1 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the Emit routines for the SelectionDAG class, which creates 11 // MachineInstrs based on the decisions of the SelectionDAG instruction 12 // selection. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "InstrEmitter.h" 17 #include "SDNodeDbgValue.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/CodeGen/MachineConstantPool.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/StackMaps.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DebugInfo.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Target/TargetInstrInfo.h" 30 #include "llvm/Target/TargetLowering.h" 31 #include "llvm/Target/TargetSubtargetInfo.h" 32 using namespace llvm; 33 34 #define DEBUG_TYPE "instr-emitter" 35 36 /// MinRCSize - Smallest register class we allow when constraining virtual 37 /// registers. If satisfying all register class constraints would require 38 /// using a smaller register class, emit a COPY to a new virtual register 39 /// instead. 40 const unsigned MinRCSize = 4; 41 42 /// CountResults - The results of target nodes have register or immediate 43 /// operands first, then an optional chain, and optional glue operands (which do 44 /// not go into the resulting MachineInstr). 45 unsigned InstrEmitter::CountResults(SDNode *Node) { 46 unsigned N = Node->getNumValues(); 47 while (N && Node->getValueType(N - 1) == MVT::Glue) 48 --N; 49 if (N && Node->getValueType(N - 1) == MVT::Other) 50 --N; // Skip over chain result. 51 return N; 52 } 53 54 /// countOperands - The inputs to target nodes have any actual inputs first, 55 /// followed by an optional chain operand, then an optional glue operand. 56 /// Compute the number of actual operands that will go into the resulting 57 /// MachineInstr. 58 /// 59 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding 60 /// the chain and glue. These operands may be implicit on the machine instr. 61 static unsigned countOperands(SDNode *Node, unsigned NumExpUses, 62 unsigned &NumImpUses) { 63 unsigned N = Node->getNumOperands(); 64 while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue) 65 --N; 66 if (N && Node->getOperand(N - 1).getValueType() == MVT::Other) 67 --N; // Ignore chain if it exists. 68 69 // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses. 70 NumImpUses = N - NumExpUses; 71 for (unsigned I = N; I > NumExpUses; --I) { 72 if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1))) 73 continue; 74 if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1))) 75 if (TargetRegisterInfo::isPhysicalRegister(RN->getReg())) 76 continue; 77 NumImpUses = N - I; 78 break; 79 } 80 81 return N; 82 } 83 84 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an 85 /// implicit physical register output. 86 void InstrEmitter:: 87 EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned, 88 unsigned SrcReg, DenseMap<SDValue, unsigned> &VRBaseMap) { 89 unsigned VRBase = 0; 90 if (TargetRegisterInfo::isVirtualRegister(SrcReg)) { 91 // Just use the input register directly! 92 SDValue Op(Node, ResNo); 93 if (IsClone) 94 VRBaseMap.erase(Op); 95 bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second; 96 (void)isNew; // Silence compiler warning. 97 assert(isNew && "Node emitted out of order - early"); 98 return; 99 } 100 101 // If the node is only used by a CopyToReg and the dest reg is a vreg, use 102 // the CopyToReg'd destination register instead of creating a new vreg. 103 bool MatchReg = true; 104 const TargetRegisterClass *UseRC = nullptr; 105 MVT VT = Node->getSimpleValueType(ResNo); 106 107 // Stick to the preferred register classes for legal types. 108 if (TLI->isTypeLegal(VT)) 109 UseRC = TLI->getRegClassFor(VT); 110 111 if (!IsClone && !IsCloned) 112 for (SDNode *User : Node->uses()) { 113 bool Match = true; 114 if (User->getOpcode() == ISD::CopyToReg && 115 User->getOperand(2).getNode() == Node && 116 User->getOperand(2).getResNo() == ResNo) { 117 unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 118 if (TargetRegisterInfo::isVirtualRegister(DestReg)) { 119 VRBase = DestReg; 120 Match = false; 121 } else if (DestReg != SrcReg) 122 Match = false; 123 } else { 124 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 125 SDValue Op = User->getOperand(i); 126 if (Op.getNode() != Node || Op.getResNo() != ResNo) 127 continue; 128 MVT VT = Node->getSimpleValueType(Op.getResNo()); 129 if (VT == MVT::Other || VT == MVT::Glue) 130 continue; 131 Match = false; 132 if (User->isMachineOpcode()) { 133 const MCInstrDesc &II = TII->get(User->getMachineOpcode()); 134 const TargetRegisterClass *RC = nullptr; 135 if (i+II.getNumDefs() < II.getNumOperands()) { 136 RC = TRI->getAllocatableClass( 137 TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF)); 138 } 139 if (!UseRC) 140 UseRC = RC; 141 else if (RC) { 142 const TargetRegisterClass *ComRC = 143 TRI->getCommonSubClass(UseRC, RC, VT.SimpleTy); 144 // If multiple uses expect disjoint register classes, we emit 145 // copies in AddRegisterOperand. 