1 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the Emit routines for the SelectionDAG class, which creates 10 // MachineInstrs based on the decisions of the SelectionDAG instruction 11 // selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "InstrEmitter.h" 16 #include "SDNodeDbgValue.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/CodeGen/MachineConstantPool.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/CodeGen/StackMaps.h" 24 #include "llvm/CodeGen/TargetInstrInfo.h" 25 #include "llvm/CodeGen/TargetLowering.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/DebugInfo.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetMachine.h" 33 using namespace llvm; 34 35 #define DEBUG_TYPE "instr-emitter" 36 37 /// MinRCSize - Smallest register class we allow when constraining virtual 38 /// registers. If satisfying all register class constraints would require 39 /// using a smaller register class, emit a COPY to a new virtual register 40 /// instead. 41 const unsigned MinRCSize = 4; 42 43 /// CountResults - The results of target nodes have register or immediate 44 /// operands first, then an optional chain, and optional glue operands (which do 45 /// not go into the resulting MachineInstr). 46 unsigned InstrEmitter::CountResults(SDNode *Node) { 47 unsigned N = Node->getNumValues(); 48 while (N && Node->getValueType(N - 1) == MVT::Glue) 49 --N; 50 if (N && Node->getValueType(N - 1) == MVT::Other) 51 --N; // Skip over chain result. 52 return N; 53 } 54 55 /// countOperands - The inputs to target nodes have any actual inputs first, 56 /// followed by an optional chain operand, then an optional glue operand. 57 /// Compute the number of actual operands that will go into the resulting 58 /// MachineInstr. 59 /// 60 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding 61 /// the chain and glue. These operands may be implicit on the machine instr. 62 static unsigned countOperands(SDNode *Node, unsigned NumExpUses, 63 unsigned &NumImpUses) { 64 unsigned N = Node->getNumOperands(); 65 while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue) 66 --N; 67 if (N && Node->getOperand(N - 1).getValueType() == MVT::Other) 68 --N; // Ignore chain if it exists. 69 70 // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses. 71 NumImpUses = N - NumExpUses; 72 for (unsigned I = N; I > NumExpUses; --I) { 73 if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1))) 74 continue; 75 if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1))) 76 if (Register::isPhysicalRegister(RN->getReg())) 77 continue; 78 NumImpUses = N - I; 79 break; 80 } 81 82 return N; 83 } 84 85 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an 86 /// implicit physical register output. 87 void InstrEmitter:: 88 EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned, 89 Register SrcReg, DenseMap<SDValue, Register> &VRBaseMap) { 90 Register VRBase; 91 if (SrcReg.isVirtual()) { 92 // Just use the input register directly! 93 SDValue Op(Node, ResNo); 94 if (IsClone) 95 VRBaseMap.erase(Op); 96 bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second; 97 (void)isNew; // Silence compiler warning. 98 assert(isNew && "Node emitted out of order - early"); 99 return; 100 } 101 102 // If the node is only used by a CopyToReg and the dest reg is a vreg, use 103 // the CopyToReg'd destination register instead of creating a new vreg. 104 bool MatchReg = true; 105 const TargetRegisterClass *UseRC = nullptr; 106 MVT VT = Node->getSimpleValueType(ResNo); 107 108 // Stick to the preferred register classes for legal types. 109 if (TLI->isTypeLegal(VT)) 110 UseRC = TLI->getRegClassFor(VT, Node->isDivergent()); 111 112 if (!IsClone && !IsCloned) 113 for (SDNode *User : Node->uses()) { 114 bool Match = true; 115 if (User->getOpcode() == ISD::CopyToReg && 116 User->getOperand(2).getNode() == Node && 117 User->getOperand(2).getResNo() == ResNo) { 118 Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 119 if (DestReg.isVirtual()) { 120 VRBase = DestReg; 121 Match = false; 122 } else if (DestReg != SrcReg) 123 Match = false; 124 } else { 125 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 126 SDValue Op = User->getOperand(i); 127 if (Op.getNode() != Node || Op.getResNo() != ResNo) 128 continue; 129 MVT VT = Node->getSimpleValueType(Op.getResNo()); 130 if (VT == MVT::Other || VT == MVT::Glue) 131 continue; 132 Match = false; 133 if (User->isMachineOpcode()) { 134 const MCInstrDesc &II = TII->get(User->getMachineOpcode()); 135 const TargetRegisterClass *RC = nullptr; 136 if (i+II.getNumDefs() < II.getNumOperands()) { 137 RC = TRI->getAllocatableClass( 138 TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF)); 139 } 140 if (!UseRC) 141 UseRC = RC; 142 else if (RC) { 143 const TargetRegisterClass *ComRC = 144 TRI->getCommonSubClass(UseRC, RC); 145 // If multiple uses expect disjoint register classes, we emit 146 // copies in AddRegisterOperand. 147 if (ComRC) 148 UseRC = ComRC; 149 } 150 } 151 } 152 } 153 MatchReg &= Match; 154 if (VRBase) 155 break; 156 } 157 158 const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr; 159 SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT); 160 161 // Figure out the register class to create for the destreg. 162 if (VRBase) { 163 DstRC = MRI->getRegClass(VRBase); 164 } else if (UseRC) { 165 assert(TRI->isTypeLegalForClass(*UseRC, VT) && 166 "Incompatible phys register def and uses!"); 167 DstRC = UseRC; 168 } else { 169 DstRC = TLI->getRegClassFor(VT, Node->isDivergent()); 170 } 171 172 // If all uses are reading from the src physical register and copying the 173 // register is either impossible or very expensive, then don't create a copy. 174 if (MatchReg && SrcRC->getCopyCost() < 0) { 175 VRBase = SrcReg; 176 } else { 177 // Create the reg, emit the copy. 178 VRBase = MRI->createVirtualRegister(DstRC); 179 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 180 VRBase).addReg(SrcReg); 181 } 182 183 SDValue Op(Node, ResNo); 184 if (IsClone) 185 VRBaseMap.erase(Op); 186 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 187 (void)isNew; // Silence compiler warning. 