1 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the Emit routines for the SelectionDAG class, which creates
11 // MachineInstrs based on the decisions of the SelectionDAG instruction
12 // selection.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "InstrEmitter.h"
17 #include "SDNodeDbgValue.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/MachineConstantPool.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/StackMaps.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DebugInfo.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Target/TargetInstrInfo.h"
30 #include "llvm/Target/TargetLowering.h"
31 #include "llvm/Target/TargetSubtargetInfo.h"
32 using namespace llvm;
33 
34 #define DEBUG_TYPE "instr-emitter"
35 
36 /// MinRCSize - Smallest register class we allow when constraining virtual
37 /// registers.  If satisfying all register class constraints would require
38 /// using a smaller register class, emit a COPY to a new virtual register
39 /// instead.
40 const unsigned MinRCSize = 4;
41 
42 /// CountResults - The results of target nodes have register or immediate
43 /// operands first, then an optional chain, and optional glue operands (which do
44 /// not go into the resulting MachineInstr).
45 unsigned InstrEmitter::CountResults(SDNode *Node) {
46   unsigned N = Node->getNumValues();
47   while (N && Node->getValueType(N - 1) == MVT::Glue)
48     --N;
49   if (N && Node->getValueType(N - 1) == MVT::Other)
50     --N;    // Skip over chain result.
51   return N;
52 }
53 
54 /// countOperands - The inputs to target nodes have any actual inputs first,
55 /// followed by an optional chain operand, then an optional glue operand.
56 /// Compute the number of actual operands that will go into the resulting
57 /// MachineInstr.
58 ///
59 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding
60 /// the chain and glue. These operands may be implicit on the machine instr.
61 static unsigned countOperands(SDNode *Node, unsigned NumExpUses,
62                               unsigned &NumImpUses) {
63   unsigned N = Node->getNumOperands();
64   while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
65     --N;
66   if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
67     --N; // Ignore chain if it exists.
68 
69   // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses.
70   NumImpUses = N - NumExpUses;
71   for (unsigned I = N; I > NumExpUses; --I) {
72     if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1)))
73       continue;
74     if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1)))
75       if (TargetRegisterInfo::isPhysicalRegister(RN->getReg()))
76         continue;
77     NumImpUses = N - I;
78     break;
79   }
80 
81   return N;
82 }
83 
84 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
85 /// implicit physical register output.
86 void InstrEmitter::
87 EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned,
88                 unsigned SrcReg, DenseMap<SDValue, unsigned> &VRBaseMap) {
89   unsigned VRBase = 0;
90   if (TargetRegisterInfo::isVirtualRegister(SrcReg)) {
91     // Just use the input register directly!
92     SDValue Op(Node, ResNo);
93     if (IsClone)
94       VRBaseMap.erase(Op);
95     bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
96     (void)isNew; // Silence compiler warning.
97     assert(isNew && "Node emitted out of order - early");
98     return;
99   }
100 
101   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
102   // the CopyToReg'd destination register instead of creating a new vreg.
103   bool MatchReg = true;
104   const TargetRegisterClass *UseRC = nullptr;
105   MVT VT = Node->getSimpleValueType(ResNo);
106 
107   // Stick to the preferred register classes for legal types.
108   if (TLI->isTypeLegal(VT))
109     UseRC = TLI->getRegClassFor(VT);
110 
111   if (!IsClone && !IsCloned)
112     for (SDNode *User : Node->uses()) {
113       bool Match = true;
114       if (User->getOpcode() == ISD::CopyToReg &&
115           User->getOperand(2).getNode() == Node &&
116           User->getOperand(2).getResNo() == ResNo) {
117         unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
118         if (TargetRegisterInfo::isVirtualRegister(DestReg)) {
119           VRBase = DestReg;
120           Match = false;
121         } else if (DestReg != SrcReg)
122           Match = false;
123       } else {
124         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
125           SDValue Op = User->getOperand(i);
126           if (Op.getNode() != Node || Op.getResNo() != ResNo)
127             continue;
128           MVT VT = Node->getSimpleValueType(Op.getResNo());
129           if (VT == MVT::Other || VT == MVT::Glue)
130             continue;
131           Match = false;
132           if (User->isMachineOpcode()) {
133             const MCInstrDesc &II = TII->get(User->getMachineOpcode());
134             const TargetRegisterClass *RC = nullptr;
135             if (i+II.getNumDefs() < II.getNumOperands()) {
136               RC = TRI->getAllocatableClass(
137                 TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF));
138             }
139             if (!UseRC)
140               UseRC = RC;
141             else if (RC) {
142               const TargetRegisterClass *ComRC =
143                 TRI->getCommonSubClass(UseRC, RC, VT.SimpleTy);
144               // If multiple uses expect disjoint register classes, we emit
145               // copies in AddRegisterOperand.
