1 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the Emit routines for the SelectionDAG class, which creates 10 // MachineInstrs based on the decisions of the SelectionDAG instruction 11 // selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "InstrEmitter.h" 16 #include "SDNodeDbgValue.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/CodeGen/MachineConstantPool.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/CodeGen/StackMaps.h" 24 #include "llvm/CodeGen/TargetInstrInfo.h" 25 #include "llvm/CodeGen/TargetLowering.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/DebugInfo.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetMachine.h" 33 using namespace llvm; 34 35 #define DEBUG_TYPE "instr-emitter" 36 37 /// MinRCSize - Smallest register class we allow when constraining virtual 38 /// registers. If satisfying all register class constraints would require 39 /// using a smaller register class, emit a COPY to a new virtual register 40 /// instead. 41 const unsigned MinRCSize = 4; 42 43 /// CountResults - The results of target nodes have register or immediate 44 /// operands first, then an optional chain, and optional glue operands (which do 45 /// not go into the resulting MachineInstr). 46 unsigned InstrEmitter::CountResults(SDNode *Node) { 47 unsigned N = Node->getNumValues(); 48 while (N && Node->getValueType(N - 1) == MVT::Glue) 49 --N; 50 if (N && Node->getValueType(N - 1) == MVT::Other) 51 --N; // Skip over chain result. 52 return N; 53 } 54 55 /// countOperands - The inputs to target nodes have any actual inputs first, 56 /// followed by an optional chain operand, then an optional glue operand. 57 /// Compute the number of actual operands that will go into the resulting 58 /// MachineInstr. 59 /// 60 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding 61 /// the chain and glue. These operands may be implicit on the machine instr. 62 static unsigned countOperands(SDNode *Node, unsigned NumExpUses, 63 unsigned &NumImpUses) { 64 unsigned N = Node->getNumOperands(); 65 while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue) 66 --N; 67 if (N && Node->getOperand(N - 1).getValueType() == MVT::Other) 68 --N; // Ignore chain if it exists. 69 70 // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses. 71 NumImpUses = N - NumExpUses; 72 for (unsigned I = N; I > NumExpUses; --I) { 73 if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1))) 74 continue; 75 if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1))) 76 if (Register::isPhysicalRegister(RN->getReg())) 77 continue; 78 NumImpUses = N - I; 79 break; 80 } 81 82 return N; 83 } 84 85 /// Return starting index of GC operand list. 86 // FIXME: need a better place for this. Put it in StackMaps? 87 static unsigned getStatepointGCArgStartIdx(MachineInstr *MI) { 88 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && 89 "STATEPOINT node expected"); 90 unsigned OperIdx = StatepointOpers(MI).getNumDeoptArgsIdx(); 91 unsigned NumDeopts = MI->getOperand(OperIdx).getImm(); 92 // At this point stack references has not been lowered yet, so they 93 // take single operand. 94 ++OperIdx; 95 while (NumDeopts--) { 96 MachineOperand &MO = MI->getOperand(OperIdx); 97 if (MO.isImm() && MO.getImm() == StackMaps::ConstantOp) { 98 ++OperIdx; 99 assert(MI->getOperand(OperIdx).isImm() && 100 "Unexpected statepoint operand"); 101 } 102 ++OperIdx; 103 } 104 return OperIdx; 105 } 106 107 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an 108 /// implicit physical register output. 109 void InstrEmitter:: 110 EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned, 111 Register SrcReg, DenseMap<SDValue, Register> &VRBaseMap) { 112 Register VRBase; 113 if (SrcReg.isVirtual()) { 114 // Just use the input register directly! 115 SDValue Op(Node, ResNo); 116 if (IsClone) 117 VRBaseMap.erase(Op); 118 bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second; 119 (void)isNew; // Silence compiler warning. 120 assert(isNew && "Node emitted out of order - early"); 121 return; 122 } 123 124 // If the node is only used by a CopyToReg and the dest reg is a vreg, use 125 // the CopyToReg'd destination register instead of creating a new vreg. 126 bool MatchReg = true; 127 const TargetRegisterClass *UseRC = nullptr; 128 MVT VT = Node->getSimpleValueType(ResNo); 129 130 // Stick to the preferred register classes for legal types. 131 if (TLI->isTypeLegal(VT)) 132 UseRC = TLI->getRegClassFor(VT, Node->isDivergent()); 133 134 if (!IsClone && !IsCloned) 135 for (SDNode *User : Node->uses()) { 136 bool Match = true; 137 if (User->getOpcode() == ISD::CopyToReg && 138 User->getOperand(2).getNode() == Node && 139 User->getOperand(2).getResNo() == ResNo) { 140 Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 141 if (DestReg.isVirtual()) { 142 VRBase = DestReg; 143 Match = false; 144 } else if (DestReg != SrcReg) 145 Match = false; 146 } else { 147 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 148 SDValue Op = User->getOperand(i); 149 if (Op.getNode() != Node || Op.getResNo() != ResNo) 150 continue; 151 MVT VT = Node->getSimpleValueType(Op.getResNo()); 152 if (VT == MVT::Other || VT == MVT::Glue) 153 continue; 154 Match = false; 155 if (User->isMachineOpcode()) { 156 const MCInstrDesc &II = TII->get(User->getMachineOpcode()); 157 const TargetRegisterClass *RC = nullptr; 158 if (i+II.getNumDefs() < II.getNumOperands()) { 159 RC = TRI->getAllocatableClass( 160 TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF)); 161 } 162 if (!UseRC) 163 UseRC = RC; 164 else if (RC) { 165 const TargetRegisterClass *ComRC = 166 TRI->getCommonSubClass(UseRC, RC); 167 // If multiple uses expect disjoint register classes, we emit 168 // copies in AddRegisterOperand. 