1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the FastISel class.
11 //
12 // "Fast" instruction selection is designed to emit very poor code quickly.
13 // Also, it is not designed to be able to do much lowering, so most illegal
14 // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15 // also not intended to be able to do much optimization, except in a few cases
16 // where doing optimizations reduces overall compile time.  For example, folding
17 // constants into immediate fields is often done, because it's cheap and it
18 // reduces the number of instructions later phases have to examine.
19 //
20 // "Fast" instruction selection is able to fail gracefully and transfer
21 // control to the SelectionDAG selector for operations that it doesn't
22 // support.  In many cases, this allows us to avoid duplicating a lot of
23 // the complicated lowering logic that SelectionDAG currently has.
24 //
25 // The intended use for "fast" instruction selection is "-O0" mode
26 // compilation, where the quality of the generated code is irrelevant when
27 // weighed against the speed at which the code can be generated.  Also,
28 // at -O0, the LLVM optimizers are not running, and this makes the
29 // compile time of codegen a much higher portion of the overall compile
30 // time.  Despite its limitations, "fast" instruction selection is able to
31 // handle enough code on its own to provide noticeable overall speedups
32 // in -O0 compiles.
33 //
34 // Basic operations are supported in a target-independent way, by reading
35 // the same instruction descriptions that the SelectionDAG selector reads,
36 // and identifying simple arithmetic operations that can be directly selected
37 // from simple operators.  More complicated operations currently require
38 // target-specific code.
39 //
40 //===----------------------------------------------------------------------===//
41 
42 #include "llvm/CodeGen/FastISel.h"
43 #include "llvm/ADT/APFloat.h"
44 #include "llvm/ADT/APSInt.h"
45 #include "llvm/ADT/DenseMap.h"
46 #include "llvm/ADT/Optional.h"
47 #include "llvm/ADT/SmallPtrSet.h"
48 #include "llvm/ADT/SmallString.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/ADT/Statistic.h"
51 #include "llvm/Analysis/BranchProbabilityInfo.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/CodeGen/Analysis.h"
54 #include "llvm/CodeGen/FunctionLoweringInfo.h"
55 #include "llvm/CodeGen/ISDOpcodes.h"
56 #include "llvm/CodeGen/MachineBasicBlock.h"
57 #include "llvm/CodeGen/MachineFrameInfo.h"
58 #include "llvm/CodeGen/MachineInstr.h"
59 #include "llvm/CodeGen/MachineInstrBuilder.h"
60 #include "llvm/CodeGen/MachineMemOperand.h"
61 #include "llvm/CodeGen/MachineModuleInfo.h"
62 #include "llvm/CodeGen/MachineOperand.h"
63 #include "llvm/CodeGen/MachineRegisterInfo.h"
64 #include "llvm/CodeGen/StackMaps.h"
65 #include "llvm/CodeGen/TargetInstrInfo.h"
66 #include "llvm/CodeGen/TargetLowering.h"
67 #include "llvm/CodeGen/TargetSubtargetInfo.h"
68 #include "llvm/CodeGen/ValueTypes.h"
69 #include "llvm/IR/Argument.h"
70 #include "llvm/IR/Attributes.h"
71 #include "llvm/IR/BasicBlock.h"
72 #include "llvm/IR/CallSite.h"
73 #include "llvm/IR/CallingConv.h"
74 #include "llvm/IR/Constant.h"
75 #include "llvm/IR/Constants.h"
76 #include "llvm/IR/DataLayout.h"
77 #include "llvm/IR/DebugInfo.h"
78 #include "llvm/IR/DebugLoc.h"
79 #include "llvm/IR/DerivedTypes.h"
80 #include "llvm/IR/Function.h"
81 #include "llvm/IR/GetElementPtrTypeIterator.h"
82 #include "llvm/IR/GlobalValue.h"
83 #include "llvm/IR/InlineAsm.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/LLVMContext.h"
89 #include "llvm/IR/Mangler.h"
90 #include "llvm/IR/Metadata.h"
91 #include "llvm/IR/Operator.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCInstrDesc.h"
97 #include "llvm/MC/MCRegisterInfo.h"
98 #include "llvm/Support/Casting.h"
99 #include "llvm/Support/Debug.h"
100 #include "llvm/Support/ErrorHandling.h"
101 #include "llvm/Support/MachineValueType.h"
102 #include "llvm/Support/MathExtras.h"
103 #include "llvm/Support/raw_ostream.h"
104 #include "llvm/Target/TargetMachine.h"
105 #include "llvm/Target/TargetOptions.h"
106 #include <algorithm>
107 #include <cassert>
108 #include <cstdint>
109 #include <iterator>
110 #include <utility>
111 
112 using namespace llvm;
113 
114 #define DEBUG_TYPE "isel"
115 
116 // FIXME: Remove this after the feature has proven reliable.
117 static cl::opt<bool> SinkLocalValues("fast-isel-sink-local-values",
118                                      cl::init(true), cl::Hidden,
119                                      cl::desc("Sink local values in FastISel"));
120 
121 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
122                                          "target-independent selector");
123 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
124                                     "target-specific selector");
125 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
126 
127 /// Set the current block to which generated machine instructions will be
128 /// appended.
129 void FastISel::startNewBlock() {
130   assert(LocalValueMap.empty() &&
131          "local values should be cleared after finishing a BB");
132 
133   // Instructions are appended to FuncInfo.MBB. If the basic block already
134   // contains labels or copies, use the last instruction as the last local
135   // value.
