1 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the Emit routines for the SelectionDAG class, which creates 10 // MachineInstrs based on the decisions of the SelectionDAG instruction 11 // selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "InstrEmitter.h" 16 #include "SDNodeDbgValue.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/CodeGen/MachineConstantPool.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/StackMaps.h" 23 #include "llvm/CodeGen/TargetInstrInfo.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DebugInfo.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 using namespace llvm; 32 33 #define DEBUG_TYPE "instr-emitter" 34 35 /// MinRCSize - Smallest register class we allow when constraining virtual 36 /// registers. If satisfying all register class constraints would require 37 /// using a smaller register class, emit a COPY to a new virtual register 38 /// instead. 39 const unsigned MinRCSize = 4; 40 41 /// CountResults - The results of target nodes have register or immediate 42 /// operands first, then an optional chain, and optional glue operands (which do 43 /// not go into the resulting MachineInstr). 44 unsigned InstrEmitter::CountResults(SDNode *Node) { 45 unsigned N = Node->getNumValues(); 46 while (N && Node->getValueType(N - 1) == MVT::Glue) 47 --N; 48 if (N && Node->getValueType(N - 1) == MVT::Other) 49 --N; // Skip over chain result. 50 return N; 51 } 52 53 /// countOperands - The inputs to target nodes have any actual inputs first, 54 /// followed by an optional chain operand, then an optional glue operand. 55 /// Compute the number of actual operands that will go into the resulting 56 /// MachineInstr. 57 /// 58 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding 59 /// the chain and glue. These operands may be implicit on the machine instr. 60 static unsigned countOperands(SDNode *Node, unsigned NumExpUses, 61 unsigned &NumImpUses) { 62 unsigned N = Node->getNumOperands(); 63 while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue) 64 --N; 65 if (N && Node->getOperand(N - 1).getValueType() == MVT::Other) 66 --N; // Ignore chain if it exists. 67 68 // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses. 69 NumImpUses = N - NumExpUses; 70 for (unsigned I = N; I > NumExpUses; --I) { 71 if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1))) 72 continue; 73 if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1))) 74 if (TargetRegisterInfo::isPhysicalRegister(RN->getReg())) 75 continue; 76 NumImpUses = N - I; 77 break; 78 } 79 80 return N; 81 } 82 83 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an 84 /// implicit physical register output. 85 void InstrEmitter:: 86 EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned, 87 unsigned SrcReg, DenseMap<SDValue, unsigned> &VRBaseMap) { 88 unsigned VRBase = 0; 89 if (TargetRegisterInfo::isVirtualRegister(SrcReg)) { 90 // Just use the input register directly! 91 SDValue Op(Node, ResNo); 92 if (IsClone) 93 VRBaseMap.erase(Op); 94 bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second; 95 (void)isNew; // Silence compiler warning. 96 assert(isNew && "Node emitted out of order - early"); 97 return; 98 } 99 100 // If the node is only used by a CopyToReg and the dest reg is a vreg, use 101 // the CopyToReg'd destination register instead of creating a new vreg. 102 bool MatchReg = true; 103 const TargetRegisterClass *UseRC = nullptr; 104 MVT VT = Node->getSimpleValueType(ResNo); 105 106 // Stick to the preferred register classes for legal types. 107 if (TLI->isTypeLegal(VT)) 108 UseRC = TLI->getRegClassFor(VT); 109 110 if (!IsClone && !IsCloned) 111 for (SDNode *User : Node->uses()) { 112 bool Match = true; 113 if (User->getOpcode() == ISD::CopyToReg && 114 User->getOperand(2).getNode() == Node && 115 User->getOperand(2).getResNo() == ResNo) { 116 unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 117 if (TargetRegisterInfo::isVirtualRegister(DestReg)) { 118 VRBase = DestReg; 119 Match = false; 120 } else if (DestReg != SrcReg) 121 Match = false; 122 } else { 123 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 124 SDValue Op = User->getOperand(i); 125 if (Op.getNode() != Node || Op.getResNo() != ResNo) 126 continue; 127 MVT VT = Node->getSimpleValueType(Op.getResNo()); 128 if (VT == MVT::Other || VT == MVT::Glue) 129 continue; 130 Match = false; 131 if (User->isMachineOpcode()) { 132 const MCInstrDesc &II = TII->get(User->getMachineOpcode()); 133 const TargetRegisterClass *RC = nullptr; 134 if (i+II.getNumDefs() < II.getNumOperands()) { 135 RC = TRI->getAllocatableClass( 136 TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF)); 137 } 138 if (!UseRC) 139 UseRC = RC; 140 else if (RC) { 141 const TargetRegisterClass *ComRC = 142 TRI->getCommonSubClass(UseRC, RC, VT.SimpleTy); 143 // If multiple uses expect disjoint register classes, we emit 144 // copies in AddRegisterOperand. 145 if (ComRC) 146 UseRC = ComRC; 147 } 148 } 149 } 150 } 151 MatchReg &= Match; 152 if (VRBase) 153 break; 154 } 155 156 const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr; 157 SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT); 158 159 // Figure out the register class to create for the destreg. 