1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the FastISel class. 11 // 12 // "Fast" instruction selection is designed to emit very poor code quickly. 13 // Also, it is not designed to be able to do much lowering, so most illegal 14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 15 // also not intended to be able to do much optimization, except in a few cases 16 // where doing optimizations reduces overall compile time. For example, folding 17 // constants into immediate fields is often done, because it's cheap and it 18 // reduces the number of instructions later phases have to examine. 19 // 20 // "Fast" instruction selection is able to fail gracefully and transfer 21 // control to the SelectionDAG selector for operations that it doesn't 22 // support. In many cases, this allows us to avoid duplicating a lot of 23 // the complicated lowering logic that SelectionDAG currently has. 24 // 25 // The intended use for "fast" instruction selection is "-O0" mode 26 // compilation, where the quality of the generated code is irrelevant when 27 // weighed against the speed at which the code can be generated. Also, 28 // at -O0, the LLVM optimizers are not running, and this makes the 29 // compile time of codegen a much higher portion of the overall compile 30 // time. Despite its limitations, "fast" instruction selection is able to 31 // handle enough code on its own to provide noticeable overall speedups 32 // in -O0 compiles. 33 // 34 // Basic operations are supported in a target-independent way, by reading 35 // the same instruction descriptions that the SelectionDAG selector reads, 36 // and identifying simple arithmetic operations that can be directly selected 37 // from simple operators. More complicated operations currently require 38 // target-specific code. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/ADT/Optional.h" 43 #include "llvm/ADT/Statistic.h" 44 #include "llvm/Analysis/BranchProbabilityInfo.h" 45 #include "llvm/Analysis/Loads.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/CodeGen/Analysis.h" 48 #include "llvm/CodeGen/FastISel.h" 49 #include "llvm/CodeGen/FunctionLoweringInfo.h" 50 #include "llvm/CodeGen/MachineFrameInfo.h" 51 #include "llvm/CodeGen/MachineInstrBuilder.h" 52 #include "llvm/CodeGen/MachineModuleInfo.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/StackMaps.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugInfo.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/GetElementPtrTypeIterator.h" 59 #include "llvm/IR/GlobalVariable.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Mangler.h" 63 #include "llvm/IR/Operator.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetInstrInfo.h" 68 #include "llvm/Target/TargetLowering.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Target/TargetSubtargetInfo.h" 71 using namespace llvm; 72 73 #define DEBUG_TYPE "isel" 74 75 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 76 "target-independent selector"); 77 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 78 "target-specific selector"); 79 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 80 81 void FastISel::ArgListEntry::setAttributes(ImmutableCallSite *CS, 82 unsigned AttrIdx) { 83 IsSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 84 IsZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 85 IsInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 86 IsSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 87 IsNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 88 IsByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 89 IsInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 90 IsReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 91 IsSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf); 92 IsSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError); 93 Alignment = CS->getParamAlignment(AttrIdx); 94 } 95 96 /// Set the current block to which generated machine instructions will be 97 /// appended, and clear the local CSE map. 98 void FastISel::startNewBlock() { 99 LocalValueMap.clear(); 100 101 // Instructions are appended to FuncInfo.MBB. If the basic block already 102 // contains labels or copies, use the last instruction as the last local 103 // value. 104 EmitStartPt = nullptr; 105 if (!FuncInfo.MBB->empty()) 106 EmitStartPt = &FuncInfo.MBB->back(); 107 LastLocalValue = EmitStartPt; 108 } 109 110 bool FastISel::lowerArguments() { 111 if (!FuncInfo.CanLowerReturn) 112 // Fallback to SDISel argument lowering code to deal with sret pointer 113 // parameter. 114 return false; 115 116 if (!fastLowerArguments()) 117 return false; 118 119 // Enter arguments into ValueMap for uses in non-entry BBs. 120 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 121 E = FuncInfo.Fn->arg_end(); 122 I != E; ++I) { 123 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I); 124 assert(VI != LocalValueMap.end() && "Missed an argument?"); 125 FuncInfo.ValueMap[&*I] = VI->second; 126 } 127 return true; 128 } 129 130 void FastISel::flushLocalValueMap() { 131 LocalValueMap.clear(); 132 LastLocalValue = EmitStartPt; 133 recomputeInsertPt(); 134 SavedInsertPt = FuncInfo.InsertPt; 135 } 136 137 bool FastISel::hasTrivialKill(const Value *V) { 138 // Don't consider constants or arguments to have trivial kills. 139 const Instruction *I = dyn_cast<Instruction>(V); 140 if (!I) 141 return false; 142 143 // No-op casts are trivially coalesced by fast-isel. 144 if (const auto *Cast = dyn_cast<CastInst>(I)) 145 if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) && 146 !hasTrivialKill(Cast->getOperand(0))) 147 return false; 148 149 // Even the value might have only one use in the LLVM IR, it is possible that 150 // FastISel might fold the use into another instruction and now there is more 151 // than one use at the Machine Instruction level. 152 unsigned Reg = lookUpRegForValue(V); 153 if (Reg && !MRI.use_empty(Reg)) 154 return false; 155 156 // GEPs with all zero indices are trivially coalesced by fast-isel. 157 if (const auto *GEP = dyn_cast<GetElementPtrInst>(I)) 158 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 159 return false; 160 161 // Only instructions with a single use in the same basic block are considered 162 // to have trivial kills. 163 return I->hasOneUse() && 164 !(I->getOpcode() == Instruction::BitCast || 165 I->getOpcode() == Instruction::PtrToInt || 166 I->getOpcode() == Instruction::IntToPtr) && 167 cast<Instruction>(*I->user_begin())->getParent() == I->getParent(); 168 } 169 170 unsigned FastISel::getRegForValue(const Value *V) { 171 EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true); 172 // Don't handle non-simple values in FastISel. 173 if (!RealVT.isSimple()) 174 return 0; 175 176 // Ignore illegal types. We must do this before looking up the value 177 // in ValueMap because Arguments are given virtual registers regardless 178 // of whether FastISel can handle them. 179 MVT VT = RealVT.getSimpleVT(); 180 if (!TLI.isTypeLegal(VT)) { 181 // Handle integer promotions, though, because they're common and easy. 182 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 183 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 184 else 185 return 0; 186 } 187 188 // Look up the value to see if we already have a register for it. 189 unsigned Reg = lookUpRegForValue(V); 190 if (Reg) 191 return Reg; 192 193 // In bottom-up mode, just create the virtual register which will be used 194 // to hold the value. It will be materialized later. 195 if (isa<Instruction>(V) && 196 (!isa<AllocaInst>(V) || 197 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 198 return FuncInfo.InitializeRegForValue(V); 199 200 SavePoint SaveInsertPt = enterLocalValueArea(); 201 202 // Materialize the value in a register. Emit any instructions in the 203 // local value area. 204 Reg = materializeRegForValue(V, VT); 205 206 leaveLocalValueArea(SaveInsertPt); 207 208 return Reg; 209 } 210 211 unsigned FastISel::materializeConstant(const Value *V, MVT VT) { 212 unsigned Reg = 0; 213 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 214 if (CI->getValue().getActiveBits() <= 64) 215 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 216 } else if (isa<AllocaInst>(V)) 217 Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); 218 else if (isa<ConstantPointerNull>(V)) 219 // Translate this as an integer zero so that it can be 220 // local-CSE'd with actual integer zeros. 221 Reg = getRegForValue( 222 Constant::getNullValue(DL.getIntPtrType(V->getContext()))); 223 else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 224 if (CF->isNullValue()) 225 Reg = fastMaterializeFloatZero(CF); 226 else 227 // Try to emit the constant directly. 228 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); 229 230 if (!Reg) { 231 // Try to emit the constant by using an integer constant with a cast. 232 const APFloat &Flt = CF->getValueAPF(); 233 EVT IntVT = TLI.getPointerTy(DL); 234 235 uint64_t x[2]; 236 uint32_t IntBitWidth = IntVT.getSizeInBits(); 237 bool isExact; 238 (void)Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, 239 APFloat::rmTowardZero, &isExact); 240 if (isExact) { 241 APInt IntVal(IntBitWidth, x); 242 243 unsigned IntegerReg = 244 getRegForValue(ConstantInt::get(V->getContext(), IntVal)); 245 if (IntegerReg != 0) 246 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg, 247 /*Kill=*/false); 248 } 249 } 250 } else if (const auto *Op = dyn_cast<Operator>(V)) { 251 if (!selectOperator(Op, Op->getOpcode())) 252 if (!isa<Instruction>(Op) || 253 !fastSelectInstruction(cast<Instruction>(Op))) 254 return 0; 255 Reg = lookUpRegForValue(Op); 256 } else if (isa<UndefValue>(V)) { 257 Reg = createResultReg(TLI.getRegClassFor(VT)); 258 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 259 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 260 } 261 return Reg; 262 } 263 264 /// Helper for getRegForValue. This function is called when the value isn't 265 /// already available in a register and must be materialized with new 266 /// instructions. 267 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 268 unsigned Reg = 0; 269 // Give the target-specific code a try first. 