1 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the Emit routines for the SelectionDAG class, which creates
10 // MachineInstrs based on the decisions of the SelectionDAG instruction
11 // selection.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "InstrEmitter.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/BinaryFormat/Dwarf.h"
19 #include "llvm/CodeGen/MachineConstantPool.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SelectionDAG.h"
24 #include "llvm/CodeGen/StackMaps.h"
25 #include "llvm/CodeGen/TargetInstrInfo.h"
26 #include "llvm/CodeGen/TargetLowering.h"
27 #include "llvm/CodeGen/TargetSubtargetInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DebugInfo.h"
30 #include "llvm/IR/PseudoProbe.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Target/TargetMachine.h"
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "instr-emitter"
38 
39 /// MinRCSize - Smallest register class we allow when constraining virtual
40 /// registers.  If satisfying all register class constraints would require
41 /// using a smaller register class, emit a COPY to a new virtual register
42 /// instead.
43 const unsigned MinRCSize = 4;
44 
45 /// CountResults - The results of target nodes have register or immediate
46 /// operands first, then an optional chain, and optional glue operands (which do
47 /// not go into the resulting MachineInstr).
48 unsigned InstrEmitter::CountResults(SDNode *Node) {
49   unsigned N = Node->getNumValues();
50   while (N && Node->getValueType(N - 1) == MVT::Glue)
51     --N;
52   if (N && Node->getValueType(N - 1) == MVT::Other)
53     --N;    // Skip over chain result.
54   return N;
55 }
56 
57 /// countOperands - The inputs to target nodes have any actual inputs first,
58 /// followed by an optional chain operand, then an optional glue operand.
59 /// Compute the number of actual operands that will go into the resulting
60 /// MachineInstr.
61 ///
62 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding
63 /// the chain and glue. These operands may be implicit on the machine instr.
64 static unsigned countOperands(SDNode *Node, unsigned NumExpUses,
65                               unsigned &NumImpUses) {
66   unsigned N = Node->getNumOperands();
67   while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
68     --N;
69   if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
70     --N; // Ignore chain if it exists.
71 
72   // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses.
73   NumImpUses = N - NumExpUses;
74   for (unsigned I = N; I > NumExpUses; --I) {
75     if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1)))
76       continue;
77     if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1)))
78       if (Register::isPhysicalRegister(RN->getReg()))
79         continue;
80     NumImpUses = N - I;
81     break;
82   }
83 
84   return N;
85 }
86 
87 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
88 /// implicit physical register output.
89 void InstrEmitter::
90 EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned,
91                 Register SrcReg, DenseMap<SDValue, Register> &VRBaseMap) {
92   Register VRBase;
93   if (SrcReg.isVirtual()) {
94     // Just use the input register directly!
95     SDValue Op(Node, ResNo);
96     if (IsClone)
97       VRBaseMap.erase(Op);
98     bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
99     (void)isNew; // Silence compiler warning.
100     assert(isNew && "Node emitted out of order - early");
101     return;
102   }
103 
104   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
105   // the CopyToReg'd destination register instead of creating a new vreg.
106   bool MatchReg = true;
107   const TargetRegisterClass *UseRC = nullptr;
108   MVT VT = Node->getSimpleValueType(ResNo);
109 
110   // Stick to the preferred register classes for legal types.
111   if (TLI->isTypeLegal(VT))
112     UseRC = TLI->getRegClassFor(VT, Node->isDivergent());
113 
114   if (!IsClone && !IsCloned)
115     for (SDNode *User : Node->uses()) {
116       bool Match = true;
117       if (User->getOpcode() == ISD::CopyToReg &&
118           User->getOperand(2).getNode() == Node &&
119           User->getOperand(2).getResNo() == ResNo) {
120         Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
121         if (DestReg.isVirtual()) {
122           VRBase = DestReg;
123           Match = false;
124         } else if (DestReg != SrcReg)
125           Match = false;
126       } else {
127         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
128           SDValue Op = User->getOperand(i);
129           if (Op.getNode() != Node || Op.getResNo() != ResNo)
130             continue;
131           MVT VT = Node->getSimpleValueType(Op.getResNo());
132           if (VT == MVT::Other || VT == MVT::Glue)
133             continue;
134           Match = false;
135           if (User->isMachineOpcode()) {
136             const MCInstrDesc &II = TII->get(User->getMachineOpcode());
137             const TargetRegisterClass *RC = nullptr;
138             if (i+II.getNumDefs() < II.getNumOperands()) {
139               RC = TRI->getAllocatableClass(
140                 TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF));
141             }
142             if (!UseRC)
143               UseRC = RC;
144             else if (RC) {
145               const TargetRegisterClass *ComRC =
146                 TRI->getCommonSubClass(UseRC, RC);
147               // If multiple uses expect disjoint register classes, we emit
148               // copies in AddRegisterOperand.
149               if (ComRC)
150                 UseRC = ComRC;
151             }
152           }
153         }
154       }
155       MatchReg &= Match;
156       if (VRBase)
157         break;
158     }
159 
160   const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr;
161   SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT);
162 
163   // Figure out the register class to create for the destreg.
164   if (VRBase) {
165     DstRC = MRI->getRegClass(VRBase);
166   } else if (UseRC) {
167     assert(TRI->isTypeLegalForClass(*UseRC, VT) &&
168            "Incompatible phys register def and uses!");
169     DstRC = UseRC;
170   } else
171     DstRC = SrcRC;
172 
173   // If all uses are reading from the src physical register and copying the
174   // register is either impossible or very expensive, then don't create a copy.
175   if (MatchReg && SrcRC->getCopyCost() < 0) {
176     VRBase = SrcReg;
177   } else {
178     // Create the reg, emit the copy.
179     VRBase = MRI->createVirtualRegister(DstRC);
180     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
181             VRBase).addReg(SrcReg);
182   }
183 
184   SDValue Op(Node, ResNo);
185   if (IsClone)
186     VRBaseMap.erase(Op);
187   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
188   (void)isNew; // Silence compiler warning.
189   assert(isNew && "Node emitted out of order - early");
190 }
191 
192 void InstrEmitter::CreateVirtualRegisters(SDNode *Node,
193                                        MachineInstrBuilder &MIB,
194                                        const MCInstrDesc &II,
195                                        bool IsClone, bool IsCloned,
196                                        DenseMap<SDValue, Register> &VRBaseMap) {
197   assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF &&
198          "IMPLICIT_DEF should have been handled as a special case elsewhere!");
199 
200   unsigned NumResults = CountResults(Node);
201   bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
202                              II.isVariadic() && II.variadicOpsAreDefs();
203   unsigned NumVRegs = HasVRegVariadicDefs ? NumResults : II.getNumDefs();
204   if (Node->getMachineOpcode() == TargetOpcode::STATEPOINT)
205     NumVRegs = NumResults;
206   for (unsigned i = 0; i < NumVRegs; ++i) {
207     // If the specific node value is only used by a CopyToReg and the dest reg
208     // is a vreg in the same register class, use the CopyToReg'd destination
209     // register instead of creating a new vreg.