160 if (VRBase) { 161 DstRC = MRI->getRegClass(VRBase); 162 } else if (UseRC) { 163 assert(TRI->isTypeLegalForClass(*UseRC, VT) && 164 "Incompatible phys register def and uses!"); 165 DstRC = UseRC; 166 } else { 167 DstRC = TLI->getRegClassFor(VT); 168 } 169 170 // If all uses are reading from the src physical register and copying the 171 // register is either impossible or very expensive, then don't create a copy. 172 if (MatchReg && SrcRC->getCopyCost() < 0) { 173 VRBase = SrcReg; 174 } else { 175 // Create the reg, emit the copy. 176 VRBase = MRI->createVirtualRegister(DstRC); 177 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 178 VRBase).addReg(SrcReg); 179 } 180 181 SDValue Op(Node, ResNo); 182 if (IsClone) 183 VRBaseMap.erase(Op); 184 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 185 (void)isNew; // Silence compiler warning. 186 assert(isNew && "Node emitted out of order - early"); 187 } 188 189 /// getDstOfCopyToRegUse - If the only use of the specified result number of 190 /// node is a CopyToReg, return its destination register. Return 0 otherwise. 191 unsigned InstrEmitter::getDstOfOnlyCopyToRegUse(SDNode *Node, 192 unsigned ResNo) const { 193 if (!Node->hasOneUse()) 194 return 0; 195 196 SDNode *User = *Node->use_begin(); 197 if (User->getOpcode() == ISD::CopyToReg && 198 User->getOperand(2).getNode() == Node && 199 User->getOperand(2).getResNo() == ResNo) { 200 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 201 if (TargetRegisterInfo::isVirtualRegister(Reg)) 202 return Reg; 203 } 204 return 0; 205 } 206 207 void InstrEmitter::CreateVirtualRegisters(SDNode *Node, 208 MachineInstrBuilder &MIB, 209 const MCInstrDesc &II, 210 bool IsClone, bool IsCloned, 211 DenseMap<SDValue, unsigned> &VRBaseMap) { 212 assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF && 213 "IMPLICIT_DEF should have been handled as a special case elsewhere!"); 214 215 unsigned NumResults = CountResults(Node); 216 for (unsigned i = 0; i < II.getNumDefs(); ++i) { 217 // If the specific node value is only used by a CopyToReg and the dest reg 218 // is a vreg in the same register class, use the CopyToReg'd destination 219 // register instead of creating a new vreg. 220 unsigned VRBase = 0; 221 const TargetRegisterClass *RC = 222 TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF)); 223 // Always let the value type influence the used register class. The 224 // constraints on the instruction may be too lax to represent the value 225 // type correctly. For example, a 64-bit float (X86::FR64) can't live in 226 // the 32-bit float super-class (X86::FR32). 227 if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) { 228 const TargetRegisterClass *VTRC = 229 TLI->getRegClassFor(Node->getSimpleValueType(i)); 230 if (RC) 231 VTRC = TRI->getCommonSubClass(RC, VTRC); 232 if (VTRC) 233 RC = VTRC; 234 } 235 236 if (II.OpInfo[i].isOptionalDef()) { 237 // Optional def must be a physical register. 238 VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg(); 239 assert(TargetRegisterInfo::isPhysicalRegister(VRBase)); 240 MIB.addReg(VRBase, RegState::Define); 241 } 242 243 if (!VRBase && !IsClone && !IsCloned) 244 for (SDNode *User : Node->uses()) { 245 if (User->getOpcode() == ISD::CopyToReg && 246 User->getOperand(2).getNode() == Node && 247 User->getOperand(2).getResNo() == i) { 248 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 249 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 250 const TargetRegisterClass *RegRC = MRI->getRegClass(Reg); 251 if (RegRC == RC) { 252 VRBase = Reg; 253 MIB.addReg(VRBase, RegState::Define); 254 break; 255 } 256 } 257 } 258 } 259 260 // Create the result registers for this node and add the result regs to 261 // the machine instruction. 262 if (VRBase == 0) { 263 assert(RC && "Isn't a register operand!"); 264 VRBase = MRI->createVirtualRegister(RC); 265 MIB.addReg(VRBase, RegState::Define); 266 } 267 268 // If this def corresponds to a result of the SDNode insert the VRBase into 269 // the lookup map. 270 if (i < NumResults) { 271 SDValue Op(Node, i); 272 if (IsClone) 273 VRBaseMap.erase(Op); 274 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 275 (void)isNew; // Silence compiler warning. 276 assert(isNew && "Node emitted out of order - early"); 277 } 278 } 279 } 280 281 /// getVR - Return the virtual register corresponding to the specified result 282 /// of the specified node. 283 unsigned InstrEmitter::getVR(SDValue Op, 284 DenseMap<SDValue, unsigned> &VRBaseMap) { 285 if (Op.isMachineOpcode() && 286 Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) { 287 // Add an IMPLICIT_DEF instruction before every use. 288 unsigned VReg = getDstOfOnlyCopyToRegUse(Op.getNode(), Op.getResNo()); 289 // IMPLICIT_DEF can produce any type of result so its MCInstrDesc 290 // does not include operand register class info. 291 if (!VReg) { 292 const TargetRegisterClass *RC = 293 TLI->getRegClassFor(Op.getSimpleValueType()); 294 VReg = MRI->createVirtualRegister(RC); 295 } 296 BuildMI(*MBB, InsertPos, Op.getDebugLoc(), 297 TII->get(TargetOpcode::IMPLICIT_DEF), VReg); 298 return VReg; 299 } 300 301 DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op); 302 assert(I != VRBaseMap.end() && "Node emitted out of order - late"); 303 return I->second; 304 } 305 306 307 /// AddRegisterOperand - Add the specified register as an operand to the 308 /// specified machine instr. Insert register copies if the register is 309 /// not in the required register class. 310 void 311 InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB, 312 SDValue Op, 313 unsigned IIOpNum, 314 const MCInstrDesc *II, 315 DenseMap<SDValue, unsigned> &VRBaseMap, 316 bool IsDebug, bool IsClone, bool IsCloned) { 317 assert(Op.getValueType() != MVT::Other && 318 Op.getValueType() != MVT::Glue && 319 "Chain and glue operands should occur at end of operand list!"); 320 // Get/emit the operand. 