1 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the Emit routines for the SelectionDAG class, which creates
10 // MachineInstrs based on the decisions of the SelectionDAG instruction
11 // selection.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "InstrEmitter.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/CodeGen/MachineConstantPool.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/StackMaps.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/DebugInfo.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetMachine.h"
33 using namespace llvm;
34 
35 #define DEBUG_TYPE "instr-emitter"
36 
37 /// MinRCSize - Smallest register class we allow when constraining virtual
38 /// registers.  If satisfying all register class constraints would require
39 /// using a smaller register class, emit a COPY to a new virtual register
40 /// instead.
41 const unsigned MinRCSize = 4;
42 
43 /// CountResults - The results of target nodes have register or immediate
44 /// operands first, then an optional chain, and optional glue operands (which do
45 /// not go into the resulting MachineInstr).
46 unsigned InstrEmitter::CountResults(SDNode *Node) {
47   unsigned N = Node->getNumValues();
48   while (N && Node->getValueType(N - 1) == MVT::Glue)
49     --N;
50   if (N && Node->getValueType(N - 1) == MVT::Other)
51     --N;    // Skip over chain result.
52   return N;
53 }
54 
55 /// countOperands - The inputs to target nodes have any actual inputs first,
56 /// followed by an optional chain operand, then an optional glue operand.
57 /// Compute the number of actual operands that will go into the resulting
58 /// MachineInstr.
59 ///
60 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding
61 /// the chain and glue. These operands may be implicit on the machine instr.
62 static unsigned countOperands(SDNode *Node, unsigned NumExpUses,
63                               unsigned &NumImpUses) {
64   unsigned N = Node->getNumOperands();
65   while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
66     --N;
67   if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
68     --N; // Ignore chain if it exists.
69 
70   // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses.
71   NumImpUses = N - NumExpUses;
72   for (unsigned I = N; I > NumExpUses; --I) {
73     if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1)))
74       continue;
75     if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1)))
76       if (Register::isPhysicalRegister(RN->getReg()))
77         continue;
78     NumImpUses = N - I;
79     break;
80   }
81 
82   return N;
83 }
84 
85 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
86 /// implicit physical register output.
87 void InstrEmitter::
88 EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned,
89                 Register SrcReg, DenseMap<SDValue, Register> &VRBaseMap) {
90   Register VRBase;
91   if (SrcReg.isVirtual()) {
92     // Just use the input register directly!
93     SDValue Op(Node, ResNo);
94     if (IsClone)
95       VRBaseMap.erase(Op);
96     bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
97     (void)isNew; // Silence compiler warning.
98     assert(isNew && "Node emitted out of order - early");
99     return;
100   }
101 
102   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
103   // the CopyToReg'd destination register instead of creating a new vreg.
104   bool MatchReg = true;
105   const TargetRegisterClass *UseRC = nullptr;
106   MVT VT = Node->getSimpleValueType(ResNo);
107 
108   // Stick to the preferred register classes for legal types.
109   if (TLI->isTypeLegal(VT))
110     UseRC = TLI->getRegClassFor(VT, Node->isDivergent());
111 
112   if (!IsClone && !IsCloned)
113     for (SDNode *User : Node->uses()) {
114       bool Match = true;
115       if (User->getOpcode() == ISD::CopyToReg &&
116           User->getOperand(2).getNode() == Node &&
117           User->getOperand(2).getResNo() == ResNo) {
118         Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
119         if (DestReg.isVirtual()) {
120           VRBase = DestReg;
121           Match = false;
122         } else if (DestReg != SrcReg)
123           Match = false;
124       } else {
125         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
126           SDValue Op = User->getOperand(i);
127           if (Op.getNode() != Node || Op.getResNo() != ResNo)
128             continue;
129           MVT VT = Node->getSimpleValueType(Op.getResNo());
130           if (VT == MVT::Other || VT == MVT::Glue)
131             continue;
132           Match = false;
133           if (User->isMachineOpcode()) {
134             const MCInstrDesc &II = TII->get(User->getMachineOpcode());
135             const TargetRegisterClass *RC = nullptr;
136             if (i+II.getNumDefs() < II.getNumOperands()) {
137               RC = TRI->getAllocatableClass(
138                 TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF));
139             }
140             if (!UseRC)
141               UseRC = RC;
142             else if (RC) {
143               const TargetRegisterClass *ComRC =
144                 TRI->getCommonSubClass(UseRC, RC);
145               // If multiple uses expect disjoint register classes, we emit
146               // copies in AddRegisterOperand.
147               if (ComRC)
148                 UseRC = ComRC;
149             }
150           }
151         }
152       }
153       MatchReg &= Match;
154       if (VRBase)
155         break;
156     }
157 
158   const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr;
159   SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT);
160 
161   // Figure out the register class to create for the destreg.
162   if (VRBase) {
163     DstRC = MRI->getRegClass(VRBase);
164   } else if (UseRC) {
165     assert(TRI->isTypeLegalForClass(*UseRC, VT) &&
166            "Incompatible phys register def and uses!");
167     DstRC = UseRC;
168   } else {
169     DstRC = TLI->getRegClassFor(VT, Node->isDivergent());
170   }
171 
172   // If all uses are reading from the src physical register and copying the
173   // register is either impossible or very expensive, then don't create a copy.
174   if (MatchReg && SrcRC->getCopyCost() < 0) {
175     VRBase = SrcReg;
176   } else {
177     // Create the reg, emit the copy.
178     VRBase = MRI->createVirtualRegister(DstRC);
179     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
180             VRBase).addReg(SrcReg);
181   }
182 
183   SDValue Op(Node, ResNo);
184   if (IsClone)
185     VRBaseMap.erase(Op);
186   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
187   (void)isNew; // Silence compiler warning.