188 assert(isNew && "Node emitted out of order - early"); 189 } 190 191 void InstrEmitter::CreateVirtualRegisters(SDNode *Node, 192 MachineInstrBuilder &MIB, 193 const MCInstrDesc &II, 194 bool IsClone, bool IsCloned, 195 DenseMap<SDValue, Register> &VRBaseMap) { 196 assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF && 197 "IMPLICIT_DEF should have been handled as a special case elsewhere!"); 198 199 unsigned NumResults = CountResults(Node); 200 bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() && 201 II.isVariadic() && II.variadicOpsAreDefs(); 202 unsigned NumVRegs = HasVRegVariadicDefs ? NumResults : II.getNumDefs(); 203 if (Node->getMachineOpcode() == TargetOpcode::STATEPOINT) 204 NumVRegs = NumResults; 205 for (unsigned i = 0; i < NumVRegs; ++i) { 206 // If the specific node value is only used by a CopyToReg and the dest reg 207 // is a vreg in the same register class, use the CopyToReg'd destination 208 // register instead of creating a new vreg. 209 Register VRBase; 210 const TargetRegisterClass *RC = 211 TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF)); 212 // Always let the value type influence the used register class. The 213 // constraints on the instruction may be too lax to represent the value 214 // type correctly. For example, a 64-bit float (X86::FR64) can't live in 215 // the 32-bit float super-class (X86::FR32). 216 if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) { 217 const TargetRegisterClass *VTRC = TLI->getRegClassFor( 218 Node->getSimpleValueType(i), 219 (Node->isDivergent() || (RC && TRI->isDivergentRegClass(RC)))); 220 if (RC) 221 VTRC = TRI->getCommonSubClass(RC, VTRC); 222 if (VTRC) 223 RC = VTRC; 224 } 225 226 if (II.OpInfo != nullptr && II.OpInfo[i].isOptionalDef()) { 227 // Optional def must be a physical register. 228 VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg(); 229 assert(VRBase.isPhysical()); 230 MIB.addReg(VRBase, RegState::Define); 231 } 232 233 if (!VRBase && !IsClone && !IsCloned) 234 for (SDNode *User : Node->uses()) { 235 if (User->getOpcode() == ISD::CopyToReg && 236 User->getOperand(2).getNode() == Node && 237 User->getOperand(2).getResNo() == i) { 238 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 239 if (Register::isVirtualRegister(Reg)) { 240 const TargetRegisterClass *RegRC = MRI->getRegClass(Reg); 241 if (RegRC == RC) { 242 VRBase = Reg; 243 MIB.addReg(VRBase, RegState::Define); 244 break; 245 } 246 } 247 } 248 } 249 250 // Create the result registers for this node and add the result regs to 251 // the machine instruction. 252 if (VRBase == 0) { 253 assert(RC && "Isn't a register operand!"); 254 VRBase = MRI->createVirtualRegister(RC); 255 MIB.addReg(VRBase, RegState::Define); 256 } 257 258 // If this def corresponds to a result of the SDNode insert the VRBase into 259 // the lookup map. 260 if (i < NumResults) { 261 SDValue Op(Node, i); 262 if (IsClone) 263 VRBaseMap.erase(Op); 264 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 265 (void)isNew; // Silence compiler warning. 266 assert(isNew && "Node emitted out of order - early"); 267 } 268 } 269 } 270 271 /// getVR - Return the virtual register corresponding to the specified result 272 /// of the specified node. 273 Register InstrEmitter::getVR(SDValue Op, 274 DenseMap<SDValue, Register> &VRBaseMap) { 275 if (Op.isMachineOpcode() && 276 Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) { 277 // Add an IMPLICIT_DEF instruction before every use. 278 // IMPLICIT_DEF can produce any type of result so its MCInstrDesc 279 // does not include operand register class info. 280 const TargetRegisterClass *RC = TLI->getRegClassFor( 281 Op.getSimpleValueType(), Op.getNode()->isDivergent()); 282 Register VReg = MRI->createVirtualRegister(RC); 283 BuildMI(*MBB, InsertPos, Op.getDebugLoc(), 284 TII->get(TargetOpcode::IMPLICIT_DEF), VReg); 285 return VReg; 286 } 287 288 DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op); 289 assert(I != VRBaseMap.end() && "Node emitted out of order - late"); 290 return I->second; 291 } 292 293 294 /// AddRegisterOperand - Add the specified register as an operand to the 295 /// specified machine instr. Insert register copies if the register is 296 /// not in the required register class. 297 void 298 InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB, 299 SDValue Op, 300 unsigned IIOpNum, 301 const MCInstrDesc *II, 302 DenseMap<SDValue, Register> &VRBaseMap, 303 bool IsDebug, bool IsClone, bool IsCloned) { 304 assert(Op.getValueType() != MVT::Other && 305 Op.getValueType() != MVT::Glue && 306 "Chain and glue operands should occur at end of operand list!"); 307 // Get/emit the operand. 308 Register VReg = getVR(Op, VRBaseMap); 309 310 const MCInstrDesc &MCID = MIB->getDesc(); 311 bool isOptDef = IIOpNum < MCID.getNumOperands() && 312 MCID.OpInfo[IIOpNum].isOptionalDef(); 313 314 // If the instruction requires a register in a different class, create 315 // a new virtual register and copy the value into it, but first attempt to 316 // shrink VReg's register class within reason. For example, if VReg == GR32 317 // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP. 318 if (II) { 319 const TargetRegisterClass *OpRC = nullptr; 320 if (IIOpNum < II->getNumOperands()) 321 OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF); 322 323 if (OpRC) { 324 const TargetRegisterClass *ConstrainedRC 325 = MRI->constrainRegClass(VReg, OpRC, MinRCSize); 326 if (!ConstrainedRC) { 327 OpRC = TRI->getAllocatableClass(OpRC); 328 assert(OpRC && "Constraints cannot be fulfilled for allocation"); 329 Register NewVReg = MRI->createVirtualRegister(OpRC); 330 BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(), 331 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg); 332 VReg = NewVReg; 333 } else { 334 assert(ConstrainedRC->isAllocatable() && 335 "Constraining an allocatable VReg produced an unallocatable class?"); 336 } 337 } 338 } 339 340 // If this value has only one use, that use is a kill. This is a 341 // conservative approximation. InstrEmitter does trivial coalescing 342 // with CopyFromReg nodes, so don't emit kill flags for them. 343 // Avoid kill flags on Schedule cloned nodes, since there will be 344 // multiple uses. 345 // Tied operands are never killed, so we need to check that. And that 346 // means we need to determine the index of the operand. 