321 unsigned VReg = getVR(Op, VRBaseMap); 322 323 const MCInstrDesc &MCID = MIB->getDesc(); 324 bool isOptDef = IIOpNum < MCID.getNumOperands() && 325 MCID.OpInfo[IIOpNum].isOptionalDef(); 326 327 // If the instruction requires a register in a different class, create 328 // a new virtual register and copy the value into it, but first attempt to 329 // shrink VReg's register class within reason. For example, if VReg == GR32 330 // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP. 331 if (II) { 332 const TargetRegisterClass *OpRC = nullptr; 333 if (IIOpNum < II->getNumOperands()) 334 OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF); 335 336 if (OpRC) { 337 const TargetRegisterClass *ConstrainedRC 338 = MRI->constrainRegClass(VReg, OpRC, MinRCSize); 339 if (!ConstrainedRC) { 340 OpRC = TRI->getAllocatableClass(OpRC); 341 assert(OpRC && "Constraints cannot be fulfilled for allocation"); 342 unsigned NewVReg = MRI->createVirtualRegister(OpRC); 343 BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(), 344 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg); 345 VReg = NewVReg; 346 } else { 347 assert(ConstrainedRC->isAllocatable() && 348 "Constraining an allocatable VReg produced an unallocatable class?"); 349 } 350 } 351 } 352 353 // If this value has only one use, that use is a kill. This is a 354 // conservative approximation. InstrEmitter does trivial coalescing 355 // with CopyFromReg nodes, so don't emit kill flags for them. 356 // Avoid kill flags on Schedule cloned nodes, since there will be 357 // multiple uses. 358 // Tied operands are never killed, so we need to check that. And that 359 // means we need to determine the index of the operand. 360 bool isKill = Op.hasOneUse() && 361 Op.getNode()->getOpcode() != ISD::CopyFromReg && 362 !IsDebug && 363 !(IsClone || IsCloned); 364 if (isKill) { 365 unsigned Idx = MIB->getNumOperands(); 366 while (Idx > 0 && 367 MIB->getOperand(Idx-1).isReg() && 368 MIB->getOperand(Idx-1).isImplicit()) 369 --Idx; 370 bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1; 371 if (isTied) 372 isKill = false; 373 } 374 375 MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) | 376 getDebugRegState(IsDebug)); 377 } 378 379 /// AddOperand - Add the specified operand to the specified machine instr. II 380 /// specifies the instruction information for the node, and IIOpNum is the 381 /// operand number (in the II) that we are adding. 382 void InstrEmitter::AddOperand(MachineInstrBuilder &MIB, 383 SDValue Op, 384 unsigned IIOpNum, 385 const MCInstrDesc *II, 386 DenseMap<SDValue, unsigned> &VRBaseMap, 387 bool IsDebug, bool IsClone, bool IsCloned) { 388 if (Op.isMachineOpcode()) { 389 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap, 390 IsDebug, IsClone, IsCloned); 391 } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 392 MIB.addImm(C->getSExtValue()); 393 } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) { 394 MIB.addFPImm(F->getConstantFPValue()); 395 } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) { 396 unsigned VReg = R->getReg(); 397 MVT OpVT = Op.getSimpleValueType(); 398 const TargetRegisterClass *OpRC = 399 TLI->isTypeLegal(OpVT) ? TLI->getRegClassFor(OpVT) : nullptr; 400 const TargetRegisterClass *IIRC = 401 II ? TRI->getAllocatableClass(TII->getRegClass(*II, IIOpNum, TRI, *MF)) 402 : nullptr; 403 404 if (OpRC && IIRC && OpRC != IIRC && 405 TargetRegisterInfo::isVirtualRegister(VReg)) { 406 unsigned NewVReg = MRI->createVirtualRegister(IIRC); 407 BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(), 408 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg); 409 VReg = NewVReg; 410 } 411 // Turn additional physreg operands into implicit uses on non-variadic 412 // instructions. This is used by call and return instructions passing 413 // arguments in registers. 414 bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic()); 415 MIB.addReg(VReg, getImplRegState(Imp)); 416 } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) { 417 MIB.addRegMask(RM->getRegMask()); 418 } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) { 419 MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(), 420 TGA->getTargetFlags()); 421 } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) { 422 MIB.addMBB(BBNode->getBasicBlock()); 423 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 424 MIB.addFrameIndex(FI->getIndex()); 425 } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) { 426 MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags()); 427 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) { 428 int Offset = CP->getOffset(); 429 unsigned Align = CP->getAlignment(); 430 Type *Type = CP->getType(); 431 // MachineConstantPool wants an explicit alignment. 432 if (Align == 0) { 433 Align = MF->getDataLayout().getPrefTypeAlignment(Type); 434 if (Align == 0) { 435 // Alignment of vector types. FIXME! 