169 if (ComRC) 170 UseRC = ComRC; 171 } 172 } 173 } 174 } 175 MatchReg &= Match; 176 if (VRBase) 177 break; 178 } 179 180 const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr; 181 SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT); 182 183 // Figure out the register class to create for the destreg. 184 if (VRBase) { 185 DstRC = MRI->getRegClass(VRBase); 186 } else if (UseRC) { 187 assert(TRI->isTypeLegalForClass(*UseRC, VT) && 188 "Incompatible phys register def and uses!"); 189 DstRC = UseRC; 190 } else { 191 DstRC = TLI->getRegClassFor(VT, Node->isDivergent()); 192 } 193 194 // If all uses are reading from the src physical register and copying the 195 // register is either impossible or very expensive, then don't create a copy. 196 if (MatchReg && SrcRC->getCopyCost() < 0) { 197 VRBase = SrcReg; 198 } else { 199 // Create the reg, emit the copy. 200 VRBase = MRI->createVirtualRegister(DstRC); 201 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 202 VRBase).addReg(SrcReg); 203 } 204 205 SDValue Op(Node, ResNo); 206 if (IsClone) 207 VRBaseMap.erase(Op); 208 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 209 (void)isNew; // Silence compiler warning. 210 assert(isNew && "Node emitted out of order - early"); 211 } 212 213 void InstrEmitter::CreateVirtualRegisters(SDNode *Node, 214 MachineInstrBuilder &MIB, 215 const MCInstrDesc &II, 216 bool IsClone, bool IsCloned, 217 DenseMap<SDValue, Register> &VRBaseMap) { 218 assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF && 219 "IMPLICIT_DEF should have been handled as a special case elsewhere!"); 220 221 unsigned NumResults = CountResults(Node); 222 bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() && 223 II.isVariadic() && II.variadicOpsAreDefs(); 224 unsigned NumVRegs = HasVRegVariadicDefs ? NumResults : II.getNumDefs(); 225 if (Node->getMachineOpcode() == TargetOpcode::STATEPOINT) 226 NumVRegs = NumResults; 227 for (unsigned i = 0; i < NumVRegs; ++i) { 228 // If the specific node value is only used by a CopyToReg and the dest reg 229 // is a vreg in the same register class, use the CopyToReg'd destination 230 // register instead of creating a new vreg. 231 Register VRBase; 232 const TargetRegisterClass *RC = 233 TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF)); 234 // Always let the value type influence the used register class. The 235 // constraints on the instruction may be too lax to represent the value 236 // type correctly. For example, a 64-bit float (X86::FR64) can't live in 237 // the 32-bit float super-class (X86::FR32). 238 if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) { 239 const TargetRegisterClass *VTRC = TLI->getRegClassFor( 240 Node->getSimpleValueType(i), 241 (Node->isDivergent() || (RC && TRI->isDivergentRegClass(RC)))); 242 if (RC) 243 VTRC = TRI->getCommonSubClass(RC, VTRC); 244 if (VTRC) 245 RC = VTRC; 246 } 247 248 if (II.OpInfo != nullptr && II.OpInfo[i].isOptionalDef()) { 249 // Optional def must be a physical register. 250 VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg(); 251 assert(VRBase.isPhysical()); 252 MIB.addReg(VRBase, RegState::Define); 253 } 254 255 if (!VRBase && !IsClone && !IsCloned) 256 for (SDNode *User : Node->uses()) { 257 if (User->getOpcode() == ISD::CopyToReg && 258 User->getOperand(2).getNode() == Node && 259 User->getOperand(2).getResNo() == i) { 260 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 261 if (Register::isVirtualRegister(Reg)) { 262 const TargetRegisterClass *RegRC = MRI->getRegClass(Reg); 263 if (RegRC == RC) { 264 VRBase = Reg; 265 MIB.addReg(VRBase, RegState::Define); 266 break; 267 } 268 } 269 } 270 } 271 272 // Create the result registers for this node and add the result regs to 273 // the machine instruction. 274 if (VRBase == 0) { 275 assert(RC && "Isn't a register operand!"); 276 VRBase = MRI->createVirtualRegister(RC); 277 MIB.addReg(VRBase, RegState::Define); 278 } 279 280 // If this def corresponds to a result of the SDNode insert the VRBase into 281 // the lookup map. 282 if (i < NumResults) { 283 SDValue Op(Node, i); 284 if (IsClone) 285 VRBaseMap.erase(Op); 286 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 287 (void)isNew; // Silence compiler warning. 288 assert(isNew && "Node emitted out of order - early"); 289 } 290 } 291 } 292 293 /// getVR - Return the virtual register corresponding to the specified result 294 /// of the specified node. 295 Register InstrEmitter::getVR(SDValue Op, 296 DenseMap<SDValue, Register> &VRBaseMap) { 297 if (Op.isMachineOpcode() && 298 Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) { 299 // Add an IMPLICIT_DEF instruction before every use. 300 // IMPLICIT_DEF can produce any type of result so its MCInstrDesc 301 // does not include operand register class info. 302 const TargetRegisterClass *RC = TLI->getRegClassFor( 303 Op.getSimpleValueType(), Op.getNode()->isDivergent()); 304 Register VReg = MRI->createVirtualRegister(RC); 305 BuildMI(*MBB, InsertPos, Op.getDebugLoc(), 306 TII->get(TargetOpcode::IMPLICIT_DEF), VReg); 307 return VReg; 308 } 309 310 DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op); 311 assert(I != VRBaseMap.end() && "Node emitted out of order - late"); 312 return I->second; 313 } 314 315 316 /// AddRegisterOperand - Add the specified register as an operand to the 317 /// specified machine instr. Insert register copies if the register is 318 /// not in the required register class. 