1 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the Emit routines for the SelectionDAG class, which creates
10 // MachineInstrs based on the decisions of the SelectionDAG instruction
11 // selection.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "InstrEmitter.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/BinaryFormat/Dwarf.h"
18 #include "llvm/CodeGen/MachineConstantPool.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/StackMaps.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/IR/DebugInfoMetadata.h"
27 #include "llvm/IR/PseudoProbe.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Target/TargetMachine.h"
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "instr-emitter"
33 
34 /// MinRCSize - Smallest register class we allow when constraining virtual
35 /// registers.  If satisfying all register class constraints would require
36 /// using a smaller register class, emit a COPY to a new virtual register
37 /// instead.
38 const unsigned MinRCSize = 4;
39 
40 /// CountResults - The results of target nodes have register or immediate
41 /// operands first, then an optional chain, and optional glue operands (which do
42 /// not go into the resulting MachineInstr).
43 unsigned InstrEmitter::CountResults(SDNode *Node) {
44   unsigned N = Node->getNumValues();
45   while (N && Node->getValueType(N - 1) == MVT::Glue)
46     --N;
47   if (N && Node->getValueType(N - 1) == MVT::Other)
48     --N;    // Skip over chain result.
49   return N;
50 }
51 
52 /// countOperands - The inputs to target nodes have any actual inputs first,
53 /// followed by an optional chain operand, then an optional glue operand.
54 /// Compute the number of actual operands that will go into the resulting
55 /// MachineInstr.
56 ///
57 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding
58 /// the chain and glue. These operands may be implicit on the machine instr.
59 static unsigned countOperands(SDNode *Node, unsigned NumExpUses,
60                               unsigned &NumImpUses) {
61   unsigned N = Node->getNumOperands();
62   while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
63     --N;
64   if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
65     --N; // Ignore chain if it exists.
66 
67   // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses.
68   NumImpUses = N - NumExpUses;
69   for (unsigned I = N; I > NumExpUses; --I) {
70     if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1)))
71       continue;
72     if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1)))
73       if (Register::isPhysicalRegister(RN->getReg()))
74         continue;
75     NumImpUses = N - I;
76     break;
77   }
78 
79   return N;
80 }
81 
82 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
83 /// implicit physical register output.
84 void InstrEmitter::
85 EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned,
86                 Register SrcReg, DenseMap<SDValue, Register> &VRBaseMap) {
87   Register VRBase;
88   if (SrcReg.isVirtual()) {
89     // Just use the input register directly!
90     SDValue Op(Node, ResNo);
91     if (IsClone)
92       VRBaseMap.erase(Op);
93     bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
94     (void)isNew; // Silence compiler warning.
95     assert(isNew && "Node emitted out of order - early");
96     return;
97   }
98 
99   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
100   // the CopyToReg'd destination register instead of creating a new vreg.
101   bool MatchReg = true;
102   const TargetRegisterClass *UseRC = nullptr;
103   MVT VT = Node->getSimpleValueType(ResNo);
104 
105   // Stick to the preferred register classes for legal types.
106   if (TLI->isTypeLegal(VT))
107     UseRC = TLI->getRegClassFor(VT, Node->isDivergent());
108 
109   if (!IsClone && !IsCloned)
110     for (SDNode *User : Node->uses()) {
111       bool Match = true;
112       if (User->getOpcode() == ISD::CopyToReg &&
113           User->getOperand(2).getNode() == Node &&
114           User->getOperand(2).getResNo() == ResNo) {
115         Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
116         if (DestReg.isVirtual()) {
117           VRBase = DestReg;
118           Match = false;
119         } else if (DestReg != SrcReg)
120           Match = false;
121       } else {
122         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
123           SDValue Op = User->getOperand(i);
124           if (Op.getNode() != Node || Op.getResNo() != ResNo)
125             continue;
126           MVT VT = Node->getSimpleValueType(Op.getResNo());
127           if (VT == MVT::Other || VT == MVT::Glue)
128             continue;
129           Match = false;
130           if (User->isMachineOpcode()) {
131             const MCInstrDesc &II = TII->get(User->getMachineOpcode());
132             const TargetRegisterClass *RC = nullptr;
133             if (i+II.getNumDefs() < II.getNumOperands()) {
134               RC = TRI->getAllocatableClass(
135                 TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF));
136             }
137             if (!UseRC)
138               UseRC = RC;
139             else if (RC) {
140               const TargetRegisterClass *ComRC =
141                 TRI->getCommonSubClass(UseRC, RC);
142               // If multiple uses expect disjoint register classes, we emit
143               // copies in AddRegisterOperand.
144               if (ComRC)
145                 UseRC = ComRC;
146             }
147           }
148         }
149       }
150       MatchReg &= Match;
151       if (VRBase)
152         break;
153     }
154 
155   const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr;
156   SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT);
157 
158   // Figure out the register class to create for the destreg.
159   if (VRBase) {
160     DstRC = MRI->getRegClass(VRBase);
161   } else if (UseRC) {
162     assert(TRI->isTypeLegalForClass(*UseRC, VT) &&
163            "Incompatible phys register def and uses!");
164     DstRC = UseRC;
165   } else
166     DstRC = SrcRC;
167 
168   // If all uses are reading from the src physical register and copying the
169   // register is either impossible or very expensive, then don't create a copy.
170   if (MatchReg && SrcRC->getCopyCost() < 0) {
171     VRBase = SrcReg;
172   } else {
173     // Create the reg, emit the copy.
174     VRBase = MRI->createVirtualRegister(DstRC);
175     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
176             VRBase).addReg(SrcReg);
177   }
178 
179   SDValue Op(Node, ResNo);
180   if (IsClone)
181     VRBaseMap.erase(Op);
182   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
183   (void)isNew; // Silence compiler warning.
184   assert(isNew && "Node emitted out of order - early");
185 }
186 
187 void InstrEmitter::CreateVirtualRegisters(SDNode *Node,
188                                        MachineInstrBuilder &MIB,
189                                        const MCInstrDesc &II,
190                                        bool IsClone, bool IsCloned,
191                                        DenseMap<SDValue, Register> &VRBaseMap) {
192   assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF &&
193          "IMPLICIT_DEF should have been handled as a special case elsewhere!");
194 
195   unsigned NumResults = CountResults(Node);
196   bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
197                              II.isVariadic() && II.variadicOpsAreDefs();
198   unsigned NumVRegs = HasVRegVariadicDefs ? NumResults : II.getNumDefs();
199   if (Node->getMachineOpcode() == TargetOpcode::STATEPOINT)
200     NumVRegs = NumResults;
201   for (unsigned i = 0; i < NumVRegs; ++i) {
202     // If the specific node value is only used by a CopyToReg and the dest reg
203     // is a vreg in the same register class, use the CopyToReg'd destination
204     // register instead of creating a new vreg.