136   EmitStartPt = nullptr;
137   if (!FuncInfo.MBB->empty())
138     EmitStartPt = &FuncInfo.MBB->back();
139   LastLocalValue = EmitStartPt;
140 }
141 
142 /// Flush the local CSE map and sink anything we can.
143 void FastISel::finishBasicBlock() { flushLocalValueMap(); }
144 
145 bool FastISel::lowerArguments() {
146   if (!FuncInfo.CanLowerReturn)
147     // Fallback to SDISel argument lowering code to deal with sret pointer
148     // parameter.
149     return false;
150 
151   if (!fastLowerArguments())
152     return false;
153 
154   // Enter arguments into ValueMap for uses in non-entry BBs.
155   for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
156                                     E = FuncInfo.Fn->arg_end();
157        I != E; ++I) {
158     DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I);
159     assert(VI != LocalValueMap.end() && "Missed an argument?");
160     FuncInfo.ValueMap[&*I] = VI->second;
161   }
162   return true;
163 }
164 
165 /// Return the defined register if this instruction defines exactly one
166 /// virtual register and uses no other virtual registers. Otherwise return 0.
167 static unsigned findSinkableLocalRegDef(MachineInstr &MI) {
168   unsigned RegDef = 0;
169   for (const MachineOperand &MO : MI.operands()) {
170     if (!MO.isReg())
171       continue;
172     if (MO.isDef()) {
173       if (RegDef)
174         return 0;
175       RegDef = MO.getReg();
176     } else if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
177       // This is another use of a vreg. Don't try to sink it.
178       return 0;
179     }
180   }
181   return RegDef;
182 }
183 
184 void FastISel::flushLocalValueMap() {
185   // Try to sink local values down to their first use so that we can give them a
186   // better debug location. This has the side effect of shrinking local value
187   // live ranges, which helps out fast regalloc.
188   if (SinkLocalValues && LastLocalValue != EmitStartPt) {
189     // Sink local value materialization instructions between EmitStartPt and
190     // LastLocalValue. Visit them bottom-up, starting from LastLocalValue, to
191     // avoid inserting into the range that we're iterating over.
192     MachineBasicBlock::reverse_iterator RE =
193         EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt)
194                     : FuncInfo.MBB->rend();
195     MachineBasicBlock::reverse_iterator RI(LastLocalValue);
196 
197     InstOrderMap OrderMap;
198     for (; RI != RE;) {
199       MachineInstr &LocalMI = *RI;
200       ++RI;
201       bool Store = true;
202       if (!LocalMI.isSafeToMove(nullptr, Store))
203         continue;
204       unsigned DefReg = findSinkableLocalRegDef(LocalMI);
205       if (DefReg == 0)
206         continue;
207 
208       sinkLocalValueMaterialization(LocalMI, DefReg, OrderMap);
209     }
210   }
211 
212   LocalValueMap.clear();
213   LastLocalValue = EmitStartPt;
214   recomputeInsertPt();
215   SavedInsertPt = FuncInfo.InsertPt;
216   LastFlushPoint = FuncInfo.InsertPt;
217 }
218 
219 static bool isRegUsedByPhiNodes(unsigned DefReg,
220                                 FunctionLoweringInfo &FuncInfo) {
221   for (auto &P : FuncInfo.PHINodesToUpdate)
222     if (P.second == DefReg)
223       return true;
224   return false;
225 }
226 
227 /// Build a map of instruction orders. Return the first terminator and its
228 /// order. Consider EH_LABEL instructions to be terminators as well, since local
229 /// values for phis after invokes must be materialized before the call.
230 void FastISel::InstOrderMap::initialize(
231     MachineBasicBlock *MBB, MachineBasicBlock::iterator LastFlushPoint) {
232   unsigned Order = 0;
233   for (MachineInstr &I : *MBB) {
234     if (!FirstTerminator &&
235         (I.isTerminator() || (I.isEHLabel() && &I != &MBB->front()))) {
236       FirstTerminator = &I;
237       FirstTerminatorOrder = Order;
238     }
239     Orders[&I] = Order++;
240 
241     // We don't need to order instructions past the last flush point.
242     if (I.getIterator() == LastFlushPoint)
243       break;
244   }
245 }
246 
247 void FastISel::sinkLocalValueMaterialization(MachineInstr &LocalMI,
248                                              unsigned DefReg,
249                                              InstOrderMap &OrderMap) {
250   // If this register is used by a register fixup, MRI will not contain all
251   // the uses until after register fixups, so don't attempt to sink or DCE
252   // this instruction. Register fixups typically come from no-op cast
253   // instructions, which replace the cast instruction vreg with the local
254   // value vreg.
255   if (FuncInfo.RegsWithFixups.count(DefReg))
256     return;
257 
258   // We can DCE this instruction if there are no uses and it wasn't a
259   // materialized for a successor PHI node.
260   bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo);
261   if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) {
262     if (EmitStartPt == &LocalMI)
263       EmitStartPt = EmitStartPt->getPrevNode();
264     DEBUG(dbgs() << "removing dead local value materialization " << LocalMI);
265     OrderMap.Orders.erase(&LocalMI);
266     LocalMI.eraseFromParent();
267     return;
268   }
269 
270   // Number the instructions if we haven't yet so we can efficiently find the
271   // earliest use.
272   if (OrderMap.Orders.empty())
273     OrderMap.initialize(FuncInfo.MBB, LastFlushPoint);
274 
275   // Find the first user in the BB.
