1 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the Emit routines for the SelectionDAG class, which creates
10 // MachineInstrs based on the decisions of the SelectionDAG instruction
11 // selection.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "InstrEmitter.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/CodeGen/MachineConstantPool.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/StackMaps.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/DebugInfo.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/MathExtras.h"
32 using namespace llvm;
33 
34 #define DEBUG_TYPE "instr-emitter"
35 
36 /// MinRCSize - Smallest register class we allow when constraining virtual
37 /// registers.  If satisfying all register class constraints would require
38 /// using a smaller register class, emit a COPY to a new virtual register
39 /// instead.
40 const unsigned MinRCSize = 4;
41 
42 /// CountResults - The results of target nodes have register or immediate
43 /// operands first, then an optional chain, and optional glue operands (which do
44 /// not go into the resulting MachineInstr).
45 unsigned InstrEmitter::CountResults(SDNode *Node) {
46   unsigned N = Node->getNumValues();
47   while (N && Node->getValueType(N - 1) == MVT::Glue)
48     --N;
49   if (N && Node->getValueType(N - 1) == MVT::Other)
50     --N;    // Skip over chain result.
51   return N;
52 }
53 
54 /// countOperands - The inputs to target nodes have any actual inputs first,
55 /// followed by an optional chain operand, then an optional glue operand.
56 /// Compute the number of actual operands that will go into the resulting
57 /// MachineInstr.
58 ///
59 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding
60 /// the chain and glue. These operands may be implicit on the machine instr.
61 static unsigned countOperands(SDNode *Node, unsigned NumExpUses,
62                               unsigned &NumImpUses) {
63   unsigned N = Node->getNumOperands();
64   while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
65     --N;
66   if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
67     --N; // Ignore chain if it exists.
68 
69   // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses.
70   NumImpUses = N - NumExpUses;
71   for (unsigned I = N; I > NumExpUses; --I) {
72     if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1)))
73       continue;
74     if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1)))
75       if (Register::isPhysicalRegister(RN->getReg()))
76         continue;
77     NumImpUses = N - I;
78     break;
79   }
80 
81   return N;
82 }
83 
84 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
85 /// implicit physical register output.
86 void InstrEmitter::
87 EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned,
88                 Register SrcReg, DenseMap<SDValue, Register> &VRBaseMap) {
89   Register VRBase;
90   if (SrcReg.isVirtual()) {
91     // Just use the input register directly!
92     SDValue Op(Node, ResNo);
93     if (IsClone)
94       VRBaseMap.erase(Op);
95     bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
96     (void)isNew; // Silence compiler warning.
97     assert(isNew && "Node emitted out of order - early");
98     return;
99   }
100 
101   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
102   // the CopyToReg'd destination register instead of creating a new vreg.
103   bool MatchReg = true;
104   const TargetRegisterClass *UseRC = nullptr;
105   MVT VT = Node->getSimpleValueType(ResNo);
106 
107   // Stick to the preferred register classes for legal types.
108   if (TLI->isTypeLegal(VT))
109     UseRC = TLI->getRegClassFor(VT, Node->isDivergent());
110 
111   if (!IsClone && !IsCloned)
112     for (SDNode *User : Node->uses()) {
113       bool Match = true;
114       if (User->getOpcode() == ISD::CopyToReg &&
115           User->getOperand(2).getNode() == Node &&
116           User->getOperand(2).getResNo() == ResNo) {
117         Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
118         if (DestReg.isVirtual()) {
119           VRBase = DestReg;
120           Match = false;
121         } else if (DestReg != SrcReg)
122           Match = false;
123       } else {
124         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
125           SDValue Op = User->getOperand(i);
126           if (Op.getNode() != Node || Op.getResNo() != ResNo)
127             continue;
128           MVT VT = Node->getSimpleValueType(Op.getResNo());
129           if (VT == MVT::Other || VT == MVT::Glue)
130             continue;
131           Match = false;
132           if (User->isMachineOpcode()) {
133             const MCInstrDesc &II = TII->get(User->getMachineOpcode());
134             const TargetRegisterClass *RC = nullptr;
135             if (i+II.getNumDefs() < II.getNumOperands()) {
136               RC = TRI->getAllocatableClass(
137                 TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF));
138             }
139             if (!UseRC)
140               UseRC = RC;
141             else if (RC) {
142               const TargetRegisterClass *ComRC =
143                 TRI->getCommonSubClass(UseRC, RC);
144               // If multiple uses expect disjoint register classes, we emit
145               // copies in AddRegisterOperand.
146               if (ComRC)
147                 UseRC = ComRC;
148             }
149           }
150         }
151       }
152       MatchReg &= Match;
153       if (VRBase)
154         break;
155     }
156 
157   const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr;
158   SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT);
159 
160   // Figure out the register class to create for the destreg.
161   if (VRBase) {
162     DstRC = MRI->getRegClass(VRBase);
163   } else if (UseRC) {
164     assert(TRI->isTypeLegalForClass(*UseRC, VT) &&
165            "Incompatible phys register def and uses!");
166     DstRC = UseRC;
167   } else {
168     DstRC = TLI->getRegClassFor(VT, Node->isDivergent());
169   }
170 
171   // If all uses are reading from the src physical register and copying the
172   // register is either impossible or very expensive, then don't create a copy.
173   if (MatchReg && SrcRC->getCopyCost() < 0) {
174     VRBase = SrcReg;
175   } else {
176     // Create the reg, emit the copy.
