1 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the Emit routines for the SelectionDAG class, which creates 11 // MachineInstrs based on the decisions of the SelectionDAG instruction 12 // selection. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "InstrEmitter.h" 17 #include "SDNodeDbgValue.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/CodeGen/MachineConstantPool.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/StackMaps.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Target/TargetInstrInfo.h" 29 #include "llvm/Target/TargetLowering.h" 30 #include "llvm/Target/TargetSubtargetInfo.h" 31 using namespace llvm; 32 33 #define DEBUG_TYPE "instr-emitter" 34 35 /// MinRCSize - Smallest register class we allow when constraining virtual 36 /// registers. If satisfying all register class constraints would require 37 /// using a smaller register class, emit a COPY to a new virtual register 38 /// instead. 39 const unsigned MinRCSize = 4; 40 41 /// CountResults - The results of target nodes have register or immediate 42 /// operands first, then an optional chain, and optional glue operands (which do 43 /// not go into the resulting MachineInstr). 44 unsigned InstrEmitter::CountResults(SDNode *Node) { 45 unsigned N = Node->getNumValues(); 46 while (N && Node->getValueType(N - 1) == MVT::Glue) 47 --N; 48 if (N && Node->getValueType(N - 1) == MVT::Other) 49 --N; // Skip over chain result. 50 return N; 51 } 52 53 /// countOperands - The inputs to target nodes have any actual inputs first, 54 /// followed by an optional chain operand, then an optional glue operand. 55 /// Compute the number of actual operands that will go into the resulting 56 /// MachineInstr. 57 /// 58 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding 59 /// the chain and glue. These operands may be implicit on the machine instr. 60 static unsigned countOperands(SDNode *Node, unsigned NumExpUses, 61 unsigned &NumImpUses) { 62 unsigned N = Node->getNumOperands(); 63 while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue) 64 --N; 65 if (N && Node->getOperand(N - 1).getValueType() == MVT::Other) 66 --N; // Ignore chain if it exists. 67 68 // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses. 69 NumImpUses = N - NumExpUses; 70 for (unsigned I = N; I > NumExpUses; --I) { 71 if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1))) 72 continue; 73 if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1))) 74 if (TargetRegisterInfo::isPhysicalRegister(RN->getReg())) 75 continue; 76 NumImpUses = N - I; 77 break; 78 } 79 80 return N; 81 } 82 83 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an 84 /// implicit physical register output. 85 void InstrEmitter:: 86 EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned, 87 unsigned SrcReg, DenseMap<SDValue, unsigned> &VRBaseMap) { 88 unsigned VRBase = 0; 89 if (TargetRegisterInfo::isVirtualRegister(SrcReg)) { 90 // Just use the input register directly! 91 SDValue Op(Node, ResNo); 92 if (IsClone) 93 VRBaseMap.erase(Op); 94 bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second; 95 (void)isNew; // Silence compiler warning. 96 assert(isNew && "Node emitted out of order - early"); 97 return; 98 } 99 100 // If the node is only used by a CopyToReg and the dest reg is a vreg, use 101 // the CopyToReg'd destination register instead of creating a new vreg. 102 bool MatchReg = true; 103 const TargetRegisterClass *UseRC = nullptr; 104 MVT VT = Node->getSimpleValueType(ResNo); 105 106 // Stick to the preferred register classes for legal types. 107 if (TLI->isTypeLegal(VT)) 108 UseRC = TLI->getRegClassFor(VT); 109 110 if (!IsClone && !IsCloned) 111 for (SDNode *User : Node->uses()) { 112 bool Match = true; 113 if (User->getOpcode() == ISD::CopyToReg && 114 User->getOperand(2).getNode() == Node && 115 User->getOperand(2).getResNo() == ResNo) { 116 unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 117 if (TargetRegisterInfo::isVirtualRegister(DestReg)) { 118 VRBase = DestReg; 119 Match = false; 120 } else if (DestReg != SrcReg) 121 Match = false; 122 } else { 123 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 124 SDValue Op = User->getOperand(i); 125 if (Op.getNode() != Node || Op.getResNo() != ResNo) 126 continue; 127 MVT VT = Node->getSimpleValueType(Op.getResNo()); 128 if (VT == MVT::Other || VT == MVT::Glue) 129 continue; 130 Match = false; 131 if (User->isMachineOpcode()) { 132 const MCInstrDesc &II = TII->get(User->getMachineOpcode()); 133 const TargetRegisterClass *RC = nullptr; 134 if (i+II.getNumDefs() < II.getNumOperands()) { 135 RC = TRI->getAllocatableClass( 136 TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF)); 137 } 138 if (!UseRC) 139 UseRC = RC; 140 else if (RC) { 141 const TargetRegisterClass *ComRC = 142 TRI->getCommonSubClass(UseRC, RC); 143 // If multiple uses expect disjoint register classes, we emit 144 // copies in AddRegisterOperand. 