1 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the Emit routines for the SelectionDAG class, which creates
11 // MachineInstrs based on the decisions of the SelectionDAG instruction
12 // selection.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "InstrEmitter.h"
17 #include "SDNodeDbgValue.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/MachineConstantPool.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/StackMaps.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Target/TargetInstrInfo.h"
29 #include "llvm/Target/TargetLowering.h"
30 #include "llvm/Target/TargetSubtargetInfo.h"
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "instr-emitter"
34 
35 /// MinRCSize - Smallest register class we allow when constraining virtual
36 /// registers.  If satisfying all register class constraints would require
37 /// using a smaller register class, emit a COPY to a new virtual register
38 /// instead.
39 const unsigned MinRCSize = 4;
40 
41 /// CountResults - The results of target nodes have register or immediate
42 /// operands first, then an optional chain, and optional glue operands (which do
43 /// not go into the resulting MachineInstr).
44 unsigned InstrEmitter::CountResults(SDNode *Node) {
45   unsigned N = Node->getNumValues();
46   while (N && Node->getValueType(N - 1) == MVT::Glue)
47     --N;
48   if (N && Node->getValueType(N - 1) == MVT::Other)
49     --N;    // Skip over chain result.
50   return N;
51 }
52 
53 /// countOperands - The inputs to target nodes have any actual inputs first,
54 /// followed by an optional chain operand, then an optional glue operand.
55 /// Compute the number of actual operands that will go into the resulting
56 /// MachineInstr.
57 ///
58 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding
59 /// the chain and glue. These operands may be implicit on the machine instr.
60 static unsigned countOperands(SDNode *Node, unsigned NumExpUses,
61                               unsigned &NumImpUses) {
62   unsigned N = Node->getNumOperands();
63   while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
64     --N;
65   if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
66     --N; // Ignore chain if it exists.
67 
68   // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses.
69   NumImpUses = N - NumExpUses;
70   for (unsigned I = N; I > NumExpUses; --I) {
71     if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1)))
72       continue;
73     if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1)))
74       if (TargetRegisterInfo::isPhysicalRegister(RN->getReg()))
75         continue;
76     NumImpUses = N - I;
77     break;
78   }
79 
80   return N;
81 }
82 
83 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
84 /// implicit physical register output.
85 void InstrEmitter::
86 EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned,
87                 unsigned SrcReg, DenseMap<SDValue, unsigned> &VRBaseMap) {
88   unsigned VRBase = 0;
89   if (TargetRegisterInfo::isVirtualRegister(SrcReg)) {
90     // Just use the input register directly!
91     SDValue Op(Node, ResNo);
92     if (IsClone)
93       VRBaseMap.erase(Op);
94     bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
95     (void)isNew; // Silence compiler warning.
96     assert(isNew && "Node emitted out of order - early");
97     return;
98   }
99 
100   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
101   // the CopyToReg'd destination register instead of creating a new vreg.
102   bool MatchReg = true;
103   const TargetRegisterClass *UseRC = nullptr;
104   MVT VT = Node->getSimpleValueType(ResNo);
105 
106   // Stick to the preferred register classes for legal types.
107   if (TLI->isTypeLegal(VT))
108     UseRC = TLI->getRegClassFor(VT);
109 
110   if (!IsClone && !IsCloned)
111     for (SDNode *User : Node->uses()) {
112       bool Match = true;
113       if (User->getOpcode() == ISD::CopyToReg &&
114           User->getOperand(2).getNode() == Node &&
115           User->getOperand(2).getResNo() == ResNo) {
116         unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
117         if (TargetRegisterInfo::isVirtualRegister(DestReg)) {
118           VRBase = DestReg;
119           Match = false;
120         } else if (DestReg != SrcReg)
121           Match = false;
122       } else {
123         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
124           SDValue Op = User->getOperand(i);
125           if (Op.getNode() != Node || Op.getResNo() != ResNo)
126             continue;
127           MVT VT = Node->getSimpleValueType(Op.getResNo());
128           if (VT == MVT::Other || VT == MVT::Glue)
129             continue;
130           Match = false;
131           if (User->isMachineOpcode()) {
132             const MCInstrDesc &II = TII->get(User->getMachineOpcode());
133             const TargetRegisterClass *RC = nullptr;
134             if (i+II.getNumDefs() < II.getNumOperands()) {
135               RC = TRI->getAllocatableClass(
136                 TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF));
137             }
138             if (!UseRC)
139               UseRC = RC;
140             else if (RC) {
141               const TargetRegisterClass *ComRC =
142                 TRI->getCommonSubClass(UseRC, RC);
143               // If multiple uses expect disjoint register classes, we emit
144               // copies in AddRegisterOperand.
145               if (ComRC)
146                 UseRC = ComRC;
147             }
148           }
149         }
150       }
151       MatchReg &= Match;
152       if (VRBase)
153         break;
154     }
155 
156   const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr;
157   SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT);
158 
159   // Figure out the register class to create for the destreg.