205     Register VRBase;
206     const TargetRegisterClass *RC =
207       TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF));
208     // Always let the value type influence the used register class. The
209     // constraints on the instruction may be too lax to represent the value
210     // type correctly. For example, a 64-bit float (X86::FR64) can't live in
211     // the 32-bit float super-class (X86::FR32).
212     if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) {
213       const TargetRegisterClass *VTRC = TLI->getRegClassFor(
214           Node->getSimpleValueType(i),
215           (Node->isDivergent() || (RC && TRI->isDivergentRegClass(RC))));
216       if (RC)
217         VTRC = TRI->getCommonSubClass(RC, VTRC);
218       if (VTRC)
219         RC = VTRC;
220     }
221 
222     if (II.OpInfo != nullptr && II.OpInfo[i].isOptionalDef()) {
223       // Optional def must be a physical register.
224       VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg();
225       assert(VRBase.isPhysical());
226       MIB.addReg(VRBase, RegState::Define);
227     }
228 
229     if (!VRBase && !IsClone && !IsCloned)
230       for (SDNode *User : Node->uses()) {
231         if (User->getOpcode() == ISD::CopyToReg &&
232             User->getOperand(2).getNode() == Node &&
233             User->getOperand(2).getResNo() == i) {
234           unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
235           if (Register::isVirtualRegister(Reg)) {
236             const TargetRegisterClass *RegRC = MRI->getRegClass(Reg);
237             if (RegRC == RC) {
238               VRBase = Reg;
239               MIB.addReg(VRBase, RegState::Define);
240               break;
241             }
242           }
243         }
244       }
245 
246     // Create the result registers for this node and add the result regs to
247     // the machine instruction.
248     if (VRBase == 0) {
249       assert(RC && "Isn't a register operand!");
250       VRBase = MRI->createVirtualRegister(RC);
251       MIB.addReg(VRBase, RegState::Define);
252     }
253 
254     // If this def corresponds to a result of the SDNode insert the VRBase into
255     // the lookup map.
256     if (i < NumResults) {
257       SDValue Op(Node, i);
258       if (IsClone)
259         VRBaseMap.erase(Op);
260       bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
261       (void)isNew; // Silence compiler warning.
262       assert(isNew && "Node emitted out of order - early");
263     }
264   }
265 }
266 
267 /// getVR - Return the virtual register corresponding to the specified result
268 /// of the specified node.
269 Register InstrEmitter::getVR(SDValue Op,
270                              DenseMap<SDValue, Register> &VRBaseMap) {
271   if (Op.isMachineOpcode() &&
272       Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
273     // Add an IMPLICIT_DEF instruction before every use.
274     // IMPLICIT_DEF can produce any type of result so its MCInstrDesc
275     // does not include operand register class info.
276     const TargetRegisterClass *RC = TLI->getRegClassFor(
277         Op.getSimpleValueType(), Op.getNode()->isDivergent());
278     Register VReg = MRI->createVirtualRegister(RC);
279     BuildMI(*MBB, InsertPos, Op.getDebugLoc(),
280             TII->get(TargetOpcode::IMPLICIT_DEF), VReg);
281     return VReg;
282   }
283 
284   DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
285   assert(I != VRBaseMap.end() && "Node emitted out of order - late");
286   return I->second;
287 }
288 
289 
290 /// AddRegisterOperand - Add the specified register as an operand to the
291 /// specified machine instr. Insert register copies if the register is
292 /// not in the required register class.
293 void
294 InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB,
295                                  SDValue Op,
296                                  unsigned IIOpNum,
297                                  const MCInstrDesc *II,
298                                  DenseMap<SDValue, Register> &VRBaseMap,
299                                  bool IsDebug, bool IsClone, bool IsCloned) {
300   assert(Op.getValueType() != MVT::Other &&
301          Op.getValueType() != MVT::Glue &&
302          "Chain and glue operands should occur at end of operand list!");
303   // Get/emit the operand.
304   Register VReg = getVR(Op, VRBaseMap);
305 
306   const MCInstrDesc &MCID = MIB->getDesc();
307   bool isOptDef = IIOpNum < MCID.getNumOperands() &&
308     MCID.OpInfo[IIOpNum].isOptionalDef();
309 
310   // If the instruction requires a register in a different class, create
311   // a new virtual register and copy the value into it, but first attempt to
312   // shrink VReg's register class within reason.  For example, if VReg == GR32
313   // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP.
314   if (II) {
315     const TargetRegisterClass *OpRC = nullptr;
316     if (IIOpNum < II->getNumOperands())
317       OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF);
318 
319     if (OpRC) {
320       const TargetRegisterClass *ConstrainedRC
321         = MRI->constrainRegClass(VReg, OpRC, MinRCSize);
322       if (!ConstrainedRC) {
323         OpRC = TRI->getAllocatableClass(OpRC);
324         assert(OpRC && "Constraints cannot be fulfilled for allocation");
325         Register NewVReg = MRI->createVirtualRegister(OpRC);
326         BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
327                 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
328         VReg = NewVReg;
329       } else {
330         assert(ConstrainedRC->isAllocatable() &&
331            "Constraining an allocatable VReg produced an unallocatable class?");
332       }
333     }
334   }
335 
336   // If this value has only one use, that use is a kill. This is a
337   // conservative approximation. InstrEmitter does trivial coalescing
338   // with CopyFromReg nodes, so don't emit kill flags for them.
339   // Avoid kill flags on Schedule cloned nodes, since there will be
340   // multiple uses.
341   // Tied operands are never killed, so we need to check that. And that
342   // means we need to determine the index of the operand.
343   bool isKill = Op.hasOneUse() &&
344                 Op.getNode()->getOpcode() != ISD::CopyFromReg &&
345                 !IsDebug &&
346                 !(IsClone || IsCloned);
347   if (isKill) {
348     unsigned Idx = MIB->getNumOperands();
349     while (Idx > 0 &&
350            MIB->getOperand(Idx-1).isReg() &&
351            MIB->getOperand(Idx-1).isImplicit())
352       --Idx;
353     bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1;
354     if (isTied)
355       isKill = false;
356   }
357 
358   MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) |
359              getDebugRegState(IsDebug));
360 }
361 
362 /// AddOperand - Add the specified operand to the specified machine instr.  II
363 /// specifies the instruction information for the node, and IIOpNum is the
364 /// operand number (in the II) that we are adding.