210     Register VRBase;
211     const TargetRegisterClass *RC =
212       TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF));
213     // Always let the value type influence the used register class. The
214     // constraints on the instruction may be too lax to represent the value
215     // type correctly. For example, a 64-bit float (X86::FR64) can't live in
216     // the 32-bit float super-class (X86::FR32).
217     if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) {
218       const TargetRegisterClass *VTRC = TLI->getRegClassFor(
219           Node->getSimpleValueType(i),
220           (Node->isDivergent() || (RC && TRI->isDivergentRegClass(RC))));
221       if (RC)
222         VTRC = TRI->getCommonSubClass(RC, VTRC);
223       if (VTRC)
224         RC = VTRC;
225     }
226 
227     if (II.OpInfo != nullptr && II.OpInfo[i].isOptionalDef()) {
228       // Optional def must be a physical register.
229       VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg();
230       assert(VRBase.isPhysical());
231       MIB.addReg(VRBase, RegState::Define);
232     }
233 
234     if (!VRBase && !IsClone && !IsCloned)
235       for (SDNode *User : Node->uses()) {
236         if (User->getOpcode() == ISD::CopyToReg &&
237             User->getOperand(2).getNode() == Node &&
238             User->getOperand(2).getResNo() == i) {
239           unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
240           if (Register::isVirtualRegister(Reg)) {
241             const TargetRegisterClass *RegRC = MRI->getRegClass(Reg);
242             if (RegRC == RC) {
243               VRBase = Reg;
244               MIB.addReg(VRBase, RegState::Define);
245               break;
246             }
247           }
248         }
249       }
250 
251     // Create the result registers for this node and add the result regs to
252     // the machine instruction.
253     if (VRBase == 0) {
254       assert(RC && "Isn't a register operand!");
255       VRBase = MRI->createVirtualRegister(RC);
256       MIB.addReg(VRBase, RegState::Define);
257     }
258 
259     // If this def corresponds to a result of the SDNode insert the VRBase into
260     // the lookup map.
261     if (i < NumResults) {
262       SDValue Op(Node, i);
263       if (IsClone)
264         VRBaseMap.erase(Op);
265       bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
266       (void)isNew; // Silence compiler warning.
267       assert(isNew && "Node emitted out of order - early");
268     }
269   }
270 }
271 
272 /// getVR - Return the virtual register corresponding to the specified result
273 /// of the specified node.
274 Register InstrEmitter::getVR(SDValue Op,
275                              DenseMap<SDValue, Register> &VRBaseMap) {
276   if (Op.isMachineOpcode() &&
277       Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
278     // Add an IMPLICIT_DEF instruction before every use.
279     // IMPLICIT_DEF can produce any type of result so its MCInstrDesc
280     // does not include operand register class info.
281     const TargetRegisterClass *RC = TLI->getRegClassFor(
282         Op.getSimpleValueType(), Op.getNode()->isDivergent());
283     Register VReg = MRI->createVirtualRegister(RC);
284     BuildMI(*MBB, InsertPos, Op.getDebugLoc(),
285             TII->get(TargetOpcode::IMPLICIT_DEF), VReg);
286     return VReg;
287   }
288 
289   DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
290   assert(I != VRBaseMap.end() && "Node emitted out of order - late");
291   return I->second;
292 }
293 
294 
295 /// AddRegisterOperand - Add the specified register as an operand to the
296 /// specified machine instr. Insert register copies if the register is
297 /// not in the required register class.
298 void
299 InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB,
300                                  SDValue Op,
301                                  unsigned IIOpNum,
302                                  const MCInstrDesc *II,
303                                  DenseMap<SDValue, Register> &VRBaseMap,
304                                  bool IsDebug, bool IsClone, bool IsCloned) {
305   assert(Op.getValueType() != MVT::Other &&
306          Op.getValueType() != MVT::Glue &&
307          "Chain and glue operands should occur at end of operand list!");
308   // Get/emit the operand.
309   Register VReg = getVR(Op, VRBaseMap);
310 
311   const MCInstrDesc &MCID = MIB->getDesc();
312   bool isOptDef = IIOpNum < MCID.getNumOperands() &&
313     MCID.OpInfo[IIOpNum].isOptionalDef();
314 
315   // If the instruction requires a register in a different class, create
316   // a new virtual register and copy the value into it, but first attempt to
317   // shrink VReg's register class within reason.  For example, if VReg == GR32
318   // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP.
319   if (II) {
320     const TargetRegisterClass *OpRC = nullptr;
321     if (IIOpNum < II->getNumOperands())
322       OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF);
323 
324     if (OpRC) {
325       const TargetRegisterClass *ConstrainedRC
326         = MRI->constrainRegClass(VReg, OpRC, MinRCSize);
327       if (!ConstrainedRC) {
328         OpRC = TRI->getAllocatableClass(OpRC);
329         assert(OpRC && "Constraints cannot be fulfilled for allocation");
330         Register NewVReg = MRI->createVirtualRegister(OpRC);
331         BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
332                 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
333         VReg = NewVReg;
334       } else {
335         assert(ConstrainedRC->isAllocatable() &&
336            "Constraining an allocatable VReg produced an unallocatable class?");
337       }
338     }
339   }
340 
341   // If this value has only one use, that use is a kill. This is a
342   // conservative approximation. InstrEmitter does trivial coalescing
343   // with CopyFromReg nodes, so don't emit kill flags for them.
344   // Avoid kill flags on Schedule cloned nodes, since there will be
345   // multiple uses.
346   // Tied operands are never killed, so we need to check that. And that
347   // means we need to determine the index of the operand.
348   bool isKill = Op.hasOneUse() &&
349                 Op.getNode()->getOpcode() != ISD::CopyFromReg &&
350                 !IsDebug &&
351                 !(IsClone || IsCloned);
352   if (isKill) {
353     unsigned Idx = MIB->getNumOperands();
354     while (Idx > 0 &&
355            MIB->getOperand(Idx-1).isReg() &&
356            MIB->getOperand(Idx-1).isImplicit())
357       --Idx;
358     bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1;
359     if (isTied)
360       isKill = false;
361   }
362 
363   MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) |
364              getDebugRegState(IsDebug));
365 }
366 
367 /// AddOperand - Add the specified operand to the specified machine instr.  II
368 /// specifies the instruction information for the node, and IIOpNum is the
369 /// operand number (in the II) that we are adding.