160   if (VRBase) {
161     DstRC = MRI->getRegClass(VRBase);
162   } else if (UseRC) {
163     assert(UseRC->hasType(VT) && "Incompatible phys register def and uses!");
164     DstRC = UseRC;
165   } else {
166     DstRC = TLI->getRegClassFor(VT);
167   }
168 
169   // If all uses are reading from the src physical register and copying the
170   // register is either impossible or very expensive, then don't create a copy.
171   if (MatchReg && SrcRC->getCopyCost() < 0) {
172     VRBase = SrcReg;
173   } else {
174     // Create the reg, emit the copy.
175     VRBase = MRI->createVirtualRegister(DstRC);
176     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
177             VRBase).addReg(SrcReg);
178   }
179 
180   SDValue Op(Node, ResNo);
181   if (IsClone)
182     VRBaseMap.erase(Op);
183   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
184   (void)isNew; // Silence compiler warning.
185   assert(isNew && "Node emitted out of order - early");
186 }
187 
188 /// getDstOfCopyToRegUse - If the only use of the specified result number of
189 /// node is a CopyToReg, return its destination register. Return 0 otherwise.
190 unsigned InstrEmitter::getDstOfOnlyCopyToRegUse(SDNode *Node,
191                                                 unsigned ResNo) const {
192   if (!Node->hasOneUse())
193     return 0;
194 
195   SDNode *User = *Node->use_begin();
196   if (User->getOpcode() == ISD::CopyToReg &&
197       User->getOperand(2).getNode() == Node &&
198       User->getOperand(2).getResNo() == ResNo) {
199     unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
200     if (TargetRegisterInfo::isVirtualRegister(Reg))
201       return Reg;
202   }
203   return 0;
204 }
205 
206 void InstrEmitter::CreateVirtualRegisters(SDNode *Node,
207                                        MachineInstrBuilder &MIB,
208                                        const MCInstrDesc &II,
209                                        bool IsClone, bool IsCloned,
210                                        DenseMap<SDValue, unsigned> &VRBaseMap) {
211   assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF &&
212          "IMPLICIT_DEF should have been handled as a special case elsewhere!");
213 
214   unsigned NumResults = CountResults(Node);
215   for (unsigned i = 0; i < II.getNumDefs(); ++i) {
216     // If the specific node value is only used by a CopyToReg and the dest reg
217     // is a vreg in the same register class, use the CopyToReg'd destination
218     // register instead of creating a new vreg.
219     unsigned VRBase = 0;
220     const TargetRegisterClass *RC =
221       TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF));
222     // Always let the value type influence the used register class. The
223     // constraints on the instruction may be too lax to represent the value
224     // type correctly. For example, a 64-bit float (X86::FR64) can't live in
225     // the 32-bit float super-class (X86::FR32).
226     if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) {
227       const TargetRegisterClass *VTRC =
228         TLI->getRegClassFor(Node->getSimpleValueType(i));
229       if (RC)
230         VTRC = TRI->getCommonSubClass(RC, VTRC);
231       if (VTRC)
232         RC = VTRC;
233     }
234 
235     if (II.OpInfo[i].isOptionalDef()) {
236       // Optional def must be a physical register.
237       unsigned NumResults = CountResults(Node);
238       VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg();
239       assert(TargetRegisterInfo::isPhysicalRegister(VRBase));
240       MIB.addReg(VRBase, RegState::Define);
241     }
242 
243     if (!VRBase && !IsClone && !IsCloned)
244       for (SDNode *User : Node->uses()) {
245         if (User->getOpcode() == ISD::CopyToReg &&
246             User->getOperand(2).getNode() == Node &&
247             User->getOperand(2).getResNo() == i) {
248           unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
249           if (TargetRegisterInfo::isVirtualRegister(Reg)) {
250             const TargetRegisterClass *RegRC = MRI->getRegClass(Reg);
251             if (RegRC == RC) {
252               VRBase = Reg;
253               MIB.addReg(VRBase, RegState::Define);
254               break;
255             }
256           }
257         }
258       }
259 
260     // Create the result registers for this node and add the result regs to
261     // the machine instruction.
262     if (VRBase == 0) {
263       assert(RC && "Isn't a register operand!");
264       VRBase = MRI->createVirtualRegister(RC);
265       MIB.addReg(VRBase, RegState::Define);
266     }
267 
268     // If this def corresponds to a result of the SDNode insert the VRBase into
269     // the lookup map.
270     if (i < NumResults) {
271       SDValue Op(Node, i);
272       if (IsClone)
273         VRBaseMap.erase(Op);
274       bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
275       (void)isNew; // Silence compiler warning.
276       assert(isNew && "Node emitted out of order - early");
277     }
278   }
279 }
280 
281 /// getVR - Return the virtual register corresponding to the specified result
282 /// of the specified node.