347 bool isKill = Op.hasOneUse() && 348 Op.getNode()->getOpcode() != ISD::CopyFromReg && 349 !IsDebug && 350 !(IsClone || IsCloned); 351 if (isKill) { 352 unsigned Idx = MIB->getNumOperands(); 353 while (Idx > 0 && 354 MIB->getOperand(Idx-1).isReg() && 355 MIB->getOperand(Idx-1).isImplicit()) 356 --Idx; 357 bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1; 358 if (isTied) 359 isKill = false; 360 } 361 362 MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) | 363 getDebugRegState(IsDebug)); 364 } 365 366 /// AddOperand - Add the specified operand to the specified machine instr. II 367 /// specifies the instruction information for the node, and IIOpNum is the 368 /// operand number (in the II) that we are adding. 369 void InstrEmitter::AddOperand(MachineInstrBuilder &MIB, 370 SDValue Op, 371 unsigned IIOpNum, 372 const MCInstrDesc *II, 373 DenseMap<SDValue, Register> &VRBaseMap, 374 bool IsDebug, bool IsClone, bool IsCloned) { 375 if (Op.isMachineOpcode()) { 376 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap, 377 IsDebug, IsClone, IsCloned); 378 } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 379 MIB.addImm(C->getSExtValue()); 380 } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) { 381 MIB.addFPImm(F->getConstantFPValue()); 382 } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) { 383 Register VReg = R->getReg(); 384 MVT OpVT = Op.getSimpleValueType(); 385 const TargetRegisterClass *IIRC = 386 II ? TRI->getAllocatableClass(TII->getRegClass(*II, IIOpNum, TRI, *MF)) 387 : nullptr; 388 const TargetRegisterClass *OpRC = 389 TLI->isTypeLegal(OpVT) 390 ? TLI->getRegClassFor(OpVT, 391 Op.getNode()->isDivergent() || 392 (IIRC && TRI->isDivergentRegClass(IIRC))) 393 : nullptr; 394 395 if (OpRC && IIRC && OpRC != IIRC && Register::isVirtualRegister(VReg)) { 396 Register NewVReg = MRI->createVirtualRegister(IIRC); 397 BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(), 398 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg); 399 VReg = NewVReg; 400 } 401 // Turn additional physreg operands into implicit uses on non-variadic 402 // instructions. This is used by call and return instructions passing 403 // arguments in registers. 404 bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic()); 405 MIB.addReg(VReg, getImplRegState(Imp)); 406 } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) { 407 MIB.addRegMask(RM->getRegMask()); 408 } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) { 409 MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(), 410 TGA->getTargetFlags()); 411 } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) { 412 MIB.addMBB(BBNode->getBasicBlock()); 413 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 414 MIB.addFrameIndex(FI->getIndex()); 415 } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) { 416 MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags()); 417 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) { 418 int Offset = CP->getOffset(); 419 Align Alignment = CP->getAlign(); 420 421 unsigned Idx; 422 MachineConstantPool *MCP = MF->getConstantPool(); 423 if (CP->isMachineConstantPoolEntry()) 424 Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Alignment); 425 else 426 Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Alignment); 427 MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags()); 428 } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) { 429 MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags()); 430 } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) { 431 MIB.addSym(SymNode->getMCSymbol()); 432 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) { 433 MIB.addBlockAddress(BA->getBlockAddress(), 434 BA->getOffset(), 435 BA->getTargetFlags()); 436 } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) { 437 MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags()); 438 } else { 439 assert(Op.getValueType() != MVT::Other && 440 Op.getValueType() != MVT::Glue && 441 "Chain and glue operands should occur at end of operand list!"); 442 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap, 443 IsDebug, IsClone, IsCloned); 444 } 445 } 446 447 Register InstrEmitter::ConstrainForSubReg(Register VReg, unsigned SubIdx, 448 MVT VT, bool isDivergent, const DebugLoc &DL) { 449 const TargetRegisterClass *VRC = MRI->getRegClass(VReg); 450 const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx); 451 452 // RC is a sub-class of VRC that supports SubIdx. Try to constrain VReg 453 // within reason. 454 if (RC && RC != VRC) 455 RC = MRI->constrainRegClass(VReg, RC, MinRCSize); 456 457 // VReg has been adjusted. It can be used with SubIdx operands now. 458 if (RC) 459 return VReg; 460 461 // VReg couldn't be reasonably constrained. Emit a COPY to a new virtual 462 // register instead. 463 RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT, isDivergent), SubIdx); 464 assert(RC && "No legal register class for VT supports that SubIdx"); 465 Register NewReg = MRI->createVirtualRegister(RC); 466 BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg) 467 .addReg(VReg); 468 return NewReg; 469 } 470 471 /// EmitSubregNode - Generate machine code for subreg nodes. 