370 void InstrEmitter::AddOperand(MachineInstrBuilder &MIB,
371                               SDValue Op,
372                               unsigned IIOpNum,
373                               const MCInstrDesc *II,
374                               DenseMap<SDValue, Register> &VRBaseMap,
375                               bool IsDebug, bool IsClone, bool IsCloned) {
376   if (Op.isMachineOpcode()) {
377     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
378                        IsDebug, IsClone, IsCloned);
379   } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
380     MIB.addImm(C->getSExtValue());
381   } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
382     MIB.addFPImm(F->getConstantFPValue());
383   } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
384     Register VReg = R->getReg();
385     MVT OpVT = Op.getSimpleValueType();
386     const TargetRegisterClass *IIRC =
387         II ? TRI->getAllocatableClass(TII->getRegClass(*II, IIOpNum, TRI, *MF))
388            : nullptr;
389     const TargetRegisterClass *OpRC =
390         TLI->isTypeLegal(OpVT)
391             ? TLI->getRegClassFor(OpVT,
392                                   Op.getNode()->isDivergent() ||
393                                       (IIRC && TRI->isDivergentRegClass(IIRC)))
394             : nullptr;
395 
396     if (OpRC && IIRC && OpRC != IIRC && Register::isVirtualRegister(VReg)) {
397       Register NewVReg = MRI->createVirtualRegister(IIRC);
398       BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
399                TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
400       VReg = NewVReg;
401     }
402     // Turn additional physreg operands into implicit uses on non-variadic
403     // instructions. This is used by call and return instructions passing
404     // arguments in registers.
405     bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic());
406     MIB.addReg(VReg, getImplRegState(Imp));
407   } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) {
408     MIB.addRegMask(RM->getRegMask());
409   } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
410     MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(),
411                          TGA->getTargetFlags());
412   } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) {
413     MIB.addMBB(BBNode->getBasicBlock());
414   } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
415     MIB.addFrameIndex(FI->getIndex());
416   } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
417     MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags());
418   } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
419     int Offset = CP->getOffset();
420     Align Alignment = CP->getAlign();
421 
422     unsigned Idx;
423     MachineConstantPool *MCP = MF->getConstantPool();
424     if (CP->isMachineConstantPoolEntry())
425       Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Alignment);
426     else
427       Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Alignment);
428     MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags());
429   } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
430     MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags());
431   } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) {
432     MIB.addSym(SymNode->getMCSymbol());
433   } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) {
434     MIB.addBlockAddress(BA->getBlockAddress(),
435                         BA->getOffset(),
436                         BA->getTargetFlags());
437   } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) {
438     MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags());
439   } else {
440     assert(Op.getValueType() != MVT::Other &&
441            Op.getValueType() != MVT::Glue &&
442            "Chain and glue operands should occur at end of operand list!");
443     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
444                        IsDebug, IsClone, IsCloned);
445   }
446 }
447 
448 Register InstrEmitter::ConstrainForSubReg(Register VReg, unsigned SubIdx,
449                                           MVT VT, bool isDivergent, const DebugLoc &DL) {
450   const TargetRegisterClass *VRC = MRI->getRegClass(VReg);
451   const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx);
452 
453   // RC is a sub-class of VRC that supports SubIdx.  Try to constrain VReg
454   // within reason.
455   if (RC && RC != VRC)
456     RC = MRI->constrainRegClass(VReg, RC, MinRCSize);
457 
458   // VReg has been adjusted.  It can be used with SubIdx operands now.
459   if (RC)
460     return VReg;
461 
462   // VReg couldn't be reasonably constrained.  Emit a COPY to a new virtual
463   // register instead.
464   RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT, isDivergent), SubIdx);
465   assert(RC && "No legal register class for VT supports that SubIdx");
466   Register NewReg = MRI->createVirtualRegister(RC);
467   BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg)
468     .addReg(VReg);
469   return NewReg;
470 }
471 
472 /// EmitSubregNode - Generate machine code for subreg nodes.
473 ///
474 void InstrEmitter::EmitSubregNode(SDNode *Node,
475                                   DenseMap<SDValue, Register> &VRBaseMap,
476                                   bool IsClone, bool IsCloned) {
477   Register VRBase;
478   unsigned Opc = Node->getMachineOpcode();
479 
480   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
481   // the CopyToReg'd destination register instead of creating a new vreg.
482   for (SDNode *User : Node->uses()) {
483     if (User->getOpcode() == ISD::CopyToReg &&
484         User->getOperand(2).getNode() == Node) {
485       Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
486       if (DestReg.isVirtual()) {
487         VRBase = DestReg;
488         break;
489       }
490     }
491   }
492 
493   if (Opc == TargetOpcode::EXTRACT_SUBREG) {
494     // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub.  There are no
495     // constraints on the %dst register, COPY can target all legal register
496     // classes.
497     unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
498     const TargetRegisterClass *TRC =
499       TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
500 
501     Register Reg;
502     MachineInstr *DefMI;
503     RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0));
504     if (R && Register::isPhysicalRegister(R->getReg())) {
505       Reg = R->getReg();
506       DefMI = nullptr;
507     } else {
508       Reg = R ? R->getReg() : getVR(Node->getOperand(0), VRBaseMap);
509       DefMI = MRI->getVRegDef(Reg);
510     }
511 
512     Register SrcReg, DstReg;
513     unsigned DefSubIdx;
514     if (DefMI &&
515         TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) &&
516         SubIdx == DefSubIdx &&
517         TRC == MRI->getRegClass(SrcReg)) {
518       // Optimize these:
519       // r1025 = s/zext r1024, 4
520       // r1026 = extract_subreg r1025, 4
521       // to a copy
522       // r1026 = copy r1024
523       VRBase = MRI->createVirtualRegister(TRC);
524       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
525               TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg);
526       MRI->clearKillFlags(SrcReg);
527     } else {
528       // Reg may not support a SubIdx sub-register, and we may need to
529       // constrain its register class or issue a COPY to a compatible register
530       // class.
531       if (Reg.isVirtual())
532         Reg = ConstrainForSubReg(Reg, SubIdx,
533                                  Node->getOperand(0).getSimpleValueType(),
534                                  Node->isDivergent(), Node->getDebugLoc());
535       // Create the destreg if it is missing.
536       if (!VRBase)
537         VRBase = MRI->createVirtualRegister(TRC);
538 
539       // Create the extract_subreg machine instruction.