270 if (isa<Constant>(V)) 271 Reg = fastMaterializeConstant(cast<Constant>(V)); 272 273 // If target-specific code couldn't or didn't want to handle the value, then 274 // give target-independent code a try. 275 if (!Reg) 276 Reg = materializeConstant(V, VT); 277 278 // Don't cache constant materializations in the general ValueMap. 279 // To do so would require tracking what uses they dominate. 280 if (Reg) { 281 LocalValueMap[V] = Reg; 282 LastLocalValue = MRI.getVRegDef(Reg); 283 } 284 return Reg; 285 } 286 287 unsigned FastISel::lookUpRegForValue(const Value *V) { 288 // Look up the value to see if we already have a register for it. We 289 // cache values defined by Instructions across blocks, and other values 290 // only locally. This is because Instructions already have the SSA 291 // def-dominates-use requirement enforced. 292 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 293 if (I != FuncInfo.ValueMap.end()) 294 return I->second; 295 return LocalValueMap[V]; 296 } 297 298 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 299 if (!isa<Instruction>(I)) { 300 LocalValueMap[I] = Reg; 301 return; 302 } 303 304 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 305 if (AssignedReg == 0) 306 // Use the new register. 307 AssignedReg = Reg; 308 else if (Reg != AssignedReg) { 309 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 310 for (unsigned i = 0; i < NumRegs; i++) 311 FuncInfo.RegFixups[AssignedReg + i] = Reg + i; 312 313 AssignedReg = Reg; 314 } 315 } 316 317 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 318 unsigned IdxN = getRegForValue(Idx); 319 if (IdxN == 0) 320 // Unhandled operand. Halt "fast" selection and bail. 321 return std::pair<unsigned, bool>(0, false); 322 323 bool IdxNIsKill = hasTrivialKill(Idx); 324 325 // If the index is smaller or larger than intptr_t, truncate or extend it. 326 MVT PtrVT = TLI.getPointerTy(DL); 327 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 328 if (IdxVT.bitsLT(PtrVT)) { 329 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN, 330 IdxNIsKill); 331 IdxNIsKill = true; 332 } else if (IdxVT.bitsGT(PtrVT)) { 333 IdxN = 334 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill); 335 IdxNIsKill = true; 336 } 337 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 338 } 339 340 void FastISel::recomputeInsertPt() { 341 if (getLastLocalValue()) { 342 FuncInfo.InsertPt = getLastLocalValue(); 343 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 344 ++FuncInfo.InsertPt; 345 } else 346 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 347 348 // Now skip past any EH_LABELs, which must remain at the beginning. 349 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 350 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 351 ++FuncInfo.InsertPt; 352 } 353 354 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 355 MachineBasicBlock::iterator E) { 356 assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 && 357 "Invalid iterator!"); 358 while (I != E) { 359 MachineInstr *Dead = &*I; 360 ++I; 361 Dead->eraseFromParent(); 362 ++NumFastIselDead; 363 } 364 recomputeInsertPt(); 365 } 366 367 FastISel::SavePoint FastISel::enterLocalValueArea() { 368 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 369 DebugLoc OldDL = DbgLoc; 370 recomputeInsertPt(); 371 DbgLoc = DebugLoc(); 372 SavePoint SP = {OldInsertPt, OldDL}; 373 return SP; 374 } 375 376 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 377 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 378 LastLocalValue = &*std::prev(FuncInfo.InsertPt); 379 380 // Restore the previous insert position. 381 FuncInfo.InsertPt = OldInsertPt.InsertPt; 382 DbgLoc = OldInsertPt.DL; 383 } 384 385 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { 386 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 387 if (VT == MVT::Other || !VT.isSimple()) 388 // Unhandled type. Halt "fast" selection and bail. 389 return false; 390 391 // We only handle legal types. For example, on x86-32 the instruction 392 // selector contains all of the 64-bit instructions from x86-64, 393 // under the assumption that i64 won't be used if the target doesn't 394 // support it. 395 if (!TLI.isTypeLegal(VT)) { 396 // MVT::i1 is special. Allow AND, OR, or XOR because they 397 // don't require additional zeroing, which makes them easy. 398 if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 399 ISDOpcode == ISD::XOR)) 400 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 401 else 402 return false; 403 } 404 405 // Check if the first operand is a constant, and handle it as "ri". At -O0, 406 // we don't have anything that canonicalizes operand order. 407 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 408 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 409 unsigned Op1 = getRegForValue(I->getOperand(1)); 410 if (!Op1) 411 return false; 412 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 413 414 unsigned ResultReg = 415 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill, 416 CI->getZExtValue(), VT.getSimpleVT()); 417 if (!ResultReg) 418 return false; 419 420 // We successfully emitted code for the given LLVM Instruction. 421 updateValueMap(I, ResultReg); 422 return true; 423 } 424 425 unsigned Op0 = getRegForValue(I->getOperand(0)); 426 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 427 return false; 428 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 429 430 // Check if the second operand is a constant and handle it appropriately. 431 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 432 uint64_t Imm = CI->getSExtValue(); 433 434 // Transform "sdiv exact X, 8" -> "sra X, 3". 435 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 436 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { 437 Imm = Log2_64(Imm); 438 ISDOpcode = ISD::SRA; 439 } 440 441 // Transform "urem x, pow2" -> "and x, pow2-1". 442 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 443 isPowerOf2_64(Imm)) { 444 --Imm; 445 ISDOpcode = ISD::AND; 446 } 447 448 unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 449 Op0IsKill, Imm, VT.getSimpleVT()); 450 if (!ResultReg) 451 return false; 452 453 // We successfully emitted code for the given LLVM Instruction. 454 updateValueMap(I, ResultReg); 455 return true; 456 } 457 458 // Check if the second operand is a constant float. 459 if (const auto *CF = dyn_cast<ConstantFP>(I->getOperand(1))) { 460 unsigned ResultReg = fastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(), 461 ISDOpcode, Op0, Op0IsKill, CF); 462 if (ResultReg) { 463 // We successfully emitted code for the given LLVM Instruction. 464 updateValueMap(I, ResultReg); 465 return true; 466 } 467 } 468 469 unsigned Op1 = getRegForValue(I->getOperand(1)); 470 if (!Op1) // Unhandled operand. Halt "fast" selection and bail. 471 return false; 472 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 473 474 // Now we have both operands in registers. Emit the instruction. 475 unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 476 ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill); 477 if (!ResultReg) 478 // Target-specific code wasn't able to find a machine opcode for 479 // the given ISD opcode and type. Halt "fast" selection and bail. 480 return false; 481 482 // We successfully emitted code for the given LLVM Instruction. 483 updateValueMap(I, ResultReg); 484 return true; 485 } 486 487 bool FastISel::selectGetElementPtr(const User *I) { 488 unsigned N = getRegForValue(I->getOperand(0)); 489 if (!N) // Unhandled operand. Halt "fast" selection and bail. 490 return false; 491 bool NIsKill = hasTrivialKill(I->getOperand(0)); 492 493 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 494 // into a single N = N + TotalOffset. 495 uint64_t TotalOffs = 0; 496 // FIXME: What's a good SWAG number for MaxOffs? 497 uint64_t MaxOffs = 2048; 498 MVT VT = TLI.getPointerTy(DL); 499 for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I); 500 GTI != E; ++GTI) { 501 const Value *Idx = GTI.getOperand(); 502 if (auto *StTy = dyn_cast<StructType>(*GTI)) { 503 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue(); 504 if (Field) { 505 // N = N + Offset 506 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 507 if (TotalOffs >= MaxOffs) { 508 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 509 if (!N) // Unhandled operand. Halt "fast" selection and bail. 510 return false; 511 NIsKill = true; 512 TotalOffs = 0; 513 } 514 } 515 } else { 516 Type *Ty = GTI.getIndexedType(); 517 518 // If this is a constant subscript, handle it quickly. 519 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 520 if (CI->isZero()) 521 continue; 522 // N = N + Offset 523 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); 524 TotalOffs += DL.getTypeAllocSize(Ty) * IdxN; 525 if (TotalOffs >= MaxOffs) { 526 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 527 if (!N) // Unhandled operand. Halt "fast" selection and bail. 528 return false; 529 NIsKill = true; 530 TotalOffs = 0; 531 } 532 continue; 533 } 534 if (TotalOffs) { 535 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 536 if (!N) // Unhandled operand. Halt "fast" selection and bail. 537 return false; 538 NIsKill = true; 539 TotalOffs = 0; 540 } 541 542 // N = N + Idx * ElementSize; 543 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 544 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 545 unsigned IdxN = Pair.first; 546 bool IdxNIsKill = Pair.second; 547 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 548 return false; 549 550 if (ElementSize != 1) { 551 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 552 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 553 return false; 554 IdxNIsKill = true; 555 } 556 N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 557 if (!N) // Unhandled operand. Halt "fast" selection and bail. 558 return false; 559 } 560 } 561 if (TotalOffs) { 562 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 563 if (!N) // Unhandled operand. Halt "fast" selection and bail. 564 return false; 565 } 566 567 // We successfully emitted code for the given LLVM Instruction. 