365 void InstrEmitter::AddOperand(MachineInstrBuilder &MIB,
366                               SDValue Op,
367                               unsigned IIOpNum,
368                               const MCInstrDesc *II,
369                               DenseMap<SDValue, Register> &VRBaseMap,
370                               bool IsDebug, bool IsClone, bool IsCloned) {
371   if (Op.isMachineOpcode()) {
372     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
373                        IsDebug, IsClone, IsCloned);
374   } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
375     MIB.addImm(C->getSExtValue());
376   } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
377     MIB.addFPImm(F->getConstantFPValue());
378   } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
379     Register VReg = R->getReg();
380     MVT OpVT = Op.getSimpleValueType();
381     const TargetRegisterClass *IIRC =
382         II ? TRI->getAllocatableClass(TII->getRegClass(*II, IIOpNum, TRI, *MF))
383            : nullptr;
384     const TargetRegisterClass *OpRC =
385         TLI->isTypeLegal(OpVT)
386             ? TLI->getRegClassFor(OpVT,
387                                   Op.getNode()->isDivergent() ||
388                                       (IIRC && TRI->isDivergentRegClass(IIRC)))
389             : nullptr;
390 
391     if (OpRC && IIRC && OpRC != IIRC && Register::isVirtualRegister(VReg)) {
392       Register NewVReg = MRI->createVirtualRegister(IIRC);
393       BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
394                TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
395       VReg = NewVReg;
396     }
397     // Turn additional physreg operands into implicit uses on non-variadic
398     // instructions. This is used by call and return instructions passing
399     // arguments in registers.
400     bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic());
401     MIB.addReg(VReg, getImplRegState(Imp));
402   } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) {
403     MIB.addRegMask(RM->getRegMask());
404   } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
405     MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(),
406                          TGA->getTargetFlags());
407   } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) {
408     MIB.addMBB(BBNode->getBasicBlock());
409   } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
410     MIB.addFrameIndex(FI->getIndex());
411   } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
412     MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags());
413   } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
414     int Offset = CP->getOffset();
415     Align Alignment = CP->getAlign();
416 
417     unsigned Idx;
418     MachineConstantPool *MCP = MF->getConstantPool();
419     if (CP->isMachineConstantPoolEntry())
420       Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Alignment);
421     else
422       Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Alignment);
423     MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags());
424   } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
425     MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags());
426   } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) {
427     MIB.addSym(SymNode->getMCSymbol());
428   } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) {
429     MIB.addBlockAddress(BA->getBlockAddress(),
430                         BA->getOffset(),
431                         BA->getTargetFlags());
432   } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) {
433     MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags());
434   } else {
435     assert(Op.getValueType() != MVT::Other &&
436            Op.getValueType() != MVT::Glue &&
437            "Chain and glue operands should occur at end of operand list!");
438     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
439                        IsDebug, IsClone, IsCloned);
440   }
441 }
442 
443 Register InstrEmitter::ConstrainForSubReg(Register VReg, unsigned SubIdx,
444                                           MVT VT, bool isDivergent, const DebugLoc &DL) {
445   const TargetRegisterClass *VRC = MRI->getRegClass(VReg);
446   const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx);
447 
448   // RC is a sub-class of VRC that supports SubIdx.  Try to constrain VReg
449   // within reason.
450   if (RC && RC != VRC)
451     RC = MRI->constrainRegClass(VReg, RC, MinRCSize);
452 
453   // VReg has been adjusted.  It can be used with SubIdx operands now.
454   if (RC)
455     return VReg;
456 
457   // VReg couldn't be reasonably constrained.  Emit a COPY to a new virtual
458   // register instead.
459   RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT, isDivergent), SubIdx);
460   assert(RC && "No legal register class for VT supports that SubIdx");
461   Register NewReg = MRI->createVirtualRegister(RC);
462   BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg)
463     .addReg(VReg);
464   return NewReg;
465 }
466 
467 /// EmitSubregNode - Generate machine code for subreg nodes.
468 ///
469 void InstrEmitter::EmitSubregNode(SDNode *Node,
470                                   DenseMap<SDValue, Register> &VRBaseMap,
471                                   bool IsClone, bool IsCloned) {
472   Register VRBase;
473   unsigned Opc = Node->getMachineOpcode();
474 
475   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
476   // the CopyToReg'd destination register instead of creating a new vreg.
477   for (SDNode *User : Node->uses()) {
478     if (User->getOpcode() == ISD::CopyToReg &&
479         User->getOperand(2).getNode() == Node) {
480       Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
481       if (DestReg.isVirtual()) {
482         VRBase = DestReg;
483         break;
484       }
485     }
486   }
487 
488   if (Opc == TargetOpcode::EXTRACT_SUBREG) {
489     // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub.  There are no
490     // constraints on the %dst register, COPY can target all legal register
491     // classes.
492     unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
493     const TargetRegisterClass *TRC =
494       TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
495 
496     Register Reg;
497     MachineInstr *DefMI;
498     RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0));
499     if (R && Register::isPhysicalRegister(R->getReg())) {
500       Reg = R->getReg();
501       DefMI = nullptr;
502     } else {
503       Reg = R ? R->getReg() : getVR(Node->getOperand(0), VRBaseMap);
504       DefMI = MRI->getVRegDef(Reg);
505     }
506 
507     Register SrcReg, DstReg;
508     unsigned DefSubIdx;
509     if (DefMI &&
510         TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) &&
511         SubIdx == DefSubIdx &&
512         TRC == MRI->getRegClass(SrcReg)) {
513       // Optimize these:
514       // r1025 = s/zext r1024, 4
515       // r1026 = extract_subreg r1025, 4
516       // to a copy
517       // r1026 = copy r1024
518       VRBase = MRI->createVirtualRegister(TRC);
519       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
520               TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg);
521       MRI->clearKillFlags(SrcReg);
522     } else {
523       // Reg may not support a SubIdx sub-register, and we may need to
524       // constrain its register class or issue a COPY to a compatible register
525       // class.
526       if (Reg.isVirtual())
527         Reg = ConstrainForSubReg(Reg, SubIdx,
528                                  Node->getOperand(0).getSimpleValueType(),
529                                  Node->isDivergent(), Node->getDebugLoc());
530       // Create the destreg if it is missing.
531       if (!VRBase)
532         VRBase = MRI->createVirtualRegister(TRC);
533 
534       // Create the extract_subreg machine instruction.
