /// Return a legal replacement for the given operation, with all legal operands. 903 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 904 DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 905 906 if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 907 return; 908 909 #ifndef NDEBUG 910 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 911 assert((TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 912 TargetLowering::TypeLegal || 913 TLI.isTypeLegal(Node->getValueType(i))) && 914 "Unexpected illegal type!"); 915 916 for (const SDValue &Op : Node->op_values()) 917 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 918 TargetLowering::TypeLegal || 919 TLI.isTypeLegal(Op.getValueType()) || 920 Op.getOpcode() == ISD::TargetConstant) && 921 "Unexpected illegal type!"); 922 #endif 923 924 // Figure out the correct action; the way to query this varies by opcode 925 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 926 bool SimpleFinishLegalizing = true; 927 switch (Node->getOpcode()) { 928 case ISD::INTRINSIC_W_CHAIN: 929 case ISD::INTRINSIC_WO_CHAIN: 930 case ISD::INTRINSIC_VOID: 931 case ISD::STACKSAVE: 932 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 933 break; 934 case ISD::GET_DYNAMIC_AREA_OFFSET: 935 Action = TLI.getOperationAction(Node->getOpcode(), 936 Node->getValueType(0)); 937 break; 938 case ISD::VAARG: 939 Action = TLI.getOperationAction(Node->getOpcode(), 940 Node->getValueType(0)); 941 if (Action != TargetLowering::Promote) 942 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 943 break; 944 case ISD::FP_TO_FP16: 945 case ISD::SINT_TO_FP: 946 case ISD::UINT_TO_FP: 947 case ISD::EXTRACT_VECTOR_ELT: 948 Action = TLI.getOperationAction(Node->getOpcode(), 949 Node->getOperand(0).getValueType()); 950 break; 951 case ISD::FP_ROUND_INREG: 952 case ISD::SIGN_EXTEND_INREG: { 953 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 954 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 955 break; 956 } 957 case ISD::ATOMIC_STORE: { 958 Action = TLI.getOperationAction(Node->getOpcode(), 959 Node->getOperand(2).getValueType()); 960 break; 961 } 962 case ISD::SELECT_CC: 963 case ISD::SETCC: 964 case ISD::BR_CC: { 965 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 966 Node->getOpcode() == ISD::SETCC ? 2 : 967 Node->getOpcode() == ISD::SETCCE ? 3 : 1; 968 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; 969 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 970 ISD::CondCode CCCode = 971 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 972 Action = TLI.getCondCodeAction(CCCode, OpVT); 973 if (Action == TargetLowering::Legal) { 974 if (Node->getOpcode() == ISD::SELECT_CC) 975 Action = TLI.getOperationAction(Node->getOpcode(), 976 Node->getValueType(0)); 977 else 978 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 979 } 980 break; 981 } 982 case ISD::LOAD: 983 case ISD::STORE: 984 // FIXME: Model these properly. LOAD and STORE are complicated, and 985 // STORE expects the unlegalized operand in some cases. 986 SimpleFinishLegalizing = false; 987 break; 988 case ISD::CALLSEQ_START: 989 case ISD::CALLSEQ_END: 990 // FIXME: This shouldn't be necessary. These nodes have special properties 991 // dealing with the recursive nature of legalization. Removing this 992 // special case should be done as part of making LegalizeDAG non-recursive. 993 SimpleFinishLegalizing = false; 994 break; 995 case ISD::EXTRACT_ELEMENT: 996 case ISD::FLT_ROUNDS_: 997 case ISD::FPOWI: 998 case ISD::MERGE_VALUES: 999 case ISD::EH_RETURN: 1000 case ISD::FRAME_TO_ARGS_OFFSET: 1001 case ISD::EH_DWARF_CFA: 1002 case ISD::EH_SJLJ_SETJMP: 1003 case ISD::EH_SJLJ_LONGJMP: 1004 case ISD::EH_SJLJ_SETUP_DISPATCH: 1005 // These operations lie about being legal: when they claim to be legal, 1006 // they should actually be expanded. 1007 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1008 if (Action == TargetLowering::Legal) 1009 Action = TargetLowering::Expand; 1010 break; 1011 case ISD::INIT_TRAMPOLINE: 1012 case ISD::ADJUST_TRAMPOLINE: 1013 case ISD::FRAMEADDR: 1014 case ISD::RETURNADDR: 1015 case ISD::ADDROFRETURNADDR: 1016 // These operations lie about being legal: when they claim to be legal, 1017 // they should actually be custom-lowered. 1018 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1019 if (Action == TargetLowering::Legal) 1020 Action = TargetLowering::Custom; 1021 break; 1022 case ISD::READCYCLECOUNTER: 1023 // READCYCLECOUNTER returns an i64, even if type legalization might have 1024 // expanded that to several smaller types. 1025 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1026 break; 1027 case ISD::READ_REGISTER: 1028 case ISD::WRITE_REGISTER: 1029 // Named register is legal in the DAG, but blocked by register name 1030 // selection if not implemented by target (to chose the correct register) 1031 // They'll be converted to Copy(To/From)Reg. 1032 Action = TargetLowering::Legal; 1033 break; 1034 case ISD::DEBUGTRAP: 1035 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1036 if (Action == TargetLowering::Expand) { 1037 // replace ISD::DEBUGTRAP with ISD::TRAP 1038 SDValue NewVal; 1039 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1040 Node->getOperand(0)); 1041 ReplaceNode(Node, NewVal.getNode()); 1042 LegalizeOp(NewVal.getNode()); 1043 return; 1044 } 1045 break; 1046 1047 default: 1048 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1049 Action = TargetLowering::Legal; 1050 } else { 1051 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1052 } 1053 break; 1054 } 1055 1056 if (SimpleFinishLegalizing) { 1057 SDNode *NewNode = Node; 1058 switch (Node->getOpcode()) { 1059 default: break; 1060 case ISD::SHL: 1061 case ISD::SRL: 1062 case ISD::SRA: 1063 case ISD::ROTL: 1064 case ISD::ROTR: { 1065 // Legalizing shifts/rotates requires adjusting the shift amount 1066 // to the appropriate width. 1067 SDValue Op0 = Node->getOperand(0); 1068 SDValue Op1 = Node->getOperand(1); 1069 if (!Op1.getValueType().isVector()) { 1070 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1071 // The getShiftAmountOperand() may create a new operand node or 1072 // return the existing one. If new operand is created we need 1073 // to update the parent node. 1074 // Do not try to legalize SAO here! It will be automatically legalized 1075 // in the next round. 1076 if (SAO != Op1) 1077 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1078 } 1079 } 1080 break; 1081 case ISD::SRL_PARTS: 1082 case ISD::SRA_PARTS: 1083 case ISD::SHL_PARTS: { 1084 // Legalizing shifts/rotates requires adjusting the shift amount 1085 // to the appropriate width. 1086 SDValue Op0 = Node->getOperand(0); 1087 SDValue Op1 = Node->getOperand(1); 1088 SDValue Op2 = Node->getOperand(2); 1089 if (!Op2.getValueType().isVector()) { 1090 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1091 // The getShiftAmountOperand() may create a new operand node or 1092 // return the existing one. If new operand is created we need 1093 // to update the parent node. 1094 if (SAO != Op2) 1095 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1096 } 1097 } 1098 break; 1099 } 1100 1101 if (NewNode != Node) { 1102 ReplaceNode(Node, NewNode); 1103 Node = NewNode; 1104 } 1105 switch (Action) { 1106 case TargetLowering::Legal: 1107 return; 1108 case TargetLowering::Custom: { 1109 // FIXME: The handling for custom lowering with multiple results is 1110 // a complete mess. 1111 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1112 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1113 return; 1114 1115 if (Node->getNumValues() == 1) { 1116 // We can just directly replace this node with the lowered value. 1117 ReplaceNode(SDValue(Node, 0), Res); 1118 return; 1119 } 1120 1121 SmallVector<SDValue, 8> ResultVals; 1122 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1123 ResultVals.push_back(Res.getValue(i)); 1124 ReplaceNode(Node, ResultVals.data()); 1125 return; 1126 } 1127 LLVM_FALLTHROUGH; 1128 } 1129 case TargetLowering::Expand: 1130 if (ExpandNode(Node)) 1131 return; 1132 LLVM_FALLTHROUGH; 1133 case TargetLowering::LibCall: 1134 ConvertNodeToLibcall(Node); 1135 return; 1136 case TargetLowering::Promote: 1137 PromoteNode(Node); 1138 return; 1139 } 1140 } 1141 1142 switch (Node->getOpcode()) { 1143 default: 1144 #ifndef NDEBUG 1145 dbgs() << "NODE: "; 1146 Node->dump( &DAG); 1147 dbgs() << "\n"; 1148 #endif 1149 llvm_unreachable("Do not know how to legalize this operator!"); 1150 1151 case ISD::CALLSEQ_START: 1152 case ISD::CALLSEQ_END: 1153 break; 1154 case ISD::LOAD: { 1155 return LegalizeLoadOps(Node); 1156 } 1157 case ISD::STORE: { 1158 return LegalizeStoreOps(Node); 1159 } 1160 } 1161 } 1162 1163 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1164 SDValue Vec = Op.getOperand(0); 1165 SDValue Idx = Op.getOperand(1); 1166 SDLoc dl(Op); 1167 1168 // Before we generate a new store to a temporary stack slot, see if there is 1169 // already one that we can use. There often is because when we scalarize 1170 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1171 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1172 // the vector. If all are expanded here, we don't want one store per vector 1173 // element. 1174 1175 // Caches for hasPredecessorHelper 1176 SmallPtrSet<const SDNode *, 32> Visited; 1177 SmallVector<const SDNode *, 16> Worklist; 1178 Worklist.push_back(Idx.getNode()); 1179 SDValue StackPtr, Ch; 1180 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), 1181 UE = Vec.getNode()->use_end(); UI != UE; ++UI) { 1182 SDNode *User = *UI; 1183 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1184 if (ST->isIndexed() || ST->isTruncatingStore() || 1185 ST->getValue() != Vec) 1186 continue; 1187 1188 // Make sure that nothing else could have stored into the destination of 1189 // this store. 1190 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1191 continue; 1192 1193 // If the index is dependent on the store we will introduce a cycle when 1194 // creating the load (the load uses the index, and by replacing the chain 1195 // we will make the index dependent on the load). 1196 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist)) 1197 continue; 1198 1199 StackPtr = ST->getBasePtr(); 1200 Ch = SDValue(ST, 0); 1201 break; 1202 } 1203 } 1204 1205 EVT VecVT = Vec.getValueType(); 1206 1207 if (!Ch.getNode()) { 1208 // Store the value to a temporary stack slot, then LOAD the returned part. 1209 StackPtr = DAG.CreateStackTemporary(VecVT); 1210 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1211 MachinePointerInfo()); 1212 } 1213 1214 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1215 1216 SDValue NewLoad; 1217 1218 if (Op.getValueType().isVector()) 1219 NewLoad = 1220 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); 1221 else 1222 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1223 MachinePointerInfo(), 1224 VecVT.getVectorElementType()); 1225 1226 // Replace the chain going out of the store, by the one out of the load. 1227 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1228 1229 // We introduced a cycle though, so update the loads operands, making sure 1230 // to use the original store's chain as an incoming chain. 1231 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1232 NewLoad->op_end()); 1233 NewLoadOperands[0] = Ch; 1234 NewLoad = 1235 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1236 return NewLoad; 1237 } 1238 1239 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1240 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1241 1242 SDValue Vec = Op.getOperand(0); 1243 SDValue Part = Op.getOperand(1); 1244 SDValue Idx = Op.getOperand(2); 1245 SDLoc dl(Op); 1246 1247 // Store the value to a temporary stack slot, then LOAD the returned part. 1248 EVT VecVT = Vec.getValueType(); 1249 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1250 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1251 MachinePointerInfo PtrInfo = 1252 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1253 1254 // First store the whole vector. 1255 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1256 1257 // Then store the inserted part. 1258 SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1259 1260 // Store the subvector. 1261 Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, MachinePointerInfo()); 1262 1263 // Finally, load the updated vector. 1264 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1265 } 1266 1267 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1268 // We can't handle this case efficiently. Allocate a sufficiently 1269 // aligned object on the stack, store each element into it, then load 1270 // the result as a vector. 1271 // Create the stack frame object. 1272 EVT VT = Node->getValueType(0); 1273 EVT EltVT = VT.getVectorElementType(); 1274 SDLoc dl(Node); 1275 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1276 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1277 MachinePointerInfo PtrInfo = 1278 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1279 1280 // Emit a store of each element to the stack slot. 1281 SmallVector<SDValue, 8> Stores; 1282 unsigned TypeByteSize = EltVT.getSizeInBits() / 8; 1283 // Store (in the right endianness) the elements to memory. 1284 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1285 // Ignore undef elements. 1286 if (Node->getOperand(i).isUndef()) continue; 1287 1288 unsigned Offset = TypeByteSize*i; 1289 1290 SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType()); 1291 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); 1292 1293 // If the destination vector element type is narrower than the source 1294 // element type, only store the bits necessary. 1295 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { 1296 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1297 Node->getOperand(i), Idx, 1298 PtrInfo.getWithOffset(Offset), EltVT)); 1299 } else 1300 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1301 Idx, PtrInfo.getWithOffset(Offset))); 1302 } 1303 1304 SDValue StoreChain; 1305 if (!Stores.empty()) // Not all undef elements? 1306 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1307 else 1308 StoreChain = DAG.getEntryNode(); 1309 1310 // Result is a load from the stack slot. 1311 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1312 } 1313 1314 namespace { 1315 /// Keeps track of state when getting the sign of a floating-point value as an 1316 /// integer. 1317 struct FloatSignAsInt { 1318 EVT FloatVT; 1319 SDValue Chain; 1320 SDValue FloatPtr; 1321 SDValue IntPtr; 1322 MachinePointerInfo IntPointerInfo; 1323 MachinePointerInfo FloatPointerInfo; 1324 SDValue IntValue; 1325 APInt SignMask; 1326 uint8_t SignBit; 1327 }; 1328 } 1329 1330 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1331 /// containing the sign bit if the target has no integer value capable of 1332 /// holding all bits of the floating-point value. 1333 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1334 const SDLoc &DL, 1335 SDValue Value) const { 1336 EVT FloatVT = Value.getValueType(); 1337 unsigned NumBits = FloatVT.getSizeInBits(); 1338 State.FloatVT = FloatVT; 1339 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1340 // Convert to an integer of the same size. 1341 if (TLI.isTypeLegal(IVT)) { 1342 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1343 State.SignMask = APInt::getSignBit(NumBits); 1344 State.SignBit = NumBits - 1; 1345 return; 1346 } 1347 1348 auto &DataLayout = DAG.getDataLayout(); 1349 // Store the float to memory, then load the sign part out as an integer. 1350 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1351 // First create a temporary that is aligned for both the load and store. 1352 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1353 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1354 // Then store the float to it. 1355 State.FloatPtr = StackPtr; 1356 MachineFunction &MF = DAG.getMachineFunction(); 1357 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1358 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1359 State.FloatPointerInfo); 1360 1361 SDValue IntPtr; 1362 if (DataLayout.isBigEndian()) { 1363 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1364 // Load out a legal integer with the same sign bit as the float. 1365 IntPtr = StackPtr; 1366 State.IntPointerInfo = State.FloatPointerInfo; 1367 } else { 1368 // Advance the pointer so that the loaded byte will contain the sign bit. 1369 unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1; 1370 IntPtr = DAG.getNode(ISD::ADD, DL, StackPtr.getValueType(), StackPtr, 1371 DAG.getConstant(ByteOffset, DL, StackPtr.getValueType())); 1372 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1373 ByteOffset); 1374 } 1375 1376 State.IntPtr = IntPtr; 1377 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1378 State.IntPointerInfo, MVT::i8); 1379 State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7); 1380 State.SignBit = 7; 1381 } 1382 1383 /// Replace the integer value produced by getSignAsIntValue() with a new value 1384 /// and cast the result back to a floating-point type. 1385 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1386 const SDLoc &DL, 1387 SDValue NewIntValue) const { 1388 if (!State.Chain) 1389 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1390 1391 // Override the part containing the sign bit in the value stored on the stack. 