276   MachineInstr *FirstUser = nullptr;
277   unsigned FirstOrder = std::numeric_limits<unsigned>::max();
278   for (MachineInstr &UseInst : MRI.use_nodbg_instructions(DefReg)) {
279     auto I = OrderMap.Orders.find(&UseInst);
280     assert(I != OrderMap.Orders.end() &&
281            "local value used by instruction outside local region");
282     unsigned UseOrder = I->second;
283     if (UseOrder < FirstOrder) {
284       FirstOrder = UseOrder;
285       FirstUser = &UseInst;
286     }
287   }
288 
289   // The insertion point will be the first terminator or the first user,
290   // whichever came first. If there was no terminator, this must be a
291   // fallthrough block and the insertion point is the end of the block.
292   MachineBasicBlock::instr_iterator SinkPos;
293   if (UsedByPHI && OrderMap.FirstTerminatorOrder < FirstOrder) {
294     FirstOrder = OrderMap.FirstTerminatorOrder;
295     SinkPos = OrderMap.FirstTerminator->getIterator();
296   } else if (FirstUser) {
297     SinkPos = FirstUser->getIterator();
298   } else {
299     assert(UsedByPHI && "must be users if not used by a phi");
300     SinkPos = FuncInfo.MBB->instr_end();
301   }
302 
303   // Collect all DBG_VALUEs before the new insertion position so that we can
304   // sink them.
305   SmallVector<MachineInstr *, 1> DbgValues;
306   for (MachineInstr &DbgVal : MRI.use_instructions(DefReg)) {
307     if (!DbgVal.isDebugValue())
308       continue;
309     unsigned UseOrder = OrderMap.Orders[&DbgVal];
310     if (UseOrder < FirstOrder)
311       DbgValues.push_back(&DbgVal);
312   }
313 
314   // Sink LocalMI before SinkPos and assign it the same DebugLoc.
315   DEBUG(dbgs() << "sinking local value to first use " << LocalMI);
316   FuncInfo.MBB->remove(&LocalMI);
317   FuncInfo.MBB->insert(SinkPos, &LocalMI);
318   if (SinkPos != FuncInfo.MBB->end())
319     LocalMI.setDebugLoc(SinkPos->getDebugLoc());
320 
321   // Sink any debug values that we've collected.
322   for (MachineInstr *DI : DbgValues) {
323     FuncInfo.MBB->remove(DI);
324     FuncInfo.MBB->insert(SinkPos, DI);
325   }
326 }
327 
328 bool FastISel::hasTrivialKill(const Value *V) {
329   // Don't consider constants or arguments to have trivial kills.
330   const Instruction *I = dyn_cast<Instruction>(V);
331   if (!I)
332     return false;
333 
334   // No-op casts are trivially coalesced by fast-isel.
335   if (const auto *Cast = dyn_cast<CastInst>(I))
336     if (Cast->isNoopCast(DL) && !hasTrivialKill(Cast->getOperand(0)))
337       return false;
338 
339   // Even the value might have only one use in the LLVM IR, it is possible that
340   // FastISel might fold the use into another instruction and now there is more
341   // than one use at the Machine Instruction level.
342   unsigned Reg = lookUpRegForValue(V);
343   if (Reg && !MRI.use_empty(Reg))
344     return false;
345 
346   // GEPs with all zero indices are trivially coalesced by fast-isel.
347   if (const auto *GEP = dyn_cast<GetElementPtrInst>(I))
348     if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
349       return false;
350 
351   // Only instructions with a single use in the same basic block are considered
352   // to have trivial kills.
353   return I->hasOneUse() &&
354          !(I->getOpcode() == Instruction::BitCast ||
355            I->getOpcode() == Instruction::PtrToInt ||
356            I->getOpcode() == Instruction::IntToPtr) &&
357          cast<Instruction>(*I->user_begin())->getParent() == I->getParent();
358 }
359 
360 unsigned FastISel::getRegForValue(const Value *V) {
361   EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
362   // Don't handle non-simple values in FastISel.
363   if (!RealVT.isSimple())
364     return 0;
365 
366   // Ignore illegal types. We must do this before looking up the value
367   // in ValueMap because Arguments are given virtual registers regardless
368   // of whether FastISel can handle them.
369   MVT VT = RealVT.getSimpleVT();
370   if (!TLI.isTypeLegal(VT)) {
371     // Handle integer promotions, though, because they're common and easy.
372     if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
373       VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
374     else
375       return 0;
376   }
377 
378   // Look up the value to see if we already have a register for it.
379   unsigned Reg = lookUpRegForValue(V);
380   if (Reg)
381     return Reg;
382 
383   // In bottom-up mode, just create the virtual register which will be used
384   // to hold the value. It will be materialized later.
385   if (isa<Instruction>(V) &&
386       (!isa<AllocaInst>(V) ||
387        !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
388     return FuncInfo.InitializeRegForValue(V);
389 
390   SavePoint SaveInsertPt = enterLocalValueArea();
391 
392   // Materialize the value in a register. Emit any instructions in the
393   // local value area.
394   Reg = materializeRegForValue(V, VT);
395 
396   leaveLocalValueArea(SaveInsertPt);
397 
398   return Reg;
399 }
400 
401 unsigned FastISel::materializeConstant(const Value *V, MVT VT) {
402   unsigned Reg = 0;
403   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
404     if (CI->getValue().getActiveBits() <= 64)
405       Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
406   } else if (isa<AllocaInst>(V))
407     Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
408   else if (isa<ConstantPointerNull>(V))
409     // Translate this as an integer zero so that it can be
410     // local-CSE'd with actual integer zeros.