319 void 320 InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB, 321 SDValue Op, 322 unsigned IIOpNum, 323 const MCInstrDesc *II, 324 DenseMap<SDValue, Register> &VRBaseMap, 325 bool IsDebug, bool IsClone, bool IsCloned) { 326 assert(Op.getValueType() != MVT::Other && 327 Op.getValueType() != MVT::Glue && 328 "Chain and glue operands should occur at end of operand list!"); 329 // Get/emit the operand. 330 Register VReg = getVR(Op, VRBaseMap); 331 332 const MCInstrDesc &MCID = MIB->getDesc(); 333 bool isOptDef = IIOpNum < MCID.getNumOperands() && 334 MCID.OpInfo[IIOpNum].isOptionalDef(); 335 336 // If the instruction requires a register in a different class, create 337 // a new virtual register and copy the value into it, but first attempt to 338 // shrink VReg's register class within reason. For example, if VReg == GR32 339 // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP. 340 if (II) { 341 const TargetRegisterClass *OpRC = nullptr; 342 if (IIOpNum < II->getNumOperands()) 343 OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF); 344 345 if (OpRC) { 346 const TargetRegisterClass *ConstrainedRC 347 = MRI->constrainRegClass(VReg, OpRC, MinRCSize); 348 if (!ConstrainedRC) { 349 OpRC = TRI->getAllocatableClass(OpRC); 350 assert(OpRC && "Constraints cannot be fulfilled for allocation"); 351 Register NewVReg = MRI->createVirtualRegister(OpRC); 352 BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(), 353 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg); 354 VReg = NewVReg; 355 } else { 356 assert(ConstrainedRC->isAllocatable() && 357 "Constraining an allocatable VReg produced an unallocatable class?"); 358 } 359 } 360 } 361 362 // If this value has only one use, that use is a kill. This is a 363 // conservative approximation. InstrEmitter does trivial coalescing 364 // with CopyFromReg nodes, so don't emit kill flags for them. 365 // Avoid kill flags on Schedule cloned nodes, since there will be 366 // multiple uses. 367 // Tied operands are never killed, so we need to check that. And that 368 // means we need to determine the index of the operand. 369 bool isKill = Op.hasOneUse() && 370 Op.getNode()->getOpcode() != ISD::CopyFromReg && 371 !IsDebug && 372 !(IsClone || IsCloned); 373 if (isKill) { 374 unsigned Idx = MIB->getNumOperands(); 375 while (Idx > 0 && 376 MIB->getOperand(Idx-1).isReg() && 377 MIB->getOperand(Idx-1).isImplicit()) 378 --Idx; 379 bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1; 380 if (isTied) 381 isKill = false; 382 } 383 384 MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) | 385 getDebugRegState(IsDebug)); 386 } 387 388 /// AddOperand - Add the specified operand to the specified machine instr. II 389 /// specifies the instruction information for the node, and IIOpNum is the 390 /// operand number (in the II) that we are adding. 391 void InstrEmitter::AddOperand(MachineInstrBuilder &MIB, 392 SDValue Op, 393 unsigned IIOpNum, 394 const MCInstrDesc *II, 395 DenseMap<SDValue, Register> &VRBaseMap, 396 bool IsDebug, bool IsClone, bool IsCloned) { 397 if (Op.isMachineOpcode()) { 398 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap, 399 IsDebug, IsClone, IsCloned); 400 } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 401 MIB.addImm(C->getSExtValue()); 402 } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) { 403 MIB.addFPImm(F->getConstantFPValue()); 404 } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) { 405 Register VReg = R->getReg(); 406 MVT OpVT = Op.getSimpleValueType(); 407 const TargetRegisterClass *IIRC = 408 II ? TRI->getAllocatableClass(TII->getRegClass(*II, IIOpNum, TRI, *MF)) 409 : nullptr; 410 const TargetRegisterClass *OpRC = 411 TLI->isTypeLegal(OpVT) 412 ? TLI->getRegClassFor(OpVT, 413 Op.getNode()->isDivergent() || 414 (IIRC && TRI->isDivergentRegClass(IIRC))) 415 : nullptr; 416 417 if (OpRC && IIRC && OpRC != IIRC && Register::isVirtualRegister(VReg)) { 418 Register NewVReg = MRI->createVirtualRegister(IIRC); 419 BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(), 420 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg); 421 VReg = NewVReg; 422 } 423 // Turn additional physreg operands into implicit uses on non-variadic 424 // instructions. This is used by call and return instructions passing 425 // arguments in registers. 426 bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic()); 427 MIB.addReg(VReg, getImplRegState(Imp)); 428 } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) { 429 MIB.addRegMask(RM->getRegMask()); 430 } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) { 431 MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(), 432 TGA->getTargetFlags()); 433 } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) { 434 MIB.addMBB(BBNode->getBasicBlock()); 435 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 436 MIB.addFrameIndex(FI->getIndex()); 437 } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) { 438 MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags()); 439 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) { 440 int Offset = CP->getOffset(); 441 Align Alignment = CP->getAlign(); 442 443 unsigned Idx; 444 MachineConstantPool *MCP = MF->getConstantPool(); 445 if (CP->isMachineConstantPoolEntry()) 446 Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Alignment); 447 else 448 Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Alignment); 449 MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags()); 450 } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) { 451 MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags()); 452 } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) { 453 MIB.addSym(SymNode->getMCSymbol()); 454 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) { 455 MIB.addBlockAddress(BA->getBlockAddress(), 456 BA->getOffset(), 457 BA->getTargetFlags()); 458 } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) { 459 MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags()); 460 } else { 461 assert(Op.getValueType() != MVT::Other && 462 Op.getValueType() != MVT::Glue && 463 "Chain and glue operands should occur at end of operand list!"); 464 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap, 465 IsDebug, IsClone, IsCloned); 466 } 467 } 468 469 Register InstrEmitter::ConstrainForSubReg(Register VReg, unsigned SubIdx, 470 MVT VT, bool isDivergent, const DebugLoc &DL) { 471 const TargetRegisterClass *VRC = MRI->getRegClass(VReg); 472 const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx); 473 474 // RC is a sub-class of VRC that supports SubIdx. Try to constrain VReg 475 // within reason. 