188   assert(isNew && "Node emitted out of order - early");
189 }
190 
191 void InstrEmitter::CreateVirtualRegisters(SDNode *Node,
192                                        MachineInstrBuilder &MIB,
193                                        const MCInstrDesc &II,
194                                        bool IsClone, bool IsCloned,
195                                        DenseMap<SDValue, Register> &VRBaseMap) {
196   assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF &&
197          "IMPLICIT_DEF should have been handled as a special case elsewhere!");
198 
199   unsigned NumResults = CountResults(Node);
200   bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
201                              II.isVariadic() && II.variadicOpsAreDefs();
202   unsigned NumVRegs = HasVRegVariadicDefs ? NumResults : II.getNumDefs();
203   if (Node->getMachineOpcode() == TargetOpcode::STATEPOINT)
204     NumVRegs = NumResults;
205   for (unsigned i = 0; i < NumVRegs; ++i) {
206     // If the specific node value is only used by a CopyToReg and the dest reg
207     // is a vreg in the same register class, use the CopyToReg'd destination
208     // register instead of creating a new vreg.
209     Register VRBase;
210     const TargetRegisterClass *RC =
211       TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF));
212     // Always let the value type influence the used register class. The
213     // constraints on the instruction may be too lax to represent the value
214     // type correctly. For example, a 64-bit float (X86::FR64) can't live in
215     // the 32-bit float super-class (X86::FR32).
216     if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) {
217       const TargetRegisterClass *VTRC = TLI->getRegClassFor(
218           Node->getSimpleValueType(i),
219           (Node->isDivergent() || (RC && TRI->isDivergentRegClass(RC))));
220       if (RC)
221         VTRC = TRI->getCommonSubClass(RC, VTRC);
222       if (VTRC)
223         RC = VTRC;
224     }
225 
226     if (II.OpInfo != nullptr && II.OpInfo[i].isOptionalDef()) {
227       // Optional def must be a physical register.
228       VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg();
229       assert(VRBase.isPhysical());
230       MIB.addReg(VRBase, RegState::Define);
231     }
232 
233     if (!VRBase && !IsClone && !IsCloned)
234       for (SDNode *User : Node->uses()) {
235         if (User->getOpcode() == ISD::CopyToReg &&
236             User->getOperand(2).getNode() == Node &&
237             User->getOperand(2).getResNo() == i) {
238           unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
239           if (Register::isVirtualRegister(Reg)) {
240             const TargetRegisterClass *RegRC = MRI->getRegClass(Reg);
241             if (RegRC == RC) {
242               VRBase = Reg;
243               MIB.addReg(VRBase, RegState::Define);
244               break;
245             }
246           }
247         }
248       }
249 
250     // Create the result registers for this node and add the result regs to
251     // the machine instruction.
252     if (VRBase == 0) {
253       assert(RC && "Isn't a register operand!");
254       VRBase = MRI->createVirtualRegister(RC);
255       MIB.addReg(VRBase, RegState::Define);
256     }
257 
258     // If this def corresponds to a result of the SDNode insert the VRBase into
259     // the lookup map.
260     if (i < NumResults) {
261       SDValue Op(Node, i);
262       if (IsClone)
263         VRBaseMap.erase(Op);
264       bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
265       (void)isNew; // Silence compiler warning.
266       assert(isNew && "Node emitted out of order - early");
267     }
268   }
269 }
270 
271 /// getVR - Return the virtual register corresponding to the specified result
272 /// of the specified node.
273 Register InstrEmitter::getVR(SDValue Op,
274                              DenseMap<SDValue, Register> &VRBaseMap) {
275   if (Op.isMachineOpcode() &&
276       Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
277     // Add an IMPLICIT_DEF instruction before every use.
278     // IMPLICIT_DEF can produce any type of result so its MCInstrDesc
279     // does not include operand register class info.
280     const TargetRegisterClass *RC = TLI->getRegClassFor(
281         Op.getSimpleValueType(), Op.getNode()->isDivergent());
282     Register VReg = MRI->createVirtualRegister(RC);
283     BuildMI(*MBB, InsertPos, Op.getDebugLoc(),
284             TII->get(TargetOpcode::IMPLICIT_DEF), VReg);
285     return VReg;
286   }
287 
288   DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
289   assert(I != VRBaseMap.end() && "Node emitted out of order - late");
290   return I->second;
291 }
292 
293 
294 /// AddRegisterOperand - Add the specified register as an operand to the
295 /// specified machine instr. Insert register copies if the register is
296 /// not in the required register class.
297 void
298 InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB,
299                                  SDValue Op,
300                                  unsigned IIOpNum,
301                                  const MCInstrDesc *II,
302                                  DenseMap<SDValue, Register> &VRBaseMap,
303                                  bool IsDebug, bool IsClone, bool IsCloned) {
304   assert(Op.getValueType() != MVT::Other &&
305          Op.getValueType() != MVT::Glue &&
306          "Chain and glue operands should occur at end of operand list!");
307   // Get/emit the operand.
308   Register VReg = getVR(Op, VRBaseMap);
309 
310   const MCInstrDesc &MCID = MIB->getDesc();
311   bool isOptDef = IIOpNum < MCID.getNumOperands() &&
312     MCID.OpInfo[IIOpNum].isOptionalDef();
313 
314   // If the instruction requires a register in a different class, create
315   // a new virtual register and copy the value into it, but first attempt to
316   // shrink VReg's register class within reason.  For example, if VReg == GR32
317   // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP.
