1 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the Emit routines for the SelectionDAG class, which creates
10 // MachineInstrs based on the decisions of the SelectionDAG instruction
11 // selection.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "InstrEmitter.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/CodeGen/MachineConstantPool.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/StackMaps.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DebugInfo.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "instr-emitter"
34 
35 /// MinRCSize - Smallest register class we allow when constraining virtual
36 /// registers.  If satisfying all register class constraints would require
37 /// using a smaller register class, emit a COPY to a new virtual register
38 /// instead.
39 const unsigned MinRCSize = 4;
40 
41 /// CountResults - The results of target nodes have register or immediate
42 /// operands first, then an optional chain, and optional glue operands (which do
43 /// not go into the resulting MachineInstr).
44 unsigned InstrEmitter::CountResults(SDNode *Node) {
45   unsigned N = Node->getNumValues();
46   while (N && Node->getValueType(N - 1) == MVT::Glue)
47     --N;
48   if (N && Node->getValueType(N - 1) == MVT::Other)
49     --N;    // Skip over chain result.
50   return N;
51 }
52 
53 /// countOperands - The inputs to target nodes have any actual inputs first,
54 /// followed by an optional chain operand, then an optional glue operand.
55 /// Compute the number of actual operands that will go into the resulting
56 /// MachineInstr.
57 ///
58 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding
59 /// the chain and glue. These operands may be implicit on the machine instr.
60 static unsigned countOperands(SDNode *Node, unsigned NumExpUses,
61                               unsigned &NumImpUses) {
62   unsigned N = Node->getNumOperands();
63   while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
64     --N;
65   if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
66     --N; // Ignore chain if it exists.
67 
68   // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses.
69   NumImpUses = N - NumExpUses;
70   for (unsigned I = N; I > NumExpUses; --I) {
71     if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1)))
72       continue;
73     if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1)))
74       if (Register::isPhysicalRegister(RN->getReg()))
75         continue;
76     NumImpUses = N - I;
77     break;
78   }
79 
80   return N;
81 }
82 
83 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
84 /// implicit physical register output.
85 void InstrEmitter::
86 EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned,
87                 unsigned SrcReg, DenseMap<SDValue, unsigned> &VRBaseMap) {
88   unsigned VRBase = 0;
89   if (Register::isVirtualRegister(SrcReg)) {
90     // Just use the input register directly!
91     SDValue Op(Node, ResNo);
92     if (IsClone)
93       VRBaseMap.erase(Op);
94     bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
95     (void)isNew; // Silence compiler warning.
96     assert(isNew && "Node emitted out of order - early");
97     return;
98   }
99 
100   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
101   // the CopyToReg'd destination register instead of creating a new vreg.
102   bool MatchReg = true;
103   const TargetRegisterClass *UseRC = nullptr;
104   MVT VT = Node->getSimpleValueType(ResNo);
105 
106   // Stick to the preferred register classes for legal types.
107   if (TLI->isTypeLegal(VT))
108     UseRC = TLI->getRegClassFor(VT, Node->isDivergent());
109 
110   if (!IsClone && !IsCloned)
111     for (SDNode *User : Node->uses()) {
112       bool Match = true;
113       if (User->getOpcode() == ISD::CopyToReg &&
114           User->getOperand(2).getNode() == Node &&
115           User->getOperand(2).getResNo() == ResNo) {
116         unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
117         if (Register::isVirtualRegister(DestReg)) {
118           VRBase = DestReg;
119           Match = false;
120         } else if (DestReg != SrcReg)
121           Match = false;
122       } else {
123         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
124           SDValue Op = User->getOperand(i);
125           if (Op.getNode() != Node || Op.getResNo() != ResNo)
126             continue;
127           MVT VT = Node->getSimpleValueType(Op.getResNo());
128           if (VT == MVT::Other || VT == MVT::Glue)
129             continue;
130           Match = false;
131           if (User->isMachineOpcode()) {
132             const MCInstrDesc &II = TII->get(User->getMachineOpcode());
133             const TargetRegisterClass *RC = nullptr;
134             if (i+II.getNumDefs() < II.getNumOperands()) {
135               RC = TRI->getAllocatableClass(
136                 TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF));
137             }
138             if (!UseRC)
139               UseRC = RC;
140             else if (RC) {
141               const TargetRegisterClass *ComRC =
142                 TRI->getCommonSubClass(UseRC, RC);
143               // If multiple uses expect disjoint register classes, we emit
144               // copies in AddRegisterOperand.
145               if (ComRC)
146                 UseRC = ComRC;
147             }
148           }
149         }
150       }
151       MatchReg &= Match;
152       if (VRBase)
153         break;
154     }
155 
156   const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr;
157   SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT);
158 
159   // Figure out the register class to create for the destreg.
160   if (VRBase) {
161     DstRC = MRI->getRegClass(VRBase);
162   } else if (UseRC) {
163     assert(TRI->isTypeLegalForClass(*UseRC, VT) &&
164            "Incompatible phys register def and uses!");
165     DstRC = UseRC;
166   } else {
167     DstRC = TLI->getRegClassFor(VT, Node->isDivergent());
168   }
169 
170   // If all uses are reading from the src physical register and copying the
171   // register is either impossible or very expensive, then don't create a copy.
172   if (MatchReg && SrcRC->getCopyCost() < 0) {
173     VRBase = SrcReg;
174   } else {
175     // Create the reg, emit the copy.