476 if (RC && RC != VRC) 477 RC = MRI->constrainRegClass(VReg, RC, MinRCSize); 478 479 // VReg has been adjusted. It can be used with SubIdx operands now. 480 if (RC) 481 return VReg; 482 483 // VReg couldn't be reasonably constrained. Emit a COPY to a new virtual 484 // register instead. 485 RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT, isDivergent), SubIdx); 486 assert(RC && "No legal register class for VT supports that SubIdx"); 487 Register NewReg = MRI->createVirtualRegister(RC); 488 BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg) 489 .addReg(VReg); 490 return NewReg; 491 } 492 493 /// EmitSubregNode - Generate machine code for subreg nodes. 494 /// 495 void InstrEmitter::EmitSubregNode(SDNode *Node, 496 DenseMap<SDValue, Register> &VRBaseMap, 497 bool IsClone, bool IsCloned) { 498 Register VRBase; 499 unsigned Opc = Node->getMachineOpcode(); 500 501 // If the node is only used by a CopyToReg and the dest reg is a vreg, use 502 // the CopyToReg'd destination register instead of creating a new vreg. 503 for (SDNode *User : Node->uses()) { 504 if (User->getOpcode() == ISD::CopyToReg && 505 User->getOperand(2).getNode() == Node) { 506 Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 507 if (DestReg.isVirtual()) { 508 VRBase = DestReg; 509 break; 510 } 511 } 512 } 513 514 if (Opc == TargetOpcode::EXTRACT_SUBREG) { 515 // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub. There are no 516 // constraints on the %dst register, COPY can target all legal register 517 // classes. 518 unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); 519 const TargetRegisterClass *TRC = 520 TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent()); 521 522 Register Reg; 523 MachineInstr *DefMI; 524 RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0)); 525 if (R && Register::isPhysicalRegister(R->getReg())) { 526 Reg = R->getReg(); 527 DefMI = nullptr; 528 } else { 529 Reg = R ? R->getReg() : getVR(Node->getOperand(0), VRBaseMap); 530 DefMI = MRI->getVRegDef(Reg); 531 } 532 533 Register SrcReg, DstReg; 534 unsigned DefSubIdx; 535 if (DefMI && 536 TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) && 537 SubIdx == DefSubIdx && 538 TRC == MRI->getRegClass(SrcReg)) { 539 // Optimize these: 540 // r1025 = s/zext r1024, 4 541 // r1026 = extract_subreg r1025, 4 542 // to a copy 543 // r1026 = copy r1024 544 VRBase = MRI->createVirtualRegister(TRC); 545 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 546 TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg); 547 MRI->clearKillFlags(SrcReg); 548 } else { 549 // Reg may not support a SubIdx sub-register, and we may need to 550 // constrain its register class or issue a COPY to a compatible register 551 // class. 552 if (Reg.isVirtual()) 553 Reg = ConstrainForSubReg(Reg, SubIdx, 554 Node->getOperand(0).getSimpleValueType(), 555 Node->isDivergent(), Node->getDebugLoc()); 556 // Create the destreg if it is missing. 557 if (!VRBase) 558 VRBase = MRI->createVirtualRegister(TRC); 559 560 // Create the extract_subreg machine instruction. 561 MachineInstrBuilder CopyMI = 562 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 563 TII->get(TargetOpcode::COPY), VRBase); 564 if (Reg.isVirtual()) 565 CopyMI.addReg(Reg, 0, SubIdx); 566 else 567 CopyMI.addReg(TRI->getSubReg(Reg, SubIdx)); 568 } 569 } else if (Opc == TargetOpcode::INSERT_SUBREG || 570 Opc == TargetOpcode::SUBREG_TO_REG) { 571 SDValue N0 = Node->getOperand(0); 572 SDValue N1 = Node->getOperand(1); 573 SDValue N2 = Node->getOperand(2); 574 unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue(); 575 576 // Figure out the register class to create for the destreg. It should be 577 // the largest legal register class supporting SubIdx sub-registers. 578 // RegisterCoalescer will constrain it further if it decides to eliminate 579 // the INSERT_SUBREG instruction. 580 // 581 // %dst = INSERT_SUBREG %src, %sub, SubIdx 582 // 583 // is lowered by TwoAddressInstructionPass to: 584 // 585 // %dst = COPY %src 586 // %dst:SubIdx = COPY %sub 587 // 588 // There is no constraint on the %src register class. 589 // 590 const TargetRegisterClass *SRC = 591 TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent()); 592 SRC = TRI->getSubClassWithSubReg(SRC, SubIdx); 593 assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG"); 594 595 if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase))) 596 VRBase = MRI->createVirtualRegister(SRC); 597 598 // Create the insert_subreg or subreg_to_reg machine instruction. 