318   if (II) {
319     const TargetRegisterClass *OpRC = nullptr;
320     if (IIOpNum < II->getNumOperands())
321       OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF);
322 
323     if (OpRC) {
324       const TargetRegisterClass *ConstrainedRC
325         = MRI->constrainRegClass(VReg, OpRC, MinRCSize);
326       if (!ConstrainedRC) {
327         OpRC = TRI->getAllocatableClass(OpRC);
328         assert(OpRC && "Constraints cannot be fulfilled for allocation");
329         Register NewVReg = MRI->createVirtualRegister(OpRC);
330         BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
331                 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
332         VReg = NewVReg;
333       } else {
334         assert(ConstrainedRC->isAllocatable() &&
335            "Constraining an allocatable VReg produced an unallocatable class?");
336       }
337     }
338   }
339 
340   // If this value has only one use, that use is a kill. This is a
341   // conservative approximation. InstrEmitter does trivial coalescing
342   // with CopyFromReg nodes, so don't emit kill flags for them.
343   // Avoid kill flags on Schedule cloned nodes, since there will be
344   // multiple uses.
345   // Tied operands are never killed, so we need to check that. And that
346   // means we need to determine the index of the operand.
347   bool isKill = Op.hasOneUse() &&
348                 Op.getNode()->getOpcode() != ISD::CopyFromReg &&
349                 !IsDebug &&
350                 !(IsClone || IsCloned);
351   if (isKill) {
352     unsigned Idx = MIB->getNumOperands();
353     while (Idx > 0 &&
354            MIB->getOperand(Idx-1).isReg() &&
355            MIB->getOperand(Idx-1).isImplicit())
356       --Idx;
357     bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1;
358     if (isTied)
359       isKill = false;
360   }
361 
362   MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) |
363              getDebugRegState(IsDebug));
364 }
365 
366 /// AddOperand - Add the specified operand to the specified machine instr.  II
367 /// specifies the instruction information for the node, and IIOpNum is the
368 /// operand number (in the II) that we are adding.
369 void InstrEmitter::AddOperand(MachineInstrBuilder &MIB,
370                               SDValue Op,
371                               unsigned IIOpNum,
372                               const MCInstrDesc *II,
373                               DenseMap<SDValue, Register> &VRBaseMap,
374                               bool IsDebug, bool IsClone, bool IsCloned) {
375   if (Op.isMachineOpcode()) {
376     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
377                        IsDebug, IsClone, IsCloned);
378   } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
379     MIB.addImm(C->getSExtValue());
380   } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
381     MIB.addFPImm(F->getConstantFPValue());
382   } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
383     Register VReg = R->getReg();
384     MVT OpVT = Op.getSimpleValueType();
385     const TargetRegisterClass *IIRC =
386         II ? TRI->getAllocatableClass(TII->getRegClass(*II, IIOpNum, TRI, *MF))
387            : nullptr;
388     const TargetRegisterClass *OpRC =
389         TLI->isTypeLegal(OpVT)
390             ? TLI->getRegClassFor(OpVT,
391                                   Op.getNode()->isDivergent() ||
392                                       (IIRC && TRI->isDivergentRegClass(IIRC)))
393             : nullptr;
394 
395     if (OpRC && IIRC && OpRC != IIRC && Register::isVirtualRegister(VReg)) {
396       Register NewVReg = MRI->createVirtualRegister(IIRC);
397       BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
398                TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
399       VReg = NewVReg;
400     }
401     // Turn additional physreg operands into implicit uses on non-variadic
402     // instructions. This is used by call and return instructions passing
403     // arguments in registers.
404     bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic());
405     MIB.addReg(VReg, getImplRegState(Imp));
406   } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) {
407     MIB.addRegMask(RM->getRegMask());
408   } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
409     MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(),
410                          TGA->getTargetFlags());
411   } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) {
412     MIB.addMBB(BBNode->getBasicBlock());
413   } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
414     MIB.addFrameIndex(FI->getIndex());
415   } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
416     MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags());
417   } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
418     int Offset = CP->getOffset();
419     Align Alignment = CP->getAlign();
420 
421     unsigned Idx;
422     MachineConstantPool *MCP = MF->getConstantPool();
423     if (CP->isMachineConstantPoolEntry())
424       Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Alignment);
425     else
426       Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Alignment);
427     MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags());
428   } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
429     MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags());
430   } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) {
431     MIB.addSym(SymNode->getMCSymbol());
432   } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) {
433     MIB.addBlockAddress(BA->getBlockAddress(),
434                         BA->getOffset(),
435                         BA->getTargetFlags());
436   } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) {
437     MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags());
438   } else {
439     assert(Op.getValueType() != MVT::Other &&
440            Op.getValueType() != MVT::Glue &&
441            "Chain and glue operands should occur at end of operand list!");
442     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
443                        IsDebug, IsClone, IsCloned);
444   }
445 }
446 
447 Register InstrEmitter::ConstrainForSubReg(Register VReg, unsigned SubIdx,
448                                           MVT VT, bool isDivergent, const DebugLoc &DL) {
449   const TargetRegisterClass *VRC = MRI->getRegClass(VReg);
450   const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx);
451 
452   // RC is a sub-class of VRC that supports SubIdx.  Try to constrain VReg
453   // within reason.
454   if (RC && RC != VRC)
455     RC = MRI->constrainRegClass(VReg, RC, MinRCSize);
456 
457   // VReg has been adjusted.  It can be used with SubIdx operands now.
458   if (RC)
459     return VReg;
460 
461   // VReg couldn't be reasonably constrained.  Emit a COPY to a new virtual
462   // register instead.