177     VRBase = MRI->createVirtualRegister(DstRC);
178     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
179             VRBase).addReg(SrcReg);
180   }
181 
182   SDValue Op(Node, ResNo);
183   if (IsClone)
184     VRBaseMap.erase(Op);
185   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
186   (void)isNew; // Silence compiler warning.
187   assert(isNew && "Node emitted out of order - early");
188 }
189 
190 void InstrEmitter::CreateVirtualRegisters(SDNode *Node,
191                                        MachineInstrBuilder &MIB,
192                                        const MCInstrDesc &II,
193                                        bool IsClone, bool IsCloned,
194                                        DenseMap<SDValue, Register> &VRBaseMap) {
195   assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF &&
196          "IMPLICIT_DEF should have been handled as a special case elsewhere!");
197 
198   unsigned NumResults = CountResults(Node);
199   bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
200                              II.isVariadic() && II.variadicOpsAreDefs();
201   unsigned NumVRegs = HasVRegVariadicDefs ? NumResults : II.getNumDefs();
202   for (unsigned i = 0; i < NumVRegs; ++i) {
203     // If the specific node value is only used by a CopyToReg and the dest reg
204     // is a vreg in the same register class, use the CopyToReg'd destination
205     // register instead of creating a new vreg.
206     Register VRBase;
207     const TargetRegisterClass *RC =
208       TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF));
209     // Always let the value type influence the used register class. The
210     // constraints on the instruction may be too lax to represent the value
211     // type correctly. For example, a 64-bit float (X86::FR64) can't live in
212     // the 32-bit float super-class (X86::FR32).
213     if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) {
214       const TargetRegisterClass *VTRC = TLI->getRegClassFor(
215           Node->getSimpleValueType(i),
216           (Node->isDivergent() || (RC && TRI->isDivergentRegClass(RC))));
217       if (RC)
218         VTRC = TRI->getCommonSubClass(RC, VTRC);
219       if (VTRC)
220         RC = VTRC;
221     }
222 
223     if (II.OpInfo != nullptr && II.OpInfo[i].isOptionalDef()) {
224       // Optional def must be a physical register.
225       VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg();
226       assert(VRBase.isPhysical());
227       MIB.addReg(VRBase, RegState::Define);
228     }
229 
230     if (!VRBase && !IsClone && !IsCloned)
231       for (SDNode *User : Node->uses()) {
232         if (User->getOpcode() == ISD::CopyToReg &&
233             User->getOperand(2).getNode() == Node &&
234             User->getOperand(2).getResNo() == i) {
235           unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
236           if (Register::isVirtualRegister(Reg)) {
237             const TargetRegisterClass *RegRC = MRI->getRegClass(Reg);
238             if (RegRC == RC) {
239               VRBase = Reg;
240               MIB.addReg(VRBase, RegState::Define);
241               break;
242             }
243           }
244         }
245       }
246 
247     // Create the result registers for this node and add the result regs to
248     // the machine instruction.
249     if (VRBase == 0) {
250       assert(RC && "Isn't a register operand!");
251       VRBase = MRI->createVirtualRegister(RC);
252       MIB.addReg(VRBase, RegState::Define);
253     }
254 
255     // If this def corresponds to a result of the SDNode insert the VRBase into
256     // the lookup map.
257     if (i < NumResults) {
258       SDValue Op(Node, i);
259       if (IsClone)
260         VRBaseMap.erase(Op);
261       bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
262       (void)isNew; // Silence compiler warning.
263       assert(isNew && "Node emitted out of order - early");
264     }
265   }
266 }
267 
268 /// getVR - Return the virtual register corresponding to the specified result
269 /// of the specified node.
270 Register InstrEmitter::getVR(SDValue Op,
271                              DenseMap<SDValue, Register> &VRBaseMap) {
272   if (Op.isMachineOpcode() &&
273       Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
274     // Add an IMPLICIT_DEF instruction before every use.
275     // IMPLICIT_DEF can produce any type of result so its MCInstrDesc
276     // does not include operand register class info.
277     const TargetRegisterClass *RC = TLI->getRegClassFor(
278         Op.getSimpleValueType(), Op.getNode()->isDivergent());
279     Register VReg = MRI->createVirtualRegister(RC);
280     BuildMI(*MBB, InsertPos, Op.getDebugLoc(),
281             TII->get(TargetOpcode::IMPLICIT_DEF), VReg);
282     return VReg;
283   }
284 
285   DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
286   assert(I != VRBaseMap.end() && "Node emitted out of order - late");
287   return I->second;
288 }
289 
290 
291 /// AddRegisterOperand - Add the specified register as an operand to the
292 /// specified machine instr. Insert register copies if the register is
293 /// not in the required register class.
294 void
295 InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB,
296                                  SDValue Op,
297                                  unsigned IIOpNum,
298                                  const MCInstrDesc *II,
299                                  DenseMap<SDValue, Register> &VRBaseMap,
300                                  bool IsDebug, bool IsClone, bool IsCloned) {
301   assert(Op.getValueType() != MVT::Other &&
302          Op.getValueType() != MVT::Glue &&
303          "Chain and glue operands should occur at end of operand list!");
304   // Get/emit the operand.
305   Register VReg = getVR(Op, VRBaseMap);
306 
307   const MCInstrDesc &MCID = MIB->getDesc();
308   bool isOptDef = IIOpNum < MCID.getNumOperands() &&
309     MCID.OpInfo[IIOpNum].isOptionalDef();
310 
311   // If the instruction requires a register in a different class, create
312   // a new virtual register and copy the value into it, but first attempt to
313   // shrink VReg's register class within reason.  For example, if VReg == GR32
314   // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP.