599 MachineInstrBuilder MIB = 600 BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase); 601 602 // If creating a subreg_to_reg, then the first input operand 603 // is an implicit value immediate, otherwise it's a register 604 if (Opc == TargetOpcode::SUBREG_TO_REG) { 605 const ConstantSDNode *SD = cast<ConstantSDNode>(N0); 606 MIB.addImm(SD->getZExtValue()); 607 } else 608 AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false, 609 IsClone, IsCloned); 610 // Add the subregister being inserted 611 AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false, 612 IsClone, IsCloned); 613 MIB.addImm(SubIdx); 614 MBB->insert(InsertPos, MIB); 615 } else 616 llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg"); 617 618 SDValue Op(Node, 0); 619 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 620 (void)isNew; // Silence compiler warning. 621 assert(isNew && "Node emitted out of order - early"); 622 } 623 624 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes. 625 /// COPY_TO_REGCLASS is just a normal copy, except that the destination 626 /// register is constrained to be in a particular register class. 627 /// 628 void 629 InstrEmitter::EmitCopyToRegClassNode(SDNode *Node, 630 DenseMap<SDValue, Register> &VRBaseMap) { 631 unsigned VReg = getVR(Node->getOperand(0), VRBaseMap); 632 633 // Create the new VReg in the destination class and emit a copy. 634 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); 635 const TargetRegisterClass *DstRC = 636 TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx)); 637 Register NewVReg = MRI->createVirtualRegister(DstRC); 638 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 639 NewVReg).addReg(VReg); 640 641 SDValue Op(Node, 0); 642 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second; 643 (void)isNew; // Silence compiler warning. 644 assert(isNew && "Node emitted out of order - early"); 645 } 646 647 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes. 648 /// 649 void InstrEmitter::EmitRegSequence(SDNode *Node, 650 DenseMap<SDValue, Register> &VRBaseMap, 651 bool IsClone, bool IsCloned) { 652 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue(); 653 const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx); 654 Register NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC)); 655 const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE); 656 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg); 657 unsigned NumOps = Node->getNumOperands(); 658 // If the input pattern has a chain, then the root of the corresponding 659 // output pattern will get a chain as well. This can happen to be a 660 // REG_SEQUENCE (which is not "guarded" by countOperands/CountResults). 661 if (NumOps && Node->getOperand(NumOps-1).getValueType() == MVT::Other) 662 --NumOps; // Ignore chain if it exists. 663 664 assert((NumOps & 1) == 1 && 665 "REG_SEQUENCE must have an odd number of operands!"); 666 for (unsigned i = 1; i != NumOps; ++i) { 667 SDValue Op = Node->getOperand(i); 668 if ((i & 1) == 0) { 669 RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1)); 670 // Skip physical registers as they don't have a vreg to get and we'll 671 // insert copies for them in TwoAddressInstructionPass anyway. 672 if (!R || !Register::isPhysicalRegister(R->getReg())) { 673 unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue(); 674 unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap); 675 const TargetRegisterClass *TRC = MRI->getRegClass(SubReg); 676 const TargetRegisterClass *SRC = 677 TRI->getMatchingSuperRegClass(RC, TRC, SubIdx); 678 if (SRC && SRC != RC) { 679 MRI->setRegClass(NewVReg, SRC); 680 RC = SRC; 681 } 682 } 683 } 684 AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false, 685 IsClone, IsCloned); 686 } 687 688 MBB->insert(InsertPos, MIB); 689 SDValue Op(Node, 0); 690 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second; 691 (void)isNew; // Silence compiler warning. 692 assert(isNew && "Node emitted out of order - early"); 693 } 694 695 /// EmitDbgValue - Generate machine instruction for a dbg_value node. 696 /// 697 MachineInstr * 698 InstrEmitter::EmitDbgValue(SDDbgValue *SD, 699 DenseMap<SDValue, Register> &VRBaseMap) { 700 MDNode *Var = SD->getVariable(); 701 MDNode *Expr = SD->getExpression(); 702 DebugLoc DL = SD->getDebugLoc(); 703 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 704 "Expected inlined-at fields to agree"); 705 706 SD->setIsEmitted(); 707 708 if (SD->isInvalidated()) { 709 // An invalidated SDNode must generate an undef DBG_VALUE: although the 710 // original value is no longer computed, earlier DBG_VALUEs live ranges 711 // must not leak into later code. 712 auto MIB = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE)); 713 MIB.addReg(0U); 714 MIB.addReg(0U, RegState::Debug); 715 MIB.addMetadata(Var); 716 MIB.addMetadata(Expr); 717 return &*MIB; 718 } 719 720 if (SD->getKind() == SDDbgValue::FRAMEIX) { 721 // Stack address; this needs to be lowered in target-dependent fashion. 722 // EmitTargetCodeForFrameDebugValue is responsible for allocation. 723 auto FrameMI = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 724 .addFrameIndex(SD->getFrameIx()); 725 if (SD->isIndirect()) 726 // Push [fi + 0] onto the DIExpression stack. 727 FrameMI.addImm(0); 728 else 729 // Push fi onto the DIExpression stack. 730 FrameMI.addReg(0); 731 return FrameMI.addMetadata(Var).addMetadata(Expr); 732 } 733 // Otherwise, we're going to create an instruction here. 734 const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE); 735 MachineInstrBuilder MIB = BuildMI(*MF, DL, II); 736 if (SD->getKind() == SDDbgValue::SDNODE) { 737 SDNode *Node = SD->getSDNode(); 738 SDValue Op = SDValue(Node, SD->getResNo()); 739 // It's possible we replaced this SDNode with other(s) and therefore 740 // didn't generate code for it. It's better to catch these cases where 741 // they happen and transfer the debug info, but trying to guarantee that 742 // in all cases would be very fragile; this is a safeguard for any 743 // that were missed. 