1 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the Emit routines for the SelectionDAG class, which creates 11 // MachineInstrs based on the decisions of the SelectionDAG instruction 12 // selection. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "InstrEmitter.h" 17 #include "SDNodeDbgValue.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/CodeGen/MachineConstantPool.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/StackMaps.h" 24 #include "llvm/CodeGen/TargetInstrInfo.h" 25 #include "llvm/CodeGen/TargetLowering.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/DebugInfo.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/MathExtras.h" 32 using namespace llvm; 33 34 #define DEBUG_TYPE "instr-emitter" 35 36 /// MinRCSize - Smallest register class we allow when constraining virtual 37 /// registers. If satisfying all register class constraints would require 38 /// using a smaller register class, emit a COPY to a new virtual register 39 /// instead. 40 const unsigned MinRCSize = 4; 41 42 /// CountResults - The results of target nodes have register or immediate 43 /// operands first, then an optional chain, and optional glue operands (which do 44 /// not go into the resulting MachineInstr). 45 unsigned InstrEmitter::CountResults(SDNode *Node) { 46 unsigned N = Node->getNumValues(); 47 while (N && Node->getValueType(N - 1) == MVT::Glue) 48 --N; 49 if (N && Node->getValueType(N - 1) == MVT::Other) 50 --N; // Skip over chain result. 51 return N; 52 } 53 54 /// countOperands - The inputs to target nodes have any actual inputs first, 55 /// followed by an optional chain operand, then an optional glue operand. 56 /// Compute the number of actual operands that will go into the resulting 57 /// MachineInstr. 58 /// 59 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding 60 /// the chain and glue. These operands may be implicit on the machine instr. 61 static unsigned countOperands(SDNode *Node, unsigned NumExpUses, 62 unsigned &NumImpUses) { 63 unsigned N = Node->getNumOperands(); 64 while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue) 65 --N; 66 if (N && Node->getOperand(N - 1).getValueType() == MVT::Other) 67 --N; // Ignore chain if it exists. 68 69 // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses. 70 NumImpUses = N - NumExpUses; 71 for (unsigned I = N; I > NumExpUses; --I) { 72 if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1))) 73 continue; 74 if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1))) 75 if (TargetRegisterInfo::isPhysicalRegister(RN->getReg())) 76 continue; 77 NumImpUses = N - I; 78 break; 79 } 80 81 return N; 82 } 83 84 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an 85 /// implicit physical register output. 86 void InstrEmitter:: 87 EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned, 88 unsigned SrcReg, DenseMap<SDValue, unsigned> &VRBaseMap) { 89 unsigned VRBase = 0; 90 if (TargetRegisterInfo::isVirtualRegister(SrcReg)) { 91 // Just use the input register directly! 92 SDValue Op(Node, ResNo); 93 if (IsClone) 94 VRBaseMap.erase(Op); 95 bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second; 96 (void)isNew; // Silence compiler warning. 97 assert(isNew && "Node emitted out of order - early"); 98 return; 99 } 100 101 // If the node is only used by a CopyToReg and the dest reg is a vreg, use 102 // the CopyToReg'd destination register instead of creating a new vreg. 103 bool MatchReg = true; 104 const TargetRegisterClass *UseRC = nullptr; 105 MVT VT = Node->getSimpleValueType(ResNo); 106 107 // Stick to the preferred register classes for legal types. 108 if (TLI->isTypeLegal(VT)) 109 UseRC = TLI->getRegClassFor(VT); 110 111 if (!IsClone && !IsCloned) 112 for (SDNode *User : Node->uses()) { 113 bool Match = true; 114 if (User->getOpcode() == ISD::CopyToReg && 115 User->getOperand(2).getNode() == Node && 116 User->getOperand(2).getResNo() == ResNo) { 117 unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 118 if (TargetRegisterInfo::isVirtualRegister(DestReg)) { 119 VRBase = DestReg; 120 Match = false; 121 } else if (DestReg != SrcReg) 122 Match = false; 123 } else { 124 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 125 SDValue Op = User->getOperand(i); 126 if (Op.getNode() != Node || Op.getResNo() != ResNo) 127 continue; 128 MVT VT = Node->getSimpleValueType(Op.getResNo()); 129 if (VT == MVT::Other || VT == MVT::Glue) 130 continue; 131 Match = false; 132 if (User->isMachineOpcode()) { 133 const MCInstrDesc &II = TII->get(User->getMachineOpcode()); 134 const TargetRegisterClass *RC = nullptr; 135 if (i+II.getNumDefs() < II.getNumOperands()) { 136 RC = TRI->getAllocatableClass( 137 TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF)); 138 } 139 if (!UseRC) 140 UseRC = RC; 141 else if (RC) { 142 const TargetRegisterClass *ComRC = 143 TRI->getCommonSubClass(UseRC, RC, VT.SimpleTy); 144 // If multiple uses expect disjoint register classes, we emit 145 // copies in AddRegisterOperand. 146 if (ComRC) 147 UseRC = ComRC; 148 } 149 } 150 } 151 } 152 MatchReg &= Match; 153 if (VRBase) 154 break; 155 } 156 157 const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr; 158 SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT); 159 160 // Figure out the register class to create for the destreg. 