463   RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT, isDivergent), SubIdx);
464   assert(RC && "No legal register class for VT supports that SubIdx");
465   Register NewReg = MRI->createVirtualRegister(RC);
466   BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg)
467     .addReg(VReg);
468   return NewReg;
469 }
470 
471 /// EmitSubregNode - Generate machine code for subreg nodes.
472 ///
473 void InstrEmitter::EmitSubregNode(SDNode *Node,
474                                   DenseMap<SDValue, Register> &VRBaseMap,
475                                   bool IsClone, bool IsCloned) {
476   Register VRBase;
477   unsigned Opc = Node->getMachineOpcode();
478 
479   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
480   // the CopyToReg'd destination register instead of creating a new vreg.
481   for (SDNode *User : Node->uses()) {
482     if (User->getOpcode() == ISD::CopyToReg &&
483         User->getOperand(2).getNode() == Node) {
484       Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
485       if (DestReg.isVirtual()) {
486         VRBase = DestReg;
487         break;
488       }
489     }
490   }
491 
492   if (Opc == TargetOpcode::EXTRACT_SUBREG) {
493     // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub.  There are no
494     // constraints on the %dst register, COPY can target all legal register
495     // classes.
496     unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
497     const TargetRegisterClass *TRC =
498       TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
499 
500     Register Reg;
501     MachineInstr *DefMI;
502     RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0));
503     if (R && Register::isPhysicalRegister(R->getReg())) {
504       Reg = R->getReg();
505       DefMI = nullptr;
506     } else {
507       Reg = R ? R->getReg() : getVR(Node->getOperand(0), VRBaseMap);
508       DefMI = MRI->getVRegDef(Reg);
509     }
510 
511     Register SrcReg, DstReg;
512     unsigned DefSubIdx;
513     if (DefMI &&
514         TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) &&
515         SubIdx == DefSubIdx &&
516         TRC == MRI->getRegClass(SrcReg)) {
517       // Optimize these:
518       // r1025 = s/zext r1024, 4
519       // r1026 = extract_subreg r1025, 4
520       // to a copy
521       // r1026 = copy r1024
522       VRBase = MRI->createVirtualRegister(TRC);
523       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
524               TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg);
525       MRI->clearKillFlags(SrcReg);
526     } else {
527       // Reg may not support a SubIdx sub-register, and we may need to
528       // constrain its register class or issue a COPY to a compatible register
529       // class.
530       if (Reg.isVirtual())
531         Reg = ConstrainForSubReg(Reg, SubIdx,
532                                  Node->getOperand(0).getSimpleValueType(),
533                                  Node->isDivergent(), Node->getDebugLoc());
534       // Create the destreg if it is missing.
535       if (!VRBase)
536         VRBase = MRI->createVirtualRegister(TRC);
537 
538       // Create the extract_subreg machine instruction.
539       MachineInstrBuilder CopyMI =
540           BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
541                   TII->get(TargetOpcode::COPY), VRBase);
542       if (Reg.isVirtual())
543         CopyMI.addReg(Reg, 0, SubIdx);
544       else
545         CopyMI.addReg(TRI->getSubReg(Reg, SubIdx));
546     }
547   } else if (Opc == TargetOpcode::INSERT_SUBREG ||
548              Opc == TargetOpcode::SUBREG_TO_REG) {
549     SDValue N0 = Node->getOperand(0);
550     SDValue N1 = Node->getOperand(1);
551     SDValue N2 = Node->getOperand(2);
552     unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue();
553 
554     // Figure out the register class to create for the destreg.  It should be
555     // the largest legal register class supporting SubIdx sub-registers.
556     // RegisterCoalescer will constrain it further if it decides to eliminate
557     // the INSERT_SUBREG instruction.
558     //
559     //   %dst = INSERT_SUBREG %src, %sub, SubIdx
560     //
561     // is lowered by TwoAddressInstructionPass to:
562     //
563     //   %dst = COPY %src
564     //   %dst:SubIdx = COPY %sub
565     //
566     // There is no constraint on the %src register class.
567     //
568     const TargetRegisterClass *SRC =
569         TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
570     SRC = TRI->getSubClassWithSubReg(SRC, SubIdx);
571     assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG");
572 
573     if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase)))
574       VRBase = MRI->createVirtualRegister(SRC);
575 
576     // Create the insert_subreg or subreg_to_reg machine instruction.
577     MachineInstrBuilder MIB =
578       BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase);
579 
580     // If creating a subreg_to_reg, then the first input operand
581     // is an implicit value immediate, otherwise it's a register
582     if (Opc == TargetOpcode::SUBREG_TO_REG) {
583       const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
584       MIB.addImm(SD->getZExtValue());
585     } else
586       AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
587                  IsClone, IsCloned);
588     // Add the subregister being inserted
589     AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
590                IsClone, IsCloned);
591     MIB.addImm(SubIdx);
592     MBB->insert(InsertPos, MIB);
593   } else
594     llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");
595 
596   SDValue Op(Node, 0);
597   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
598   (void)isNew; // Silence compiler warning.
599   assert(isNew && "Node emitted out of order - early");
600 }
601 
602 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
603 /// COPY_TO_REGCLASS is just a normal copy, except that the destination
604 /// register is constrained to be in a particular register class.
605 ///
606 void
607 InstrEmitter::EmitCopyToRegClassNode(SDNode *Node,
608                                      DenseMap<SDValue, Register> &VRBaseMap) {
609   unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
610 
611   // Create the new VReg in the destination class and emit a copy.