568 updateValueMap(I, N); 569 return true; 570 } 571 572 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 573 const CallInst *CI, unsigned StartIdx) { 574 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { 575 Value *Val = CI->getArgOperand(i); 576 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 577 if (const auto *C = dyn_cast<ConstantInt>(Val)) { 578 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 579 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 580 } else if (isa<ConstantPointerNull>(Val)) { 581 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 582 Ops.push_back(MachineOperand::CreateImm(0)); 583 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 584 // Values coming from a stack location also require a sepcial encoding, 585 // but that is added later on by the target specific frame index 586 // elimination implementation. 587 auto SI = FuncInfo.StaticAllocaMap.find(AI); 588 if (SI != FuncInfo.StaticAllocaMap.end()) 589 Ops.push_back(MachineOperand::CreateFI(SI->second)); 590 else 591 return false; 592 } else { 593 unsigned Reg = getRegForValue(Val); 594 if (!Reg) 595 return false; 596 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 597 } 598 } 599 return true; 600 } 601 602 bool FastISel::selectStackmap(const CallInst *I) { 603 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 604 // [live variables...]) 605 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 606 "Stackmap cannot return a value."); 607 608 // The stackmap intrinsic only records the live variables (the arguments 609 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 610 // intrinsic, this won't be lowered to a function call. This means we don't 611 // have to worry about calling conventions and target-specific lowering code. 612 // Instead we perform the call lowering right here. 613 // 614 // CALLSEQ_START(0...) 615 // STACKMAP(id, nbytes, ...) 616 // CALLSEQ_END(0, 0) 617 // 618 SmallVector<MachineOperand, 32> Ops; 619 620 // Add the <id> and <numBytes> constants. 621 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 622 "Expected a constant integer."); 623 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 624 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 625 626 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 627 "Expected a constant integer."); 628 const auto *NumBytes = 629 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 630 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 631 632 // Push live variables for the stack map (skipping the first two arguments 633 // <id> and <numBytes>). 634 if (!addStackMapLiveVars(Ops, I, 2)) 635 return false; 636 637 // We are not adding any register mask info here, because the stackmap doesn't 638 // clobber anything. 639 640 // Add scratch registers as implicit def and early clobber. 641 CallingConv::ID CC = I->getCallingConv(); 642 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 643 for (unsigned i = 0; ScratchRegs[i]; ++i) 644 Ops.push_back(MachineOperand::CreateReg( 645 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 646 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 647 648 // Issue CALLSEQ_START 649 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 650 auto Builder = 651 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)); 652 const MCInstrDesc &MCID = Builder.getInstr()->getDesc(); 653 for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I) 654 Builder.addImm(0); 655 656 // Issue STACKMAP. 657 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 658 TII.get(TargetOpcode::STACKMAP)); 659 for (auto const &MO : Ops) 660 MIB.addOperand(MO); 661 662 // Issue CALLSEQ_END 663 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 664 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 665 .addImm(0) 666 .addImm(0); 667 668 // Inform the Frame Information that we have a stackmap in this function. 669 FuncInfo.MF->getFrameInfo().setHasStackMap(); 670 671 return true; 672 } 673 674 /// \brief Lower an argument list according to the target calling convention. 675 /// 676 /// This is a helper for lowering intrinsics that follow a target calling 677 /// convention or require stack pointer adjustment. Only a subset of the 678 /// intrinsic's operands need to participate in the calling convention. 679 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 680 unsigned NumArgs, const Value *Callee, 681 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 682 ArgListTy Args; 683 Args.reserve(NumArgs); 684 685 // Populate the argument list. 686 // Attributes for args start at offset 1, after the return attribute. 687 ImmutableCallSite CS(CI); 688 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 689 ArgI != ArgE; ++ArgI) { 690 Value *V = CI->getOperand(ArgI); 691 692 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 693 694 ArgListEntry Entry; 695 Entry.Val = V; 696 Entry.Ty = V->getType(); 697 Entry.setAttributes(&CS, AttrI); 698 Args.push_back(Entry); 699 } 700 701 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 702 : CI->getType(); 703 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 704 705 return lowerCallTo(CLI); 706 } 707 708 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee( 709 const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy, 710 const char *Target, ArgListTy &&ArgsList, unsigned FixedArgs) { 711 SmallString<32> MangledName; 712 Mangler::getNameWithPrefix(MangledName, Target, DL); 713 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 714 return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs); 715 } 716 717 bool FastISel::selectPatchpoint(const CallInst *I) { 718 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 719 // i32 <numBytes>, 720 // i8* <target>, 721 // i32 <numArgs>, 722 // [Args...], 723 // [live variables...]) 724 CallingConv::ID CC = I->getCallingConv(); 725 bool IsAnyRegCC = CC == CallingConv::AnyReg; 726 bool HasDef = !I->getType()->isVoidTy(); 727 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts(); 728 729 // Get the real number of arguments participating in the call <numArgs> 730 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 731 "Expected a constant integer."); 732 const auto *NumArgsVal = 733 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 734 unsigned NumArgs = NumArgsVal->getZExtValue(); 735 736 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 737 // This includes all meta-operands up to but not including CC. 738 unsigned NumMetaOpers = PatchPointOpers::CCPos; 739 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs && 740 "Not enough arguments provided to the patchpoint intrinsic"); 741 742 // For AnyRegCC the arguments are lowered later on manually. 743 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 744 CallLoweringInfo CLI; 745 CLI.setIsPatchPoint(); 746 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 747 return false; 748 749 assert(CLI.Call && "No call instruction specified."); 750 751 SmallVector<MachineOperand, 32> Ops; 752 753 // Add an explicit result reg if we use the anyreg calling convention. 754 if (IsAnyRegCC && HasDef) { 755 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 756 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); 757 CLI.NumResultRegs = 1; 758 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true)); 759 } 760 761 // Add the <id> and <numBytes> constants. 762 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 763 "Expected a constant integer."); 764 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 765 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 766 767 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 768 "Expected a constant integer."); 769 const auto *NumBytes = 770 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 771 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 772 773 // Add the call target. 774 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) { 775 uint64_t CalleeConstAddr = 776 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 777 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 778 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 779 if (C->getOpcode() == Instruction::IntToPtr) { 780 uint64_t CalleeConstAddr = 781 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 782 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 783 } else 784 llvm_unreachable("Unsupported ConstantExpr."); 785 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) { 786 Ops.push_back(MachineOperand::CreateGA(GV, 0)); 787 } else if (isa<ConstantPointerNull>(Callee)) 788 Ops.push_back(MachineOperand::CreateImm(0)); 789 else 790 llvm_unreachable("Unsupported callee address."); 791 792 // Adjust <numArgs> to account for any arguments that have been passed on 793 // the stack instead. 794 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 795 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 796 797 // Add the calling convention 798 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 799 800 // Add the arguments we omitted previously. The register allocator should 801 // place these in any free register. 802 if (IsAnyRegCC) { 803 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 804 unsigned Reg = getRegForValue(I->getArgOperand(i)); 805 if (!Reg) 806 return false; 807 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 808 } 809 } 810 811 // Push the arguments from the call instruction. 812 for (auto Reg : CLI.OutRegs) 813 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 814 815 // Push live variables for the stack map. 816 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 817 return false; 818 819 // Push the register mask info. 820 Ops.push_back(MachineOperand::CreateRegMask( 821 TRI.getCallPreservedMask(*FuncInfo.MF, CC))); 822 823 // Add scratch registers as implicit def and early clobber. 824 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 825 for (unsigned i = 0; ScratchRegs[i]; ++i) 826 Ops.push_back(MachineOperand::CreateReg( 827 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 828 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 829 830 // Add implicit defs (return values). 