1392 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1393 State.IntPointerInfo, MVT::i8); 1394 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1395 State.FloatPointerInfo); 1396 } 1397 1398 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1399 SDLoc DL(Node); 1400 SDValue Mag = Node->getOperand(0); 1401 SDValue Sign = Node->getOperand(1); 1402 1403 // Get sign bit into an integer value. 1404 FloatSignAsInt SignAsInt; 1405 getSignAsIntValue(SignAsInt, DL, Sign); 1406 1407 EVT IntVT = SignAsInt.IntValue.getValueType(); 1408 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1409 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1410 SignMask); 1411 1412 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1413 EVT FloatVT = Mag.getValueType(); 1414 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1415 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1416 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1417 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1418 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1419 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1420 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1421 } 1422 1423 // Transform Mag value to integer, and clear the sign bit. 1424 FloatSignAsInt MagAsInt; 1425 getSignAsIntValue(MagAsInt, DL, Mag); 1426 EVT MagVT = MagAsInt.IntValue.getValueType(); 1427 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1428 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1429 ClearSignMask); 1430 1431 // Get the signbit at the right position for MagAsInt. 1432 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1433 if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) { 1434 if (ShiftAmount > 0) { 1435 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, IntVT); 1436 SignBit = DAG.getNode(ISD::SRL, DL, IntVT, SignBit, ShiftCnst); 1437 } else if (ShiftAmount < 0) { 1438 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, IntVT); 1439 SignBit = DAG.getNode(ISD::SHL, DL, IntVT, SignBit, ShiftCnst); 1440 } 1441 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1442 } else if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) { 1443 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1444 if (ShiftAmount > 0) { 1445 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, MagVT); 1446 SignBit = DAG.getNode(ISD::SRL, DL, MagVT, SignBit, ShiftCnst); 1447 } else if (ShiftAmount < 0) { 1448 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, MagVT); 1449 SignBit = DAG.getNode(ISD::SHL, DL, MagVT, SignBit, ShiftCnst); 1450 } 1451 } 1452 1453 // Store the part with the modified sign and convert back to float. 1454 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1455 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1456 } 1457 1458 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1459 SDLoc DL(Node); 1460 SDValue Value = Node->getOperand(0); 1461 1462 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1463 EVT FloatVT = Value.getValueType(); 1464 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1465 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1466 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1467 } 1468 1469 // Transform value to integer, clear the sign bit and transform back. 1470 FloatSignAsInt ValueAsInt; 1471 getSignAsIntValue(ValueAsInt, DL, Value); 1472 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1473 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1474 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1475 ClearSignMask); 1476 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1477 } 1478 1479 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1480 SmallVectorImpl<SDValue> &Results) { 1481 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1482 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1483 " not tell us which reg is the stack pointer!"); 1484 SDLoc dl(Node); 1485 EVT VT = Node->getValueType(0); 1486 SDValue Tmp1 = SDValue(Node, 0); 1487 SDValue Tmp2 = SDValue(Node, 1); 1488 SDValue Tmp3 = Node->getOperand(2); 1489 SDValue Chain = Tmp1.getOperand(0); 1490 1491 // Chain the dynamic stack allocation so that it doesn't modify the stack 1492 // pointer when other instructions are using the stack. 1493 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, dl, true), dl); 1494 1495 SDValue Size = Tmp2.getOperand(1); 1496 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1497 Chain = SP.getValue(1); 1498 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1499 unsigned StackAlign = 1500 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 1501 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 1502 if (Align > StackAlign) 1503 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1504 DAG.getConstant(-(uint64_t)Align, dl, VT)); 1505 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1506 1507 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1508 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1509 1510 Results.push_back(Tmp1); 1511 Results.push_back(Tmp2); 1512 } 1513 1514 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current 1515 /// target. 1516 /// 1517 /// If the SETCC has been legalized using AND / OR, then the legalized node 1518 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert 1519 /// will be set to false. 1520 /// 1521 /// If the SETCC has been legalized by using getSetCCSwappedOperands(), 1522 /// then the values of LHS and RHS will be swapped, CC will be set to the 1523 /// new condition, and NeedInvert will be set to false. 1524 /// 1525 /// If the SETCC has been legalized using the inverse condcode, then LHS and 1526 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert 1527 /// will be set to true. The caller must invert the result of the SETCC with 1528 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect 1529 /// of a true/false result. 1530 /// 1531 /// \returns true if the SetCC has been legalized, false if it hasn't. 1532 bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, SDValue &LHS, 1533 SDValue &RHS, SDValue &CC, 1534 bool &NeedInvert, 1535 const SDLoc &dl) { 1536 MVT OpVT = LHS.getSimpleValueType(); 1537 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1538 NeedInvert = false; 1539 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1540 default: llvm_unreachable("Unknown condition code action!"); 1541 case TargetLowering::Legal: 1542 // Nothing to do. 1543 break; 1544 case TargetLowering::Expand: { 1545 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 1546 if (TLI.isCondCodeLegal(InvCC, OpVT)) { 1547 std::swap(LHS, RHS); 1548 CC = DAG.getCondCode(InvCC); 1549 return true; 1550 } 1551 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1552 unsigned Opc = 0; 1553 switch (CCCode) { 1554 default: llvm_unreachable("Don't know how to expand this condition!"); 1555 case ISD::SETO: 1556 assert(TLI.getCondCodeAction(ISD::SETOEQ, OpVT) 1557 == TargetLowering::Legal 1558 && "If SETO is expanded, SETOEQ must be legal!"); 1559 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; 1560 case ISD::SETUO: 1561 assert(TLI.getCondCodeAction(ISD::SETUNE, OpVT) 1562 == TargetLowering::Legal 1563 && "If SETUO is expanded, SETUNE must be legal!"); 1564 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break; 1565 case ISD::SETOEQ: 1566 case ISD::SETOGT: 1567 case ISD::SETOGE: 1568 case ISD::SETOLT: 1569 case ISD::SETOLE: 1570 case ISD::SETONE: 1571 case ISD::SETUEQ: 1572 case ISD::SETUNE: 1573 case ISD::SETUGT: 1574 case ISD::SETUGE: 1575 case ISD::SETULT: 1576 case ISD::SETULE: 1577 // If we are floating point, assign and break, otherwise fall through. 1578 if (!OpVT.isInteger()) { 1579 // We can use the 4th bit to tell if we are the unordered 1580 // or ordered version of the opcode. 1581 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 1582 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 1583 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 1584 break; 1585 } 1586 // Fallthrough if we are unsigned integer. 1587 LLVM_FALLTHROUGH; 1588 case ISD::SETLE: 1589 case ISD::SETGT: 1590 case ISD::SETGE: 1591 case ISD::SETLT: 1592 // We only support using the inverted operation, which is computed above 1593 // and not a different manner of supporting expanding these cases. 1594 llvm_unreachable("Don't know how to expand this condition!"); 1595 case ISD::SETNE: 1596 case ISD::SETEQ: 1597 // Try inverting the result of the inverse condition. 1598 InvCC = CCCode == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ; 1599 if (TLI.isCondCodeLegal(InvCC, OpVT)) { 1600 CC = DAG.getCondCode(InvCC); 1601 NeedInvert = true; 1602 return true; 1603 } 1604 // If inverting the condition didn't work then we have no means to expand 1605 // the condition. 1606 llvm_unreachable("Don't know how to expand this condition!"); 1607 } 1608 1609 SDValue SetCC1, SetCC2; 1610 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 1611 // If we aren't the ordered or unorder operation, 1612 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 1613 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); 1614 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); 1615 } else { 1616 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 1617 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1); 1618 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2); 1619 } 1620 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1621 RHS = SDValue(); 1622 CC = SDValue(); 1623 return true; 1624 } 1625 } 1626 return false; 1627 } 1628 1629 /// Emit a store/load combination to the stack. This stores 1630 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1631 /// a load from the stack slot to DestVT, extending it if needed. 1632 /// The resultant code need not be legal. 1633 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1634 EVT DestVT, const SDLoc &dl) { 1635 // Create the stack frame object. 1636 unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment( 1637 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1638 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 1639 1640 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1641 int SPFI = StackPtrFI->getIndex(); 1642 MachinePointerInfo PtrInfo = 1643 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1644 1645 unsigned SrcSize = SrcOp.getValueSizeInBits(); 1646 unsigned SlotSize = SlotVT.getSizeInBits(); 1647 unsigned DestSize = DestVT.getSizeInBits(); 1648 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1649 unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType); 1650 1651 // Emit a store to the stack slot. Use a truncstore if the input value is 1652 // later than DestVT. 1653 SDValue Store; 1654 1655 if (SrcSize > SlotSize) 1656 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, PtrInfo, 1657 SlotVT, SrcAlign); 1658 else { 1659 assert(SrcSize == SlotSize && "Invalid store"); 1660 Store = 1661 DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1662 } 1663 1664 // Result is a load from the stack slot. 1665 if (SlotSize == DestSize) 1666 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1667 1668 assert(SlotSize < DestSize && "Unknown extension!"); 1669 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1670 DestAlign); 1671 } 1672 1673 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1674 SDLoc dl(Node); 1675 // Create a vector sized/aligned stack slot, store the value to element #0, 1676 // then load the whole vector back out. 1677 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1678 1679 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1680 int SPFI = StackPtrFI->getIndex(); 1681 1682 SDValue Ch = DAG.getTruncStore( 1683 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1684 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1685 Node->getValueType(0).getVectorElementType()); 1686 return DAG.getLoad( 1687 Node->getValueType(0), dl, Ch, StackPtr, 1688 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1689 } 1690 1691 static bool 1692 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1693 const TargetLowering &TLI, SDValue &Res) { 1694 unsigned NumElems = Node->getNumOperands(); 1695 SDLoc dl(Node); 1696 EVT VT = Node->getValueType(0); 1697 1698 // Try to group the scalars into pairs, shuffle the pairs together, then 1699 // shuffle the pairs of pairs together, etc. until the vector has 1700 // been built. This will work only if all of the necessary shuffle masks 1701 // are legal. 1702 1703 // We do this in two phases; first to check the legality of the shuffles, 1704 // and next, assuming that all shuffles are legal, to create the new nodes. 1705 for (int Phase = 0; Phase < 2; ++Phase) { 1706 SmallVector<std::pair<SDValue, SmallVector<int, 16> >, 16> IntermedVals, 1707 NewIntermedVals; 1708 for (unsigned i = 0; i < NumElems; ++i) { 1709 SDValue V = Node->getOperand(i); 1710 if (V.isUndef()) 1711 continue; 1712 1713 SDValue Vec; 1714 if (Phase) 1715 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1716 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1717 } 1718 1719 while (IntermedVals.size() > 2) { 1720 NewIntermedVals.clear(); 1721 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1722 // This vector and the next vector are shuffled together (simply to 1723 // append the one to the other). 1724 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1725 1726 SmallVector<int, 16> FinalIndices; 1727 FinalIndices.reserve(IntermedVals[i].second.size() + 1728 IntermedVals[i+1].second.size()); 1729 1730 int k = 0; 1731 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1732 ++j, ++k) { 1733 ShuffleVec[k] = j; 1734 FinalIndices.push_back(IntermedVals[i].second[j]); 1735 } 1736 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1737 ++j, ++k) { 1738 ShuffleVec[k] = NumElems + j; 1739 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1740 } 1741 1742 SDValue Shuffle; 1743 if (Phase) 1744 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1745 IntermedVals[i+1].first, 1746 ShuffleVec); 1747 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1748 return false; 1749 NewIntermedVals.push_back( 1750 std::make_pair(Shuffle, std::move(FinalIndices))); 1751 } 1752 1753 // If we had an odd number of defined values, then append the last 1754 // element to the array of new vectors. 1755 if ((IntermedVals.size() & 1) != 0) 1756 NewIntermedVals.push_back(IntermedVals.back()); 1757 1758 IntermedVals.swap(NewIntermedVals); 1759 } 1760 1761 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1762 "Invalid number of intermediate vectors"); 1763 SDValue Vec1 = IntermedVals[0].first; 1764 SDValue Vec2; 1765 if (IntermedVals.size() > 1) 1766 Vec2 = IntermedVals[1].first; 1767 else if (Phase) 1768 Vec2 = DAG.getUNDEF(VT); 1769 1770 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1771 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1772 ShuffleVec[IntermedVals[0].second[i]] = i; 1773 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1774 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1775 1776 if (Phase) 1777 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1778 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1779 return false; 1780 } 1781 1782 return true; 1783 } 1784 1785 /// Expand a BUILD_VECTOR node on targets that don't 1786 /// support the operation, but do support the resultant vector type. 1787 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1788 unsigned NumElems = Node->getNumOperands(); 1789 SDValue Value1, Value2; 1790 SDLoc dl(Node); 1791 EVT VT = Node->getValueType(0); 1792 EVT OpVT = Node->getOperand(0).getValueType(); 1793 EVT EltVT = VT.getVectorElementType(); 1794 1795 // If the only non-undef value is the low element, turn this into a 1796 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1797 bool isOnlyLowElement = true; 1798 bool MoreThanTwoValues = false; 1799 bool isConstant = true; 1800 for (unsigned i = 0; i < NumElems; ++i) { 1801 SDValue V = Node->getOperand(i); 1802 if (V.isUndef()) 1803 continue; 1804 if (i > 0) 1805 isOnlyLowElement = false; 1806 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1807 isConstant = false; 1808 1809 if (!Value1.getNode()) { 1810 Value1 = V; 1811 } else if (!Value2.getNode()) { 1812 if (V != Value1) 1813 Value2 = V; 1814 } else if (V != Value1 && V != Value2) { 1815 MoreThanTwoValues = true; 1816 } 1817 } 1818 1819 if (!Value1.getNode()) 1820 return DAG.getUNDEF(VT); 1821 1822 if (isOnlyLowElement) 1823 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1824 1825 // If all elements are constants, create a load from the constant pool. 1826 if (isConstant) { 1827 SmallVector<Constant*, 16> CV; 1828 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1829 if (ConstantFPSDNode *V = 1830 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1831 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1832 } else if (ConstantSDNode *V = 1833 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1834 if (OpVT==EltVT) 1835 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1836 else { 1837 // If OpVT and EltVT don't match, EltVT is not legal and the 1838 // element values have been promoted/truncated earlier. Undo this; 1839 // we don't want a v16i8 to become a v16i32 for example. 