612   unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
613   const TargetRegisterClass *DstRC =
614     TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx));
615   Register NewVReg = MRI->createVirtualRegister(DstRC);
616   BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
617     NewVReg).addReg(VReg);
618 
619   SDValue Op(Node, 0);
620   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
621   (void)isNew; // Silence compiler warning.
622   assert(isNew && "Node emitted out of order - early");
623 }
624 
625 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
626 ///
627 void InstrEmitter::EmitRegSequence(SDNode *Node,
628                                   DenseMap<SDValue, Register> &VRBaseMap,
629                                   bool IsClone, bool IsCloned) {
630   unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
631   const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
632   Register NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC));
633   const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
634   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg);
635   unsigned NumOps = Node->getNumOperands();
636   // If the input pattern has a chain, then the root of the corresponding
637   // output pattern will get a chain as well. This can happen to be a
638   // REG_SEQUENCE (which is not "guarded" by countOperands/CountResults).
639   if (NumOps && Node->getOperand(NumOps-1).getValueType() == MVT::Other)
640     --NumOps; // Ignore chain if it exists.
641 
642   assert((NumOps & 1) == 1 &&
643          "REG_SEQUENCE must have an odd number of operands!");
644   for (unsigned i = 1; i != NumOps; ++i) {
645     SDValue Op = Node->getOperand(i);
646     if ((i & 1) == 0) {
647       RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1));
648       // Skip physical registers as they don't have a vreg to get and we'll
649       // insert copies for them in TwoAddressInstructionPass anyway.
650       if (!R || !Register::isPhysicalRegister(R->getReg())) {
651         unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue();
652         unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap);
653         const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
654         const TargetRegisterClass *SRC =
655         TRI->getMatchingSuperRegClass(RC, TRC, SubIdx);
656         if (SRC && SRC != RC) {
657           MRI->setRegClass(NewVReg, SRC);
658           RC = SRC;
659         }
660       }
661     }
662     AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false,
663                IsClone, IsCloned);
664   }
665 
666   MBB->insert(InsertPos, MIB);
667   SDValue Op(Node, 0);
668   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
669   (void)isNew; // Silence compiler warning.
670   assert(isNew && "Node emitted out of order - early");
671 }
672 
673 /// EmitDbgValue - Generate machine instruction for a dbg_value node.
674 ///
675 MachineInstr *
676 InstrEmitter::EmitDbgValue(SDDbgValue *SD,
677                            DenseMap<SDValue, Register> &VRBaseMap) {
678   MDNode *Var = SD->getVariable();
679   MDNode *Expr = SD->getExpression();
680   DebugLoc DL = SD->getDebugLoc();
681   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
682          "Expected inlined-at fields to agree");
683 
684   SD->setIsEmitted();
685 
686   if (SD->isInvalidated()) {
687     // An invalidated SDNode must generate an undef DBG_VALUE: although the
688     // original value is no longer computed, earlier DBG_VALUEs live ranges
689     // must not leak into later code.
690     auto MIB = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE));
691     MIB.addReg(0U);
692     MIB.addReg(0U, RegState::Debug);
693     MIB.addMetadata(Var);
694     MIB.addMetadata(Expr);
695     return &*MIB;
696   }
697 
698   if (SD->getKind() == SDDbgValue::FRAMEIX) {
699     // Stack address; this needs to be lowered in target-dependent fashion.
700     // EmitTargetCodeForFrameDebugValue is responsible for allocation.
701     auto FrameMI = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE))
702                        .addFrameIndex(SD->getFrameIx());
703     if (SD->isIndirect())
704       // Push [fi + 0] onto the DIExpression stack.
705       FrameMI.addImm(0);
706     else
707       // Push fi onto the DIExpression stack.
708       FrameMI.addReg(0);
709     return FrameMI.addMetadata(Var).addMetadata(Expr);
710   }
711   // Otherwise, we're going to create an instruction here.
712   const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE);
713   MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
714   if (SD->getKind() == SDDbgValue::SDNODE) {
715     SDNode *Node = SD->getSDNode();
716     SDValue Op = SDValue(Node, SD->getResNo());
717     // It's possible we replaced this SDNode with other(s) and therefore
718     // didn't generate code for it.  It's better to catch these cases where
719     // they happen and transfer the debug info, but trying to guarantee that
720     // in all cases would be very fragile; this is a safeguard for any
721     // that were missed.
722     DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
723     if (I==VRBaseMap.end())
724       MIB.addReg(0U);       // undef
725     else
726       AddOperand(MIB, Op, (*MIB).getNumOperands(), &II, VRBaseMap,
727                  /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false);
728   } else if (SD->getKind() == SDDbgValue::VREG) {
729     MIB.addReg(SD->getVReg(), RegState::Debug);
730   } else if (SD->getKind() == SDDbgValue::CONST) {
731     const Value *V = SD->getConst();
732     if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
733       if (CI->getBitWidth() > 64)
734         MIB.addCImm(CI);
735       else
736         MIB.addImm(CI->getSExtValue());
737     } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
738       MIB.addFPImm(CF);
739     } else if (isa<ConstantPointerNull>(V)) {
740       // Note: This assumes that all nullptr constants are zero-valued.
741       MIB.addImm(0);
742     } else {
743       // Could be an Undef.  In any case insert an Undef so we can see what we
744       // dropped.
745       MIB.addReg(0U);
746     }
747   } else {
748     // Insert an Undef so we can see what we dropped.
749     MIB.addReg(0U);
750   }
751 
752   // Indirect addressing is indicated by an Imm as the second parameter.