411     Reg = getRegForValue(
412         Constant::getNullValue(DL.getIntPtrType(V->getContext())));
413   else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
414     if (CF->isNullValue())
415       Reg = fastMaterializeFloatZero(CF);
416     else
417       // Try to emit the constant directly.
418       Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
419 
420     if (!Reg) {
421       // Try to emit the constant by using an integer constant with a cast.
422       const APFloat &Flt = CF->getValueAPF();
423       EVT IntVT = TLI.getPointerTy(DL);
424       uint32_t IntBitWidth = IntVT.getSizeInBits();
425       APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false);
426       bool isExact;
427       (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact);
428       if (isExact) {
429         unsigned IntegerReg =
430             getRegForValue(ConstantInt::get(V->getContext(), SIntVal));
431         if (IntegerReg != 0)
432           Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg,
433                            /*Kill=*/false);
434       }
435     }
436   } else if (const auto *Op = dyn_cast<Operator>(V)) {
437     if (!selectOperator(Op, Op->getOpcode()))
438       if (!isa<Instruction>(Op) ||
439           !fastSelectInstruction(cast<Instruction>(Op)))
440         return 0;
441     Reg = lookUpRegForValue(Op);
442   } else if (isa<UndefValue>(V)) {
443     Reg = createResultReg(TLI.getRegClassFor(VT));
444     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
445             TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
446   }
447   return Reg;
448 }
449 
450 /// Helper for getRegForValue. This function is called when the value isn't
451 /// already available in a register and must be materialized with new
452 /// instructions.
453 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
454   unsigned Reg = 0;
455   // Give the target-specific code a try first.
456   if (isa<Constant>(V))
457     Reg = fastMaterializeConstant(cast<Constant>(V));
458 
459   // If target-specific code couldn't or didn't want to handle the value, then
460   // give target-independent code a try.
461   if (!Reg)
462     Reg = materializeConstant(V, VT);
463 
464   // Don't cache constant materializations in the general ValueMap.
465   // To do so would require tracking what uses they dominate.
466   if (Reg) {
467     LocalValueMap[V] = Reg;
468     LastLocalValue = MRI.getVRegDef(Reg);
469   }
470   return Reg;
471 }
472 
473 unsigned FastISel::lookUpRegForValue(const Value *V) {
474   // Look up the value to see if we already have a register for it. We
475   // cache values defined by Instructions across blocks, and other values
476   // only locally. This is because Instructions already have the SSA
477   // def-dominates-use requirement enforced.
478   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
479   if (I != FuncInfo.ValueMap.end())
480     return I->second;
481   return LocalValueMap[V];
482 }
483 
484 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
485   if (!isa<Instruction>(I)) {
486     LocalValueMap[I] = Reg;
487     return;
488   }
489 
490   unsigned &AssignedReg = FuncInfo.ValueMap[I];
491   if (AssignedReg == 0)
492     // Use the new register.
493     AssignedReg = Reg;
494   else if (Reg != AssignedReg) {
495     // Arrange for uses of AssignedReg to be replaced by uses of Reg.
496     for (unsigned i = 0; i < NumRegs; i++) {
497       FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
498       FuncInfo.RegsWithFixups.insert(Reg + i);
499     }
500 
501     AssignedReg = Reg;
502   }
503 }
504 
505 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
506   unsigned IdxN = getRegForValue(Idx);
507   if (IdxN == 0)
508     // Unhandled operand. Halt "fast" selection and bail.
509     return std::pair<unsigned, bool>(0, false);
510 
511   bool IdxNIsKill = hasTrivialKill(Idx);
512 
513   // If the index is smaller or larger than intptr_t, truncate or extend it.
514   MVT PtrVT = TLI.getPointerTy(DL);
515   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
516   if (IdxVT.bitsLT(PtrVT)) {
517     IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN,
518                       IdxNIsKill);
519     IdxNIsKill = true;
520   } else if (IdxVT.bitsGT(PtrVT)) {
521     IdxN =
522         fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill);
523     IdxNIsKill = true;
524   }
525   return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
526 }
527 
528 void FastISel::recomputeInsertPt() {
529   if (getLastLocalValue()) {
530     FuncInfo.InsertPt = getLastLocalValue();
531     FuncInfo.MBB = FuncInfo.InsertPt->getParent();
532     ++FuncInfo.InsertPt;
533   } else
534     FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
535 
536   // Now skip past any EH_LABELs, which must remain at the beginning.
537   while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
538          FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
539     ++FuncInfo.InsertPt;
540 }
541 
542 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
543                               MachineBasicBlock::iterator E) {
544   assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 &&
545          "Invalid iterator!");
546   while (I != E) {
547     MachineInstr *Dead = &*I;
548     ++I;
549     Dead->eraseFromParent();
550     ++NumFastIselDead;
551   }
552   recomputeInsertPt();
553 }
554 
555 FastISel::SavePoint FastISel::enterLocalValueArea() {
556   MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
557   DebugLoc OldDL = DbgLoc;
558   recomputeInsertPt();
559   DbgLoc = DebugLoc();
560   SavePoint SP = {OldInsertPt, OldDL};
561   return SP;
562 }
563 
564 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
565   if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
566     LastLocalValue = &*std::prev(FuncInfo.InsertPt);
567 
568   // Restore the previous insert position.