1840 const ConstantInt *CI = V->getConstantIntValue(); 1841 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1842 CI->getZExtValue())); 1843 } 1844 } else { 1845 assert(Node->getOperand(i).isUndef()); 1846 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1847 CV.push_back(UndefValue::get(OpNTy)); 1848 } 1849 } 1850 Constant *CP = ConstantVector::get(CV); 1851 SDValue CPIdx = 1852 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 1853 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 1854 return DAG.getLoad( 1855 VT, dl, DAG.getEntryNode(), CPIdx, 1856 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 1857 Alignment); 1858 } 1859 1860 SmallSet<SDValue, 16> DefinedValues; 1861 for (unsigned i = 0; i < NumElems; ++i) { 1862 if (Node->getOperand(i).isUndef()) 1863 continue; 1864 DefinedValues.insert(Node->getOperand(i)); 1865 } 1866 1867 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 1868 if (!MoreThanTwoValues) { 1869 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1870 for (unsigned i = 0; i < NumElems; ++i) { 1871 SDValue V = Node->getOperand(i); 1872 if (V.isUndef()) 1873 continue; 1874 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1875 } 1876 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1877 // Get the splatted value into the low element of a vector register. 1878 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1879 SDValue Vec2; 1880 if (Value2.getNode()) 1881 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 1882 else 1883 Vec2 = DAG.getUNDEF(VT); 1884 1885 // Return shuffle(LowValVec, undef, <0,0,0,0>) 1886 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1887 } 1888 } else { 1889 SDValue Res; 1890 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 1891 return Res; 1892 } 1893 } 1894 1895 // Otherwise, we can't handle this case efficiently. 1896 return ExpandVectorBuildThroughStack(Node); 1897 } 1898 1899 // Expand a node into a call to a libcall. If the result value 1900 // does not fit into a register, return the lo part and set the hi part to the 1901 // by-reg argument. If it does fit into a single register, return the result 1902 // and leave the Hi part unset. 1903 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 1904 bool isSigned) { 1905 TargetLowering::ArgListTy Args; 1906 TargetLowering::ArgListEntry Entry; 1907 for (const SDValue &Op : Node->op_values()) { 1908 EVT ArgVT = Op.getValueType(); 1909 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 1910 Entry.Node = Op; 1911 Entry.Ty = ArgTy; 1912 Entry.IsSExt = isSigned; 1913 Entry.IsZExt = !isSigned; 1914 Args.push_back(Entry); 1915 } 1916 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1917 TLI.getPointerTy(DAG.getDataLayout())); 1918 1919 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 1920 1921 // By default, the input chain to this libcall is the entry node of the 1922 // function. If the libcall is going to be emitted as a tail call then 1923 // TLI.isUsedByReturnOnly will change it to the right chain if the return 1924 // node which is being folded has a non-entry input chain. 1925 SDValue InChain = DAG.getEntryNode(); 1926 1927 // isTailCall may be true since the callee does not reference caller stack 1928 // frame. Check if it's in the right position and that the return types match. 1929 SDValue TCChain = InChain; 1930 const Function *F = DAG.getMachineFunction().getFunction(); 1931 bool isTailCall = 1932 TLI.isInTailCallPosition(DAG, Node, TCChain) && 1933 (RetTy == F->getReturnType() || F->getReturnType()->isVoidTy()); 1934 if (isTailCall) 1935 InChain = TCChain; 1936 1937 TargetLowering::CallLoweringInfo CLI(DAG); 1938 CLI.setDebugLoc(SDLoc(Node)) 1939 .setChain(InChain) 1940 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 1941 std::move(Args)) 1942 .setTailCall(isTailCall) 1943 .setSExtResult(isSigned) 1944 .setZExtResult(!isSigned); 1945 1946 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 1947 1948 if (!CallInfo.second.getNode()) 1949 // It's a tailcall, return the chain (which is the DAG root). 1950 return DAG.getRoot(); 1951 1952 return CallInfo.first; 1953 } 1954 1955 /// Generate a libcall taking the given operands as arguments 1956 /// and returning a result of type RetVT. 1957 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, 1958 const SDValue *Ops, unsigned NumOps, 1959 bool isSigned, const SDLoc &dl) { 1960 TargetLowering::ArgListTy Args; 1961 Args.reserve(NumOps); 1962 1963 TargetLowering::ArgListEntry Entry; 1964 for (unsigned i = 0; i != NumOps; ++i) { 1965 Entry.Node = Ops[i]; 1966 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1967 Entry.IsSExt = isSigned; 1968 Entry.IsZExt = !isSigned; 1969 Args.push_back(Entry); 1970 } 1971 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1972 TLI.getPointerTy(DAG.getDataLayout())); 1973 1974 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 1975 1976 TargetLowering::CallLoweringInfo CLI(DAG); 1977 CLI.setDebugLoc(dl) 1978 .setChain(DAG.getEntryNode()) 1979 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 1980 std::move(Args)) 1981 .setSExtResult(isSigned) 1982 .setZExtResult(!isSigned); 1983 1984 std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI); 1985 1986 return CallInfo.first; 1987 } 1988 1989 // Expand a node into a call to a libcall. Similar to 1990 // ExpandLibCall except that the first operand is the in-chain. 1991 std::pair<SDValue, SDValue> 1992 SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC, 1993 SDNode *Node, 1994 bool isSigned) { 1995 SDValue InChain = Node->getOperand(0); 1996 1997 TargetLowering::ArgListTy Args; 1998 TargetLowering::ArgListEntry Entry; 1999 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { 2000 EVT ArgVT = Node->getOperand(i).getValueType(); 2001 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2002 Entry.Node = Node->getOperand(i); 2003 Entry.Ty = ArgTy; 2004 Entry.IsSExt = isSigned; 2005 Entry.IsZExt = !isSigned; 2006 Args.push_back(Entry); 2007 } 2008 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2009 TLI.getPointerTy(DAG.getDataLayout())); 2010 2011 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 2012 2013 TargetLowering::CallLoweringInfo CLI(DAG); 2014 CLI.setDebugLoc(SDLoc(Node)) 2015 .setChain(InChain) 2016 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2017 std::move(Args)) 2018 .setSExtResult(isSigned) 2019 .setZExtResult(!isSigned); 2020 2021 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2022 2023 return CallInfo; 2024 } 2025 2026 SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2027 RTLIB::Libcall Call_F32, 2028 RTLIB::Libcall Call_F64, 2029 RTLIB::Libcall Call_F80, 2030 RTLIB::Libcall Call_F128, 2031 RTLIB::Libcall Call_PPCF128) { 2032 RTLIB::Libcall LC; 2033 switch (Node->getSimpleValueType(0).SimpleTy) { 2034 default: llvm_unreachable("Unexpected request for libcall!"); 2035 case MVT::f32: LC = Call_F32; break; 2036 case MVT::f64: LC = Call_F64; break; 2037 case MVT::f80: LC = Call_F80; break; 2038 case MVT::f128: LC = Call_F128; break; 2039 case MVT::ppcf128: LC = Call_PPCF128; break; 2040 } 2041 return ExpandLibCall(LC, Node, false); 2042 } 2043 2044 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2045 RTLIB::Libcall Call_I8, 2046 RTLIB::Libcall Call_I16, 2047 RTLIB::Libcall Call_I32, 2048 RTLIB::Libcall Call_I64, 2049 RTLIB::Libcall Call_I128) { 2050 RTLIB::Libcall LC; 2051 switch (Node->getSimpleValueType(0).SimpleTy) { 2052 default: llvm_unreachable("Unexpected request for libcall!"); 2053 case MVT::i8: LC = Call_I8; break; 2054 case MVT::i16: LC = Call_I16; break; 2055 case MVT::i32: LC = Call_I32; break; 2056 case MVT::i64: LC = Call_I64; break; 2057 case MVT::i128: LC = Call_I128; break; 2058 } 2059 return ExpandLibCall(LC, Node, isSigned); 2060 } 2061 2062 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2063 void 2064 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2065 SmallVectorImpl<SDValue> &Results) { 2066 unsigned Opcode = Node->getOpcode(); 2067 bool isSigned = Opcode == ISD::SDIVREM; 2068 2069 RTLIB::Libcall LC; 2070 switch (Node->getSimpleValueType(0).SimpleTy) { 2071 default: llvm_unreachable("Unexpected request for libcall!"); 2072 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2073 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2074 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2075 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2076 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2077 } 2078 2079 // The input chain to this libcall is the entry node of the function. 2080 // Legalizing the call will automatically add the previous call to the 2081 // dependence. 2082 SDValue InChain = DAG.getEntryNode(); 2083 2084 EVT RetVT = Node->getValueType(0); 2085 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2086 2087 TargetLowering::ArgListTy Args; 2088 TargetLowering::ArgListEntry Entry; 2089 for (const SDValue &Op : Node->op_values()) { 2090 EVT ArgVT = Op.getValueType(); 2091 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2092 Entry.Node = Op; 2093 Entry.Ty = ArgTy; 2094 Entry.IsSExt = isSigned; 2095 Entry.IsZExt = !isSigned; 2096 Args.push_back(Entry); 2097 } 2098 2099 // Also pass the return address of the remainder. 2100 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2101 Entry.Node = FIPtr; 2102 Entry.Ty = RetTy->getPointerTo(); 2103 Entry.IsSExt = isSigned; 2104 Entry.IsZExt = !isSigned; 2105 Args.push_back(Entry); 2106 2107 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2108 TLI.getPointerTy(DAG.getDataLayout())); 2109 2110 SDLoc dl(Node); 2111 TargetLowering::CallLoweringInfo CLI(DAG); 2112 CLI.setDebugLoc(dl) 2113 .setChain(InChain) 2114 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2115 std::move(Args)) 2116 .setSExtResult(isSigned) 2117 .setZExtResult(!isSigned); 2118 2119 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2120 2121 // Remainder is loaded back from the stack frame. 2122 SDValue Rem = 2123 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2124 Results.push_back(CallInfo.first); 2125 Results.push_back(Rem); 2126 } 2127 2128 /// Return true if sincos libcall is available. 2129 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2130 RTLIB::Libcall LC; 2131 switch (Node->getSimpleValueType(0).SimpleTy) { 2132 default: llvm_unreachable("Unexpected request for libcall!"); 2133 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2134 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2135 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2136 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2137 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2138 } 2139 return TLI.getLibcallName(LC) != nullptr; 2140 } 2141 2142 /// Return true if sincos libcall is available and can be used to combine sin 2143 /// and cos. 2144 static bool canCombineSinCosLibcall(SDNode *Node, const TargetLowering &TLI, 2145 const TargetMachine &TM) { 2146 if (!isSinCosLibcallAvailable(Node, TLI)) 2147 return false; 2148 // GNU sin/cos functions set errno while sincos does not. Therefore 2149 // combining sin and cos is only safe if unsafe-fpmath is enabled. 2150 if (TM.getTargetTriple().isGNUEnvironment() && !TM.Options.UnsafeFPMath) 2151 return false; 2152 return true; 2153 } 2154 2155 /// Only issue sincos libcall if both sin and cos are needed. 2156 static bool useSinCos(SDNode *Node) { 2157 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2158 ? ISD::FCOS : ISD::FSIN; 2159 2160 SDValue Op0 = Node->getOperand(0); 2161 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2162 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2163 SDNode *User = *UI; 2164 if (User == Node) 2165 continue; 2166 // The other user might have been turned into sincos already. 2167 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2168 return true; 2169 } 2170 return false; 2171 } 2172 2173 /// Issue libcalls to sincos to compute sin / cos pairs. 2174 void 2175 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2176 SmallVectorImpl<SDValue> &Results) { 2177 RTLIB::Libcall LC; 2178 switch (Node->getSimpleValueType(0).SimpleTy) { 2179 default: llvm_unreachable("Unexpected request for libcall!"); 2180 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2181 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2182 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2183 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2184 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2185 } 2186 2187 // The input chain to this libcall is the entry node of the function. 2188 // Legalizing the call will automatically add the previous call to the 2189 // dependence. 2190 SDValue InChain = DAG.getEntryNode(); 2191 2192 EVT RetVT = Node->getValueType(0); 2193 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2194 2195 TargetLowering::ArgListTy Args; 2196 TargetLowering::ArgListEntry Entry; 2197 2198 // Pass the argument. 2199 Entry.Node = Node->getOperand(0); 2200 Entry.Ty = RetTy; 2201 Entry.IsSExt = false; 2202 Entry.IsZExt = false; 2203 Args.push_back(Entry); 2204 2205 // Pass the return address of sin. 2206 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2207 Entry.Node = SinPtr; 2208 Entry.Ty = RetTy->getPointerTo(); 2209 Entry.IsSExt = false; 2210 Entry.IsZExt = false; 2211 Args.push_back(Entry); 2212 2213 // Also pass the return address of the cos. 2214 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2215 Entry.Node = CosPtr; 2216 Entry.Ty = RetTy->getPointerTo(); 2217 Entry.IsSExt = false; 2218 Entry.IsZExt = false; 2219 Args.push_back(Entry); 2220 2221 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2222 TLI.getPointerTy(DAG.getDataLayout())); 2223 2224 SDLoc dl(Node); 2225 TargetLowering::CallLoweringInfo CLI(DAG); 2226 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2227 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2228 std::move(Args)); 2229 2230 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2231 2232 Results.push_back( 2233 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2234 Results.push_back( 2235 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2236 } 2237 2238 /// This function is responsible for legalizing a 2239 /// INT_TO_FP operation of the specified operand when the target requests that 2240 /// we expand it. At this point, we know that the result and operand types are 2241 /// legal for the target. 2242 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0, 2243 EVT DestVT, 2244 const SDLoc &dl) { 2245 // TODO: Should any fast-math-flags be set for the created nodes? 2246 2247 if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { 2248 // simple 32-bit [signed|unsigned] integer to float/double expansion 2249 2250 // Get the stack frame index of a 8 byte buffer. 2251 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2252 2253 // word offset constant for Hi/Lo address computation 2254 SDValue WordOff = DAG.getConstant(sizeof(int), dl, 2255 StackSlot.getValueType()); 2256 // set up Hi and Lo (into buffer) address based on endian 2257 SDValue Hi = StackSlot; 2258 SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(), 2259 StackSlot, WordOff); 2260 if (DAG.getDataLayout().isLittleEndian()) 2261 std::swap(Hi, Lo); 2262 2263 // if signed map to unsigned space 2264 SDValue Op0Mapped; 2265 if (isSigned) { 2266 // constant used to invert sign bit (signed to unsigned mapping) 2267 SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32); 2268 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); 2269 } else { 2270 Op0Mapped = Op0; 2271 } 2272 // store the lo of the constructed double - based on integer input 2273 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo, 2274 MachinePointerInfo()); 2275 // initial hi portion of constructed double 2276 SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2277 // store the hi of the constructed double - biased exponent 2278 SDValue Store2 = 2279 DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo()); 2280 // load the constructed double 2281 SDValue Load = 2282 DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo()); 2283 // FP constant to bias correct the final result 2284 SDValue Bias = DAG.getConstantFP(isSigned ? 