535       MachineInstrBuilder CopyMI =
536           BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
537                   TII->get(TargetOpcode::COPY), VRBase);
538       if (Reg.isVirtual())
539         CopyMI.addReg(Reg, 0, SubIdx);
540       else
541         CopyMI.addReg(TRI->getSubReg(Reg, SubIdx));
542     }
543   } else if (Opc == TargetOpcode::INSERT_SUBREG ||
544              Opc == TargetOpcode::SUBREG_TO_REG) {
545     SDValue N0 = Node->getOperand(0);
546     SDValue N1 = Node->getOperand(1);
547     SDValue N2 = Node->getOperand(2);
548     unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue();
549 
550     // Figure out the register class to create for the destreg.  It should be
551     // the largest legal register class supporting SubIdx sub-registers.
552     // RegisterCoalescer will constrain it further if it decides to eliminate
553     // the INSERT_SUBREG instruction.
554     //
555     //   %dst = INSERT_SUBREG %src, %sub, SubIdx
556     //
557     // is lowered by TwoAddressInstructionPass to:
558     //
559     //   %dst = COPY %src
560     //   %dst:SubIdx = COPY %sub
561     //
562     // There is no constraint on the %src register class.
563     //
564     const TargetRegisterClass *SRC =
565         TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
566     SRC = TRI->getSubClassWithSubReg(SRC, SubIdx);
567     assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG");
568 
569     if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase)))
570       VRBase = MRI->createVirtualRegister(SRC);
571 
572     // Create the insert_subreg or subreg_to_reg machine instruction.
573     MachineInstrBuilder MIB =
574       BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase);
575 
576     // If creating a subreg_to_reg, then the first input operand
577     // is an implicit value immediate, otherwise it's a register
578     if (Opc == TargetOpcode::SUBREG_TO_REG) {
579       const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
580       MIB.addImm(SD->getZExtValue());
581     } else
582       AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
583                  IsClone, IsCloned);
584     // Add the subregister being inserted
585     AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
586                IsClone, IsCloned);
587     MIB.addImm(SubIdx);
588     MBB->insert(InsertPos, MIB);
589   } else
590     llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");
591 
592   SDValue Op(Node, 0);
593   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
594   (void)isNew; // Silence compiler warning.
595   assert(isNew && "Node emitted out of order - early");
596 }
597 
598 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
599 /// COPY_TO_REGCLASS is just a normal copy, except that the destination
600 /// register is constrained to be in a particular register class.
601 ///
602 void
603 InstrEmitter::EmitCopyToRegClassNode(SDNode *Node,
604                                      DenseMap<SDValue, Register> &VRBaseMap) {
605   unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
606 
607   // Create the new VReg in the destination class and emit a copy.
608   unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
609   const TargetRegisterClass *DstRC =
610     TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx));
611   Register NewVReg = MRI->createVirtualRegister(DstRC);
612   BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
613     NewVReg).addReg(VReg);
614 
615   SDValue Op(Node, 0);
616   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
617   (void)isNew; // Silence compiler warning.
618   assert(isNew && "Node emitted out of order - early");
619 }
620 
621 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
622 ///
623 void InstrEmitter::EmitRegSequence(SDNode *Node,
624                                   DenseMap<SDValue, Register> &VRBaseMap,
625                                   bool IsClone, bool IsCloned) {
626   unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
627   const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
628   Register NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC));
629   const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
630   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg);
631   unsigned NumOps = Node->getNumOperands();
632   // If the input pattern has a chain, then the root of the corresponding
633   // output pattern will get a chain as well. This can happen to be a
634   // REG_SEQUENCE (which is not "guarded" by countOperands/CountResults).
635   if (NumOps && Node->getOperand(NumOps-1).getValueType() == MVT::Other)
636     --NumOps; // Ignore chain if it exists.
637 
638   assert((NumOps & 1) == 1 &&
639          "REG_SEQUENCE must have an odd number of operands!");
640   for (unsigned i = 1; i != NumOps; ++i) {
641     SDValue Op = Node->getOperand(i);
642     if ((i & 1) == 0) {
643       RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1));
644       // Skip physical registers as they don't have a vreg to get and we'll
645       // insert copies for them in TwoAddressInstructionPass anyway.
646       if (!R || !Register::isPhysicalRegister(R->getReg())) {
647         unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue();
648         unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap);
649         const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
650         const TargetRegisterClass *SRC =
651         TRI->getMatchingSuperRegClass(RC, TRC, SubIdx);
652         if (SRC && SRC != RC) {
653           MRI->setRegClass(NewVReg, SRC);
654           RC = SRC;
655         }
656       }
657     }
658     AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false,
659                IsClone, IsCloned);
660   }
661 
662   MBB->insert(InsertPos, MIB);
663   SDValue Op(Node, 0);
664   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
665   (void)isNew; // Silence compiler warning.
666   assert(isNew && "Node emitted out of order - early");
667 }
668 
669 /// EmitDbgValue - Generate machine instruction for a dbg_value node.
670 ///
671 MachineInstr *
672 InstrEmitter::EmitDbgValue(SDDbgValue *SD,
673                            DenseMap<SDValue, Register> &VRBaseMap) {
674   MDNode *Var = SD->getVariable();
675   MDNode *Expr = SD->getExpression();
676   DebugLoc DL = SD->getDebugLoc();
677   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
678          "Expected inlined-at fields to agree");
679 
680   SD->setIsEmitted();
681 
682   ArrayRef<SDDbgOperand> LocationOps = SD->getLocationOps();
683   assert(!LocationOps.empty() && "dbg_value with no location operands?");
684 
685   if (SD->isInvalidated())
686     return EmitDbgNoLocation(SD);
687 
688   // Emit variadic dbg_value nodes as DBG_VALUE_LIST.
689   if (SD->isVariadic()) {
690     // DBG_VALUE_LIST := "DBG_VALUE_LIST" var, expression, loc (, loc)*
691     const MCInstrDesc &DbgValDesc = TII->get(TargetOpcode::DBG_VALUE_LIST);
692     // Build the DBG_VALUE_LIST instruction base.
693     auto MIB = BuildMI(*MF, DL, DbgValDesc);
694     MIB.addMetadata(Var);
695     MIB.addMetadata(Expr);
696     AddDbgValueLocationOps(MIB, DbgValDesc, LocationOps, VRBaseMap);
697     return &*MIB;
698   }
699 
700   // Attempt to produce a DBG_INSTR_REF if we've been asked to.
701   // We currently exclude the possibility of instruction references for
702   // variadic nodes; if at some point we enable them, this should be moved
703   // above the variadic block.