831 for (auto Reg : CLI.InRegs) 832 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true, 833 /*IsImpl=*/true)); 834 835 // Insert the patchpoint instruction before the call generated by the target. 836 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc, 837 TII.get(TargetOpcode::PATCHPOINT)); 838 839 for (auto &MO : Ops) 840 MIB.addOperand(MO); 841 842 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 843 844 // Delete the original call instruction. 845 CLI.Call->eraseFromParent(); 846 847 // Inform the Frame Information that we have a patchpoint in this function. 848 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 849 850 if (CLI.NumResultRegs) 851 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 852 return true; 853 } 854 855 /// Returns an AttributeSet representing the attributes applied to the return 856 /// value of the given call. 857 static AttributeSet getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 858 SmallVector<Attribute::AttrKind, 2> Attrs; 859 if (CLI.RetSExt) 860 Attrs.push_back(Attribute::SExt); 861 if (CLI.RetZExt) 862 Attrs.push_back(Attribute::ZExt); 863 if (CLI.IsInReg) 864 Attrs.push_back(Attribute::InReg); 865 866 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 867 Attrs); 868 } 869 870 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, 871 unsigned NumArgs) { 872 MCContext &Ctx = MF->getContext(); 873 SmallString<32> MangledName; 874 Mangler::getNameWithPrefix(MangledName, SymName, DL); 875 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 876 return lowerCallTo(CI, Sym, NumArgs); 877 } 878 879 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol, 880 unsigned NumArgs) { 881 ImmutableCallSite CS(CI); 882 883 FunctionType *FTy = CS.getFunctionType(); 884 Type *RetTy = CS.getType(); 885 886 ArgListTy Args; 887 Args.reserve(NumArgs); 888 889 // Populate the argument list. 890 // Attributes for args start at offset 1, after the return attribute. 891 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 892 Value *V = CI->getOperand(ArgI); 893 894 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 895 896 ArgListEntry Entry; 897 Entry.Val = V; 898 Entry.Ty = V->getType(); 899 Entry.setAttributes(&CS, ArgI + 1); 900 Args.push_back(Entry); 901 } 902 903 CallLoweringInfo CLI; 904 CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs); 905 906 return lowerCallTo(CLI); 907 } 908 909 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { 910 // Handle the incoming return values from the call. 911 CLI.clearIns(); 912 SmallVector<EVT, 4> RetTys; 913 ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys); 914 915 SmallVector<ISD::OutputArg, 4> Outs; 916 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL); 917 918 bool CanLowerReturn = TLI.CanLowerReturn( 919 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 920 921 // FIXME: sret demotion isn't supported yet - bail out. 922 if (!CanLowerReturn) 923 return false; 924 925 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 926 EVT VT = RetTys[I]; 927 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 928 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 929 for (unsigned i = 0; i != NumRegs; ++i) { 930 ISD::InputArg MyFlags; 931 MyFlags.VT = RegisterVT; 932 MyFlags.ArgVT = VT; 933 MyFlags.Used = CLI.IsReturnValueUsed; 934 if (CLI.RetSExt) 935 MyFlags.Flags.setSExt(); 936 if (CLI.RetZExt) 937 MyFlags.Flags.setZExt(); 938 if (CLI.IsInReg) 939 MyFlags.Flags.setInReg(); 940 CLI.Ins.push_back(MyFlags); 941 } 942 } 943 944 // Handle all of the outgoing arguments. 945 CLI.clearOuts(); 946 for (auto &Arg : CLI.getArgs()) { 947 Type *FinalType = Arg.Ty; 948 if (Arg.IsByVal) 949 FinalType = cast<PointerType>(Arg.Ty)->getElementType(); 950 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 951 FinalType, CLI.CallConv, CLI.IsVarArg); 952 953 ISD::ArgFlagsTy Flags; 954 if (Arg.IsZExt) 955 Flags.setZExt(); 956 if (Arg.IsSExt) 957 Flags.setSExt(); 958 if (Arg.IsInReg) 959 Flags.setInReg(); 960 if (Arg.IsSRet) 961 Flags.setSRet(); 962 if (Arg.IsSwiftSelf) 963 Flags.setSwiftSelf(); 964 if (Arg.IsSwiftError) 965 Flags.setSwiftError(); 966 if (Arg.IsByVal) 967 Flags.setByVal(); 968 if (Arg.IsInAlloca) { 969 Flags.setInAlloca(); 970 // Set the byval flag for CCAssignFn callbacks that don't know about 971 // inalloca. This way we can know how many bytes we should've allocated 972 // and how many bytes a callee cleanup function will pop. If we port 973 // inalloca to more targets, we'll have to add custom inalloca handling in 974 // the various CC lowering callbacks. 975 Flags.setByVal(); 976 } 977 if (Arg.IsByVal || Arg.IsInAlloca) { 978 PointerType *Ty = cast<PointerType>(Arg.Ty); 979 Type *ElementTy = Ty->getElementType(); 980 unsigned FrameSize = DL.getTypeAllocSize(ElementTy); 981 // For ByVal, alignment should come from FE. BE will guess if this info is 982 // not there, but there are cases it cannot get right. 983 unsigned FrameAlign = Arg.Alignment; 984 if (!FrameAlign) 985 FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL); 986 Flags.setByValSize(FrameSize); 987 Flags.setByValAlign(FrameAlign); 988 } 989 if (Arg.IsNest) 990 Flags.setNest(); 991 if (NeedsRegBlock) 992 Flags.setInConsecutiveRegs(); 993 unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty); 994 Flags.setOrigAlign(OriginalAlignment); 995 996 CLI.OutVals.push_back(Arg.Val); 997 CLI.OutFlags.push_back(Flags); 998 } 999 1000 if (!fastLowerCall(CLI)) 1001 return false; 1002 1003 // Set all unused physreg defs as dead. 1004 assert(CLI.Call && "No call instruction specified."); 1005 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1006 1007 if (CLI.NumResultRegs && CLI.CS) 1008 updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs); 1009 1010 return true; 1011 } 1012 1013 bool FastISel::lowerCall(const CallInst *CI) { 1014 ImmutableCallSite CS(CI); 1015 1016 FunctionType *FuncTy = CS.getFunctionType(); 1017 Type *RetTy = CS.getType(); 1018 1019 ArgListTy Args; 1020 ArgListEntry Entry; 1021 Args.reserve(CS.arg_size()); 1022 1023 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1024 i != e; ++i) { 1025 Value *V = *i; 1026 1027 // Skip empty types 1028 if (V->getType()->isEmptyTy()) 1029 continue; 1030 1031 Entry.Val = V; 1032 Entry.Ty = V->getType(); 1033 1034 // Skip the first return-type Attribute to get to params. 1035 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 1036 Args.push_back(Entry); 1037 } 1038 1039 // Check if target-independent constraints permit a tail call here. 1040 // Target-dependent constraints are checked within fastLowerCall. 1041 bool IsTailCall = CI->isTailCall(); 1042 if (IsTailCall && !isInTailCallPosition(CS, TM)) 1043 IsTailCall = false; 1044 1045 CallLoweringInfo CLI; 1046 CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS) 1047 .setTailCall(IsTailCall); 1048 1049 return lowerCallTo(CLI); 1050 } 1051 1052 bool FastISel::selectCall(const User *I) { 1053 const CallInst *Call = cast<CallInst>(I); 1054 1055 // Handle simple inline asms. 1056 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 1057 // If the inline asm has side effects, then make sure that no local value 1058 // lives across by flushing the local value map. 1059 if (IA->hasSideEffects()) 1060 flushLocalValueMap(); 1061 1062 // Don't attempt to handle constraints. 1063 if (!IA->getConstraintString().empty()) 1064 return false; 1065 1066 unsigned ExtraInfo = 0; 1067 if (IA->hasSideEffects()) 1068 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1069 if (IA->isAlignStack()) 1070 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1071 1072 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1073 TII.get(TargetOpcode::INLINEASM)) 1074 .addExternalSymbol(IA->getAsmString().c_str()) 1075 .addImm(ExtraInfo); 1076 return true; 1077 } 1078 1079 MachineModuleInfo &MMI = FuncInfo.MF->getMMI(); 1080 ComputeUsesVAFloatArgument(*Call, &MMI); 1081 1082 // Handle intrinsic function calls. 1083 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1084 return selectIntrinsicCall(II); 1085 1086 // Usually, it does not make sense to initialize a value, 1087 // make an unrelated function call and use the value, because 1088 // it tends to be spilled on the stack. So, we move the pointer 1089 // to the last local value to the beginning of the block, so that 1090 // all the values which have already been materialized, 1091 // appear after the call. It also makes sense to skip intrinsics 1092 // since they tend to be inlined. 1093 flushLocalValueMap(); 1094 1095 return lowerCall(Call); 1096 } 1097 1098 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { 1099 switch (II->getIntrinsicID()) { 1100 default: 1101 break; 1102 // At -O0 we don't care about the lifetime intrinsics. 1103 case Intrinsic::lifetime_start: 1104 case Intrinsic::lifetime_end: 1105 // The donothing intrinsic does, well, nothing. 1106 case Intrinsic::donothing: 1107 // Neither does the assume intrinsic; it's also OK not to codegen its operand. 1108 case Intrinsic::assume: 1109 return true; 1110 case Intrinsic::dbg_declare: { 1111 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1112 assert(DI->getVariable() && "Missing variable"); 1113 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1114 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1115 return true; 1116 } 1117 1118 const Value *Address = DI->getAddress(); 1119 if (!Address || isa<UndefValue>(Address)) { 1120 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1121 return true; 1122 } 1123 1124 unsigned Offset = 0; 1125 Optional<MachineOperand> Op; 1126 if (const auto *Arg = dyn_cast<Argument>(Address)) 1127 // Some arguments' frame index is recorded during argument lowering. 1128 Offset = FuncInfo.getArgumentFrameIndex(Arg); 1129 if (Offset) 1130 Op = MachineOperand::CreateFI(Offset); 1131 if (!Op) 1132 if (unsigned Reg = lookUpRegForValue(Address)) 1133 Op = MachineOperand::CreateReg(Reg, false); 1134 1135 // If we have a VLA that has a "use" in a metadata node that's then used 1136 // here but it has no other uses, then we have a problem. E.g., 1137 // 1138 // int foo (const int *x) { 1139 // char a[*x]; 1140 // return 0; 1141 // } 1142 // 1143 // If we assign 'a' a vreg and fast isel later on has to use the selection 1144 // DAG isel, it will want to copy the value to the vreg. However, there are 1145 // no uses, which goes counter to what selection DAG isel expects. 