744 DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op); 745 if (I==VRBaseMap.end()) 746 MIB.addReg(0U); // undef 747 else 748 AddOperand(MIB, Op, (*MIB).getNumOperands(), &II, VRBaseMap, 749 /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false); 750 } else if (SD->getKind() == SDDbgValue::VREG) { 751 MIB.addReg(SD->getVReg(), RegState::Debug); 752 } else if (SD->getKind() == SDDbgValue::CONST) { 753 const Value *V = SD->getConst(); 754 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 755 if (CI->getBitWidth() > 64) 756 MIB.addCImm(CI); 757 else 758 MIB.addImm(CI->getSExtValue()); 759 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 760 MIB.addFPImm(CF); 761 } else if (isa<ConstantPointerNull>(V)) { 762 // Note: This assumes that all nullptr constants are zero-valued. 763 MIB.addImm(0); 764 } else { 765 // Could be an Undef. In any case insert an Undef so we can see what we 766 // dropped. 767 MIB.addReg(0U); 768 } 769 } else { 770 // Insert an Undef so we can see what we dropped. 771 MIB.addReg(0U); 772 } 773 774 // Indirect addressing is indicated by an Imm as the second parameter. 775 if (SD->isIndirect()) 776 MIB.addImm(0U); 777 else 778 MIB.addReg(0U, RegState::Debug); 779 780 MIB.addMetadata(Var); 781 MIB.addMetadata(Expr); 782 783 return &*MIB; 784 } 785 786 MachineInstr * 787 InstrEmitter::EmitDbgLabel(SDDbgLabel *SD) { 788 MDNode *Label = SD->getLabel(); 789 DebugLoc DL = SD->getDebugLoc(); 790 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 791 "Expected inlined-at fields to agree"); 792 793 const MCInstrDesc &II = TII->get(TargetOpcode::DBG_LABEL); 794 MachineInstrBuilder MIB = BuildMI(*MF, DL, II); 795 MIB.addMetadata(Label); 796 797 return &*MIB; 798 } 799 800 /// EmitMachineNode - Generate machine code for a target-specific node and 801 /// needed dependencies. 802 /// 803 void InstrEmitter:: 804 EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned, 805 DenseMap<SDValue, Register> &VRBaseMap) { 806 unsigned Opc = Node->getMachineOpcode(); 807 808 // Handle subreg insert/extract specially 809 if (Opc == TargetOpcode::EXTRACT_SUBREG || 810 Opc == TargetOpcode::INSERT_SUBREG || 811 Opc == TargetOpcode::SUBREG_TO_REG) { 812 EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned); 813 return; 814 } 815 816 // Handle COPY_TO_REGCLASS specially. 817 if (Opc == TargetOpcode::COPY_TO_REGCLASS) { 818 EmitCopyToRegClassNode(Node, VRBaseMap); 819 return; 820 } 821 822 // Handle REG_SEQUENCE specially. 823 if (Opc == TargetOpcode::REG_SEQUENCE) { 824 EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned); 825 return; 826 } 827 828 if (Opc == TargetOpcode::IMPLICIT_DEF) 829 // We want a unique VR for each IMPLICIT_DEF use. 830 return; 831 832 const MCInstrDesc &II = TII->get(Opc); 833 unsigned NumResults = CountResults(Node); 834 unsigned NumDefs = II.getNumDefs(); 835 const MCPhysReg *ScratchRegs = nullptr; 836 837 // Handle STACKMAP and PATCHPOINT specially and then use the generic code. 838 if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) { 839 // Stackmaps do not have arguments and do not preserve their calling 840 // convention. However, to simplify runtime support, they clobber the same 841 // scratch registers as AnyRegCC. 842 unsigned CC = CallingConv::AnyReg; 843 if (Opc == TargetOpcode::PATCHPOINT) { 844 CC = Node->getConstantOperandVal(PatchPointOpers::CCPos); 845 NumDefs = NumResults; 846 } 847 ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC); 848 } else if (Opc == TargetOpcode::STATEPOINT) { 849 NumDefs = NumResults; 850 } 851 852 unsigned NumImpUses = 0; 853 unsigned NodeOperands = 854 countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses); 855 bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() && 856 II.isVariadic() && II.variadicOpsAreDefs(); 857 bool HasPhysRegOuts = NumResults > NumDefs && 858 II.getImplicitDefs() != nullptr && !HasVRegVariadicDefs; 859 #ifndef NDEBUG 860 unsigned NumMIOperands = NodeOperands + NumResults; 861 if (II.isVariadic()) 862 assert(NumMIOperands >= II.getNumOperands() && 863 "Too few operands for a variadic node!"); 864 else 865 assert(NumMIOperands >= II.getNumOperands() && 866 NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() + 867 NumImpUses && 868 "#operands for dag node doesn't match .td file!"); 869 #endif 870 871 // Create the new machine instruction. 872 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II); 873 874 // Add result register values for things that are defined by this 875 // instruction. 876 if (NumResults) { 877 CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap); 878 879 // Transfer any IR flags from the SDNode to the MachineInstr 880 MachineInstr *MI = MIB.getInstr(); 881 const SDNodeFlags Flags = Node->getFlags(); 882 if (Flags.hasNoSignedZeros()) 883 MI->setFlag(MachineInstr::MIFlag::FmNsz); 884 885 if (Flags.hasAllowReciprocal()) 886 MI->setFlag(MachineInstr::MIFlag::FmArcp); 887 888 if (Flags.hasNoNaNs()) 889 MI->setFlag(MachineInstr::MIFlag::FmNoNans); 890 891 if (Flags.hasNoInfs()) 892 MI->setFlag(MachineInstr::MIFlag::FmNoInfs); 893 894 if (Flags.hasAllowContract()) 895 MI->setFlag(MachineInstr::MIFlag::FmContract); 896 897 if (Flags.hasApproximateFuncs()) 898 MI->setFlag(MachineInstr::MIFlag::FmAfn); 899 900 if (Flags.hasAllowReassociation()) 901 MI->setFlag(MachineInstr::MIFlag::FmReassoc); 902 903 if (Flags.hasNoUnsignedWrap()) 904 MI->setFlag(MachineInstr::MIFlag::NoUWrap); 905 906 if (Flags.hasNoSignedWrap()) 907 MI->setFlag(MachineInstr::MIFlag::NoSWrap); 908 909 if (Flags.hasExact()) 910 MI->setFlag(MachineInstr::MIFlag::IsExact); 911 912 if (Flags.hasNoFPExcept()) 913 MI->setFlag(MachineInstr::MIFlag::NoFPExcept); 914 } 915 916 // Emit all of the actual operands of this instruction, adding them to the 917 // instruction as appropriate. 