161 if (VRBase) { 162 DstRC = MRI->getRegClass(VRBase); 163 } else if (UseRC) { 164 assert(TRI->isTypeLegalForClass(*UseRC, VT) && 165 "Incompatible phys register def and uses!"); 166 DstRC = UseRC; 167 } else { 168 DstRC = TLI->getRegClassFor(VT); 169 } 170 171 // If all uses are reading from the src physical register and copying the 172 // register is either impossible or very expensive, then don't create a copy. 173 if (MatchReg && SrcRC->getCopyCost() < 0) { 174 VRBase = SrcReg; 175 } else { 176 // Create the reg, emit the copy. 177 VRBase = MRI->createVirtualRegister(DstRC); 178 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 179 VRBase).addReg(SrcReg); 180 } 181 182 SDValue Op(Node, ResNo); 183 if (IsClone) 184 VRBaseMap.erase(Op); 185 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 186 (void)isNew; // Silence compiler warning. 187 assert(isNew && "Node emitted out of order - early"); 188 } 189 190 /// getDstOfCopyToRegUse - If the only use of the specified result number of 191 /// node is a CopyToReg, return its destination register. Return 0 otherwise. 192 unsigned InstrEmitter::getDstOfOnlyCopyToRegUse(SDNode *Node, 193 unsigned ResNo) const { 194 if (!Node->hasOneUse()) 195 return 0; 196 197 SDNode *User = *Node->use_begin(); 198 if (User->getOpcode() == ISD::CopyToReg && 199 User->getOperand(2).getNode() == Node && 200 User->getOperand(2).getResNo() == ResNo) { 201 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 202 if (TargetRegisterInfo::isVirtualRegister(Reg)) 203 return Reg; 204 } 205 return 0; 206 } 207 208 void InstrEmitter::CreateVirtualRegisters(SDNode *Node, 209 MachineInstrBuilder &MIB, 210 const MCInstrDesc &II, 211 bool IsClone, bool IsCloned, 212 DenseMap<SDValue, unsigned> &VRBaseMap) { 213 assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF && 214 "IMPLICIT_DEF should have been handled as a special case elsewhere!"); 215 216 unsigned NumResults = CountResults(Node); 217 for (unsigned i = 0; i < II.getNumDefs(); ++i) { 218 // If the specific node value is only used by a CopyToReg and the dest reg 219 // is a vreg in the same register class, use the CopyToReg'd destination 220 // register instead of creating a new vreg. 221 unsigned VRBase = 0; 222 const TargetRegisterClass *RC = 223 TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF)); 224 // Always let the value type influence the used register class. The 225 // constraints on the instruction may be too lax to represent the value 226 // type correctly. For example, a 64-bit float (X86::FR64) can't live in 227 // the 32-bit float super-class (X86::FR32). 228 if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) { 229 const TargetRegisterClass *VTRC = 230 TLI->getRegClassFor(Node->getSimpleValueType(i)); 231 if (RC) 232 VTRC = TRI->getCommonSubClass(RC, VTRC); 233 if (VTRC) 234 RC = VTRC; 235 } 236 237 if (II.OpInfo[i].isOptionalDef()) { 238 // Optional def must be a physical register. 239 VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg(); 240 assert(TargetRegisterInfo::isPhysicalRegister(VRBase)); 241 MIB.addReg(VRBase, RegState::Define); 242 } 243 244 if (!VRBase && !IsClone && !IsCloned) 245 for (SDNode *User : Node->uses()) { 246 if (User->getOpcode() == ISD::CopyToReg && 247 User->getOperand(2).getNode() == Node && 248 User->getOperand(2).getResNo() == i) { 249 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 250 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 251 const TargetRegisterClass *RegRC = MRI->getRegClass(Reg); 252 if (RegRC == RC) { 253 VRBase = Reg; 254 MIB.addReg(VRBase, RegState::Define); 255 break; 256 } 257 } 258 } 259 } 260 261 // Create the result registers for this node and add the result regs to 262 // the machine instruction. 263 if (VRBase == 0) { 264 assert(RC && "Isn't a register operand!"); 265 VRBase = MRI->createVirtualRegister(RC); 266 MIB.addReg(VRBase, RegState::Define); 267 } 268 269 // If this def corresponds to a result of the SDNode insert the VRBase into 270 // the lookup map. 271 if (i < NumResults) { 272 SDValue Op(Node, i); 273 if (IsClone) 274 VRBaseMap.erase(Op); 275 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 276 (void)isNew; // Silence compiler warning. 277 assert(isNew && "Node emitted out of order - early"); 278 } 279 } 280 } 281 282 /// getVR - Return the virtual register corresponding to the specified result 283 /// of the specified node. 284 unsigned InstrEmitter::getVR(SDValue Op, 285 DenseMap<SDValue, unsigned> &VRBaseMap) { 286 if (Op.isMachineOpcode() && 287 Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) { 288 // Add an IMPLICIT_DEF instruction before every use. 289 unsigned VReg = getDstOfOnlyCopyToRegUse(Op.getNode(), Op.getResNo()); 290 // IMPLICIT_DEF can produce any type of result so its MCInstrDesc 291 // does not include operand register class info. 292 if (!VReg) { 293 const TargetRegisterClass *RC = 294 TLI->getRegClassFor(Op.getSimpleValueType()); 295 VReg = MRI->createVirtualRegister(RC); 296 } 297 BuildMI(*MBB, InsertPos, Op.getDebugLoc(), 298 TII->get(TargetOpcode::IMPLICIT_DEF), VReg); 299 return VReg; 300 } 301 302 DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op); 303 assert(I != VRBaseMap.end() && "Node emitted out of order - late"); 304 return I->second; 305 } 306 307 308 /// AddRegisterOperand - Add the specified register as an operand to the 309 /// specified machine instr. Insert register copies if the register is 310 /// not in the required register class. 