472 /// 473 void InstrEmitter::EmitSubregNode(SDNode *Node, 474 DenseMap<SDValue, Register> &VRBaseMap, 475 bool IsClone, bool IsCloned) { 476 Register VRBase; 477 unsigned Opc = Node->getMachineOpcode(); 478 479 // If the node is only used by a CopyToReg and the dest reg is a vreg, use 480 // the CopyToReg'd destination register instead of creating a new vreg. 481 for (SDNode *User : Node->uses()) { 482 if (User->getOpcode() == ISD::CopyToReg && 483 User->getOperand(2).getNode() == Node) { 484 Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 485 if (DestReg.isVirtual()) { 486 VRBase = DestReg; 487 break; 488 } 489 } 490 } 491 492 if (Opc == TargetOpcode::EXTRACT_SUBREG) { 493 // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub. There are no 494 // constraints on the %dst register, COPY can target all legal register 495 // classes. 496 unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); 497 const TargetRegisterClass *TRC = 498 TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent()); 499 500 Register Reg; 501 MachineInstr *DefMI; 502 RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0)); 503 if (R && Register::isPhysicalRegister(R->getReg())) { 504 Reg = R->getReg(); 505 DefMI = nullptr; 506 } else { 507 Reg = R ? R->getReg() : getVR(Node->getOperand(0), VRBaseMap); 508 DefMI = MRI->getVRegDef(Reg); 509 } 510 511 Register SrcReg, DstReg; 512 unsigned DefSubIdx; 513 if (DefMI && 514 TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) && 515 SubIdx == DefSubIdx && 516 TRC == MRI->getRegClass(SrcReg)) { 517 // Optimize these: 518 // r1025 = s/zext r1024, 4 519 // r1026 = extract_subreg r1025, 4 520 // to a copy 521 // r1026 = copy r1024 522 VRBase = MRI->createVirtualRegister(TRC); 523 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 524 TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg); 525 MRI->clearKillFlags(SrcReg); 526 } else { 527 // Reg may not support a SubIdx sub-register, and we may need to 528 // constrain its register class or issue a COPY to a compatible register 529 // class. 530 if (Reg.isVirtual()) 531 Reg = ConstrainForSubReg(Reg, SubIdx, 532 Node->getOperand(0).getSimpleValueType(), 533 Node->isDivergent(), Node->getDebugLoc()); 534 // Create the destreg if it is missing. 535 if (!VRBase) 536 VRBase = MRI->createVirtualRegister(TRC); 537 538 // Create the extract_subreg machine instruction. 539 MachineInstrBuilder CopyMI = 540 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 541 TII->get(TargetOpcode::COPY), VRBase); 542 if (Reg.isVirtual()) 543 CopyMI.addReg(Reg, 0, SubIdx); 544 else 545 CopyMI.addReg(TRI->getSubReg(Reg, SubIdx)); 546 } 547 } else if (Opc == TargetOpcode::INSERT_SUBREG || 548 Opc == TargetOpcode::SUBREG_TO_REG) { 549 SDValue N0 = Node->getOperand(0); 550 SDValue N1 = Node->getOperand(1); 551 SDValue N2 = Node->getOperand(2); 552 unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue(); 553 554 // Figure out the register class to create for the destreg. It should be 555 // the largest legal register class supporting SubIdx sub-registers. 556 // RegisterCoalescer will constrain it further if it decides to eliminate 557 // the INSERT_SUBREG instruction. 558 // 559 // %dst = INSERT_SUBREG %src, %sub, SubIdx 560 // 561 // is lowered by TwoAddressInstructionPass to: 562 // 563 // %dst = COPY %src 564 // %dst:SubIdx = COPY %sub 565 // 566 // There is no constraint on the %src register class. 567 // 568 const TargetRegisterClass *SRC = 569 TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent()); 570 SRC = TRI->getSubClassWithSubReg(SRC, SubIdx); 571 assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG"); 572 573 if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase))) 574 VRBase = MRI->createVirtualRegister(SRC); 575 576 // Create the insert_subreg or subreg_to_reg machine instruction. 577 MachineInstrBuilder MIB = 578 BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase); 579 580 // If creating a subreg_to_reg, then the first input operand 581 // is an implicit value immediate, otherwise it's a register 582 if (Opc == TargetOpcode::SUBREG_TO_REG) { 583 const ConstantSDNode *SD = cast<ConstantSDNode>(N0); 584 MIB.addImm(SD->getZExtValue()); 585 } else 586 AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false, 587 IsClone, IsCloned); 588 // Add the subregister being inserted 589 AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false, 590 IsClone, IsCloned); 591 MIB.addImm(SubIdx); 592 MBB->insert(InsertPos, MIB); 593 } else 594 llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg"); 595 596 SDValue Op(Node, 0); 597 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 598 (void)isNew; // Silence compiler warning. 599 assert(isNew && "Node emitted out of order - early"); 600 } 601 602 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes. 603 /// COPY_TO_REGCLASS is just a normal copy, except that the destination 604 /// register is constrained to be in a particular register class. 605 /// 606 void 607 InstrEmitter::EmitCopyToRegClassNode(SDNode *Node, 608 DenseMap<SDValue, Register> &VRBaseMap) { 609 unsigned VReg = getVR(Node->getOperand(0), VRBaseMap); 610 611 // Create the new VReg in the destination class and emit a copy. 612 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); 613 const TargetRegisterClass *DstRC = 614 TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx)); 615 Register NewVReg = MRI->createVirtualRegister(DstRC); 616 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 617 NewVReg).addReg(VReg); 618 619 SDValue Op(Node, 0); 620 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second; 621 (void)isNew; // Silence compiler warning. 