283 unsigned InstrEmitter::getVR(SDValue Op,
284                              DenseMap<SDValue, unsigned> &VRBaseMap) {
285   if (Op.isMachineOpcode() &&
286       Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
287     // Add an IMPLICIT_DEF instruction before every use.
288     unsigned VReg = getDstOfOnlyCopyToRegUse(Op.getNode(), Op.getResNo());
289     // IMPLICIT_DEF can produce any type of result so its MCInstrDesc
290     // does not include operand register class info.
291     if (!VReg) {
292       const TargetRegisterClass *RC =
293         TLI->getRegClassFor(Op.getSimpleValueType());
294       VReg = MRI->createVirtualRegister(RC);
295     }
296     BuildMI(*MBB, InsertPos, Op.getDebugLoc(),
297             TII->get(TargetOpcode::IMPLICIT_DEF), VReg);
298     return VReg;
299   }
300 
301   DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op);
302   assert(I != VRBaseMap.end() && "Node emitted out of order - late");
303   return I->second;
304 }
305 
306 
307 /// AddRegisterOperand - Add the specified register as an operand to the
308 /// specified machine instr. Insert register copies if the register is
309 /// not in the required register class.
310 void
311 InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB,
312                                  SDValue Op,
313                                  unsigned IIOpNum,
314                                  const MCInstrDesc *II,
315                                  DenseMap<SDValue, unsigned> &VRBaseMap,
316                                  bool IsDebug, bool IsClone, bool IsCloned) {
317   assert(Op.getValueType() != MVT::Other &&
318          Op.getValueType() != MVT::Glue &&
319          "Chain and glue operands should occur at end of operand list!");
320   // Get/emit the operand.
321   unsigned VReg = getVR(Op, VRBaseMap);
322   assert(TargetRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
323 
324   const MCInstrDesc &MCID = MIB->getDesc();
325   bool isOptDef = IIOpNum < MCID.getNumOperands() &&
326     MCID.OpInfo[IIOpNum].isOptionalDef();
327 
328   // If the instruction requires a register in a different class, create
329   // a new virtual register and copy the value into it, but first attempt to
330   // shrink VReg's register class within reason.  For example, if VReg == GR32
331   // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP.
332   if (II) {
333     const TargetRegisterClass *OpRC = nullptr;
334     if (IIOpNum < II->getNumOperands())
335       OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF);
336 
337     if (OpRC && !MRI->constrainRegClass(VReg, OpRC, MinRCSize)) {
338       assert(OpRC->isAllocatable() &&
339            "Constraining an allocatable VReg produced an unallocatable class?");
340 
341       unsigned NewVReg = MRI->createVirtualRegister(OpRC);
342       BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
343               TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
344       VReg = NewVReg;
345     }
346   }
347 
348   // If this value has only one use, that use is a kill. This is a
349   // conservative approximation. InstrEmitter does trivial coalescing
350   // with CopyFromReg nodes, so don't emit kill flags for them.
351   // Avoid kill flags on Schedule cloned nodes, since there will be
352   // multiple uses.
353   // Tied operands are never killed, so we need to check that. And that
354   // means we need to determine the index of the operand.
355   bool isKill = Op.hasOneUse() &&
356                 Op.getNode()->getOpcode() != ISD::CopyFromReg &&
357                 !IsDebug &&
358                 !(IsClone || IsCloned);
359   if (isKill) {
360     unsigned Idx = MIB->getNumOperands();
361     while (Idx > 0 &&
362            MIB->getOperand(Idx-1).isReg() &&
363            MIB->getOperand(Idx-1).isImplicit())
364       --Idx;
365     bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1;
366     if (isTied)
367       isKill = false;
368   }
369 
370   MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) |
371              getDebugRegState(IsDebug));
372 }
373 
374 /// AddOperand - Add the specified operand to the specified machine instr.  II
375 /// specifies the instruction information for the node, and IIOpNum is the
376 /// operand number (in the II) that we are adding.
377 void InstrEmitter::AddOperand(MachineInstrBuilder &MIB,
378                               SDValue Op,
379                               unsigned IIOpNum,
380                               const MCInstrDesc *II,
381                               DenseMap<SDValue, unsigned> &VRBaseMap,
382                               bool IsDebug, bool IsClone, bool IsCloned) {
383   if (Op.isMachineOpcode()) {
384     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
385                        IsDebug, IsClone, IsCloned);
386   } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
387     MIB.addImm(C->getSExtValue());
388   } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
389     MIB.addFPImm(F->getConstantFPValue());
390   } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
391     // Turn additional physreg operands into implicit uses on non-variadic
392     // instructions. This is used by call and return instructions passing
393     // arguments in registers.