436 Align = MF->getDataLayout().getTypeAllocSize(Type); 437 } 438 } 439 440 unsigned Idx; 441 MachineConstantPool *MCP = MF->getConstantPool(); 442 if (CP->isMachineConstantPoolEntry()) 443 Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Align); 444 else 445 Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Align); 446 MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags()); 447 } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) { 448 MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags()); 449 } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) { 450 MIB.addSym(SymNode->getMCSymbol()); 451 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) { 452 MIB.addBlockAddress(BA->getBlockAddress(), 453 BA->getOffset(), 454 BA->getTargetFlags()); 455 } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) { 456 MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags()); 457 } else { 458 assert(Op.getValueType() != MVT::Other && 459 Op.getValueType() != MVT::Glue && 460 "Chain and glue operands should occur at end of operand list!"); 461 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap, 462 IsDebug, IsClone, IsCloned); 463 } 464 } 465 466 unsigned InstrEmitter::ConstrainForSubReg(unsigned VReg, unsigned SubIdx, 467 MVT VT, const DebugLoc &DL) { 468 const TargetRegisterClass *VRC = MRI->getRegClass(VReg); 469 const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx); 470 471 // RC is a sub-class of VRC that supports SubIdx. Try to constrain VReg 472 // within reason. 473 if (RC && RC != VRC) 474 RC = MRI->constrainRegClass(VReg, RC, MinRCSize); 475 476 // VReg has been adjusted. It can be used with SubIdx operands now. 477 if (RC) 478 return VReg; 479 480 // VReg couldn't be reasonably constrained. Emit a COPY to a new virtual 481 // register instead. 482 RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT), SubIdx); 483 assert(RC && "No legal register class for VT supports that SubIdx"); 484 unsigned NewReg = MRI->createVirtualRegister(RC); 485 BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg) 486 .addReg(VReg); 487 return NewReg; 488 } 489 490 /// EmitSubregNode - Generate machine code for subreg nodes. 491 /// 492 void InstrEmitter::EmitSubregNode(SDNode *Node, 493 DenseMap<SDValue, unsigned> &VRBaseMap, 494 bool IsClone, bool IsCloned) { 495 unsigned VRBase = 0; 496 unsigned Opc = Node->getMachineOpcode(); 497 498 // If the node is only used by a CopyToReg and the dest reg is a vreg, use 499 // the CopyToReg'd destination register instead of creating a new vreg. 500 for (SDNode *User : Node->uses()) { 501 if (User->getOpcode() == ISD::CopyToReg && 502 User->getOperand(2).getNode() == Node) { 503 unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 504 if (TargetRegisterInfo::isVirtualRegister(DestReg)) { 505 VRBase = DestReg; 506 break; 507 } 508 } 509 } 510 511 if (Opc == TargetOpcode::EXTRACT_SUBREG) { 512 // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub. There are no 513 // constraints on the %dst register, COPY can target all legal register 514 // classes. 515 unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); 516 const TargetRegisterClass *TRC = 517 TLI->getRegClassFor(Node->getSimpleValueType(0)); 518 519 unsigned Reg; 520 MachineInstr *DefMI; 521 RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0)); 522 if (R && TargetRegisterInfo::isPhysicalRegister(R->getReg())) { 523 Reg = R->getReg(); 524 DefMI = nullptr; 525 } else { 526 Reg = R ? R->getReg() : getVR(Node->getOperand(0), VRBaseMap); 527 DefMI = MRI->getVRegDef(Reg); 528 } 529 530 unsigned SrcReg, DstReg, DefSubIdx; 531 if (DefMI && 532 TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) && 533 SubIdx == DefSubIdx && 534 TRC == MRI->getRegClass(SrcReg)) { 535 // Optimize these: 536 // r1025 = s/zext r1024, 4 537 // r1026 = extract_subreg r1025, 4 538 // to a copy 539 // r1026 = copy r1024 540 VRBase = MRI->createVirtualRegister(TRC); 541 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 542 TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg); 543 MRI->clearKillFlags(SrcReg); 544 } else { 545 // Reg may not support a SubIdx sub-register, and we may need to 546 // constrain its register class or issue a COPY to a compatible register 547 // class. 548 if (TargetRegisterInfo::isVirtualRegister(Reg)) 549 Reg = ConstrainForSubReg(Reg, SubIdx, 550 Node->getOperand(0).getSimpleValueType(), 551 Node->getDebugLoc()); 552 553 // Create the destreg if it is missing. 554 if (VRBase == 0) 555 VRBase = MRI->createVirtualRegister(TRC); 556 557 // Create the extract_subreg machine instruction. 558 MachineInstrBuilder CopyMI = 559 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 560 TII->get(TargetOpcode::COPY), VRBase); 561 if (TargetRegisterInfo::isVirtualRegister(Reg)) 562 CopyMI.addReg(Reg, 0, SubIdx); 563 else 564 CopyMI.addReg(TRI->getSubReg(Reg, SubIdx)); 565 } 566 } else if (Opc == TargetOpcode::INSERT_SUBREG || 567 Opc == TargetOpcode::SUBREG_TO_REG) { 568 SDValue N0 = Node->getOperand(0); 569 SDValue N1 = Node->getOperand(1); 570 SDValue N2 = Node->getOperand(2); 571 unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue(); 572 573 // Figure out the register class to create for the destreg. It should be 574 // the largest legal register class supporting SubIdx sub-registers. 575 // RegisterCoalescer will constrain it further if it decides to eliminate 576 // the INSERT_SUBREG instruction. 577 // 578 // %dst = INSERT_SUBREG %src, %sub, SubIdx 579 // 580 // is lowered by TwoAddressInstructionPass to: 581 // 582 // %dst = COPY %src 583 // %dst:SubIdx = COPY %sub 584 // 585 // There is no constraint on the %src register class. 586 // 587 const TargetRegisterClass *SRC = TLI->getRegClassFor(Node->getSimpleValueType(0)); 588 SRC = TRI->getSubClassWithSubReg(SRC, SubIdx); 589 assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG"); 590 591 if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase))) 592 VRBase = MRI->createVirtualRegister(SRC); 593 594 // Create the insert_subreg or subreg_to_reg machine instruction. 