315   if (II) {
316     const TargetRegisterClass *OpRC = nullptr;
317     if (IIOpNum < II->getNumOperands())
318       OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF);
319 
320     if (OpRC) {
321       const TargetRegisterClass *ConstrainedRC
322         = MRI->constrainRegClass(VReg, OpRC, MinRCSize);
323       if (!ConstrainedRC) {
324         OpRC = TRI->getAllocatableClass(OpRC);
325         assert(OpRC && "Constraints cannot be fulfilled for allocation");
326         Register NewVReg = MRI->createVirtualRegister(OpRC);
327         BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
328                 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
329         VReg = NewVReg;
330       } else {
331         assert(ConstrainedRC->isAllocatable() &&
332            "Constraining an allocatable VReg produced an unallocatable class?");
333       }
334     }
335   }
336 
337   // If this value has only one use, that use is a kill. This is a
338   // conservative approximation. InstrEmitter does trivial coalescing
339   // with CopyFromReg nodes, so don't emit kill flags for them.
340   // Avoid kill flags on Schedule cloned nodes, since there will be
341   // multiple uses.
342   // Tied operands are never killed, so we need to check that. And that
343   // means we need to determine the index of the operand.
344   bool isKill = Op.hasOneUse() &&
345                 Op.getNode()->getOpcode() != ISD::CopyFromReg &&
346                 !IsDebug &&
347                 !(IsClone || IsCloned);
348   if (isKill) {
349     unsigned Idx = MIB->getNumOperands();
350     while (Idx > 0 &&
351            MIB->getOperand(Idx-1).isReg() &&
352            MIB->getOperand(Idx-1).isImplicit())
353       --Idx;
354     bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1;
355     if (isTied)
356       isKill = false;
357   }
358 
359   MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) |
360              getDebugRegState(IsDebug));
361 }
362 
363 /// AddOperand - Add the specified operand to the specified machine instr.  II
364 /// specifies the instruction information for the node, and IIOpNum is the
365 /// operand number (in the II) that we are adding.
366 void InstrEmitter::AddOperand(MachineInstrBuilder &MIB,
367                               SDValue Op,
368                               unsigned IIOpNum,
369                               const MCInstrDesc *II,
370                               DenseMap<SDValue, Register> &VRBaseMap,
371                               bool IsDebug, bool IsClone, bool IsCloned) {
372   if (Op.isMachineOpcode()) {
373     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
374                        IsDebug, IsClone, IsCloned);
375   } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
376     MIB.addImm(C->getSExtValue());
377   } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
378     MIB.addFPImm(F->getConstantFPValue());
379   } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
380     Register VReg = R->getReg();
381     MVT OpVT = Op.getSimpleValueType();
382     const TargetRegisterClass *IIRC =
383         II ? TRI->getAllocatableClass(TII->getRegClass(*II, IIOpNum, TRI, *MF))
384            : nullptr;
385     const TargetRegisterClass *OpRC =
386         TLI->isTypeLegal(OpVT)
387             ? TLI->getRegClassFor(OpVT,
388                                   Op.getNode()->isDivergent() ||
389                                       (IIRC && TRI->isDivergentRegClass(IIRC)))
390             : nullptr;
391 
392     if (OpRC && IIRC && OpRC != IIRC && Register::isVirtualRegister(VReg)) {
393       Register NewVReg = MRI->createVirtualRegister(IIRC);
394       BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
395                TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
396       VReg = NewVReg;
397     }
398     // Turn additional physreg operands into implicit uses on non-variadic
399     // instructions. This is used by call and return instructions passing
400     // arguments in registers.
401     bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic());
402     MIB.addReg(VReg, getImplRegState(Imp));
403   } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) {
404     MIB.addRegMask(RM->getRegMask());
405   } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
406     MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(),
407                          TGA->getTargetFlags());
408   } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) {
409     MIB.addMBB(BBNode->getBasicBlock());
410   } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
411     MIB.addFrameIndex(FI->getIndex());
412   } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
413     MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags());
414   } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
415     int Offset = CP->getOffset();
416     Align Alignment = CP->getAlign();
417 
418     unsigned Idx;
419     MachineConstantPool *MCP = MF->getConstantPool();
420     if (CP->isMachineConstantPoolEntry())
421       Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Alignment);
422     else
423       Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Alignment);
424     MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags());
425   } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
426     MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags());
427   } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) {
428     MIB.addSym(SymNode->getMCSymbol());
429   } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) {
430     MIB.addBlockAddress(BA->getBlockAddress(),
431                         BA->getOffset(),
432                         BA->getTargetFlags());
433   } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) {
434     MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags());
435   } else {
436     assert(Op.getValueType() != MVT::Other &&
437            Op.getValueType() != MVT::Glue &&
438            "Chain and glue operands should occur at end of operand list!");
439     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
440                        IsDebug, IsClone, IsCloned);
441   }
442 }
443 
444 Register InstrEmitter::ConstrainForSubReg(Register VReg, unsigned SubIdx,
445                                           MVT VT, bool isDivergent, const DebugLoc &DL) {
446   const TargetRegisterClass *VRC = MRI->getRegClass(VReg);
447   const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx);
448 
449   // RC is a sub-class of VRC that supports SubIdx.  Try to constrain VReg
450   // within reason.