704   if (EmitDebugInstrRefs)
705     if (auto *InstrRef = EmitDbgInstrRef(SD, VRBaseMap))
706       return InstrRef;
707 
708   return EmitDbgValueFromSingleOp(SD, VRBaseMap);
709 }
710 
711 void InstrEmitter::AddDbgValueLocationOps(
712     MachineInstrBuilder &MIB, const MCInstrDesc &DbgValDesc,
713     ArrayRef<SDDbgOperand> LocationOps,
714     DenseMap<SDValue, Register> &VRBaseMap) {
715   for (const SDDbgOperand &Op : LocationOps) {
716     switch (Op.getKind()) {
717     case SDDbgOperand::FRAMEIX:
718       MIB.addFrameIndex(Op.getFrameIx());
719       break;
720     case SDDbgOperand::VREG:
721       MIB.addReg(Op.getVReg());
722       break;
723     case SDDbgOperand::SDNODE: {
724       SDValue V = SDValue(Op.getSDNode(), Op.getResNo());
725       // It's possible we replaced this SDNode with other(s) and therefore
726       // didn't generate code for it. It's better to catch these cases where
727       // they happen and transfer the debug info, but trying to guarantee that
728       // in all cases would be very fragile; this is a safeguard for any
729       // that were missed.
730       if (VRBaseMap.count(V) == 0)
731         MIB.addReg(0U); // undef
732       else
733         AddOperand(MIB, V, (*MIB).getNumOperands(), &DbgValDesc, VRBaseMap,
734                    /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false);
735     } break;
736     case SDDbgOperand::CONST: {
737       const Value *V = Op.getConst();
738       if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
739         if (CI->getBitWidth() > 64)
740           MIB.addCImm(CI);
741         else
742           MIB.addImm(CI->getSExtValue());
743       } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
744         MIB.addFPImm(CF);
745       } else if (isa<ConstantPointerNull>(V)) {
746         // Note: This assumes that all nullptr constants are zero-valued.
747         MIB.addImm(0);
748       } else {
749         // Could be an Undef. In any case insert an Undef so we can see what we
750         // dropped.
751         MIB.addReg(0U);
752       }
753     } break;
754     }
755   }
756 }
757 
758 MachineInstr *
759 InstrEmitter::EmitDbgInstrRef(SDDbgValue *SD,
760                               DenseMap<SDValue, Register> &VRBaseMap) {
761   assert(!SD->isVariadic());
762   SDDbgOperand DbgOperand = SD->getLocationOps()[0];
763   MDNode *Var = SD->getVariable();
764   DIExpression *Expr = (DIExpression*)SD->getExpression();
765   DebugLoc DL = SD->getDebugLoc();
766   const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_INSTR_REF);
767 
768   // Handle variable locations that don't actually depend on the instructions
769   // in the program: constants and stack locations.
770   if (DbgOperand.getKind() == SDDbgOperand::FRAMEIX ||
771       DbgOperand.getKind() == SDDbgOperand::CONST)
772     return EmitDbgValueFromSingleOp(SD, VRBaseMap);
773 
774   // Immediately fold any indirectness from the LLVM-IR intrinsic into the
775   // expression:
776   if (SD->isIndirect()) {
777     std::vector<uint64_t> Elts = {dwarf::DW_OP_deref};
778     Expr = DIExpression::append(Expr, Elts);
779   }
780 
781   // It may not be immediately possible to identify the MachineInstr that
782   // defines a VReg, it can depend for example on the order blocks are
783   // emitted in. When this happens, or when further analysis is needed later,
784   // produce an instruction like this:
785   //
786   //    DBG_INSTR_REF %0:gr64, 0, !123, !456
787   //
788   // i.e., point the instruction at the vreg, and patch it up later in
789   // MachineFunction::finalizeDebugInstrRefs.
790   auto EmitHalfDoneInstrRef = [&](unsigned VReg) -> MachineInstr * {
791     auto MIB = BuildMI(*MF, DL, RefII);
792     MIB.addReg(VReg);
793     MIB.addImm(0);
794     MIB.addMetadata(Var);
795     MIB.addMetadata(Expr);
796     return MIB;
797   };
798 
799   // Try to find both the defined register and the instruction defining it.
800   MachineInstr *DefMI = nullptr;
801   unsigned VReg;
802 
803   if (DbgOperand.getKind() == SDDbgOperand::VREG) {
804     VReg = DbgOperand.getVReg();
805 
806     // No definition means that block hasn't been emitted yet. Leave a vreg
807     // reference to be fixed later.
808     if (!MRI->hasOneDef(VReg))
809       return EmitHalfDoneInstrRef(VReg);
810 
811     DefMI = &*MRI->def_instr_begin(VReg);
812   } else {
813     assert(DbgOperand.getKind() == SDDbgOperand::SDNODE);
814     // Look up the corresponding VReg for the given SDNode, if any.
815     SDNode *Node = DbgOperand.getSDNode();
816     SDValue Op = SDValue(Node, DbgOperand.getResNo());
817     DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
818     // No VReg -> produce a DBG_VALUE $noreg instead.
819     if (I==VRBaseMap.end())
820       return EmitDbgNoLocation(SD);
821 
822     // Try to pick out a defining instruction at this point.
823     VReg = getVR(Op, VRBaseMap);
824 
825     // Again, if there's no instruction defining the VReg right now, fix it up
826     // later.
827     if (!MRI->hasOneDef(VReg))
828       return EmitHalfDoneInstrRef(VReg);
829 
830     DefMI = &*MRI->def_instr_begin(VReg);
831   }
832 
833   // Avoid copy like instructions: they don't define values, only move them.
834   // Leave a virtual-register reference until it can be fixed up later, to find
835   // the underlying value definition.
836   if (DefMI->isCopyLike() || TII->isCopyInstr(*DefMI))
837     return EmitHalfDoneInstrRef(VReg);
838 
839   auto MIB = BuildMI(*MF, DL, RefII);
840 
841   // Find the operand number which defines the specified VReg.
842   unsigned OperandIdx = 0;
843   for (const auto &MO : DefMI->operands()) {
844     if (MO.isReg() && MO.isDef() && MO.getReg() == VReg)
845       break;
846     ++OperandIdx;
847   }
848   assert(OperandIdx < DefMI->getNumOperands());
849 
850   // Make the DBG_INSTR_REF refer to that instruction, and that operand.
851   unsigned InstrNum = DefMI->getDebugInstrNum();
852   MIB.addImm(InstrNum);
853   MIB.addImm(OperandIdx);
854   MIB.addMetadata(Var);
855   MIB.addMetadata(Expr);
856   return &*MIB;
857 }
858 
859 MachineInstr *InstrEmitter::EmitDbgNoLocation(SDDbgValue *SD) {
860   // An invalidated SDNode must generate an undef DBG_VALUE: although the
861   // original value is no longer computed, earlier DBG_VALUEs live ranges
862   // must not leak into later code.