753   if (SD->isIndirect())
754     MIB.addImm(0U);
755   else
756     MIB.addReg(0U, RegState::Debug);
757 
758   MIB.addMetadata(Var);
759   MIB.addMetadata(Expr);
760 
761   return &*MIB;
762 }
763 
764 MachineInstr *
765 InstrEmitter::EmitDbgLabel(SDDbgLabel *SD) {
766   MDNode *Label = SD->getLabel();
767   DebugLoc DL = SD->getDebugLoc();
768   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
769          "Expected inlined-at fields to agree");
770 
771   const MCInstrDesc &II = TII->get(TargetOpcode::DBG_LABEL);
772   MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
773   MIB.addMetadata(Label);
774 
775   return &*MIB;
776 }
777 
778 /// EmitMachineNode - Generate machine code for a target-specific node and
779 /// needed dependencies.
780 ///
781 void InstrEmitter::
782 EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
783                 DenseMap<SDValue, Register> &VRBaseMap) {
784   unsigned Opc = Node->getMachineOpcode();
785 
786   // Handle subreg insert/extract specially
787   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
788       Opc == TargetOpcode::INSERT_SUBREG ||
789       Opc == TargetOpcode::SUBREG_TO_REG) {
790     EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned);
791     return;
792   }
793 
794   // Handle COPY_TO_REGCLASS specially.
795   if (Opc == TargetOpcode::COPY_TO_REGCLASS) {
796     EmitCopyToRegClassNode(Node, VRBaseMap);
797     return;
798   }
799 
800   // Handle REG_SEQUENCE specially.
801   if (Opc == TargetOpcode::REG_SEQUENCE) {
802     EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned);
803     return;
804   }
805 
806   if (Opc == TargetOpcode::IMPLICIT_DEF)
807     // We want a unique VR for each IMPLICIT_DEF use.
808     return;
809 
810   const MCInstrDesc &II = TII->get(Opc);
811   unsigned NumResults = CountResults(Node);
812   unsigned NumDefs = II.getNumDefs();
813   const MCPhysReg *ScratchRegs = nullptr;
814 
815   // Handle STACKMAP and PATCHPOINT specially and then use the generic code.
816   if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
817     // Stackmaps do not have arguments and do not preserve their calling
818     // convention. However, to simplify runtime support, they clobber the same
819     // scratch registers as AnyRegCC.
820     unsigned CC = CallingConv::AnyReg;
821     if (Opc == TargetOpcode::PATCHPOINT) {
822       CC = Node->getConstantOperandVal(PatchPointOpers::CCPos);
823       NumDefs = NumResults;
824     }
825     ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC);
826   } else if (Opc == TargetOpcode::STATEPOINT) {
827     NumDefs = NumResults;
828   }
829 
830   unsigned NumImpUses = 0;
831   unsigned NodeOperands =
832     countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses);
833   bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
834                              II.isVariadic() && II.variadicOpsAreDefs();
835   bool HasPhysRegOuts = NumResults > NumDefs &&
836                         II.getImplicitDefs() != nullptr && !HasVRegVariadicDefs;
837 #ifndef NDEBUG
838   unsigned NumMIOperands = NodeOperands + NumResults;
839   if (II.isVariadic())
840     assert(NumMIOperands >= II.getNumOperands() &&
841            "Too few operands for a variadic node!");
842   else
843     assert(NumMIOperands >= II.getNumOperands() &&
844            NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() +
845                             NumImpUses &&
846            "#operands for dag node doesn't match .td file!");
847 #endif
848 
849   // Create the new machine instruction.
850   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II);
851 
852   // Add result register values for things that are defined by this
853   // instruction.
854   if (NumResults) {
855     CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap);
856 
857     // Transfer any IR flags from the SDNode to the MachineInstr
858     MachineInstr *MI = MIB.getInstr();
859     const SDNodeFlags Flags = Node->getFlags();
860     if (Flags.hasNoSignedZeros())
861       MI->setFlag(MachineInstr::MIFlag::FmNsz);
862 
863     if (Flags.hasAllowReciprocal())
864       MI->setFlag(MachineInstr::MIFlag::FmArcp);
865 
866     if (Flags.hasNoNaNs())
867       MI->setFlag(MachineInstr::MIFlag::FmNoNans);
868 
869     if (Flags.hasNoInfs())
870       MI->setFlag(MachineInstr::MIFlag::FmNoInfs);
871 
872     if (Flags.hasAllowContract())
873       MI->setFlag(MachineInstr::MIFlag::FmContract);
874 
875     if (Flags.hasApproximateFuncs())
876       MI->setFlag(MachineInstr::MIFlag::FmAfn);
877 
878     if (Flags.hasAllowReassociation())
879       MI->setFlag(MachineInstr::MIFlag::FmReassoc);
880 
881     if (Flags.hasNoUnsignedWrap())
882       MI->setFlag(MachineInstr::MIFlag::NoUWrap);
883 
884     if (Flags.hasNoSignedWrap())
885       MI->setFlag(MachineInstr::MIFlag::NoSWrap);
886 
887     if (Flags.hasExact())
888       MI->setFlag(MachineInstr::MIFlag::IsExact);
889 
890     if (Flags.hasNoFPExcept())
891       MI->setFlag(MachineInstr::MIFlag::NoFPExcept);
892   }
893 
894   // Emit all of the actual operands of this instruction, adding them to the
895   // instruction as appropriate.