394     bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic());
395     MIB.addReg(R->getReg(), getImplRegState(Imp));
396   } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) {
397     MIB.addRegMask(RM->getRegMask());
398   } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
399     MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(),
400                          TGA->getTargetFlags());
401   } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) {
402     MIB.addMBB(BBNode->getBasicBlock());
403   } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
404     MIB.addFrameIndex(FI->getIndex());
405   } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
406     MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags());
407   } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
408     int Offset = CP->getOffset();
409     unsigned Align = CP->getAlignment();
410     Type *Type = CP->getType();
411     // MachineConstantPool wants an explicit alignment.
412     if (Align == 0) {
413       Align = MF->getDataLayout().getPrefTypeAlignment(Type);
414       if (Align == 0) {
415         // Alignment of vector types.  FIXME!
416         Align = MF->getDataLayout().getTypeAllocSize(Type);
417       }
418     }
419 
420     unsigned Idx;
421     MachineConstantPool *MCP = MF->getConstantPool();
422     if (CP->isMachineConstantPoolEntry())
423       Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Align);
424     else
425       Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Align);
426     MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags());
427   } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
428     MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags());
429   } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) {
430     MIB.addSym(SymNode->getMCSymbol());
431   } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) {
432     MIB.addBlockAddress(BA->getBlockAddress(),
433                         BA->getOffset(),
434                         BA->getTargetFlags());
435   } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) {
436     MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags());
437   } else {
438     assert(Op.getValueType() != MVT::Other &&
439            Op.getValueType() != MVT::Glue &&
440            "Chain and glue operands should occur at end of operand list!");
441     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
442                        IsDebug, IsClone, IsCloned);
443   }
444 }
445 
446 unsigned InstrEmitter::ConstrainForSubReg(unsigned VReg, unsigned SubIdx,
447                                           MVT VT, DebugLoc DL) {
448   const TargetRegisterClass *VRC = MRI->getRegClass(VReg);
449   const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx);
450 
451   // RC is a sub-class of VRC that supports SubIdx.  Try to constrain VReg
452   // within reason.
453   if (RC && RC != VRC)
454     RC = MRI->constrainRegClass(VReg, RC, MinRCSize);
455 
456   // VReg has been adjusted.  It can be used with SubIdx operands now.
457   if (RC)
458     return VReg;
459 
460   // VReg couldn't be reasonably constrained.  Emit a COPY to a new virtual
461   // register instead.
462   RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT), SubIdx);
463   assert(RC && "No legal register class for VT supports that SubIdx");
464   unsigned NewReg = MRI->createVirtualRegister(RC);
465   BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg)
466     .addReg(VReg);
467   return NewReg;
468 }
469 
470 /// EmitSubregNode - Generate machine code for subreg nodes.
471 ///
472 void InstrEmitter::EmitSubregNode(SDNode *Node,
473                                   DenseMap<SDValue, unsigned> &VRBaseMap,
474                                   bool IsClone, bool IsCloned) {
475   unsigned VRBase = 0;
476   unsigned Opc = Node->getMachineOpcode();
477 
478   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
479   // the CopyToReg'd destination register instead of creating a new vreg.
480   for (SDNode *User : Node->uses()) {
481     if (User->getOpcode() == ISD::CopyToReg &&
482         User->getOperand(2).getNode() == Node) {
483       unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
484       if (TargetRegisterInfo::isVirtualRegister(DestReg)) {
485         VRBase = DestReg;
486         break;
487       }
488     }
489   }
490 
491   if (Opc == TargetOpcode::EXTRACT_SUBREG) {
492     // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub.  There are no
493     // constraints on the %dst register, COPY can target all legal register
494     // classes.
495     unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
496     const TargetRegisterClass *TRC =
497       TLI->getRegClassFor(Node->getSimpleValueType(0));
498 
499     unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
500     MachineInstr *DefMI = MRI->getVRegDef(VReg);
501     unsigned SrcReg, DstReg, DefSubIdx;
502     if (DefMI &&
503         TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) &&
504         SubIdx == DefSubIdx &&
505         TRC == MRI->getRegClass(SrcReg)) {
506       // Optimize these:
507       // r1025 = s/zext r1024, 4
508       // r1026 = extract_subreg r1025, 4
509       // to a copy
510       // r1026 = copy r1024
511       VRBase = MRI->createVirtualRegister(TRC);
512       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
513               TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg);
514       MRI->clearKillFlags(SrcReg);
515     } else {
516       // VReg may not support a SubIdx sub-register, and we may need to
517       // constrain its register class or issue a COPY to a compatible register
518       // class.
519       VReg = ConstrainForSubReg(VReg, SubIdx,
520                                 Node->getOperand(0).getSimpleValueType(),
521                                 Node->getDebugLoc());
522 
523       // Create the destreg if it is missing.
524       if (VRBase == 0)
525         VRBase = MRI->createVirtualRegister(TRC);
526 
527       // Create the extract_subreg machine instruction.