176     VRBase = MRI->createVirtualRegister(DstRC);
177     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
178             VRBase).addReg(SrcReg);
179   }
180 
181   SDValue Op(Node, ResNo);
182   if (IsClone)
183     VRBaseMap.erase(Op);
184   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
185   (void)isNew; // Silence compiler warning.
186   assert(isNew && "Node emitted out of order - early");
187 }
188 
189 void InstrEmitter::CreateVirtualRegisters(SDNode *Node,
190                                        MachineInstrBuilder &MIB,
191                                        const MCInstrDesc &II,
192                                        bool IsClone, bool IsCloned,
193                                        DenseMap<SDValue, unsigned> &VRBaseMap) {
194   assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF &&
195          "IMPLICIT_DEF should have been handled as a special case elsewhere!");
196 
197   unsigned NumResults = CountResults(Node);
198   bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
199                              II.isVariadic() && II.variadicOpsAreDefs();
200   unsigned NumVRegs = HasVRegVariadicDefs ? NumResults : II.getNumDefs();
201   for (unsigned i = 0; i < NumVRegs; ++i) {
202     // If the specific node value is only used by a CopyToReg and the dest reg
203     // is a vreg in the same register class, use the CopyToReg'd destination
204     // register instead of creating a new vreg.
205     unsigned VRBase = 0;
206     const TargetRegisterClass *RC =
207       TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF));
208     // Always let the value type influence the used register class. The
209     // constraints on the instruction may be too lax to represent the value
210     // type correctly. For example, a 64-bit float (X86::FR64) can't live in
211     // the 32-bit float super-class (X86::FR32).
212     if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) {
213       const TargetRegisterClass *VTRC = TLI->getRegClassFor(
214           Node->getSimpleValueType(i),
215           (Node->isDivergent() || (RC && TRI->isDivergentRegClass(RC))));
216       if (RC)
217         VTRC = TRI->getCommonSubClass(RC, VTRC);
218       if (VTRC)
219         RC = VTRC;
220     }
221 
222     if (II.OpInfo != nullptr && II.OpInfo[i].isOptionalDef()) {
223       // Optional def must be a physical register.
224       VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg();
225       assert(Register::isPhysicalRegister(VRBase));
226       MIB.addReg(VRBase, RegState::Define);
227     }
228 
229     if (!VRBase && !IsClone && !IsCloned)
230       for (SDNode *User : Node->uses()) {
231         if (User->getOpcode() == ISD::CopyToReg &&
232             User->getOperand(2).getNode() == Node &&
233             User->getOperand(2).getResNo() == i) {
234           unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
235           if (Register::isVirtualRegister(Reg)) {
236             const TargetRegisterClass *RegRC = MRI->getRegClass(Reg);
237             if (RegRC == RC) {
238               VRBase = Reg;
239               MIB.addReg(VRBase, RegState::Define);
240               break;
241             }
242           }
243         }
244       }
245 
246     // Create the result registers for this node and add the result regs to
247     // the machine instruction.
248     if (VRBase == 0) {
249       assert(RC && "Isn't a register operand!");
250       VRBase = MRI->createVirtualRegister(RC);
251       MIB.addReg(VRBase, RegState::Define);
252     }
253 
254     // If this def corresponds to a result of the SDNode insert the VRBase into
255     // the lookup map.
256     if (i < NumResults) {
257       SDValue Op(Node, i);
258       if (IsClone)
259         VRBaseMap.erase(Op);
260       bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
261       (void)isNew; // Silence compiler warning.
262       assert(isNew && "Node emitted out of order - early");
263     }
264   }
265 }
266 
267 /// getVR - Return the virtual register corresponding to the specified result
268 /// of the specified node.
269 unsigned InstrEmitter::getVR(SDValue Op,
270                              DenseMap<SDValue, unsigned> &VRBaseMap) {
271   if (Op.isMachineOpcode() &&
272       Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
273     // Add an IMPLICIT_DEF instruction before every use.
274     // IMPLICIT_DEF can produce any type of result so its MCInstrDesc
275     // does not include operand register class info.
276     const TargetRegisterClass *RC = TLI->getRegClassFor(
277         Op.getSimpleValueType(), Op.getNode()->isDivergent());
278     Register VReg = MRI->createVirtualRegister(RC);
279     BuildMI(*MBB, InsertPos, Op.getDebugLoc(),
280             TII->get(TargetOpcode::IMPLICIT_DEF), VReg);
281     return VReg;
282   }
283 
284   DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op);
285   assert(I != VRBaseMap.end() && "Node emitted out of order - late");
286   return I->second;
287 }
288 
289 
290 /// AddRegisterOperand - Add the specified register as an operand to the
291 /// specified machine instr. Insert register copies if the register is
292 /// not in the required register class.
293 void
294 InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB,
295                                  SDValue Op,
296                                  unsigned IIOpNum,
297                                  const MCInstrDesc *II,
298                                  DenseMap<SDValue, unsigned> &VRBaseMap,
299                                  bool IsDebug, bool IsClone, bool IsCloned) {
300   assert(Op.getValueType() != MVT::Other &&
301          Op.getValueType() != MVT::Glue &&
302          "Chain and glue operands should occur at end of operand list!");
303   // Get/emit the operand.
304   unsigned VReg = getVR(Op, VRBaseMap);
305 
306   const MCInstrDesc &MCID = MIB->getDesc();
307   bool isOptDef = IIOpNum < MCID.getNumOperands() &&
308     MCID.OpInfo[IIOpNum].isOptionalDef();
309 
310   // If the instruction requires a register in a different class, create
311   // a new virtual register and copy the value into it, but first attempt to
312   // shrink VReg's register class within reason.  For example, if VReg == GR32
313   // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP.