311 void 312 InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB, 313 SDValue Op, 314 unsigned IIOpNum, 315 const MCInstrDesc *II, 316 DenseMap<SDValue, unsigned> &VRBaseMap, 317 bool IsDebug, bool IsClone, bool IsCloned) { 318 assert(Op.getValueType() != MVT::Other && 319 Op.getValueType() != MVT::Glue && 320 "Chain and glue operands should occur at end of operand list!"); 321 // Get/emit the operand. 322 unsigned VReg = getVR(Op, VRBaseMap); 323 324 const MCInstrDesc &MCID = MIB->getDesc(); 325 bool isOptDef = IIOpNum < MCID.getNumOperands() && 326 MCID.OpInfo[IIOpNum].isOptionalDef(); 327 328 // If the instruction requires a register in a different class, create 329 // a new virtual register and copy the value into it, but first attempt to 330 // shrink VReg's register class within reason. For example, if VReg == GR32 331 // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP. 332 if (II) { 333 const TargetRegisterClass *OpRC = nullptr; 334 if (IIOpNum < II->getNumOperands()) 335 OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF); 336 337 if (OpRC) { 338 const TargetRegisterClass *ConstrainedRC 339 = MRI->constrainRegClass(VReg, OpRC, MinRCSize); 340 if (!ConstrainedRC) { 341 OpRC = TRI->getAllocatableClass(OpRC); 342 assert(OpRC && "Constraints cannot be fulfilled for allocation"); 343 unsigned NewVReg = MRI->createVirtualRegister(OpRC); 344 BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(), 345 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg); 346 VReg = NewVReg; 347 } else { 348 assert(ConstrainedRC->isAllocatable() && 349 "Constraining an allocatable VReg produced an unallocatable class?"); 350 } 351 } 352 } 353 354 // If this value has only one use, that use is a kill. This is a 355 // conservative approximation. InstrEmitter does trivial coalescing 356 // with CopyFromReg nodes, so don't emit kill flags for them. 357 // Avoid kill flags on Schedule cloned nodes, since there will be 358 // multiple uses. 359 // Tied operands are never killed, so we need to check that. And that 360 // means we need to determine the index of the operand. 361 bool isKill = Op.hasOneUse() && 362 Op.getNode()->getOpcode() != ISD::CopyFromReg && 363 !IsDebug && 364 !(IsClone || IsCloned); 365 if (isKill) { 366 unsigned Idx = MIB->getNumOperands(); 367 while (Idx > 0 && 368 MIB->getOperand(Idx-1).isReg() && 369 MIB->getOperand(Idx-1).isImplicit()) 370 --Idx; 371 bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1; 372 if (isTied) 373 isKill = false; 374 } 375 376 MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) | 377 getDebugRegState(IsDebug)); 378 } 379 380 /// AddOperand - Add the specified operand to the specified machine instr. II 381 /// specifies the instruction information for the node, and IIOpNum is the 382 /// operand number (in the II) that we are adding. 383 void InstrEmitter::AddOperand(MachineInstrBuilder &MIB, 384 SDValue Op, 385 unsigned IIOpNum, 386 const MCInstrDesc *II, 387 DenseMap<SDValue, unsigned> &VRBaseMap, 388 bool IsDebug, bool IsClone, bool IsCloned) { 389 if (Op.isMachineOpcode()) { 390 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap, 391 IsDebug, IsClone, IsCloned); 392 } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 393 MIB.addImm(C->getSExtValue()); 394 } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) { 395 MIB.addFPImm(F->getConstantFPValue()); 396 } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) { 397 unsigned VReg = R->getReg(); 398 MVT OpVT = Op.getSimpleValueType(); 399 const TargetRegisterClass *OpRC = 400 TLI->isTypeLegal(OpVT) ? TLI->getRegClassFor(OpVT) : nullptr; 401 const TargetRegisterClass *IIRC = 402 II ? TRI->getAllocatableClass(TII->getRegClass(*II, IIOpNum, TRI, *MF)) 403 : nullptr; 404 405 if (OpRC && IIRC && OpRC != IIRC && 406 TargetRegisterInfo::isVirtualRegister(VReg)) { 407 unsigned NewVReg = MRI->createVirtualRegister(IIRC); 408 BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(), 409 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg); 410 VReg = NewVReg; 411 } 412 // Turn additional physreg operands into implicit uses on non-variadic 413 // instructions. This is used by call and return instructions passing 414 // arguments in registers. 415 bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic()); 416 MIB.addReg(VReg, getImplRegState(Imp)); 417 } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) { 418 MIB.addRegMask(RM->getRegMask()); 419 } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) { 420 MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(), 421 TGA->getTargetFlags()); 422 } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) { 423 MIB.addMBB(BBNode->getBasicBlock()); 424 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 425 MIB.addFrameIndex(FI->getIndex()); 426 } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) { 427 MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags()); 428 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) { 429 int Offset = CP->getOffset(); 430 unsigned Align = CP->getAlignment(); 431 Type *Type = CP->getType(); 432 // MachineConstantPool wants an explicit alignment. 433 if (Align == 0) { 434 Align = MF->getDataLayout().getPrefTypeAlignment(Type); 435 if (Align == 0) { 436 // Alignment of vector types. FIXME! 