540       MachineInstrBuilder CopyMI =
541           BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
542                   TII->get(TargetOpcode::COPY), VRBase);
543       if (Reg.isVirtual())
544         CopyMI.addReg(Reg, 0, SubIdx);
545       else
546         CopyMI.addReg(TRI->getSubReg(Reg, SubIdx));
547     }
548   } else if (Opc == TargetOpcode::INSERT_SUBREG ||
549              Opc == TargetOpcode::SUBREG_TO_REG) {
550     SDValue N0 = Node->getOperand(0);
551     SDValue N1 = Node->getOperand(1);
552     SDValue N2 = Node->getOperand(2);
553     unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue();
554 
555     // Figure out the register class to create for the destreg.  It should be
556     // the largest legal register class supporting SubIdx sub-registers.
557     // RegisterCoalescer will constrain it further if it decides to eliminate
558     // the INSERT_SUBREG instruction.
559     //
560     //   %dst = INSERT_SUBREG %src, %sub, SubIdx
561     //
562     // is lowered by TwoAddressInstructionPass to:
563     //
564     //   %dst = COPY %src
565     //   %dst:SubIdx = COPY %sub
566     //
567     // There is no constraint on the %src register class.
568     //
569     const TargetRegisterClass *SRC =
570         TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
571     SRC = TRI->getSubClassWithSubReg(SRC, SubIdx);
572     assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG");
573 
574     if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase)))
575       VRBase = MRI->createVirtualRegister(SRC);
576 
577     // Create the insert_subreg or subreg_to_reg machine instruction.
578     MachineInstrBuilder MIB =
579       BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase);
580 
581     // If creating a subreg_to_reg, then the first input operand
582     // is an implicit value immediate, otherwise it's a register
583     if (Opc == TargetOpcode::SUBREG_TO_REG) {
584       const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
585       MIB.addImm(SD->getZExtValue());
586     } else
587       AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
588                  IsClone, IsCloned);
589     // Add the subregister being inserted
590     AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
591                IsClone, IsCloned);
592     MIB.addImm(SubIdx);
593     MBB->insert(InsertPos, MIB);
594   } else
595     llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");
596 
597   SDValue Op(Node, 0);
598   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
599   (void)isNew; // Silence compiler warning.
600   assert(isNew && "Node emitted out of order - early");
601 }
602 
603 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
604 /// COPY_TO_REGCLASS is just a normal copy, except that the destination
605 /// register is constrained to be in a particular register class.
606 ///
607 void
608 InstrEmitter::EmitCopyToRegClassNode(SDNode *Node,
609                                      DenseMap<SDValue, Register> &VRBaseMap) {
610   unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
611 
612   // Create the new VReg in the destination class and emit a copy.
613   unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
614   const TargetRegisterClass *DstRC =
615     TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx));
616   Register NewVReg = MRI->createVirtualRegister(DstRC);
617   BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
618     NewVReg).addReg(VReg);
619 
620   SDValue Op(Node, 0);
621   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
622   (void)isNew; // Silence compiler warning.
623   assert(isNew && "Node emitted out of order - early");
624 }
625 
626 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
627 ///
628 void InstrEmitter::EmitRegSequence(SDNode *Node,
629                                   DenseMap<SDValue, Register> &VRBaseMap,
630                                   bool IsClone, bool IsCloned) {
631   unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
632   const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
633   Register NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC));
634   const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
635   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg);
636   unsigned NumOps = Node->getNumOperands();
637   // If the input pattern has a chain, then the root of the corresponding
638   // output pattern will get a chain as well. This can happen to be a
639   // REG_SEQUENCE (which is not "guarded" by countOperands/CountResults).
640   if (NumOps && Node->getOperand(NumOps-1).getValueType() == MVT::Other)
641     --NumOps; // Ignore chain if it exists.
642 
643   assert((NumOps & 1) == 1 &&
644          "REG_SEQUENCE must have an odd number of operands!");
645   for (unsigned i = 1; i != NumOps; ++i) {
646     SDValue Op = Node->getOperand(i);
647     if ((i & 1) == 0) {
648       RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1));
649       // Skip physical registers as they don't have a vreg to get and we'll
650       // insert copies for them in TwoAddressInstructionPass anyway.
651       if (!R || !Register::isPhysicalRegister(R->getReg())) {
652         unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue();
653         unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap);
654         const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
655         const TargetRegisterClass *SRC =
656         TRI->getMatchingSuperRegClass(RC, TRC, SubIdx);
657         if (SRC && SRC != RC) {
658           MRI->setRegClass(NewVReg, SRC);
659           RC = SRC;
660         }
661       }
662     }
663     AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false,
664                IsClone, IsCloned);
665   }
666 
667   MBB->insert(InsertPos, MIB);
668   SDValue Op(Node, 0);
669   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
670   (void)isNew; // Silence compiler warning.
671   assert(isNew && "Node emitted out of order - early");
672 }
673 
674 /// EmitDbgValue - Generate machine instruction for a dbg_value node.
675 ///
676 MachineInstr *
677 InstrEmitter::EmitDbgValue(SDDbgValue *SD,
678                            DenseMap<SDValue, Register> &VRBaseMap) {
679   MDNode *Var = SD->getVariable();
680   MDNode *Expr = SD->getExpression();
681   DebugLoc DL = SD->getDebugLoc();
682   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
683          "Expected inlined-at fields to agree");
684 
685   SD->setIsEmitted();
686 
687   ArrayRef<SDDbgOperand> LocationOps = SD->getLocationOps();
688   assert(!LocationOps.empty() && "dbg_value with no location operands?");
689 
690   if (SD->isInvalidated())
691     return EmitDbgNoLocation(SD);
692 
693   // Emit variadic dbg_value nodes as DBG_VALUE_LIST.
694   if (SD->isVariadic()) {
695     // DBG_VALUE_LIST := "DBG_VALUE_LIST" var, expression, loc (, loc)*
696     const MCInstrDesc &DbgValDesc = TII->get(TargetOpcode::DBG_VALUE_LIST);
697     // Build the DBG_VALUE_LIST instruction base.
698     auto MIB = BuildMI(*MF, DL, DbgValDesc);
699     MIB.addMetadata(Var);
700     MIB.addMetadata(Expr);
701     AddDbgValueLocationOps(MIB, DbgValDesc, LocationOps, VRBaseMap);
702     return &*MIB;
703   }
704 
705   // Attempt to produce a DBG_INSTR_REF if we've been asked to.
706   // We currently exclude the possibility of instruction references for
707   // variadic nodes; if at some point we enable them, this should be moved
708   // above the variadic block.