146 if (ComRC) 147 UseRC = ComRC; 148 } 149 } 150 } 151 } 152 MatchReg &= Match; 153 if (VRBase) 154 break; 155 } 156 157 const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr; 158 SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT); 159 160 // Figure out the register class to create for the destreg. 161 if (VRBase) { 162 DstRC = MRI->getRegClass(VRBase); 163 } else if (UseRC) { 164 assert(UseRC->hasType(VT) && "Incompatible phys register def and uses!"); 165 DstRC = UseRC; 166 } else { 167 DstRC = TLI->getRegClassFor(VT); 168 } 169 170 // If all uses are reading from the src physical register and copying the 171 // register is either impossible or very expensive, then don't create a copy. 172 if (MatchReg && SrcRC->getCopyCost() < 0) { 173 VRBase = SrcReg; 174 } else { 175 // Create the reg, emit the copy. 176 VRBase = MRI->createVirtualRegister(DstRC); 177 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 178 VRBase).addReg(SrcReg); 179 } 180 181 SDValue Op(Node, ResNo); 182 if (IsClone) 183 VRBaseMap.erase(Op); 184 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 185 (void)isNew; // Silence compiler warning. 186 assert(isNew && "Node emitted out of order - early"); 187 } 188 189 /// getDstOfCopyToRegUse - If the only use of the specified result number of 190 /// node is a CopyToReg, return its destination register. Return 0 otherwise. 191 unsigned InstrEmitter::getDstOfOnlyCopyToRegUse(SDNode *Node, 192 unsigned ResNo) const { 193 if (!Node->hasOneUse()) 194 return 0; 195 196 SDNode *User = *Node->use_begin(); 197 if (User->getOpcode() == ISD::CopyToReg && 198 User->getOperand(2).getNode() == Node && 199 User->getOperand(2).getResNo() == ResNo) { 200 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 201 if (TargetRegisterInfo::isVirtualRegister(Reg)) 202 return Reg; 203 } 204 return 0; 205 } 206 207 void InstrEmitter::CreateVirtualRegisters(SDNode *Node, 208 MachineInstrBuilder &MIB, 209 const MCInstrDesc &II, 210 bool IsClone, bool IsCloned, 211 DenseMap<SDValue, unsigned> &VRBaseMap) { 212 assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF && 213 "IMPLICIT_DEF should have been handled as a special case elsewhere!"); 214 215 unsigned NumResults = CountResults(Node); 216 for (unsigned i = 0; i < II.getNumDefs(); ++i) { 217 // If the specific node value is only used by a CopyToReg and the dest reg 218 // is a vreg in the same register class, use the CopyToReg'd destination 219 // register instead of creating a new vreg. 220 unsigned VRBase = 0; 221 const TargetRegisterClass *RC = 222 TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF)); 223 // Always let the value type influence the used register class. The 224 // constraints on the instruction may be too lax to represent the value 225 // type correctly. For example, a 64-bit float (X86::FR64) can't live in 226 // the 32-bit float super-class (X86::FR32). 227 if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) { 228 const TargetRegisterClass *VTRC = 229 TLI->getRegClassFor(Node->getSimpleValueType(i)); 230 if (RC) 231 VTRC = TRI->getCommonSubClass(RC, VTRC); 232 if (VTRC) 233 RC = VTRC; 234 } 235 236 if (II.OpInfo[i].isOptionalDef()) { 237 // Optional def must be a physical register. 238 unsigned NumResults = CountResults(Node); 239 VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg(); 240 assert(TargetRegisterInfo::isPhysicalRegister(VRBase)); 241 MIB.addReg(VRBase, RegState::Define); 242 } 243 244 if (!VRBase && !IsClone && !IsCloned) 245 for (SDNode *User : Node->uses()) { 246 if (User->getOpcode() == ISD::CopyToReg && 247 User->getOperand(2).getNode() == Node && 248 User->getOperand(2).getResNo() == i) { 249 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 250 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 251 const TargetRegisterClass *RegRC = MRI->getRegClass(Reg); 252 if (RegRC == RC) { 253 VRBase = Reg; 254 MIB.addReg(VRBase, RegState::Define); 255 break; 256 } 257 } 258 } 259 } 260 261 // Create the result registers for this node and add the result regs to 262 // the machine instruction. 263 if (VRBase == 0) { 264 assert(RC && "Isn't a register operand!"); 265 VRBase = MRI->createVirtualRegister(RC); 266 MIB.addReg(VRBase, RegState::Define); 267 } 268 269 // If this def corresponds to a result of the SDNode insert the VRBase into 270 // the lookup map. 271 if (i < NumResults) { 272 SDValue Op(Node, i); 273 if (IsClone) 274 VRBaseMap.erase(Op); 275 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 276 (void)isNew; // Silence compiler warning. 