569   FuncInfo.InsertPt = OldInsertPt.InsertPt;
570   DbgLoc = OldInsertPt.DL;
571 }
572 
573 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
574   EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
575   if (VT == MVT::Other || !VT.isSimple())
576     // Unhandled type. Halt "fast" selection and bail.
577     return false;
578 
579   // We only handle legal types. For example, on x86-32 the instruction
580   // selector contains all of the 64-bit instructions from x86-64,
581   // under the assumption that i64 won't be used if the target doesn't
582   // support it.
583   if (!TLI.isTypeLegal(VT)) {
584     // MVT::i1 is special. Allow AND, OR, or XOR because they
585     // don't require additional zeroing, which makes them easy.
586     if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
587                           ISDOpcode == ISD::XOR))
588       VT = TLI.getTypeToTransformTo(I->getContext(), VT);
589     else
590       return false;
591   }
592 
593   // Check if the first operand is a constant, and handle it as "ri".  At -O0,
594   // we don't have anything that canonicalizes operand order.
595   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
596     if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
597       unsigned Op1 = getRegForValue(I->getOperand(1));
598       if (!Op1)
599         return false;
600       bool Op1IsKill = hasTrivialKill(I->getOperand(1));
601 
602       unsigned ResultReg =
603           fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill,
604                        CI->getZExtValue(), VT.getSimpleVT());
605       if (!ResultReg)
606         return false;
607 
608       // We successfully emitted code for the given LLVM Instruction.
609       updateValueMap(I, ResultReg);
610       return true;
611     }
612 
613   unsigned Op0 = getRegForValue(I->getOperand(0));
614   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
615     return false;
616   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
617 
618   // Check if the second operand is a constant and handle it appropriately.
619   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
620     uint64_t Imm = CI->getSExtValue();
621 
622     // Transform "sdiv exact X, 8" -> "sra X, 3".
623     if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
624         cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
625       Imm = Log2_64(Imm);
626       ISDOpcode = ISD::SRA;
627     }
628 
629     // Transform "urem x, pow2" -> "and x, pow2-1".
630     if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
631         isPowerOf2_64(Imm)) {
632       --Imm;
633       ISDOpcode = ISD::AND;
634     }
635 
636     unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
637                                       Op0IsKill, Imm, VT.getSimpleVT());
638     if (!ResultReg)
639       return false;
640 
641     // We successfully emitted code for the given LLVM Instruction.
642     updateValueMap(I, ResultReg);
643     return true;
644   }
645 
646   unsigned Op1 = getRegForValue(I->getOperand(1));
647   if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
648     return false;
649   bool Op1IsKill = hasTrivialKill(I->getOperand(1));
650 
651   // Now we have both operands in registers. Emit the instruction.
652   unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
653                                    ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill);
654   if (!ResultReg)
655     // Target-specific code wasn't able to find a machine opcode for
656     // the given ISD opcode and type. Halt "fast" selection and bail.
657     return false;
658 
659   // We successfully emitted code for the given LLVM Instruction.
660   updateValueMap(I, ResultReg);
661   return true;
662 }
663 
664 bool FastISel::selectGetElementPtr(const User *I) {
665   unsigned N = getRegForValue(I->getOperand(0));
666   if (!N) // Unhandled operand. Halt "fast" selection and bail.
667     return false;
668   bool NIsKill = hasTrivialKill(I->getOperand(0));
669 
670   // Keep a running tab of the total offset to coalesce multiple N = N + Offset
671   // into a single N = N + TotalOffset.
672   uint64_t TotalOffs = 0;
673   // FIXME: What's a good SWAG number for MaxOffs?
674   uint64_t MaxOffs = 2048;
675   MVT VT = TLI.getPointerTy(DL);
676   for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
677        GTI != E; ++GTI) {
678     const Value *Idx = GTI.getOperand();
679     if (StructType *StTy = GTI.getStructTypeOrNull()) {
680       uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
681       if (Field) {
682         // N = N + Offset
683         TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
684         if (TotalOffs >= MaxOffs) {
685           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
686           if (!N) // Unhandled operand. Halt "fast" selection and bail.
687             return false;
688           NIsKill = true;
689           TotalOffs = 0;
690         }
691       }
692     } else {
693       Type *Ty = GTI.getIndexedType();
694 
695       // If this is a constant subscript, handle it quickly.
696       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
697         if (CI->isZero())
698           continue;
699         // N = N + Offset
700         uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
701         TotalOffs += DL.getTypeAllocSize(Ty) * IdxN;
702         if (TotalOffs >= MaxOffs) {
703           N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
704           if (!N) // Unhandled operand. Halt "fast" selection and bail.
705             return false;
706           NIsKill = true;
707           TotalOffs = 0;
708         }
709         continue;
710       }
711       if (TotalOffs) {
712         N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
713         if (!N) // Unhandled operand. Halt "fast" selection and bail.
714           return false;
715         NIsKill = true;
716         TotalOffs = 0;
717       }
718 
719       // N = N + Idx * ElementSize;
720       uint64_t ElementSize = DL.getTypeAllocSize(Ty);
721       std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
722       unsigned IdxN = Pair.first;
723       bool IdxNIsKill = Pair.second;
724       if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
725         return false;
726 
727       if (ElementSize != 1) {
728         IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
729         if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
730           return false;
731         IdxNIsKill = true;
732       }
733       N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
734       if (!N) // Unhandled operand. Halt "fast" selection and bail.