437 Align = MF->getDataLayout().getTypeAllocSize(Type); 438 } 439 } 440 441 unsigned Idx; 442 MachineConstantPool *MCP = MF->getConstantPool(); 443 if (CP->isMachineConstantPoolEntry()) 444 Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Align); 445 else 446 Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Align); 447 MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags()); 448 } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) { 449 MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags()); 450 } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) { 451 MIB.addSym(SymNode->getMCSymbol()); 452 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) { 453 MIB.addBlockAddress(BA->getBlockAddress(), 454 BA->getOffset(), 455 BA->getTargetFlags()); 456 } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) { 457 MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags()); 458 } else { 459 assert(Op.getValueType() != MVT::Other && 460 Op.getValueType() != MVT::Glue && 461 "Chain and glue operands should occur at end of operand list!"); 462 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap, 463 IsDebug, IsClone, IsCloned); 464 } 465 } 466 467 unsigned InstrEmitter::ConstrainForSubReg(unsigned VReg, unsigned SubIdx, 468 MVT VT, const DebugLoc &DL) { 469 const TargetRegisterClass *VRC = MRI->getRegClass(VReg); 470 const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx); 471 472 // RC is a sub-class of VRC that supports SubIdx. Try to constrain VReg 473 // within reason. 474 if (RC && RC != VRC) 475 RC = MRI->constrainRegClass(VReg, RC, MinRCSize); 476 477 // VReg has been adjusted. It can be used with SubIdx operands now. 478 if (RC) 479 return VReg; 480 481 // VReg couldn't be reasonably constrained. Emit a COPY to a new virtual 482 // register instead. 483 RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT), SubIdx); 484 assert(RC && "No legal register class for VT supports that SubIdx"); 485 unsigned NewReg = MRI->createVirtualRegister(RC); 486 BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg) 487 .addReg(VReg); 488 return NewReg; 489 } 490 491 /// EmitSubregNode - Generate machine code for subreg nodes. 492 /// 493 void InstrEmitter::EmitSubregNode(SDNode *Node, 494 DenseMap<SDValue, unsigned> &VRBaseMap, 495 bool IsClone, bool IsCloned) { 496 unsigned VRBase = 0; 497 unsigned Opc = Node->getMachineOpcode(); 498 499 // If the node is only used by a CopyToReg and the dest reg is a vreg, use 500 // the CopyToReg'd destination register instead of creating a new vreg. 501 for (SDNode *User : Node->uses()) { 502 if (User->getOpcode() == ISD::CopyToReg && 503 User->getOperand(2).getNode() == Node) { 504 unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 505 if (TargetRegisterInfo::isVirtualRegister(DestReg)) { 506 VRBase = DestReg; 507 break; 508 } 509 } 510 } 511 512 if (Opc == TargetOpcode::EXTRACT_SUBREG) { 513 // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub. There are no 514 // constraints on the %dst register, COPY can target all legal register 515 // classes. 516 unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); 517 const TargetRegisterClass *TRC = 518 TLI->getRegClassFor(Node->getSimpleValueType(0)); 519 520 unsigned Reg; 521 MachineInstr *DefMI; 522 RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0)); 523 if (R && TargetRegisterInfo::isPhysicalRegister(R->getReg())) { 524 Reg = R->getReg(); 525 DefMI = nullptr; 526 } else { 527 Reg = R ? R->getReg() : getVR(Node->getOperand(0), VRBaseMap); 528 DefMI = MRI->getVRegDef(Reg); 529 } 530 531 unsigned SrcReg, DstReg, DefSubIdx; 532 if (DefMI && 533 TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) && 534 SubIdx == DefSubIdx && 535 TRC == MRI->getRegClass(SrcReg)) { 536 // Optimize these: 537 // r1025 = s/zext r1024, 4 538 // r1026 = extract_subreg r1025, 4 539 // to a copy 540 // r1026 = copy r1024 541 VRBase = MRI->createVirtualRegister(TRC); 542 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 543 TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg); 544 MRI->clearKillFlags(SrcReg); 545 } else { 546 // Reg may not support a SubIdx sub-register, and we may need to 547 // constrain its register class or issue a COPY to a compatible register 548 // class. 549 if (TargetRegisterInfo::isVirtualRegister(Reg)) 550 Reg = ConstrainForSubReg(Reg, SubIdx, 551 Node->getOperand(0).getSimpleValueType(), 552 Node->getDebugLoc()); 553 554 // Create the destreg if it is missing. 555 if (VRBase == 0) 556 VRBase = MRI->createVirtualRegister(TRC); 557 558 // Create the extract_subreg machine instruction. 559 MachineInstrBuilder CopyMI = 560 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 561 TII->get(TargetOpcode::COPY), VRBase); 562 if (TargetRegisterInfo::isVirtualRegister(Reg)) 563 CopyMI.addReg(Reg, 0, SubIdx); 564 else 565 CopyMI.addReg(TRI->getSubReg(Reg, SubIdx)); 566 } 567 } else if (Opc == TargetOpcode::INSERT_SUBREG || 568 Opc == TargetOpcode::SUBREG_TO_REG) { 569 SDValue N0 = Node->getOperand(0); 570 SDValue N1 = Node->getOperand(1); 571 SDValue N2 = Node->getOperand(2); 572 unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue(); 573 574 // Figure out the register class to create for the destreg. It should be 575 // the largest legal register class supporting SubIdx sub-registers. 576 // RegisterCoalescer will constrain it further if it decides to eliminate 577 // the INSERT_SUBREG instruction. 