277 assert(isNew && "Node emitted out of order - early"); 278 } 279 } 280 } 281 282 /// getVR - Return the virtual register corresponding to the specified result 283 /// of the specified node. 284 unsigned InstrEmitter::getVR(SDValue Op, 285 DenseMap<SDValue, unsigned> &VRBaseMap) { 286 if (Op.isMachineOpcode() && 287 Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) { 288 // Add an IMPLICIT_DEF instruction before every use. 289 unsigned VReg = getDstOfOnlyCopyToRegUse(Op.getNode(), Op.getResNo()); 290 // IMPLICIT_DEF can produce any type of result so its MCInstrDesc 291 // does not include operand register class info. 292 if (!VReg) { 293 const TargetRegisterClass *RC = 294 TLI->getRegClassFor(Op.getSimpleValueType()); 295 VReg = MRI->createVirtualRegister(RC); 296 } 297 BuildMI(*MBB, InsertPos, Op.getDebugLoc(), 298 TII->get(TargetOpcode::IMPLICIT_DEF), VReg); 299 return VReg; 300 } 301 302 DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op); 303 assert(I != VRBaseMap.end() && "Node emitted out of order - late"); 304 return I->second; 305 } 306 307 308 /// AddRegisterOperand - Add the specified register as an operand to the 309 /// specified machine instr. Insert register copies if the register is 310 /// not in the required register class. 311 void 312 InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB, 313 SDValue Op, 314 unsigned IIOpNum, 315 const MCInstrDesc *II, 316 DenseMap<SDValue, unsigned> &VRBaseMap, 317 bool IsDebug, bool IsClone, bool IsCloned) { 318 assert(Op.getValueType() != MVT::Other && 319 Op.getValueType() != MVT::Glue && 320 "Chain and glue operands should occur at end of operand list!"); 321 // Get/emit the operand. 322 unsigned VReg = getVR(Op, VRBaseMap); 323 324 const MCInstrDesc &MCID = MIB->getDesc(); 325 bool isOptDef = IIOpNum < MCID.getNumOperands() && 326 MCID.OpInfo[IIOpNum].isOptionalDef(); 327 328 // If the instruction requires a register in a different class, create 329 // a new virtual register and copy the value into it, but first attempt to 330 // shrink VReg's register class within reason. For example, if VReg == GR32 331 // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP. 332 if (II) { 333 const TargetRegisterClass *OpRC = nullptr; 334 if (IIOpNum < II->getNumOperands()) 335 OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF); 336 337 if (OpRC) { 338 const TargetRegisterClass *ConstrainedRC 339 = MRI->constrainRegClass(VReg, OpRC, MinRCSize); 340 if (!ConstrainedRC) { 341 unsigned NewVReg = MRI->createVirtualRegister(OpRC); 342 BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(), 343 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg); 344 VReg = NewVReg; 345 } else { 346 assert(ConstrainedRC->isAllocatable() && 347 "Constraining an allocatable VReg produced an unallocatable class?"); 348 } 349 } 350 } 351 352 // If this value has only one use, that use is a kill. This is a 353 // conservative approximation. InstrEmitter does trivial coalescing 354 // with CopyFromReg nodes, so don't emit kill flags for them. 355 // Avoid kill flags on Schedule cloned nodes, since there will be 356 // multiple uses. 357 // Tied operands are never killed, so we need to check that. And that 358 // means we need to determine the index of the operand. 359 bool isKill = Op.hasOneUse() && 360 Op.getNode()->getOpcode() != ISD::CopyFromReg && 361 !IsDebug && 362 !(IsClone || IsCloned); 363 if (isKill) { 364 unsigned Idx = MIB->getNumOperands(); 365 while (Idx > 0 && 366 MIB->getOperand(Idx-1).isReg() && 367 MIB->getOperand(Idx-1).isImplicit()) 368 --Idx; 369 bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1; 370 if (isTied) 371 isKill = false; 372 } 373 374 MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) | 375 getDebugRegState(IsDebug)); 376 } 377 378 /// AddOperand - Add the specified operand to the specified machine instr. II 379 /// specifies the instruction information for the node, and IIOpNum is the 380 /// operand number (in the II) that we are adding. 381 void InstrEmitter::AddOperand(MachineInstrBuilder &MIB, 382 SDValue Op, 383 unsigned IIOpNum, 384 const MCInstrDesc *II, 385 DenseMap<SDValue, unsigned> &VRBaseMap, 386 bool IsDebug, bool IsClone, bool IsCloned) { 387 if (Op.isMachineOpcode()) { 388 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap, 389 IsDebug, IsClone, IsCloned); 390 } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 391 MIB.addImm(C->getSExtValue()); 392 } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) { 393 MIB.addFPImm(F->getConstantFPValue()); 394 } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) { 395 // Turn additional physreg operands into implicit uses on non-variadic 396 // instructions. This is used by call and return instructions passing 397 // arguments in registers. 398 bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic()); 399 MIB.addReg(R->getReg(), getImplRegState(Imp)); 400 } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) { 401 MIB.addRegMask(RM->getRegMask()); 402 } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) { 403 MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(), 404 TGA->getTargetFlags()); 405 } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) { 406 MIB.addMBB(BBNode->getBasicBlock()); 407 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 408 MIB.addFrameIndex(FI->getIndex()); 409 } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) { 410 MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags()); 411 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) { 412 int Offset = CP->getOffset(); 413 unsigned Align = CP->getAlignment(); 414 Type *Type = CP->getType(); 415 // MachineConstantPool wants an explicit alignment. 