918 bool HasOptPRefs = NumDefs > NumResults; 919 assert((!HasOptPRefs || !HasPhysRegOuts) && 920 "Unable to cope with optional defs and phys regs defs!"); 921 unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0; 922 for (unsigned i = NumSkip; i != NodeOperands; ++i) 923 AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II, 924 VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned); 925 926 // Add scratch registers as implicit def and early clobber 927 if (ScratchRegs) 928 for (unsigned i = 0; ScratchRegs[i]; ++i) 929 MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine | 930 RegState::EarlyClobber); 931 932 // Set the memory reference descriptions of this instruction now that it is 933 // part of the function. 934 MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands()); 935 936 // Insert the instruction into position in the block. This needs to 937 // happen before any custom inserter hook is called so that the 938 // hook knows where in the block to insert the replacement code. 939 MBB->insert(InsertPos, MIB); 940 941 // The MachineInstr may also define physregs instead of virtregs. These 942 // physreg values can reach other instructions in different ways: 943 // 944 // 1. When there is a use of a Node value beyond the explicitly defined 945 // virtual registers, we emit a CopyFromReg for one of the implicitly 946 // defined physregs. This only happens when HasPhysRegOuts is true. 947 // 948 // 2. A CopyFromReg reading a physreg may be glued to this instruction. 949 // 950 // 3. A glued instruction may implicitly use a physreg. 951 // 952 // 4. A glued instruction may use a RegisterSDNode operand. 953 // 954 // Collect all the used physreg defs, and make sure that any unused physreg 955 // defs are marked as dead. 956 SmallVector<Register, 8> UsedRegs; 957 958 // Additional results must be physical register defs. 959 if (HasPhysRegOuts) { 960 for (unsigned i = NumDefs; i < NumResults; ++i) { 961 Register Reg = II.getImplicitDefs()[i - NumDefs]; 962 if (!Node->hasAnyUseOfValue(i)) 963 continue; 964 // This implicitly defined physreg has a use. 965 UsedRegs.push_back(Reg); 966 EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap); 967 } 968 } 969 970 // Scan the glue chain for any used physregs. 971 if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) { 972 for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) { 973 if (F->getOpcode() == ISD::CopyFromReg) { 974 UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg()); 975 continue; 976 } else if (F->getOpcode() == ISD::CopyToReg) { 977 // Skip CopyToReg nodes that are internal to the glue chain. 978 continue; 979 } 980 // Collect declared implicit uses. 981 const MCInstrDesc &MCID = TII->get(F->getMachineOpcode()); 982 UsedRegs.append(MCID.getImplicitUses(), 983 MCID.getImplicitUses() + MCID.getNumImplicitUses()); 984 // In addition to declared implicit uses, we must also check for 985 // direct RegisterSDNode operands. 986 for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i) 987 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) { 988 Register Reg = R->getReg(); 989 if (Reg.isPhysical()) 990 UsedRegs.push_back(Reg); 991 } 992 } 993 } 994 995 // Finally mark unused registers as dead. 996 if (!UsedRegs.empty() || II.getImplicitDefs() || II.hasOptionalDef()) 997 MIB->setPhysRegsDeadExcept(UsedRegs, *TRI); 998 999 // STATEPOINT is too 'dynamic' to have meaningful machine description. 1000 // We have to manually tie operands. 1001 if (Opc == TargetOpcode::STATEPOINT && NumDefs > 0) { 1002 assert(!HasPhysRegOuts && "STATEPOINT mishandled"); 1003 MachineInstr *MI = MIB; 1004 unsigned Def = 0; 1005 unsigned Use = getStatepointGCArgStartIdx(MI) + 1; 1006 while (Def < NumDefs) { 1007 if (MI->getOperand(Use).isReg()) 1008 MI->tieOperands(Def++, Use); 1009 Use += 2; 1010 } 1011 } 1012 1013 // Run post-isel target hook to adjust this instruction if needed. 1014 if (II.hasPostISelHook()) 1015 TLI->AdjustInstrPostInstrSelection(*MIB, Node); 1016 } 1017 1018 /// EmitSpecialNode - Generate machine code for a target-independent node and 1019 /// needed dependencies. 1020 void InstrEmitter:: 1021 EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned, 1022 DenseMap<SDValue, Register> &VRBaseMap) { 1023 switch (Node->getOpcode()) { 1024 default: 1025 #ifndef NDEBUG 1026 Node->dump(); 1027 #endif 1028 llvm_unreachable("This target-independent node should have been selected!"); 1029 case ISD::EntryToken: 1030 llvm_unreachable("EntryToken should have been excluded from the schedule!"); 1031 case ISD::MERGE_VALUES: 1032 case ISD::TokenFactor: // fall thru 1033 break; 1034 case ISD::CopyToReg: { 1035 Register DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); 1036 SDValue SrcVal = Node->getOperand(2); 1037 if (Register::isVirtualRegister(DestReg) && SrcVal.isMachineOpcode() && 1038 SrcVal.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) { 1039 // Instead building a COPY to that vreg destination, build an 1040 // IMPLICIT_DEF instruction instead. 1041 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 1042 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); 1043 break; 1044 } 1045 Register SrcReg; 1046 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal)) 1047 SrcReg = R->getReg(); 1048 else 1049 SrcReg = getVR(SrcVal, VRBaseMap); 1050 1051 if (SrcReg == DestReg) // Coalesced away the copy? Ignore. 