2285 BitsToDouble(0x4330000080000000ULL) : 2286 BitsToDouble(0x4330000000000000ULL), 2287 dl, MVT::f64); 2288 // subtract the bias 2289 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2290 // final result 2291 SDValue Result; 2292 // handle final rounding 2293 if (DestVT == MVT::f64) { 2294 // do nothing 2295 Result = Sub; 2296 } else if (DestVT.bitsLT(MVT::f64)) { 2297 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, 2298 DAG.getIntPtrConstant(0, dl)); 2299 } else if (DestVT.bitsGT(MVT::f64)) { 2300 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); 2301 } 2302 return Result; 2303 } 2304 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2305 // Code below here assumes !isSigned without checking again. 2306 2307 // Implementation of unsigned i64 to f64 following the algorithm in 2308 // __floatundidf in compiler_rt. This implementation has the advantage 2309 // of performing rounding correctly, both in the default rounding mode 2310 // and in all alternate rounding modes. 2311 // TODO: Generalize this for use with other types. 2312 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) { 2313 SDValue TwoP52 = 2314 DAG.getConstant(UINT64_C(0x4330000000000000), dl, MVT::i64); 2315 SDValue TwoP84PlusTwoP52 = 2316 DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), dl, 2317 MVT::f64); 2318 SDValue TwoP84 = 2319 DAG.getConstant(UINT64_C(0x4530000000000000), dl, MVT::i64); 2320 2321 SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32); 2322 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, 2323 DAG.getConstant(32, dl, MVT::i64)); 2324 SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52); 2325 SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84); 2326 SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr); 2327 SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr); 2328 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, 2329 TwoP84PlusTwoP52); 2330 return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub); 2331 } 2332 2333 // Implementation of unsigned i64 to f32. 2334 // TODO: Generalize this for use with other types. 2335 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) { 2336 // For unsigned conversions, convert them to signed conversions using the 2337 // algorithm from the x86_64 __floatundidf in compiler_rt. 2338 if (!isSigned) { 2339 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0); 2340 2341 SDValue ShiftConst = DAG.getConstant( 2342 1, dl, TLI.getShiftAmountTy(Op0.getValueType(), DAG.getDataLayout())); 2343 SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst); 2344 SDValue AndConst = DAG.getConstant(1, dl, MVT::i64); 2345 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst); 2346 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr); 2347 2348 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or); 2349 SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt); 2350 2351 // TODO: This really should be implemented using a branch rather than a 2352 // select. We happen to get lucky and machinesink does the right 2353 // thing most of the time. This would be a good candidate for a 2354 //pseudo-op, or, even better, for whole-function isel. 2355 SDValue SignBitTest = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), 2356 Op0, DAG.getConstant(0, dl, MVT::i64), ISD::SETLT); 2357 return DAG.getSelect(dl, MVT::f32, SignBitTest, Slow, Fast); 2358 } 2359 2360 // Otherwise, implement the fully general conversion. 2361 2362 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2363 DAG.getConstant(UINT64_C(0xfffffffffffff800), dl, MVT::i64)); 2364 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, 2365 DAG.getConstant(UINT64_C(0x800), dl, MVT::i64)); 2366 SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2367 DAG.getConstant(UINT64_C(0x7ff), dl, MVT::i64)); 2368 SDValue Ne = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), And2, 2369 DAG.getConstant(UINT64_C(0), dl, MVT::i64), 2370 ISD::SETNE); 2371 SDValue Sel = DAG.getSelect(dl, MVT::i64, Ne, Or, Op0); 2372 SDValue Ge = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), Op0, 2373 DAG.getConstant(UINT64_C(0x0020000000000000), dl, 2374 MVT::i64), 2375 ISD::SETUGE); 2376 SDValue Sel2 = DAG.getSelect(dl, MVT::i64, Ge, Sel, Op0); 2377 EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType(), DAG.getDataLayout()); 2378 2379 SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2, 2380 DAG.getConstant(32, dl, SHVT)); 2381 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh); 2382 SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc); 2383 SDValue TwoP32 = 2384 DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), dl, 2385 MVT::f64); 2386 SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt); 2387 SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2); 2388 SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo); 2389 SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2); 2390 return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd, 2391 DAG.getIntPtrConstant(0, dl)); 2392 } 2393 2394 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2395 2396 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(Op0.getValueType()), 2397 Op0, 2398 DAG.getConstant(0, dl, Op0.getValueType()), 2399 ISD::SETLT); 2400 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2401 Four = DAG.getIntPtrConstant(4, dl); 2402 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2403 SignSet, Four, Zero); 2404 2405 // If the sign bit of the integer is set, the large number will be treated 2406 // as a negative number. To counteract this, the dynamic code adds an 2407 // offset depending on the data type. 2408 uint64_t FF; 2409 switch (Op0.getSimpleValueType().SimpleTy) { 2410 default: llvm_unreachable("Unsupported integer type!"); 2411 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2412 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2413 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2414 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2415 } 2416 if (DAG.getDataLayout().isLittleEndian()) 2417 FF <<= 32; 2418 Constant *FudgeFactor = ConstantInt::get( 2419 Type::getInt64Ty(*DAG.getContext()), FF); 2420 2421 SDValue CPIdx = 2422 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2423 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2424 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2425 Alignment = std::min(Alignment, 4u); 2426 SDValue FudgeInReg; 2427 if (DestVT == MVT::f32) 2428 FudgeInReg = DAG.getLoad( 2429 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2430 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2431 Alignment); 2432 else { 2433 SDValue Load = DAG.getExtLoad( 2434 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2435 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2436 Alignment); 2437 HandleSDNode Handle(Load); 2438 LegalizeOp(Load.getNode()); 2439 FudgeInReg = Handle.getValue(); 2440 } 2441 2442 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2443 } 2444 2445 /// This function is responsible for legalizing a 2446 /// *INT_TO_FP operation of the specified operand when the target requests that 2447 /// we promote it. At this point, we know that the result and operand types are 2448 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2449 /// operation that takes a larger input. 2450 SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, 2451 bool isSigned, 2452 const SDLoc &dl) { 2453 // First step, figure out the appropriate *INT_TO_FP operation to use. 2454 EVT NewInTy = LegalOp.getValueType(); 2455 2456 unsigned OpToUse = 0; 2457 2458 // Scan for the appropriate larger type to use. 2459 while (1) { 2460 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2461 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2462 2463 // If the target supports SINT_TO_FP of this type, use it. 2464 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { 2465 OpToUse = ISD::SINT_TO_FP; 2466 break; 2467 } 2468 if (isSigned) continue; 2469 2470 // If the target supports UINT_TO_FP of this type, use it. 2471 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { 2472 OpToUse = ISD::UINT_TO_FP; 2473 break; 2474 } 2475 2476 // Otherwise, try a larger type. 2477 } 2478 2479 // Okay, we found the operation and type to use. Zero extend our input to the 2480 // desired type then run the operation on it. 2481 return DAG.getNode(OpToUse, dl, DestVT, 2482 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2483 dl, NewInTy, LegalOp)); 2484 } 2485 2486 /// This function is responsible for legalizing a 2487 /// FP_TO_*INT operation of the specified operand when the target requests that 2488 /// we promote it. At this point, we know that the result and operand types are 2489 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2490 /// operation that returns a larger result. 2491 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, 2492 bool isSigned, 2493 const SDLoc &dl) { 2494 // First step, figure out the appropriate FP_TO*INT operation to use. 2495 EVT NewOutTy = DestVT; 2496 2497 unsigned OpToUse = 0; 2498 2499 // Scan for the appropriate larger type to use. 2500 while (1) { 2501 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2502 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2503 2504 // A larger signed type can hold all unsigned values of the requested type, 2505 // so using FP_TO_SINT is valid 2506 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { 2507 OpToUse = ISD::FP_TO_SINT; 2508 break; 2509 } 2510 2511 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2512 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { 2513 OpToUse = ISD::FP_TO_UINT; 2514 break; 2515 } 2516 2517 // Otherwise, try a larger type. 2518 } 2519 2520 2521 // Okay, we found the operation and type to use. 2522 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2523 2524 // Truncate the result of the extended FP_TO_*INT operation to the desired 2525 // size. 2526 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2527 } 2528 2529 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts. 2530 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) { 2531 EVT VT = Op.getValueType(); 2532 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2533 unsigned Sz = VT.getScalarSizeInBits(); 2534 2535 SDValue Tmp, Tmp2, Tmp3; 2536 2537 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 2538 // and finally the i1 pairs. 2539 // TODO: We can easily support i4/i2 legal types if any target ever does. 2540 if (Sz >= 8 && isPowerOf2_32(Sz)) { 2541 // Create the masks - repeating the pattern every byte. 2542 APInt MaskHi4(Sz, 0), MaskHi2(Sz, 0), MaskHi1(Sz, 0); 2543 APInt MaskLo4(Sz, 0), MaskLo2(Sz, 0), MaskLo1(Sz, 0); 2544 for (unsigned J = 0; J != Sz; J += 8) { 2545 MaskHi4 = MaskHi4 | (0xF0ull << J); 2546 MaskLo4 = MaskLo4 | (0x0Full << J); 2547 MaskHi2 = MaskHi2 | (0xCCull << J); 2548 MaskLo2 = MaskLo2 | (0x33ull << J); 2549 MaskHi1 = MaskHi1 | (0xAAull << J); 2550 MaskLo1 = MaskLo1 | (0x55ull << J); 2551 } 2552 2553 // BSWAP if the type is wider than a single byte. 2554 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 2555 2556 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) 2557 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); 2558 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); 2559 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, VT)); 2560 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, VT)); 2561 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2562 2563 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) 2564 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); 2565 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); 2566 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, VT)); 2567 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, VT)); 2568 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2569 2570 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) 2571 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); 2572 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); 2573 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, VT)); 2574 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, VT)); 2575 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 2576 return Tmp; 2577 } 2578 2579 Tmp = DAG.getConstant(0, dl, VT); 2580 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 2581 if (I < J) 2582 Tmp2 = 2583 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 2584 else 2585 Tmp2 = 2586 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 2587 2588 APInt Shift(Sz, 1); 2589 Shift = Shift.shl(J); 2590 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 2591 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 2592 } 2593 2594 return Tmp; 2595 } 2596 2597 /// Open code the operations for BSWAP of the specified operation. 2598 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) { 2599 EVT VT = Op.getValueType(); 2600 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2601 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2602 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 2603 default: llvm_unreachable("Unhandled Expand type in BSWAP!"); 2604 case MVT::i16: 2605 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2606 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2607 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 2608 case MVT::i32: 2609 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2610 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2611 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2612 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2613 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2614 DAG.getConstant(0xFF0000, dl, VT)); 2615 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 2616 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2617 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2618 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2619 case MVT::i64: 2620 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2621 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2622 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2623 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2624 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2625 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2626 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2627 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2628 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 2629 DAG.getConstant(255ULL<<48, dl, VT)); 2630 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 2631 DAG.getConstant(255ULL<<40, dl, VT)); 2632 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 2633 DAG.getConstant(255ULL<<32, dl, VT)); 2634 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 2635 DAG.getConstant(255ULL<<24, dl, VT)); 2636 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2637 DAG.getConstant(255ULL<<16, dl, VT)); 2638 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 2639 DAG.getConstant(255ULL<<8 , dl, VT)); 2640 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2641 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2642 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2643 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2644 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2645 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2646 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2647 } 2648 } 2649 2650 /// Expand the specified bitcount instruction into operations. 2651 SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op, 2652 const SDLoc &dl) { 2653 switch (Opc) { 2654 default: llvm_unreachable("Cannot expand this yet!"); 2655 case ISD::CTPOP: { 2656 EVT VT = Op.getValueType(); 2657 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2658 unsigned Len = VT.getSizeInBits(); 2659 2660 assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 && 2661 "CTPOP not implemented for this type."); 2662 2663 // This is the "best" algorithm from 2664 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 2665 2666 SDValue Mask55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), 2667 dl, VT); 2668 SDValue Mask33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), 2669 dl, VT); 2670 SDValue Mask0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), 2671 dl, VT); 2672 SDValue Mask01 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), 2673 dl, VT); 2674 2675 // v = v - ((v >> 1) & 0x55555555...) 