416 if (Align == 0) { 417 Align = MF->getDataLayout().getPrefTypeAlignment(Type); 418 if (Align == 0) { 419 // Alignment of vector types. FIXME! 420 Align = MF->getDataLayout().getTypeAllocSize(Type); 421 } 422 } 423 424 unsigned Idx; 425 MachineConstantPool *MCP = MF->getConstantPool(); 426 if (CP->isMachineConstantPoolEntry()) 427 Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Align); 428 else 429 Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Align); 430 MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags()); 431 } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) { 432 MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags()); 433 } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) { 434 MIB.addSym(SymNode->getMCSymbol()); 435 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) { 436 MIB.addBlockAddress(BA->getBlockAddress(), 437 BA->getOffset(), 438 BA->getTargetFlags()); 439 } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) { 440 MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags()); 441 } else { 442 assert(Op.getValueType() != MVT::Other && 443 Op.getValueType() != MVT::Glue && 444 "Chain and glue operands should occur at end of operand list!"); 445 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap, 446 IsDebug, IsClone, IsCloned); 447 } 448 } 449 450 unsigned InstrEmitter::ConstrainForSubReg(unsigned VReg, unsigned SubIdx, 451 MVT VT, const DebugLoc &DL) { 452 const TargetRegisterClass *VRC = MRI->getRegClass(VReg); 453 const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx); 454 455 // RC is a sub-class of VRC that supports SubIdx. Try to constrain VReg 456 // within reason. 457 if (RC && RC != VRC) 458 RC = MRI->constrainRegClass(VReg, RC, MinRCSize); 459 460 // VReg has been adjusted. It can be used with SubIdx operands now. 461 if (RC) 462 return VReg; 463 464 // VReg couldn't be reasonably constrained. Emit a COPY to a new virtual 465 // register instead. 466 RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT), SubIdx); 467 assert(RC && "No legal register class for VT supports that SubIdx"); 468 unsigned NewReg = MRI->createVirtualRegister(RC); 469 BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg) 470 .addReg(VReg); 471 return NewReg; 472 } 473 474 /// EmitSubregNode - Generate machine code for subreg nodes. 475 /// 476 void InstrEmitter::EmitSubregNode(SDNode *Node, 477 DenseMap<SDValue, unsigned> &VRBaseMap, 478 bool IsClone, bool IsCloned) { 479 unsigned VRBase = 0; 480 unsigned Opc = Node->getMachineOpcode(); 481 482 // If the node is only used by a CopyToReg and the dest reg is a vreg, use 483 // the CopyToReg'd destination register instead of creating a new vreg. 484 for (SDNode *User : Node->uses()) { 485 if (User->getOpcode() == ISD::CopyToReg && 486 User->getOperand(2).getNode() == Node) { 487 unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 488 if (TargetRegisterInfo::isVirtualRegister(DestReg)) { 489 VRBase = DestReg; 490 break; 491 } 492 } 493 } 494 495 if (Opc == TargetOpcode::EXTRACT_SUBREG) { 496 // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub. There are no 497 // constraints on the %dst register, COPY can target all legal register 498 // classes. 499 unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); 500 const TargetRegisterClass *TRC = 501 TLI->getRegClassFor(Node->getSimpleValueType(0)); 502 503 unsigned VReg = getVR(Node->getOperand(0), VRBaseMap); 504 MachineInstr *DefMI = MRI->getVRegDef(VReg); 505 unsigned SrcReg, DstReg, DefSubIdx; 506 if (DefMI && 507 TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) && 508 SubIdx == DefSubIdx && 509 TRC == MRI->getRegClass(SrcReg)) { 510 // Optimize these: 511 // r1025 = s/zext r1024, 4 512 // r1026 = extract_subreg r1025, 4 513 // to a copy 514 // r1026 = copy r1024 515 VRBase = MRI->createVirtualRegister(TRC); 516 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 517 TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg); 518 MRI->clearKillFlags(SrcReg); 519 } else { 520 // VReg may not support a SubIdx sub-register, and we may need to 521 // constrain its register class or issue a COPY to a compatible register 522 // class. 523 VReg = ConstrainForSubReg(VReg, SubIdx, 524 Node->getOperand(0).getSimpleValueType(), 525 Node->getDebugLoc()); 526 527 // Create the destreg if it is missing. 528 if (VRBase == 0) 529 VRBase = MRI->createVirtualRegister(TRC); 530 531 // Create the extract_subreg machine instruction. 532 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 533 TII->get(TargetOpcode::COPY), VRBase).addReg(VReg, 0, SubIdx); 534 } 535 } else if (Opc == TargetOpcode::INSERT_SUBREG || 536 Opc == TargetOpcode::SUBREG_TO_REG) { 537 SDValue N0 = Node->getOperand(0); 538 SDValue N1 = Node->getOperand(1); 539 SDValue N2 = Node->getOperand(2); 540 unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue(); 541 542 // Figure out the register class to create for the destreg. It should be 543 // the largest legal register class supporting SubIdx sub-registers. 