314   if (II) {
315     const TargetRegisterClass *OpRC = nullptr;
316     if (IIOpNum < II->getNumOperands())
317       OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF);
318 
319     if (OpRC) {
320       const TargetRegisterClass *ConstrainedRC
321         = MRI->constrainRegClass(VReg, OpRC, MinRCSize);
322       if (!ConstrainedRC) {
323         OpRC = TRI->getAllocatableClass(OpRC);
324         assert(OpRC && "Constraints cannot be fulfilled for allocation");
325         Register NewVReg = MRI->createVirtualRegister(OpRC);
326         BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
327                 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
328         VReg = NewVReg;
329       } else {
330         assert(ConstrainedRC->isAllocatable() &&
331            "Constraining an allocatable VReg produced an unallocatable class?");
332       }
333     }
334   }
335 
336   // If this value has only one use, that use is a kill. This is a
337   // conservative approximation. InstrEmitter does trivial coalescing
338   // with CopyFromReg nodes, so don't emit kill flags for them.
339   // Avoid kill flags on Schedule cloned nodes, since there will be
340   // multiple uses.
341   // Tied operands are never killed, so we need to check that. And that
342   // means we need to determine the index of the operand.
343   bool isKill = Op.hasOneUse() &&
344                 Op.getNode()->getOpcode() != ISD::CopyFromReg &&
345                 !IsDebug &&
346                 !(IsClone || IsCloned);
347   if (isKill) {
348     unsigned Idx = MIB->getNumOperands();
349     while (Idx > 0 &&
350            MIB->getOperand(Idx-1).isReg() &&
351            MIB->getOperand(Idx-1).isImplicit())
352       --Idx;
353     bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1;
354     if (isTied)
355       isKill = false;
356   }
357 
358   MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) |
359              getDebugRegState(IsDebug));
360 }
361 
362 /// AddOperand - Add the specified operand to the specified machine instr.  II
363 /// specifies the instruction information for the node, and IIOpNum is the
364 /// operand number (in the II) that we are adding.
365 void InstrEmitter::AddOperand(MachineInstrBuilder &MIB,
366                               SDValue Op,
367                               unsigned IIOpNum,
368                               const MCInstrDesc *II,
369                               DenseMap<SDValue, unsigned> &VRBaseMap,
370                               bool IsDebug, bool IsClone, bool IsCloned) {
371   if (Op.isMachineOpcode()) {
372     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
373                        IsDebug, IsClone, IsCloned);
374   } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
375     MIB.addImm(C->getSExtValue());
376   } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
377     MIB.addFPImm(F->getConstantFPValue());
378   } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
379     unsigned VReg = R->getReg();
380     MVT OpVT = Op.getSimpleValueType();
381     const TargetRegisterClass *IIRC =
382         II ? TRI->getAllocatableClass(TII->getRegClass(*II, IIOpNum, TRI, *MF))
383            : nullptr;
384     const TargetRegisterClass *OpRC =
385         TLI->isTypeLegal(OpVT)
386             ? TLI->getRegClassFor(OpVT,
387                                   Op.getNode()->isDivergent() ||
388                                       (IIRC && TRI->isDivergentRegClass(IIRC)))
389             : nullptr;
390 
391     if (OpRC && IIRC && OpRC != IIRC && Register::isVirtualRegister(VReg)) {
392       Register NewVReg = MRI->createVirtualRegister(IIRC);
393       BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
394                TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
395       VReg = NewVReg;
396     }
397     // Turn additional physreg operands into implicit uses on non-variadic
398     // instructions. This is used by call and return instructions passing
399     // arguments in registers.
400     bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic());
401     MIB.addReg(VReg, getImplRegState(Imp));
402   } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) {
403     MIB.addRegMask(RM->getRegMask());
404   } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
405     MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(),
406                          TGA->getTargetFlags());
407   } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) {
408     MIB.addMBB(BBNode->getBasicBlock());
409   } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
410     MIB.addFrameIndex(FI->getIndex());
411   } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
412     MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags());
413   } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
414     int Offset = CP->getOffset();
415     unsigned Align = CP->getAlignment();
416     Type *Type = CP->getType();
417     // MachineConstantPool wants an explicit alignment.
418     if (Align == 0) {
419       Align = MF->getDataLayout().getPrefTypeAlignment(Type);
420       if (Align == 0) {
421         // Alignment of vector types.  FIXME!
422         Align = MF->getDataLayout().getTypeAllocSize(Type);
423       }
424     }
425 
426     unsigned Idx;
427     MachineConstantPool *MCP = MF->getConstantPool();
428     if (CP->isMachineConstantPoolEntry())
429       Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Align);
430     else
431       Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Align);
432     MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags());
433   } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
434     MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags());
435   } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) {
436     MIB.addSym(SymNode->getMCSymbol());
437   } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) {
438     MIB.addBlockAddress(BA->getBlockAddress(),
439                         BA->getOffset(),
440                         BA->getTargetFlags());
441   } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) {
442     MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags());
443   } else {
444     assert(Op.getValueType() != MVT::Other &&
445            Op.getValueType() != MVT::Glue &&
446            "Chain and glue operands should occur at end of operand list!");
447     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
448                        IsDebug, IsClone, IsCloned);
449   }
450 }
451 
452 unsigned InstrEmitter::ConstrainForSubReg(unsigned VReg, unsigned SubIdx,
453                                           MVT VT, bool isDivergent, const DebugLoc &DL) {
454   const TargetRegisterClass *VRC = MRI->getRegClass(VReg);
455   const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx);
456 
457   // RC is a sub-class of VRC that supports SubIdx.  Try to constrain VReg
458   // within reason.