451   if (RC && RC != VRC)
452     RC = MRI->constrainRegClass(VReg, RC, MinRCSize);
453 
454   // VReg has been adjusted.  It can be used with SubIdx operands now.
455   if (RC)
456     return VReg;
457 
458   // VReg couldn't be reasonably constrained.  Emit a COPY to a new virtual
459   // register instead.
460   RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT, isDivergent), SubIdx);
461   assert(RC && "No legal register class for VT supports that SubIdx");
462   Register NewReg = MRI->createVirtualRegister(RC);
463   BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg)
464     .addReg(VReg);
465   return NewReg;
466 }
467 
468 /// EmitSubregNode - Generate machine code for subreg nodes.
469 ///
470 void InstrEmitter::EmitSubregNode(SDNode *Node,
471                                   DenseMap<SDValue, Register> &VRBaseMap,
472                                   bool IsClone, bool IsCloned) {
473   Register VRBase;
474   unsigned Opc = Node->getMachineOpcode();
475 
476   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
477   // the CopyToReg'd destination register instead of creating a new vreg.
478   for (SDNode *User : Node->uses()) {
479     if (User->getOpcode() == ISD::CopyToReg &&
480         User->getOperand(2).getNode() == Node) {
481       Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
482       if (DestReg.isVirtual()) {
483         VRBase = DestReg;
484         break;
485       }
486     }
487   }
488 
489   if (Opc == TargetOpcode::EXTRACT_SUBREG) {
490     // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub.  There are no
491     // constraints on the %dst register, COPY can target all legal register
492     // classes.
493     unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
494     const TargetRegisterClass *TRC =
495       TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
496 
497     Register Reg;
498     MachineInstr *DefMI;
499     RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0));
500     if (R && Register::isPhysicalRegister(R->getReg())) {
501       Reg = R->getReg();
502       DefMI = nullptr;
503     } else {
504       Reg = R ? R->getReg() : getVR(Node->getOperand(0), VRBaseMap);
505       DefMI = MRI->getVRegDef(Reg);
506     }
507 
508     Register SrcReg, DstReg;
509     unsigned DefSubIdx;
510     if (DefMI &&
511         TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) &&
512         SubIdx == DefSubIdx &&
513         TRC == MRI->getRegClass(SrcReg)) {
514       // Optimize these:
515       // r1025 = s/zext r1024, 4
516       // r1026 = extract_subreg r1025, 4
517       // to a copy
518       // r1026 = copy r1024
519       VRBase = MRI->createVirtualRegister(TRC);
520       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
521               TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg);
522       MRI->clearKillFlags(SrcReg);
523     } else {
524       // Reg may not support a SubIdx sub-register, and we may need to
525       // constrain its register class or issue a COPY to a compatible register
526       // class.
527       if (Reg.isVirtual())
528         Reg = ConstrainForSubReg(Reg, SubIdx,
529                                  Node->getOperand(0).getSimpleValueType(),
530                                  Node->isDivergent(), Node->getDebugLoc());
531       // Create the destreg if it is missing.
532       if (!VRBase)
533         VRBase = MRI->createVirtualRegister(TRC);
534 
535       // Create the extract_subreg machine instruction.
536       MachineInstrBuilder CopyMI =
537           BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
538                   TII->get(TargetOpcode::COPY), VRBase);
539       if (Reg.isVirtual())
540         CopyMI.addReg(Reg, 0, SubIdx);
541       else
542         CopyMI.addReg(TRI->getSubReg(Reg, SubIdx));
543     }
544   } else if (Opc == TargetOpcode::INSERT_SUBREG ||
545              Opc == TargetOpcode::SUBREG_TO_REG) {
546     SDValue N0 = Node->getOperand(0);
547     SDValue N1 = Node->getOperand(1);
548     SDValue N2 = Node->getOperand(2);
549     unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue();
550 
551     // Figure out the register class to create for the destreg.  It should be
552     // the largest legal register class supporting SubIdx sub-registers.
553     // RegisterCoalescer will constrain it further if it decides to eliminate
554     // the INSERT_SUBREG instruction.
555     //
556     //   %dst = INSERT_SUBREG %src, %sub, SubIdx
557     //
558     // is lowered by TwoAddressInstructionPass to:
559     //
560     //   %dst = COPY %src
561     //   %dst:SubIdx = COPY %sub
562     //
563     // There is no constraint on the %src register class.
564     //
565     const TargetRegisterClass *SRC =
566         TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
567     SRC = TRI->getSubClassWithSubReg(SRC, SubIdx);
568     assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG");
569 
570     if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase)))
571       VRBase = MRI->createVirtualRegister(SRC);
572 
573     // Create the insert_subreg or subreg_to_reg machine instruction.
574     MachineInstrBuilder MIB =
575       BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase);
576 
577     // If creating a subreg_to_reg, then the first input operand
578     // is an implicit value immediate, otherwise it's a register
579     if (Opc == TargetOpcode::SUBREG_TO_REG) {
580       const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
581       MIB.addImm(SD->getZExtValue());
582     } else
583       AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
584                  IsClone, IsCloned);
585     // Add the subregister being inserted
586     AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
587                IsClone, IsCloned);
588     MIB.addImm(SubIdx);
589     MBB->insert(InsertPos, MIB);
590   } else
591     llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");
592 
593   SDValue Op(Node, 0);
594   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
595   (void)isNew; // Silence compiler warning.
596   assert(isNew && "Node emitted out of order - early");
597 }
598 
599 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
600 /// COPY_TO_REGCLASS is just a normal copy, except that the destination
601 /// register is constrained to be in a particular register class.