578 // 579 // %dst = INSERT_SUBREG %src, %sub, SubIdx 580 // 581 // is lowered by TwoAddressInstructionPass to: 582 // 583 // %dst = COPY %src 584 // %dst:SubIdx = COPY %sub 585 // 586 // There is no constraint on the %src register class. 587 // 588 const TargetRegisterClass *SRC = TLI->getRegClassFor(Node->getSimpleValueType(0)); 589 SRC = TRI->getSubClassWithSubReg(SRC, SubIdx); 590 assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG"); 591 592 if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase))) 593 VRBase = MRI->createVirtualRegister(SRC); 594 595 // Create the insert_subreg or subreg_to_reg machine instruction. 596 MachineInstrBuilder MIB = 597 BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase); 598 599 // If creating a subreg_to_reg, then the first input operand 600 // is an implicit value immediate, otherwise it's a register 601 if (Opc == TargetOpcode::SUBREG_TO_REG) { 602 const ConstantSDNode *SD = cast<ConstantSDNode>(N0); 603 MIB.addImm(SD->getZExtValue()); 604 } else 605 AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false, 606 IsClone, IsCloned); 607 // Add the subregister being inserted 608 AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false, 609 IsClone, IsCloned); 610 MIB.addImm(SubIdx); 611 MBB->insert(InsertPos, MIB); 612 } else 613 llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg"); 614 615 SDValue Op(Node, 0); 616 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 617 (void)isNew; // Silence compiler warning. 618 assert(isNew && "Node emitted out of order - early"); 619 } 620 621 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes. 622 /// COPY_TO_REGCLASS is just a normal copy, except that the destination 623 /// register is constrained to be in a particular register class. 624 /// 625 void 626 InstrEmitter::EmitCopyToRegClassNode(SDNode *Node, 627 DenseMap<SDValue, unsigned> &VRBaseMap) { 628 unsigned VReg = getVR(Node->getOperand(0), VRBaseMap); 629 630 // Create the new VReg in the destination class and emit a copy. 631 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); 632 const TargetRegisterClass *DstRC = 633 TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx)); 634 unsigned NewVReg = MRI->createVirtualRegister(DstRC); 635 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 636 NewVReg).addReg(VReg); 637 638 SDValue Op(Node, 0); 639 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second; 640 (void)isNew; // Silence compiler warning. 641 assert(isNew && "Node emitted out of order - early"); 642 } 643 644 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes. 645 /// 646 void InstrEmitter::EmitRegSequence(SDNode *Node, 647 DenseMap<SDValue, unsigned> &VRBaseMap, 648 bool IsClone, bool IsCloned) { 649 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue(); 650 const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx); 651 unsigned NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC)); 652 const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE); 653 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg); 654 unsigned NumOps = Node->getNumOperands(); 655 assert((NumOps & 1) == 1 && 656 "REG_SEQUENCE must have an odd number of operands!"); 657 for (unsigned i = 1; i != NumOps; ++i) { 658 SDValue Op = Node->getOperand(i); 659 if ((i & 1) == 0) { 660 RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1)); 661 // Skip physical registers as they don't have a vreg to get and we'll 662 // insert copies for them in TwoAddressInstructionPass anyway. 663 if (!R || !TargetRegisterInfo::isPhysicalRegister(R->getReg())) { 664 unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue(); 665 unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap); 666 const TargetRegisterClass *TRC = MRI->getRegClass(SubReg); 667 const TargetRegisterClass *SRC = 668 TRI->getMatchingSuperRegClass(RC, TRC, SubIdx); 669 if (SRC && SRC != RC) { 670 MRI->setRegClass(NewVReg, SRC); 671 RC = SRC; 672 } 673 } 674 } 675 AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false, 676 IsClone, IsCloned); 677 } 678 679 MBB->insert(InsertPos, MIB); 680 SDValue Op(Node, 0); 681 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second; 682 (void)isNew; // Silence compiler warning. 683 assert(isNew && "Node emitted out of order - early"); 684 } 685 686 /// EmitDbgValue - Generate machine instruction for a dbg_value node. 687 /// 688 MachineInstr * 689 InstrEmitter::EmitDbgValue(SDDbgValue *SD, 690 DenseMap<SDValue, unsigned> &VRBaseMap) { 691 MDNode *Var = SD->getVariable(); 692 MDNode *Expr = SD->getExpression(); 693 DebugLoc DL = SD->getDebugLoc(); 694 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 695 "Expected inlined-at fields to agree"); 696 697 if (SD->getKind() == SDDbgValue::FRAMEIX) { 698 // Stack address; this needs to be lowered in target-dependent fashion. 699 // EmitTargetCodeForFrameDebugValue is responsible for allocation. 700 auto FrameMI = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 701 .addFrameIndex(SD->getFrameIx()); 702 if (SD->isIndirect()) 703 // Push [fi + 0] onto the DIExpression stack. 704 FrameMI.addImm(0); 705 else 706 // Push fi onto the DIExpression stack. 