863   MDNode *Var = SD->getVariable();
864   MDNode *Expr = SD->getExpression();
865   DebugLoc DL = SD->getDebugLoc();
866   auto MIB = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE));
867   MIB.addReg(0U);
868   MIB.addReg(0U);
869   MIB.addMetadata(Var);
870   MIB.addMetadata(Expr);
871   return &*MIB;
872 }
873 
874 MachineInstr *
875 InstrEmitter::EmitDbgValueFromSingleOp(SDDbgValue *SD,
876                                        DenseMap<SDValue, Register> &VRBaseMap) {
877   MDNode *Var = SD->getVariable();
878   DIExpression *Expr = SD->getExpression();
879   DebugLoc DL = SD->getDebugLoc();
880   const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE);
881 
882   assert(SD->getLocationOps().size() == 1 &&
883          "Non variadic dbg_value should have only one location op");
884 
885   // See about constant-folding the expression.
886   // Copy the location operand in case we replace it.
887   SmallVector<SDDbgOperand, 1> LocationOps(1, SD->getLocationOps()[0]);
888   if (Expr && LocationOps[0].getKind() == SDDbgOperand::CONST) {
889     const Value *V = LocationOps[0].getConst();
890     if (auto *C = dyn_cast<ConstantInt>(V)) {
891       std::tie(Expr, C) = Expr->constantFold(C);
892       LocationOps[0] = SDDbgOperand::fromConst(C);
893     }
894   }
895 
896   // Emit non-variadic dbg_value nodes as DBG_VALUE.
897   // DBG_VALUE := "DBG_VALUE" loc, isIndirect, var, expr
898   auto MIB = BuildMI(*MF, DL, II);
899   AddDbgValueLocationOps(MIB, II, LocationOps, VRBaseMap);
900 
901   if (SD->isIndirect())
902     MIB.addImm(0U);
903   else
904     MIB.addReg(0U);
905 
906   return MIB.addMetadata(Var).addMetadata(Expr);
907 }
908 
909 MachineInstr *
910 InstrEmitter::EmitDbgLabel(SDDbgLabel *SD) {
911   MDNode *Label = SD->getLabel();
912   DebugLoc DL = SD->getDebugLoc();
913   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
914          "Expected inlined-at fields to agree");
915 
916   const MCInstrDesc &II = TII->get(TargetOpcode::DBG_LABEL);
917   MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
918   MIB.addMetadata(Label);
919 
920   return &*MIB;
921 }
922 
923 /// EmitMachineNode - Generate machine code for a target-specific node and
924 /// needed dependencies.
925 ///
926 void InstrEmitter::
927 EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
928                 DenseMap<SDValue, Register> &VRBaseMap) {
929   unsigned Opc = Node->getMachineOpcode();
930 
931   // Handle subreg insert/extract specially
932   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
933       Opc == TargetOpcode::INSERT_SUBREG ||
934       Opc == TargetOpcode::SUBREG_TO_REG) {
935     EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned);
936     return;
937   }
938 
939   // Handle COPY_TO_REGCLASS specially.
940   if (Opc == TargetOpcode::COPY_TO_REGCLASS) {
941     EmitCopyToRegClassNode(Node, VRBaseMap);
942     return;
943   }
944 
945   // Handle REG_SEQUENCE specially.
946   if (Opc == TargetOpcode::REG_SEQUENCE) {
947     EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned);
948     return;
949   }
950 
951   if (Opc == TargetOpcode::IMPLICIT_DEF)
952     // We want a unique VR for each IMPLICIT_DEF use.
953     return;
954 
955   const MCInstrDesc &II = TII->get(Opc);
956   unsigned NumResults = CountResults(Node);
957   unsigned NumDefs = II.getNumDefs();
958   const MCPhysReg *ScratchRegs = nullptr;
959 
960   // Handle STACKMAP and PATCHPOINT specially and then use the generic code.
961   if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
962     // Stackmaps do not have arguments and do not preserve their calling
963     // convention. However, to simplify runtime support, they clobber the same
964     // scratch registers as AnyRegCC.
965     unsigned CC = CallingConv::AnyReg;
966     if (Opc == TargetOpcode::PATCHPOINT) {
967       CC = Node->getConstantOperandVal(PatchPointOpers::CCPos);
968       NumDefs = NumResults;
969     }
970     ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC);
971   } else if (Opc == TargetOpcode::STATEPOINT) {
972     NumDefs = NumResults;
973   }
974 
975   unsigned NumImpUses = 0;
976   unsigned NodeOperands =
977     countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses);
978   bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
979                              II.isVariadic() && II.variadicOpsAreDefs();
980   bool HasPhysRegOuts = NumResults > NumDefs &&
981                         II.getImplicitDefs() != nullptr && !HasVRegVariadicDefs;
982 #ifndef NDEBUG
983   unsigned NumMIOperands = NodeOperands + NumResults;
984   if (II.isVariadic())
985     assert(NumMIOperands >= II.getNumOperands() &&
986            "Too few operands for a variadic node!");
987   else
988     assert(NumMIOperands >= II.getNumOperands() &&
989            NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() +
990                             NumImpUses &&
991            "#operands for dag node doesn't match .td file!");
992 #endif
993 
994   // Create the new machine instruction.
995   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II);
996 
997   // Add result register values for things that are defined by this
998   // instruction.
999   if (NumResults) {
1000     CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap);
1001 
1002     // Transfer any IR flags from the SDNode to the MachineInstr
1003     MachineInstr *MI = MIB.getInstr();
1004     const SDNodeFlags Flags = Node->getFlags();
1005     if (Flags.hasNoSignedZeros())
1006       MI->setFlag(MachineInstr::MIFlag::FmNsz);
1007 
1008     if (Flags.hasAllowReciprocal())
1009       MI->setFlag(MachineInstr::MIFlag::FmArcp);
1010 
1011     if (Flags.hasNoNaNs())
1012       MI->setFlag(MachineInstr::MIFlag::FmNoNans);
1013 
1014     if (Flags.hasNoInfs())
1015       MI->setFlag(MachineInstr::MIFlag::FmNoInfs);
1016 
1017     if (Flags.hasAllowContract())
1018       MI->setFlag(MachineInstr::MIFlag::FmContract);
1019 
1020     if (Flags.hasApproximateFuncs())
1021       MI->setFlag(MachineInstr::MIFlag::FmAfn);
1022 
1023     if (Flags.hasAllowReassociation())
1024       MI->setFlag(MachineInstr::MIFlag::FmReassoc);
1025 
1026     if (Flags.hasNoUnsignedWrap())
1027       MI->setFlag(MachineInstr::MIFlag::NoUWrap);
1028 
1029     if (Flags.hasNoSignedWrap())
1030       MI->setFlag(MachineInstr::MIFlag::NoSWrap);
1031 
1032     if (Flags.hasExact())
1033       MI->setFlag(MachineInstr::MIFlag::IsExact);
1034 
1035     if (Flags.hasNoFPExcept())
1036       MI->setFlag(MachineInstr::MIFlag::NoFPExcept);
1037   }
1038 
1039   // Emit all of the actual operands of this instruction, adding them to the
1040   // instruction as appropriate.