459   if (RC && RC != VRC)
460     RC = MRI->constrainRegClass(VReg, RC, MinRCSize);
461 
462   // VReg has been adjusted.  It can be used with SubIdx operands now.
463   if (RC)
464     return VReg;
465 
466   // VReg couldn't be reasonably constrained.  Emit a COPY to a new virtual
467   // register instead.
468   RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT, isDivergent), SubIdx);
469   assert(RC && "No legal register class for VT supports that SubIdx");
470   Register NewReg = MRI->createVirtualRegister(RC);
471   BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg)
472     .addReg(VReg);
473   return NewReg;
474 }
475 
476 /// EmitSubregNode - Generate machine code for subreg nodes.
477 ///
478 void InstrEmitter::EmitSubregNode(SDNode *Node,
479                                   DenseMap<SDValue, unsigned> &VRBaseMap,
480                                   bool IsClone, bool IsCloned) {
481   unsigned VRBase = 0;
482   unsigned Opc = Node->getMachineOpcode();
483 
484   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
485   // the CopyToReg'd destination register instead of creating a new vreg.
486   for (SDNode *User : Node->uses()) {
487     if (User->getOpcode() == ISD::CopyToReg &&
488         User->getOperand(2).getNode() == Node) {
489       unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
490       if (Register::isVirtualRegister(DestReg)) {
491         VRBase = DestReg;
492         break;
493       }
494     }
495   }
496 
497   if (Opc == TargetOpcode::EXTRACT_SUBREG) {
498     // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub.  There are no
499     // constraints on the %dst register, COPY can target all legal register
500     // classes.
501     unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
502     const TargetRegisterClass *TRC =
503       TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
504 
505     unsigned Reg;
506     MachineInstr *DefMI;
507     RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0));
508     if (R && Register::isPhysicalRegister(R->getReg())) {
509       Reg = R->getReg();
510       DefMI = nullptr;
511     } else {
512       Reg = R ? R->getReg() : getVR(Node->getOperand(0), VRBaseMap);
513       DefMI = MRI->getVRegDef(Reg);
514     }
515 
516     unsigned SrcReg, DstReg, DefSubIdx;
517     if (DefMI &&
518         TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) &&
519         SubIdx == DefSubIdx &&
520         TRC == MRI->getRegClass(SrcReg)) {
521       // Optimize these:
522       // r1025 = s/zext r1024, 4
523       // r1026 = extract_subreg r1025, 4
524       // to a copy
525       // r1026 = copy r1024
526       VRBase = MRI->createVirtualRegister(TRC);
527       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
528               TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg);
529       MRI->clearKillFlags(SrcReg);
530     } else {
531       // Reg may not support a SubIdx sub-register, and we may need to
532       // constrain its register class or issue a COPY to a compatible register
533       // class.
534       if (Register::isVirtualRegister(Reg))
535         Reg = ConstrainForSubReg(Reg, SubIdx,
536                                  Node->getOperand(0).getSimpleValueType(),
537                                  Node->isDivergent(), Node->getDebugLoc());
538       // Create the destreg if it is missing.
539       if (VRBase == 0)
540         VRBase = MRI->createVirtualRegister(TRC);
541 
542       // Create the extract_subreg machine instruction.
543       MachineInstrBuilder CopyMI =
544           BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
545                   TII->get(TargetOpcode::COPY), VRBase);
546       if (Register::isVirtualRegister(Reg))
547         CopyMI.addReg(Reg, 0, SubIdx);
548       else
549         CopyMI.addReg(TRI->getSubReg(Reg, SubIdx));
550     }
551   } else if (Opc == TargetOpcode::INSERT_SUBREG ||
552              Opc == TargetOpcode::SUBREG_TO_REG) {
553     SDValue N0 = Node->getOperand(0);
554     SDValue N1 = Node->getOperand(1);
555     SDValue N2 = Node->getOperand(2);
556     unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue();
557 
558     // Figure out the register class to create for the destreg.  It should be
559     // the largest legal register class supporting SubIdx sub-registers.
560     // RegisterCoalescer will constrain it further if it decides to eliminate
561     // the INSERT_SUBREG instruction.
562     //
563     //   %dst = INSERT_SUBREG %src, %sub, SubIdx
564     //
565     // is lowered by TwoAddressInstructionPass to:
566     //
567     //   %dst = COPY %src
568     //   %dst:SubIdx = COPY %sub
569     //
570     // There is no constraint on the %src register class.
571     //
572     const TargetRegisterClass *SRC =
573         TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
574     SRC = TRI->getSubClassWithSubReg(SRC, SubIdx);
575     assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG");
576 
577     if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase)))
578       VRBase = MRI->createVirtualRegister(SRC);
579 
580     // Create the insert_subreg or subreg_to_reg machine instruction.
581     MachineInstrBuilder MIB =
582       BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase);
583 
584     // If creating a subreg_to_reg, then the first input operand
585     // is an implicit value immediate, otherwise it's a register
586     if (Opc == TargetOpcode::SUBREG_TO_REG) {
587       const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
588       MIB.addImm(SD->getZExtValue());
589     } else
590       AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
591                  IsClone, IsCloned);
592     // Add the subregister being inserted
593     AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
594                IsClone, IsCloned);
595     MIB.addImm(SubIdx);
596     MBB->insert(InsertPos, MIB);
597   } else
598     llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");
599 
600   SDValue Op(Node, 0);
601   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
602   (void)isNew; // Silence compiler warning.