1146 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1147 (!isa<AllocaInst>(Address) || 1148 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1149 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1150 false); 1151 1152 if (Op) { 1153 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1154 "Expected inlined-at fields to agree"); 1155 if (Op->isReg()) { 1156 Op->setIsDebug(true); 1157 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1158 TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0, 1159 DI->getVariable(), DI->getExpression()); 1160 } else 1161 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1162 TII.get(TargetOpcode::DBG_VALUE)) 1163 .addOperand(*Op) 1164 .addImm(0) 1165 .addMetadata(DI->getVariable()) 1166 .addMetadata(DI->getExpression()); 1167 } else { 1168 // We can't yet handle anything else here because it would require 1169 // generating code, thus altering codegen because of debug info. 1170 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1171 } 1172 return true; 1173 } 1174 case Intrinsic::dbg_value: { 1175 // This form of DBG_VALUE is target-independent. 1176 const DbgValueInst *DI = cast<DbgValueInst>(II); 1177 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1178 const Value *V = DI->getValue(); 1179 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1180 "Expected inlined-at fields to agree"); 1181 if (!V) { 1182 // Currently the optimizer can produce this; insert an undef to 1183 // help debugging. Probably the optimizer should not do this. 1184 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1185 .addReg(0U) 1186 .addImm(DI->getOffset()) 1187 .addMetadata(DI->getVariable()) 1188 .addMetadata(DI->getExpression()); 1189 } else if (const auto *CI = dyn_cast<ConstantInt>(V)) { 1190 if (CI->getBitWidth() > 64) 1191 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1192 .addCImm(CI) 1193 .addImm(DI->getOffset()) 1194 .addMetadata(DI->getVariable()) 1195 .addMetadata(DI->getExpression()); 1196 else 1197 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1198 .addImm(CI->getZExtValue()) 1199 .addImm(DI->getOffset()) 1200 .addMetadata(DI->getVariable()) 1201 .addMetadata(DI->getExpression()); 1202 } else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 1203 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1204 .addFPImm(CF) 1205 .addImm(DI->getOffset()) 1206 .addMetadata(DI->getVariable()) 1207 .addMetadata(DI->getExpression()); 1208 } else if (unsigned Reg = lookUpRegForValue(V)) { 1209 // FIXME: This does not handle register-indirect values at offset 0. 1210 bool IsIndirect = DI->getOffset() != 0; 1211 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg, 1212 DI->getOffset(), DI->getVariable(), DI->getExpression()); 1213 } else { 1214 // We can't yet handle anything else here because it would require 1215 // generating code, thus altering codegen because of debug info. 1216 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1217 } 1218 return true; 1219 } 1220 case Intrinsic::objectsize: { 1221 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1)); 1222 unsigned long long Res = CI->isZero() ? -1ULL : 0; 1223 Constant *ResCI = ConstantInt::get(II->getType(), Res); 1224 unsigned ResultReg = getRegForValue(ResCI); 1225 if (!ResultReg) 1226 return false; 1227 updateValueMap(II, ResultReg); 1228 return true; 1229 } 1230 case Intrinsic::expect: { 1231 unsigned ResultReg = getRegForValue(II->getArgOperand(0)); 1232 if (!ResultReg) 1233 return false; 1234 updateValueMap(II, ResultReg); 1235 return true; 1236 } 1237 case Intrinsic::experimental_stackmap: 1238 return selectStackmap(II); 1239 case Intrinsic::experimental_patchpoint_void: 1240 case Intrinsic::experimental_patchpoint_i64: 1241 return selectPatchpoint(II); 1242 } 1243 1244 return fastLowerIntrinsicCall(II); 1245 } 1246 1247 bool FastISel::selectCast(const User *I, unsigned Opcode) { 1248 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1249 EVT DstVT = TLI.getValueType(DL, I->getType()); 1250 1251 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || 1252 !DstVT.isSimple()) 1253 // Unhandled type. Halt "fast" selection and bail. 1254 return false; 1255 1256 // Check if the destination type is legal. 1257 if (!TLI.isTypeLegal(DstVT)) 1258 return false; 1259 1260 // Check if the source operand is legal. 1261 if (!TLI.isTypeLegal(SrcVT)) 1262 return false; 1263 1264 unsigned InputReg = getRegForValue(I->getOperand(0)); 1265 if (!InputReg) 1266 // Unhandled operand. Halt "fast" selection and bail. 1267 return false; 1268 1269 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 1270 1271 unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 1272 Opcode, InputReg, InputRegIsKill); 1273 if (!ResultReg) 1274 return false; 1275 1276 updateValueMap(I, ResultReg); 1277 return true; 1278 } 1279 1280 bool FastISel::selectBitCast(const User *I) { 1281 // If the bitcast doesn't change the type, just use the operand value. 1282 if (I->getType() == I->getOperand(0)->getType()) { 1283 unsigned Reg = getRegForValue(I->getOperand(0)); 1284 if (!Reg) 1285 return false; 1286 updateValueMap(I, Reg); 1287 return true; 1288 } 1289 1290 // Bitcasts of other values become reg-reg copies or BITCAST operators. 1291 EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1292 EVT DstEVT = TLI.getValueType(DL, I->getType()); 1293 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1294 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1295 // Unhandled type. Halt "fast" selection and bail. 1296 return false; 1297 1298 MVT SrcVT = SrcEVT.getSimpleVT(); 1299 MVT DstVT = DstEVT.getSimpleVT(); 1300 unsigned Op0 = getRegForValue(I->getOperand(0)); 1301 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 1302 return false; 1303 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 1304 1305 // First, try to perform the bitcast by inserting a reg-reg copy. 1306 unsigned ResultReg = 0; 1307 if (SrcVT == DstVT) { 1308 const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT); 1309 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); 1310 // Don't attempt a cross-class copy. It will likely fail. 1311 if (SrcClass == DstClass) { 1312 ResultReg = createResultReg(DstClass); 1313 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1314 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); 1315 } 1316 } 1317 1318 // If the reg-reg copy failed, select a BITCAST opcode. 1319 if (!ResultReg) 1320 ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); 1321 1322 if (!ResultReg) 1323 return false; 1324 1325 updateValueMap(I, ResultReg); 1326 return true; 1327 } 1328 1329 // Return true if we should copy from swift error to the final vreg as specified 1330 // by SwiftErrorWorklist. 1331 static bool shouldCopySwiftErrorsToFinalVRegs(const TargetLowering &TLI, 1332 FunctionLoweringInfo &FuncInfo) { 1333 if (!TLI.supportSwiftError()) 1334 return false; 1335 return FuncInfo.SwiftErrorWorklist.count(FuncInfo.MBB); 1336 } 1337 1338 // Remove local value instructions starting from the instruction after 1339 // SavedLastLocalValue to the current function insert point. 1340 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue) 1341 { 1342 MachineInstr *CurLastLocalValue = getLastLocalValue(); 1343 if (CurLastLocalValue != SavedLastLocalValue) { 1344 // Find the first local value instruction to be deleted. 1345 // This is the instruction after SavedLastLocalValue if it is non-NULL. 1346 // Otherwise it's the first instruction in the block. 1347 MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue); 1348 if (SavedLastLocalValue) 1349 ++FirstDeadInst; 1350 else 1351 FirstDeadInst = FuncInfo.MBB->getFirstNonPHI(); 1352 setLastLocalValue(SavedLastLocalValue); 1353 removeDeadCode(FirstDeadInst, FuncInfo.InsertPt); 1354 } 1355 } 1356 1357 bool FastISel::selectInstruction(const Instruction *I) { 1358 MachineInstr *SavedLastLocalValue = getLastLocalValue(); 1359 // Just before the terminator instruction, insert instructions to 1360 // feed PHI nodes in successor blocks. 1361 if (isa<TerminatorInst>(I)) { 1362 // If we need to materialize any vreg from worklist, we bail out of 1363 // FastISel. 1364 if (shouldCopySwiftErrorsToFinalVRegs(TLI, FuncInfo)) 1365 return false; 1366 if (!handlePHINodesInSuccessorBlocks(I->getParent())) { 1367 // PHI node handling may have generated local value instructions, 1368 // even though it failed to handle all PHI nodes. 1369 // We remove these instructions because SelectionDAGISel will generate 1370 // them again. 1371 removeDeadLocalValueCode(SavedLastLocalValue); 1372 return false; 1373 } 1374 } 1375 1376 // FastISel does not handle any operand bundles except OB_funclet. 1377 if (ImmutableCallSite CS = ImmutableCallSite(I)) 1378 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) 1379 if (CS.getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet) 1380 return false; 1381 1382 DbgLoc = I->getDebugLoc(); 1383 1384 SavedInsertPt = FuncInfo.InsertPt; 1385 1386 if (const auto *Call = dyn_cast<CallInst>(I)) { 1387 const Function *F = Call->getCalledFunction(); 1388 LibFunc::Func Func; 1389 1390 // As a special case, don't handle calls to builtin library functions that 1391 // may be translated directly to target instructions. 1392 if (F && !F->hasLocalLinkage() && F->hasName() && 1393 LibInfo->getLibFunc(F->getName(), Func) && 1394 LibInfo->hasOptimizedCodeGen(Func)) 1395 return false; 1396 1397 // Don't handle Intrinsic::trap if a trap function is specified. 1398 if (F && F->getIntrinsicID() == Intrinsic::trap && 1399 Call->hasFnAttr("trap-func-name")) 1400 return false; 1401 } 1402 1403 // First, try doing target-independent selection. 1404 if (!SkipTargetIndependentISel) { 1405 if (selectOperator(I, I->getOpcode())) { 1406 ++NumFastIselSuccessIndependent; 1407 DbgLoc = DebugLoc(); 1408 return true; 1409 } 1410 // Remove dead code. 1411 recomputeInsertPt(); 1412 if (SavedInsertPt != FuncInfo.InsertPt) 1413 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1414 SavedInsertPt = FuncInfo.InsertPt; 1415 } 1416 // Next, try calling the target to attempt to handle the instruction. 