544 // RegisterCoalescer will constrain it further if it decides to eliminate 545 // the INSERT_SUBREG instruction. 546 // 547 // %dst = INSERT_SUBREG %src, %sub, SubIdx 548 // 549 // is lowered by TwoAddressInstructionPass to: 550 // 551 // %dst = COPY %src 552 // %dst:SubIdx = COPY %sub 553 // 554 // There is no constraint on the %src register class. 555 // 556 const TargetRegisterClass *SRC = TLI->getRegClassFor(Node->getSimpleValueType(0)); 557 SRC = TRI->getSubClassWithSubReg(SRC, SubIdx); 558 assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG"); 559 560 if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase))) 561 VRBase = MRI->createVirtualRegister(SRC); 562 563 // Create the insert_subreg or subreg_to_reg machine instruction. 564 MachineInstrBuilder MIB = 565 BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase); 566 567 // If creating a subreg_to_reg, then the first input operand 568 // is an implicit value immediate, otherwise it's a register 569 if (Opc == TargetOpcode::SUBREG_TO_REG) { 570 const ConstantSDNode *SD = cast<ConstantSDNode>(N0); 571 MIB.addImm(SD->getZExtValue()); 572 } else 573 AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false, 574 IsClone, IsCloned); 575 // Add the subregster being inserted 576 AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false, 577 IsClone, IsCloned); 578 MIB.addImm(SubIdx); 579 MBB->insert(InsertPos, MIB); 580 } else 581 llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg"); 582 583 SDValue Op(Node, 0); 584 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 585 (void)isNew; // Silence compiler warning. 586 assert(isNew && "Node emitted out of order - early"); 587 } 588 589 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes. 590 /// COPY_TO_REGCLASS is just a normal copy, except that the destination 591 /// register is constrained to be in a particular register class. 592 /// 593 void 594 InstrEmitter::EmitCopyToRegClassNode(SDNode *Node, 595 DenseMap<SDValue, unsigned> &VRBaseMap) { 596 unsigned VReg = getVR(Node->getOperand(0), VRBaseMap); 597 598 // Create the new VReg in the destination class and emit a copy. 599 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); 600 const TargetRegisterClass *DstRC = 601 TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx)); 602 unsigned NewVReg = MRI->createVirtualRegister(DstRC); 603 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 604 NewVReg).addReg(VReg); 605 606 SDValue Op(Node, 0); 607 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second; 608 (void)isNew; // Silence compiler warning. 609 assert(isNew && "Node emitted out of order - early"); 610 } 611 612 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes. 613 /// 614 void InstrEmitter::EmitRegSequence(SDNode *Node, 615 DenseMap<SDValue, unsigned> &VRBaseMap, 616 bool IsClone, bool IsCloned) { 617 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue(); 618 const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx); 619 unsigned NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC)); 620 const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE); 621 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg); 622 unsigned NumOps = Node->getNumOperands(); 623 assert((NumOps & 1) == 1 && 624 "REG_SEQUENCE must have an odd number of operands!"); 625 for (unsigned i = 1; i != NumOps; ++i) { 626 SDValue Op = Node->getOperand(i); 627 if ((i & 1) == 0) { 628 RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1)); 629 // Skip physical registers as they don't have a vreg to get and we'll 630 // insert copies for them in TwoAddressInstructionPass anyway. 631 if (!R || !TargetRegisterInfo::isPhysicalRegister(R->getReg())) { 632 unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue(); 633 unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap); 634 const TargetRegisterClass *TRC = MRI->getRegClass(SubReg); 635 const TargetRegisterClass *SRC = 636 TRI->getMatchingSuperRegClass(RC, TRC, SubIdx); 637 if (SRC && SRC != RC) { 638 MRI->setRegClass(NewVReg, SRC); 639 RC = SRC; 640 } 641 } 642 } 643 AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false, 644 IsClone, IsCloned); 645 } 646 647 MBB->insert(InsertPos, MIB); 648 SDValue Op(Node, 0); 649 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second; 650 (void)isNew; // Silence compiler warning. 651 assert(isNew && "Node emitted out of order - early"); 652 } 653 654 /// EmitDbgValue - Generate machine instruction for a dbg_value node. 655 /// 656 MachineInstr * 657 InstrEmitter::EmitDbgValue(SDDbgValue *SD, 658 DenseMap<SDValue, unsigned> &VRBaseMap) { 659 uint64_t Offset = SD->getOffset(); 660 MDNode *Var = SD->getVariable(); 661 MDNode *Expr = SD->getExpression(); 662 DebugLoc DL = SD->getDebugLoc(); 663 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 664 "Expected inlined-at fields to agree"); 665 666 if (SD->getKind() == SDDbgValue::FRAMEIX) { 667 // Stack address; this needs to be lowered in target-dependent fashion. 