595 MachineInstrBuilder MIB = 596 BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase); 597 598 // If creating a subreg_to_reg, then the first input operand 599 // is an implicit value immediate, otherwise it's a register 600 if (Opc == TargetOpcode::SUBREG_TO_REG) { 601 const ConstantSDNode *SD = cast<ConstantSDNode>(N0); 602 MIB.addImm(SD->getZExtValue()); 603 } else 604 AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false, 605 IsClone, IsCloned); 606 // Add the subregister being inserted 607 AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false, 608 IsClone, IsCloned); 609 MIB.addImm(SubIdx); 610 MBB->insert(InsertPos, MIB); 611 } else 612 llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg"); 613 614 SDValue Op(Node, 0); 615 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 616 (void)isNew; // Silence compiler warning. 617 assert(isNew && "Node emitted out of order - early"); 618 } 619 620 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes. 621 /// COPY_TO_REGCLASS is just a normal copy, except that the destination 622 /// register is constrained to be in a particular register class. 623 /// 624 void 625 InstrEmitter::EmitCopyToRegClassNode(SDNode *Node, 626 DenseMap<SDValue, unsigned> &VRBaseMap) { 627 unsigned VReg = getVR(Node->getOperand(0), VRBaseMap); 628 629 // Create the new VReg in the destination class and emit a copy. 630 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); 631 const TargetRegisterClass *DstRC = 632 TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx)); 633 unsigned NewVReg = MRI->createVirtualRegister(DstRC); 634 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 635 NewVReg).addReg(VReg); 636 637 SDValue Op(Node, 0); 638 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second; 639 (void)isNew; // Silence compiler warning. 640 assert(isNew && "Node emitted out of order - early"); 641 } 642 643 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes. 644 /// 645 void InstrEmitter::EmitRegSequence(SDNode *Node, 646 DenseMap<SDValue, unsigned> &VRBaseMap, 647 bool IsClone, bool IsCloned) { 648 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue(); 649 const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx); 650 unsigned NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC)); 651 const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE); 652 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg); 653 unsigned NumOps = Node->getNumOperands(); 654 // If the input pattern has a chain, then the root of the corresponding 655 // output pattern will get a chain as well. This can happen to be a 656 // REG_SEQUENCE (which is not "guarded" by countOperands/CountResults). 657 if (NumOps && Node->getOperand(NumOps-1).getValueType() == MVT::Other) 658 --NumOps; // Ignore chain if it exists. 659 660 assert((NumOps & 1) == 1 && 661 "REG_SEQUENCE must have an odd number of operands!"); 662 for (unsigned i = 1; i != NumOps; ++i) { 663 SDValue Op = Node->getOperand(i); 664 if ((i & 1) == 0) { 665 RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1)); 666 // Skip physical registers as they don't have a vreg to get and we'll 667 // insert copies for them in TwoAddressInstructionPass anyway. 668 if (!R || !TargetRegisterInfo::isPhysicalRegister(R->getReg())) { 669 unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue(); 670 unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap); 671 const TargetRegisterClass *TRC = MRI->getRegClass(SubReg); 672 const TargetRegisterClass *SRC = 673 TRI->getMatchingSuperRegClass(RC, TRC, SubIdx); 674 if (SRC && SRC != RC) { 675 MRI->setRegClass(NewVReg, SRC); 676 RC = SRC; 677 } 678 } 679 } 680 AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false, 681 IsClone, IsCloned); 682 } 683 684 MBB->insert(InsertPos, MIB); 685 SDValue Op(Node, 0); 686 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second; 687 (void)isNew; // Silence compiler warning. 688 assert(isNew && "Node emitted out of order - early"); 689 } 690 691 /// EmitDbgValue - Generate machine instruction for a dbg_value node. 692 /// 693 MachineInstr * 694 InstrEmitter::EmitDbgValue(SDDbgValue *SD, 695 DenseMap<SDValue, unsigned> &VRBaseMap) { 696 MDNode *Var = SD->getVariable(); 697 MDNode *Expr = SD->getExpression(); 698 DebugLoc DL = SD->getDebugLoc(); 699 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 700 "Expected inlined-at fields to agree"); 701 702 SD->setIsEmitted(); 703 704 if (SD->isInvalidated()) { 705 // An invalidated SDNode must generate an undef DBG_VALUE: although the 706 // original value is no longer computed, earlier DBG_VALUEs live ranges 707 // must not leak into later code. 708 auto MIB = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE)); 709 MIB.addReg(0U); 710 MIB.addReg(0U, RegState::Debug); 711 MIB.addMetadata(Var); 712 MIB.addMetadata(Expr); 713 return &*MIB; 714 } 715 716 if (SD->getKind() == SDDbgValue::FRAMEIX) { 717 // Stack address; this needs to be lowered in target-dependent fashion. 718 // EmitTargetCodeForFrameDebugValue is responsible for allocation. 719 auto FrameMI = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 720 .addFrameIndex(SD->getFrameIx()); 721 if (SD->isIndirect()) 722 // Push [fi + 0] onto the DIExpression stack. 723 FrameMI.addImm(0); 724 else 725 // Push fi onto the DIExpression stack. 