622 assert(isNew && "Node emitted out of order - early"); 623 } 624 625 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes. 626 /// 627 void InstrEmitter::EmitRegSequence(SDNode *Node, 628 DenseMap<SDValue, Register> &VRBaseMap, 629 bool IsClone, bool IsCloned) { 630 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue(); 631 const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx); 632 Register NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC)); 633 const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE); 634 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg); 635 unsigned NumOps = Node->getNumOperands(); 636 // If the input pattern has a chain, then the root of the corresponding 637 // output pattern will get a chain as well. This can happen to be a 638 // REG_SEQUENCE (which is not "guarded" by countOperands/CountResults). 639 if (NumOps && Node->getOperand(NumOps-1).getValueType() == MVT::Other) 640 --NumOps; // Ignore chain if it exists. 641 642 assert((NumOps & 1) == 1 && 643 "REG_SEQUENCE must have an odd number of operands!"); 644 for (unsigned i = 1; i != NumOps; ++i) { 645 SDValue Op = Node->getOperand(i); 646 if ((i & 1) == 0) { 647 RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1)); 648 // Skip physical registers as they don't have a vreg to get and we'll 649 // insert copies for them in TwoAddressInstructionPass anyway. 650 if (!R || !Register::isPhysicalRegister(R->getReg())) { 651 unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue(); 652 unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap); 653 const TargetRegisterClass *TRC = MRI->getRegClass(SubReg); 654 const TargetRegisterClass *SRC = 655 TRI->getMatchingSuperRegClass(RC, TRC, SubIdx); 656 if (SRC && SRC != RC) { 657 MRI->setRegClass(NewVReg, SRC); 658 RC = SRC; 659 } 660 } 661 } 662 AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false, 663 IsClone, IsCloned); 664 } 665 666 MBB->insert(InsertPos, MIB); 667 SDValue Op(Node, 0); 668 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second; 669 (void)isNew; // Silence compiler warning. 670 assert(isNew && "Node emitted out of order - early"); 671 } 672 673 /// EmitDbgValue - Generate machine instruction for a dbg_value node. 674 /// 675 MachineInstr * 676 InstrEmitter::EmitDbgValue(SDDbgValue *SD, 677 DenseMap<SDValue, Register> &VRBaseMap) { 678 MDNode *Var = SD->getVariable(); 679 MDNode *Expr = SD->getExpression(); 680 DebugLoc DL = SD->getDebugLoc(); 681 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 682 "Expected inlined-at fields to agree"); 683 684 SD->setIsEmitted(); 685 686 if (SD->isInvalidated()) { 687 // An invalidated SDNode must generate an undef DBG_VALUE: although the 688 // original value is no longer computed, earlier DBG_VALUEs live ranges 689 // must not leak into later code. 690 auto MIB = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE)); 691 MIB.addReg(0U); 692 MIB.addReg(0U, RegState::Debug); 693 MIB.addMetadata(Var); 694 MIB.addMetadata(Expr); 695 return &*MIB; 696 } 697 698 // Attempt to produce a DBG_INSTR_REF if we've been asked to. 699 if (EmitDebugInstrRefs) 700 if (auto *InstrRef = EmitDbgInstrRef(SD, VRBaseMap)) 701 return InstrRef; 702 703 if (SD->getKind() == SDDbgValue::FRAMEIX) { 704 // Stack address; this needs to be lowered in target-dependent fashion. 705 // EmitTargetCodeForFrameDebugValue is responsible for allocation. 706 auto FrameMI = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 707 .addFrameIndex(SD->getFrameIx()); 708 if (SD->isIndirect()) 709 // Push [fi + 0] onto the DIExpression stack. 710 FrameMI.addImm(0); 711 else 712 // Push fi onto the DIExpression stack. 713 FrameMI.addReg(0); 714 return FrameMI.addMetadata(Var).addMetadata(Expr); 715 } 716 // Otherwise, we're going to create an instruction here. 717 const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE); 718 MachineInstrBuilder MIB = BuildMI(*MF, DL, II); 719 if (SD->getKind() == SDDbgValue::SDNODE) { 720 SDNode *Node = SD->getSDNode(); 721 SDValue Op = SDValue(Node, SD->getResNo()); 722 // It's possible we replaced this SDNode with other(s) and therefore 723 // didn't generate code for it. It's better to catch these cases where 724 // they happen and transfer the debug info, but trying to guarantee that 725 // in all cases would be very fragile; this is a safeguard for any 726 // that were missed. 727 DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op); 728 if (I==VRBaseMap.end()) 729 MIB.addReg(0U); // undef 730 else 731 AddOperand(MIB, Op, (*MIB).getNumOperands(), &II, VRBaseMap, 732 /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false); 733 } else if (SD->getKind() == SDDbgValue::VREG) { 734 MIB.addReg(SD->getVReg(), RegState::Debug); 735 } else if (SD->getKind() == SDDbgValue::CONST) { 736 const Value *V = SD->getConst(); 737 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 738 if (CI->getBitWidth() > 64) 739 MIB.addCImm(CI); 740 else 741 MIB.addImm(CI->getSExtValue()); 742 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 743 MIB.addFPImm(CF); 744 } else if (isa<ConstantPointerNull>(V)) { 745 // Note: This assumes that all nullptr constants are zero-valued. 746 MIB.addImm(0); 747 } else { 748 // Could be an Undef. In any case insert an Undef so we can see what we 749 // dropped. 750 MIB.addReg(0U); 751 } 752 } else { 753 // Insert an Undef so we can see what we dropped. 754 MIB.addReg(0U); 755 } 756 757 // Indirect addressing is indicated by an Imm as the second parameter. 758 if (SD->isIndirect()) 759 MIB.addImm(0U); 760 else 761 MIB.addReg(0U, RegState::Debug); 762 763 MIB.addMetadata(Var); 764 MIB.addMetadata(Expr); 765 766 return &*MIB; 767 } 768 769 MachineInstr * 770 InstrEmitter::EmitDbgInstrRef(SDDbgValue *SD, 771 DenseMap<SDValue, Register> &VRBaseMap) { 772 // Instruction referencing is still in a prototype state: for now we're only 773 // going to support SDNodes within a block. Copies are not supported, they 774 // don't actually define a value. 