146               if (ComRC)
147                 UseRC = ComRC;
148             }
149           }
150         }
151       }
152       MatchReg &= Match;
153       if (VRBase)
154         break;
155     }
156 
157   const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr;
158   SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT);
159 
160   // Figure out the register class to create for the destreg.
161   if (VRBase) {
162     DstRC = MRI->getRegClass(VRBase);
163   } else if (UseRC) {
164     assert(UseRC->hasType(VT) && "Incompatible phys register def and uses!");
165     DstRC = UseRC;
166   } else {
167     DstRC = TLI->getRegClassFor(VT);
168   }
169 
170   // If all uses are reading from the src physical register and copying the
171   // register is either impossible or very expensive, then don't create a copy.
172   if (MatchReg && SrcRC->getCopyCost() < 0) {
173     VRBase = SrcReg;
174   } else {
175     // Create the reg, emit the copy.
176     VRBase = MRI->createVirtualRegister(DstRC);
177     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
178             VRBase).addReg(SrcReg);
179   }
180 
181   SDValue Op(Node, ResNo);
182   if (IsClone)
183     VRBaseMap.erase(Op);
184   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
185   (void)isNew; // Silence compiler warning.
186   assert(isNew && "Node emitted out of order - early");
187 }
188 
189 /// getDstOfCopyToRegUse - If the only use of the specified result number of
190 /// node is a CopyToReg, return its destination register. Return 0 otherwise.
191 unsigned InstrEmitter::getDstOfOnlyCopyToRegUse(SDNode *Node,
192                                                 unsigned ResNo) const {
193   if (!Node->hasOneUse())
194     return 0;
195 
196   SDNode *User = *Node->use_begin();
197   if (User->getOpcode() == ISD::CopyToReg &&
198       User->getOperand(2).getNode() == Node &&
199       User->getOperand(2).getResNo() == ResNo) {
200     unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
201     if (TargetRegisterInfo::isVirtualRegister(Reg))
202       return Reg;
203   }
204   return 0;
205 }
206 
207 void InstrEmitter::CreateVirtualRegisters(SDNode *Node,
208                                        MachineInstrBuilder &MIB,
209                                        const MCInstrDesc &II,
210                                        bool IsClone, bool IsCloned,
211                                        DenseMap<SDValue, unsigned> &VRBaseMap) {
212   assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF &&
213          "IMPLICIT_DEF should have been handled as a special case elsewhere!");
214 
215   unsigned NumResults = CountResults(Node);
216   for (unsigned i = 0; i < II.getNumDefs(); ++i) {
217     // If the specific node value is only used by a CopyToReg and the dest reg
218     // is a vreg in the same register class, use the CopyToReg'd destination
219     // register instead of creating a new vreg.
220     unsigned VRBase = 0;
221     const TargetRegisterClass *RC =
222       TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF));
223     // Always let the value type influence the used register class. The
224     // constraints on the instruction may be too lax to represent the value
225     // type correctly. For example, a 64-bit float (X86::FR64) can't live in
226     // the 32-bit float super-class (X86::FR32).
227     if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) {
228       const TargetRegisterClass *VTRC =
229         TLI->getRegClassFor(Node->getSimpleValueType(i));
230       if (RC)
231         VTRC = TRI->getCommonSubClass(RC, VTRC);
232       if (VTRC)
233         RC = VTRC;
234     }
235 
236     if (II.OpInfo[i].isOptionalDef()) {
237       // Optional def must be a physical register.
238       unsigned NumResults = CountResults(Node);
239       VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg();
240       assert(TargetRegisterInfo::isPhysicalRegister(VRBase));
241       MIB.addReg(VRBase, RegState::Define);
242     }
243 
244     if (!VRBase && !IsClone && !IsCloned)
245       for (SDNode *User : Node->uses()) {
246         if (User->getOpcode() == ISD::CopyToReg &&
247             User->getOperand(2).getNode() == Node &&
248             User->getOperand(2).getResNo() == i) {
249           unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
250           if (TargetRegisterInfo::isVirtualRegister(Reg)) {
251             const TargetRegisterClass *RegRC = MRI->getRegClass(Reg);
252             if (RegRC == RC) {
253               VRBase = Reg;
254               MIB.addReg(VRBase, RegState::Define);
255               break;
256             }
257           }
258         }
259       }
260 
261     // Create the result registers for this node and add the result regs to
262     // the machine instruction.
263     if (VRBase == 0) {
264       assert(RC && "Isn't a register operand!");
265       VRBase = MRI->createVirtualRegister(RC);
266       MIB.addReg(VRBase, RegState::Define);
267     }
268 
269     // If this def corresponds to a result of the SDNode insert the VRBase into
270     // the lookup map.
271     if (i < NumResults) {
272       SDValue Op(Node, i);
273       if (IsClone)
274         VRBaseMap.erase(Op);
275       bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
276       (void)isNew; // Silence compiler warning.
277       assert(isNew && "Node emitted out of order - early");
278     }
279   }
280 }
281 
282 /// getVR - Return the virtual register corresponding to the specified result
283 /// of the specified node.