528       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
529               TII->get(TargetOpcode::COPY), VRBase).addReg(VReg, 0, SubIdx);
530     }
531   } else if (Opc == TargetOpcode::INSERT_SUBREG ||
532              Opc == TargetOpcode::SUBREG_TO_REG) {
533     SDValue N0 = Node->getOperand(0);
534     SDValue N1 = Node->getOperand(1);
535     SDValue N2 = Node->getOperand(2);
536     unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue();
537 
538     // Figure out the register class to create for the destreg.  It should be
539     // the largest legal register class supporting SubIdx sub-registers.
540     // RegisterCoalescer will constrain it further if it decides to eliminate
541     // the INSERT_SUBREG instruction.
542     //
543     //   %dst = INSERT_SUBREG %src, %sub, SubIdx
544     //
545     // is lowered by TwoAddressInstructionPass to:
546     //
547     //   %dst = COPY %src
548     //   %dst:SubIdx = COPY %sub
549     //
550     // There is no constraint on the %src register class.
551     //
552     const TargetRegisterClass *SRC = TLI->getRegClassFor(Node->getSimpleValueType(0));
553     SRC = TRI->getSubClassWithSubReg(SRC, SubIdx);
554     assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG");
555 
556     if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase)))
557       VRBase = MRI->createVirtualRegister(SRC);
558 
559     // Create the insert_subreg or subreg_to_reg machine instruction.
560     MachineInstrBuilder MIB =
561       BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase);
562 
563     // If creating a subreg_to_reg, then the first input operand
564     // is an implicit value immediate, otherwise it's a register
565     if (Opc == TargetOpcode::SUBREG_TO_REG) {
566       const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
567       MIB.addImm(SD->getZExtValue());
568     } else
569       AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
570                  IsClone, IsCloned);
571     // Add the subregster being inserted
572     AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
573                IsClone, IsCloned);
574     MIB.addImm(SubIdx);
575     MBB->insert(InsertPos, MIB);
576   } else
577     llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");
578 
579   SDValue Op(Node, 0);
580   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
581   (void)isNew; // Silence compiler warning.
582   assert(isNew && "Node emitted out of order - early");
583 }
584 
585 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
586 /// COPY_TO_REGCLASS is just a normal copy, except that the destination
587 /// register is constrained to be in a particular register class.
588 ///
589 void
590 InstrEmitter::EmitCopyToRegClassNode(SDNode *Node,
591                                      DenseMap<SDValue, unsigned> &VRBaseMap) {
592   unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
593 
594   // Create the new VReg in the destination class and emit a copy.
595   unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
596   const TargetRegisterClass *DstRC =
597     TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx));
598   unsigned NewVReg = MRI->createVirtualRegister(DstRC);
599   BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
600     NewVReg).addReg(VReg);
601 
602   SDValue Op(Node, 0);
603   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
604   (void)isNew; // Silence compiler warning.
605   assert(isNew && "Node emitted out of order - early");
606 }
607 
608 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
609 ///
610 void InstrEmitter::EmitRegSequence(SDNode *Node,
611                                   DenseMap<SDValue, unsigned> &VRBaseMap,
612                                   bool IsClone, bool IsCloned) {
613   unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
614   const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
615   unsigned NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC));
616   const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
617   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg);
618   unsigned NumOps = Node->getNumOperands();
619   assert((NumOps & 1) == 1 &&
620          "REG_SEQUENCE must have an odd number of operands!");
621   for (unsigned i = 1; i != NumOps; ++i) {
622     SDValue Op = Node->getOperand(i);
623     if ((i & 1) == 0) {
624       RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1));
625       // Skip physical registers as they don't have a vreg to get and we'll
626       // insert copies for them in TwoAddressInstructionPass anyway.
627       if (!R || !TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
628         unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue();
629         unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap);
630         const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
631         const TargetRegisterClass *SRC =
632         TRI->getMatchingSuperRegClass(RC, TRC, SubIdx);
633         if (SRC && SRC != RC) {
634           MRI->setRegClass(NewVReg, SRC);
635           RC = SRC;
636         }
637       }
638     }
639     AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false,
640                IsClone, IsCloned);
641   }
642 
643   MBB->insert(InsertPos, MIB);
644   SDValue Op(Node, 0);
645   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
646   (void)isNew; // Silence compiler warning.
647   assert(isNew && "Node emitted out of order - early");
648 }
649 
650 /// EmitDbgValue - Generate machine instruction for a dbg_value node.
651 ///
652 MachineInstr *
653 InstrEmitter::EmitDbgValue(SDDbgValue *SD,
654                            DenseMap<SDValue, unsigned> &VRBaseMap) {
655   uint64_t Offset = SD->getOffset();
656   MDNode *Var = SD->getVariable();
657   MDNode *Expr = SD->getExpression();
658   DebugLoc DL = SD->getDebugLoc();
659   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
660          "Expected inlined-at fields to agree");
661 
662   if (SD->getKind() == SDDbgValue::FRAMEIX) {
663     // Stack address; this needs to be lowered in target-dependent fashion.