668 // EmitTargetCodeForFrameDebugValue is responsible for allocation. 669 return BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 670 .addFrameIndex(SD->getFrameIx()) 671 .addImm(Offset) 672 .addMetadata(Var) 673 .addMetadata(Expr); 674 } 675 // Otherwise, we're going to create an instruction here. 676 const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE); 677 MachineInstrBuilder MIB = BuildMI(*MF, DL, II); 678 if (SD->getKind() == SDDbgValue::SDNODE) { 679 SDNode *Node = SD->getSDNode(); 680 SDValue Op = SDValue(Node, SD->getResNo()); 681 // It's possible we replaced this SDNode with other(s) and therefore 682 // didn't generate code for it. It's better to catch these cases where 683 // they happen and transfer the debug info, but trying to guarantee that 684 // in all cases would be very fragile; this is a safeguard for any 685 // that were missed. 686 DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op); 687 if (I==VRBaseMap.end()) 688 MIB.addReg(0U); // undef 689 else 690 AddOperand(MIB, Op, (*MIB).getNumOperands(), &II, VRBaseMap, 691 /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false); 692 } else if (SD->getKind() == SDDbgValue::CONST) { 693 const Value *V = SD->getConst(); 694 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 695 if (CI->getBitWidth() > 64) 696 MIB.addCImm(CI); 697 else 698 MIB.addImm(CI->getSExtValue()); 699 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 700 MIB.addFPImm(CF); 701 } else { 702 // Could be an Undef. In any case insert an Undef so we can see what we 703 // dropped. 704 MIB.addReg(0U); 705 } 706 } else { 707 // Insert an Undef so we can see what we dropped. 708 MIB.addReg(0U); 709 } 710 711 // Indirect addressing is indicated by an Imm as the second parameter. 712 if (SD->isIndirect()) 713 MIB.addImm(Offset); 714 else { 715 assert(Offset == 0 && "direct value cannot have an offset"); 716 MIB.addReg(0U, RegState::Debug); 717 } 718 719 MIB.addMetadata(Var); 720 MIB.addMetadata(Expr); 721 722 return &*MIB; 723 } 724 725 /// EmitMachineNode - Generate machine code for a target-specific node and 726 /// needed dependencies. 727 /// 728 void InstrEmitter:: 729 EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned, 730 DenseMap<SDValue, unsigned> &VRBaseMap) { 731 unsigned Opc = Node->getMachineOpcode(); 732 733 // Handle subreg insert/extract specially 734 if (Opc == TargetOpcode::EXTRACT_SUBREG || 735 Opc == TargetOpcode::INSERT_SUBREG || 736 Opc == TargetOpcode::SUBREG_TO_REG) { 737 EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned); 738 return; 739 } 740 741 // Handle COPY_TO_REGCLASS specially. 742 if (Opc == TargetOpcode::COPY_TO_REGCLASS) { 743 EmitCopyToRegClassNode(Node, VRBaseMap); 744 return; 745 } 746 747 // Handle REG_SEQUENCE specially. 748 if (Opc == TargetOpcode::REG_SEQUENCE) { 749 EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned); 750 return; 751 } 752 753 if (Opc == TargetOpcode::IMPLICIT_DEF) 754 // We want a unique VR for each IMPLICIT_DEF use. 755 return; 756 757 const MCInstrDesc &II = TII->get(Opc); 758 unsigned NumResults = CountResults(Node); 759 unsigned NumDefs = II.getNumDefs(); 760 const MCPhysReg *ScratchRegs = nullptr; 761 762 // Handle STACKMAP and PATCHPOINT specially and then use the generic code. 763 if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) { 764 // Stackmaps do not have arguments and do not preserve their calling 765 // convention. However, to simplify runtime support, they clobber the same 766 // scratch registers as AnyRegCC. 767 unsigned CC = CallingConv::AnyReg; 768 if (Opc == TargetOpcode::PATCHPOINT) { 769 CC = Node->getConstantOperandVal(PatchPointOpers::CCPos); 770 NumDefs = NumResults; 771 } 772 ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC); 773 } 774 775 unsigned NumImpUses = 0; 776 unsigned NodeOperands = 777 countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses); 778 bool HasPhysRegOuts = NumResults > NumDefs && II.getImplicitDefs()!=nullptr; 779 #ifndef NDEBUG 780 unsigned NumMIOperands = NodeOperands + NumResults; 781 if (II.isVariadic()) 782 assert(NumMIOperands >= II.getNumOperands() && 783 "Too few operands for a variadic node!"); 784 else 785 assert(NumMIOperands >= II.getNumOperands() && 786 NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() + 787 NumImpUses && 788 "#operands for dag node doesn't match .td file!"); 789 #endif 790 791 // Create the new machine instruction. 792 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II); 793 794 // Add result register values for things that are defined by this 795 // instruction. 796 if (NumResults) 797 CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap); 798 799 // Emit all of the actual operands of this instruction, adding them to the 800 // instruction as appropriate. 