1417 if (fastSelectInstruction(I)) { 1418 ++NumFastIselSuccessTarget; 1419 DbgLoc = DebugLoc(); 1420 return true; 1421 } 1422 // Remove dead code. 1423 recomputeInsertPt(); 1424 if (SavedInsertPt != FuncInfo.InsertPt) 1425 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1426 1427 DbgLoc = DebugLoc(); 1428 // Undo phi node updates, because they will be added again by SelectionDAG. 1429 if (isa<TerminatorInst>(I)) { 1430 // PHI node handling may have generated local value instructions. 1431 // We remove them because SelectionDAGISel will generate them again. 1432 removeDeadLocalValueCode(SavedLastLocalValue); 1433 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 1434 } 1435 return false; 1436 } 1437 1438 /// Emit an unconditional branch to the given block, unless it is the immediate 1439 /// (fall-through) successor, and update the CFG. 1440 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, 1441 const DebugLoc &DbgLoc) { 1442 if (FuncInfo.MBB->getBasicBlock()->size() > 1 && 1443 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1444 // For more accurate line information if this is the only instruction 1445 // in the block then emit it, otherwise we have the unconditional 1446 // fall-through case, which needs no instructions. 1447 } else { 1448 // The unconditional branch case. 1449 TII.InsertBranch(*FuncInfo.MBB, MSucc, nullptr, 1450 SmallVector<MachineOperand, 0>(), DbgLoc); 1451 } 1452 if (FuncInfo.BPI) { 1453 auto BranchProbability = FuncInfo.BPI->getEdgeProbability( 1454 FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock()); 1455 FuncInfo.MBB->addSuccessor(MSucc, BranchProbability); 1456 } else 1457 FuncInfo.MBB->addSuccessorWithoutProb(MSucc); 1458 } 1459 1460 void FastISel::finishCondBranch(const BasicBlock *BranchBB, 1461 MachineBasicBlock *TrueMBB, 1462 MachineBasicBlock *FalseMBB) { 1463 // Add TrueMBB as successor unless it is equal to the FalseMBB: This can 1464 // happen in degenerate IR and MachineIR forbids to have a block twice in the 1465 // successor/predecessor lists. 1466 if (TrueMBB != FalseMBB) { 1467 if (FuncInfo.BPI) { 1468 auto BranchProbability = 1469 FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock()); 1470 FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability); 1471 } else 1472 FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB); 1473 } 1474 1475 fastEmitBranch(FalseMBB, DbgLoc); 1476 } 1477 1478 /// Emit an FNeg operation. 1479 bool FastISel::selectFNeg(const User *I) { 1480 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); 1481 if (!OpReg) 1482 return false; 1483 bool OpRegIsKill = hasTrivialKill(I); 1484 1485 // If the target has ISD::FNEG, use it. 1486 EVT VT = TLI.getValueType(DL, I->getType()); 1487 unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, 1488 OpReg, OpRegIsKill); 1489 if (ResultReg) { 1490 updateValueMap(I, ResultReg); 1491 return true; 1492 } 1493 1494 // Bitcast the value to integer, twiddle the sign bit with xor, 1495 // and then bitcast it back to floating-point. 1496 if (VT.getSizeInBits() > 64) 1497 return false; 1498 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1499 if (!TLI.isTypeLegal(IntVT)) 1500 return false; 1501 1502 unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1503 ISD::BITCAST, OpReg, OpRegIsKill); 1504 if (!IntReg) 1505 return false; 1506 1507 unsigned IntResultReg = fastEmit_ri_( 1508 IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true, 1509 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); 1510 if (!IntResultReg) 1511 return false; 1512 1513 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, 1514 IntResultReg, /*IsKill=*/true); 1515 if (!ResultReg) 1516 return false; 1517 1518 updateValueMap(I, ResultReg); 1519 return true; 1520 } 1521 1522 bool FastISel::selectExtractValue(const User *U) { 1523 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1524 if (!EVI) 1525 return false; 1526 1527 // Make sure we only try to handle extracts with a legal result. But also 1528 // allow i1 because it's easy. 1529 EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true); 1530 if (!RealVT.isSimple()) 1531 return false; 1532 MVT VT = RealVT.getSimpleVT(); 1533 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1534 return false; 1535 1536 const Value *Op0 = EVI->getOperand(0); 1537 Type *AggTy = Op0->getType(); 1538 1539 // Get the base result register. 1540 unsigned ResultReg; 1541 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 1542 if (I != FuncInfo.ValueMap.end()) 1543 ResultReg = I->second; 1544 else if (isa<Instruction>(Op0)) 1545 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1546 else 1547 return false; // fast-isel can't handle aggregate constants at the moment 1548 1549 // Get the actual result register, which is an offset from the base register. 1550 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1551 1552 SmallVector<EVT, 4> AggValueVTs; 1553 ComputeValueVTs(TLI, DL, AggTy, AggValueVTs); 1554 1555 for (unsigned i = 0; i < VTIndex; i++) 1556 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1557 1558 updateValueMap(EVI, ResultReg); 1559 return true; 1560 } 1561 1562 bool FastISel::selectOperator(const User *I, unsigned Opcode) { 1563 switch (Opcode) { 1564 case Instruction::Add: 1565 return selectBinaryOp(I, ISD::ADD); 1566 case Instruction::FAdd: 1567 return selectBinaryOp(I, ISD::FADD); 1568 case Instruction::Sub: 1569 return selectBinaryOp(I, ISD::SUB); 1570 case Instruction::FSub: 1571 // FNeg is currently represented in LLVM IR as a special case of FSub. 1572 if (BinaryOperator::isFNeg(I)) 1573 return selectFNeg(I); 1574 return selectBinaryOp(I, ISD::FSUB); 1575 case Instruction::Mul: 1576 return selectBinaryOp(I, ISD::MUL); 1577 case Instruction::FMul: 1578 return selectBinaryOp(I, ISD::FMUL); 1579 case Instruction::SDiv: 1580 return selectBinaryOp(I, ISD::SDIV); 1581 case Instruction::UDiv: 1582 return selectBinaryOp(I, ISD::UDIV); 1583 case Instruction::FDiv: 1584 return selectBinaryOp(I, ISD::FDIV); 1585 case Instruction::SRem: 1586 return selectBinaryOp(I, ISD::SREM); 1587 case Instruction::URem: 1588 return selectBinaryOp(I, ISD::UREM); 1589 case Instruction::FRem: 1590 return selectBinaryOp(I, ISD::FREM); 1591 case Instruction::Shl: 1592 return selectBinaryOp(I, ISD::SHL); 1593 case Instruction::LShr: 1594 return selectBinaryOp(I, ISD::SRL); 1595 case Instruction::AShr: 1596 return selectBinaryOp(I, ISD::SRA); 1597 case Instruction::And: 1598 return selectBinaryOp(I, ISD::AND); 1599 case Instruction::Or: 1600 return selectBinaryOp(I, ISD::OR); 1601 case Instruction::Xor: 1602 return selectBinaryOp(I, ISD::XOR); 1603 1604 case Instruction::GetElementPtr: 1605 return selectGetElementPtr(I); 1606 1607 case Instruction::Br: { 1608 const BranchInst *BI = cast<BranchInst>(I); 1609 1610 if (BI->isUnconditional()) { 1611 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1612 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1613 fastEmitBranch(MSucc, BI->getDebugLoc()); 1614 return true; 1615 } 1616 1617 // Conditional branches are not handed yet. 1618 // Halt "fast" selection and bail. 1619 return false; 1620 } 1621 1622 case Instruction::Unreachable: 1623 if (TM.Options.TrapUnreachable) 1624 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1625 else 1626 return true; 1627 1628 case Instruction::Alloca: 1629 // FunctionLowering has the static-sized case covered. 1630 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1631 return true; 1632 1633 // Dynamic-sized alloca is not handled yet. 1634 return false; 1635 1636 case Instruction::Call: 1637 return selectCall(I); 1638 1639 case Instruction::BitCast: 1640 return selectBitCast(I); 1641 1642 case Instruction::FPToSI: 1643 return selectCast(I, ISD::FP_TO_SINT); 1644 case Instruction::ZExt: 1645 return selectCast(I, ISD::ZERO_EXTEND); 1646 case Instruction::SExt: 1647 return selectCast(I, ISD::SIGN_EXTEND); 1648 case Instruction::Trunc: 1649 return selectCast(I, ISD::TRUNCATE); 1650 case Instruction::SIToFP: 1651 return selectCast(I, ISD::SINT_TO_FP); 1652 1653 case Instruction::IntToPtr: // Deliberate fall-through. 1654 case Instruction::PtrToInt: { 1655 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1656 EVT DstVT = TLI.getValueType(DL, I->getType()); 1657 if (DstVT.bitsGT(SrcVT)) 1658 return selectCast(I, ISD::ZERO_EXTEND); 1659 if (DstVT.bitsLT(SrcVT)) 1660 return selectCast(I, ISD::TRUNCATE); 1661 unsigned Reg = getRegForValue(I->getOperand(0)); 1662 if (!Reg) 1663 return false; 1664 updateValueMap(I, Reg); 1665 return true; 1666 } 1667 1668 case Instruction::ExtractValue: 1669 return selectExtractValue(I); 1670 1671 case Instruction::PHI: 1672 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1673 1674 default: 1675 // Unhandled instruction. Halt "fast" selection and bail. 1676 return false; 1677 } 1678 } 1679 1680 FastISel::FastISel(FunctionLoweringInfo &FuncInfo, 1681 const TargetLibraryInfo *LibInfo, 1682 bool SkipTargetIndependentISel) 1683 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1684 MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1685 TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()), 1686 TII(*MF->getSubtarget().getInstrInfo()), 1687 TLI(*MF->getSubtarget().getTargetLowering()), 1688 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), 1689 SkipTargetIndependentISel(SkipTargetIndependentISel) {} 1690 1691 FastISel::~FastISel() {} 1692 1693 bool FastISel::fastLowerArguments() { return false; } 1694 1695 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } 1696 1697 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1698 return false; 1699 } 1700 1701 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } 1702 1703 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/, 1704 bool /*Op0IsKill*/) { 1705 return 0; 1706 } 1707 1708 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, 1709 bool /*Op0IsKill*/, unsigned /*Op1*/, 1710 bool /*Op1IsKill*/) { 1711 return 0; 1712 } 1713 1714 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1715 return 0; 1716 } 1717 1718 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, 1719 const ConstantFP * /*FPImm*/) { 1720 return 0; 1721 } 1722 1723 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, 1724 bool /*Op0IsKill*/, uint64_t /*Imm*/) { 1725 return 0; 1726 } 1727 1728 unsigned FastISel::fastEmit_rf(MVT, MVT, unsigned, unsigned /*Op0*/, 1729 bool /*Op0IsKill*/, 1730 const ConstantFP * /*FPImm*/) { 1731 return 0; 1732 } 1733 1734 unsigned FastISel::fastEmit_rri(MVT, MVT, unsigned, unsigned /*Op0*/, 1735 bool /*Op0IsKill*/, unsigned /*Op1*/, 1736 bool /*Op1IsKill*/, uint64_t /*Imm*/) { 1737 return 0; 1738 } 1739 1740 /// This method is a wrapper of fastEmit_ri. It first tries to emit an 1741 /// instruction with an immediate operand using fastEmit_ri. 1742 /// If that fails, it materializes the immediate into a register and try 1743 /// fastEmit_rr instead. 