284 unsigned InstrEmitter::getVR(SDValue Op,
285                              DenseMap<SDValue, unsigned> &VRBaseMap) {
286   if (Op.isMachineOpcode() &&
287       Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
288     // Add an IMPLICIT_DEF instruction before every use.
289     unsigned VReg = getDstOfOnlyCopyToRegUse(Op.getNode(), Op.getResNo());
290     // IMPLICIT_DEF can produce any type of result so its MCInstrDesc
291     // does not include operand register class info.
292     if (!VReg) {
293       const TargetRegisterClass *RC =
294         TLI->getRegClassFor(Op.getSimpleValueType());
295       VReg = MRI->createVirtualRegister(RC);
296     }
297     BuildMI(*MBB, InsertPos, Op.getDebugLoc(),
298             TII->get(TargetOpcode::IMPLICIT_DEF), VReg);
299     return VReg;
300   }
301 
302   DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op);
303   assert(I != VRBaseMap.end() && "Node emitted out of order - late");
304   return I->second;
305 }
306 
307 
308 /// AddRegisterOperand - Add the specified register as an operand to the
309 /// specified machine instr. Insert register copies if the register is
310 /// not in the required register class.
311 void
312 InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB,
313                                  SDValue Op,
314                                  unsigned IIOpNum,
315                                  const MCInstrDesc *II,
316                                  DenseMap<SDValue, unsigned> &VRBaseMap,
317                                  bool IsDebug, bool IsClone, bool IsCloned) {
318   assert(Op.getValueType() != MVT::Other &&
319          Op.getValueType() != MVT::Glue &&
320          "Chain and glue operands should occur at end of operand list!");
321   // Get/emit the operand.
322   unsigned VReg = getVR(Op, VRBaseMap);
323 
324   const MCInstrDesc &MCID = MIB->getDesc();
325   bool isOptDef = IIOpNum < MCID.getNumOperands() &&
326     MCID.OpInfo[IIOpNum].isOptionalDef();
327 
328   // If the instruction requires a register in a different class, create
329   // a new virtual register and copy the value into it, but first attempt to
330   // shrink VReg's register class within reason.  For example, if VReg == GR32
331   // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP.
332   if (II) {
333     const TargetRegisterClass *OpRC = nullptr;
334     if (IIOpNum < II->getNumOperands())
335       OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF);
336 
337     if (OpRC) {
338       const TargetRegisterClass *ConstrainedRC
339         = MRI->constrainRegClass(VReg, OpRC, MinRCSize);
340       if (!ConstrainedRC) {
341         OpRC = TRI->getAllocatableClass(OpRC);
342         assert(OpRC && "Constraints cannot be fulfilled for allocation");
343         unsigned NewVReg = MRI->createVirtualRegister(OpRC);
344         BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
345                 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
346         VReg = NewVReg;
347       } else {
348         assert(ConstrainedRC->isAllocatable() &&
349            "Constraining an allocatable VReg produced an unallocatable class?");
350       }
351     }
352   }
353 
354   // If this value has only one use, that use is a kill. This is a
355   // conservative approximation. InstrEmitter does trivial coalescing
356   // with CopyFromReg nodes, so don't emit kill flags for them.
357   // Avoid kill flags on Schedule cloned nodes, since there will be
358   // multiple uses.
359   // Tied operands are never killed, so we need to check that. And that
360   // means we need to determine the index of the operand.
361   bool isKill = Op.hasOneUse() &&
362                 Op.getNode()->getOpcode() != ISD::CopyFromReg &&
363                 !IsDebug &&
364                 !(IsClone || IsCloned);
365   if (isKill) {
366     unsigned Idx = MIB->getNumOperands();
367     while (Idx > 0 &&
368            MIB->getOperand(Idx-1).isReg() &&
369            MIB->getOperand(Idx-1).isImplicit())
370       --Idx;
371     bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1;
372     if (isTied)
373       isKill = false;
374   }
375 
376   MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) |
377              getDebugRegState(IsDebug));
378 }
379 
380 /// AddOperand - Add the specified operand to the specified machine instr.  II
381 /// specifies the instruction information for the node, and IIOpNum is the
382 /// operand number (in the II) that we are adding.
383 void InstrEmitter::AddOperand(MachineInstrBuilder &MIB,
384                               SDValue Op,
385                               unsigned IIOpNum,
386                               const MCInstrDesc *II,
387                               DenseMap<SDValue, unsigned> &VRBaseMap,
388                               bool IsDebug, bool IsClone, bool IsCloned) {
389   if (Op.isMachineOpcode()) {
390     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
391                        IsDebug, IsClone, IsCloned);
392   } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
393     MIB.addImm(C->getSExtValue());
394   } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
395     MIB.addFPImm(F->getConstantFPValue());
396   } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
397     // Turn additional physreg operands into implicit uses on non-variadic
398     // instructions. This is used by call and return instructions passing
399     // arguments in registers.