726 FrameMI.addReg(0); 727 return FrameMI.addMetadata(Var).addMetadata(Expr); 728 } 729 // Otherwise, we're going to create an instruction here. 730 const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE); 731 MachineInstrBuilder MIB = BuildMI(*MF, DL, II); 732 if (SD->getKind() == SDDbgValue::SDNODE) { 733 SDNode *Node = SD->getSDNode(); 734 SDValue Op = SDValue(Node, SD->getResNo()); 735 // It's possible we replaced this SDNode with other(s) and therefore 736 // didn't generate code for it. It's better to catch these cases where 737 // they happen and transfer the debug info, but trying to guarantee that 738 // in all cases would be very fragile; this is a safeguard for any 739 // that were missed. 740 DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op); 741 if (I==VRBaseMap.end()) 742 MIB.addReg(0U); // undef 743 else 744 AddOperand(MIB, Op, (*MIB).getNumOperands(), &II, VRBaseMap, 745 /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false); 746 } else if (SD->getKind() == SDDbgValue::VREG) { 747 MIB.addReg(SD->getVReg(), RegState::Debug); 748 } else if (SD->getKind() == SDDbgValue::CONST) { 749 const Value *V = SD->getConst(); 750 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 751 if (CI->getBitWidth() > 64) 752 MIB.addCImm(CI); 753 else 754 MIB.addImm(CI->getSExtValue()); 755 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 756 MIB.addFPImm(CF); 757 } else if (isa<ConstantPointerNull>(V)) { 758 // Note: This assumes that all nullptr constants are zero-valued. 759 MIB.addImm(0); 760 } else { 761 // Could be an Undef. In any case insert an Undef so we can see what we 762 // dropped. 763 MIB.addReg(0U); 764 } 765 } else { 766 // Insert an Undef so we can see what we dropped. 767 MIB.addReg(0U); 768 } 769 770 // Indirect addressing is indicated by an Imm as the second parameter. 771 if (SD->isIndirect()) 772 MIB.addImm(0U); 773 else 774 MIB.addReg(0U, RegState::Debug); 775 776 MIB.addMetadata(Var); 777 MIB.addMetadata(Expr); 778 779 return &*MIB; 780 } 781 782 MachineInstr * 783 InstrEmitter::EmitDbgLabel(SDDbgLabel *SD) { 784 MDNode *Label = SD->getLabel(); 785 DebugLoc DL = SD->getDebugLoc(); 786 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 787 "Expected inlined-at fields to agree"); 788 789 const MCInstrDesc &II = TII->get(TargetOpcode::DBG_LABEL); 790 MachineInstrBuilder MIB = BuildMI(*MF, DL, II); 791 MIB.addMetadata(Label); 792 793 return &*MIB; 794 } 795 796 /// EmitMachineNode - Generate machine code for a target-specific node and 797 /// needed dependencies. 798 /// 799 void InstrEmitter:: 800 EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned, 801 DenseMap<SDValue, unsigned> &VRBaseMap) { 802 unsigned Opc = Node->getMachineOpcode(); 803 804 // Handle subreg insert/extract specially 805 if (Opc == TargetOpcode::EXTRACT_SUBREG || 806 Opc == TargetOpcode::INSERT_SUBREG || 807 Opc == TargetOpcode::SUBREG_TO_REG) { 808 EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned); 809 return; 810 } 811 812 // Handle COPY_TO_REGCLASS specially. 813 if (Opc == TargetOpcode::COPY_TO_REGCLASS) { 814 EmitCopyToRegClassNode(Node, VRBaseMap); 815 return; 816 } 817 818 // Handle REG_SEQUENCE specially. 819 if (Opc == TargetOpcode::REG_SEQUENCE) { 820 EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned); 821 return; 822 } 823 824 if (Opc == TargetOpcode::IMPLICIT_DEF) 825 // We want a unique VR for each IMPLICIT_DEF use. 826 return; 827 828 const MCInstrDesc &II = TII->get(Opc); 829 unsigned NumResults = CountResults(Node); 830 unsigned NumDefs = II.getNumDefs(); 831 const MCPhysReg *ScratchRegs = nullptr; 832 833 // Handle STACKMAP and PATCHPOINT specially and then use the generic code. 834 if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) { 835 // Stackmaps do not have arguments and do not preserve their calling 836 // convention. However, to simplify runtime support, they clobber the same 837 // scratch registers as AnyRegCC. 838 unsigned CC = CallingConv::AnyReg; 839 if (Opc == TargetOpcode::PATCHPOINT) { 840 CC = Node->getConstantOperandVal(PatchPointOpers::CCPos); 841 NumDefs = NumResults; 842 } 843 ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC); 844 } 845 846 unsigned NumImpUses = 0; 847 unsigned NodeOperands = 848 countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses); 849 bool HasPhysRegOuts = NumResults > NumDefs && II.getImplicitDefs()!=nullptr; 850 #ifndef NDEBUG 851 unsigned NumMIOperands = NodeOperands + NumResults; 852 if (II.isVariadic()) 853 assert(NumMIOperands >= II.getNumOperands() && 854 "Too few operands for a variadic node!"); 855 else 856 assert(NumMIOperands >= II.getNumOperands() && 857 NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() + 858 NumImpUses && 859 "#operands for dag node doesn't match .td file!"); 860 #endif 861 862 // Create the new machine instruction. 863 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II); 864 865 // Add result register values for things that are defined by this 866 // instruction. 