775 if (SD->getKind() != SDDbgValue::SDNODE) 776 return nullptr; 777 778 SDNode *Node = SD->getSDNode(); 779 SDValue Op = SDValue(Node, SD->getResNo()); 780 DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op); 781 if (I==VRBaseMap.end()) 782 return nullptr; // undef value: let EmitDbgValue produce a DBG_VALUE $noreg. 783 784 MDNode *Var = SD->getVariable(); 785 MDNode *Expr = SD->getExpression(); 786 DebugLoc DL = SD->getDebugLoc(); 787 788 // Try to pick out a defining instruction at this point. 789 unsigned VReg = getVR(Op, VRBaseMap); 790 MachineInstr *ResultInstr = nullptr; 791 792 // No definition corresponds to scenarios where a vreg is live-in to a block, 793 // and doesn't have a defining instruction (yet). This can be patched up 794 // later; at this early stage of implementation, fall back to using DBG_VALUE. 795 if (!MRI->hasOneDef(VReg)) 796 return nullptr; 797 798 MachineInstr &DefMI = *MRI->def_instr_begin(VReg); 799 // Some target specific opcodes can become copies. As stated above, we're 800 // ignoring those for now. 801 if (DefMI.isCopy() || DefMI.getOpcode() == TargetOpcode::SUBREG_TO_REG) 802 return nullptr; 803 804 const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_INSTR_REF); 805 auto MIB = BuildMI(*MF, DL, RefII); 806 807 // Find the operand which defines the specified VReg. 808 unsigned OperandIdx = 0; 809 for (const auto &MO : DefMI.operands()) { 810 if (MO.isReg() && MO.isDef() && MO.getReg() == VReg) 811 break; 812 ++OperandIdx; 813 } 814 assert(OperandIdx < DefMI.getNumOperands()); 815 816 // Make the DBG_INSTR_REF refer to that instruction, and that operand. 817 unsigned InstrNum = DefMI.getDebugInstrNum(); 818 MIB.addImm(InstrNum); 819 MIB.addImm(OperandIdx); 820 MIB.addMetadata(Var); 821 MIB.addMetadata(Expr); 822 ResultInstr = &*MIB; 823 return ResultInstr; 824 } 825 826 MachineInstr * 827 InstrEmitter::EmitDbgLabel(SDDbgLabel *SD) { 828 MDNode *Label = SD->getLabel(); 829 DebugLoc DL = SD->getDebugLoc(); 830 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 831 "Expected inlined-at fields to agree"); 832 833 const MCInstrDesc &II = TII->get(TargetOpcode::DBG_LABEL); 834 MachineInstrBuilder MIB = BuildMI(*MF, DL, II); 835 MIB.addMetadata(Label); 836 837 return &*MIB; 838 } 839 840 /// EmitMachineNode - Generate machine code for a target-specific node and 841 /// needed dependencies. 842 /// 843 void InstrEmitter:: 844 EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned, 845 DenseMap<SDValue, Register> &VRBaseMap) { 846 unsigned Opc = Node->getMachineOpcode(); 847 848 // Handle subreg insert/extract specially 849 if (Opc == TargetOpcode::EXTRACT_SUBREG || 850 Opc == TargetOpcode::INSERT_SUBREG || 851 Opc == TargetOpcode::SUBREG_TO_REG) { 852 EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned); 853 return; 854 } 855 856 // Handle COPY_TO_REGCLASS specially. 857 if (Opc == TargetOpcode::COPY_TO_REGCLASS) { 858 EmitCopyToRegClassNode(Node, VRBaseMap); 859 return; 860 } 861 862 // Handle REG_SEQUENCE specially. 863 if (Opc == TargetOpcode::REG_SEQUENCE) { 864 EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned); 865 return; 866 } 867 868 if (Opc == TargetOpcode::IMPLICIT_DEF) 869 // We want a unique VR for each IMPLICIT_DEF use. 870 return; 871 872 const MCInstrDesc &II = TII->get(Opc); 873 unsigned NumResults = CountResults(Node); 874 unsigned NumDefs = II.getNumDefs(); 875 const MCPhysReg *ScratchRegs = nullptr; 876 877 // Handle STACKMAP and PATCHPOINT specially and then use the generic code. 878 if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) { 879 // Stackmaps do not have arguments and do not preserve their calling 880 // convention. However, to simplify runtime support, they clobber the same 881 // scratch registers as AnyRegCC. 882 unsigned CC = CallingConv::AnyReg; 883 if (Opc == TargetOpcode::PATCHPOINT) { 884 CC = Node->getConstantOperandVal(PatchPointOpers::CCPos); 885 NumDefs = NumResults; 886 } 887 ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC); 888 } else if (Opc == TargetOpcode::STATEPOINT) { 889 NumDefs = NumResults; 890 } 891 892 unsigned NumImpUses = 0; 893 unsigned NodeOperands = 894 countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses); 895 bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() && 896 II.isVariadic() && II.variadicOpsAreDefs(); 897 bool HasPhysRegOuts = NumResults > NumDefs && 898 II.getImplicitDefs() != nullptr && !HasVRegVariadicDefs; 899 #ifndef NDEBUG 900 unsigned NumMIOperands = NodeOperands + NumResults; 901 if (II.isVariadic()) 902 assert(NumMIOperands >= II.getNumOperands() && 903 "Too few operands for a variadic node!"); 904 else 905 assert(NumMIOperands >= II.getNumOperands() && 906 NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() + 907 NumImpUses && 908 "#operands for dag node doesn't match .td file!"); 909 #endif 910 911 // Create the new machine instruction. 912 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II); 913 914 // Add result register values for things that are defined by this 915 // instruction. 916 if (NumResults) { 917 CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap); 918 919 // Transfer any IR flags from the SDNode to the MachineInstr 920 MachineInstr *MI = MIB.getInstr(); 921 const SDNodeFlags Flags = Node->getFlags(); 922 if (Flags.hasNoSignedZeros()) 923 MI->setFlag(MachineInstr::MIFlag::FmNsz); 924 925 if (Flags.hasAllowReciprocal()) 926 MI->setFlag(MachineInstr::MIFlag::FmArcp); 927 928 if (Flags.hasNoNaNs()) 929 MI->setFlag(MachineInstr::MIFlag::FmNoNans); 930 931 if (Flags.hasNoInfs()) 932 MI->setFlag(MachineInstr::MIFlag::FmNoInfs); 933 934 if (Flags.hasAllowContract()) 935 MI->setFlag(MachineInstr::MIFlag::FmContract); 936 937 if (Flags.hasApproximateFuncs()) 938 MI->setFlag(MachineInstr::MIFlag::FmAfn); 939 940 if (Flags.hasAllowReassociation()) 941 MI->setFlag(MachineInstr::MIFlag::FmReassoc); 942 943 if (Flags.hasNoUnsignedWrap()) 944 MI->setFlag(MachineInstr::MIFlag::NoUWrap); 945 946 if (Flags.hasNoSignedWrap()) 947 MI->setFlag(MachineInstr::MIFlag::NoSWrap); 948 949 if (Flags.hasExact()) 950 MI->setFlag(MachineInstr::MIFlag::IsExact); 951 952 if (Flags.hasNoFPExcept()) 953 MI->setFlag(MachineInstr::MIFlag::NoFPExcept); 954 } 955 956 // Emit all of the actual operands of this instruction, adding them to the 957 // instruction as appropriate. 