735         return false;
736     }
737   }
738   if (TotalOffs) {
739     N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
740     if (!N) // Unhandled operand. Halt "fast" selection and bail.
741       return false;
742   }
743 
744   // We successfully emitted code for the given LLVM Instruction.
745   updateValueMap(I, N);
746   return true;
747 }
748 
749 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
750                                    const CallInst *CI, unsigned StartIdx) {
751   for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) {
752     Value *Val = CI->getArgOperand(i);
753     // Check for constants and encode them with a StackMaps::ConstantOp prefix.
754     if (const auto *C = dyn_cast<ConstantInt>(Val)) {
755       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
756       Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
757     } else if (isa<ConstantPointerNull>(Val)) {
758       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
759       Ops.push_back(MachineOperand::CreateImm(0));
760     } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
761       // Values coming from a stack location also require a special encoding,
762       // but that is added later on by the target specific frame index
763       // elimination implementation.
764       auto SI = FuncInfo.StaticAllocaMap.find(AI);
765       if (SI != FuncInfo.StaticAllocaMap.end())
766         Ops.push_back(MachineOperand::CreateFI(SI->second));
767       else
768         return false;
769     } else {
770       unsigned Reg = getRegForValue(Val);
771       if (!Reg)
772         return false;
773       Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
774     }
775   }
776   return true;
777 }
778 
779 bool FastISel::selectStackmap(const CallInst *I) {
780   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
781   //                                  [live variables...])
782   assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
783          "Stackmap cannot return a value.");
784 
785   // The stackmap intrinsic only records the live variables (the arguments
786   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
787   // intrinsic, this won't be lowered to a function call. This means we don't
788   // have to worry about calling conventions and target-specific lowering code.
789   // Instead we perform the call lowering right here.
790   //
791   // CALLSEQ_START(0, 0...)
792   // STACKMAP(id, nbytes, ...)
793   // CALLSEQ_END(0, 0)
794   //
795   SmallVector<MachineOperand, 32> Ops;
796 
797   // Add the <id> and <numBytes> constants.
798   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
799          "Expected a constant integer.");
800   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
801   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
802 
803   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
804          "Expected a constant integer.");
805   const auto *NumBytes =
806       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
807   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
808 
809   // Push live variables for the stack map (skipping the first two arguments
810   // <id> and <numBytes>).
811   if (!addStackMapLiveVars(Ops, I, 2))
812     return false;
813 
814   // We are not adding any register mask info here, because the stackmap doesn't
815   // clobber anything.
816 
817   // Add scratch registers as implicit def and early clobber.
818   CallingConv::ID CC = I->getCallingConv();
819   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
820   for (unsigned i = 0; ScratchRegs[i]; ++i)
821     Ops.push_back(MachineOperand::CreateReg(
822         ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
823         /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
824 
825   // Issue CALLSEQ_START
826   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
827   auto Builder =
828       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown));
829   const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
830   for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
831     Builder.addImm(0);
832 
833   // Issue STACKMAP.
834   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
835                                     TII.get(TargetOpcode::STACKMAP));
836   for (auto const &MO : Ops)
837     MIB.add(MO);
838 
839   // Issue CALLSEQ_END
840   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
841   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
842       .addImm(0)
843       .addImm(0);
844 
845   // Inform the Frame Information that we have a stackmap in this function.
846   FuncInfo.MF->getFrameInfo().setHasStackMap();
847 
848   return true;
849 }
850 
851 /// Lower an argument list according to the target calling convention.
852 ///
853 /// This is a helper for lowering intrinsics that follow a target calling
854 /// convention or require stack pointer adjustment. Only a subset of the
855 /// intrinsic's operands need to participate in the calling convention.
856 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
857                                  unsigned NumArgs, const Value *Callee,
858                                  bool ForceRetVoidTy, CallLoweringInfo &CLI) {
859   ArgListTy Args;
860   Args.reserve(NumArgs);
861 
862   // Populate the argument list.
863   ImmutableCallSite CS(CI);
864   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) {
865     Value *V = CI->getOperand(ArgI);
866 
867     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
868 
869     ArgListEntry Entry;
870     Entry.Val = V;
871     Entry.Ty = V->getType();
872     Entry.setAttributes(&CS, ArgI);
873     Args.push_back(Entry);
874   }
875 
876   Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
877                                : CI->getType();
878   CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
879 
880   return lowerCallTo(CLI);
881 }
882 
883 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
884     const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
885     StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
886   SmallString<32> MangledName;
887   Mangler::getNameWithPrefix(MangledName, Target, DL);
888   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
889   return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
890 }
891 
892 bool FastISel::selectPatchpoint(const CallInst *I) {
893   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
894   //                                                 i32 <numBytes>,
895   //                                                 i8* <target>,
896   //                                                 i32 <numArgs>,
897   //                                                 [Args...],
898   //                                                 [live variables...])
899   CallingConv::ID CC = I->getCallingConv();
900   bool IsAnyRegCC = CC == CallingConv::AnyReg;
901   bool HasDef = !I->getType()->isVoidTy();
902   Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();
903 
904   // Get the real number of arguments participating in the call <numArgs>
905   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
906          "Expected a constant integer.");
907   const auto *NumArgsVal =
908       cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
909   unsigned NumArgs = NumArgsVal->getZExtValue();
910 
911   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
912   // This includes all meta-operands up to but not including CC.