2676 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 2677 DAG.getNode(ISD::AND, dl, VT, 2678 DAG.getNode(ISD::SRL, dl, VT, Op, 2679 DAG.getConstant(1, dl, ShVT)), 2680 Mask55)); 2681 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 2682 Op = DAG.getNode(ISD::ADD, dl, VT, 2683 DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 2684 DAG.getNode(ISD::AND, dl, VT, 2685 DAG.getNode(ISD::SRL, dl, VT, Op, 2686 DAG.getConstant(2, dl, ShVT)), 2687 Mask33)); 2688 // v = (v + (v >> 4)) & 0x0F0F0F0F... 2689 Op = DAG.getNode(ISD::AND, dl, VT, 2690 DAG.getNode(ISD::ADD, dl, VT, Op, 2691 DAG.getNode(ISD::SRL, dl, VT, Op, 2692 DAG.getConstant(4, dl, ShVT))), 2693 Mask0F); 2694 // v = (v * 0x01010101...) >> (Len - 8) 2695 Op = DAG.getNode(ISD::SRL, dl, VT, 2696 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 2697 DAG.getConstant(Len - 8, dl, ShVT)); 2698 2699 return Op; 2700 } 2701 case ISD::CTLZ_ZERO_UNDEF: 2702 // This trivially expands to CTLZ. 2703 return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op); 2704 case ISD::CTLZ: { 2705 EVT VT = Op.getValueType(); 2706 unsigned len = VT.getSizeInBits(); 2707 2708 if (TLI.isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 2709 EVT SetCCVT = getSetCCResultType(VT); 2710 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 2711 SDValue Zero = DAG.getConstant(0, dl, VT); 2712 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 2713 return DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 2714 DAG.getConstant(len, dl, VT), CTLZ); 2715 } 2716 2717 // for now, we do this: 2718 // x = x | (x >> 1); 2719 // x = x | (x >> 2); 2720 // ... 2721 // x = x | (x >>16); 2722 // x = x | (x >>32); // for 64-bit input 2723 // return popcount(~x); 2724 // 2725 // Ref: "Hacker's Delight" by Henry Warren 2726 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2727 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 2728 SDValue Tmp3 = DAG.getConstant(1ULL << i, dl, ShVT); 2729 Op = DAG.getNode(ISD::OR, dl, VT, Op, 2730 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3)); 2731 } 2732 Op = DAG.getNOT(dl, Op, VT); 2733 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 2734 } 2735 case ISD::CTTZ_ZERO_UNDEF: 2736 // This trivially expands to CTTZ. 2737 return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op); 2738 case ISD::CTTZ: { 2739 // for now, we use: { return popcount(~x & (x - 1)); } 2740 // unless the target has ctlz but not ctpop, in which case we use: 2741 // { return 32 - nlz(~x & (x-1)); } 2742 // Ref: "Hacker's Delight" by Henry Warren 2743 EVT VT = Op.getValueType(); 2744 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT, 2745 DAG.getNOT(dl, Op, VT), 2746 DAG.getNode(ISD::SUB, dl, VT, Op, 2747 DAG.getConstant(1, dl, VT))); 2748 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 2749 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && 2750 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) 2751 return DAG.getNode(ISD::SUB, dl, VT, 2752 DAG.getConstant(VT.getSizeInBits(), dl, VT), 2753 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3)); 2754 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3); 2755 } 2756 } 2757 } 2758 2759 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2760 SmallVector<SDValue, 8> Results; 2761 SDLoc dl(Node); 2762 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2763 bool NeedInvert; 2764 switch (Node->getOpcode()) { 2765 case ISD::CTPOP: 2766 case ISD::CTLZ: 2767 case ISD::CTLZ_ZERO_UNDEF: 2768 case ISD::CTTZ: 2769 case ISD::CTTZ_ZERO_UNDEF: 2770 Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl); 2771 Results.push_back(Tmp1); 2772 break; 2773 case ISD::BITREVERSE: 2774 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl)); 2775 break; 2776 case ISD::BSWAP: 2777 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2778 break; 2779 case ISD::FRAMEADDR: 2780 case ISD::RETURNADDR: 2781 case ISD::FRAME_TO_ARGS_OFFSET: 2782 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2783 break; 2784 case ISD::EH_DWARF_CFA: { 2785 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 2786 TLI.getPointerTy(DAG.getDataLayout())); 2787 SDValue Offset = DAG.getNode(ISD::ADD, dl, 2788 CfaArg.getValueType(), 2789 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 2790 CfaArg.getValueType()), 2791 CfaArg); 2792 SDValue FA = DAG.getNode( 2793 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 2794 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2795 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 2796 FA, Offset)); 2797 break; 2798 } 2799 case ISD::FLT_ROUNDS_: 2800 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2801 break; 2802 case ISD::EH_RETURN: 2803 case ISD::EH_LABEL: 2804 case ISD::PREFETCH: 2805 case ISD::VAEND: 2806 case ISD::EH_SJLJ_LONGJMP: 2807 // If the target didn't expand these, there's nothing to do, so just 2808 // preserve the chain and be done. 2809 Results.push_back(Node->getOperand(0)); 2810 break; 2811 case ISD::READCYCLECOUNTER: 2812 // If the target didn't expand this, just return 'zero' and preserve the 2813 // chain. 2814 Results.append(Node->getNumValues() - 1, 2815 DAG.getConstant(0, dl, Node->getValueType(0))); 2816 Results.push_back(Node->getOperand(0)); 2817 break; 2818 case ISD::EH_SJLJ_SETJMP: 2819 // If the target didn't expand this, just return 'zero' and preserve the 2820 // chain. 2821 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2822 Results.push_back(Node->getOperand(0)); 2823 break; 2824 case ISD::ATOMIC_LOAD: { 2825 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2826 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2827 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2828 SDValue Swap = DAG.getAtomicCmpSwap( 2829 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2830 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2831 cast<AtomicSDNode>(Node)->getMemOperand()); 2832 Results.push_back(Swap.getValue(0)); 2833 Results.push_back(Swap.getValue(1)); 2834 break; 2835 } 2836 case ISD::ATOMIC_STORE: { 2837 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2838 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2839 cast<AtomicSDNode>(Node)->getMemoryVT(), 2840 Node->getOperand(0), 2841 Node->getOperand(1), Node->getOperand(2), 2842 cast<AtomicSDNode>(Node)->getMemOperand()); 2843 Results.push_back(Swap.getValue(1)); 2844 break; 2845 } 2846 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 2847 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 2848 // splits out the success value as a comparison. Expanding the resulting 2849 // ATOMIC_CMP_SWAP will produce a libcall. 2850 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2851 SDValue Res = DAG.getAtomicCmpSwap( 2852 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2853 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 2854 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 2855 2856 SDValue ExtRes = Res; 2857 SDValue LHS = Res; 2858 SDValue RHS = Node->getOperand(1); 2859 2860 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 2861 EVT OuterType = Node->getValueType(0); 2862 switch (TLI.getExtendForAtomicOps()) { 2863 case ISD::SIGN_EXTEND: 2864 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 2865 DAG.getValueType(AtomicType)); 2866 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 2867 Node->getOperand(2), DAG.getValueType(AtomicType)); 2868 ExtRes = LHS; 2869 break; 2870 case ISD::ZERO_EXTEND: 2871 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 2872 DAG.getValueType(AtomicType)); 2873 RHS = DAG.getNode(ISD::ZERO_EXTEND, dl, OuterType, Node->getOperand(2)); 2874 ExtRes = LHS; 2875 break; 2876 case ISD::ANY_EXTEND: 2877 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 2878 RHS = DAG.getNode(ISD::ZERO_EXTEND, dl, OuterType, Node->getOperand(2)); 2879 break; 2880 default: 2881 llvm_unreachable("Invalid atomic op extension"); 2882 } 2883 2884 SDValue Success = 2885 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 2886 2887 Results.push_back(ExtRes.getValue(0)); 2888 Results.push_back(Success); 2889 Results.push_back(Res.getValue(1)); 2890 break; 2891 } 2892 case ISD::DYNAMIC_STACKALLOC: 2893 ExpandDYNAMIC_STACKALLOC(Node, Results); 2894 break; 2895 case ISD::MERGE_VALUES: 2896 for (unsigned i = 0; i < Node->getNumValues(); i++) 2897 Results.push_back(Node->getOperand(i)); 2898 break; 2899 case ISD::UNDEF: { 2900 EVT VT = Node->getValueType(0); 2901 if (VT.isInteger()) 2902 Results.push_back(DAG.getConstant(0, dl, VT)); 2903 else { 2904 assert(VT.isFloatingPoint() && "Unknown value type!"); 2905 Results.push_back(DAG.getConstantFP(0, dl, VT)); 2906 } 2907 break; 2908 } 2909 case ISD::FP_ROUND: 2910 case ISD::BITCAST: 2911 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 2912 Node->getValueType(0), dl); 2913 Results.push_back(Tmp1); 2914 break; 2915 case ISD::FP_EXTEND: 2916 Tmp1 = EmitStackConvert(Node->getOperand(0), 2917 Node->getOperand(0).getValueType(), 2918 Node->getValueType(0), dl); 2919 Results.push_back(Tmp1); 2920 break; 2921 case ISD::SIGN_EXTEND_INREG: { 2922 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2923 EVT VT = Node->getValueType(0); 2924 2925 // An in-register sign-extend of a boolean is a negation: 2926 // 'true' (1) sign-extended is -1. 2927 // 'false' (0) sign-extended is 0. 2928 // However, we must mask the high bits of the source operand because the 2929 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 2930 2931 // TODO: Do this for vectors too? 2932 if (ExtraVT.getSizeInBits() == 1) { 2933 SDValue One = DAG.getConstant(1, dl, VT); 2934 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 2935 SDValue Zero = DAG.getConstant(0, dl, VT); 2936 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 2937 Results.push_back(Neg); 2938 break; 2939 } 2940 2941 // NOTE: we could fall back on load/store here too for targets without 2942 // SRA. However, it is doubtful that any exist. 2943 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2944 if (VT.isVector()) 2945 ShiftAmountTy = VT; 2946 unsigned BitsDiff = VT.getScalarSizeInBits() - 2947 ExtraVT.getScalarSizeInBits(); 2948 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 2949 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 2950 Node->getOperand(0), ShiftCst); 2951 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 2952 Results.push_back(Tmp1); 2953 break; 2954 } 2955 case ISD::FP_ROUND_INREG: { 2956 // The only way we can lower this is to turn it into a TRUNCSTORE, 2957 // EXTLOAD pair, targeting a temporary location (a stack slot). 2958 2959 // NOTE: there is a choice here between constantly creating new stack 2960 // slots and always reusing the same one. We currently always create 2961 // new ones, as reuse may inhibit scheduling. 2962 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2963 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT, 2964 Node->getValueType(0), dl); 2965 Results.push_back(Tmp1); 2966 break; 2967 } 2968 case ISD::SINT_TO_FP: 2969 case ISD::UINT_TO_FP: 2970 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, 2971 Node->getOperand(0), Node->getValueType(0), dl); 2972 Results.push_back(Tmp1); 2973 break; 2974 case ISD::FP_TO_SINT: 2975 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 2976 Results.push_back(Tmp1); 2977 break; 2978 case ISD::FP_TO_UINT: { 2979 SDValue True, False; 2980 EVT VT = Node->getOperand(0).getValueType(); 2981 EVT NVT = Node->getValueType(0); 2982 APFloat apf(DAG.EVTToAPFloatSemantics(VT), 2983 APInt::getNullValue(VT.getSizeInBits())); 2984 APInt x = APInt::getSignBit(NVT.getSizeInBits()); 2985 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); 2986 Tmp1 = DAG.getConstantFP(apf, dl, VT); 2987 Tmp2 = DAG.getSetCC(dl, getSetCCResultType(VT), 2988 Node->getOperand(0), 2989 Tmp1, ISD::SETLT); 2990 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0)); 2991 // TODO: Should any fast-math-flags be set for the FSUB? 2992 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, 2993 DAG.getNode(ISD::FSUB, dl, VT, 2994 Node->getOperand(0), Tmp1)); 2995 False = DAG.getNode(ISD::XOR, dl, NVT, False, 2996 DAG.getConstant(x, dl, NVT)); 2997 Tmp1 = DAG.getSelect(dl, NVT, Tmp2, True, False); 2998 Results.push_back(Tmp1); 2999 break; 3000 } 3001 case ISD::VAARG: 3002 Results.push_back(DAG.expandVAArg(Node)); 3003 Results.push_back(Results[0].getValue(1)); 3004 break; 3005 case ISD::VACOPY: 3006 Results.push_back(DAG.expandVACopy(Node)); 3007 break; 3008 case ISD::EXTRACT_VECTOR_ELT: 3009 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 3010 // This must be an access of the only element. Return it. 3011 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 3012 Node->getOperand(0)); 3013 else 3014 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 3015 Results.push_back(Tmp1); 3016 break; 3017 case ISD::EXTRACT_SUBVECTOR: 3018 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 3019 break; 3020 case ISD::INSERT_SUBVECTOR: 3021 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 3022 break; 3023 case ISD::CONCAT_VECTORS: { 3024 Results.push_back(ExpandVectorBuildThroughStack(Node)); 3025 break; 3026 } 3027 case ISD::SCALAR_TO_VECTOR: 3028 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3029 break; 3030 case ISD::INSERT_VECTOR_ELT: 3031 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3032 Node->getOperand(1), 3033 Node->getOperand(2), dl)); 3034 break; 3035 case ISD::VECTOR_SHUFFLE: { 3036 SmallVector<int, 32> NewMask; 3037 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3038 3039 EVT VT = Node->getValueType(0); 3040 EVT EltVT = VT.getVectorElementType(); 3041 SDValue Op0 = Node->getOperand(0); 3042 SDValue Op1 = Node->getOperand(1); 3043 if (!TLI.isTypeLegal(EltVT)) { 3044 3045 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3046 3047 // BUILD_VECTOR operands are allowed to be wider than the element type. 3048 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 3049 // it. 3050 if (NewEltVT.bitsLT(EltVT)) { 3051 3052 // Convert shuffle node. 3053 // If original node was v4i64 and the new EltVT is i32, 3054 // cast operands to v8i32 and re-build the mask. 3055 3056 // Calculate new VT, the size of the new VT should be equal to original. 3057 EVT NewVT = 3058 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3059 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 3060 assert(NewVT.bitsEq(VT)); 3061 3062 // cast operands to new VT 3063 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3064 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3065 3066 // Convert the shuffle mask 3067 unsigned int factor = 3068 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3069 3070 // EltVT gets smaller 3071 assert(factor > 0); 3072 3073 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3074 if (Mask[i] < 0) { 3075 for (unsigned fi = 0; fi < factor; ++fi) 3076 NewMask.push_back(Mask[i]); 3077 } 3078 else { 3079 for (unsigned fi = 0; fi < factor; ++fi) 3080 NewMask.push_back(Mask[i]*factor+fi); 3081 } 3082 } 3083 Mask = NewMask; 3084 VT = NewVT; 3085 } 3086 EltVT = NewEltVT; 3087 } 3088 unsigned NumElems = VT.getVectorNumElements(); 3089 SmallVector<SDValue, 16> Ops; 3090 for (unsigned i = 0; i != NumElems; ++i) { 3091 if (Mask[i] < 0) { 3092 Ops.push_back(DAG.getUNDEF(EltVT)); 3093 continue; 3094 } 3095 unsigned Idx = Mask[i]; 3096 if (Idx < NumElems) 3097 Ops.push_back(DAG.getNode( 3098 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3099 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())))); 3100 else 3101 Ops.push_back(DAG.getNode( 3102 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3103 DAG.getConstant(Idx - NumElems, dl, 3104 TLI.getVectorIdxTy(DAG.getDataLayout())))); 3105 } 3106 3107 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 3108 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3109 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3110 Results.push_back(Tmp1); 3111 break; 3112 } 3113 case ISD::EXTRACT_ELEMENT: { 3114 EVT OpTy = Node->getOperand(0).getValueType(); 3115 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3116 // 1 -> Hi 3117 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3118 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3119 TLI.getShiftAmountTy( 3120 Node->getOperand(0).getValueType(), 3121 DAG.getDataLayout()))); 3122 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3123 } else { 3124 // 0 -> Lo 3125 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3126 Node->getOperand(0)); 3127 } 3128 Results.push_back(Tmp1); 3129 break; 3130 } 3131 case ISD::STACKSAVE: 3132 // Expand to CopyFromReg if the target set 3133 // StackPointerRegisterToSaveRestore. 3134 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3135 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3136 Node->getValueType(0))); 3137 Results.push_back(Results[0].getValue(1)); 3138 } else { 3139 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3140 Results.push_back(Node->getOperand(0)); 3141 } 3142 break; 3143 case ISD::STACKRESTORE: 3144 // Expand to CopyToReg if the target set 3145 // StackPointerRegisterToSaveRestore. 