400     bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic());
401     MIB.addReg(R->getReg(), getImplRegState(Imp));
402   } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) {
403     MIB.addRegMask(RM->getRegMask());
404   } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
405     MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(),
406                          TGA->getTargetFlags());
407   } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) {
408     MIB.addMBB(BBNode->getBasicBlock());
409   } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
410     MIB.addFrameIndex(FI->getIndex());
411   } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
412     MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags());
413   } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
414     int Offset = CP->getOffset();
415     unsigned Align = CP->getAlignment();
416     Type *Type = CP->getType();
417     // MachineConstantPool wants an explicit alignment.
418     if (Align == 0) {
419       Align = MF->getDataLayout().getPrefTypeAlignment(Type);
420       if (Align == 0) {
421         // Alignment of vector types.  FIXME!
422         Align = MF->getDataLayout().getTypeAllocSize(Type);
423       }
424     }
425 
426     unsigned Idx;
427     MachineConstantPool *MCP = MF->getConstantPool();
428     if (CP->isMachineConstantPoolEntry())
429       Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Align);
430     else
431       Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Align);
432     MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags());
433   } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
434     MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags());
435   } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) {
436     MIB.addSym(SymNode->getMCSymbol());
437   } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) {
438     MIB.addBlockAddress(BA->getBlockAddress(),
439                         BA->getOffset(),
440                         BA->getTargetFlags());
441   } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) {
442     MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags());
443   } else {
444     assert(Op.getValueType() != MVT::Other &&
445            Op.getValueType() != MVT::Glue &&
446            "Chain and glue operands should occur at end of operand list!");
447     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
448                        IsDebug, IsClone, IsCloned);
449   }
450 }
451 
452 unsigned InstrEmitter::ConstrainForSubReg(unsigned VReg, unsigned SubIdx,
453                                           MVT VT, const DebugLoc &DL) {
454   const TargetRegisterClass *VRC = MRI->getRegClass(VReg);
455   const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx);
456 
457   // RC is a sub-class of VRC that supports SubIdx.  Try to constrain VReg
458   // within reason.
459   if (RC && RC != VRC)
460     RC = MRI->constrainRegClass(VReg, RC, MinRCSize);
461 
462   // VReg has been adjusted.  It can be used with SubIdx operands now.
463   if (RC)
464     return VReg;
465 
466   // VReg couldn't be reasonably constrained.  Emit a COPY to a new virtual
467   // register instead.
468   RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT), SubIdx);
469   assert(RC && "No legal register class for VT supports that SubIdx");
470   unsigned NewReg = MRI->createVirtualRegister(RC);
471   BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg)
472     .addReg(VReg);
473   return NewReg;
474 }
475 
476 /// EmitSubregNode - Generate machine code for subreg nodes.
477 ///
478 void InstrEmitter::EmitSubregNode(SDNode *Node,
479                                   DenseMap<SDValue, unsigned> &VRBaseMap,
480                                   bool IsClone, bool IsCloned) {
481   unsigned VRBase = 0;
482   unsigned Opc = Node->getMachineOpcode();
483 
484   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
485   // the CopyToReg'd destination register instead of creating a new vreg.
486   for (SDNode *User : Node->uses()) {
487     if (User->getOpcode() == ISD::CopyToReg &&
488         User->getOperand(2).getNode() == Node) {
489       unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
490       if (TargetRegisterInfo::isVirtualRegister(DestReg)) {
491         VRBase = DestReg;
492         break;
493       }
494     }
495   }
496 
497   if (Opc == TargetOpcode::EXTRACT_SUBREG) {
498     // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub.  There are no
499     // constraints on the %dst register, COPY can target all legal register
500     // classes.
501     unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
502     const TargetRegisterClass *TRC =
503       TLI->getRegClassFor(Node->getSimpleValueType(0));
504 
505     unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
506     MachineInstr *DefMI = MRI->getVRegDef(VReg);
507     unsigned SrcReg, DstReg, DefSubIdx;
508     if (DefMI &&
509         TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) &&
510         SubIdx == DefSubIdx &&
511         TRC == MRI->getRegClass(SrcReg)) {
512       // Optimize these:
513       // r1025 = s/zext r1024, 4
514       // r1026 = extract_subreg r1025, 4
515       // to a copy
516       // r1026 = copy r1024
517       VRBase = MRI->createVirtualRegister(TRC);
518       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
519               TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg);
520       MRI->clearKillFlags(SrcReg);
521     } else {
522       // VReg may not support a SubIdx sub-register, and we may need to
523       // constrain its register class or issue a COPY to a compatible register
524       // class.
525       VReg = ConstrainForSubReg(VReg, SubIdx,
526                                 Node->getOperand(0).getSimpleValueType(),
527                                 Node->getDebugLoc());
528 
529       // Create the destreg if it is missing.
530       if (VRBase == 0)
531         VRBase = MRI->createVirtualRegister(TRC);
532 
533       // Create the extract_subreg machine instruction.