602 ///
603 void
604 InstrEmitter::EmitCopyToRegClassNode(SDNode *Node,
605                                      DenseMap<SDValue, Register> &VRBaseMap) {
606   unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
607 
608   // Create the new VReg in the destination class and emit a copy.
609   unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
610   const TargetRegisterClass *DstRC =
611     TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx));
612   Register NewVReg = MRI->createVirtualRegister(DstRC);
613   BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
614     NewVReg).addReg(VReg);
615 
616   SDValue Op(Node, 0);
617   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
618   (void)isNew; // Silence compiler warning.
619   assert(isNew && "Node emitted out of order - early");
620 }
621 
622 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
623 ///
624 void InstrEmitter::EmitRegSequence(SDNode *Node,
625                                   DenseMap<SDValue, Register> &VRBaseMap,
626                                   bool IsClone, bool IsCloned) {
627   unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
628   const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
629   Register NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC));
630   const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
631   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg);
632   unsigned NumOps = Node->getNumOperands();
633   // If the input pattern has a chain, then the root of the corresponding
634   // output pattern will get a chain as well. This can happen to be a
635   // REG_SEQUENCE (which is not "guarded" by countOperands/CountResults).
636   if (NumOps && Node->getOperand(NumOps-1).getValueType() == MVT::Other)
637     --NumOps; // Ignore chain if it exists.
638 
639   assert((NumOps & 1) == 1 &&
640          "REG_SEQUENCE must have an odd number of operands!");
641   for (unsigned i = 1; i != NumOps; ++i) {
642     SDValue Op = Node->getOperand(i);
643     if ((i & 1) == 0) {
644       RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1));
645       // Skip physical registers as they don't have a vreg to get and we'll
646       // insert copies for them in TwoAddressInstructionPass anyway.
647       if (!R || !Register::isPhysicalRegister(R->getReg())) {
648         unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue();
649         unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap);
650         const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
651         const TargetRegisterClass *SRC =
652         TRI->getMatchingSuperRegClass(RC, TRC, SubIdx);
653         if (SRC && SRC != RC) {
654           MRI->setRegClass(NewVReg, SRC);
655           RC = SRC;
656         }
657       }
658     }
659     AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false,
660                IsClone, IsCloned);
661   }
662 
663   MBB->insert(InsertPos, MIB);
664   SDValue Op(Node, 0);
665   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
666   (void)isNew; // Silence compiler warning.
667   assert(isNew && "Node emitted out of order - early");
668 }
669 
670 /// EmitDbgValue - Generate machine instruction for a dbg_value node.
671 ///
672 MachineInstr *
673 InstrEmitter::EmitDbgValue(SDDbgValue *SD,
674                            DenseMap<SDValue, Register> &VRBaseMap) {
675   MDNode *Var = SD->getVariable();
676   MDNode *Expr = SD->getExpression();
677   DebugLoc DL = SD->getDebugLoc();
678   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
679          "Expected inlined-at fields to agree");
680 
681   SD->setIsEmitted();
682 
683   if (SD->isInvalidated()) {
684     // An invalidated SDNode must generate an undef DBG_VALUE: although the
685     // original value is no longer computed, earlier DBG_VALUEs live ranges
686     // must not leak into later code.
687     auto MIB = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE));
688     MIB.addReg(0U);
689     MIB.addReg(0U, RegState::Debug);
690     MIB.addMetadata(Var);
691     MIB.addMetadata(Expr);
692     return &*MIB;
693   }
694 
695   if (SD->getKind() == SDDbgValue::FRAMEIX) {
696     // Stack address; this needs to be lowered in target-dependent fashion.
697     // EmitTargetCodeForFrameDebugValue is responsible for allocation.
698     auto FrameMI = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE))
699                        .addFrameIndex(SD->getFrameIx());
700     if (SD->isIndirect())
701       // Push [fi + 0] onto the DIExpression stack.
702       FrameMI.addImm(0);
703     else
704       // Push fi onto the DIExpression stack.
705       FrameMI.addReg(0);
706     return FrameMI.addMetadata(Var).addMetadata(Expr);
707   }
708   // Otherwise, we're going to create an instruction here.
709   const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE);
710   MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
711   if (SD->getKind() == SDDbgValue::SDNODE) {
712     SDNode *Node = SD->getSDNode();
713     SDValue Op = SDValue(Node, SD->getResNo());
714     // It's possible we replaced this SDNode with other(s) and therefore
715     // didn't generate code for it.  It's better to catch these cases where
716     // they happen and transfer the debug info, but trying to guarantee that
717     // in all cases would be very fragile; this is a safeguard for any
718     // that were missed.
719     DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
720     if (I==VRBaseMap.end())
721       MIB.addReg(0U);       // undef
722     else
723       AddOperand(MIB, Op, (*MIB).getNumOperands(), &II, VRBaseMap,
724                  /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false);
725   } else if (SD->getKind() == SDDbgValue::VREG) {
726     MIB.addReg(SD->getVReg(), RegState::Debug);
727   } else if (SD->getKind() == SDDbgValue::CONST) {
728     const Value *V = SD->getConst();
729     if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
730       if (CI->getBitWidth() > 64)
731         MIB.addCImm(CI);
732       else
733         MIB.addImm(CI->getSExtValue());
734     } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
735       MIB.addFPImm(CF);
736     } else if (isa<ConstantPointerNull>(V)) {
737       // Note: This assumes that all nullptr constants are zero-valued.