709   if (EmitDebugInstrRefs)
710     if (auto *InstrRef = EmitDbgInstrRef(SD, VRBaseMap))
711       return InstrRef;
712 
713   return EmitDbgValueFromSingleOp(SD, VRBaseMap);
714 }
715 
716 void InstrEmitter::AddDbgValueLocationOps(
717     MachineInstrBuilder &MIB, const MCInstrDesc &DbgValDesc,
718     ArrayRef<SDDbgOperand> LocationOps,
719     DenseMap<SDValue, Register> &VRBaseMap) {
720   for (const SDDbgOperand &Op : LocationOps) {
721     switch (Op.getKind()) {
722     case SDDbgOperand::FRAMEIX:
723       MIB.addFrameIndex(Op.getFrameIx());
724       break;
725     case SDDbgOperand::VREG:
726       MIB.addReg(Op.getVReg());
727       break;
728     case SDDbgOperand::SDNODE: {
729       SDValue V = SDValue(Op.getSDNode(), Op.getResNo());
730       // It's possible we replaced this SDNode with other(s) and therefore
731       // didn't generate code for it. It's better to catch these cases where
732       // they happen and transfer the debug info, but trying to guarantee that
733       // in all cases would be very fragile; this is a safeguard for any
734       // that were missed.
735       if (VRBaseMap.count(V) == 0)
736         MIB.addReg(0U); // undef
737       else
738         AddOperand(MIB, V, (*MIB).getNumOperands(), &DbgValDesc, VRBaseMap,
739                    /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false);
740     } break;
741     case SDDbgOperand::CONST: {
742       const Value *V = Op.getConst();
743       if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
744         if (CI->getBitWidth() > 64)
745           MIB.addCImm(CI);
746         else
747           MIB.addImm(CI->getSExtValue());
748       } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
749         MIB.addFPImm(CF);
750       } else if (isa<ConstantPointerNull>(V)) {
751         // Note: This assumes that all nullptr constants are zero-valued.
752         MIB.addImm(0);
753       } else {
754         // Could be an Undef. In any case insert an Undef so we can see what we
755         // dropped.
756         MIB.addReg(0U);
757       }
758     } break;
759     }
760   }
761 }
762 
763 MachineInstr *
764 InstrEmitter::EmitDbgInstrRef(SDDbgValue *SD,
765                               DenseMap<SDValue, Register> &VRBaseMap) {
766   assert(!SD->isVariadic());
767   SDDbgOperand DbgOperand = SD->getLocationOps()[0];
768   MDNode *Var = SD->getVariable();
769   DIExpression *Expr = (DIExpression*)SD->getExpression();
770   DebugLoc DL = SD->getDebugLoc();
771   const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_INSTR_REF);
772 
773   // Handle variable locations that don't actually depend on the instructions
774   // in the program: constants and stack locations.
775   if (DbgOperand.getKind() == SDDbgOperand::FRAMEIX ||
776       DbgOperand.getKind() == SDDbgOperand::CONST)
777     return EmitDbgValueFromSingleOp(SD, VRBaseMap);
778 
779   // Immediately fold any indirectness from the LLVM-IR intrinsic into the
780   // expression:
781   if (SD->isIndirect()) {
782     std::vector<uint64_t> Elts = {dwarf::DW_OP_deref};
783     Expr = DIExpression::append(Expr, Elts);
784   }
785 
786   // It may not be immediately possible to identify the MachineInstr that
787   // defines a VReg, it can depend for example on the order blocks are
788   // emitted in. When this happens, or when further analysis is needed later,
789   // produce an instruction like this:
790   //
791   //    DBG_INSTR_REF %0:gr64, 0, !123, !456
792   //
793   // i.e., point the instruction at the vreg, and patch it up later in
794   // MachineFunction::finalizeDebugInstrRefs.
795   auto EmitHalfDoneInstrRef = [&](unsigned VReg) -> MachineInstr * {
796     auto MIB = BuildMI(*MF, DL, RefII);
797     MIB.addReg(VReg);
798     MIB.addImm(0);
799     MIB.addMetadata(Var);
800     MIB.addMetadata(Expr);
801     return MIB;
802   };
803 
804   // Try to find both the defined register and the instruction defining it.
805   MachineInstr *DefMI = nullptr;
806   unsigned VReg;
807 
808   if (DbgOperand.getKind() == SDDbgOperand::VREG) {
809     VReg = DbgOperand.getVReg();
810 
811     // No definition means that block hasn't been emitted yet. Leave a vreg
812     // reference to be fixed later.
813     if (!MRI->hasOneDef(VReg))
814       return EmitHalfDoneInstrRef(VReg);
815 
816     DefMI = &*MRI->def_instr_begin(VReg);
817   } else {
818     assert(DbgOperand.getKind() == SDDbgOperand::SDNODE);
819     // Look up the corresponding VReg for the given SDNode, if any.
820     SDNode *Node = DbgOperand.getSDNode();
821     SDValue Op = SDValue(Node, DbgOperand.getResNo());
822     DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
823     // No VReg -> produce a DBG_VALUE $noreg instead.
824     if (I==VRBaseMap.end())
825       return EmitDbgNoLocation(SD);
826 
827     // Try to pick out a defining instruction at this point.
828     VReg = getVR(Op, VRBaseMap);
829 
830     // Again, if there's no instruction defining the VReg right now, fix it up
831     // later.
832     if (!MRI->hasOneDef(VReg))
833       return EmitHalfDoneInstrRef(VReg);
834 
835     DefMI = &*MRI->def_instr_begin(VReg);
836   }
837 
838   // Avoid copy like instructions: they don't define values, only move them.
839   // Leave a virtual-register reference until it can be fixed up later, to find
840   // the underlying value definition.
841   if (DefMI->isCopyLike() || TII->isCopyInstr(*DefMI))
842     return EmitHalfDoneInstrRef(VReg);
843 
844   auto MIB = BuildMI(*MF, DL, RefII);
845 
846   // Find the operand number which defines the specified VReg.
847   unsigned OperandIdx = 0;
848   for (const auto &MO : DefMI->operands()) {
849     if (MO.isReg() && MO.isDef() && MO.getReg() == VReg)
850       break;
851     ++OperandIdx;
852   }
853   assert(OperandIdx < DefMI->getNumOperands());
854 
855   // Make the DBG_INSTR_REF refer to that instruction, and that operand.
856   unsigned InstrNum = DefMI->getDebugInstrNum();
857   MIB.addImm(InstrNum);
858   MIB.addImm(OperandIdx);
859   MIB.addMetadata(Var);
860   MIB.addMetadata(Expr);
861   return &*MIB;
862 }
863 
864 MachineInstr *InstrEmitter::EmitDbgNoLocation(SDDbgValue *SD) {
865   // An invalidated SDNode must generate an undef DBG_VALUE: although the
866   // original value is no longer computed, earlier DBG_VALUEs live ranges
867   // must not leak into later code.