1041   bool HasOptPRefs = NumDefs > NumResults;
1042   assert((!HasOptPRefs || !HasPhysRegOuts) &&
1043          "Unable to cope with optional defs and phys regs defs!");
1044   unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0;
1045   for (unsigned i = NumSkip; i != NodeOperands; ++i)
1046     AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II,
1047                VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned);
1048 
1049   // Add scratch registers as implicit def and early clobber
1050   if (ScratchRegs)
1051     for (unsigned i = 0; ScratchRegs[i]; ++i)
1052       MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine |
1053                                  RegState::EarlyClobber);
1054 
1055   // Set the memory reference descriptions of this instruction now that it is
1056   // part of the function.
1057   MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands());
1058 
1059   // Insert the instruction into position in the block. This needs to
1060   // happen before any custom inserter hook is called so that the
1061   // hook knows where in the block to insert the replacement code.
1062   MBB->insert(InsertPos, MIB);
1063 
1064   // The MachineInstr may also define physregs instead of virtregs.  These
1065   // physreg values can reach other instructions in different ways:
1066   //
1067   // 1. When there is a use of a Node value beyond the explicitly defined
1068   //    virtual registers, we emit a CopyFromReg for one of the implicitly
1069   //    defined physregs.  This only happens when HasPhysRegOuts is true.
1070   //
1071   // 2. A CopyFromReg reading a physreg may be glued to this instruction.
1072   //
1073   // 3. A glued instruction may implicitly use a physreg.
1074   //
1075   // 4. A glued instruction may use a RegisterSDNode operand.
1076   //
1077   // Collect all the used physreg defs, and make sure that any unused physreg
1078   // defs are marked as dead.
1079   SmallVector<Register, 8> UsedRegs;
1080 
1081   // Additional results must be physical register defs.
1082   if (HasPhysRegOuts) {
1083     for (unsigned i = NumDefs; i < NumResults; ++i) {
1084       Register Reg = II.getImplicitDefs()[i - NumDefs];
1085       if (!Node->hasAnyUseOfValue(i))
1086         continue;
1087       // This implicitly defined physreg has a use.
1088       UsedRegs.push_back(Reg);
1089       EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap);
1090     }
1091   }
1092 
1093   // Scan the glue chain for any used physregs.
1094   if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) {
1095     for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) {
1096       if (F->getOpcode() == ISD::CopyFromReg) {
1097         UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg());
1098         continue;
1099       } else if (F->getOpcode() == ISD::CopyToReg) {
1100         // Skip CopyToReg nodes that are internal to the glue chain.
1101         continue;
1102       }
1103       // Collect declared implicit uses.
1104       const MCInstrDesc &MCID = TII->get(F->getMachineOpcode());
1105       UsedRegs.append(MCID.getImplicitUses(),
1106                       MCID.getImplicitUses() + MCID.getNumImplicitUses());
1107       // In addition to declared implicit uses, we must also check for
1108       // direct RegisterSDNode operands.
1109       for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i)
1110         if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) {
1111           Register Reg = R->getReg();
1112           if (Reg.isPhysical())
1113             UsedRegs.push_back(Reg);
1114         }
1115     }
1116   }
1117 
1118   // Finally mark unused registers as dead.
1119   if (!UsedRegs.empty() || II.getImplicitDefs() || II.hasOptionalDef())
1120     MIB->setPhysRegsDeadExcept(UsedRegs, *TRI);
1121 
1122   // STATEPOINT is too 'dynamic' to have meaningful machine description.
1123   // We have to manually tie operands.
1124   if (Opc == TargetOpcode::STATEPOINT && NumDefs > 0) {
1125     assert(!HasPhysRegOuts && "STATEPOINT mishandled");
1126     MachineInstr *MI = MIB;
1127     unsigned Def = 0;
1128     int First = StatepointOpers(MI).getFirstGCPtrIdx();
1129     assert(First > 0 && "Statepoint has Defs but no GC ptr list");
1130     unsigned Use = (unsigned)First;
1131     while (Def < NumDefs) {
1132       if (MI->getOperand(Use).isReg())
1133         MI->tieOperands(Def++, Use);
1134       Use = StackMaps::getNextMetaArgIdx(MI, Use);
1135     }
1136   }
1137 
1138   // Run post-isel target hook to adjust this instruction if needed.
1139   if (II.hasPostISelHook())
1140     TLI->AdjustInstrPostInstrSelection(*MIB, Node);
1141 }
1142 
1143 /// EmitSpecialNode - Generate machine code for a target-independent node and
1144 /// needed dependencies.
1145 void InstrEmitter::
1146 EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned,
1147                 DenseMap<SDValue, Register> &VRBaseMap) {
1148   switch (Node->getOpcode()) {
1149   default:
1150 #ifndef NDEBUG
1151     Node->dump();
1152 #endif
1153     llvm_unreachable("This target-independent node should have been selected!");
1154   case ISD::EntryToken:
1155     llvm_unreachable("EntryToken should have been excluded from the schedule!");
1156   case ISD::MERGE_VALUES:
1157   case ISD::TokenFactor: // fall thru
1158     break;
1159   case ISD::CopyToReg: {
1160     Register DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1161     SDValue SrcVal = Node->getOperand(2);
1162     if (Register::isVirtualRegister(DestReg) && SrcVal.isMachineOpcode() &&
1163         SrcVal.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
1164       // Instead building a COPY to that vreg destination, build an
1165       // IMPLICIT_DEF instruction instead.