738       MIB.addImm(0);
739     } else {
740       // Could be an Undef.  In any case insert an Undef so we can see what we
741       // dropped.
742       MIB.addReg(0U);
743     }
744   } else {
745     // Insert an Undef so we can see what we dropped.
746     MIB.addReg(0U);
747   }
748 
749   // Indirect addressing is indicated by an Imm as the second parameter.
750   if (SD->isIndirect())
751     MIB.addImm(0U);
752   else
753     MIB.addReg(0U, RegState::Debug);
754 
755   MIB.addMetadata(Var);
756   MIB.addMetadata(Expr);
757 
758   return &*MIB;
759 }
760 
761 MachineInstr *
762 InstrEmitter::EmitDbgLabel(SDDbgLabel *SD) {
763   MDNode *Label = SD->getLabel();
764   DebugLoc DL = SD->getDebugLoc();
765   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
766          "Expected inlined-at fields to agree");
767 
768   const MCInstrDesc &II = TII->get(TargetOpcode::DBG_LABEL);
769   MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
770   MIB.addMetadata(Label);
771 
772   return &*MIB;
773 }
774 
775 /// EmitMachineNode - Generate machine code for a target-specific node and
776 /// needed dependencies.
777 ///
778 void InstrEmitter::
779 EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
780                 DenseMap<SDValue, Register> &VRBaseMap) {
781   unsigned Opc = Node->getMachineOpcode();
782 
783   // Handle subreg insert/extract specially
784   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
785       Opc == TargetOpcode::INSERT_SUBREG ||
786       Opc == TargetOpcode::SUBREG_TO_REG) {
787     EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned);
788     return;
789   }
790 
791   // Handle COPY_TO_REGCLASS specially.
792   if (Opc == TargetOpcode::COPY_TO_REGCLASS) {
793     EmitCopyToRegClassNode(Node, VRBaseMap);
794     return;
795   }
796 
797   // Handle REG_SEQUENCE specially.
798   if (Opc == TargetOpcode::REG_SEQUENCE) {
799     EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned);
800     return;
801   }
802 
803   if (Opc == TargetOpcode::IMPLICIT_DEF)
804     // We want a unique VR for each IMPLICIT_DEF use.
805     return;
806 
807   const MCInstrDesc &II = TII->get(Opc);
808   unsigned NumResults = CountResults(Node);
809   unsigned NumDefs = II.getNumDefs();
810   const MCPhysReg *ScratchRegs = nullptr;
811 
812   // Handle STACKMAP and PATCHPOINT specially and then use the generic code.
813   if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
814     // Stackmaps do not have arguments and do not preserve their calling
815     // convention. However, to simplify runtime support, they clobber the same
816     // scratch registers as AnyRegCC.
817     unsigned CC = CallingConv::AnyReg;
818     if (Opc == TargetOpcode::PATCHPOINT) {
819       CC = Node->getConstantOperandVal(PatchPointOpers::CCPos);
820       NumDefs = NumResults;
821     }
822     ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC);
823   }
824 
825   unsigned NumImpUses = 0;
826   unsigned NodeOperands =
827     countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses);
828   bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
829                              II.isVariadic() && II.variadicOpsAreDefs();
830   bool HasPhysRegOuts = NumResults > NumDefs &&
831                         II.getImplicitDefs() != nullptr && !HasVRegVariadicDefs;
832 #ifndef NDEBUG
833   unsigned NumMIOperands = NodeOperands + NumResults;
834   if (II.isVariadic())
835     assert(NumMIOperands >= II.getNumOperands() &&
836            "Too few operands for a variadic node!");
837   else
838     assert(NumMIOperands >= II.getNumOperands() &&
839            NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() +
840                             NumImpUses &&
841            "#operands for dag node doesn't match .td file!");
842 #endif
843 
844   // Create the new machine instruction.
845   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II);
846 
847   // Add result register values for things that are defined by this
848   // instruction.
849   if (NumResults) {
850     CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap);
851 
852     // Transfer any IR flags from the SDNode to the MachineInstr
853     MachineInstr *MI = MIB.getInstr();
854     const SDNodeFlags Flags = Node->getFlags();
855     if (Flags.hasNoSignedZeros())
856       MI->setFlag(MachineInstr::MIFlag::FmNsz);
857 
858     if (Flags.hasAllowReciprocal())
859       MI->setFlag(MachineInstr::MIFlag::FmArcp);
860 
861     if (Flags.hasNoNaNs())
862       MI->setFlag(MachineInstr::MIFlag::FmNoNans);
863 
864     if (Flags.hasNoInfs())
865       MI->setFlag(MachineInstr::MIFlag::FmNoInfs);
866 
867     if (Flags.hasAllowContract())
868       MI->setFlag(MachineInstr::MIFlag::FmContract);
869 
870     if (Flags.hasApproximateFuncs())
871       MI->setFlag(MachineInstr::MIFlag::FmAfn);
872 
873     if (Flags.hasAllowReassociation())
874       MI->setFlag(MachineInstr::MIFlag::FmReassoc);
875 
876     if (Flags.hasNoUnsignedWrap())
877       MI->setFlag(MachineInstr::MIFlag::NoUWrap);
878 
879     if (Flags.hasNoSignedWrap())
880       MI->setFlag(MachineInstr::MIFlag::NoSWrap);
881 
882     if (Flags.hasExact())
883       MI->setFlag(MachineInstr::MIFlag::IsExact);
884 
885     if (Flags.hasNoFPExcept())
886       MI->setFlag(MachineInstr::MIFlag::NoFPExcept);
887   }
888 
889   // Emit all of the actual operands of this instruction, adding them to the
890   // instruction as appropriate.