867 if (NumResults) { 868 CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap); 869 870 // Transfer any IR flags from the SDNode to the MachineInstr 871 MachineInstr *MI = MIB.getInstr(); 872 const SDNodeFlags Flags = Node->getFlags(); 873 if (Flags.hasNoSignedZeros()) 874 MI->setFlag(MachineInstr::MIFlag::FmNsz); 875 876 if (Flags.hasAllowReciprocal()) 877 MI->setFlag(MachineInstr::MIFlag::FmArcp); 878 879 if (Flags.hasNoNaNs()) 880 MI->setFlag(MachineInstr::MIFlag::FmNoNans); 881 882 if (Flags.hasNoInfs()) 883 MI->setFlag(MachineInstr::MIFlag::FmNoInfs); 884 885 if (Flags.hasAllowContract()) 886 MI->setFlag(MachineInstr::MIFlag::FmContract); 887 888 if (Flags.hasApproximateFuncs()) 889 MI->setFlag(MachineInstr::MIFlag::FmAfn); 890 891 if (Flags.hasAllowReassociation()) 892 MI->setFlag(MachineInstr::MIFlag::FmReassoc); 893 894 if (Flags.hasNoUnsignedWrap()) 895 MI->setFlag(MachineInstr::MIFlag::NoUWrap); 896 897 if (Flags.hasNoSignedWrap()) 898 MI->setFlag(MachineInstr::MIFlag::NoSWrap); 899 900 if (Flags.hasExact()) 901 MI->setFlag(MachineInstr::MIFlag::IsExact); 902 } 903 904 // Emit all of the actual operands of this instruction, adding them to the 905 // instruction as appropriate. 906 bool HasOptPRefs = NumDefs > NumResults; 907 assert((!HasOptPRefs || !HasPhysRegOuts) && 908 "Unable to cope with optional defs and phys regs defs!"); 909 unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0; 910 for (unsigned i = NumSkip; i != NodeOperands; ++i) 911 AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II, 912 VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned); 913 914 // Add scratch registers as implicit def and early clobber 915 if (ScratchRegs) 916 for (unsigned i = 0; ScratchRegs[i]; ++i) 917 MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine | 918 RegState::EarlyClobber); 919 920 // Set the memory reference descriptions of this instruction now that it is 921 // part of the function. 922 MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands()); 923 924 // Insert the instruction into position in the block. This needs to 925 // happen before any custom inserter hook is called so that the 926 // hook knows where in the block to insert the replacement code. 927 MBB->insert(InsertPos, MIB); 928 929 // The MachineInstr may also define physregs instead of virtregs. These 930 // physreg values can reach other instructions in different ways: 931 // 932 // 1. When there is a use of a Node value beyond the explicitly defined 933 // virtual registers, we emit a CopyFromReg for one of the implicitly 934 // defined physregs. This only happens when HasPhysRegOuts is true. 935 // 936 // 2. A CopyFromReg reading a physreg may be glued to this instruction. 937 // 938 // 3. A glued instruction may implicitly use a physreg. 939 // 940 // 4. A glued instruction may use a RegisterSDNode operand. 941 // 942 // Collect all the used physreg defs, and make sure that any unused physreg 943 // defs are marked as dead. 944 SmallVector<unsigned, 8> UsedRegs; 945 946 // Additional results must be physical register defs. 947 if (HasPhysRegOuts) { 948 for (unsigned i = NumDefs; i < NumResults; ++i) { 949 unsigned Reg = II.getImplicitDefs()[i - NumDefs]; 950 if (!Node->hasAnyUseOfValue(i)) 951 continue; 952 // This implicitly defined physreg has a use. 953 UsedRegs.push_back(Reg); 954 EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap); 955 } 956 } 957 958 // Scan the glue chain for any used physregs. 959 if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) { 960 for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) { 961 if (F->getOpcode() == ISD::CopyFromReg) { 962 UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg()); 963 continue; 964 } else if (F->getOpcode() == ISD::CopyToReg) { 965 // Skip CopyToReg nodes that are internal to the glue chain. 966 continue; 967 } 968 // Collect declared implicit uses. 969 const MCInstrDesc &MCID = TII->get(F->getMachineOpcode()); 970 UsedRegs.append(MCID.getImplicitUses(), 971 MCID.getImplicitUses() + MCID.getNumImplicitUses()); 972 // In addition to declared implicit uses, we must also check for 973 // direct RegisterSDNode operands. 974 for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i) 975 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) { 976 unsigned Reg = R->getReg(); 977 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 978 UsedRegs.push_back(Reg); 979 } 980 } 981 } 982 983 // Finally mark unused registers as dead. 984 if (!UsedRegs.empty() || II.getImplicitDefs() || II.hasOptionalDef()) 985 MIB->setPhysRegsDeadExcept(UsedRegs, *TRI); 986 987 // Run post-isel target hook to adjust this instruction if needed. 988 if (II.hasPostISelHook()) 989 TLI->AdjustInstrPostInstrSelection(*MIB, Node); 990 } 991 992 /// EmitSpecialNode - Generate machine code for a target-independent node and 993 /// needed dependencies. 994 void InstrEmitter:: 995 EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned, 996 DenseMap<SDValue, unsigned> &VRBaseMap) { 997 switch (Node->getOpcode()) { 998 default: 999 #ifndef NDEBUG 1000 Node->dump(); 1001 #endif 1002 llvm_unreachable("This target-independent node should have been selected!"); 1003 case ISD::EntryToken: 1004 llvm_unreachable("EntryToken should have been excluded from the schedule!"); 1005 case ISD::MERGE_VALUES: 1006 case ISD::TokenFactor: // fall thru 1007 break; 1008 case ISD::CopyToReg: { 1009 unsigned SrcReg; 1010 SDValue SrcVal = Node->getOperand(2); 1011 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal)) 1012 SrcReg = R->getReg(); 1013 else 1014 SrcReg = getVR(SrcVal, VRBaseMap); 1015 1016 unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); 1017 if (SrcReg == DestReg) // Coalesced away the copy? Ignore. 