1744 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, 1745 bool Op0IsKill, uint64_t Imm, MVT ImmType) { 1746 // If this is a multiply by a power of two, emit this as a shift left. 1747 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1748 Opcode = ISD::SHL; 1749 Imm = Log2_64(Imm); 1750 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1751 // div x, 8 -> srl x, 3 1752 Opcode = ISD::SRL; 1753 Imm = Log2_64(Imm); 1754 } 1755 1756 // Horrible hack (to be removed), check to make sure shift amounts are 1757 // in-range. 1758 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1759 Imm >= VT.getSizeInBits()) 1760 return 0; 1761 1762 // First check if immediate type is legal. If not, we can't use the ri form. 1763 unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1764 if (ResultReg) 1765 return ResultReg; 1766 unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1767 bool IsImmKill = true; 1768 if (!MaterialReg) { 1769 // This is a bit ugly/slow, but failing here means falling out of 1770 // fast-isel, which would be very slow. 1771 IntegerType *ITy = 1772 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); 1773 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1774 if (!MaterialReg) 1775 return 0; 1776 // FIXME: If the materialized register here has no uses yet then this 1777 // will be the first use and we should be able to mark it as killed. 1778 // However, the local value area for materialising constant expressions 1779 // grows down, not up, which means that any constant expressions we generate 1780 // later which also use 'Imm' could be after this instruction and therefore 1781 // after this kill. 1782 IsImmKill = false; 1783 } 1784 return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill); 1785 } 1786 1787 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) { 1788 return MRI.createVirtualRegister(RC); 1789 } 1790 1791 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op, 1792 unsigned OpNum) { 1793 if (TargetRegisterInfo::isVirtualRegister(Op)) { 1794 const TargetRegisterClass *RegClass = 1795 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 1796 if (!MRI.constrainRegClass(Op, RegClass)) { 1797 // If it's not legal to COPY between the register classes, something 1798 // has gone very wrong before we got here. 1799 unsigned NewOp = createResultReg(RegClass); 1800 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1801 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 1802 return NewOp; 1803 } 1804 } 1805 return Op; 1806 } 1807 1808 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode, 1809 const TargetRegisterClass *RC) { 1810 unsigned ResultReg = createResultReg(RC); 1811 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1812 1813 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); 1814 return ResultReg; 1815 } 1816 1817 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode, 1818 const TargetRegisterClass *RC, unsigned Op0, 1819 bool Op0IsKill) { 1820 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1821 1822 unsigned ResultReg = createResultReg(RC); 1823 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1824 1825 if (II.getNumDefs() >= 1) 1826 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1827 .addReg(Op0, getKillRegState(Op0IsKill)); 1828 else { 1829 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1830 .addReg(Op0, getKillRegState(Op0IsKill)); 1831 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1832 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1833 } 1834 1835 return ResultReg; 1836 } 1837 1838 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 1839 const TargetRegisterClass *RC, unsigned Op0, 1840 bool Op0IsKill, unsigned Op1, 1841 bool Op1IsKill) { 1842 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1843 1844 unsigned ResultReg = createResultReg(RC); 1845 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1846 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1847 1848 if (II.getNumDefs() >= 1) 1849 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1850 .addReg(Op0, getKillRegState(Op0IsKill)) 1851 .addReg(Op1, getKillRegState(Op1IsKill)); 1852 else { 1853 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1854 .addReg(Op0, getKillRegState(Op0IsKill)) 1855 .addReg(Op1, getKillRegState(Op1IsKill)); 1856 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1857 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1858 } 1859 return ResultReg; 1860 } 1861 1862 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 1863 const TargetRegisterClass *RC, unsigned Op0, 1864 bool Op0IsKill, unsigned Op1, 1865 bool Op1IsKill, unsigned Op2, 1866 bool Op2IsKill) { 1867 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1868 1869 unsigned ResultReg = createResultReg(RC); 1870 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1871 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1872 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 1873 1874 if (II.getNumDefs() >= 1) 1875 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1876 .addReg(Op0, getKillRegState(Op0IsKill)) 1877 .addReg(Op1, getKillRegState(Op1IsKill)) 1878 .addReg(Op2, getKillRegState(Op2IsKill)); 1879 else { 1880 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1881 .addReg(Op0, getKillRegState(Op0IsKill)) 1882 .addReg(Op1, getKillRegState(Op1IsKill)) 1883 .addReg(Op2, getKillRegState(Op2IsKill)); 1884 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1885 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1886 } 1887 return ResultReg; 1888 } 1889 1890 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 1891 const TargetRegisterClass *RC, unsigned Op0, 1892 bool Op0IsKill, uint64_t Imm) { 1893 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1894 1895 unsigned ResultReg = createResultReg(RC); 1896 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1897 1898 if (II.getNumDefs() >= 1) 1899 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1900 .addReg(Op0, getKillRegState(Op0IsKill)) 1901 .addImm(Imm); 1902 else { 1903 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1904 .addReg(Op0, getKillRegState(Op0IsKill)) 1905 .addImm(Imm); 1906 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1907 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1908 } 1909 return ResultReg; 1910 } 1911 1912 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, 1913 const TargetRegisterClass *RC, unsigned Op0, 1914 bool Op0IsKill, uint64_t Imm1, 1915 uint64_t Imm2) { 1916 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1917 1918 unsigned ResultReg = createResultReg(RC); 1919 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1920 1921 if (II.getNumDefs() >= 1) 1922 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1923 .addReg(Op0, getKillRegState(Op0IsKill)) 1924 .addImm(Imm1) 1925 .addImm(Imm2); 1926 else { 1927 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1928 .addReg(Op0, getKillRegState(Op0IsKill)) 1929 .addImm(Imm1) 1930 .addImm(Imm2); 1931 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1932 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1933 } 1934 return ResultReg; 1935 } 1936 1937 unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode, 1938 const TargetRegisterClass *RC, 1939 const ConstantFP *FPImm) { 1940 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1941 1942 unsigned ResultReg = createResultReg(RC); 1943 1944 if (II.getNumDefs() >= 1) 1945 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1946 .addFPImm(FPImm); 1947 else { 1948 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1949 .addFPImm(FPImm); 1950 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1951 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1952 } 1953 return ResultReg; 1954 } 1955 1956 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 1957 const TargetRegisterClass *RC, unsigned Op0, 1958 bool Op0IsKill, unsigned Op1, 1959 bool Op1IsKill, uint64_t Imm) { 1960 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1961 1962 unsigned ResultReg = createResultReg(RC); 1963 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1964 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1965 1966 if (II.getNumDefs() >= 1) 1967 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1968 .addReg(Op0, getKillRegState(Op0IsKill)) 1969 .addReg(Op1, getKillRegState(Op1IsKill)) 1970 .addImm(Imm); 1971 else { 1972 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1973 .addReg(Op0, getKillRegState(Op0IsKill)) 1974 .addReg(Op1, getKillRegState(Op1IsKill)) 1975 .addImm(Imm); 1976 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1977 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1978 } 1979 return ResultReg; 1980 } 1981 1982 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode, 1983 const TargetRegisterClass *RC, uint64_t Imm) { 1984 unsigned ResultReg = createResultReg(RC); 1985 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1986 1987 if (II.getNumDefs() >= 1) 1988 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1989 .addImm(Imm); 1990 else { 1991 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); 1992 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1993 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1994 } 1995 return ResultReg; 1996 } 1997 1998 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, 1999 bool Op0IsKill, uint32_t Idx) { 2000 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 2001 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 2002 "Cannot yet extract from physregs"); 2003 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 2004 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 2005 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), 2006 ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx); 2007 return ResultReg; 2008 } 2009 2010 /// Emit MachineInstrs to compute the value of Op with all but the least 2011 /// significant bit set to zero. 2012 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 2013 return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 2014 } 2015 2016 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 2017 /// Emit code to ensure constants are copied into registers when needed. 