603   assert(isNew && "Node emitted out of order - early");
604 }
605 
606 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
607 /// COPY_TO_REGCLASS is just a normal copy, except that the destination
608 /// register is constrained to be in a particular register class.
609 ///
610 void
611 InstrEmitter::EmitCopyToRegClassNode(SDNode *Node,
612                                      DenseMap<SDValue, unsigned> &VRBaseMap) {
613   unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
614 
615   // Create the new VReg in the destination class and emit a copy.
616   unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
617   const TargetRegisterClass *DstRC =
618     TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx));
619   Register NewVReg = MRI->createVirtualRegister(DstRC);
620   BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
621     NewVReg).addReg(VReg);
622 
623   SDValue Op(Node, 0);
624   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
625   (void)isNew; // Silence compiler warning.
626   assert(isNew && "Node emitted out of order - early");
627 }
628 
629 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
630 ///
631 void InstrEmitter::EmitRegSequence(SDNode *Node,
632                                   DenseMap<SDValue, unsigned> &VRBaseMap,
633                                   bool IsClone, bool IsCloned) {
634   unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
635   const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
636   Register NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC));
637   const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
638   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg);
639   unsigned NumOps = Node->getNumOperands();
640   // If the input pattern has a chain, then the root of the corresponding
641   // output pattern will get a chain as well. This can happen to be a
642   // REG_SEQUENCE (which is not "guarded" by countOperands/CountResults).
643   if (NumOps && Node->getOperand(NumOps-1).getValueType() == MVT::Other)
644     --NumOps; // Ignore chain if it exists.
645 
646   assert((NumOps & 1) == 1 &&
647          "REG_SEQUENCE must have an odd number of operands!");
648   for (unsigned i = 1; i != NumOps; ++i) {
649     SDValue Op = Node->getOperand(i);
650     if ((i & 1) == 0) {
651       RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1));
652       // Skip physical registers as they don't have a vreg to get and we'll
653       // insert copies for them in TwoAddressInstructionPass anyway.
654       if (!R || !Register::isPhysicalRegister(R->getReg())) {
655         unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue();
656         unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap);
657         const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
658         const TargetRegisterClass *SRC =
659         TRI->getMatchingSuperRegClass(RC, TRC, SubIdx);
660         if (SRC && SRC != RC) {
661           MRI->setRegClass(NewVReg, SRC);
662           RC = SRC;
663         }
664       }
665     }
666     AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false,
667                IsClone, IsCloned);
668   }
669 
670   MBB->insert(InsertPos, MIB);
671   SDValue Op(Node, 0);
672   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
673   (void)isNew; // Silence compiler warning.
674   assert(isNew && "Node emitted out of order - early");
675 }
676 
677 /// EmitDbgValue - Generate machine instruction for a dbg_value node.
678 ///
679 MachineInstr *
680 InstrEmitter::EmitDbgValue(SDDbgValue *SD,
681                            DenseMap<SDValue, unsigned> &VRBaseMap) {
682   MDNode *Var = SD->getVariable();
683   const DIExpression *Expr = SD->getExpression();
684   DebugLoc DL = SD->getDebugLoc();
685   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
686          "Expected inlined-at fields to agree");
687 
688   SD->setIsEmitted();
689 
690   if (SD->isInvalidated()) {
691     // An invalidated SDNode must generate an undef DBG_VALUE: although the
692     // original value is no longer computed, earlier DBG_VALUEs live ranges
693     // must not leak into later code.
694     auto MIB = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE));
695     MIB.addReg(0U);
696     MIB.addReg(0U, RegState::Debug);
697     MIB.addMetadata(Var);
698     MIB.addMetadata(Expr);
699     return &*MIB;
700   }
701 
702   if (SD->getKind() == SDDbgValue::FRAMEIX) {
703     // Stack address; this needs to be lowered in target-dependent fashion.
704     // EmitTargetCodeForFrameDebugValue is responsible for allocation.
705     auto FrameMI = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE))
706                        .addFrameIndex(SD->getFrameIx());
707 
708     if (SD->isIndirect())
709       Expr = DIExpression::append(Expr, {dwarf::DW_OP_deref});
710 
711     FrameMI.addReg(0);
712     return FrameMI.addMetadata(Var).addMetadata(Expr);
713   }
714   // Otherwise, we're going to create an instruction here.
715   const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE);
716   MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
717   if (SD->getKind() == SDDbgValue::SDNODE) {
718     SDNode *Node = SD->getSDNode();
719     SDValue Op = SDValue(Node, SD->getResNo());
720     // It's possible we replaced this SDNode with other(s) and therefore
721     // didn't generate code for it.  It's better to catch these cases where
722     // they happen and transfer the debug info, but trying to guarantee that
723     // in all cases would be very fragile; this is a safeguard for any
724     // that were missed.
725     DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op);
726     if (I==VRBaseMap.end())
727       MIB.addReg(0U);       // undef
728     else
729       AddOperand(MIB, Op, (*MIB).getNumOperands(), &II, VRBaseMap,
730                  /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false);
731   } else if (SD->getKind() == SDDbgValue::VREG) {
732     MIB.addReg(SD->getVReg(), RegState::Debug);
733   } else if (SD->getKind() == SDDbgValue::CONST) {
734     const Value *V = SD->getConst();
735     if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
736       if (CI->getBitWidth() > 64)
737         MIB.addCImm(CI);
738       else
739         MIB.addImm(CI->getSExtValue());
740     } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
741       MIB.addFPImm(CF);
742     } else if (isa<ConstantPointerNull>(V)) {
743       // Note: This assumes that all nullptr constants are zero-valued.