145 if (ComRC) 146 UseRC = ComRC; 147 } 148 } 149 } 150 } 151 MatchReg &= Match; 152 if (VRBase) 153 break; 154 } 155 156 const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr; 157 SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT); 158 159 // Figure out the register class to create for the destreg. 160 if (VRBase) { 161 DstRC = MRI->getRegClass(VRBase); 162 } else if (UseRC) { 163 assert(UseRC->hasType(VT) && "Incompatible phys register def and uses!"); 164 DstRC = UseRC; 165 } else { 166 DstRC = TLI->getRegClassFor(VT); 167 } 168 169 // If all uses are reading from the src physical register and copying the 170 // register is either impossible or very expensive, then don't create a copy. 171 if (MatchReg && SrcRC->getCopyCost() < 0) { 172 VRBase = SrcReg; 173 } else { 174 // Create the reg, emit the copy. 175 VRBase = MRI->createVirtualRegister(DstRC); 176 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 177 VRBase).addReg(SrcReg); 178 } 179 180 SDValue Op(Node, ResNo); 181 if (IsClone) 182 VRBaseMap.erase(Op); 183 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 184 (void)isNew; // Silence compiler warning. 185 assert(isNew && "Node emitted out of order - early"); 186 } 187 188 /// getDstOfCopyToRegUse - If the only use of the specified result number of 189 /// node is a CopyToReg, return its destination register. Return 0 otherwise. 190 unsigned InstrEmitter::getDstOfOnlyCopyToRegUse(SDNode *Node, 191 unsigned ResNo) const { 192 if (!Node->hasOneUse()) 193 return 0; 194 195 SDNode *User = *Node->use_begin(); 196 if (User->getOpcode() == ISD::CopyToReg && 197 User->getOperand(2).getNode() == Node && 198 User->getOperand(2).getResNo() == ResNo) { 199 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 200 if (TargetRegisterInfo::isVirtualRegister(Reg)) 201 return Reg; 202 } 203 return 0; 204 } 205 206 void InstrEmitter::CreateVirtualRegisters(SDNode *Node, 207 MachineInstrBuilder &MIB, 208 const MCInstrDesc &II, 209 bool IsClone, bool IsCloned, 210 DenseMap<SDValue, unsigned> &VRBaseMap) { 211 assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF && 212 "IMPLICIT_DEF should have been handled as a special case elsewhere!"); 213 214 unsigned NumResults = CountResults(Node); 215 for (unsigned i = 0; i < II.getNumDefs(); ++i) { 216 // If the specific node value is only used by a CopyToReg and the dest reg 217 // is a vreg in the same register class, use the CopyToReg'd destination 218 // register instead of creating a new vreg. 219 unsigned VRBase = 0; 220 const TargetRegisterClass *RC = 221 TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF)); 222 // Always let the value type influence the used register class. The 223 // constraints on the instruction may be too lax to represent the value 224 // type correctly. For example, a 64-bit float (X86::FR64) can't live in 225 // the 32-bit float super-class (X86::FR32). 226 if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) { 227 const TargetRegisterClass *VTRC = 228 TLI->getRegClassFor(Node->getSimpleValueType(i)); 229 if (RC) 230 VTRC = TRI->getCommonSubClass(RC, VTRC); 231 if (VTRC) 232 RC = VTRC; 233 } 234 235 if (II.OpInfo[i].isOptionalDef()) { 236 // Optional def must be a physical register. 237 unsigned NumResults = CountResults(Node); 238 VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg(); 239 assert(TargetRegisterInfo::isPhysicalRegister(VRBase)); 240 MIB.addReg(VRBase, RegState::Define); 241 } 242 243 if (!VRBase && !IsClone && !IsCloned) 244 for (SDNode *User : Node->uses()) { 245 if (User->getOpcode() == ISD::CopyToReg && 246 User->getOperand(2).getNode() == Node && 247 User->getOperand(2).getResNo() == i) { 248 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 249 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 250 const TargetRegisterClass *RegRC = MRI->getRegClass(Reg); 251 if (RegRC == RC) { 252 VRBase = Reg; 253 MIB.addReg(VRBase, RegState::Define); 254 break; 255 } 256 } 257 } 258 } 259 260 // Create the result registers for this node and add the result regs to 261 // the machine instruction. 262 if (VRBase == 0) { 263 assert(RC && "Isn't a register operand!"); 264 VRBase = MRI->createVirtualRegister(RC); 265 MIB.addReg(VRBase, RegState::Define); 266 } 267 268 // If this def corresponds to a result of the SDNode insert the VRBase into 269 // the lookup map. 270 if (i < NumResults) { 271 SDValue Op(Node, i); 272 if (IsClone) 273 VRBaseMap.erase(Op); 274 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 275 (void)isNew; // Silence compiler warning. 