868   MDNode *Var = SD->getVariable();
869   MDNode *Expr = SD->getExpression();
870   DebugLoc DL = SD->getDebugLoc();
871   auto MIB = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE));
872   MIB.addReg(0U);
873   MIB.addReg(0U);
874   MIB.addMetadata(Var);
875   MIB.addMetadata(Expr);
876   return &*MIB;
877 }
878 
879 MachineInstr *
880 InstrEmitter::EmitDbgValueFromSingleOp(SDDbgValue *SD,
881                                        DenseMap<SDValue, Register> &VRBaseMap) {
882   MDNode *Var = SD->getVariable();
883   DIExpression *Expr = SD->getExpression();
884   DebugLoc DL = SD->getDebugLoc();
885   const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE);
886 
887   assert(SD->getLocationOps().size() == 1 &&
888          "Non variadic dbg_value should have only one location op");
889 
890   // See about constant-folding the expression.
891   // Copy the location operand in case we replace it.
892   SmallVector<SDDbgOperand, 1> LocationOps(1, SD->getLocationOps()[0]);
893   if (Expr && LocationOps[0].getKind() == SDDbgOperand::CONST) {
894     const Value *V = LocationOps[0].getConst();
895     if (auto *C = dyn_cast<ConstantInt>(V)) {
896       std::tie(Expr, C) = Expr->constantFold(C);
897       LocationOps[0] = SDDbgOperand::fromConst(C);
898     }
899   }
900 
901   // Emit non-variadic dbg_value nodes as DBG_VALUE.
902   // DBG_VALUE := "DBG_VALUE" loc, isIndirect, var, expr
903   auto MIB = BuildMI(*MF, DL, II);
904   AddDbgValueLocationOps(MIB, II, LocationOps, VRBaseMap);
905 
906   if (SD->isIndirect())
907     MIB.addImm(0U);
908   else
909     MIB.addReg(0U);
910 
911   return MIB.addMetadata(Var).addMetadata(Expr);
912 }
913 
914 MachineInstr *
915 InstrEmitter::EmitDbgLabel(SDDbgLabel *SD) {
916   MDNode *Label = SD->getLabel();
917   DebugLoc DL = SD->getDebugLoc();
918   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
919          "Expected inlined-at fields to agree");
920 
921   const MCInstrDesc &II = TII->get(TargetOpcode::DBG_LABEL);
922   MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
923   MIB.addMetadata(Label);
924 
925   return &*MIB;
926 }
927 
928 /// EmitMachineNode - Generate machine code for a target-specific node and
929 /// needed dependencies.
930 ///
931 void InstrEmitter::
932 EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
933                 DenseMap<SDValue, Register> &VRBaseMap) {
934   unsigned Opc = Node->getMachineOpcode();
935 
936   // Handle subreg insert/extract specially
937   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
938       Opc == TargetOpcode::INSERT_SUBREG ||
939       Opc == TargetOpcode::SUBREG_TO_REG) {
940     EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned);
941     return;
942   }
943 
944   // Handle COPY_TO_REGCLASS specially.
945   if (Opc == TargetOpcode::COPY_TO_REGCLASS) {
946     EmitCopyToRegClassNode(Node, VRBaseMap);
947     return;
948   }
949 
950   // Handle REG_SEQUENCE specially.
951   if (Opc == TargetOpcode::REG_SEQUENCE) {
952     EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned);
953     return;
954   }
955 
956   if (Opc == TargetOpcode::IMPLICIT_DEF)
957     // We want a unique VR for each IMPLICIT_DEF use.
958     return;
959 
960   const MCInstrDesc &II = TII->get(Opc);
961   unsigned NumResults = CountResults(Node);
962   unsigned NumDefs = II.getNumDefs();
963   const MCPhysReg *ScratchRegs = nullptr;
964 
965   // Handle STACKMAP and PATCHPOINT specially and then use the generic code.
966   if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
967     // Stackmaps do not have arguments and do not preserve their calling
968     // convention. However, to simplify runtime support, they clobber the same
969     // scratch registers as AnyRegCC.
970     unsigned CC = CallingConv::AnyReg;
971     if (Opc == TargetOpcode::PATCHPOINT) {
972       CC = Node->getConstantOperandVal(PatchPointOpers::CCPos);
973       NumDefs = NumResults;
974     }
975     ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC);
976   } else if (Opc == TargetOpcode::STATEPOINT) {
977     NumDefs = NumResults;
978   }
979 
980   unsigned NumImpUses = 0;
981   unsigned NodeOperands =
982     countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses);
983   bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
984                              II.isVariadic() && II.variadicOpsAreDefs();
985   bool HasPhysRegOuts = NumResults > NumDefs &&
986                         II.getImplicitDefs() != nullptr && !HasVRegVariadicDefs;
987 #ifndef NDEBUG
988   unsigned NumMIOperands = NodeOperands + NumResults;
989   if (II.isVariadic())
990     assert(NumMIOperands >= II.getNumOperands() &&
991            "Too few operands for a variadic node!");
992   else
993     assert(NumMIOperands >= II.getNumOperands() &&
994            NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() +
995                             NumImpUses &&
996            "#operands for dag node doesn't match .td file!");
997 #endif
998 
999   // Create the new machine instruction.
1000   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II);
1001 
1002   // Add result register values for things that are defined by this
1003   // instruction.
1004   if (NumResults) {
1005     CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap);
1006 
1007     // Transfer any IR flags from the SDNode to the MachineInstr
1008     MachineInstr *MI = MIB.getInstr();
1009     const SDNodeFlags Flags = Node->getFlags();
1010     if (Flags.hasNoSignedZeros())
1011       MI->setFlag(MachineInstr::MIFlag::FmNsz);
1012 
1013     if (Flags.hasAllowReciprocal())
1014       MI->setFlag(MachineInstr::MIFlag::FmArcp);
1015 
1016     if (Flags.hasNoNaNs())
1017       MI->setFlag(MachineInstr::MIFlag::FmNoNans);
1018 
1019     if (Flags.hasNoInfs())
1020       MI->setFlag(MachineInstr::MIFlag::FmNoInfs);
1021 
1022     if (Flags.hasAllowContract())
1023       MI->setFlag(MachineInstr::MIFlag::FmContract);
1024 
1025     if (Flags.hasApproximateFuncs())
1026       MI->setFlag(MachineInstr::MIFlag::FmAfn);
1027 
1028     if (Flags.hasAllowReassociation())
1029       MI->setFlag(MachineInstr::MIFlag::FmReassoc);
1030 
1031     if (Flags.hasNoUnsignedWrap())
1032       MI->setFlag(MachineInstr::MIFlag::NoUWrap);
1033 
1034     if (Flags.hasNoSignedWrap())
1035       MI->setFlag(MachineInstr::MIFlag::NoSWrap);
1036 
1037     if (Flags.hasExact())
1038       MI->setFlag(MachineInstr::MIFlag::IsExact);
1039 
1040     if (Flags.hasNoFPExcept())
1041       MI->setFlag(MachineInstr::MIFlag::NoFPExcept);
1042   }
1043 
1044   // Emit all of the actual operands of this instruction, adding them to the
1045   // instruction as appropriate.