896   bool HasOptPRefs = NumDefs > NumResults;
897   assert((!HasOptPRefs || !HasPhysRegOuts) &&
898          "Unable to cope with optional defs and phys regs defs!");
899   unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0;
900   for (unsigned i = NumSkip; i != NodeOperands; ++i)
901     AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II,
902                VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned);
903 
904   // Add scratch registers as implicit def and early clobber
905   if (ScratchRegs)
906     for (unsigned i = 0; ScratchRegs[i]; ++i)
907       MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine |
908                                  RegState::EarlyClobber);
909 
910   // Set the memory reference descriptions of this instruction now that it is
911   // part of the function.
912   MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands());
913 
914   // Insert the instruction into position in the block. This needs to
915   // happen before any custom inserter hook is called so that the
916   // hook knows where in the block to insert the replacement code.
917   MBB->insert(InsertPos, MIB);
918 
919   // The MachineInstr may also define physregs instead of virtregs.  These
920   // physreg values can reach other instructions in different ways:
921   //
922   // 1. When there is a use of a Node value beyond the explicitly defined
923   //    virtual registers, we emit a CopyFromReg for one of the implicitly
924   //    defined physregs.  This only happens when HasPhysRegOuts is true.
925   //
926   // 2. A CopyFromReg reading a physreg may be glued to this instruction.
927   //
928   // 3. A glued instruction may implicitly use a physreg.
929   //
930   // 4. A glued instruction may use a RegisterSDNode operand.
931   //
932   // Collect all the used physreg defs, and make sure that any unused physreg
933   // defs are marked as dead.
934   SmallVector<Register, 8> UsedRegs;
935 
936   // Additional results must be physical register defs.
937   if (HasPhysRegOuts) {
938     for (unsigned i = NumDefs; i < NumResults; ++i) {
939       Register Reg = II.getImplicitDefs()[i - NumDefs];
940       if (!Node->hasAnyUseOfValue(i))
941         continue;
942       // This implicitly defined physreg has a use.
943       UsedRegs.push_back(Reg);
944       EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap);
945     }
946   }
947 
948   // Scan the glue chain for any used physregs.
949   if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) {
950     for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) {
951       if (F->getOpcode() == ISD::CopyFromReg) {
952         UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg());
953         continue;
954       } else if (F->getOpcode() == ISD::CopyToReg) {
955         // Skip CopyToReg nodes that are internal to the glue chain.
956         continue;
957       }
958       // Collect declared implicit uses.
959       const MCInstrDesc &MCID = TII->get(F->getMachineOpcode());
960       UsedRegs.append(MCID.getImplicitUses(),
961                       MCID.getImplicitUses() + MCID.getNumImplicitUses());
962       // In addition to declared implicit uses, we must also check for
963       // direct RegisterSDNode operands.
964       for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i)
965         if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) {
966           Register Reg = R->getReg();
967           if (Reg.isPhysical())
968             UsedRegs.push_back(Reg);
969         }
970     }
971   }
972 
973   // Finally mark unused registers as dead.
974   if (!UsedRegs.empty() || II.getImplicitDefs() || II.hasOptionalDef())
975     MIB->setPhysRegsDeadExcept(UsedRegs, *TRI);
976 
977   // STATEPOINT is too 'dynamic' to have meaningful machine description.
978   // We have to manually tie operands.
979   if (Opc == TargetOpcode::STATEPOINT && NumDefs > 0) {
980     assert(!HasPhysRegOuts && "STATEPOINT mishandled");
981     MachineInstr *MI = MIB;
982     unsigned Def = 0;
983     int First = StatepointOpers(MI).getFirstGCPtrIdx();
984     assert(First > 0 && "Statepoint has Defs but no GC ptr list");
985     unsigned Use = (unsigned)First;
986     while (Def < NumDefs) {
987       if (MI->getOperand(Use).isReg())
988         MI->tieOperands(Def++, Use);
989       Use = StackMaps::getNextMetaArgIdx(MI, Use);
990     }
991   }
992 
993   // Run post-isel target hook to adjust this instruction if needed.
994   if (II.hasPostISelHook())
995     TLI->AdjustInstrPostInstrSelection(*MIB, Node);
996 }
997 
998 /// EmitSpecialNode - Generate machine code for a target-independent node and
999 /// needed dependencies.
1000 void InstrEmitter::
1001 EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned,
1002                 DenseMap<SDValue, Register> &VRBaseMap) {
1003   switch (Node->getOpcode()) {
1004   default:
1005 #ifndef NDEBUG
1006     Node->dump();
1007 #endif
1008     llvm_unreachable("This target-independent node should have been selected!");
1009   case ISD::EntryToken:
1010     llvm_unreachable("EntryToken should have been excluded from the schedule!");
1011   case ISD::MERGE_VALUES:
1012   case ISD::TokenFactor: // fall thru
1013     break;
1014   case ISD::CopyToReg: {
1015     Register DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1016     SDValue SrcVal = Node->getOperand(2);
1017     if (Register::isVirtualRegister(DestReg) && SrcVal.isMachineOpcode() &&
1018         SrcVal.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
1019       // Instead building a COPY to that vreg destination, build an
1020       // IMPLICIT_DEF instruction instead.
1021       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1022               TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
1023       break;
1024     }
1025     Register SrcReg;
1026     if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
1027       SrcReg = R->getReg();
1028     else
1029       SrcReg = getVR(SrcVal, VRBaseMap);
1030 
1031     if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
1032       break;
1033 
1034     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
1035             DestReg).addReg(SrcReg);
1036     break;
1037   }
1038   case ISD::CopyFromReg: {
1039     unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1040     EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap);
1041     break;
1042   }
1043   case ISD::EH_LABEL:
1044   case ISD::ANNOTATION_LABEL: {
1045     unsigned Opc = (Node->getOpcode() == ISD::EH_LABEL)
1046                        ? TargetOpcode::EH_LABEL
1047                        : TargetOpcode::ANNOTATION_LABEL;
1048     MCSymbol *S = cast<LabelSDNode>(Node)->getLabel();
1049     BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1050             TII->get(Opc)).addSym(S);
1051     break;
1052   }
1053 
1054   case ISD::LIFETIME_START:
1055   case ISD::LIFETIME_END: {
1056     unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START) ?