664     // EmitTargetCodeForFrameDebugValue is responsible for allocation.
665     return BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE))
666         .addFrameIndex(SD->getFrameIx())
667         .addImm(Offset)
668         .addMetadata(Var)
669         .addMetadata(Expr);
670   }
671   // Otherwise, we're going to create an instruction here.
672   const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE);
673   MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
674   if (SD->getKind() == SDDbgValue::SDNODE) {
675     SDNode *Node = SD->getSDNode();
676     SDValue Op = SDValue(Node, SD->getResNo());
677     // It's possible we replaced this SDNode with other(s) and therefore
678     // didn't generate code for it.  It's better to catch these cases where
679     // they happen and transfer the debug info, but trying to guarantee that
680     // in all cases would be very fragile; this is a safeguard for any
681     // that were missed.
682     DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op);
683     if (I==VRBaseMap.end())
684       MIB.addReg(0U);       // undef
685     else
686       AddOperand(MIB, Op, (*MIB).getNumOperands(), &II, VRBaseMap,
687                  /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false);
688   } else if (SD->getKind() == SDDbgValue::CONST) {
689     const Value *V = SD->getConst();
690     if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
691       if (CI->getBitWidth() > 64)
692         MIB.addCImm(CI);
693       else
694         MIB.addImm(CI->getSExtValue());
695     } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
696       MIB.addFPImm(CF);
697     } else {
698       // Could be an Undef.  In any case insert an Undef so we can see what we
699       // dropped.
700       MIB.addReg(0U);
701     }
702   } else {
703     // Insert an Undef so we can see what we dropped.
704     MIB.addReg(0U);
705   }
706 
707   // Indirect addressing is indicated by an Imm as the second parameter.
708   if (SD->isIndirect())
709     MIB.addImm(Offset);
710   else {
711     assert(Offset == 0 && "direct value cannot have an offset");
712     MIB.addReg(0U, RegState::Debug);
713   }
714 
715   MIB.addMetadata(Var);
716   MIB.addMetadata(Expr);
717 
718   return &*MIB;
719 }
720 
721 /// EmitMachineNode - Generate machine code for a target-specific node and
722 /// needed dependencies.
723 ///
724 void InstrEmitter::
725 EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
726                 DenseMap<SDValue, unsigned> &VRBaseMap) {
727   unsigned Opc = Node->getMachineOpcode();
728 
729   // Handle subreg insert/extract specially
730   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
731       Opc == TargetOpcode::INSERT_SUBREG ||
732       Opc == TargetOpcode::SUBREG_TO_REG) {
733     EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned);
734     return;
735   }
736 
737   // Handle COPY_TO_REGCLASS specially.
738   if (Opc == TargetOpcode::COPY_TO_REGCLASS) {
739     EmitCopyToRegClassNode(Node, VRBaseMap);
740     return;
741   }
742 
743   // Handle REG_SEQUENCE specially.
744   if (Opc == TargetOpcode::REG_SEQUENCE) {
745     EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned);
746     return;
747   }
748 
749   if (Opc == TargetOpcode::IMPLICIT_DEF)
750     // We want a unique VR for each IMPLICIT_DEF use.
751     return;
752 
753   const MCInstrDesc &II = TII->get(Opc);
754   unsigned NumResults = CountResults(Node);
755   unsigned NumDefs = II.getNumDefs();
756   const MCPhysReg *ScratchRegs = nullptr;
757 
758   // Handle STACKMAP and PATCHPOINT specially and then use the generic code.
759   if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
760     // Stackmaps do not have arguments and do not preserve their calling
761     // convention. However, to simplify runtime support, they clobber the same
762     // scratch registers as AnyRegCC.
763     unsigned CC = CallingConv::AnyReg;
764     if (Opc == TargetOpcode::PATCHPOINT) {
765       CC = Node->getConstantOperandVal(PatchPointOpers::CCPos);
766       NumDefs = NumResults;
767     }
768     ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC);
769   }
770 
771   unsigned NumImpUses = 0;
772   unsigned NodeOperands =
773     countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses);
774   bool HasPhysRegOuts = NumResults > NumDefs && II.getImplicitDefs()!=nullptr;
775 #ifndef NDEBUG
776   unsigned NumMIOperands = NodeOperands + NumResults;
777   if (II.isVariadic())
778     assert(NumMIOperands >= II.getNumOperands() &&
779            "Too few operands for a variadic node!");
780   else
781     assert(NumMIOperands >= II.getNumOperands() &&
782            NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() +
783                             NumImpUses &&
784            "#operands for dag node doesn't match .td file!");
785 #endif
786 
787   // Create the new machine instruction.
788   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II);
789 
790   // Add result register values for things that are defined by this
791   // instruction.
792   if (NumResults)
793     CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap);
794 
795   // Emit all of the actual operands of this instruction, adding them to the
796   // instruction as appropriate.