707 FrameMI.addReg(0); 708 return FrameMI.addMetadata(Var).addMetadata(Expr); 709 } 710 // Otherwise, we're going to create an instruction here. 711 const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE); 712 MachineInstrBuilder MIB = BuildMI(*MF, DL, II); 713 if (SD->getKind() == SDDbgValue::SDNODE) { 714 SDNode *Node = SD->getSDNode(); 715 SDValue Op = SDValue(Node, SD->getResNo()); 716 // It's possible we replaced this SDNode with other(s) and therefore 717 // didn't generate code for it. It's better to catch these cases where 718 // they happen and transfer the debug info, but trying to guarantee that 719 // in all cases would be very fragile; this is a safeguard for any 720 // that were missed. 721 DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op); 722 if (I==VRBaseMap.end()) 723 MIB.addReg(0U); // undef 724 else 725 AddOperand(MIB, Op, (*MIB).getNumOperands(), &II, VRBaseMap, 726 /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false); 727 } else if (SD->getKind() == SDDbgValue::VREG) { 728 MIB.addReg(SD->getVReg(), RegState::Debug); 729 } else if (SD->getKind() == SDDbgValue::CONST) { 730 const Value *V = SD->getConst(); 731 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 732 if (CI->getBitWidth() > 64) 733 MIB.addCImm(CI); 734 else 735 MIB.addImm(CI->getSExtValue()); 736 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 737 MIB.addFPImm(CF); 738 } else { 739 // Could be an Undef. In any case insert an Undef so we can see what we 740 // dropped. 741 MIB.addReg(0U); 742 } 743 } else { 744 // Insert an Undef so we can see what we dropped. 745 MIB.addReg(0U); 746 } 747 748 // Indirect addressing is indicated by an Imm as the second parameter. 749 if (SD->isIndirect()) 750 MIB.addImm(0U); 751 else 752 MIB.addReg(0U, RegState::Debug); 753 754 MIB.addMetadata(Var); 755 MIB.addMetadata(Expr); 756 757 return &*MIB; 758 } 759 760 MachineInstr * 761 InstrEmitter::EmitDbgLabel(SDDbgLabel *SD) { 762 MDNode *Label = SD->getLabel(); 763 DebugLoc DL = SD->getDebugLoc(); 764 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 765 "Expected inlined-at fields to agree"); 766 767 const MCInstrDesc &II = TII->get(TargetOpcode::DBG_LABEL); 768 MachineInstrBuilder MIB = BuildMI(*MF, DL, II); 769 MIB.addMetadata(Label); 770 771 return &*MIB; 772 } 773 774 /// EmitMachineNode - Generate machine code for a target-specific node and 775 /// needed dependencies. 776 /// 777 void InstrEmitter:: 778 EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned, 779 DenseMap<SDValue, unsigned> &VRBaseMap) { 780 unsigned Opc = Node->getMachineOpcode(); 781 782 // Handle subreg insert/extract specially 783 if (Opc == TargetOpcode::EXTRACT_SUBREG || 784 Opc == TargetOpcode::INSERT_SUBREG || 785 Opc == TargetOpcode::SUBREG_TO_REG) { 786 EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned); 787 return; 788 } 789 790 // Handle COPY_TO_REGCLASS specially. 791 if (Opc == TargetOpcode::COPY_TO_REGCLASS) { 792 EmitCopyToRegClassNode(Node, VRBaseMap); 793 return; 794 } 795 796 // Handle REG_SEQUENCE specially. 797 if (Opc == TargetOpcode::REG_SEQUENCE) { 798 EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned); 799 return; 800 } 801 802 if (Opc == TargetOpcode::IMPLICIT_DEF) 803 // We want a unique VR for each IMPLICIT_DEF use. 804 return; 805 806 const MCInstrDesc &II = TII->get(Opc); 807 unsigned NumResults = CountResults(Node); 808 unsigned NumDefs = II.getNumDefs(); 809 const MCPhysReg *ScratchRegs = nullptr; 810 811 // Handle STACKMAP and PATCHPOINT specially and then use the generic code. 812 if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) { 813 // Stackmaps do not have arguments and do not preserve their calling 814 // convention. However, to simplify runtime support, they clobber the same 815 // scratch registers as AnyRegCC. 816 unsigned CC = CallingConv::AnyReg; 817 if (Opc == TargetOpcode::PATCHPOINT) { 818 CC = Node->getConstantOperandVal(PatchPointOpers::CCPos); 819 NumDefs = NumResults; 820 } 821 ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC); 822 } 823 824 unsigned NumImpUses = 0; 825 unsigned NodeOperands = 826 countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses); 827 bool HasPhysRegOuts = NumResults > NumDefs && II.getImplicitDefs()!=nullptr; 828 #ifndef NDEBUG 829 unsigned NumMIOperands = NodeOperands + NumResults; 830 if (II.isVariadic()) 831 assert(NumMIOperands >= II.getNumOperands() && 832 "Too few operands for a variadic node!"); 833 else 834 assert(NumMIOperands >= II.getNumOperands() && 835 NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() + 836 NumImpUses && 837 "#operands for dag node doesn't match .td file!"); 838 #endif 839 840 // Create the new machine instruction. 841 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II); 842 843 // Add result register values for things that are defined by this 844 // instruction. 845 if (NumResults) { 846 CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap); 847 848 // Transfer any IR flags from the SDNode to the MachineInstr 849 MachineInstr *MI = MIB.getInstr(); 850 const SDNodeFlags Flags = Node->getFlags(); 851 if (Flags.hasNoSignedZeros()) 852 MI->setFlag(MachineInstr::MIFlag::FmNsz); 853 854 if (Flags.hasAllowReciprocal()) 855 MI->setFlag(MachineInstr::MIFlag::FmArcp); 856 857 if (Flags.hasNoNaNs()) 858 MI->setFlag(MachineInstr::MIFlag::FmNoNans); 859 860 if (Flags.hasNoInfs()) 861 MI->setFlag(MachineInstr::MIFlag::FmNoInfs); 862 863 if (Flags.hasAllowContract()) 864 MI->setFlag(MachineInstr::MIFlag::FmContract); 865 866 if (Flags.hasApproximateFuncs()) 867 MI->setFlag(MachineInstr::MIFlag::FmAfn); 868 869 if (Flags.hasAllowReassociation()) 870 MI->setFlag(MachineInstr::MIFlag::FmReassoc); 871 872 if (Flags.hasNoUnsignedWrap()) 873 MI->setFlag(MachineInstr::MIFlag::NoUWrap); 874 875 if (Flags.hasNoSignedWrap()) 876 MI->setFlag(MachineInstr::MIFlag::NoSWrap); 877 878 if (Flags.hasExact()) 879 MI->setFlag(MachineInstr::MIFlag::IsExact); 880 } 881 882 // Emit all of the actual operands of this instruction, adding them to the 883 // instruction as appropriate. 