534       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
535               TII->get(TargetOpcode::COPY), VRBase).addReg(VReg, 0, SubIdx);
536     }
537   } else if (Opc == TargetOpcode::INSERT_SUBREG ||
538              Opc == TargetOpcode::SUBREG_TO_REG) {
539     SDValue N0 = Node->getOperand(0);
540     SDValue N1 = Node->getOperand(1);
541     SDValue N2 = Node->getOperand(2);
542     unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue();
543 
544     // Figure out the register class to create for the destreg.  It should be
545     // the largest legal register class supporting SubIdx sub-registers.
546     // RegisterCoalescer will constrain it further if it decides to eliminate
547     // the INSERT_SUBREG instruction.
548     //
549     //   %dst = INSERT_SUBREG %src, %sub, SubIdx
550     //
551     // is lowered by TwoAddressInstructionPass to:
552     //
553     //   %dst = COPY %src
554     //   %dst:SubIdx = COPY %sub
555     //
556     // There is no constraint on the %src register class.
557     //
558     const TargetRegisterClass *SRC = TLI->getRegClassFor(Node->getSimpleValueType(0));
559     SRC = TRI->getSubClassWithSubReg(SRC, SubIdx);
560     assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG");
561 
562     if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase)))
563       VRBase = MRI->createVirtualRegister(SRC);
564 
565     // Create the insert_subreg or subreg_to_reg machine instruction.
566     MachineInstrBuilder MIB =
567       BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase);
568 
569     // If creating a subreg_to_reg, then the first input operand
570     // is an implicit value immediate, otherwise it's a register
571     if (Opc == TargetOpcode::SUBREG_TO_REG) {
572       const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
573       MIB.addImm(SD->getZExtValue());
574     } else
575       AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
576                  IsClone, IsCloned);
577     // Add the subregster being inserted
578     AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
579                IsClone, IsCloned);
580     MIB.addImm(SubIdx);
581     MBB->insert(InsertPos, MIB);
582   } else
583     llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");
584 
585   SDValue Op(Node, 0);
586   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
587   (void)isNew; // Silence compiler warning.
588   assert(isNew && "Node emitted out of order - early");
589 }
590 
591 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
592 /// COPY_TO_REGCLASS is just a normal copy, except that the destination
593 /// register is constrained to be in a particular register class.
594 ///
595 void
596 InstrEmitter::EmitCopyToRegClassNode(SDNode *Node,
597                                      DenseMap<SDValue, unsigned> &VRBaseMap) {
598   unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
599 
600   // Create the new VReg in the destination class and emit a copy.
601   unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
602   const TargetRegisterClass *DstRC =
603     TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx));
604   unsigned NewVReg = MRI->createVirtualRegister(DstRC);
605   BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
606     NewVReg).addReg(VReg);
607 
608   SDValue Op(Node, 0);
609   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
610   (void)isNew; // Silence compiler warning.
611   assert(isNew && "Node emitted out of order - early");
612 }
613 
614 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
615 ///
616 void InstrEmitter::EmitRegSequence(SDNode *Node,
617                                   DenseMap<SDValue, unsigned> &VRBaseMap,
618                                   bool IsClone, bool IsCloned) {
619   unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
620   const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
621   unsigned NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC));
622   const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
623   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg);
624   unsigned NumOps = Node->getNumOperands();
625   assert((NumOps & 1) == 1 &&
626          "REG_SEQUENCE must have an odd number of operands!");
627   for (unsigned i = 1; i != NumOps; ++i) {
628     SDValue Op = Node->getOperand(i);
629     if ((i & 1) == 0) {
630       RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1));
631       // Skip physical registers as they don't have a vreg to get and we'll
632       // insert copies for them in TwoAddressInstructionPass anyway.
633       if (!R || !TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
634         unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue();
635         unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap);
636         const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
637         const TargetRegisterClass *SRC =
638         TRI->getMatchingSuperRegClass(RC, TRC, SubIdx);
639         if (SRC && SRC != RC) {
640           MRI->setRegClass(NewVReg, SRC);
641           RC = SRC;
642         }
643       }
644     }
645     AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false,
646                IsClone, IsCloned);
647   }
648 
649   MBB->insert(InsertPos, MIB);
650   SDValue Op(Node, 0);
651   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
652   (void)isNew; // Silence compiler warning.
653   assert(isNew && "Node emitted out of order - early");
654 }
655 
656 /// EmitDbgValue - Generate machine instruction for a dbg_value node.
657 ///
658 MachineInstr *
659 InstrEmitter::EmitDbgValue(SDDbgValue *SD,
660                            DenseMap<SDValue, unsigned> &VRBaseMap) {
661   uint64_t Offset = SD->getOffset();
662   MDNode *Var = SD->getVariable();
663   MDNode *Expr = SD->getExpression();
664   DebugLoc DL = SD->getDebugLoc();
665   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
666          "Expected inlined-at fields to agree");
667 
668   if (SD->getKind() == SDDbgValue::FRAMEIX) {
669     // Stack address; this needs to be lowered in target-dependent fashion.