276 assert(isNew && "Node emitted out of order - early"); 277 } 278 } 279 } 280 281 /// getVR - Return the virtual register corresponding to the specified result 282 /// of the specified node. 283 unsigned InstrEmitter::getVR(SDValue Op, 284 DenseMap<SDValue, unsigned> &VRBaseMap) { 285 if (Op.isMachineOpcode() && 286 Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) { 287 // Add an IMPLICIT_DEF instruction before every use. 288 unsigned VReg = getDstOfOnlyCopyToRegUse(Op.getNode(), Op.getResNo()); 289 // IMPLICIT_DEF can produce any type of result so its MCInstrDesc 290 // does not include operand register class info. 291 if (!VReg) { 292 const TargetRegisterClass *RC = 293 TLI->getRegClassFor(Op.getSimpleValueType()); 294 VReg = MRI->createVirtualRegister(RC); 295 } 296 BuildMI(*MBB, InsertPos, Op.getDebugLoc(), 297 TII->get(TargetOpcode::IMPLICIT_DEF), VReg); 298 return VReg; 299 } 300 301 DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op); 302 assert(I != VRBaseMap.end() && "Node emitted out of order - late"); 303 return I->second; 304 } 305 306 307 /// AddRegisterOperand - Add the specified register as an operand to the 308 /// specified machine instr. Insert register copies if the register is 309 /// not in the required register class. 310 void 311 InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB, 312 SDValue Op, 313 unsigned IIOpNum, 314 const MCInstrDesc *II, 315 DenseMap<SDValue, unsigned> &VRBaseMap, 316 bool IsDebug, bool IsClone, bool IsCloned) { 317 assert(Op.getValueType() != MVT::Other && 318 Op.getValueType() != MVT::Glue && 319 "Chain and glue operands should occur at end of operand list!"); 320 // Get/emit the operand. 321 unsigned VReg = getVR(Op, VRBaseMap); 322 assert(TargetRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?"); 323 324 const MCInstrDesc &MCID = MIB->getDesc(); 325 bool isOptDef = IIOpNum < MCID.getNumOperands() && 326 MCID.OpInfo[IIOpNum].isOptionalDef(); 327 328 // If the instruction requires a register in a different class, create 329 // a new virtual register and copy the value into it, but first attempt to 330 // shrink VReg's register class within reason. For example, if VReg == GR32 331 // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP. 332 if (II) { 333 const TargetRegisterClass *OpRC = nullptr; 334 if (IIOpNum < II->getNumOperands()) 335 OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF); 336 337 if (OpRC && !MRI->constrainRegClass(VReg, OpRC, MinRCSize)) { 338 assert(OpRC->isAllocatable() && 339 "Constraining an allocatable VReg produced an unallocatable class?"); 340 341 unsigned NewVReg = MRI->createVirtualRegister(OpRC); 342 BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(), 343 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg); 344 VReg = NewVReg; 345 } 346 } 347 348 // If this value has only one use, that use is a kill. This is a 349 // conservative approximation. InstrEmitter does trivial coalescing 350 // with CopyFromReg nodes, so don't emit kill flags for them. 351 // Avoid kill flags on Schedule cloned nodes, since there will be 352 // multiple uses. 353 // Tied operands are never killed, so we need to check that. And that 354 // means we need to determine the index of the operand. 355 bool isKill = Op.hasOneUse() && 356 Op.getNode()->getOpcode() != ISD::CopyFromReg && 357 !IsDebug && 358 !(IsClone || IsCloned); 359 if (isKill) { 360 unsigned Idx = MIB->getNumOperands(); 361 while (Idx > 0 && 362 MIB->getOperand(Idx-1).isReg() && 363 MIB->getOperand(Idx-1).isImplicit()) 364 --Idx; 365 bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1; 366 if (isTied) 367 isKill = false; 368 } 369 370 MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) | 371 getDebugRegState(IsDebug)); 372 } 373 374 /// AddOperand - Add the specified operand to the specified machine instr. II 375 /// specifies the instruction information for the node, and IIOpNum is the 376 /// operand number (in the II) that we are adding. 377 void InstrEmitter::AddOperand(MachineInstrBuilder &MIB, 378 SDValue Op, 379 unsigned IIOpNum, 380 const MCInstrDesc *II, 381 DenseMap<SDValue, unsigned> &VRBaseMap, 382 bool IsDebug, bool IsClone, bool IsCloned) { 383 if (Op.isMachineOpcode()) { 384 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap, 385 IsDebug, IsClone, IsCloned); 386 } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 387 MIB.addImm(C->getSExtValue()); 388 } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) { 389 MIB.addFPImm(F->getConstantFPValue()); 390 } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) { 391 // Turn additional physreg operands into implicit uses on non-variadic 392 // instructions. This is used by call and return instructions passing 393 // arguments in registers. 394 bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic()); 395 MIB.addReg(R->getReg(), getImplRegState(Imp)); 396 } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) { 397 MIB.addRegMask(RM->getRegMask()); 398 } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) { 399 MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(), 400 TGA->getTargetFlags()); 401 } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) { 402 MIB.addMBB(BBNode->getBasicBlock()); 403 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 404 MIB.addFrameIndex(FI->getIndex()); 405 } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) { 406 MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags()); 407 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) { 408 int Offset = CP->getOffset(); 409 unsigned Align = CP->getAlignment(); 410 Type *Type = CP->getType(); 411 // MachineConstantPool wants an explicit alignment. 