884 bool HasOptPRefs = NumDefs > NumResults; 885 assert((!HasOptPRefs || !HasPhysRegOuts) && 886 "Unable to cope with optional defs and phys regs defs!"); 887 unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0; 888 for (unsigned i = NumSkip; i != NodeOperands; ++i) 889 AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II, 890 VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned); 891 892 // Add scratch registers as implicit def and early clobber 893 if (ScratchRegs) 894 for (unsigned i = 0; ScratchRegs[i]; ++i) 895 MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine | 896 RegState::EarlyClobber); 897 898 // Set the memory reference descriptions of this instruction now that it is 899 // part of the function. 900 MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands()); 901 902 // Insert the instruction into position in the block. This needs to 903 // happen before any custom inserter hook is called so that the 904 // hook knows where in the block to insert the replacement code. 905 MBB->insert(InsertPos, MIB); 906 907 // The MachineInstr may also define physregs instead of virtregs. These 908 // physreg values can reach other instructions in different ways: 909 // 910 // 1. When there is a use of a Node value beyond the explicitly defined 911 // virtual registers, we emit a CopyFromReg for one of the implicitly 912 // defined physregs. This only happens when HasPhysRegOuts is true. 913 // 914 // 2. A CopyFromReg reading a physreg may be glued to this instruction. 915 // 916 // 3. A glued instruction may implicitly use a physreg. 917 // 918 // 4. A glued instruction may use a RegisterSDNode operand. 919 // 920 // Collect all the used physreg defs, and make sure that any unused physreg 921 // defs are marked as dead. 922 SmallVector<unsigned, 8> UsedRegs; 923 924 // Additional results must be physical register defs. 925 if (HasPhysRegOuts) { 926 for (unsigned i = NumDefs; i < NumResults; ++i) { 927 unsigned Reg = II.getImplicitDefs()[i - NumDefs]; 928 if (!Node->hasAnyUseOfValue(i)) 929 continue; 930 // This implicitly defined physreg has a use. 931 UsedRegs.push_back(Reg); 932 EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap); 933 } 934 } 935 936 // Scan the glue chain for any used physregs. 937 if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) { 938 for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) { 939 if (F->getOpcode() == ISD::CopyFromReg) { 940 UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg()); 941 continue; 942 } else if (F->getOpcode() == ISD::CopyToReg) { 943 // Skip CopyToReg nodes that are internal to the glue chain. 944 continue; 945 } 946 // Collect declared implicit uses. 947 const MCInstrDesc &MCID = TII->get(F->getMachineOpcode()); 948 UsedRegs.append(MCID.getImplicitUses(), 949 MCID.getImplicitUses() + MCID.getNumImplicitUses()); 950 // In addition to declared implicit uses, we must also check for 951 // direct RegisterSDNode operands. 952 for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i) 953 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) { 954 unsigned Reg = R->getReg(); 955 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 956 UsedRegs.push_back(Reg); 957 } 958 } 959 } 960 961 // Finally mark unused registers as dead. 962 if (!UsedRegs.empty() || II.getImplicitDefs()) 963 MIB->setPhysRegsDeadExcept(UsedRegs, *TRI); 964 965 // Run post-isel target hook to adjust this instruction if needed. 966 if (II.hasPostISelHook()) 967 TLI->AdjustInstrPostInstrSelection(*MIB, Node); 968 } 969 970 /// EmitSpecialNode - Generate machine code for a target-independent node and 971 /// needed dependencies. 972 void InstrEmitter:: 973 EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned, 974 DenseMap<SDValue, unsigned> &VRBaseMap) { 975 switch (Node->getOpcode()) { 976 default: 977 #ifndef NDEBUG 978 Node->dump(); 979 #endif 980 llvm_unreachable("This target-independent node should have been selected!"); 981 case ISD::EntryToken: 982 llvm_unreachable("EntryToken should have been excluded from the schedule!"); 983 case ISD::MERGE_VALUES: 984 case ISD::TokenFactor: // fall thru 985 break; 986 case ISD::CopyToReg: { 987 unsigned SrcReg; 988 SDValue SrcVal = Node->getOperand(2); 989 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal)) 990 SrcReg = R->getReg(); 991 else 992 SrcReg = getVR(SrcVal, VRBaseMap); 993 994 unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); 995 if (SrcReg == DestReg) // Coalesced away the copy? Ignore. 