3146 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3147 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3148 Node->getOperand(1))); 3149 } else { 3150 Results.push_back(Node->getOperand(0)); 3151 } 3152 break; 3153 case ISD::GET_DYNAMIC_AREA_OFFSET: 3154 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3155 Results.push_back(Results[0].getValue(0)); 3156 break; 3157 case ISD::FCOPYSIGN: 3158 Results.push_back(ExpandFCOPYSIGN(Node)); 3159 break; 3160 case ISD::FNEG: 3161 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3162 Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0)); 3163 // TODO: If FNEG has fast-math-flags, propagate them to the FSUB. 3164 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, 3165 Node->getOperand(0)); 3166 Results.push_back(Tmp1); 3167 break; 3168 case ISD::FABS: 3169 Results.push_back(ExpandFABS(Node)); 3170 break; 3171 case ISD::SMIN: 3172 case ISD::SMAX: 3173 case ISD::UMIN: 3174 case ISD::UMAX: { 3175 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3176 ISD::CondCode Pred; 3177 switch (Node->getOpcode()) { 3178 default: llvm_unreachable("How did we get here?"); 3179 case ISD::SMAX: Pred = ISD::SETGT; break; 3180 case ISD::SMIN: Pred = ISD::SETLT; break; 3181 case ISD::UMAX: Pred = ISD::SETUGT; break; 3182 case ISD::UMIN: Pred = ISD::SETULT; break; 3183 } 3184 Tmp1 = Node->getOperand(0); 3185 Tmp2 = Node->getOperand(1); 3186 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3187 Results.push_back(Tmp1); 3188 break; 3189 } 3190 3191 case ISD::FSIN: 3192 case ISD::FCOS: { 3193 EVT VT = Node->getValueType(0); 3194 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3195 // fcos which share the same operand and both are used. 3196 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3197 canCombineSinCosLibcall(Node, TLI, TM)) 3198 && useSinCos(Node)) { 3199 SDVTList VTs = DAG.getVTList(VT, VT); 3200 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3201 if (Node->getOpcode() == ISD::FCOS) 3202 Tmp1 = Tmp1.getValue(1); 3203 Results.push_back(Tmp1); 3204 } 3205 break; 3206 } 3207 case ISD::FMAD: 3208 llvm_unreachable("Illegal fmad should never be formed"); 3209 3210 case ISD::FP16_TO_FP: 3211 if (Node->getValueType(0) != MVT::f32) { 3212 // We can extend to types bigger than f32 in two steps without changing 3213 // the result. Since "f16 -> f32" is much more commonly available, give 3214 // CodeGen the option of emitting that before resorting to a libcall. 3215 SDValue Res = 3216 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3217 Results.push_back( 3218 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3219 } 3220 break; 3221 case ISD::FP_TO_FP16: 3222 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3223 SDValue Op = Node->getOperand(0); 3224 MVT SVT = Op.getSimpleValueType(); 3225 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3226 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3227 // Under fastmath, we can expand this node into a fround followed by 3228 // a float-half conversion. 3229 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3230 DAG.getIntPtrConstant(0, dl)); 3231 Results.push_back( 3232 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3233 } 3234 } 3235 break; 3236 case ISD::ConstantFP: { 3237 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3238 // Check to see if this FP immediate is already legal. 3239 // If this is a legal constant, turn it into a TargetConstantFP node. 3240 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0))) 3241 Results.push_back(ExpandConstantFP(CFP, true)); 3242 break; 3243 } 3244 case ISD::Constant: { 3245 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3246 Results.push_back(ExpandConstant(CP)); 3247 break; 3248 } 3249 case ISD::FSUB: { 3250 EVT VT = Node->getValueType(0); 3251 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3252 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3253 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(Node)->Flags; 3254 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3255 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3256 Results.push_back(Tmp1); 3257 } 3258 break; 3259 } 3260 case ISD::SUB: { 3261 EVT VT = Node->getValueType(0); 3262 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3263 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3264 "Don't know how to expand this subtraction!"); 3265 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3266 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, 3267 VT)); 3268 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3269 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3270 break; 3271 } 3272 case ISD::UREM: 3273 case ISD::SREM: { 3274 EVT VT = Node->getValueType(0); 3275 bool isSigned = Node->getOpcode() == ISD::SREM; 3276 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 3277 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3278 Tmp2 = Node->getOperand(0); 3279 Tmp3 = Node->getOperand(1); 3280 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3281 SDVTList VTs = DAG.getVTList(VT, VT); 3282 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); 3283 Results.push_back(Tmp1); 3284 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { 3285 // X % Y -> X-X/Y*Y 3286 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); 3287 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); 3288 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); 3289 Results.push_back(Tmp1); 3290 } 3291 break; 3292 } 3293 case ISD::UDIV: 3294 case ISD::SDIV: { 3295 bool isSigned = Node->getOpcode() == ISD::SDIV; 3296 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3297 EVT VT = Node->getValueType(0); 3298 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3299 SDVTList VTs = DAG.getVTList(VT, VT); 3300 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3301 Node->getOperand(1)); 3302 Results.push_back(Tmp1); 3303 } 3304 break; 3305 } 3306 case ISD::MULHU: 3307 case ISD::MULHS: { 3308 unsigned ExpandOpcode = 3309 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3310 EVT VT = Node->getValueType(0); 3311 SDVTList VTs = DAG.getVTList(VT, VT); 3312 3313 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3314 Node->getOperand(1)); 3315 Results.push_back(Tmp1.getValue(1)); 3316 break; 3317 } 3318 case ISD::UMUL_LOHI: 3319 case ISD::SMUL_LOHI: { 3320 SDValue LHS = Node->getOperand(0); 3321 SDValue RHS = Node->getOperand(1); 3322 MVT VT = LHS.getSimpleValueType(); 3323 unsigned MULHOpcode = 3324 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3325 3326 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3327 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3328 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3329 break; 3330 } 3331 3332 SmallVector<SDValue, 4> Halves; 3333 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3334 assert(TLI.isTypeLegal(HalfType)); 3335 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves, 3336 HalfType, DAG, 3337 TargetLowering::MulExpansionKind::Always)) { 3338 for (unsigned i = 0; i < 2; ++i) { 3339 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3340 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3341 SDValue Shift = DAG.getConstant( 3342 HalfType.getScalarSizeInBits(), dl, 3343 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3344 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3345 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3346 } 3347 break; 3348 } 3349 break; 3350 } 3351 case ISD::MUL: { 3352 EVT VT = Node->getValueType(0); 3353 SDVTList VTs = DAG.getVTList(VT, VT); 3354 // See if multiply or divide can be lowered using two-result operations. 3355 // We just need the low half of the multiply; try both the signed 3356 // and unsigned forms. If the target supports both SMUL_LOHI and 3357 // UMUL_LOHI, form a preference by checking which forms of plain 3358 // MULH it supports. 3359 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3360 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3361 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3362 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3363 unsigned OpToUse = 0; 3364 if (HasSMUL_LOHI && !HasMULHS) { 3365 OpToUse = ISD::SMUL_LOHI; 3366 } else if (HasUMUL_LOHI && !HasMULHU) { 3367 OpToUse = ISD::UMUL_LOHI; 3368 } else if (HasSMUL_LOHI) { 3369 OpToUse = ISD::SMUL_LOHI; 3370 } else if (HasUMUL_LOHI) { 3371 OpToUse = ISD::UMUL_LOHI; 3372 } 3373 if (OpToUse) { 3374 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3375 Node->getOperand(1))); 3376 break; 3377 } 3378 3379 SDValue Lo, Hi; 3380 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3381 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3382 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3383 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3384 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3385 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3386 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3387 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3388 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3389 SDValue Shift = 3390 DAG.getConstant(HalfType.getSizeInBits(), dl, 3391 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3392 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3393 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3394 } 3395 break; 3396 } 3397 case ISD::SADDO: 3398 case ISD::SSUBO: { 3399 SDValue LHS = Node->getOperand(0); 3400 SDValue RHS = Node->getOperand(1); 3401 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? 3402 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3403 LHS, RHS); 3404 Results.push_back(Sum); 3405 EVT ResultType = Node->getValueType(1); 3406 EVT OType = getSetCCResultType(Node->getValueType(0)); 3407 3408 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 3409 3410 // LHSSign -> LHS >= 0 3411 // RHSSign -> RHS >= 0 3412 // SumSign -> Sum >= 0 3413 // 3414 // Add: 3415 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 3416 // Sub: 3417 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 3418 // 3419 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 3420 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 3421 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 3422 Node->getOpcode() == ISD::SADDO ? 3423 ISD::SETEQ : ISD::SETNE); 3424 3425 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); 3426 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 3427 3428 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 3429 Results.push_back(DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType)); 3430 break; 3431 } 3432 case ISD::UADDO: 3433 case ISD::USUBO: { 3434 SDValue LHS = Node->getOperand(0); 3435 SDValue RHS = Node->getOperand(1); 3436 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ? 3437 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3438 LHS, RHS); 3439 Results.push_back(Sum); 3440 3441 EVT ResultType = Node->getValueType(1); 3442 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3443 ISD::CondCode CC 3444 = Node->getOpcode() == ISD::UADDO ? ISD::SETULT : ISD::SETUGT; 3445 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3446 3447 Results.push_back(DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType)); 3448 break; 3449 } 3450 case ISD::UMULO: 3451 case ISD::SMULO: { 3452 EVT VT = Node->getValueType(0); 3453 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); 3454 SDValue LHS = Node->getOperand(0); 3455 SDValue RHS = Node->getOperand(1); 3456 SDValue BottomHalf; 3457 SDValue TopHalf; 3458 static const unsigned Ops[2][3] = 3459 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 3460 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 3461 bool isSigned = Node->getOpcode() == ISD::SMULO; 3462 if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 3463 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 3464 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 3465 } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 3466 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 3467 RHS); 3468 TopHalf = BottomHalf.getValue(1); 3469 } else if (TLI.isTypeLegal(WideVT)) { 3470 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 3471 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 3472 Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 3473 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3474 DAG.getIntPtrConstant(0, dl)); 3475 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3476 DAG.getIntPtrConstant(1, dl)); 3477 } else { 3478 // We can fall back to a libcall with an illegal type for the MUL if we 3479 // have a libcall big enough. 3480 // Also, we can fall back to a division in some cases, but that's a big 3481 // performance hit in the general case. 3482 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3483 if (WideVT == MVT::i16) 3484 LC = RTLIB::MUL_I16; 3485 else if (WideVT == MVT::i32) 3486 LC = RTLIB::MUL_I32; 3487 else if (WideVT == MVT::i64) 3488 LC = RTLIB::MUL_I64; 3489 else if (WideVT == MVT::i128) 3490 LC = RTLIB::MUL_I128; 3491 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 3492 3493 // The high part is obtained by SRA'ing all but one of the bits of low 3494 // part. 3495 unsigned LoSize = VT.getSizeInBits(); 3496 SDValue HiLHS = 3497 DAG.getNode(ISD::SRA, dl, VT, RHS, 3498 DAG.getConstant(LoSize - 1, dl, 3499 TLI.getPointerTy(DAG.getDataLayout()))); 3500 SDValue HiRHS = 3501 DAG.getNode(ISD::SRA, dl, VT, LHS, 3502 DAG.getConstant(LoSize - 1, dl, 3503 TLI.getPointerTy(DAG.getDataLayout()))); 3504 3505 // Here we're passing the 2 arguments explicitly as 4 arguments that are 3506 // pre-lowered to the correct types. This all depends upon WideVT not 3507 // being a legal type for the architecture and thus has to be split to 3508 // two arguments. 3509 SDValue Ret; 3510 if(DAG.getDataLayout().isLittleEndian()) { 3511 // Halves of WideVT are packed into registers in different order 3512 // depending on platform endianness. This is usually handled by 3513 // the C calling convention, but we can't defer to it in 3514 // the legalizer. 3515 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 3516 Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); 3517 } else { 3518 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 3519 Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); 3520 } 3521 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, 3522 DAG.getIntPtrConstant(0, dl)); 3523 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, 3524 DAG.getIntPtrConstant(1, dl)); 3525 // Ret is a node with an illegal type. Because such things are not 3526 // generally permitted during this phase of legalization, make sure the 3527 // node has no more uses. The above EXTRACT_ELEMENT nodes should have been 3528 // folded. 3529 assert(Ret->use_empty() && 3530 "Unexpected uses of illegally type from expanded lib call."); 3531 } 3532 3533 if (isSigned) { 3534 Tmp1 = DAG.getConstant( 3535 VT.getSizeInBits() - 1, dl, 3536 TLI.getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 3537 Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1); 3538 TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, Tmp1, 3539 ISD::SETNE); 3540 } else { 3541 TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, 3542 DAG.getConstant(0, dl, VT), ISD::SETNE); 3543 } 3544 3545 // Truncate the result if SetCC returns a larger type than needed. 3546 EVT RType = Node->getValueType(1); 3547 if (RType.getSizeInBits() < TopHalf.getValueSizeInBits()) 3548 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, RType, TopHalf); 3549 3550 assert(RType.getSizeInBits() == TopHalf.getValueSizeInBits() && 3551 "Unexpected result type for S/UMULO legalization"); 3552 3553 Results.push_back(BottomHalf); 3554 Results.push_back(TopHalf); 3555 break; 3556 } 3557 case ISD::BUILD_PAIR: { 3558 EVT PairTy = Node->getValueType(0); 3559 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3560 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3561 Tmp2 = DAG.getNode( 3562 ISD::SHL, dl, PairTy, Tmp2, 3563 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3564 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3565 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3566 break; 3567 } 3568 case ISD::SELECT: 3569 Tmp1 = Node->getOperand(0); 3570 Tmp2 = Node->getOperand(1); 3571 Tmp3 = Node->getOperand(2); 3572 if (Tmp1.getOpcode() == ISD::SETCC) { 3573 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3574 Tmp2, Tmp3, 3575 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3576 } else { 3577 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3578 DAG.getConstant(0, dl, Tmp1.getValueType()), 3579 Tmp2, Tmp3, ISD::SETNE); 3580 } 3581 Results.push_back(Tmp1); 3582 break; 3583 case ISD::BR_JT: { 3584 SDValue Chain = Node->getOperand(0); 3585 SDValue Table = Node->getOperand(1); 3586 SDValue Index = Node->getOperand(2); 3587 3588 const DataLayout &TD = DAG.getDataLayout(); 3589 EVT PTy = TLI.getPointerTy(TD); 3590 3591 unsigned EntrySize = 3592 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3593 3594 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3595 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3596 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3597 Index, Table); 3598 3599 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3600 SDValue LD = DAG.getExtLoad( 3601 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3602 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3603 Addr = LD; 3604 if (TLI.isJumpTableRelative()) { 3605 // For PIC, the sequence is: 3606 // BRIND(load(Jumptable + index) + RelocBase) 3607 // RelocBase can be JumpTable, GOT or some sort of global base. 3608 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3609 TLI.getPICJumpTableRelocBase(Table, DAG)); 3610 } 3611 Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr); 3612 Results.push_back(Tmp1); 3613 break; 3614 } 3615 case ISD::BRCOND: 3616 // Expand brcond's setcc into its constituent parts and create a BR_CC 3617 // Node. 3618 Tmp1 = Node->getOperand(0); 3619 Tmp2 = Node->getOperand(1); 3620 if (Tmp2.getOpcode() == ISD::SETCC) { 3621 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3622 Tmp1, Tmp2.getOperand(2), 3623 Tmp2.getOperand(0), Tmp2.getOperand(1), 3624 Node->getOperand(2)); 3625 } else { 3626 // We test only the i1 bit. Skip the AND if UNDEF. 