891   bool HasOptPRefs = NumDefs > NumResults;
892   assert((!HasOptPRefs || !HasPhysRegOuts) &&
893          "Unable to cope with optional defs and phys regs defs!");
894   unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0;
895   for (unsigned i = NumSkip; i != NodeOperands; ++i)
896     AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II,
897                VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned);
898 
899   // Add scratch registers as implicit def and early clobber
900   if (ScratchRegs)
901     for (unsigned i = 0; ScratchRegs[i]; ++i)
902       MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine |
903                                  RegState::EarlyClobber);
904 
905   // Set the memory reference descriptions of this instruction now that it is
906   // part of the function.
907   MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands());
908 
909   // Insert the instruction into position in the block. This needs to
910   // happen before any custom inserter hook is called so that the
911   // hook knows where in the block to insert the replacement code.
912   MBB->insert(InsertPos, MIB);
913 
914   // The MachineInstr may also define physregs instead of virtregs.  These
915   // physreg values can reach other instructions in different ways:
916   //
917   // 1. When there is a use of a Node value beyond the explicitly defined
918   //    virtual registers, we emit a CopyFromReg for one of the implicitly
919   //    defined physregs.  This only happens when HasPhysRegOuts is true.
920   //
921   // 2. A CopyFromReg reading a physreg may be glued to this instruction.
922   //
923   // 3. A glued instruction may implicitly use a physreg.
924   //
925   // 4. A glued instruction may use a RegisterSDNode operand.
926   //
927   // Collect all the used physreg defs, and make sure that any unused physreg
928   // defs are marked as dead.
929   SmallVector<Register, 8> UsedRegs;
930 
931   // Additional results must be physical register defs.
932   if (HasPhysRegOuts) {
933     for (unsigned i = NumDefs; i < NumResults; ++i) {
934       Register Reg = II.getImplicitDefs()[i - NumDefs];
935       if (!Node->hasAnyUseOfValue(i))
936         continue;
937       // This implicitly defined physreg has a use.
938       UsedRegs.push_back(Reg);
939       EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap);
940     }
941   }
942 
943   // Scan the glue chain for any used physregs.
944   if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) {
945     for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) {
946       if (F->getOpcode() == ISD::CopyFromReg) {
947         UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg());
948         continue;
949       } else if (F->getOpcode() == ISD::CopyToReg) {
950         // Skip CopyToReg nodes that are internal to the glue chain.
951         continue;
952       }
953       // Collect declared implicit uses.
954       const MCInstrDesc &MCID = TII->get(F->getMachineOpcode());
955       UsedRegs.append(MCID.getImplicitUses(),
956                       MCID.getImplicitUses() + MCID.getNumImplicitUses());
957       // In addition to declared implicit uses, we must also check for
958       // direct RegisterSDNode operands.
959       for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i)
960         if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) {
961           Register Reg = R->getReg();
962           if (Reg.isPhysical())
963             UsedRegs.push_back(Reg);
964         }
965     }
966   }
967 
968   // Finally mark unused registers as dead.
969   if (!UsedRegs.empty() || II.getImplicitDefs() || II.hasOptionalDef())
970     MIB->setPhysRegsDeadExcept(UsedRegs, *TRI);
971 
972   // Run post-isel target hook to adjust this instruction if needed.
973   if (II.hasPostISelHook())
974     TLI->AdjustInstrPostInstrSelection(*MIB, Node);
975 }
976 
977 /// EmitSpecialNode - Generate machine code for a target-independent node and
978 /// needed dependencies.
979 void InstrEmitter::
980 EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned,
981                 DenseMap<SDValue, Register> &VRBaseMap) {
982   switch (Node->getOpcode()) {
983   default:
984 #ifndef NDEBUG
985     Node->dump();
986 #endif
987     llvm_unreachable("This target-independent node should have been selected!");
988   case ISD::EntryToken:
989     llvm_unreachable("EntryToken should have been excluded from the schedule!");
990   case ISD::MERGE_VALUES:
991   case ISD::TokenFactor: // fall thru
992     break;
993   case ISD::CopyToReg: {
994     Register DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
995     SDValue SrcVal = Node->getOperand(2);
996     if (Register::isVirtualRegister(DestReg) && SrcVal.isMachineOpcode() &&
997         SrcVal.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
998       // Instead building a COPY to that vreg destination, build an
999       // IMPLICIT_DEF instruction instead.
1000       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1001               TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
1002       break;
1003     }
1004     Register SrcReg;
1005     if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
1006       SrcReg = R->getReg();
1007     else
1008       SrcReg = getVR(SrcVal, VRBaseMap);
1009 
1010     if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
1011       break;
1012 
1013     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
1014             DestReg).addReg(SrcReg);
1015     break;
1016   }
1017   case ISD::CopyFromReg: {
1018     unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1019     EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap);
1020     break;
1021   }
1022   case ISD::EH_LABEL:
1023   case ISD::ANNOTATION_LABEL: {
1024     unsigned Opc = (Node->getOpcode() == ISD::EH_LABEL)
1025                        ? TargetOpcode::EH_LABEL
1026                        : TargetOpcode::ANNOTATION_LABEL;
1027     MCSymbol *S = cast<LabelSDNode>(Node)->getLabel();
1028     BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1029             TII->get(Opc)).addSym(S);
1030     break;
1031   }
1032 
1033   case ISD::LIFETIME_START:
1034   case ISD::LIFETIME_END: {
1035     unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START) ?