1166       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1167               TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
1168       break;
1169     }
1170     Register SrcReg;
1171     if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
1172       SrcReg = R->getReg();
1173     else
1174       SrcReg = getVR(SrcVal, VRBaseMap);
1175 
1176     if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
1177       break;
1178 
1179     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
1180             DestReg).addReg(SrcReg);
1181     break;
1182   }
1183   case ISD::CopyFromReg: {
1184     unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1185     EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap);
1186     break;
1187   }
1188   case ISD::EH_LABEL:
1189   case ISD::ANNOTATION_LABEL: {
1190     unsigned Opc = (Node->getOpcode() == ISD::EH_LABEL)
1191                        ? TargetOpcode::EH_LABEL
1192                        : TargetOpcode::ANNOTATION_LABEL;
1193     MCSymbol *S = cast<LabelSDNode>(Node)->getLabel();
1194     BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1195             TII->get(Opc)).addSym(S);
1196     break;
1197   }
1198 
1199   case ISD::LIFETIME_START:
1200   case ISD::LIFETIME_END: {
1201     unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START)
1202                          ? TargetOpcode::LIFETIME_START
1203                          : TargetOpcode::LIFETIME_END;
1204     auto *FI = cast<FrameIndexSDNode>(Node->getOperand(1));
1205     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1206     .addFrameIndex(FI->getIndex());
1207     break;
1208   }
1209 
1210   case ISD::PSEUDO_PROBE: {
1211     unsigned TarOp = TargetOpcode::PSEUDO_PROBE;
1212     auto Guid = cast<PseudoProbeSDNode>(Node)->getGuid();
1213     auto Index = cast<PseudoProbeSDNode>(Node)->getIndex();
1214     auto Attr = cast<PseudoProbeSDNode>(Node)->getAttributes();
1215 
1216     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1217         .addImm(Guid)
1218         .addImm(Index)
1219         .addImm((uint8_t)PseudoProbeType::Block)
1220         .addImm(Attr);
1221     break;
1222   }
1223 
1224   case ISD::INLINEASM:
1225   case ISD::INLINEASM_BR: {
1226     unsigned NumOps = Node->getNumOperands();
1227     if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1228       --NumOps;  // Ignore the glue operand.
1229 
1230     // Create the inline asm machine instruction.
1231     unsigned TgtOpc = Node->getOpcode() == ISD::INLINEASM_BR
1232                           ? TargetOpcode::INLINEASM_BR
1233                           : TargetOpcode::INLINEASM;
1234     MachineInstrBuilder MIB =
1235         BuildMI(*MF, Node->getDebugLoc(), TII->get(TgtOpc));
1236 
1237     // Add the asm string as an external symbol operand.
1238     SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString);
1239     const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol();
1240     MIB.addExternalSymbol(AsmStr);
1241 
1242     // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore
1243     // bits.
1244     int64_t ExtraInfo =
1245       cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))->
1246                           getZExtValue();
1247     MIB.addImm(ExtraInfo);
1248 
1249     // Remember to operand index of the group flags.
1250     SmallVector<unsigned, 8> GroupIdx;
1251 
1252     // Remember registers that are part of early-clobber defs.
1253     SmallVector<unsigned, 8> ECRegs;
1254 
1255     // Add all of the operand registers to the instruction.
1256     for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1257       unsigned Flags =
1258         cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1259       const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1260 
1261       GroupIdx.push_back(MIB->getNumOperands());
1262       MIB.addImm(Flags);
1263       ++i;  // Skip the ID value.
1264 
1265       switch (InlineAsm::getKind(Flags)) {
1266       default: llvm_unreachable("Bad flags!");
1267         case InlineAsm::Kind_RegDef:
1268         for (unsigned j = 0; j != NumVals; ++j, ++i) {
1269           unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1270           // FIXME: Add dead flags for physical and virtual registers defined.
1271           // For now, mark physical register defs as implicit to help fast
1272           // regalloc. This makes inline asm look a lot like calls.
1273           MIB.addReg(Reg,
1274                      RegState::Define |
1275                          getImplRegState(Register::isPhysicalRegister(Reg)));
1276         }
1277         break;
1278       case InlineAsm::Kind_RegDefEarlyClobber:
1279       case InlineAsm::Kind_Clobber:
1280         for (unsigned j = 0; j != NumVals; ++j, ++i) {
1281           unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1282           MIB.addReg(Reg,
1283                      RegState::Define | RegState::EarlyClobber |
1284                          getImplRegState(Register::isPhysicalRegister(Reg)));
1285           ECRegs.push_back(Reg);
1286         }
1287         break;
1288       case InlineAsm::Kind_RegUse:  // Use of register.
1289       case InlineAsm::Kind_Imm:  // Immediate.
1290       case InlineAsm::Kind_Mem:  // Addressing mode.
1291         // The addressing mode has been selected, just add all of the
1292         // operands to the machine instruction.
1293         for (unsigned j = 0; j != NumVals; ++j, ++i)
1294           AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap,
1295                      /*IsDebug=*/false, IsClone, IsCloned);
1296 
1297         // Manually set isTied bits.
1298         if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) {
1299           unsigned DefGroup = 0;
1300           if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) {
1301             unsigned DefIdx = GroupIdx[DefGroup] + 1;
1302             unsigned UseIdx = GroupIdx.back() + 1;
1303             for (unsigned j = 0; j != NumVals; ++j)
1304               MIB->tieOperands(DefIdx + j, UseIdx + j);
1305           }
1306         }
1307         break;
1308       }
1309     }
1310 
1311     // GCC inline assembly allows input operands to also be early-clobber
1312     // output operands (so long as the operand is written only after it's
1313     // used), but this does not match the semantics of our early-clobber flag.
1314     // If an early-clobber operand register is also an input operand register,
1315     // then remove the early-clobber flag.
1316     for (unsigned Reg : ECRegs) {
1317       if (MIB->readsRegister(Reg, TRI)) {
1318         MachineOperand *MO =
1319             MIB->findRegisterDefOperand(Reg, false, false, TRI);
1320         assert(MO && "No def operand for clobbered register?");
1321         MO->setIsEarlyClobber(false);
1322       }
1323     }
1324 
1325     // Get the mdnode from the asm if it exists and add it to the instruction.
1326     SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode);
1327     const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
1328     if (MD)
1329       MIB.addMetadata(MD);
1330 
1331     MBB->insert(InsertPos, MIB);
1332     break;
1333   }
1334   }
1335 }
1336 
1337 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting
1338 /// at the given position in the given block.
1339 InstrEmitter::InstrEmitter(const TargetMachine &TM, MachineBasicBlock *mbb,
1340                            MachineBasicBlock::iterator insertpos,
1341                            bool UseInstrRefDebugInfo)
1342     : MF(mbb->getParent()), MRI(&MF->getRegInfo()),
1343       TII(MF->getSubtarget().getInstrInfo()),
1344       TRI(MF->getSubtarget().getRegisterInfo()),
1345       TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb),
1346       InsertPos(insertpos) {
1347   EmitDebugInstrRefs = UseInstrRefDebugInfo;
1348 }
1349