958 bool HasOptPRefs = NumDefs > NumResults; 959 assert((!HasOptPRefs || !HasPhysRegOuts) && 960 "Unable to cope with optional defs and phys regs defs!"); 961 unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0; 962 for (unsigned i = NumSkip; i != NodeOperands; ++i) 963 AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II, 964 VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned); 965 966 // Add scratch registers as implicit def and early clobber 967 if (ScratchRegs) 968 for (unsigned i = 0; ScratchRegs[i]; ++i) 969 MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine | 970 RegState::EarlyClobber); 971 972 // Set the memory reference descriptions of this instruction now that it is 973 // part of the function. 974 MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands()); 975 976 // Insert the instruction into position in the block. This needs to 977 // happen before any custom inserter hook is called so that the 978 // hook knows where in the block to insert the replacement code. 979 MBB->insert(InsertPos, MIB); 980 981 // The MachineInstr may also define physregs instead of virtregs. These 982 // physreg values can reach other instructions in different ways: 983 // 984 // 1. When there is a use of a Node value beyond the explicitly defined 985 // virtual registers, we emit a CopyFromReg for one of the implicitly 986 // defined physregs. This only happens when HasPhysRegOuts is true. 987 // 988 // 2. A CopyFromReg reading a physreg may be glued to this instruction. 989 // 990 // 3. A glued instruction may implicitly use a physreg. 991 // 992 // 4. A glued instruction may use a RegisterSDNode operand. 993 // 994 // Collect all the used physreg defs, and make sure that any unused physreg 995 // defs are marked as dead. 996 SmallVector<Register, 8> UsedRegs; 997 998 // Additional results must be physical register defs. 999 if (HasPhysRegOuts) { 1000 for (unsigned i = NumDefs; i < NumResults; ++i) { 1001 Register Reg = II.getImplicitDefs()[i - NumDefs]; 1002 if (!Node->hasAnyUseOfValue(i)) 1003 continue; 1004 // This implicitly defined physreg has a use. 1005 UsedRegs.push_back(Reg); 1006 EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap); 1007 } 1008 } 1009 1010 // Scan the glue chain for any used physregs. 1011 if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) { 1012 for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) { 1013 if (F->getOpcode() == ISD::CopyFromReg) { 1014 UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg()); 1015 continue; 1016 } else if (F->getOpcode() == ISD::CopyToReg) { 1017 // Skip CopyToReg nodes that are internal to the glue chain. 1018 continue; 1019 } 1020 // Collect declared implicit uses. 1021 const MCInstrDesc &MCID = TII->get(F->getMachineOpcode()); 1022 UsedRegs.append(MCID.getImplicitUses(), 1023 MCID.getImplicitUses() + MCID.getNumImplicitUses()); 1024 // In addition to declared implicit uses, we must also check for 1025 // direct RegisterSDNode operands. 1026 for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i) 1027 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) { 1028 Register Reg = R->getReg(); 1029 if (Reg.isPhysical()) 1030 UsedRegs.push_back(Reg); 1031 } 1032 } 1033 } 1034 1035 // Finally mark unused registers as dead. 1036 if (!UsedRegs.empty() || II.getImplicitDefs() || II.hasOptionalDef()) 1037 MIB->setPhysRegsDeadExcept(UsedRegs, *TRI); 1038 1039 // STATEPOINT is too 'dynamic' to have meaningful machine description. 1040 // We have to manually tie operands. 1041 if (Opc == TargetOpcode::STATEPOINT && NumDefs > 0) { 1042 assert(!HasPhysRegOuts && "STATEPOINT mishandled"); 1043 MachineInstr *MI = MIB; 1044 unsigned Def = 0; 1045 int First = StatepointOpers(MI).getFirstGCPtrIdx(); 1046 assert(First > 0 && "Statepoint has Defs but no GC ptr list"); 1047 unsigned Use = (unsigned)First; 1048 while (Def < NumDefs) { 1049 if (MI->getOperand(Use).isReg()) 1050 MI->tieOperands(Def++, Use); 1051 Use = StackMaps::getNextMetaArgIdx(MI, Use); 1052 } 1053 } 1054 1055 // Run post-isel target hook to adjust this instruction if needed. 1056 if (II.hasPostISelHook()) 1057 TLI->AdjustInstrPostInstrSelection(*MIB, Node); 1058 } 1059 1060 /// EmitSpecialNode - Generate machine code for a target-independent node and 1061 /// needed dependencies. 1062 void InstrEmitter:: 1063 EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned, 1064 DenseMap<SDValue, Register> &VRBaseMap) { 1065 switch (Node->getOpcode()) { 1066 default: 1067 #ifndef NDEBUG 1068 Node->dump(); 1069 #endif 1070 llvm_unreachable("This target-independent node should have been selected!"); 1071 case ISD::EntryToken: 1072 llvm_unreachable("EntryToken should have been excluded from the schedule!"); 1073 case ISD::MERGE_VALUES: 1074 case ISD::TokenFactor: // fall thru 1075 break; 1076 case ISD::CopyToReg: { 1077 Register DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); 1078 SDValue SrcVal = Node->getOperand(2); 1079 if (Register::isVirtualRegister(DestReg) && SrcVal.isMachineOpcode() && 1080 SrcVal.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) { 1081 // Instead building a COPY to that vreg destination, build an 1082 // IMPLICIT_DEF instruction instead. 1083 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 1084 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); 1085 break; 1086 } 1087 Register SrcReg; 1088 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal)) 1089 SrcReg = R->getReg(); 1090 else 1091 SrcReg = getVR(SrcVal, VRBaseMap); 1092 1093 if (SrcReg == DestReg) // Coalesced away the copy? Ignore. 