3627 Tmp3 = (Tmp2.isUndef()) ? Tmp2 : 3628 DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3629 DAG.getConstant(1, dl, Tmp2.getValueType())); 3630 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3631 DAG.getCondCode(ISD::SETNE), Tmp3, 3632 DAG.getConstant(0, dl, Tmp3.getValueType()), 3633 Node->getOperand(2)); 3634 } 3635 Results.push_back(Tmp1); 3636 break; 3637 case ISD::SETCC: { 3638 Tmp1 = Node->getOperand(0); 3639 Tmp2 = Node->getOperand(1); 3640 Tmp3 = Node->getOperand(2); 3641 bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, 3642 Tmp3, NeedInvert, dl); 3643 3644 if (Legalized) { 3645 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3646 // condition code, create a new SETCC node. 3647 if (Tmp3.getNode()) 3648 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3649 Tmp1, Tmp2, Tmp3); 3650 3651 // If we expanded the SETCC by inverting the condition code, then wrap 3652 // the existing SETCC in a NOT to restore the intended condition. 3653 if (NeedInvert) 3654 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3655 3656 Results.push_back(Tmp1); 3657 break; 3658 } 3659 3660 // Otherwise, SETCC for the given comparison type must be completely 3661 // illegal; expand it into a SELECT_CC. 3662 EVT VT = Node->getValueType(0); 3663 int TrueValue; 3664 switch (TLI.getBooleanContents(Tmp1->getValueType(0))) { 3665 case TargetLowering::ZeroOrOneBooleanContent: 3666 case TargetLowering::UndefinedBooleanContent: 3667 TrueValue = 1; 3668 break; 3669 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3670 TrueValue = -1; 3671 break; 3672 } 3673 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3674 DAG.getConstant(TrueValue, dl, VT), 3675 DAG.getConstant(0, dl, VT), 3676 Tmp3); 3677 Results.push_back(Tmp1); 3678 break; 3679 } 3680 case ISD::SELECT_CC: { 3681 Tmp1 = Node->getOperand(0); // LHS 3682 Tmp2 = Node->getOperand(1); // RHS 3683 Tmp3 = Node->getOperand(2); // True 3684 Tmp4 = Node->getOperand(3); // False 3685 EVT VT = Node->getValueType(0); 3686 SDValue CC = Node->getOperand(4); 3687 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3688 3689 if (TLI.isCondCodeLegal(CCOp, Tmp1.getSimpleValueType())) { 3690 // If the condition code is legal, then we need to expand this 3691 // node using SETCC and SELECT. 3692 EVT CmpVT = Tmp1.getValueType(); 3693 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3694 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3695 "expanded."); 3696 EVT CCVT = 3697 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT); 3698 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC); 3699 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3700 break; 3701 } 3702 3703 // SELECT_CC is legal, so the condition code must not be. 3704 bool Legalized = false; 3705 // Try to legalize by inverting the condition. This is for targets that 3706 // might support an ordered version of a condition, but not the unordered 3707 // version (or vice versa). 3708 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, 3709 Tmp1.getValueType().isInteger()); 3710 if (TLI.isCondCodeLegal(InvCC, Tmp1.getSimpleValueType())) { 3711 // Use the new condition code and swap true and false 3712 Legalized = true; 3713 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3714 } else { 3715 // If The inverse is not legal, then try to swap the arguments using 3716 // the inverse condition code. 3717 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3718 if (TLI.isCondCodeLegal(SwapInvCC, Tmp1.getSimpleValueType())) { 3719 // The swapped inverse condition is legal, so swap true and false, 3720 // lhs and rhs. 3721 Legalized = true; 3722 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3723 } 3724 } 3725 3726 if (!Legalized) { 3727 Legalized = LegalizeSetCCCondCode( 3728 getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert, 3729 dl); 3730 3731 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3732 3733 // If we expanded the SETCC by inverting the condition code, then swap 3734 // the True/False operands to match. 3735 if (NeedInvert) 3736 std::swap(Tmp3, Tmp4); 3737 3738 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3739 // condition code, create a new SELECT_CC node. 3740 if (CC.getNode()) { 3741 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3742 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3743 } else { 3744 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3745 CC = DAG.getCondCode(ISD::SETNE); 3746 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3747 Tmp2, Tmp3, Tmp4, CC); 3748 } 3749 } 3750 Results.push_back(Tmp1); 3751 break; 3752 } 3753 case ISD::BR_CC: { 3754 Tmp1 = Node->getOperand(0); // Chain 3755 Tmp2 = Node->getOperand(2); // LHS 3756 Tmp3 = Node->getOperand(3); // RHS 3757 Tmp4 = Node->getOperand(1); // CC 3758 3759 bool Legalized = LegalizeSetCCCondCode(getSetCCResultType( 3760 Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl); 3761 (void)Legalized; 3762 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3763 3764 // If we expanded the SETCC by inverting the condition code, then wrap 3765 // the existing SETCC in a NOT to restore the intended condition. 3766 if (NeedInvert) 3767 Tmp4 = DAG.getNOT(dl, Tmp4, Tmp4->getValueType(0)); 3768 3769 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3770 // node. 3771 if (Tmp4.getNode()) { 3772 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3773 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3774 } else { 3775 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3776 Tmp4 = DAG.getCondCode(ISD::SETNE); 3777 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3778 Tmp2, Tmp3, Node->getOperand(4)); 3779 } 3780 Results.push_back(Tmp1); 3781 break; 3782 } 3783 case ISD::BUILD_VECTOR: 3784 Results.push_back(ExpandBUILD_VECTOR(Node)); 3785 break; 3786 case ISD::SRA: 3787 case ISD::SRL: 3788 case ISD::SHL: { 3789 // Scalarize vector SRA/SRL/SHL. 3790 EVT VT = Node->getValueType(0); 3791 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3792 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3793 unsigned NumElem = VT.getVectorNumElements(); 3794 3795 SmallVector<SDValue, 8> Scalars; 3796 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3797 SDValue Ex = DAG.getNode( 3798 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0), 3799 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3800 SDValue Sh = DAG.getNode( 3801 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1), 3802 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3803 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3804 VT.getScalarType(), Ex, Sh)); 3805 } 3806 3807 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 3808 ReplaceNode(SDValue(Node, 0), Result); 3809 break; 3810 } 3811 case ISD::GLOBAL_OFFSET_TABLE: 3812 case ISD::GlobalAddress: 3813 case ISD::GlobalTLSAddress: 3814 case ISD::ExternalSymbol: 3815 case ISD::ConstantPool: 3816 case ISD::JumpTable: 3817 case ISD::INTRINSIC_W_CHAIN: 3818 case ISD::INTRINSIC_WO_CHAIN: 3819 case ISD::INTRINSIC_VOID: 3820 // FIXME: Custom lowering for these operations shouldn't return null! 3821 break; 3822 } 3823 3824 // Replace the original node with the legalized result. 3825 if (Results.empty()) 3826 return false; 3827 3828 ReplaceNode(Node, Results.data()); 3829 return true; 3830 } 3831 3832 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 3833 SmallVector<SDValue, 8> Results; 3834 SDLoc dl(Node); 3835 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 3836 unsigned Opc = Node->getOpcode(); 3837 switch (Opc) { 3838 case ISD::ATOMIC_FENCE: { 3839 // If the target didn't lower this, lower it to '__sync_synchronize()' call 3840 // FIXME: handle "fence singlethread" more efficiently. 3841 TargetLowering::ArgListTy Args; 3842 3843 TargetLowering::CallLoweringInfo CLI(DAG); 3844 CLI.setDebugLoc(dl) 3845 .setChain(Node->getOperand(0)) 3846 .setLibCallee( 3847 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3848 DAG.getExternalSymbol("__sync_synchronize", 3849 TLI.getPointerTy(DAG.getDataLayout())), 3850 std::move(Args)); 3851 3852 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3853 3854 Results.push_back(CallResult.second); 3855 break; 3856 } 3857 // By default, atomic intrinsics are marked Legal and lowered. Targets 3858 // which don't support them directly, however, may want libcalls, in which 3859 // case they mark them Expand, and we get here. 3860 case ISD::ATOMIC_SWAP: 3861 case ISD::ATOMIC_LOAD_ADD: 3862 case ISD::ATOMIC_LOAD_SUB: 3863 case ISD::ATOMIC_LOAD_AND: 3864 case ISD::ATOMIC_LOAD_OR: 3865 case ISD::ATOMIC_LOAD_XOR: 3866 case ISD::ATOMIC_LOAD_NAND: 3867 case ISD::ATOMIC_LOAD_MIN: 3868 case ISD::ATOMIC_LOAD_MAX: 3869 case ISD::ATOMIC_LOAD_UMIN: 3870 case ISD::ATOMIC_LOAD_UMAX: 3871 case ISD::ATOMIC_CMP_SWAP: { 3872 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 3873 RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT); 3874 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!"); 3875 3876 std::pair<SDValue, SDValue> Tmp = ExpandChainLibCall(LC, Node, false); 3877 Results.push_back(Tmp.first); 3878 Results.push_back(Tmp.second); 3879 break; 3880 } 3881 case ISD::TRAP: { 3882 // If this operation is not supported, lower it to 'abort()' call 3883 TargetLowering::ArgListTy Args; 3884 TargetLowering::CallLoweringInfo CLI(DAG); 3885 CLI.setDebugLoc(dl) 3886 .setChain(Node->getOperand(0)) 3887 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3888 DAG.getExternalSymbol( 3889 "abort", TLI.getPointerTy(DAG.getDataLayout())), 3890 std::move(Args)); 3891 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3892 3893 Results.push_back(CallResult.second); 3894 break; 3895 } 3896 case ISD::FMINNUM: 3897 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 3898 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 3899 RTLIB::FMIN_PPCF128)); 3900 break; 3901 case ISD::FMAXNUM: 3902 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 3903 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 3904 RTLIB::FMAX_PPCF128)); 3905 break; 3906 case ISD::FSQRT: 3907 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3908 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 3909 RTLIB::SQRT_PPCF128)); 3910 break; 3911 case ISD::FSIN: 3912 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 3913 RTLIB::SIN_F80, RTLIB::SIN_F128, 3914 RTLIB::SIN_PPCF128)); 3915 break; 3916 case ISD::FCOS: 3917 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 3918 RTLIB::COS_F80, RTLIB::COS_F128, 3919 RTLIB::COS_PPCF128)); 3920 break; 3921 case ISD::FSINCOS: 3922 // Expand into sincos libcall. 3923 ExpandSinCosLibCall(Node, Results); 3924 break; 3925 case ISD::FLOG: 3926 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, 3927 RTLIB::LOG_F80, RTLIB::LOG_F128, 3928 RTLIB::LOG_PPCF128)); 3929 break; 3930 case ISD::FLOG2: 3931 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 3932 RTLIB::LOG2_F80, RTLIB::LOG2_F128, 3933 RTLIB::LOG2_PPCF128)); 3934 break; 3935 case ISD::FLOG10: 3936 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 3937 RTLIB::LOG10_F80, RTLIB::LOG10_F128, 3938 RTLIB::LOG10_PPCF128)); 3939 break; 3940 case ISD::FEXP: 3941 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, 3942 RTLIB::EXP_F80, RTLIB::EXP_F128, 3943 RTLIB::EXP_PPCF128)); 3944 break; 3945 case ISD::FEXP2: 3946 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 3947 RTLIB::EXP2_F80, RTLIB::EXP2_F128, 3948 RTLIB::EXP2_PPCF128)); 3949 break; 3950 case ISD::FTRUNC: 3951 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 3952 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 3953 RTLIB::TRUNC_PPCF128)); 3954 break; 3955 case ISD::FFLOOR: 3956 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 3957 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 3958 RTLIB::FLOOR_PPCF128)); 3959 break; 3960 case ISD::FCEIL: 3961 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 3962 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 3963 RTLIB::CEIL_PPCF128)); 3964 break; 3965 case ISD::FRINT: 3966 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 3967 RTLIB::RINT_F80, RTLIB::RINT_F128, 3968 RTLIB::RINT_PPCF128)); 3969 break; 3970 case ISD::FNEARBYINT: 3971 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 3972 RTLIB::NEARBYINT_F64, 3973 RTLIB::NEARBYINT_F80, 3974 RTLIB::NEARBYINT_F128, 3975 RTLIB::NEARBYINT_PPCF128)); 3976 break; 3977 case ISD::FROUND: 3978 Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32, 3979 RTLIB::ROUND_F64, 3980 RTLIB::ROUND_F80, 3981 RTLIB::ROUND_F128, 3982 RTLIB::ROUND_PPCF128)); 3983 break; 3984 case ISD::FPOWI: 3985 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 3986 RTLIB::POWI_F80, RTLIB::POWI_F128, 3987 RTLIB::POWI_PPCF128)); 3988 break; 3989 case ISD::FPOW: 3990 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, 3991 RTLIB::POW_F80, RTLIB::POW_F128, 3992 RTLIB::POW_PPCF128)); 3993 break; 3994 case ISD::FDIV: 3995 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 3996 RTLIB::DIV_F80, RTLIB::DIV_F128, 3997 RTLIB::DIV_PPCF128)); 3998 break; 3999 case ISD::FREM: 4000 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 4001 RTLIB::REM_F80, RTLIB::REM_F128, 4002 RTLIB::REM_PPCF128)); 4003 break; 4004 case ISD::FMA: 4005 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 4006 RTLIB::FMA_F80, RTLIB::FMA_F128, 4007 RTLIB::FMA_PPCF128)); 4008 break; 4009 case ISD::FADD: 4010 Results.push_back(ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 4011 RTLIB::ADD_F80, RTLIB::ADD_F128, 4012 RTLIB::ADD_PPCF128)); 4013 break; 4014 case ISD::FMUL: 4015 Results.push_back(ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 4016 RTLIB::MUL_F80, RTLIB::MUL_F128, 4017 RTLIB::MUL_PPCF128)); 4018 break; 4019 case ISD::FP16_TO_FP: 4020 if (Node->getValueType(0) == MVT::f32) { 4021 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 4022 } 4023 break; 4024 case ISD::FP_TO_FP16: { 4025 RTLIB::Libcall LC = 4026 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 4027 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 4028 Results.push_back(ExpandLibCall(LC, Node, false)); 4029 break; 4030 } 4031 case ISD::FSUB: 4032 Results.push_back(ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4033 RTLIB::SUB_F80, RTLIB::SUB_F128, 4034 RTLIB::SUB_PPCF128)); 4035 break; 4036 case ISD::SREM: 4037 Results.push_back(ExpandIntLibCall(Node, true, 4038 RTLIB::SREM_I8, 4039 RTLIB::SREM_I16, RTLIB::SREM_I32, 4040 RTLIB::SREM_I64, RTLIB::SREM_I128)); 4041 break; 4042 case ISD::UREM: 4043 Results.push_back(ExpandIntLibCall(Node, false, 4044 RTLIB::UREM_I8, 4045 RTLIB::UREM_I16, RTLIB::UREM_I32, 4046 RTLIB::UREM_I64, RTLIB::UREM_I128)); 4047 break; 4048 case ISD::SDIV: 4049 Results.push_back(ExpandIntLibCall(Node, true, 4050 RTLIB::SDIV_I8, 4051 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4052 RTLIB::SDIV_I64, RTLIB::SDIV_I128)); 4053 break; 4054 case ISD::UDIV: 4055 Results.push_back(ExpandIntLibCall(Node, false, 4056 RTLIB::UDIV_I8, 4057 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4058 RTLIB::UDIV_I64, RTLIB::UDIV_I128)); 4059 break; 4060 case ISD::SDIVREM: 4061 case ISD::UDIVREM: 4062 // Expand into divrem libcall 4063 ExpandDivRemLibCall(Node, Results); 4064 break; 4065 case ISD::MUL: 4066 Results.push_back(ExpandIntLibCall(Node, false, 4067 RTLIB::MUL_I8, 4068 RTLIB::MUL_I16, RTLIB::MUL_I32, 4069 RTLIB::MUL_I64, RTLIB::MUL_I128)); 4070 break; 4071 } 4072 4073 // Replace the original node with the legalized result. 4074 if (!Results.empty()) 4075 ReplaceNode(Node, Results.data()); 4076 } 4077 4078 // Determine the vector type to use in place of an original scalar element when 4079 // promoting equally sized vectors. 