412 if (Align == 0) { 413 Align = MF->getDataLayout().getPrefTypeAlignment(Type); 414 if (Align == 0) { 415 // Alignment of vector types. FIXME! 416 Align = MF->getDataLayout().getTypeAllocSize(Type); 417 } 418 } 419 420 unsigned Idx; 421 MachineConstantPool *MCP = MF->getConstantPool(); 422 if (CP->isMachineConstantPoolEntry()) 423 Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Align); 424 else 425 Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Align); 426 MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags()); 427 } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) { 428 MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags()); 429 } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) { 430 MIB.addSym(SymNode->getMCSymbol()); 431 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) { 432 MIB.addBlockAddress(BA->getBlockAddress(), 433 BA->getOffset(), 434 BA->getTargetFlags()); 435 } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) { 436 MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags()); 437 } else { 438 assert(Op.getValueType() != MVT::Other && 439 Op.getValueType() != MVT::Glue && 440 "Chain and glue operands should occur at end of operand list!"); 441 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap, 442 IsDebug, IsClone, IsCloned); 443 } 444 } 445 446 unsigned InstrEmitter::ConstrainForSubReg(unsigned VReg, unsigned SubIdx, 447 MVT VT, DebugLoc DL) { 448 const TargetRegisterClass *VRC = MRI->getRegClass(VReg); 449 const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx); 450 451 // RC is a sub-class of VRC that supports SubIdx. Try to constrain VReg 452 // within reason. 453 if (RC && RC != VRC) 454 RC = MRI->constrainRegClass(VReg, RC, MinRCSize); 455 456 // VReg has been adjusted. It can be used with SubIdx operands now. 457 if (RC) 458 return VReg; 459 460 // VReg couldn't be reasonably constrained. Emit a COPY to a new virtual 461 // register instead. 462 RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT), SubIdx); 463 assert(RC && "No legal register class for VT supports that SubIdx"); 464 unsigned NewReg = MRI->createVirtualRegister(RC); 465 BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg) 466 .addReg(VReg); 467 return NewReg; 468 } 469 470 /// EmitSubregNode - Generate machine code for subreg nodes. 471 /// 472 void InstrEmitter::EmitSubregNode(SDNode *Node, 473 DenseMap<SDValue, unsigned> &VRBaseMap, 474 bool IsClone, bool IsCloned) { 475 unsigned VRBase = 0; 476 unsigned Opc = Node->getMachineOpcode(); 477 478 // If the node is only used by a CopyToReg and the dest reg is a vreg, use 479 // the CopyToReg'd destination register instead of creating a new vreg. 480 for (SDNode *User : Node->uses()) { 481 if (User->getOpcode() == ISD::CopyToReg && 482 User->getOperand(2).getNode() == Node) { 483 unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 484 if (TargetRegisterInfo::isVirtualRegister(DestReg)) { 485 VRBase = DestReg; 486 break; 487 } 488 } 489 } 490 491 if (Opc == TargetOpcode::EXTRACT_SUBREG) { 492 // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub. There are no 493 // constraints on the %dst register, COPY can target all legal register 494 // classes. 495 unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); 496 const TargetRegisterClass *TRC = 497 TLI->getRegClassFor(Node->getSimpleValueType(0)); 498 499 unsigned VReg = getVR(Node->getOperand(0), VRBaseMap); 500 MachineInstr *DefMI = MRI->getVRegDef(VReg); 501 unsigned SrcReg, DstReg, DefSubIdx; 502 if (DefMI && 503 TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) && 504 SubIdx == DefSubIdx && 505 TRC == MRI->getRegClass(SrcReg)) { 506 // Optimize these: 507 // r1025 = s/zext r1024, 4 508 // r1026 = extract_subreg r1025, 4 509 // to a copy 510 // r1026 = copy r1024 511 VRBase = MRI->createVirtualRegister(TRC); 512 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 513 TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg); 514 MRI->clearKillFlags(SrcReg); 515 } else { 516 // VReg may not support a SubIdx sub-register, and we may need to 517 // constrain its register class or issue a COPY to a compatible register 518 // class. 519 VReg = ConstrainForSubReg(VReg, SubIdx, 520 Node->getOperand(0).getSimpleValueType(), 521 Node->getDebugLoc()); 522 523 // Create the destreg if it is missing. 524 if (VRBase == 0) 525 VRBase = MRI->createVirtualRegister(TRC); 526 527 // Create the extract_subreg machine instruction. 528 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 529 TII->get(TargetOpcode::COPY), VRBase).addReg(VReg, 0, SubIdx); 530 } 531 } else if (Opc == TargetOpcode::INSERT_SUBREG || 532 Opc == TargetOpcode::SUBREG_TO_REG) { 533 SDValue N0 = Node->getOperand(0); 534 SDValue N1 = Node->getOperand(1); 535 SDValue N2 = Node->getOperand(2); 536 unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue(); 537 538 // Figure out the register class to create for the destreg. It should be 539 // the largest legal register class supporting SubIdx sub-registers. 