1046   bool HasOptPRefs = NumDefs > NumResults;
1047   assert((!HasOptPRefs || !HasPhysRegOuts) &&
1048          "Unable to cope with optional defs and phys regs defs!");
1049   unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0;
1050   for (unsigned i = NumSkip; i != NodeOperands; ++i)
1051     AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II,
1052                VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned);
1053 
1054   // Add scratch registers as implicit def and early clobber
1055   if (ScratchRegs)
1056     for (unsigned i = 0; ScratchRegs[i]; ++i)
1057       MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine |
1058                                  RegState::EarlyClobber);
1059 
1060   // Set the memory reference descriptions of this instruction now that it is
1061   // part of the function.
1062   MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands());
1063 
1064   // Insert the instruction into position in the block. This needs to
1065   // happen before any custom inserter hook is called so that the
1066   // hook knows where in the block to insert the replacement code.
1067   MBB->insert(InsertPos, MIB);
1068 
1069   // The MachineInstr may also define physregs instead of virtregs.  These
1070   // physreg values can reach other instructions in different ways:
1071   //
1072   // 1. When there is a use of a Node value beyond the explicitly defined
1073   //    virtual registers, we emit a CopyFromReg for one of the implicitly
1074   //    defined physregs.  This only happens when HasPhysRegOuts is true.
1075   //
1076   // 2. A CopyFromReg reading a physreg may be glued to this instruction.
1077   //
1078   // 3. A glued instruction may implicitly use a physreg.
1079   //
1080   // 4. A glued instruction may use a RegisterSDNode operand.
1081   //
1082   // Collect all the used physreg defs, and make sure that any unused physreg
1083   // defs are marked as dead.
1084   SmallVector<Register, 8> UsedRegs;
1085 
1086   // Additional results must be physical register defs.
1087   if (HasPhysRegOuts) {
1088     for (unsigned i = NumDefs; i < NumResults; ++i) {
1089       Register Reg = II.getImplicitDefs()[i - NumDefs];
1090       if (!Node->hasAnyUseOfValue(i))
1091         continue;
1092       // This implicitly defined physreg has a use.
1093       UsedRegs.push_back(Reg);
1094       EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap);
1095     }
1096   }
1097 
1098   // Scan the glue chain for any used physregs.
1099   if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) {
1100     for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) {
1101       if (F->getOpcode() == ISD::CopyFromReg) {
1102         UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg());
1103         continue;
1104       } else if (F->getOpcode() == ISD::CopyToReg) {
1105         // Skip CopyToReg nodes that are internal to the glue chain.
1106         continue;
1107       }
1108       // Collect declared implicit uses.
1109       const MCInstrDesc &MCID = TII->get(F->getMachineOpcode());
1110       UsedRegs.append(MCID.getImplicitUses(),
1111                       MCID.getImplicitUses() + MCID.getNumImplicitUses());
1112       // In addition to declared implicit uses, we must also check for
1113       // direct RegisterSDNode operands.
1114       for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i)
1115         if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) {
1116           Register Reg = R->getReg();
1117           if (Reg.isPhysical())
1118             UsedRegs.push_back(Reg);
1119         }
1120     }
1121   }
1122 
1123   // Finally mark unused registers as dead.
1124   if (!UsedRegs.empty() || II.getImplicitDefs() || II.hasOptionalDef())
1125     MIB->setPhysRegsDeadExcept(UsedRegs, *TRI);
1126 
1127   // STATEPOINT is too 'dynamic' to have meaningful machine description.
1128   // We have to manually tie operands.
1129   if (Opc == TargetOpcode::STATEPOINT && NumDefs > 0) {
1130     assert(!HasPhysRegOuts && "STATEPOINT mishandled");
1131     MachineInstr *MI = MIB;
1132     unsigned Def = 0;
1133     int First = StatepointOpers(MI).getFirstGCPtrIdx();
1134     assert(First > 0 && "Statepoint has Defs but no GC ptr list");
1135     unsigned Use = (unsigned)First;
1136     while (Def < NumDefs) {
1137       if (MI->getOperand(Use).isReg())
1138         MI->tieOperands(Def++, Use);
1139       Use = StackMaps::getNextMetaArgIdx(MI, Use);
1140     }
1141   }
1142 
1143   // Run post-isel target hook to adjust this instruction if needed.
1144   if (II.hasPostISelHook())
1145     TLI->AdjustInstrPostInstrSelection(*MIB, Node);
1146 }
1147 
1148 /// EmitSpecialNode - Generate machine code for a target-independent node and
1149 /// needed dependencies.
1150 void InstrEmitter::
1151 EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned,
1152                 DenseMap<SDValue, Register> &VRBaseMap) {
1153   switch (Node->getOpcode()) {
1154   default:
1155 #ifndef NDEBUG
1156     Node->dump();
1157 #endif
1158     llvm_unreachable("This target-independent node should have been selected!");
1159   case ISD::EntryToken:
1160     llvm_unreachable("EntryToken should have been excluded from the schedule!");
1161   case ISD::MERGE_VALUES:
1162   case ISD::TokenFactor: // fall thru
1163     break;
1164   case ISD::CopyToReg: {
1165     Register DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1166     SDValue SrcVal = Node->getOperand(2);
1167     if (Register::isVirtualRegister(DestReg) && SrcVal.isMachineOpcode() &&
1168         SrcVal.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
1169       // Instead building a COPY to that vreg destination, build an
1170       // IMPLICIT_DEF instruction instead.