797   bool HasOptPRefs = NumDefs > NumResults;
798   assert((!HasOptPRefs || !HasPhysRegOuts) &&
799          "Unable to cope with optional defs and phys regs defs!");
800   unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0;
801   for (unsigned i = NumSkip; i != NodeOperands; ++i)
802     AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II,
803                VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned);
804 
805   // Add scratch registers as implicit def and early clobber
806   if (ScratchRegs)
807     for (unsigned i = 0; ScratchRegs[i]; ++i)
808       MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine |
809                                  RegState::EarlyClobber);
810 
811   // Transfer all of the memory reference descriptions of this instruction.
812   MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands_begin(),
813                  cast<MachineSDNode>(Node)->memoperands_end());
814 
815   // Insert the instruction into position in the block. This needs to
816   // happen before any custom inserter hook is called so that the
817   // hook knows where in the block to insert the replacement code.
818   MBB->insert(InsertPos, MIB);
819 
820   // The MachineInstr may also define physregs instead of virtregs.  These
821   // physreg values can reach other instructions in different ways:
822   //
823   // 1. When there is a use of a Node value beyond the explicitly defined
824   //    virtual registers, we emit a CopyFromReg for one of the implicitly
825   //    defined physregs.  This only happens when HasPhysRegOuts is true.
826   //
827   // 2. A CopyFromReg reading a physreg may be glued to this instruction.
828   //
829   // 3. A glued instruction may implicitly use a physreg.
830   //
831   // 4. A glued instruction may use a RegisterSDNode operand.
832   //
833   // Collect all the used physreg defs, and make sure that any unused physreg
834   // defs are marked as dead.
835   SmallVector<unsigned, 8> UsedRegs;
836 
837   // Additional results must be physical register defs.
838   if (HasPhysRegOuts) {
839     for (unsigned i = NumDefs; i < NumResults; ++i) {
840       unsigned Reg = II.getImplicitDefs()[i - NumDefs];
841       if (!Node->hasAnyUseOfValue(i))
842         continue;
843       // This implicitly defined physreg has a use.
844       UsedRegs.push_back(Reg);
845       EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap);
846     }
847   }
848 
849   // Scan the glue chain for any used physregs.
850   if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) {
851     for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) {
852       if (F->getOpcode() == ISD::CopyFromReg) {
853         UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg());
854         continue;
855       } else if (F->getOpcode() == ISD::CopyToReg) {
856         // Skip CopyToReg nodes that are internal to the glue chain.
857         continue;
858       }
859       // Collect declared implicit uses.
860       const MCInstrDesc &MCID = TII->get(F->getMachineOpcode());
861       UsedRegs.append(MCID.getImplicitUses(),
862                       MCID.getImplicitUses() + MCID.getNumImplicitUses());
863       // In addition to declared implicit uses, we must also check for
864       // direct RegisterSDNode operands.
865       for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i)
866         if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) {
867           unsigned Reg = R->getReg();
868           if (TargetRegisterInfo::isPhysicalRegister(Reg))
869             UsedRegs.push_back(Reg);
870         }
871     }
872   }
873 
874   // Finally mark unused registers as dead.
875   if (!UsedRegs.empty() || II.getImplicitDefs())
876     MIB->setPhysRegsDeadExcept(UsedRegs, *TRI);
877 
878   // Run post-isel target hook to adjust this instruction if needed.
879   if (II.hasPostISelHook())
880     TLI->AdjustInstrPostInstrSelection(MIB, Node);
881 }
882 
883 /// EmitSpecialNode - Generate machine code for a target-independent node and
884 /// needed dependencies.
885 void InstrEmitter::
886 EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned,
887                 DenseMap<SDValue, unsigned> &VRBaseMap) {
888   switch (Node->getOpcode()) {
889   default:
890 #ifndef NDEBUG
891     Node->dump();
892 #endif
893     llvm_unreachable("This target-independent node should have been selected!");
894   case ISD::EntryToken:
895     llvm_unreachable("EntryToken should have been excluded from the schedule!");
896   case ISD::MERGE_VALUES:
897   case ISD::TokenFactor: // fall thru
898     break;
899   case ISD::CopyToReg: {
900     unsigned SrcReg;
901     SDValue SrcVal = Node->getOperand(2);
902     if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
903       SrcReg = R->getReg();
904     else
905       SrcReg = getVR(SrcVal, VRBaseMap);
906 
907     unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
908     if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
909       break;
910 
911     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
912             DestReg).addReg(SrcReg);
913     break;
914   }
915   case ISD::CopyFromReg: {
916     unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
917     EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap);
918     break;
919   }
920   case ISD::EH_LABEL: {
921     MCSymbol *S = cast<EHLabelSDNode>(Node)->getLabel();
922     BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
923             TII->get(TargetOpcode::EH_LABEL)).addSym(S);
924     break;
925   }
926 
927   case ISD::LIFETIME_START:
928   case ISD::LIFETIME_END: {
929     unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START) ?