744       MIB.addImm(0);
745     } else {
746       // Could be an Undef.  In any case insert an Undef so we can see what we
747       // dropped.
748       MIB.addReg(0U);
749     }
750   } else {
751     // Insert an Undef so we can see what we dropped.
752     MIB.addReg(0U);
753   }
754 
755   // Indirect addressing is indicated by an Imm as the second parameter.
756   if (SD->isIndirect())
757     Expr = DIExpression::append(Expr, {dwarf::DW_OP_deref});
758 
759   MIB.addReg(0U, RegState::Debug);
760 
761   MIB.addMetadata(Var);
762   MIB.addMetadata(Expr);
763 
764   return &*MIB;
765 }
766 
767 MachineInstr *
768 InstrEmitter::EmitDbgLabel(SDDbgLabel *SD) {
769   MDNode *Label = SD->getLabel();
770   DebugLoc DL = SD->getDebugLoc();
771   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
772          "Expected inlined-at fields to agree");
773 
774   const MCInstrDesc &II = TII->get(TargetOpcode::DBG_LABEL);
775   MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
776   MIB.addMetadata(Label);
777 
778   return &*MIB;
779 }
780 
781 /// EmitMachineNode - Generate machine code for a target-specific node and
782 /// needed dependencies.
783 ///
784 void InstrEmitter::
785 EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
786                 DenseMap<SDValue, unsigned> &VRBaseMap) {
787   unsigned Opc = Node->getMachineOpcode();
788 
789   // Handle subreg insert/extract specially
790   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
791       Opc == TargetOpcode::INSERT_SUBREG ||
792       Opc == TargetOpcode::SUBREG_TO_REG) {
793     EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned);
794     return;
795   }
796 
797   // Handle COPY_TO_REGCLASS specially.
798   if (Opc == TargetOpcode::COPY_TO_REGCLASS) {
799     EmitCopyToRegClassNode(Node, VRBaseMap);
800     return;
801   }
802 
803   // Handle REG_SEQUENCE specially.
804   if (Opc == TargetOpcode::REG_SEQUENCE) {
805     EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned);
806     return;
807   }
808 
809   if (Opc == TargetOpcode::IMPLICIT_DEF)
810     // We want a unique VR for each IMPLICIT_DEF use.
811     return;
812 
813   const MCInstrDesc &II = TII->get(Opc);
814   unsigned NumResults = CountResults(Node);
815   unsigned NumDefs = II.getNumDefs();
816   const MCPhysReg *ScratchRegs = nullptr;
817 
818   // Handle STACKMAP and PATCHPOINT specially and then use the generic code.
819   if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
820     // Stackmaps do not have arguments and do not preserve their calling
821     // convention. However, to simplify runtime support, they clobber the same
822     // scratch registers as AnyRegCC.
823     unsigned CC = CallingConv::AnyReg;
824     if (Opc == TargetOpcode::PATCHPOINT) {
825       CC = Node->getConstantOperandVal(PatchPointOpers::CCPos);
826       NumDefs = NumResults;
827     }
828     ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC);
829   }
830 
831   unsigned NumImpUses = 0;
832   unsigned NodeOperands =
833     countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses);
834   bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
835                              II.isVariadic() && II.variadicOpsAreDefs();
836   bool HasPhysRegOuts = NumResults > NumDefs &&
837                         II.getImplicitDefs() != nullptr && !HasVRegVariadicDefs;
838 #ifndef NDEBUG
839   unsigned NumMIOperands = NodeOperands + NumResults;
840   if (II.isVariadic())
841     assert(NumMIOperands >= II.getNumOperands() &&
842            "Too few operands for a variadic node!");
843   else
844     assert(NumMIOperands >= II.getNumOperands() &&
845            NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() +
846                             NumImpUses &&
847            "#operands for dag node doesn't match .td file!");
848 #endif
849 
850   // Create the new machine instruction.
851   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II);
852 
853   // Add result register values for things that are defined by this
854   // instruction.
855   if (NumResults) {
856     CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap);
857 
858     // Transfer any IR flags from the SDNode to the MachineInstr
859     MachineInstr *MI = MIB.getInstr();
860     const SDNodeFlags Flags = Node->getFlags();
861     if (Flags.hasNoSignedZeros())
862       MI->setFlag(MachineInstr::MIFlag::FmNsz);
863 
864     if (Flags.hasAllowReciprocal())
865       MI->setFlag(MachineInstr::MIFlag::FmArcp);
866 
867     if (Flags.hasNoNaNs())
868       MI->setFlag(MachineInstr::MIFlag::FmNoNans);
869 
870     if (Flags.hasNoInfs())
871       MI->setFlag(MachineInstr::MIFlag::FmNoInfs);
872 
873     if (Flags.hasAllowContract())
874       MI->setFlag(MachineInstr::MIFlag::FmContract);
875 
876     if (Flags.hasApproximateFuncs())
877       MI->setFlag(MachineInstr::MIFlag::FmAfn);
878 
879     if (Flags.hasAllowReassociation())
880       MI->setFlag(MachineInstr::MIFlag::FmReassoc);
881 
882     if (Flags.hasNoUnsignedWrap())
883       MI->setFlag(MachineInstr::MIFlag::NoUWrap);
884 
885     if (Flags.hasNoSignedWrap())
886       MI->setFlag(MachineInstr::MIFlag::NoSWrap);
887 
888     if (Flags.hasExact())
889       MI->setFlag(MachineInstr::MIFlag::IsExact);
890 
891     if (Flags.hasNoFPExcept())
892       MI->setFlag(MachineInstr::MIFlag::NoFPExcept);
893   }
894 
895   // Emit all of the actual operands of this instruction, adding them to the
896   // instruction as appropriate.