801 bool HasOptPRefs = NumDefs > NumResults; 802 assert((!HasOptPRefs || !HasPhysRegOuts) && 803 "Unable to cope with optional defs and phys regs defs!"); 804 unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0; 805 for (unsigned i = NumSkip; i != NodeOperands; ++i) 806 AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II, 807 VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned); 808 809 // Add scratch registers as implicit def and early clobber 810 if (ScratchRegs) 811 for (unsigned i = 0; ScratchRegs[i]; ++i) 812 MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine | 813 RegState::EarlyClobber); 814 815 // Transfer all of the memory reference descriptions of this instruction. 816 MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands_begin(), 817 cast<MachineSDNode>(Node)->memoperands_end()); 818 819 // Insert the instruction into position in the block. This needs to 820 // happen before any custom inserter hook is called so that the 821 // hook knows where in the block to insert the replacement code. 822 MBB->insert(InsertPos, MIB); 823 824 // The MachineInstr may also define physregs instead of virtregs. These 825 // physreg values can reach other instructions in different ways: 826 // 827 // 1. When there is a use of a Node value beyond the explicitly defined 828 // virtual registers, we emit a CopyFromReg for one of the implicitly 829 // defined physregs. This only happens when HasPhysRegOuts is true. 830 // 831 // 2. A CopyFromReg reading a physreg may be glued to this instruction. 832 // 833 // 3. A glued instruction may implicitly use a physreg. 834 // 835 // 4. A glued instruction may use a RegisterSDNode operand. 836 // 837 // Collect all the used physreg defs, and make sure that any unused physreg 838 // defs are marked as dead. 839 SmallVector<unsigned, 8> UsedRegs; 840 841 // Additional results must be physical register defs. 842 if (HasPhysRegOuts) { 843 for (unsigned i = NumDefs; i < NumResults; ++i) { 844 unsigned Reg = II.getImplicitDefs()[i - NumDefs]; 845 if (!Node->hasAnyUseOfValue(i)) 846 continue; 847 // This implicitly defined physreg has a use. 848 UsedRegs.push_back(Reg); 849 EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap); 850 } 851 } 852 853 // Scan the glue chain for any used physregs. 854 if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) { 855 for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) { 856 if (F->getOpcode() == ISD::CopyFromReg) { 857 UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg()); 858 continue; 859 } else if (F->getOpcode() == ISD::CopyToReg) { 860 // Skip CopyToReg nodes that are internal to the glue chain. 861 continue; 862 } 863 // Collect declared implicit uses. 864 const MCInstrDesc &MCID = TII->get(F->getMachineOpcode()); 865 UsedRegs.append(MCID.getImplicitUses(), 866 MCID.getImplicitUses() + MCID.getNumImplicitUses()); 867 // In addition to declared implicit uses, we must also check for 868 // direct RegisterSDNode operands. 869 for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i) 870 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) { 871 unsigned Reg = R->getReg(); 872 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 873 UsedRegs.push_back(Reg); 874 } 875 } 876 } 877 878 // Finally mark unused registers as dead. 879 if (!UsedRegs.empty() || II.getImplicitDefs()) 880 MIB->setPhysRegsDeadExcept(UsedRegs, *TRI); 881 882 // Run post-isel target hook to adjust this instruction if needed. 883 if (II.hasPostISelHook()) 884 TLI->AdjustInstrPostInstrSelection(*MIB, Node); 885 } 886 887 /// EmitSpecialNode - Generate machine code for a target-independent node and 888 /// needed dependencies. 889 void InstrEmitter:: 890 EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned, 891 DenseMap<SDValue, unsigned> &VRBaseMap) { 892 switch (Node->getOpcode()) { 893 default: 894 #ifndef NDEBUG 895 Node->dump(); 896 #endif 897 llvm_unreachable("This target-independent node should have been selected!"); 898 case ISD::EntryToken: 899 llvm_unreachable("EntryToken should have been excluded from the schedule!"); 900 case ISD::MERGE_VALUES: 901 case ISD::TokenFactor: // fall thru 902 break; 903 case ISD::CopyToReg: { 904 unsigned SrcReg; 905 SDValue SrcVal = Node->getOperand(2); 906 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal)) 907 SrcReg = R->getReg(); 908 else 909 SrcReg = getVR(SrcVal, VRBaseMap); 910 911 unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); 912 if (SrcReg == DestReg) // Coalesced away the copy? Ignore. 913 break; 914 915 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 916 DestReg).addReg(SrcReg); 917 break; 918 } 919 case ISD::CopyFromReg: { 920 unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); 921 EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap); 922 break; 923 } 924 case ISD::EH_LABEL: { 925 MCSymbol *S = cast<EHLabelSDNode>(Node)->getLabel(); 926 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 927 TII->get(TargetOpcode::EH_LABEL)).addSym(S); 928 break; 929 } 930 931 case ISD::LIFETIME_START: 932 case ISD::LIFETIME_END: { 933 unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START) ? 