1018 break; 1019 1020 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 1021 DestReg).addReg(SrcReg); 1022 break; 1023 } 1024 case ISD::CopyFromReg: { 1025 unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); 1026 EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap); 1027 break; 1028 } 1029 case ISD::EH_LABEL: 1030 case ISD::ANNOTATION_LABEL: { 1031 unsigned Opc = (Node->getOpcode() == ISD::EH_LABEL) 1032 ? TargetOpcode::EH_LABEL 1033 : TargetOpcode::ANNOTATION_LABEL; 1034 MCSymbol *S = cast<LabelSDNode>(Node)->getLabel(); 1035 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 1036 TII->get(Opc)).addSym(S); 1037 break; 1038 } 1039 1040 case ISD::LIFETIME_START: 1041 case ISD::LIFETIME_END: { 1042 unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START) ? 1043 TargetOpcode::LIFETIME_START : TargetOpcode::LIFETIME_END; 1044 1045 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Node->getOperand(1)); 1046 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp)) 1047 .addFrameIndex(FI->getIndex()); 1048 break; 1049 } 1050 1051 case ISD::INLINEASM: 1052 case ISD::INLINEASM_BR: { 1053 unsigned NumOps = Node->getNumOperands(); 1054 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue) 1055 --NumOps; // Ignore the glue operand. 1056 1057 // Create the inline asm machine instruction. 1058 unsigned TgtOpc = Node->getOpcode() == ISD::INLINEASM_BR 1059 ? TargetOpcode::INLINEASM_BR 1060 : TargetOpcode::INLINEASM; 1061 MachineInstrBuilder MIB = 1062 BuildMI(*MF, Node->getDebugLoc(), TII->get(TgtOpc)); 1063 1064 // Add the asm string as an external symbol operand. 1065 SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString); 1066 const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol(); 1067 MIB.addExternalSymbol(AsmStr); 1068 1069 // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore 1070 // bits. 1071 int64_t ExtraInfo = 1072 cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))-> 1073 getZExtValue(); 1074 MIB.addImm(ExtraInfo); 1075 1076 // Remember to operand index of the group flags. 1077 SmallVector<unsigned, 8> GroupIdx; 1078 1079 // Remember registers that are part of early-clobber defs. 1080 SmallVector<unsigned, 8> ECRegs; 1081 1082 // Add all of the operand registers to the instruction. 1083 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 1084 unsigned Flags = 1085 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue(); 1086 const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 1087 1088 GroupIdx.push_back(MIB->getNumOperands()); 1089 MIB.addImm(Flags); 1090 ++i; // Skip the ID value. 1091 1092 switch (InlineAsm::getKind(Flags)) { 1093 default: llvm_unreachable("Bad flags!"); 1094 case InlineAsm::Kind_RegDef: 1095 for (unsigned j = 0; j != NumVals; ++j, ++i) { 1096 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); 1097 // FIXME: Add dead flags for physical and virtual registers defined. 1098 // For now, mark physical register defs as implicit to help fast 1099 // regalloc. This makes inline asm look a lot like calls. 1100 MIB.addReg(Reg, RegState::Define | 1101 getImplRegState(TargetRegisterInfo::isPhysicalRegister(Reg))); 1102 } 1103 break; 1104 case InlineAsm::Kind_RegDefEarlyClobber: 1105 case InlineAsm::Kind_Clobber: 1106 for (unsigned j = 0; j != NumVals; ++j, ++i) { 1107 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); 1108 MIB.addReg(Reg, RegState::Define | RegState::EarlyClobber | 1109 getImplRegState(TargetRegisterInfo::isPhysicalRegister(Reg))); 1110 ECRegs.push_back(Reg); 1111 } 1112 break; 1113 case InlineAsm::Kind_RegUse: // Use of register. 1114 case InlineAsm::Kind_Imm: // Immediate. 1115 case InlineAsm::Kind_Mem: // Addressing mode. 1116 // The addressing mode has been selected, just add all of the 1117 // operands to the machine instruction. 1118 for (unsigned j = 0; j != NumVals; ++j, ++i) 1119 AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap, 1120 /*IsDebug=*/false, IsClone, IsCloned); 1121 1122 // Manually set isTied bits. 1123 if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) { 1124 unsigned DefGroup = 0; 1125 if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) { 1126 unsigned DefIdx = GroupIdx[DefGroup] + 1; 1127 unsigned UseIdx = GroupIdx.back() + 1; 1128 for (unsigned j = 0; j != NumVals; ++j) 1129 MIB->tieOperands(DefIdx + j, UseIdx + j); 1130 } 1131 } 1132 break; 1133 } 1134 } 1135 1136 // GCC inline assembly allows input operands to also be early-clobber 1137 // output operands (so long as the operand is written only after it's 1138 // used), but this does not match the semantics of our early-clobber flag. 1139 // If an early-clobber operand register is also an input operand register, 1140 // then remove the early-clobber flag. 1141 for (unsigned Reg : ECRegs) { 1142 if (MIB->readsRegister(Reg, TRI)) { 1143 MachineOperand *MO = 1144 MIB->findRegisterDefOperand(Reg, false, false, TRI); 1145 assert(MO && "No def operand for clobbered register?"); 1146 MO->setIsEarlyClobber(false); 1147 } 1148 } 1149 1150 // Get the mdnode from the asm if it exists and add it to the instruction. 1151 SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode); 1152 const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD(); 1153 if (MD) 1154 MIB.addMetadata(MD); 1155 1156 MBB->insert(InsertPos, MIB); 1157 break; 1158 } 1159 } 1160 } 1161 1162 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting 1163 /// at the given position in the given block. 1164 InstrEmitter::InstrEmitter(MachineBasicBlock *mbb, 1165 MachineBasicBlock::iterator insertpos) 1166 : MF(mbb->getParent()), MRI(&MF->getRegInfo()), 1167 TII(MF->getSubtarget().getInstrInfo()), 1168 TRI(MF->getSubtarget().getRegisterInfo()), 1169 TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb), 1170 InsertPos(insertpos) {} 1171