897   bool HasOptPRefs = NumDefs > NumResults;
898   assert((!HasOptPRefs || !HasPhysRegOuts) &&
899          "Unable to cope with optional defs and phys regs defs!");
900   unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0;
901   for (unsigned i = NumSkip; i != NodeOperands; ++i)
902     AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II,
903                VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned);
904 
905   // Add scratch registers as implicit def and early clobber
906   if (ScratchRegs)
907     for (unsigned i = 0; ScratchRegs[i]; ++i)
908       MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine |
909                                  RegState::EarlyClobber);
910 
911   // Set the memory reference descriptions of this instruction now that it is
912   // part of the function.
913   MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands());
914 
915   // Insert the instruction into position in the block. This needs to
916   // happen before any custom inserter hook is called so that the
917   // hook knows where in the block to insert the replacement code.
918   MBB->insert(InsertPos, MIB);
919 
920   // The MachineInstr may also define physregs instead of virtregs.  These
921   // physreg values can reach other instructions in different ways:
922   //
923   // 1. When there is a use of a Node value beyond the explicitly defined
924   //    virtual registers, we emit a CopyFromReg for one of the implicitly
925   //    defined physregs.  This only happens when HasPhysRegOuts is true.
926   //
927   // 2. A CopyFromReg reading a physreg may be glued to this instruction.
928   //
929   // 3. A glued instruction may implicitly use a physreg.
930   //
931   // 4. A glued instruction may use a RegisterSDNode operand.
932   //
933   // Collect all the used physreg defs, and make sure that any unused physreg
934   // defs are marked as dead.
935   SmallVector<Register, 8> UsedRegs;
936 
937   // Additional results must be physical register defs.
938   if (HasPhysRegOuts) {
939     for (unsigned i = NumDefs; i < NumResults; ++i) {
940       Register Reg = II.getImplicitDefs()[i - NumDefs];
941       if (!Node->hasAnyUseOfValue(i))
942         continue;
943       // This implicitly defined physreg has a use.
944       UsedRegs.push_back(Reg);
945       EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap);
946     }
947   }
948 
949   // Scan the glue chain for any used physregs.
950   if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) {
951     for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) {
952       if (F->getOpcode() == ISD::CopyFromReg) {
953         UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg());
954         continue;
955       } else if (F->getOpcode() == ISD::CopyToReg) {
956         // Skip CopyToReg nodes that are internal to the glue chain.
957         continue;
958       }
959       // Collect declared implicit uses.
960       const MCInstrDesc &MCID = TII->get(F->getMachineOpcode());
961       UsedRegs.append(MCID.getImplicitUses(),
962                       MCID.getImplicitUses() + MCID.getNumImplicitUses());
963       // In addition to declared implicit uses, we must also check for
964       // direct RegisterSDNode operands.
965       for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i)
966         if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) {
967           Register Reg = R->getReg();
968           if (Reg.isPhysical())
969             UsedRegs.push_back(Reg);
970         }
971     }
972   }
973 
974   // Finally mark unused registers as dead.
975   if (!UsedRegs.empty() || II.getImplicitDefs() || II.hasOptionalDef())
976     MIB->setPhysRegsDeadExcept(UsedRegs, *TRI);
977 
978   // Run post-isel target hook to adjust this instruction if needed.
979   if (II.hasPostISelHook())
980     TLI->AdjustInstrPostInstrSelection(*MIB, Node);
981 }
982 
983 /// EmitSpecialNode - Generate machine code for a target-independent node and
984 /// needed dependencies.
985 void InstrEmitter::
986 EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned,
987                 DenseMap<SDValue, unsigned> &VRBaseMap) {
988   switch (Node->getOpcode()) {
989   default:
990 #ifndef NDEBUG
991     Node->dump();
992 #endif
993     llvm_unreachable("This target-independent node should have been selected!");
994   case ISD::EntryToken:
995     llvm_unreachable("EntryToken should have been excluded from the schedule!");
996   case ISD::MERGE_VALUES:
997   case ISD::TokenFactor: // fall thru
998     break;
999   case ISD::CopyToReg: {
1000     unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1001     SDValue SrcVal = Node->getOperand(2);
1002     if (Register::isVirtualRegister(DestReg) && SrcVal.isMachineOpcode() &&
1003         SrcVal.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
1004       // Instead building a COPY to that vreg destination, build an
1005       // IMPLICIT_DEF instruction instead.
1006       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1007               TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
1008       break;
1009     }
1010     unsigned SrcReg;
1011     if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
1012       SrcReg = R->getReg();
1013     else
1014       SrcReg = getVR(SrcVal, VRBaseMap);
1015 
1016     if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
1017       break;
1018 
1019     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
1020             DestReg).addReg(SrcReg);
1021     break;
1022   }
1023   case ISD::CopyFromReg: {
1024     unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1025     EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap);
1026     break;
1027   }
1028   case ISD::EH_LABEL:
1029   case ISD::ANNOTATION_LABEL: {
1030     unsigned Opc = (Node->getOpcode() == ISD::EH_LABEL)
1031                        ? TargetOpcode::EH_LABEL
1032                        : TargetOpcode::ANNOTATION_LABEL;
1033     MCSymbol *S = cast<LabelSDNode>(Node)->getLabel();
1034     BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1035             TII->get(Opc)).addSym(S);
1036     break;
1037   }
1038 
1039   case ISD::LIFETIME_START:
1040   case ISD::LIFETIME_END: {
1041     unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START) ?