540 // RegisterCoalescer will constrain it further if it decides to eliminate 541 // the INSERT_SUBREG instruction. 542 // 543 // %dst = INSERT_SUBREG %src, %sub, SubIdx 544 // 545 // is lowered by TwoAddressInstructionPass to: 546 // 547 // %dst = COPY %src 548 // %dst:SubIdx = COPY %sub 549 // 550 // There is no constraint on the %src register class. 551 // 552 const TargetRegisterClass *SRC = TLI->getRegClassFor(Node->getSimpleValueType(0)); 553 SRC = TRI->getSubClassWithSubReg(SRC, SubIdx); 554 assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG"); 555 556 if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase))) 557 VRBase = MRI->createVirtualRegister(SRC); 558 559 // Create the insert_subreg or subreg_to_reg machine instruction. 560 MachineInstrBuilder MIB = 561 BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase); 562 563 // If creating a subreg_to_reg, then the first input operand 564 // is an implicit value immediate, otherwise it's a register 565 if (Opc == TargetOpcode::SUBREG_TO_REG) { 566 const ConstantSDNode *SD = cast<ConstantSDNode>(N0); 567 MIB.addImm(SD->getZExtValue()); 568 } else 569 AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false, 570 IsClone, IsCloned); 571 // Add the subregster being inserted 572 AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false, 573 IsClone, IsCloned); 574 MIB.addImm(SubIdx); 575 MBB->insert(InsertPos, MIB); 576 } else 577 llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg"); 578 579 SDValue Op(Node, 0); 580 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 581 (void)isNew; // Silence compiler warning. 582 assert(isNew && "Node emitted out of order - early"); 583 } 584 585 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes. 586 /// COPY_TO_REGCLASS is just a normal copy, except that the destination 587 /// register is constrained to be in a particular register class. 588 /// 589 void 590 InstrEmitter::EmitCopyToRegClassNode(SDNode *Node, 591 DenseMap<SDValue, unsigned> &VRBaseMap) { 592 unsigned VReg = getVR(Node->getOperand(0), VRBaseMap); 593 594 // Create the new VReg in the destination class and emit a copy. 595 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); 596 const TargetRegisterClass *DstRC = 597 TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx)); 598 unsigned NewVReg = MRI->createVirtualRegister(DstRC); 599 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 600 NewVReg).addReg(VReg); 601 602 SDValue Op(Node, 0); 603 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second; 604 (void)isNew; // Silence compiler warning. 605 assert(isNew && "Node emitted out of order - early"); 606 } 607 608 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes. 609 /// 610 void InstrEmitter::EmitRegSequence(SDNode *Node, 611 DenseMap<SDValue, unsigned> &VRBaseMap, 612 bool IsClone, bool IsCloned) { 613 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue(); 614 const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx); 615 unsigned NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC)); 616 const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE); 617 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg); 618 unsigned NumOps = Node->getNumOperands(); 619 assert((NumOps & 1) == 1 && 620 "REG_SEQUENCE must have an odd number of operands!"); 621 for (unsigned i = 1; i != NumOps; ++i) { 622 SDValue Op = Node->getOperand(i); 623 if ((i & 1) == 0) { 624 RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1)); 625 // Skip physical registers as they don't have a vreg to get and we'll 626 // insert copies for them in TwoAddressInstructionPass anyway. 627 if (!R || !TargetRegisterInfo::isPhysicalRegister(R->getReg())) { 628 unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue(); 629 unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap); 630 const TargetRegisterClass *TRC = MRI->getRegClass(SubReg); 631 const TargetRegisterClass *SRC = 632 TRI->getMatchingSuperRegClass(RC, TRC, SubIdx); 633 if (SRC && SRC != RC) { 634 MRI->setRegClass(NewVReg, SRC); 635 RC = SRC; 636 } 637 } 638 } 639 AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false, 640 IsClone, IsCloned); 641 } 642 643 MBB->insert(InsertPos, MIB); 644 SDValue Op(Node, 0); 645 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second; 646 (void)isNew; // Silence compiler warning. 647 assert(isNew && "Node emitted out of order - early"); 648 } 649 650 /// EmitDbgValue - Generate machine instruction for a dbg_value node. 651 /// 652 MachineInstr * 653 InstrEmitter::EmitDbgValue(SDDbgValue *SD, 654 DenseMap<SDValue, unsigned> &VRBaseMap) { 655 uint64_t Offset = SD->getOffset(); 656 MDNode *Var = SD->getVariable(); 657 MDNode *Expr = SD->getExpression(); 658 DebugLoc DL = SD->getDebugLoc(); 659 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 660 "Expected inlined-at fields to agree"); 661 662 if (SD->getKind() == SDDbgValue::FRAMEIX) { 663 // Stack address; this needs to be lowered in target-dependent fashion. 