913   unsigned NumMetaOpers = PatchPointOpers::CCPos;
914   assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs &&
915          "Not enough arguments provided to the patchpoint intrinsic");
916 
917   // For AnyRegCC the arguments are lowered later on manually.
918   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
919   CallLoweringInfo CLI;
920   CLI.setIsPatchPoint();
921   if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
922     return false;
923 
924   assert(CLI.Call && "No call instruction specified.");
925 
926   SmallVector<MachineOperand, 32> Ops;
927 
928   // Add an explicit result reg if we use the anyreg calling convention.
929   if (IsAnyRegCC && HasDef) {
930     assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
931     CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
932     CLI.NumResultRegs = 1;
933     Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true));
934   }
935 
936   // Add the <id> and <numBytes> constants.
937   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
938          "Expected a constant integer.");
939   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
940   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
941 
942   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
943          "Expected a constant integer.");
944   const auto *NumBytes =
945       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
946   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
947 
948   // Add the call target.
949   if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
950     uint64_t CalleeConstAddr =
951       cast<ConstantInt>(C->getOperand(0))->getZExtValue();
952     Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
953   } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
954     if (C->getOpcode() == Instruction::IntToPtr) {
955       uint64_t CalleeConstAddr =
956         cast<ConstantInt>(C->getOperand(0))->getZExtValue();
957       Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
958     } else
959       llvm_unreachable("Unsupported ConstantExpr.");
960   } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
961     Ops.push_back(MachineOperand::CreateGA(GV, 0));
962   } else if (isa<ConstantPointerNull>(Callee))
963     Ops.push_back(MachineOperand::CreateImm(0));
964   else
965     llvm_unreachable("Unsupported callee address.");
966 
967   // Adjust <numArgs> to account for any arguments that have been passed on
968   // the stack instead.
969   unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
970   Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
971 
972   // Add the calling convention
973   Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
974 
975   // Add the arguments we omitted previously. The register allocator should
976   // place these in any free register.
977   if (IsAnyRegCC) {
978     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
979       unsigned Reg = getRegForValue(I->getArgOperand(i));
980       if (!Reg)
981         return false;
982       Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
983     }
984   }
985 
986   // Push the arguments from the call instruction.
987   for (auto Reg : CLI.OutRegs)
988     Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
989 
990   // Push live variables for the stack map.
991   if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
992     return false;
993 
994   // Push the register mask info.
995   Ops.push_back(MachineOperand::CreateRegMask(
996       TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
997 
998   // Add scratch registers as implicit def and early clobber.
999   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
1000   for (unsigned i = 0; ScratchRegs[i]; ++i)
1001     Ops.push_back(MachineOperand::CreateReg(
1002         ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
1003         /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
1004 
1005   // Add implicit defs (return values).
1006   for (auto Reg : CLI.InRegs)
1007     Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true,
1008                                             /*IsImpl=*/true));
1009 
1010   // Insert the patchpoint instruction before the call generated by the target.
1011   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc,
1012                                     TII.get(TargetOpcode::PATCHPOINT));
1013 
1014   for (auto &MO : Ops)
1015     MIB.add(MO);
1016 
1017   MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1018 
1019   // Delete the original call instruction.
1020   CLI.Call->eraseFromParent();
1021 
1022   // Inform the Frame Information that we have a patchpoint in this function.
1023   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
1024 
1025   if (CLI.NumResultRegs)
1026     updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
1027   return true;
1028 }
1029 
1030 bool FastISel::selectXRayCustomEvent(const CallInst *I) {
1031   const auto &Triple = TM.getTargetTriple();
1032   if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
1033     return true; // don't do anything to this instruction.
1034   SmallVector<MachineOperand, 8> Ops;
1035   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
1036                                           /*IsDef=*/false));
1037   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
1038                                           /*IsDef=*/false));
1039   MachineInstrBuilder MIB =
1040       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1041               TII.get(TargetOpcode::PATCHABLE_EVENT_CALL));
1042   for (auto &MO : Ops)
1043     MIB.add(MO);
1044 
1045   // Insert the Patchable Event Call instruction, that gets lowered properly.
1046   return true;
1047 }
1048 
1049 bool FastISel::selectXRayTypedEvent(const CallInst *I) {
1050   const auto &Triple = TM.getTargetTriple();
1051   if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
1052     return true; // don't do anything to this instruction.
1053   SmallVector<MachineOperand, 8> Ops;
1054   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
1055                                           /*IsDef=*/false));
1056   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
1057                                           /*IsDef=*/false));
1058   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)),
1059                                           /*IsDef=*/false));
1060   MachineInstrBuilder MIB =
1061       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1062               TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL));
1063   for (auto &MO : Ops)
1064     MIB.add(MO);
1065 
1066   // Insert the Patchable Typed Event Call instruction, that gets lowered properly.
1067   return true;
1068 }
1069 
1070 /// Returns an AttributeList representing the attributes applied to the return
1071 /// value of the given call.