670     // EmitTargetCodeForFrameDebugValue is responsible for allocation.
671     return BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE))
672         .addFrameIndex(SD->getFrameIx())
673         .addImm(Offset)
674         .addMetadata(Var)
675         .addMetadata(Expr);
676   }
677   // Otherwise, we're going to create an instruction here.
678   const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE);
679   MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
680   if (SD->getKind() == SDDbgValue::SDNODE) {
681     SDNode *Node = SD->getSDNode();
682     SDValue Op = SDValue(Node, SD->getResNo());
683     // It's possible we replaced this SDNode with other(s) and therefore
684     // didn't generate code for it.  It's better to catch these cases where
685     // they happen and transfer the debug info, but trying to guarantee that
686     // in all cases would be very fragile; this is a safeguard for any
687     // that were missed.
688     DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op);
689     if (I==VRBaseMap.end())
690       MIB.addReg(0U);       // undef
691     else
692       AddOperand(MIB, Op, (*MIB).getNumOperands(), &II, VRBaseMap,
693                  /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false);
694   } else if (SD->getKind() == SDDbgValue::CONST) {
695     const Value *V = SD->getConst();
696     if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
697       if (CI->getBitWidth() > 64)
698         MIB.addCImm(CI);
699       else
700         MIB.addImm(CI->getSExtValue());
701     } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
702       MIB.addFPImm(CF);
703     } else {
704       // Could be an Undef.  In any case insert an Undef so we can see what we
705       // dropped.
706       MIB.addReg(0U);
707     }
708   } else {
709     // Insert an Undef so we can see what we dropped.
710     MIB.addReg(0U);
711   }
712 
713   // Indirect addressing is indicated by an Imm as the second parameter.
714   if (SD->isIndirect())
715     MIB.addImm(Offset);
716   else {
717     assert(Offset == 0 && "direct value cannot have an offset");
718     MIB.addReg(0U, RegState::Debug);
719   }
720 
721   MIB.addMetadata(Var);
722   MIB.addMetadata(Expr);
723 
724   return &*MIB;
725 }
726 
727 /// EmitMachineNode - Generate machine code for a target-specific node and
728 /// needed dependencies.
729 ///
730 void InstrEmitter::
731 EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
732                 DenseMap<SDValue, unsigned> &VRBaseMap) {
733   unsigned Opc = Node->getMachineOpcode();
734 
735   // Handle subreg insert/extract specially
736   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
737       Opc == TargetOpcode::INSERT_SUBREG ||
738       Opc == TargetOpcode::SUBREG_TO_REG) {
739     EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned);
740     return;
741   }
742 
743   // Handle COPY_TO_REGCLASS specially.
744   if (Opc == TargetOpcode::COPY_TO_REGCLASS) {
745     EmitCopyToRegClassNode(Node, VRBaseMap);
746     return;
747   }
748 
749   // Handle REG_SEQUENCE specially.
750   if (Opc == TargetOpcode::REG_SEQUENCE) {
751     EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned);
752     return;
753   }
754 
755   if (Opc == TargetOpcode::IMPLICIT_DEF)
756     // We want a unique VR for each IMPLICIT_DEF use.
757     return;
758 
759   const MCInstrDesc &II = TII->get(Opc);
760   unsigned NumResults = CountResults(Node);
761   unsigned NumDefs = II.getNumDefs();
762   const MCPhysReg *ScratchRegs = nullptr;
763 
764   // Handle STACKMAP and PATCHPOINT specially and then use the generic code.
765   if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
766     // Stackmaps do not have arguments and do not preserve their calling
767     // convention. However, to simplify runtime support, they clobber the same
768     // scratch registers as AnyRegCC.
769     unsigned CC = CallingConv::AnyReg;
770     if (Opc == TargetOpcode::PATCHPOINT) {
771       CC = Node->getConstantOperandVal(PatchPointOpers::CCPos);
772       NumDefs = NumResults;
773     }
774     ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC);
775   }
776 
777   unsigned NumImpUses = 0;
778   unsigned NodeOperands =
779     countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses);
780   bool HasPhysRegOuts = NumResults > NumDefs && II.getImplicitDefs()!=nullptr;
781 #ifndef NDEBUG
782   unsigned NumMIOperands = NodeOperands + NumResults;
783   if (II.isVariadic())
784     assert(NumMIOperands >= II.getNumOperands() &&
785            "Too few operands for a variadic node!");
786   else
787     assert(NumMIOperands >= II.getNumOperands() &&
788            NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() +
789                             NumImpUses &&
790            "#operands for dag node doesn't match .td file!");
791 #endif
792 
793   // Create the new machine instruction.
794   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II);
795 
796   // Add result register values for things that are defined by this
797   // instruction.