930     TargetOpcode::LIFETIME_START : TargetOpcode::LIFETIME_END;
931 
932     FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Node->getOperand(1));
933     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
934     .addFrameIndex(FI->getIndex());
935     break;
936   }
937 
938   case ISD::INLINEASM: {
939     unsigned NumOps = Node->getNumOperands();
940     if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
941       --NumOps;  // Ignore the glue operand.
942 
943     // Create the inline asm machine instruction.
944     MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(),
945                                       TII->get(TargetOpcode::INLINEASM));
946 
947     // Add the asm string as an external symbol operand.
948     SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString);
949     const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol();
950     MIB.addExternalSymbol(AsmStr);
951 
952     // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore
953     // bits.
954     int64_t ExtraInfo =
955       cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))->
956                           getZExtValue();
957     MIB.addImm(ExtraInfo);
958 
959     // Remember to operand index of the group flags.
960     SmallVector<unsigned, 8> GroupIdx;
961 
962     // Remember registers that are part of early-clobber defs.
963     SmallVector<unsigned, 8> ECRegs;
964 
965     // Add all of the operand registers to the instruction.
966     for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
967       unsigned Flags =
968         cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
969       const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
970 
971       GroupIdx.push_back(MIB->getNumOperands());
972       MIB.addImm(Flags);
973       ++i;  // Skip the ID value.
974 
975       switch (InlineAsm::getKind(Flags)) {
976       default: llvm_unreachable("Bad flags!");
977         case InlineAsm::Kind_RegDef:
978         for (unsigned j = 0; j != NumVals; ++j, ++i) {
979           unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
980           // FIXME: Add dead flags for physical and virtual registers defined.
981           // For now, mark physical register defs as implicit to help fast
982           // regalloc. This makes inline asm look a lot like calls.
983           MIB.addReg(Reg, RegState::Define |
984                   getImplRegState(TargetRegisterInfo::isPhysicalRegister(Reg)));
985         }
986         break;
987       case InlineAsm::Kind_RegDefEarlyClobber:
988       case InlineAsm::Kind_Clobber:
989         for (unsigned j = 0; j != NumVals; ++j, ++i) {
990           unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
991           MIB.addReg(Reg, RegState::Define | RegState::EarlyClobber |
992                   getImplRegState(TargetRegisterInfo::isPhysicalRegister(Reg)));
993           ECRegs.push_back(Reg);
994         }
995         break;
996       case InlineAsm::Kind_RegUse:  // Use of register.
997       case InlineAsm::Kind_Imm:  // Immediate.
998       case InlineAsm::Kind_Mem:  // Addressing mode.
999         // The addressing mode has been selected, just add all of the
1000         // operands to the machine instruction.
1001         for (unsigned j = 0; j != NumVals; ++j, ++i)
1002           AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap,
1003                      /*IsDebug=*/false, IsClone, IsCloned);
1004 
1005         // Manually set isTied bits.
1006         if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) {
1007           unsigned DefGroup = 0;
1008           if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) {
1009             unsigned DefIdx = GroupIdx[DefGroup] + 1;
1010             unsigned UseIdx = GroupIdx.back() + 1;
1011             for (unsigned j = 0; j != NumVals; ++j)
1012               MIB->tieOperands(DefIdx + j, UseIdx + j);
1013           }
1014         }
1015         break;
1016       }
1017     }
1018 
1019     // GCC inline assembly allows input operands to also be early-clobber
1020     // output operands (so long as the operand is written only after it's
1021     // used), but this does not match the semantics of our early-clobber flag.
1022     // If an early-clobber operand register is also an input operand register,
1023     // then remove the early-clobber flag.
1024     for (unsigned Reg : ECRegs) {
1025       if (MIB->readsRegister(Reg, TRI)) {
1026         MachineOperand *MO = MIB->findRegisterDefOperand(Reg, false, TRI);
1027         assert(MO && "No def operand for clobbered register?");
1028         MO->setIsEarlyClobber(false);
1029       }
1030     }
1031 
1032     // Get the mdnode from the asm if it exists and add it to the instruction.
1033     SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode);
1034     const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
1035     if (MD)
1036       MIB.addMetadata(MD);
1037 
1038     MBB->insert(InsertPos, MIB);
1039     break;
1040   }
1041   }
1042 }
1043 
1044 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting
1045 /// at the given position in the given block.
1046 InstrEmitter::InstrEmitter(MachineBasicBlock *mbb,
1047                            MachineBasicBlock::iterator insertpos)
1048     : MF(mbb->getParent()), MRI(&MF->getRegInfo()),
1049       TII(MF->getSubtarget().getInstrInfo()),
1050       TRI(MF->getSubtarget().getRegisterInfo()),
1051       TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb),
1052       InsertPos(insertpos) {}
1053