4080 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4081 MVT EltVT, MVT NewEltVT) { 4082 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4083 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4084 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4085 return MidVT; 4086 } 4087 4088 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4089 SmallVector<SDValue, 8> Results; 4090 MVT OVT = Node->getSimpleValueType(0); 4091 if (Node->getOpcode() == ISD::UINT_TO_FP || 4092 Node->getOpcode() == ISD::SINT_TO_FP || 4093 Node->getOpcode() == ISD::SETCC || 4094 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4095 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4096 OVT = Node->getOperand(0).getSimpleValueType(); 4097 } 4098 if (Node->getOpcode() == ISD::BR_CC) 4099 OVT = Node->getOperand(2).getSimpleValueType(); 4100 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4101 SDLoc dl(Node); 4102 SDValue Tmp1, Tmp2, Tmp3; 4103 switch (Node->getOpcode()) { 4104 case ISD::CTTZ: 4105 case ISD::CTTZ_ZERO_UNDEF: 4106 case ISD::CTLZ: 4107 case ISD::CTLZ_ZERO_UNDEF: 4108 case ISD::CTPOP: 4109 // Zero extend the argument. 4110 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4111 if (Node->getOpcode() == ISD::CTTZ) { 4112 // The count is the same in the promoted type except if the original 4113 // value was zero. This can be handled by setting the bit just off 4114 // the top of the original type. 4115 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4116 OVT.getSizeInBits()); 4117 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4118 DAG.getConstant(TopBit, dl, NVT)); 4119 } 4120 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4121 // already the correct result. 4122 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4123 if (Node->getOpcode() == ISD::CTLZ || 4124 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4125 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4126 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4127 DAG.getConstant(NVT.getSizeInBits() - 4128 OVT.getSizeInBits(), dl, NVT)); 4129 } 4130 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4131 break; 4132 case ISD::BITREVERSE: 4133 case ISD::BSWAP: { 4134 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4135 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4136 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4137 Tmp1 = DAG.getNode( 4138 ISD::SRL, dl, NVT, Tmp1, 4139 DAG.getConstant(DiffBits, dl, 4140 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4141 Results.push_back(Tmp1); 4142 break; 4143 } 4144 case ISD::FP_TO_UINT: 4145 case ISD::FP_TO_SINT: 4146 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), 4147 Node->getOpcode() == ISD::FP_TO_SINT, dl); 4148 Results.push_back(Tmp1); 4149 break; 4150 case ISD::UINT_TO_FP: 4151 case ISD::SINT_TO_FP: 4152 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), 4153 Node->getOpcode() == ISD::SINT_TO_FP, dl); 4154 Results.push_back(Tmp1); 4155 break; 4156 case ISD::VAARG: { 4157 SDValue Chain = Node->getOperand(0); // Get the chain. 4158 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4159 4160 unsigned TruncOp; 4161 if (OVT.isVector()) { 4162 TruncOp = ISD::BITCAST; 4163 } else { 4164 assert(OVT.isInteger() 4165 && "VAARG promotion is supported only for vectors or integer types"); 4166 TruncOp = ISD::TRUNCATE; 4167 } 4168 4169 // Perform the larger operation, then convert back 4170 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4171 Node->getConstantOperandVal(3)); 4172 Chain = Tmp1.getValue(1); 4173 4174 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4175 4176 // Modified the chain result - switch anything that used the old chain to 4177 // use the new one. 4178 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4179 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4180 if (UpdatedNodes) { 4181 UpdatedNodes->insert(Tmp2.getNode()); 4182 UpdatedNodes->insert(Chain.getNode()); 4183 } 4184 ReplacedNode(Node); 4185 break; 4186 } 4187 case ISD::SDIV: 4188 case ISD::SREM: 4189 case ISD::UDIV: 4190 case ISD::UREM: 4191 case ISD::AND: 4192 case ISD::OR: 4193 case ISD::XOR: { 4194 unsigned ExtOp, TruncOp; 4195 if (OVT.isVector()) { 4196 ExtOp = ISD::BITCAST; 4197 TruncOp = ISD::BITCAST; 4198 } else { 4199 assert(OVT.isInteger() && "Cannot promote logic operation"); 4200 4201 switch (Node->getOpcode()) { 4202 default: 4203 ExtOp = ISD::ANY_EXTEND; 4204 break; 4205 case ISD::SDIV: 4206 case ISD::SREM: 4207 ExtOp = ISD::SIGN_EXTEND; 4208 break; 4209 case ISD::UDIV: 4210 case ISD::UREM: 4211 ExtOp = ISD::ZERO_EXTEND; 4212 break; 4213 } 4214 TruncOp = ISD::TRUNCATE; 4215 } 4216 // Promote each of the values to the new type. 4217 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4218 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4219 // Perform the larger operation, then convert back 4220 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4221 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4222 break; 4223 } 4224 case ISD::UMUL_LOHI: 4225 case ISD::SMUL_LOHI: { 4226 // Promote to a multiply in a wider integer type. 4227 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 4228 : ISD::SIGN_EXTEND; 4229 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4230 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4231 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 4232 4233 auto &DL = DAG.getDataLayout(); 4234 unsigned OriginalSize = OVT.getScalarSizeInBits(); 4235 Tmp2 = DAG.getNode( 4236 ISD::SRL, dl, NVT, Tmp1, 4237 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 4238 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4239 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 4240 break; 4241 } 4242 case ISD::SELECT: { 4243 unsigned ExtOp, TruncOp; 4244 if (Node->getValueType(0).isVector() || 4245 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4246 ExtOp = ISD::BITCAST; 4247 TruncOp = ISD::BITCAST; 4248 } else if (Node->getValueType(0).isInteger()) { 4249 ExtOp = ISD::ANY_EXTEND; 4250 TruncOp = ISD::TRUNCATE; 4251 } else { 4252 ExtOp = ISD::FP_EXTEND; 4253 TruncOp = ISD::FP_ROUND; 4254 } 4255 Tmp1 = Node->getOperand(0); 4256 // Promote each of the values to the new type. 4257 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4258 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4259 // Perform the larger operation, then round down. 4260 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4261 if (TruncOp != ISD::FP_ROUND) 4262 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4263 else 4264 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4265 DAG.getIntPtrConstant(0, dl)); 4266 Results.push_back(Tmp1); 4267 break; 4268 } 4269 case ISD::VECTOR_SHUFFLE: { 4270 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4271 4272 // Cast the two input vectors. 4273 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4274 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4275 4276 // Convert the shuffle mask to the right # elements. 4277 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4278 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4279 Results.push_back(Tmp1); 4280 break; 4281 } 4282 case ISD::SETCC: { 4283 unsigned ExtOp = ISD::FP_EXTEND; 4284 if (NVT.isInteger()) { 4285 ISD::CondCode CCCode = 4286 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4287 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4288 } 4289 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4290 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4291 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 4292 Tmp1, Tmp2, Node->getOperand(2))); 4293 break; 4294 } 4295 case ISD::BR_CC: { 4296 unsigned ExtOp = ISD::FP_EXTEND; 4297 if (NVT.isInteger()) { 4298 ISD::CondCode CCCode = 4299 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4300 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4301 } 4302 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4303 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4304 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4305 Node->getOperand(0), Node->getOperand(1), 4306 Tmp1, Tmp2, Node->getOperand(4))); 4307 break; 4308 } 4309 case ISD::FADD: 4310 case ISD::FSUB: 4311 case ISD::FMUL: 4312 case ISD::FDIV: 4313 case ISD::FREM: 4314 case ISD::FMINNUM: 4315 case ISD::FMAXNUM: 4316 case ISD::FPOW: { 4317 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4318 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4319 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4320 Node->getFlags()); 4321 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4322 Tmp3, DAG.getIntPtrConstant(0, dl))); 4323 break; 4324 } 4325 case ISD::FMA: { 4326 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4327 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4328 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4329 Results.push_back( 4330 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4331 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4332 DAG.getIntPtrConstant(0, dl))); 4333 break; 4334 } 4335 case ISD::FCOPYSIGN: 4336 case ISD::FPOWI: { 4337 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4338 Tmp2 = Node->getOperand(1); 4339 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4340 4341 // fcopysign doesn't change anything but the sign bit, so 4342 // (fp_round (fcopysign (fpext a), b)) 4343 // is as precise as 4344 // (fp_round (fpext a)) 4345 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4346 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4347 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4348 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4349 break; 4350 } 4351 case ISD::FFLOOR: 4352 case ISD::FCEIL: 4353 case ISD::FRINT: 4354 case ISD::FNEARBYINT: 4355 case ISD::FROUND: 4356 case ISD::FTRUNC: 4357 case ISD::FNEG: 4358 case ISD::FSQRT: 4359 case ISD::FSIN: 4360 case ISD::FCOS: 4361 case ISD::FLOG: 4362 case ISD::FLOG2: 4363 case ISD::FLOG10: 4364 case ISD::FABS: 4365 case ISD::FEXP: 4366 case ISD::FEXP2: { 4367 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4368 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4369 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4370 Tmp2, DAG.getIntPtrConstant(0, dl))); 4371 break; 4372 } 4373 case ISD::BUILD_VECTOR: { 4374 MVT EltVT = OVT.getVectorElementType(); 4375 MVT NewEltVT = NVT.getVectorElementType(); 4376 4377 // Handle bitcasts to a different vector type with the same total bit size 4378 // 4379 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4380 // => 4381 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4382 4383 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4384 "Invalid promote type for build_vector"); 4385 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4386 4387 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4388 4389 SmallVector<SDValue, 8> NewOps; 4390 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4391 SDValue Op = Node->getOperand(I); 4392 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4393 } 4394 4395 SDLoc SL(Node); 4396 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4397 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4398 Results.push_back(CvtVec); 4399 break; 4400 } 4401 case ISD::EXTRACT_VECTOR_ELT: { 4402 MVT EltVT = OVT.getVectorElementType(); 4403 MVT NewEltVT = NVT.getVectorElementType(); 4404 4405 // Handle bitcasts to a different vector type with the same total bit size. 4406 // 4407 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4408 // => 4409 // v4i32:castx = bitcast x:v2i64 4410 // 4411 // i64 = bitcast 4412 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4413 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4414 // 4415 4416 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4417 "Invalid promote type for extract_vector_elt"); 4418 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4419 4420 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4421 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4422 4423 SDValue Idx = Node->getOperand(1); 4424 EVT IdxVT = Idx.getValueType(); 4425 SDLoc SL(Node); 4426 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4427 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4428 4429 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4430 4431 SmallVector<SDValue, 8> NewOps; 4432 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4433 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4434 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4435 4436 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4437 CastVec, TmpIdx); 4438 NewOps.push_back(Elt); 4439 } 4440 4441 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 4442 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4443 break; 4444 } 4445 case ISD::INSERT_VECTOR_ELT: { 4446 MVT EltVT = OVT.getVectorElementType(); 4447 MVT NewEltVT = NVT.getVectorElementType(); 4448 4449 // Handle bitcasts to a different vector type with the same total bit size 4450 // 4451 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4452 // => 4453 // v4i32:castx = bitcast x:v2i64 4454 // v2i32:casty = bitcast y:i64 4455 // 4456 // v2i64 = bitcast 4457 // (v4i32 insert_vector_elt 4458 // (v4i32 insert_vector_elt v4i32:castx, 4459 // (extract_vector_elt casty, 0), 2 * z), 4460 // (extract_vector_elt casty, 1), (2 * z + 1)) 4461 4462 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4463 "Invalid promote type for insert_vector_elt"); 4464 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4465 4466 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4467 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4468 4469 SDValue Val = Node->getOperand(1); 4470 SDValue Idx = Node->getOperand(2); 4471 EVT IdxVT = Idx.getValueType(); 4472 SDLoc SL(Node); 4473 4474 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 4475 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4476 4477 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4478 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4479 4480 SDValue NewVec = CastVec; 4481 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4482 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4483 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4484 4485 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4486 CastVal, IdxOffset); 4487 4488 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 4489 NewVec, Elt, InEltIdx); 4490 } 4491 4492 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 4493 break; 4494 } 4495 case ISD::SCALAR_TO_VECTOR: { 4496 MVT EltVT = OVT.getVectorElementType(); 4497 MVT NewEltVT = NVT.getVectorElementType(); 4498 4499 // Handle bitcasts to different vector type with the same total bit size. 4500 // 4501 // e.g. v2i64 = scalar_to_vector x:i64 4502 // => 4503 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 4504 // 4505 4506 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4507 SDValue Val = Node->getOperand(0); 4508 SDLoc SL(Node); 4509 4510 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4511 SDValue Undef = DAG.getUNDEF(MidVT); 4512 4513 SmallVector<SDValue, 8> NewElts; 4514 NewElts.push_back(CastVal); 4515 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 4516 NewElts.push_back(Undef); 4517 4518 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 4519 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4520 Results.push_back(CvtVec); 4521 break; 4522 } 4523 } 4524 4525 // Replace the original node with the legalized result. 4526 if (!Results.empty()) 4527 ReplaceNode(Node, Results.data()); 4528 } 4529 4530 /// This is the entry point for the file. 4531 void SelectionDAG::Legalize() { 4532 AssignTopologicalOrder(); 4533 4534 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4535 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 4536 4537 // Visit all the nodes. We start in topological order, so that we see 4538 // nodes with their original operands intact. Legalization can produce 4539 // new nodes which may themselves need to be legalized. Iterate until all 4540 // nodes have been legalized. 4541 for (;;) { 4542 bool AnyLegalized = false; 4543 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 4544 --NI; 4545 4546 SDNode *N = &*NI; 4547 if (N->use_empty() && N != getRoot().getNode()) { 4548 ++NI; 4549 DeleteNode(N); 4550 continue; 4551 } 4552 4553 if (LegalizedNodes.insert(N).second) { 4554 AnyLegalized = true; 4555 Legalizer.LegalizeOp(N); 4556 4557 if (N->use_empty() && N != getRoot().getNode()) { 4558 ++NI; 4559 DeleteNode(N); 4560 } 4561 } 4562 } 4563 if (!AnyLegalized) 4564 break; 4565 4566 } 4567 4568 // Remove dead nodes now. 4569 RemoveDeadNodes(); 4570 } 4571 4572 bool SelectionDAG::LegalizeOp(SDNode *N, 4573 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 4574 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4575 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 4576 4577 // Directly insert the node in question, and legalize it. This will recurse 4578 // as needed through operands. 4579 LegalizedNodes.insert(N); 4580 Legalizer.LegalizeOp(N); 4581 4582 return LegalizedNodes.count(N); 4583 } 4584