1057     TargetOpcode::LIFETIME_START : TargetOpcode::LIFETIME_END;
1058 
1059     FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Node->getOperand(1));
1060     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1061     .addFrameIndex(FI->getIndex());
1062     break;
1063   }
1064 
1065   case ISD::INLINEASM:
1066   case ISD::INLINEASM_BR: {
1067     unsigned NumOps = Node->getNumOperands();
1068     if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1069       --NumOps;  // Ignore the glue operand.
1070 
1071     // Create the inline asm machine instruction.
1072     unsigned TgtOpc = Node->getOpcode() == ISD::INLINEASM_BR
1073                           ? TargetOpcode::INLINEASM_BR
1074                           : TargetOpcode::INLINEASM;
1075     MachineInstrBuilder MIB =
1076         BuildMI(*MF, Node->getDebugLoc(), TII->get(TgtOpc));
1077 
1078     // Add the asm string as an external symbol operand.
1079     SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString);
1080     const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol();
1081     MIB.addExternalSymbol(AsmStr);
1082 
1083     // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore
1084     // bits.
1085     int64_t ExtraInfo =
1086       cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))->
1087                           getZExtValue();
1088     MIB.addImm(ExtraInfo);
1089 
1090     // Remember to operand index of the group flags.
1091     SmallVector<unsigned, 8> GroupIdx;
1092 
1093     // Remember registers that are part of early-clobber defs.
1094     SmallVector<unsigned, 8> ECRegs;
1095 
1096     // Add all of the operand registers to the instruction.
1097     for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1098       unsigned Flags =
1099         cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1100       const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1101 
1102       GroupIdx.push_back(MIB->getNumOperands());
1103       MIB.addImm(Flags);
1104       ++i;  // Skip the ID value.
1105 
1106       switch (InlineAsm::getKind(Flags)) {
1107       default: llvm_unreachable("Bad flags!");
1108         case InlineAsm::Kind_RegDef:
1109         for (unsigned j = 0; j != NumVals; ++j, ++i) {
1110           unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1111           // FIXME: Add dead flags for physical and virtual registers defined.
1112           // For now, mark physical register defs as implicit to help fast
1113           // regalloc. This makes inline asm look a lot like calls.
1114           MIB.addReg(Reg,
1115                      RegState::Define |
1116                          getImplRegState(Register::isPhysicalRegister(Reg)));
1117         }
1118         break;
1119       case InlineAsm::Kind_RegDefEarlyClobber:
1120       case InlineAsm::Kind_Clobber:
1121         for (unsigned j = 0; j != NumVals; ++j, ++i) {
1122           unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1123           MIB.addReg(Reg,
1124                      RegState::Define | RegState::EarlyClobber |
1125                          getImplRegState(Register::isPhysicalRegister(Reg)));
1126           ECRegs.push_back(Reg);
1127         }
1128         break;
1129       case InlineAsm::Kind_RegUse:  // Use of register.
1130       case InlineAsm::Kind_Imm:  // Immediate.
1131       case InlineAsm::Kind_Mem:  // Addressing mode.
1132         // The addressing mode has been selected, just add all of the
1133         // operands to the machine instruction.
1134         for (unsigned j = 0; j != NumVals; ++j, ++i)
1135           AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap,
1136                      /*IsDebug=*/false, IsClone, IsCloned);
1137 
1138         // Manually set isTied bits.
1139         if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) {
1140           unsigned DefGroup = 0;
1141           if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) {
1142             unsigned DefIdx = GroupIdx[DefGroup] + 1;
1143             unsigned UseIdx = GroupIdx.back() + 1;
1144             for (unsigned j = 0; j != NumVals; ++j)
1145               MIB->tieOperands(DefIdx + j, UseIdx + j);
1146           }
1147         }
1148         break;
1149       }
1150     }
1151 
1152     // GCC inline assembly allows input operands to also be early-clobber
1153     // output operands (so long as the operand is written only after it's
1154     // used), but this does not match the semantics of our early-clobber flag.
1155     // If an early-clobber operand register is also an input operand register,
1156     // then remove the early-clobber flag.
1157     for (unsigned Reg : ECRegs) {
1158       if (MIB->readsRegister(Reg, TRI)) {
1159         MachineOperand *MO =
1160             MIB->findRegisterDefOperand(Reg, false, false, TRI);
1161         assert(MO && "No def operand for clobbered register?");
1162         MO->setIsEarlyClobber(false);
1163       }
1164     }
1165 
1166     // Get the mdnode from the asm if it exists and add it to the instruction.
1167     SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode);
1168     const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
1169     if (MD)
1170       MIB.addMetadata(MD);
1171 
1172     MBB->insert(InsertPos, MIB);
1173     break;
1174   }
1175   }
1176 }
1177 
1178 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting
1179 /// at the given position in the given block.
1180 InstrEmitter::InstrEmitter(MachineBasicBlock *mbb,
1181                            MachineBasicBlock::iterator insertpos)
1182     : MF(mbb->getParent()), MRI(&MF->getRegInfo()),
1183       TII(MF->getSubtarget().getInstrInfo()),
1184       TRI(MF->getSubtarget().getRegisterInfo()),
1185       TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb),
1186       InsertPos(insertpos) {}
1187