664 // EmitTargetCodeForFrameDebugValue is responsible for allocation. 665 return BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 666 .addFrameIndex(SD->getFrameIx()) 667 .addImm(Offset) 668 .addMetadata(Var) 669 .addMetadata(Expr); 670 } 671 // Otherwise, we're going to create an instruction here. 672 const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE); 673 MachineInstrBuilder MIB = BuildMI(*MF, DL, II); 674 if (SD->getKind() == SDDbgValue::SDNODE) { 675 SDNode *Node = SD->getSDNode(); 676 SDValue Op = SDValue(Node, SD->getResNo()); 677 // It's possible we replaced this SDNode with other(s) and therefore 678 // didn't generate code for it. It's better to catch these cases where 679 // they happen and transfer the debug info, but trying to guarantee that 680 // in all cases would be very fragile; this is a safeguard for any 681 // that were missed. 682 DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op); 683 if (I==VRBaseMap.end()) 684 MIB.addReg(0U); // undef 685 else 686 AddOperand(MIB, Op, (*MIB).getNumOperands(), &II, VRBaseMap, 687 /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false); 688 } else if (SD->getKind() == SDDbgValue::CONST) { 689 const Value *V = SD->getConst(); 690 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 691 if (CI->getBitWidth() > 64) 692 MIB.addCImm(CI); 693 else 694 MIB.addImm(CI->getSExtValue()); 695 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 696 MIB.addFPImm(CF); 697 } else { 698 // Could be an Undef. In any case insert an Undef so we can see what we 699 // dropped. 700 MIB.addReg(0U); 701 } 702 } else { 703 // Insert an Undef so we can see what we dropped. 704 MIB.addReg(0U); 705 } 706 707 // Indirect addressing is indicated by an Imm as the second parameter. 708 if (SD->isIndirect()) 709 MIB.addImm(Offset); 710 else { 711 assert(Offset == 0 && "direct value cannot have an offset"); 712 MIB.addReg(0U, RegState::Debug); 713 } 714 715 MIB.addMetadata(Var); 716 MIB.addMetadata(Expr); 717 718 return &*MIB; 719 } 720 721 /// EmitMachineNode - Generate machine code for a target-specific node and 722 /// needed dependencies. 723 /// 724 void InstrEmitter:: 725 EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned, 726 DenseMap<SDValue, unsigned> &VRBaseMap) { 727 unsigned Opc = Node->getMachineOpcode(); 728 729 // Handle subreg insert/extract specially 730 if (Opc == TargetOpcode::EXTRACT_SUBREG || 731 Opc == TargetOpcode::INSERT_SUBREG || 732 Opc == TargetOpcode::SUBREG_TO_REG) { 733 EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned); 734 return; 735 } 736 737 // Handle COPY_TO_REGCLASS specially. 738 if (Opc == TargetOpcode::COPY_TO_REGCLASS) { 739 EmitCopyToRegClassNode(Node, VRBaseMap); 740 return; 741 } 742 743 // Handle REG_SEQUENCE specially. 744 if (Opc == TargetOpcode::REG_SEQUENCE) { 745 EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned); 746 return; 747 } 748 749 if (Opc == TargetOpcode::IMPLICIT_DEF) 750 // We want a unique VR for each IMPLICIT_DEF use. 751 return; 752 753 const MCInstrDesc &II = TII->get(Opc); 754 unsigned NumResults = CountResults(Node); 755 unsigned NumDefs = II.getNumDefs(); 756 const MCPhysReg *ScratchRegs = nullptr; 757 758 // Handle STACKMAP and PATCHPOINT specially and then use the generic code. 759 if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) { 760 // Stackmaps do not have arguments and do not preserve their calling 761 // convention. However, to simplify runtime support, they clobber the same 762 // scratch registers as AnyRegCC. 763 unsigned CC = CallingConv::AnyReg; 764 if (Opc == TargetOpcode::PATCHPOINT) { 765 CC = Node->getConstantOperandVal(PatchPointOpers::CCPos); 766 NumDefs = NumResults; 767 } 768 ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC); 769 } 770 771 unsigned NumImpUses = 0; 772 unsigned NodeOperands = 773 countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses); 774 bool HasPhysRegOuts = NumResults > NumDefs && II.getImplicitDefs()!=nullptr; 775 #ifndef NDEBUG 776 unsigned NumMIOperands = NodeOperands + NumResults; 777 if (II.isVariadic()) 778 assert(NumMIOperands >= II.getNumOperands() && 779 "Too few operands for a variadic node!"); 780 else 781 assert(NumMIOperands >= II.getNumOperands() && 782 NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() + 783 NumImpUses && 784 "#operands for dag node doesn't match .td file!"); 785 #endif 786 787 // Create the new machine instruction. 788 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II); 789 790 // Add result register values for things that are defined by this 791 // instruction. 792 if (NumResults) 793 CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap); 794 795 // Emit all of the actual operands of this instruction, adding them to the 796 // instruction as appropriate. 