1094 break; 1095 1096 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 1097 DestReg).addReg(SrcReg); 1098 break; 1099 } 1100 case ISD::CopyFromReg: { 1101 unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); 1102 EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap); 1103 break; 1104 } 1105 case ISD::EH_LABEL: 1106 case ISD::ANNOTATION_LABEL: { 1107 unsigned Opc = (Node->getOpcode() == ISD::EH_LABEL) 1108 ? TargetOpcode::EH_LABEL 1109 : TargetOpcode::ANNOTATION_LABEL; 1110 MCSymbol *S = cast<LabelSDNode>(Node)->getLabel(); 1111 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 1112 TII->get(Opc)).addSym(S); 1113 break; 1114 } 1115 1116 case ISD::LIFETIME_START: 1117 case ISD::LIFETIME_END: { 1118 unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START) ? 1119 TargetOpcode::LIFETIME_START : TargetOpcode::LIFETIME_END; 1120 1121 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Node->getOperand(1)); 1122 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp)) 1123 .addFrameIndex(FI->getIndex()); 1124 break; 1125 } 1126 1127 case ISD::INLINEASM: 1128 case ISD::INLINEASM_BR: { 1129 unsigned NumOps = Node->getNumOperands(); 1130 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue) 1131 --NumOps; // Ignore the glue operand. 1132 1133 // Create the inline asm machine instruction. 1134 unsigned TgtOpc = Node->getOpcode() == ISD::INLINEASM_BR 1135 ? TargetOpcode::INLINEASM_BR 1136 : TargetOpcode::INLINEASM; 1137 MachineInstrBuilder MIB = 1138 BuildMI(*MF, Node->getDebugLoc(), TII->get(TgtOpc)); 1139 1140 // Add the asm string as an external symbol operand. 1141 SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString); 1142 const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol(); 1143 MIB.addExternalSymbol(AsmStr); 1144 1145 // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore 1146 // bits. 1147 int64_t ExtraInfo = 1148 cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))-> 1149 getZExtValue(); 1150 MIB.addImm(ExtraInfo); 1151 1152 // Remember to operand index of the group flags. 1153 SmallVector<unsigned, 8> GroupIdx; 1154 1155 // Remember registers that are part of early-clobber defs. 1156 SmallVector<unsigned, 8> ECRegs; 1157 1158 // Add all of the operand registers to the instruction. 1159 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 1160 unsigned Flags = 1161 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue(); 1162 const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 1163 1164 GroupIdx.push_back(MIB->getNumOperands()); 1165 MIB.addImm(Flags); 1166 ++i; // Skip the ID value. 1167 1168 switch (InlineAsm::getKind(Flags)) { 1169 default: llvm_unreachable("Bad flags!"); 1170 case InlineAsm::Kind_RegDef: 1171 for (unsigned j = 0; j != NumVals; ++j, ++i) { 1172 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); 1173 // FIXME: Add dead flags for physical and virtual registers defined. 1174 // For now, mark physical register defs as implicit to help fast 1175 // regalloc. This makes inline asm look a lot like calls. 1176 MIB.addReg(Reg, 1177 RegState::Define | 1178 getImplRegState(Register::isPhysicalRegister(Reg))); 1179 } 1180 break; 1181 case InlineAsm::Kind_RegDefEarlyClobber: 1182 case InlineAsm::Kind_Clobber: 1183 for (unsigned j = 0; j != NumVals; ++j, ++i) { 1184 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); 1185 MIB.addReg(Reg, 1186 RegState::Define | RegState::EarlyClobber | 1187 getImplRegState(Register::isPhysicalRegister(Reg))); 1188 ECRegs.push_back(Reg); 1189 } 1190 break; 1191 case InlineAsm::Kind_RegUse: // Use of register. 1192 case InlineAsm::Kind_Imm: // Immediate. 1193 case InlineAsm::Kind_Mem: // Addressing mode. 1194 // The addressing mode has been selected, just add all of the 1195 // operands to the machine instruction. 1196 for (unsigned j = 0; j != NumVals; ++j, ++i) 1197 AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap, 1198 /*IsDebug=*/false, IsClone, IsCloned); 1199 1200 // Manually set isTied bits. 1201 if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) { 1202 unsigned DefGroup = 0; 1203 if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) { 1204 unsigned DefIdx = GroupIdx[DefGroup] + 1; 1205 unsigned UseIdx = GroupIdx.back() + 1; 1206 for (unsigned j = 0; j != NumVals; ++j) 1207 MIB->tieOperands(DefIdx + j, UseIdx + j); 1208 } 1209 } 1210 break; 1211 } 1212 } 1213 1214 // GCC inline assembly allows input operands to also be early-clobber 1215 // output operands (so long as the operand is written only after it's 1216 // used), but this does not match the semantics of our early-clobber flag. 1217 // If an early-clobber operand register is also an input operand register, 1218 // then remove the early-clobber flag. 1219 for (unsigned Reg : ECRegs) { 1220 if (MIB->readsRegister(Reg, TRI)) { 1221 MachineOperand *MO = 1222 MIB->findRegisterDefOperand(Reg, false, false, TRI); 1223 assert(MO && "No def operand for clobbered register?"); 1224 MO->setIsEarlyClobber(false); 1225 } 1226 } 1227 1228 // Get the mdnode from the asm if it exists and add it to the instruction. 1229 SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode); 1230 const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD(); 1231 if (MD) 1232 MIB.addMetadata(MD); 1233 1234 MBB->insert(InsertPos, MIB); 1235 break; 1236 } 1237 } 1238 } 1239 1240 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting 1241 /// at the given position in the given block. 1242 InstrEmitter::InstrEmitter(const TargetMachine &TM, MachineBasicBlock *mbb, 1243 MachineBasicBlock::iterator insertpos) 1244 : MF(mbb->getParent()), MRI(&MF->getRegInfo()), 1245 TII(MF->getSubtarget().getInstrInfo()), 1246 TRI(MF->getSubtarget().getRegisterInfo()), 1247 TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb), 1248 InsertPos(insertpos) { 1249 EmitDebugInstrRefs = TM.Options.ValueTrackingVariableLocations; 1250 } 1251