1036     TargetOpcode::LIFETIME_START : TargetOpcode::LIFETIME_END;
1037 
1038     FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Node->getOperand(1));
1039     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1040     .addFrameIndex(FI->getIndex());
1041     break;
1042   }
1043 
1044   case ISD::INLINEASM:
1045   case ISD::INLINEASM_BR: {
1046     unsigned NumOps = Node->getNumOperands();
1047     if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1048       --NumOps;  // Ignore the glue operand.
1049 
1050     // Create the inline asm machine instruction.
1051     unsigned TgtOpc = Node->getOpcode() == ISD::INLINEASM_BR
1052                           ? TargetOpcode::INLINEASM_BR
1053                           : TargetOpcode::INLINEASM;
1054     MachineInstrBuilder MIB =
1055         BuildMI(*MF, Node->getDebugLoc(), TII->get(TgtOpc));
1056 
1057     // Add the asm string as an external symbol operand.
1058     SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString);
1059     const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol();
1060     MIB.addExternalSymbol(AsmStr);
1061 
1062     // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore
1063     // bits.
1064     int64_t ExtraInfo =
1065       cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))->
1066                           getZExtValue();
1067     MIB.addImm(ExtraInfo);
1068 
1069     // Remember to operand index of the group flags.
1070     SmallVector<unsigned, 8> GroupIdx;
1071 
1072     // Remember registers that are part of early-clobber defs.
1073     SmallVector<unsigned, 8> ECRegs;
1074 
1075     // Add all of the operand registers to the instruction.
1076     for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1077       unsigned Flags =
1078         cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1079       const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1080 
1081       GroupIdx.push_back(MIB->getNumOperands());
1082       MIB.addImm(Flags);
1083       ++i;  // Skip the ID value.
1084 
1085       switch (InlineAsm::getKind(Flags)) {
1086       default: llvm_unreachable("Bad flags!");
1087         case InlineAsm::Kind_RegDef:
1088         for (unsigned j = 0; j != NumVals; ++j, ++i) {
1089           unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1090           // FIXME: Add dead flags for physical and virtual registers defined.
1091           // For now, mark physical register defs as implicit to help fast
1092           // regalloc. This makes inline asm look a lot like calls.
1093           MIB.addReg(Reg,
1094                      RegState::Define |
1095                          getImplRegState(Register::isPhysicalRegister(Reg)));
1096         }
1097         break;
1098       case InlineAsm::Kind_RegDefEarlyClobber:
1099       case InlineAsm::Kind_Clobber:
1100         for (unsigned j = 0; j != NumVals; ++j, ++i) {
1101           unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1102           MIB.addReg(Reg,
1103                      RegState::Define | RegState::EarlyClobber |
1104                          getImplRegState(Register::isPhysicalRegister(Reg)));
1105           ECRegs.push_back(Reg);
1106         }
1107         break;
1108       case InlineAsm::Kind_RegUse:  // Use of register.
1109       case InlineAsm::Kind_Imm:  // Immediate.
1110       case InlineAsm::Kind_Mem:  // Addressing mode.
1111         // The addressing mode has been selected, just add all of the
1112         // operands to the machine instruction.
1113         for (unsigned j = 0; j != NumVals; ++j, ++i)
1114           AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap,
1115                      /*IsDebug=*/false, IsClone, IsCloned);
1116 
1117         // Manually set isTied bits.
1118         if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) {
1119           unsigned DefGroup = 0;
1120           if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) {
1121             unsigned DefIdx = GroupIdx[DefGroup] + 1;
1122             unsigned UseIdx = GroupIdx.back() + 1;
1123             for (unsigned j = 0; j != NumVals; ++j)
1124               MIB->tieOperands(DefIdx + j, UseIdx + j);
1125           }
1126         }
1127         break;
1128       }
1129     }
1130 
1131     // GCC inline assembly allows input operands to also be early-clobber
1132     // output operands (so long as the operand is written only after it's
1133     // used), but this does not match the semantics of our early-clobber flag.
1134     // If an early-clobber operand register is also an input operand register,
1135     // then remove the early-clobber flag.
1136     for (unsigned Reg : ECRegs) {
1137       if (MIB->readsRegister(Reg, TRI)) {
1138         MachineOperand *MO =
1139             MIB->findRegisterDefOperand(Reg, false, false, TRI);
1140         assert(MO && "No def operand for clobbered register?");
1141         MO->setIsEarlyClobber(false);
1142       }
1143     }
1144 
1145     // Get the mdnode from the asm if it exists and add it to the instruction.
1146     SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode);
1147     const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
1148     if (MD)
1149       MIB.addMetadata(MD);
1150 
1151     MBB->insert(InsertPos, MIB);
1152     break;
1153   }
1154   }
1155 }
1156 
1157 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting
1158 /// at the given position in the given block.
1159 InstrEmitter::InstrEmitter(MachineBasicBlock *mbb,
1160                            MachineBasicBlock::iterator insertpos)
1161     : MF(mbb->getParent()), MRI(&MF->getRegInfo()),
1162       TII(MF->getSubtarget().getInstrInfo()),
1163       TRI(MF->getSubtarget().getRegisterInfo()),
1164       TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb),
1165       InsertPos(insertpos) {}
1166