996 break; 997 998 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 999 DestReg).addReg(SrcReg); 1000 break; 1001 } 1002 case ISD::CopyFromReg: { 1003 unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); 1004 EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap); 1005 break; 1006 } 1007 case ISD::EH_LABEL: 1008 case ISD::ANNOTATION_LABEL: { 1009 unsigned Opc = (Node->getOpcode() == ISD::EH_LABEL) 1010 ? TargetOpcode::EH_LABEL 1011 : TargetOpcode::ANNOTATION_LABEL; 1012 MCSymbol *S = cast<LabelSDNode>(Node)->getLabel(); 1013 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 1014 TII->get(Opc)).addSym(S); 1015 break; 1016 } 1017 1018 case ISD::LIFETIME_START: 1019 case ISD::LIFETIME_END: { 1020 unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START) ? 1021 TargetOpcode::LIFETIME_START : TargetOpcode::LIFETIME_END; 1022 1023 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Node->getOperand(1)); 1024 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp)) 1025 .addFrameIndex(FI->getIndex()); 1026 break; 1027 } 1028 1029 case ISD::INLINEASM: { 1030 unsigned NumOps = Node->getNumOperands(); 1031 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue) 1032 --NumOps; // Ignore the glue operand. 1033 1034 // Create the inline asm machine instruction. 1035 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), 1036 TII->get(TargetOpcode::INLINEASM)); 1037 1038 // Add the asm string as an external symbol operand. 1039 SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString); 1040 const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol(); 1041 MIB.addExternalSymbol(AsmStr); 1042 1043 // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore 1044 // bits. 1045 int64_t ExtraInfo = 1046 cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))-> 1047 getZExtValue(); 1048 MIB.addImm(ExtraInfo); 1049 1050 // Remember to operand index of the group flags. 1051 SmallVector<unsigned, 8> GroupIdx; 1052 1053 // Remember registers that are part of early-clobber defs. 1054 SmallVector<unsigned, 8> ECRegs; 1055 1056 // Add all of the operand registers to the instruction. 1057 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 1058 unsigned Flags = 1059 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue(); 1060 const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 1061 1062 GroupIdx.push_back(MIB->getNumOperands()); 1063 MIB.addImm(Flags); 1064 ++i; // Skip the ID value. 1065 1066 switch (InlineAsm::getKind(Flags)) { 1067 default: llvm_unreachable("Bad flags!"); 1068 case InlineAsm::Kind_RegDef: 1069 for (unsigned j = 0; j != NumVals; ++j, ++i) { 1070 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); 1071 // FIXME: Add dead flags for physical and virtual registers defined. 1072 // For now, mark physical register defs as implicit to help fast 1073 // regalloc. This makes inline asm look a lot like calls. 1074 MIB.addReg(Reg, RegState::Define | 1075 getImplRegState(TargetRegisterInfo::isPhysicalRegister(Reg))); 1076 } 1077 break; 1078 case InlineAsm::Kind_RegDefEarlyClobber: 1079 case InlineAsm::Kind_Clobber: 1080 for (unsigned j = 0; j != NumVals; ++j, ++i) { 1081 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); 1082 MIB.addReg(Reg, RegState::Define | RegState::EarlyClobber | 1083 getImplRegState(TargetRegisterInfo::isPhysicalRegister(Reg))); 1084 ECRegs.push_back(Reg); 1085 } 1086 break; 1087 case InlineAsm::Kind_RegUse: // Use of register. 1088 case InlineAsm::Kind_Imm: // Immediate. 1089 case InlineAsm::Kind_Mem: // Addressing mode. 1090 // The addressing mode has been selected, just add all of the 1091 // operands to the machine instruction. 1092 for (unsigned j = 0; j != NumVals; ++j, ++i) 1093 AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap, 1094 /*IsDebug=*/false, IsClone, IsCloned); 1095 1096 // Manually set isTied bits. 1097 if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) { 1098 unsigned DefGroup = 0; 1099 if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) { 1100 unsigned DefIdx = GroupIdx[DefGroup] + 1; 1101 unsigned UseIdx = GroupIdx.back() + 1; 1102 for (unsigned j = 0; j != NumVals; ++j) 1103 MIB->tieOperands(DefIdx + j, UseIdx + j); 1104 } 1105 } 1106 break; 1107 } 1108 } 1109 1110 // GCC inline assembly allows input operands to also be early-clobber 1111 // output operands (so long as the operand is written only after it's 1112 // used), but this does not match the semantics of our early-clobber flag. 1113 // If an early-clobber operand register is also an input operand register, 1114 // then remove the early-clobber flag. 1115 for (unsigned Reg : ECRegs) { 1116 if (MIB->readsRegister(Reg, TRI)) { 1117 MachineOperand *MO = MIB->findRegisterDefOperand(Reg, false, TRI); 1118 assert(MO && "No def operand for clobbered register?"); 1119 MO->setIsEarlyClobber(false); 1120 } 1121 } 1122 1123 // Get the mdnode from the asm if it exists and add it to the instruction. 1124 SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode); 1125 const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD(); 1126 if (MD) 1127 MIB.addMetadata(MD); 1128 1129 MBB->insert(InsertPos, MIB); 1130 break; 1131 } 1132 } 1133 } 1134 1135 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting 1136 /// at the given position in the given block. 1137 InstrEmitter::InstrEmitter(MachineBasicBlock *mbb, 1138 MachineBasicBlock::iterator insertpos) 1139 : MF(mbb->getParent()), MRI(&MF->getRegInfo()), 1140 TII(MF->getSubtarget().getInstrInfo()), 1141 TRI(MF->getSubtarget().getRegisterInfo()), 1142 TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb), 1143 InsertPos(insertpos) {} 1144