1042     TargetOpcode::LIFETIME_START : TargetOpcode::LIFETIME_END;
1043 
1044     FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Node->getOperand(1));
1045     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1046     .addFrameIndex(FI->getIndex());
1047     break;
1048   }
1049 
1050   case ISD::INLINEASM:
1051   case ISD::INLINEASM_BR: {
1052     unsigned NumOps = Node->getNumOperands();
1053     if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1054       --NumOps;  // Ignore the glue operand.
1055 
1056     // Create the inline asm machine instruction.
1057     unsigned TgtOpc = Node->getOpcode() == ISD::INLINEASM_BR
1058                           ? TargetOpcode::INLINEASM_BR
1059                           : TargetOpcode::INLINEASM;
1060     MachineInstrBuilder MIB =
1061         BuildMI(*MF, Node->getDebugLoc(), TII->get(TgtOpc));
1062 
1063     // Add the asm string as an external symbol operand.
1064     SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString);
1065     const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol();
1066     MIB.addExternalSymbol(AsmStr);
1067 
1068     // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore
1069     // bits.
1070     int64_t ExtraInfo =
1071       cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))->
1072                           getZExtValue();
1073     MIB.addImm(ExtraInfo);
1074 
1075     // Remember to operand index of the group flags.
1076     SmallVector<unsigned, 8> GroupIdx;
1077 
1078     // Remember registers that are part of early-clobber defs.
1079     SmallVector<unsigned, 8> ECRegs;
1080 
1081     // Add all of the operand registers to the instruction.
1082     for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1083       unsigned Flags =
1084         cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1085       const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1086 
1087       GroupIdx.push_back(MIB->getNumOperands());
1088       MIB.addImm(Flags);
1089       ++i;  // Skip the ID value.
1090 
1091       switch (InlineAsm::getKind(Flags)) {
1092       default: llvm_unreachable("Bad flags!");
1093         case InlineAsm::Kind_RegDef:
1094         for (unsigned j = 0; j != NumVals; ++j, ++i) {
1095           unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1096           // FIXME: Add dead flags for physical and virtual registers defined.
1097           // For now, mark physical register defs as implicit to help fast
1098           // regalloc. This makes inline asm look a lot like calls.
1099           MIB.addReg(Reg,
1100                      RegState::Define |
1101                          getImplRegState(Register::isPhysicalRegister(Reg)));
1102         }
1103         break;
1104       case InlineAsm::Kind_RegDefEarlyClobber:
1105       case InlineAsm::Kind_Clobber:
1106         for (unsigned j = 0; j != NumVals; ++j, ++i) {
1107           unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1108           MIB.addReg(Reg,
1109                      RegState::Define | RegState::EarlyClobber |
1110                          getImplRegState(Register::isPhysicalRegister(Reg)));
1111           ECRegs.push_back(Reg);
1112         }
1113         break;
1114       case InlineAsm::Kind_RegUse:  // Use of register.
1115       case InlineAsm::Kind_Imm:  // Immediate.
1116       case InlineAsm::Kind_Mem:  // Addressing mode.
1117         // The addressing mode has been selected, just add all of the
1118         // operands to the machine instruction.
1119         for (unsigned j = 0; j != NumVals; ++j, ++i)
1120           AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap,
1121                      /*IsDebug=*/false, IsClone, IsCloned);
1122 
1123         // Manually set isTied bits.
1124         if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) {
1125           unsigned DefGroup = 0;
1126           if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) {
1127             unsigned DefIdx = GroupIdx[DefGroup] + 1;
1128             unsigned UseIdx = GroupIdx.back() + 1;
1129             for (unsigned j = 0; j != NumVals; ++j)
1130               MIB->tieOperands(DefIdx + j, UseIdx + j);
1131           }
1132         }
1133         break;
1134       }
1135     }
1136 
1137     // GCC inline assembly allows input operands to also be early-clobber
1138     // output operands (so long as the operand is written only after it's
1139     // used), but this does not match the semantics of our early-clobber flag.
1140     // If an early-clobber operand register is also an input operand register,
1141     // then remove the early-clobber flag.
1142     for (unsigned Reg : ECRegs) {
1143       if (MIB->readsRegister(Reg, TRI)) {
1144         MachineOperand *MO =
1145             MIB->findRegisterDefOperand(Reg, false, false, TRI);
1146         assert(MO && "No def operand for clobbered register?");
1147         MO->setIsEarlyClobber(false);
1148       }
1149     }
1150 
1151     // Get the mdnode from the asm if it exists and add it to the instruction.
1152     SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode);
1153     const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
1154     if (MD)
1155       MIB.addMetadata(MD);
1156 
1157     MBB->insert(InsertPos, MIB);
1158     break;
1159   }
1160   }
1161 }
1162 
1163 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting
1164 /// at the given position in the given block.
1165 InstrEmitter::InstrEmitter(MachineBasicBlock *mbb,
1166                            MachineBasicBlock::iterator insertpos)
1167     : MF(mbb->getParent()), MRI(&MF->getRegInfo()),
1168       TII(MF->getSubtarget().getInstrInfo()),
1169       TRI(MF->getSubtarget().getRegisterInfo()),
1170       TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb),
1171       InsertPos(insertpos) {}
1172