797 bool HasOptPRefs = NumDefs > NumResults; 798 assert((!HasOptPRefs || !HasPhysRegOuts) && 799 "Unable to cope with optional defs and phys regs defs!"); 800 unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0; 801 for (unsigned i = NumSkip; i != NodeOperands; ++i) 802 AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II, 803 VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned); 804 805 // Add scratch registers as implicit def and early clobber 806 if (ScratchRegs) 807 for (unsigned i = 0; ScratchRegs[i]; ++i) 808 MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine | 809 RegState::EarlyClobber); 810 811 // Transfer all of the memory reference descriptions of this instruction. 812 MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands_begin(), 813 cast<MachineSDNode>(Node)->memoperands_end()); 814 815 // Insert the instruction into position in the block. This needs to 816 // happen before any custom inserter hook is called so that the 817 // hook knows where in the block to insert the replacement code. 818 MBB->insert(InsertPos, MIB); 819 820 // The MachineInstr may also define physregs instead of virtregs. These 821 // physreg values can reach other instructions in different ways: 822 // 823 // 1. When there is a use of a Node value beyond the explicitly defined 824 // virtual registers, we emit a CopyFromReg for one of the implicitly 825 // defined physregs. This only happens when HasPhysRegOuts is true. 826 // 827 // 2. A CopyFromReg reading a physreg may be glued to this instruction. 828 // 829 // 3. A glued instruction may implicitly use a physreg. 830 // 831 // 4. A glued instruction may use a RegisterSDNode operand. 832 // 833 // Collect all the used physreg defs, and make sure that any unused physreg 834 // defs are marked as dead. 835 SmallVector<unsigned, 8> UsedRegs; 836 837 // Additional results must be physical register defs. 838 if (HasPhysRegOuts) { 839 for (unsigned i = NumDefs; i < NumResults; ++i) { 840 unsigned Reg = II.getImplicitDefs()[i - NumDefs]; 841 if (!Node->hasAnyUseOfValue(i)) 842 continue; 843 // This implicitly defined physreg has a use. 844 UsedRegs.push_back(Reg); 845 EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap); 846 } 847 } 848 849 // Scan the glue chain for any used physregs. 850 if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) { 851 for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) { 852 if (F->getOpcode() == ISD::CopyFromReg) { 853 UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg()); 854 continue; 855 } else if (F->getOpcode() == ISD::CopyToReg) { 856 // Skip CopyToReg nodes that are internal to the glue chain. 857 continue; 858 } 859 // Collect declared implicit uses. 860 const MCInstrDesc &MCID = TII->get(F->getMachineOpcode()); 861 UsedRegs.append(MCID.getImplicitUses(), 862 MCID.getImplicitUses() + MCID.getNumImplicitUses()); 863 // In addition to declared implicit uses, we must also check for 864 // direct RegisterSDNode operands. 865 for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i) 866 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) { 867 unsigned Reg = R->getReg(); 868 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 869 UsedRegs.push_back(Reg); 870 } 871 } 872 } 873 874 // Finally mark unused registers as dead. 875 if (!UsedRegs.empty() || II.getImplicitDefs()) 876 MIB->setPhysRegsDeadExcept(UsedRegs, *TRI); 877 878 // Run post-isel target hook to adjust this instruction if needed. 879 if (II.hasPostISelHook()) 880 TLI->AdjustInstrPostInstrSelection(MIB, Node); 881 } 882 883 /// EmitSpecialNode - Generate machine code for a target-independent node and 884 /// needed dependencies. 885 void InstrEmitter:: 886 EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned, 887 DenseMap<SDValue, unsigned> &VRBaseMap) { 888 switch (Node->getOpcode()) { 889 default: 890 #ifndef NDEBUG 891 Node->dump(); 892 #endif 893 llvm_unreachable("This target-independent node should have been selected!"); 894 case ISD::EntryToken: 895 llvm_unreachable("EntryToken should have been excluded from the schedule!"); 896 case ISD::MERGE_VALUES: 897 case ISD::TokenFactor: // fall thru 898 break; 899 case ISD::CopyToReg: { 900 unsigned SrcReg; 901 SDValue SrcVal = Node->getOperand(2); 902 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal)) 903 SrcReg = R->getReg(); 904 else 905 SrcReg = getVR(SrcVal, VRBaseMap); 906 907 unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); 908 if (SrcReg == DestReg) // Coalesced away the copy? Ignore. 909 break; 910 911 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 912 DestReg).addReg(SrcReg); 913 break; 914 } 915 case ISD::CopyFromReg: { 916 unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); 917 EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap); 918 break; 919 } 920 case ISD::EH_LABEL: { 921 MCSymbol *S = cast<EHLabelSDNode>(Node)->getLabel(); 922 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 923 TII->get(TargetOpcode::EH_LABEL)).addSym(S); 924 break; 925 } 926 927 case ISD::LIFETIME_START: 928 case ISD::LIFETIME_END: { 929 unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START) ? 