798   if (NumResults)
799     CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap);
800 
801   // Emit all of the actual operands of this instruction, adding them to the
802   // instruction as appropriate.
803   bool HasOptPRefs = NumDefs > NumResults;
804   assert((!HasOptPRefs || !HasPhysRegOuts) &&
805          "Unable to cope with optional defs and phys regs defs!");
806   unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0;
807   for (unsigned i = NumSkip; i != NodeOperands; ++i)
808     AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II,
809                VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned);
810 
811   // Add scratch registers as implicit def and early clobber
812   if (ScratchRegs)
813     for (unsigned i = 0; ScratchRegs[i]; ++i)
814       MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine |
815                                  RegState::EarlyClobber);
816 
817   // Transfer all of the memory reference descriptions of this instruction.
818   MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands_begin(),
819                  cast<MachineSDNode>(Node)->memoperands_end());
820 
821   // Insert the instruction into position in the block. This needs to
822   // happen before any custom inserter hook is called so that the
823   // hook knows where in the block to insert the replacement code.
824   MBB->insert(InsertPos, MIB);
825 
826   // The MachineInstr may also define physregs instead of virtregs.  These
827   // physreg values can reach other instructions in different ways:
828   //
829   // 1. When there is a use of a Node value beyond the explicitly defined
830   //    virtual registers, we emit a CopyFromReg for one of the implicitly
831   //    defined physregs.  This only happens when HasPhysRegOuts is true.
832   //
833   // 2. A CopyFromReg reading a physreg may be glued to this instruction.
834   //
835   // 3. A glued instruction may implicitly use a physreg.
836   //
837   // 4. A glued instruction may use a RegisterSDNode operand.
838   //
839   // Collect all the used physreg defs, and make sure that any unused physreg
840   // defs are marked as dead.
841   SmallVector<unsigned, 8> UsedRegs;
842 
843   // Additional results must be physical register defs.
844   if (HasPhysRegOuts) {
845     for (unsigned i = NumDefs; i < NumResults; ++i) {
846       unsigned Reg = II.getImplicitDefs()[i - NumDefs];
847       if (!Node->hasAnyUseOfValue(i))
848         continue;
849       // This implicitly defined physreg has a use.
850       UsedRegs.push_back(Reg);
851       EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap);
852     }
853   }
854 
855   // Scan the glue chain for any used physregs.
856   if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) {
857     for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) {
858       if (F->getOpcode() == ISD::CopyFromReg) {
859         UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg());
860         continue;
861       } else if (F->getOpcode() == ISD::CopyToReg) {
862         // Skip CopyToReg nodes that are internal to the glue chain.
863         continue;
864       }
865       // Collect declared implicit uses.
866       const MCInstrDesc &MCID = TII->get(F->getMachineOpcode());
867       UsedRegs.append(MCID.getImplicitUses(),
868                       MCID.getImplicitUses() + MCID.getNumImplicitUses());
869       // In addition to declared implicit uses, we must also check for
870       // direct RegisterSDNode operands.
871       for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i)
872         if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) {
873           unsigned Reg = R->getReg();
874           if (TargetRegisterInfo::isPhysicalRegister(Reg))
875             UsedRegs.push_back(Reg);
876         }
877     }
878   }
879 
880   // Finally mark unused registers as dead.
881   if (!UsedRegs.empty() || II.getImplicitDefs())
882     MIB->setPhysRegsDeadExcept(UsedRegs, *TRI);
883 
884   // Run post-isel target hook to adjust this instruction if needed.
885   if (II.hasPostISelHook())
886     TLI->AdjustInstrPostInstrSelection(*MIB, Node);
887 }
888 
889 /// EmitSpecialNode - Generate machine code for a target-independent node and
890 /// needed dependencies.
891 void InstrEmitter::
892 EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned,
893                 DenseMap<SDValue, unsigned> &VRBaseMap) {
894   switch (Node->getOpcode()) {
895   default:
896 #ifndef NDEBUG
897     Node->dump();
898 #endif
899     llvm_unreachable("This target-independent node should have been selected!");
900   case ISD::EntryToken:
901     llvm_unreachable("EntryToken should have been excluded from the schedule!");
902   case ISD::MERGE_VALUES:
903   case ISD::TokenFactor: // fall thru
904     break;
905   case ISD::CopyToReg: {
906     unsigned SrcReg;
907     SDValue SrcVal = Node->getOperand(2);
908     if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
909       SrcReg = R->getReg();
910     else
911       SrcReg = getVR(SrcVal, VRBaseMap);
912 
913     unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
914     if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
915       break;
916 
917     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
918             DestReg).addReg(SrcReg);
919     break;
920   }
921   case ISD::CopyFromReg: {
922     unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
923     EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap);
924     break;
925   }
926   case ISD::EH_LABEL: {
927     MCSymbol *S = cast<EHLabelSDNode>(Node)->getLabel();
928     BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
929             TII->get(TargetOpcode::EH_LABEL)).addSym(S);
930     break;
931   }
932 
933   case ISD::LIFETIME_START:
934   case ISD::LIFETIME_END: {
935     unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START) ?