934 TargetOpcode::LIFETIME_START : TargetOpcode::LIFETIME_END; 935 936 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Node->getOperand(1)); 937 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp)) 938 .addFrameIndex(FI->getIndex()); 939 break; 940 } 941 942 case ISD::INLINEASM: { 943 unsigned NumOps = Node->getNumOperands(); 944 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue) 945 --NumOps; // Ignore the glue operand. 946 947 // Create the inline asm machine instruction. 948 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), 949 TII->get(TargetOpcode::INLINEASM)); 950 951 // Add the asm string as an external symbol operand. 952 SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString); 953 const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol(); 954 MIB.addExternalSymbol(AsmStr); 955 956 // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore 957 // bits. 958 int64_t ExtraInfo = 959 cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))-> 960 getZExtValue(); 961 MIB.addImm(ExtraInfo); 962 963 // Remember to operand index of the group flags. 964 SmallVector<unsigned, 8> GroupIdx; 965 966 // Remember registers that are part of early-clobber defs. 967 SmallVector<unsigned, 8> ECRegs; 968 969 // Add all of the operand registers to the instruction. 970 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 971 unsigned Flags = 972 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue(); 973 const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 974 975 GroupIdx.push_back(MIB->getNumOperands()); 976 MIB.addImm(Flags); 977 ++i; // Skip the ID value. 978 979 switch (InlineAsm::getKind(Flags)) { 980 default: llvm_unreachable("Bad flags!"); 981 case InlineAsm::Kind_RegDef: 982 for (unsigned j = 0; j != NumVals; ++j, ++i) { 983 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); 984 // FIXME: Add dead flags for physical and virtual registers defined. 985 // For now, mark physical register defs as implicit to help fast 986 // regalloc. This makes inline asm look a lot like calls. 987 MIB.addReg(Reg, RegState::Define | 988 getImplRegState(TargetRegisterInfo::isPhysicalRegister(Reg))); 989 } 990 break; 991 case InlineAsm::Kind_RegDefEarlyClobber: 992 case InlineAsm::Kind_Clobber: 993 for (unsigned j = 0; j != NumVals; ++j, ++i) { 994 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); 995 MIB.addReg(Reg, RegState::Define | RegState::EarlyClobber | 996 getImplRegState(TargetRegisterInfo::isPhysicalRegister(Reg))); 997 ECRegs.push_back(Reg); 998 } 999 break; 1000 case InlineAsm::Kind_RegUse: // Use of register. 1001 case InlineAsm::Kind_Imm: // Immediate. 1002 case InlineAsm::Kind_Mem: // Addressing mode. 1003 // The addressing mode has been selected, just add all of the 1004 // operands to the machine instruction. 1005 for (unsigned j = 0; j != NumVals; ++j, ++i) 1006 AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap, 1007 /*IsDebug=*/false, IsClone, IsCloned); 1008 1009 // Manually set isTied bits. 1010 if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) { 1011 unsigned DefGroup = 0; 1012 if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) { 1013 unsigned DefIdx = GroupIdx[DefGroup] + 1; 1014 unsigned UseIdx = GroupIdx.back() + 1; 1015 for (unsigned j = 0; j != NumVals; ++j) 1016 MIB->tieOperands(DefIdx + j, UseIdx + j); 1017 } 1018 } 1019 break; 1020 } 1021 } 1022 1023 // GCC inline assembly allows input operands to also be early-clobber 1024 // output operands (so long as the operand is written only after it's 1025 // used), but this does not match the semantics of our early-clobber flag. 1026 // If an early-clobber operand register is also an input operand register, 1027 // then remove the early-clobber flag. 1028 for (unsigned Reg : ECRegs) { 1029 if (MIB->readsRegister(Reg, TRI)) { 1030 MachineOperand *MO = MIB->findRegisterDefOperand(Reg, false, TRI); 1031 assert(MO && "No def operand for clobbered register?"); 1032 MO->setIsEarlyClobber(false); 1033 } 1034 } 1035 1036 // Get the mdnode from the asm if it exists and add it to the instruction. 1037 SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode); 1038 const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD(); 1039 if (MD) 1040 MIB.addMetadata(MD); 1041 1042 MBB->insert(InsertPos, MIB); 1043 break; 1044 } 1045 } 1046 } 1047 1048 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting 1049 /// at the given position in the given block. 1050 InstrEmitter::InstrEmitter(MachineBasicBlock *mbb, 1051 MachineBasicBlock::iterator insertpos) 1052 : MF(mbb->getParent()), MRI(&MF->getRegInfo()), 1053 TII(MF->getSubtarget().getInstrInfo()), 1054 TRI(MF->getSubtarget().getRegisterInfo()), 1055 TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb), 1056 InsertPos(insertpos) {} 1057