930 TargetOpcode::LIFETIME_START : TargetOpcode::LIFETIME_END; 931 932 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Node->getOperand(1)); 933 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp)) 934 .addFrameIndex(FI->getIndex()); 935 break; 936 } 937 938 case ISD::INLINEASM: { 939 unsigned NumOps = Node->getNumOperands(); 940 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue) 941 --NumOps; // Ignore the glue operand. 942 943 // Create the inline asm machine instruction. 944 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), 945 TII->get(TargetOpcode::INLINEASM)); 946 947 // Add the asm string as an external symbol operand. 948 SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString); 949 const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol(); 950 MIB.addExternalSymbol(AsmStr); 951 952 // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore 953 // bits. 954 int64_t ExtraInfo = 955 cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))-> 956 getZExtValue(); 957 MIB.addImm(ExtraInfo); 958 959 // Remember to operand index of the group flags. 960 SmallVector<unsigned, 8> GroupIdx; 961 962 // Remember registers that are part of early-clobber defs. 963 SmallVector<unsigned, 8> ECRegs; 964 965 // Add all of the operand registers to the instruction. 966 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 967 unsigned Flags = 968 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue(); 969 const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 970 971 GroupIdx.push_back(MIB->getNumOperands()); 972 MIB.addImm(Flags); 973 ++i; // Skip the ID value. 974 975 switch (InlineAsm::getKind(Flags)) { 976 default: llvm_unreachable("Bad flags!"); 977 case InlineAsm::Kind_RegDef: 978 for (unsigned j = 0; j != NumVals; ++j, ++i) { 979 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); 980 // FIXME: Add dead flags for physical and virtual registers defined. 981 // For now, mark physical register defs as implicit to help fast 982 // regalloc. This makes inline asm look a lot like calls. 983 MIB.addReg(Reg, RegState::Define | 984 getImplRegState(TargetRegisterInfo::isPhysicalRegister(Reg))); 985 } 986 break; 987 case InlineAsm::Kind_RegDefEarlyClobber: 988 case InlineAsm::Kind_Clobber: 989 for (unsigned j = 0; j != NumVals; ++j, ++i) { 990 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); 991 MIB.addReg(Reg, RegState::Define | RegState::EarlyClobber | 992 getImplRegState(TargetRegisterInfo::isPhysicalRegister(Reg))); 993 ECRegs.push_back(Reg); 994 } 995 break; 996 case InlineAsm::Kind_RegUse: // Use of register. 997 case InlineAsm::Kind_Imm: // Immediate. 998 case InlineAsm::Kind_Mem: // Addressing mode. 999 // The addressing mode has been selected, just add all of the 1000 // operands to the machine instruction. 1001 for (unsigned j = 0; j != NumVals; ++j, ++i) 1002 AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap, 1003 /*IsDebug=*/false, IsClone, IsCloned); 1004 1005 // Manually set isTied bits. 1006 if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) { 1007 unsigned DefGroup = 0; 1008 if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) { 1009 unsigned DefIdx = GroupIdx[DefGroup] + 1; 1010 unsigned UseIdx = GroupIdx.back() + 1; 1011 for (unsigned j = 0; j != NumVals; ++j) 1012 MIB->tieOperands(DefIdx + j, UseIdx + j); 1013 } 1014 } 1015 break; 1016 } 1017 } 1018 1019 // GCC inline assembly allows input operands to also be early-clobber 1020 // output operands (so long as the operand is written only after it's 1021 // used), but this does not match the semantics of our early-clobber flag. 1022 // If an early-clobber operand register is also an input operand register, 1023 // then remove the early-clobber flag. 1024 for (unsigned Reg : ECRegs) { 1025 if (MIB->readsRegister(Reg, TRI)) { 1026 MachineOperand *MO = MIB->findRegisterDefOperand(Reg, false, TRI); 1027 assert(MO && "No def operand for clobbered register?"); 1028 MO->setIsEarlyClobber(false); 1029 } 1030 } 1031 1032 // Get the mdnode from the asm if it exists and add it to the instruction. 1033 SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode); 1034 const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD(); 1035 if (MD) 1036 MIB.addMetadata(MD); 1037 1038 MBB->insert(InsertPos, MIB); 1039 break; 1040 } 1041 } 1042 } 1043 1044 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting 1045 /// at the given position in the given block. 1046 InstrEmitter::InstrEmitter(MachineBasicBlock *mbb, 1047 MachineBasicBlock::iterator insertpos) 1048 : MF(mbb->getParent()), MRI(&MF->getRegInfo()), 1049 TII(MF->getSubtarget().getInstrInfo()), 1050 TRI(MF->getSubtarget().getRegisterInfo()), 1051 TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb), 1052 InsertPos(insertpos) {} 1053