1052 break; 1053 1054 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 1055 DestReg).addReg(SrcReg); 1056 break; 1057 } 1058 case ISD::CopyFromReg: { 1059 unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); 1060 EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap); 1061 break; 1062 } 1063 case ISD::EH_LABEL: 1064 case ISD::ANNOTATION_LABEL: { 1065 unsigned Opc = (Node->getOpcode() == ISD::EH_LABEL) 1066 ? TargetOpcode::EH_LABEL 1067 : TargetOpcode::ANNOTATION_LABEL; 1068 MCSymbol *S = cast<LabelSDNode>(Node)->getLabel(); 1069 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 1070 TII->get(Opc)).addSym(S); 1071 break; 1072 } 1073 1074 case ISD::LIFETIME_START: 1075 case ISD::LIFETIME_END: { 1076 unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START) ? 1077 TargetOpcode::LIFETIME_START : TargetOpcode::LIFETIME_END; 1078 1079 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Node->getOperand(1)); 1080 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp)) 1081 .addFrameIndex(FI->getIndex()); 1082 break; 1083 } 1084 1085 case ISD::INLINEASM: 1086 case ISD::INLINEASM_BR: { 1087 unsigned NumOps = Node->getNumOperands(); 1088 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue) 1089 --NumOps; // Ignore the glue operand. 1090 1091 // Create the inline asm machine instruction. 1092 unsigned TgtOpc = Node->getOpcode() == ISD::INLINEASM_BR 1093 ? TargetOpcode::INLINEASM_BR 1094 : TargetOpcode::INLINEASM; 1095 MachineInstrBuilder MIB = 1096 BuildMI(*MF, Node->getDebugLoc(), TII->get(TgtOpc)); 1097 1098 // Add the asm string as an external symbol operand. 1099 SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString); 1100 const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol(); 1101 MIB.addExternalSymbol(AsmStr); 1102 1103 // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore 1104 // bits. 1105 int64_t ExtraInfo = 1106 cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))-> 1107 getZExtValue(); 1108 MIB.addImm(ExtraInfo); 1109 1110 // Remember to operand index of the group flags. 1111 SmallVector<unsigned, 8> GroupIdx; 1112 1113 // Remember registers that are part of early-clobber defs. 1114 SmallVector<unsigned, 8> ECRegs; 1115 1116 // Add all of the operand registers to the instruction. 1117 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 1118 unsigned Flags = 1119 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue(); 1120 const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 1121 1122 GroupIdx.push_back(MIB->getNumOperands()); 1123 MIB.addImm(Flags); 1124 ++i; // Skip the ID value. 1125 1126 switch (InlineAsm::getKind(Flags)) { 1127 default: llvm_unreachable("Bad flags!"); 1128 case InlineAsm::Kind_RegDef: 1129 for (unsigned j = 0; j != NumVals; ++j, ++i) { 1130 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); 1131 // FIXME: Add dead flags for physical and virtual registers defined. 1132 // For now, mark physical register defs as implicit to help fast 1133 // regalloc. This makes inline asm look a lot like calls. 1134 MIB.addReg(Reg, 1135 RegState::Define | 1136 getImplRegState(Register::isPhysicalRegister(Reg))); 1137 } 1138 break; 1139 case InlineAsm::Kind_RegDefEarlyClobber: 1140 case InlineAsm::Kind_Clobber: 1141 for (unsigned j = 0; j != NumVals; ++j, ++i) { 1142 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); 1143 MIB.addReg(Reg, 1144 RegState::Define | RegState::EarlyClobber | 1145 getImplRegState(Register::isPhysicalRegister(Reg))); 1146 ECRegs.push_back(Reg); 1147 } 1148 break; 1149 case InlineAsm::Kind_RegUse: // Use of register. 1150 case InlineAsm::Kind_Imm: // Immediate. 1151 case InlineAsm::Kind_Mem: // Addressing mode. 1152 // The addressing mode has been selected, just add all of the 1153 // operands to the machine instruction. 1154 for (unsigned j = 0; j != NumVals; ++j, ++i) 1155 AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap, 1156 /*IsDebug=*/false, IsClone, IsCloned); 1157 1158 // Manually set isTied bits. 1159 if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) { 1160 unsigned DefGroup = 0; 1161 if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) { 1162 unsigned DefIdx = GroupIdx[DefGroup] + 1; 1163 unsigned UseIdx = GroupIdx.back() + 1; 1164 for (unsigned j = 0; j != NumVals; ++j) 1165 MIB->tieOperands(DefIdx + j, UseIdx + j); 1166 } 1167 } 1168 break; 1169 } 1170 } 1171 1172 // GCC inline assembly allows input operands to also be early-clobber 1173 // output operands (so long as the operand is written only after it's 1174 // used), but this does not match the semantics of our early-clobber flag. 1175 // If an early-clobber operand register is also an input operand register, 1176 // then remove the early-clobber flag. 1177 for (unsigned Reg : ECRegs) { 1178 if (MIB->readsRegister(Reg, TRI)) { 1179 MachineOperand *MO = 1180 MIB->findRegisterDefOperand(Reg, false, false, TRI); 1181 assert(MO && "No def operand for clobbered register?"); 1182 MO->setIsEarlyClobber(false); 1183 } 1184 } 1185 1186 // Get the mdnode from the asm if it exists and add it to the instruction. 1187 SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode); 1188 const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD(); 1189 if (MD) 1190 MIB.addMetadata(MD); 1191 1192 MBB->insert(InsertPos, MIB); 1193 break; 1194 } 1195 } 1196 } 1197 1198 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting 1199 /// at the given position in the given block. 1200 InstrEmitter::InstrEmitter(MachineBasicBlock *mbb, 1201 MachineBasicBlock::iterator insertpos) 1202 : MF(mbb->getParent()), MRI(&MF->getRegInfo()), 1203 TII(MF->getSubtarget().getInstrInfo()), 1204 TRI(MF->getSubtarget().getRegisterInfo()), 1205 TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb), 1206 InsertPos(insertpos) {} 1207