2018 /// Remember the virtual registers that need to be added to the Machine PHI 2019 /// nodes as input. We cannot just directly add them, because expansion 2020 /// might result in multiple MBB's for one BB. As such, the start of the 2021 /// BB might correspond to a different MBB than the end. 2022 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 2023 const TerminatorInst *TI = LLVMBB->getTerminator(); 2024 2025 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 2026 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 2027 2028 // Check successor nodes' PHI nodes that expect a constant to be available 2029 // from this block. 2030 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 2031 const BasicBlock *SuccBB = TI->getSuccessor(succ); 2032 if (!isa<PHINode>(SuccBB->begin())) 2033 continue; 2034 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 2035 2036 // If this terminator has multiple identical successors (common for 2037 // switches), only handle each succ once. 2038 if (!SuccsHandled.insert(SuccMBB).second) 2039 continue; 2040 2041 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 2042 2043 // At this point we know that there is a 1-1 correspondence between LLVM PHI 2044 // nodes and Machine PHI nodes, but the incoming operands have not been 2045 // emitted yet. 2046 for (BasicBlock::const_iterator I = SuccBB->begin(); 2047 const auto *PN = dyn_cast<PHINode>(I); ++I) { 2048 2049 // Ignore dead phi's. 2050 if (PN->use_empty()) 2051 continue; 2052 2053 // Only handle legal types. Two interesting things to note here. First, 2054 // by bailing out early, we may leave behind some dead instructions, 2055 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2056 // own moves. Second, this check is necessary because FastISel doesn't 2057 // use CreateRegs to create registers, so it always creates 2058 // exactly one register for each non-void instruction. 2059 EVT VT = TLI.getValueType(DL, PN->getType(), /*AllowUnknown=*/true); 2060 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2061 // Handle integer promotions, though, because they're common and easy. 2062 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { 2063 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2064 return false; 2065 } 2066 } 2067 2068 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 2069 2070 // Set the DebugLoc for the copy. Prefer the location of the operand 2071 // if there is one; use the location of the PHI otherwise. 2072 DbgLoc = PN->getDebugLoc(); 2073 if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) 2074 DbgLoc = Inst->getDebugLoc(); 2075 2076 unsigned Reg = getRegForValue(PHIOp); 2077 if (!Reg) { 2078 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2079 return false; 2080 } 2081 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg)); 2082 DbgLoc = DebugLoc(); 2083 } 2084 } 2085 2086 return true; 2087 } 2088 2089 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2090 assert(LI->hasOneUse() && 2091 "tryToFoldLoad expected a LoadInst with a single use"); 2092 // We know that the load has a single use, but don't know what it is. If it 2093 // isn't one of the folded instructions, then we can't succeed here. Handle 2094 // this by scanning the single-use users of the load until we get to FoldInst. 2095 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2096 2097 const Instruction *TheUser = LI->user_back(); 2098 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2099 // Stay in the right block. 2100 TheUser->getParent() == FoldInst->getParent() && 2101 --MaxUsers) { // Don't scan too far. 2102 // If there are multiple or no uses of this instruction, then bail out. 2103 if (!TheUser->hasOneUse()) 2104 return false; 2105 2106 TheUser = TheUser->user_back(); 2107 } 2108 2109 // If we didn't find the fold instruction, then we failed to collapse the 2110 // sequence. 2111 if (TheUser != FoldInst) 2112 return false; 2113 2114 // Don't try to fold volatile loads. Target has to deal with alignment 2115 // constraints. 2116 if (LI->isVolatile()) 2117 return false; 2118 2119 // Figure out which vreg this is going into. If there is no assigned vreg yet 2120 // then there actually was no reference to it. Perhaps the load is referenced 2121 // by a dead instruction. 2122 unsigned LoadReg = getRegForValue(LI); 2123 if (!LoadReg) 2124 return false; 2125 2126 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2127 // may mean that the instruction got lowered to multiple MIs, or the use of 2128 // the loaded value ended up being multiple operands of the result. 2129 if (!MRI.hasOneUse(LoadReg)) 2130 return false; 2131 2132 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2133 MachineInstr *User = RI->getParent(); 2134 2135 // Set the insertion point properly. Folding the load can cause generation of 2136 // other random instructions (like sign extends) for addressing modes; make 2137 // sure they get inserted in a logical place before the new instruction. 2138 FuncInfo.InsertPt = User; 2139 FuncInfo.MBB = User->getParent(); 2140 2141 // Ask the target to try folding the load. 2142 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2143 } 2144 2145 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2146 // Must be an add. 2147 if (!isa<AddOperator>(Add)) 2148 return false; 2149 // Type size needs to match. 2150 if (DL.getTypeSizeInBits(GEP->getType()) != 2151 DL.getTypeSizeInBits(Add->getType())) 2152 return false; 2153 // Must be in the same basic block. 2154 if (isa<Instruction>(Add) && 2155 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2156 return false; 2157 // Must have a constant operand. 2158 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2159 } 2160 2161 MachineMemOperand * 2162 FastISel::createMachineMemOperandFor(const Instruction *I) const { 2163 const Value *Ptr; 2164 Type *ValTy; 2165 unsigned Alignment; 2166 MachineMemOperand::Flags Flags; 2167 bool IsVolatile; 2168 2169 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2170 Alignment = LI->getAlignment(); 2171 IsVolatile = LI->isVolatile(); 2172 Flags = MachineMemOperand::MOLoad; 2173 Ptr = LI->getPointerOperand(); 2174 ValTy = LI->getType(); 2175 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2176 Alignment = SI->getAlignment(); 2177 IsVolatile = SI->isVolatile(); 2178 Flags = MachineMemOperand::MOStore; 2179 Ptr = SI->getPointerOperand(); 2180 ValTy = SI->getValueOperand()->getType(); 2181 } else 2182 return nullptr; 2183 2184 bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2185 bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr; 2186 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2187 2188 AAMDNodes AAInfo; 2189 I->getAAMetadata(AAInfo); 2190 2191 if (Alignment == 0) // Ensure that codegen never sees alignment 0. 2192 Alignment = DL.getABITypeAlignment(ValTy); 2193 2194 unsigned Size = DL.getTypeStoreSize(ValTy); 2195 2196 if (IsVolatile) 2197 Flags |= MachineMemOperand::MOVolatile; 2198 if (IsNonTemporal) 2199 Flags |= MachineMemOperand::MONonTemporal; 2200 if (IsInvariant) 2201 Flags |= MachineMemOperand::MOInvariant; 2202 2203 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2204 Alignment, AAInfo, Ranges); 2205 } 2206 2207 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { 2208 // If both operands are the same, then try to optimize or fold the cmp. 2209 CmpInst::Predicate Predicate = CI->getPredicate(); 2210 if (CI->getOperand(0) != CI->getOperand(1)) 2211 return Predicate; 2212 2213 switch (Predicate) { 2214 default: llvm_unreachable("Invalid predicate!"); 2215 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; 2216 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; 2217 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; 2218 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; 2219 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; 2220 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; 2221 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; 2222 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; 2223 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; 2224 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; 2225 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; 2226 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2227 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; 2228 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2229 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; 2230 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; 2231 2232 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; 2233 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; 2234 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; 2235 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2236 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; 2237 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2238 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; 2239 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; 2240 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; 2241 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; 2242 } 2243 2244 return Predicate; 2245 } 2246