1171       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1172               TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
1173       break;
1174     }
1175     Register SrcReg;
1176     if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
1177       SrcReg = R->getReg();
1178     else
1179       SrcReg = getVR(SrcVal, VRBaseMap);
1180 
1181     if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
1182       break;
1183 
1184     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
1185             DestReg).addReg(SrcReg);
1186     break;
1187   }
1188   case ISD::CopyFromReg: {
1189     unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1190     EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap);
1191     break;
1192   }
1193   case ISD::EH_LABEL:
1194   case ISD::ANNOTATION_LABEL: {
1195     unsigned Opc = (Node->getOpcode() == ISD::EH_LABEL)
1196                        ? TargetOpcode::EH_LABEL
1197                        : TargetOpcode::ANNOTATION_LABEL;
1198     MCSymbol *S = cast<LabelSDNode>(Node)->getLabel();
1199     BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1200             TII->get(Opc)).addSym(S);
1201     break;
1202   }
1203 
1204   case ISD::LIFETIME_START:
1205   case ISD::LIFETIME_END: {
1206     unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START)
1207                          ? TargetOpcode::LIFETIME_START
1208                          : TargetOpcode::LIFETIME_END;
1209     auto *FI = cast<FrameIndexSDNode>(Node->getOperand(1));
1210     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1211     .addFrameIndex(FI->getIndex());
1212     break;
1213   }
1214 
1215   case ISD::PSEUDO_PROBE: {
1216     unsigned TarOp = TargetOpcode::PSEUDO_PROBE;
1217     auto Guid = cast<PseudoProbeSDNode>(Node)->getGuid();
1218     auto Index = cast<PseudoProbeSDNode>(Node)->getIndex();
1219     auto Attr = cast<PseudoProbeSDNode>(Node)->getAttributes();
1220 
1221     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1222         .addImm(Guid)
1223         .addImm(Index)
1224         .addImm((uint8_t)PseudoProbeType::Block)
1225         .addImm(Attr);
1226     break;
1227   }
1228 
1229   case ISD::INLINEASM:
1230   case ISD::INLINEASM_BR: {
1231     unsigned NumOps = Node->getNumOperands();
1232     if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1233       --NumOps;  // Ignore the glue operand.
1234 
1235     // Create the inline asm machine instruction.
1236     unsigned TgtOpc = Node->getOpcode() == ISD::INLINEASM_BR
1237                           ? TargetOpcode::INLINEASM_BR
1238                           : TargetOpcode::INLINEASM;
1239     MachineInstrBuilder MIB =
1240         BuildMI(*MF, Node->getDebugLoc(), TII->get(TgtOpc));
1241 
1242     // Add the asm string as an external symbol operand.
1243     SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString);
1244     const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol();
1245     MIB.addExternalSymbol(AsmStr);
1246 
1247     // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore
1248     // bits.
1249     int64_t ExtraInfo =
1250       cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))->
1251                           getZExtValue();
1252     MIB.addImm(ExtraInfo);
1253 
1254     // Remember to operand index of the group flags.
1255     SmallVector<unsigned, 8> GroupIdx;
1256 
1257     // Remember registers that are part of early-clobber defs.
1258     SmallVector<unsigned, 8> ECRegs;
1259 
1260     // Add all of the operand registers to the instruction.
1261     for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1262       unsigned Flags =
1263         cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1264       const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1265 
1266       GroupIdx.push_back(MIB->getNumOperands());
1267       MIB.addImm(Flags);
1268       ++i;  // Skip the ID value.
1269 
1270       switch (InlineAsm::getKind(Flags)) {
1271       default: llvm_unreachable("Bad flags!");
1272         case InlineAsm::Kind_RegDef:
1273         for (unsigned j = 0; j != NumVals; ++j, ++i) {
1274           unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1275           // FIXME: Add dead flags for physical and virtual registers defined.
1276           // For now, mark physical register defs as implicit to help fast
1277           // regalloc. This makes inline asm look a lot like calls.
1278           MIB.addReg(Reg,
1279                      RegState::Define |
1280                          getImplRegState(Register::isPhysicalRegister(Reg)));
1281         }
1282         break;
1283       case InlineAsm::Kind_RegDefEarlyClobber:
1284       case InlineAsm::Kind_Clobber:
1285         for (unsigned j = 0; j != NumVals; ++j, ++i) {
1286           unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1287           MIB.addReg(Reg,
1288                      RegState::Define | RegState::EarlyClobber |
1289                          getImplRegState(Register::isPhysicalRegister(Reg)));
1290           ECRegs.push_back(Reg);
1291         }
1292         break;
1293       case InlineAsm::Kind_RegUse:  // Use of register.
1294       case InlineAsm::Kind_Imm:  // Immediate.
1295       case InlineAsm::Kind_Mem:  // Addressing mode.
1296         // The addressing mode has been selected, just add all of the
1297         // operands to the machine instruction.
1298         for (unsigned j = 0; j != NumVals; ++j, ++i)
1299           AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap,
1300                      /*IsDebug=*/false, IsClone, IsCloned);
1301 
1302         // Manually set isTied bits.
1303         if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) {
1304           unsigned DefGroup = 0;
1305           if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) {
1306             unsigned DefIdx = GroupIdx[DefGroup] + 1;
1307             unsigned UseIdx = GroupIdx.back() + 1;
1308             for (unsigned j = 0; j != NumVals; ++j)
1309               MIB->tieOperands(DefIdx + j, UseIdx + j);
1310           }
1311         }
1312         break;
1313       }
1314     }
1315 
1316     // GCC inline assembly allows input operands to also be early-clobber
1317     // output operands (so long as the operand is written only after it's
1318     // used), but this does not match the semantics of our early-clobber flag.
1319     // If an early-clobber operand register is also an input operand register,
1320     // then remove the early-clobber flag.
1321     for (unsigned Reg : ECRegs) {
1322       if (MIB->readsRegister(Reg, TRI)) {
1323         MachineOperand *MO =
1324             MIB->findRegisterDefOperand(Reg, false, false, TRI);
1325         assert(MO && "No def operand for clobbered register?");
1326         MO->setIsEarlyClobber(false);
1327       }
1328     }
1329 
1330     // Get the mdnode from the asm if it exists and add it to the instruction.
1331     SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode);
1332     const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
1333     if (MD)
1334       MIB.addMetadata(MD);
1335 
1336     MBB->insert(InsertPos, MIB);
1337     break;
1338   }
1339   }
1340 }
1341 
1342 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting
1343 /// at the given position in the given block.
1344 InstrEmitter::InstrEmitter(const TargetMachine &TM, MachineBasicBlock *mbb,
1345                            MachineBasicBlock::iterator insertpos)
1346     : MF(mbb->getParent()), MRI(&MF->getRegInfo()),
1347       TII(MF->getSubtarget().getInstrInfo()),
1348       TRI(MF->getSubtarget().getRegisterInfo()),
1349       TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb),
1350       InsertPos(insertpos) {
1351   EmitDebugInstrRefs = MF->useDebugInstrRef();
1352 }
1353