936     TargetOpcode::LIFETIME_START : TargetOpcode::LIFETIME_END;
937 
938     FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Node->getOperand(1));
939     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
940     .addFrameIndex(FI->getIndex());
941     break;
942   }
943 
944   case ISD::INLINEASM: {
945     unsigned NumOps = Node->getNumOperands();
946     if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
947       --NumOps;  // Ignore the glue operand.
948 
949     // Create the inline asm machine instruction.
950     MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(),
951                                       TII->get(TargetOpcode::INLINEASM));
952 
953     // Add the asm string as an external symbol operand.
954     SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString);
955     const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol();
956     MIB.addExternalSymbol(AsmStr);
957 
958     // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore
959     // bits.
960     int64_t ExtraInfo =
961       cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))->
962                           getZExtValue();
963     MIB.addImm(ExtraInfo);
964 
965     // Remember to operand index of the group flags.
966     SmallVector<unsigned, 8> GroupIdx;
967 
968     // Remember registers that are part of early-clobber defs.
969     SmallVector<unsigned, 8> ECRegs;
970 
971     // Add all of the operand registers to the instruction.
972     for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
973       unsigned Flags =
974         cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
975       const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
976 
977       GroupIdx.push_back(MIB->getNumOperands());
978       MIB.addImm(Flags);
979       ++i;  // Skip the ID value.
980 
981       switch (InlineAsm::getKind(Flags)) {
982       default: llvm_unreachable("Bad flags!");
983         case InlineAsm::Kind_RegDef:
984         for (unsigned j = 0; j != NumVals; ++j, ++i) {
985           unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
986           // FIXME: Add dead flags for physical and virtual registers defined.
987           // For now, mark physical register defs as implicit to help fast
988           // regalloc. This makes inline asm look a lot like calls.
989           MIB.addReg(Reg, RegState::Define |
990                   getImplRegState(TargetRegisterInfo::isPhysicalRegister(Reg)));
991         }
992         break;
993       case InlineAsm::Kind_RegDefEarlyClobber:
994       case InlineAsm::Kind_Clobber:
995         for (unsigned j = 0; j != NumVals; ++j, ++i) {
996           unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
997           MIB.addReg(Reg, RegState::Define | RegState::EarlyClobber |
998                   getImplRegState(TargetRegisterInfo::isPhysicalRegister(Reg)));
999           ECRegs.push_back(Reg);
1000         }
1001         break;
1002       case InlineAsm::Kind_RegUse:  // Use of register.
1003       case InlineAsm::Kind_Imm:  // Immediate.
1004       case InlineAsm::Kind_Mem:  // Addressing mode.
1005         // The addressing mode has been selected, just add all of the
1006         // operands to the machine instruction.
1007         for (unsigned j = 0; j != NumVals; ++j, ++i)
1008           AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap,
1009                      /*IsDebug=*/false, IsClone, IsCloned);
1010 
1011         // Manually set isTied bits.
1012         if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) {
1013           unsigned DefGroup = 0;
1014           if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) {
1015             unsigned DefIdx = GroupIdx[DefGroup] + 1;
1016             unsigned UseIdx = GroupIdx.back() + 1;
1017             for (unsigned j = 0; j != NumVals; ++j)
1018               MIB->tieOperands(DefIdx + j, UseIdx + j);
1019           }
1020         }
1021         break;
1022       }
1023     }
1024 
1025     // GCC inline assembly allows input operands to also be early-clobber
1026     // output operands (so long as the operand is written only after it's
1027     // used), but this does not match the semantics of our early-clobber flag.
1028     // If an early-clobber operand register is also an input operand register,
1029     // then remove the early-clobber flag.
1030     for (unsigned Reg : ECRegs) {
1031       if (MIB->readsRegister(Reg, TRI)) {
1032         MachineOperand *MO = MIB->findRegisterDefOperand(Reg, false, TRI);
1033         assert(MO && "No def operand for clobbered register?");
1034         MO->setIsEarlyClobber(false);
1035       }
1036     }
1037 
1038     // Get the mdnode from the asm if it exists and add it to the instruction.
1039     SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode);
1040     const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
1041     if (MD)
1042       MIB.addMetadata(MD);
1043 
1044     MBB->insert(InsertPos, MIB);
1045     break;
1046   }
1047   }
1048 }
1049 
1050 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting
1051 /// at the given position in the given block.
1052 InstrEmitter::InstrEmitter(MachineBasicBlock *mbb,
1053                            MachineBasicBlock::iterator insertpos)
1054     : MF(mbb->getParent()), MRI(&MF->getRegInfo()),
1055       TII(MF->getSubtarget().getInstrInfo()),
1056       TRI(MF->getSubtarget().getRegisterInfo()),
1057       TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb),
1058       InsertPos(insertpos) {}
1059