1072 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
1073   SmallVector<Attribute::AttrKind, 2> Attrs;
1074   if (CLI.RetSExt)
1075     Attrs.push_back(Attribute::SExt);
1076   if (CLI.RetZExt)
1077     Attrs.push_back(Attribute::ZExt);
1078   if (CLI.IsInReg)
1079     Attrs.push_back(Attribute::InReg);
1080 
1081   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
1082                             Attrs);
1083 }
1084 
1085 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
1086                            unsigned NumArgs) {
1087   MCContext &Ctx = MF->getContext();
1088   SmallString<32> MangledName;
1089   Mangler::getNameWithPrefix(MangledName, SymName, DL);
1090   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
1091   return lowerCallTo(CI, Sym, NumArgs);
1092 }
1093 
1094 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol,
1095                            unsigned NumArgs) {
1096   ImmutableCallSite CS(CI);
1097 
1098   FunctionType *FTy = CS.getFunctionType();
1099   Type *RetTy = CS.getType();
1100 
1101   ArgListTy Args;
1102   Args.reserve(NumArgs);
1103 
1104   // Populate the argument list.
1105   // Attributes for args start at offset 1, after the return attribute.
1106   for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
1107     Value *V = CI->getOperand(ArgI);
1108 
1109     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
1110 
1111     ArgListEntry Entry;
1112     Entry.Val = V;
1113     Entry.Ty = V->getType();
1114     Entry.setAttributes(&CS, ArgI);
1115     Args.push_back(Entry);
1116   }
1117   TLI.markLibCallAttributes(MF, CS.getCallingConv(), Args);
1118 
1119   CallLoweringInfo CLI;
1120   CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs);
1121 
1122   return lowerCallTo(CLI);
1123 }
1124 
1125 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
1126   // Handle the incoming return values from the call.
1127   CLI.clearIns();
1128   SmallVector<EVT, 4> RetTys;
1129   ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);
1130 
1131   SmallVector<ISD::OutputArg, 4> Outs;
1132   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);
1133 
1134   bool CanLowerReturn = TLI.CanLowerReturn(
1135       CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
1136 
1137   // FIXME: sret demotion isn't supported yet - bail out.
1138   if (!CanLowerReturn)
1139     return false;
1140 
1141   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
1142     EVT VT = RetTys[I];
1143     MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
1144     unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
1145     for (unsigned i = 0; i != NumRegs; ++i) {
1146       ISD::InputArg MyFlags;
1147       MyFlags.VT = RegisterVT;
1148       MyFlags.ArgVT = VT;
1149       MyFlags.Used = CLI.IsReturnValueUsed;
1150       if (CLI.RetSExt)
1151         MyFlags.Flags.setSExt();
1152       if (CLI.RetZExt)
1153         MyFlags.Flags.setZExt();
1154       if (CLI.IsInReg)
1155         MyFlags.Flags.setInReg();
1156       CLI.Ins.push_back(MyFlags);
1157     }
1158   }
1159 
1160   // Handle all of the outgoing arguments.
1161   CLI.clearOuts();
1162   for (auto &Arg : CLI.getArgs()) {
1163     Type *FinalType = Arg.Ty;
1164     if (Arg.IsByVal)
1165       FinalType = cast<PointerType>(Arg.Ty)->getElementType();
1166     bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1167         FinalType, CLI.CallConv, CLI.IsVarArg);
1168 
1169     ISD::ArgFlagsTy Flags;
1170     if (Arg.IsZExt)
1171       Flags.setZExt();
1172     if (Arg.IsSExt)
1173       Flags.setSExt();
1174     if (Arg.IsInReg)
1175       Flags.setInReg();
1176     if (Arg.IsSRet)
1177       Flags.setSRet();
1178     if (Arg.IsSwiftSelf)
1179       Flags.setSwiftSelf();
1180     if (Arg.IsSwiftError)
1181       Flags.setSwiftError();
1182     if (Arg.IsByVal)
1183       Flags.setByVal();
1184     if (Arg.IsInAlloca) {
1185       Flags.setInAlloca();
1186       // Set the byval flag for CCAssignFn callbacks that don't know about
1187       // inalloca. This way we can know how many bytes we should've allocated
1188       // and how many bytes a callee cleanup function will pop.  If we port
1189       // inalloca to more targets, we'll have to add custom inalloca handling in
1190       // the various CC lowering callbacks.
1191       Flags.setByVal();
1192     }
1193     if (Arg.IsByVal || Arg.IsInAlloca) {
1194       PointerType *Ty = cast<PointerType>(Arg.Ty);
1195       Type *ElementTy = Ty->getElementType();
1196       unsigned FrameSize = DL.getTypeAllocSize(ElementTy);
1197       // For ByVal, alignment should come from FE. BE will guess if this info is
1198       // not there, but there are cases it cannot get right.
1199       unsigned FrameAlign = Arg.Alignment;
1200       if (!FrameAlign)
1201         FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL);
1202       Flags.setByValSize(FrameSize);
1203       Flags.setByValAlign(FrameAlign);
1204     }
1205     if (Arg.IsNest)
1206       Flags.setNest();
1207     if (NeedsRegBlock)
1208       Flags.setInConsecutiveRegs();
1209     unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty);
1210     Flags.setOrigAlign(OriginalAlignment);
1211 
1212     CLI.OutVals.push_back(Arg.Val);
1213     CLI.OutFlags.push_back(Flags);
1214   }
1215 
1216   if (!fastLowerCall(CLI))
1217     return false;
1218 
1219   // Set all unused physreg defs as dead.
1220   assert(CLI.Call && "No call instruction specified.");
1221   CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1222 
1223   if (CLI.NumResultRegs && CLI.CS)
1224     updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs);
1225 
1226   return true;
1227 }
1228 
1229 bool FastISel::lowerCall(const CallInst *CI) {
1230   ImmutableCallSite CS(CI);
1231 
1232   FunctionType *FuncTy = CS.getFunctionType();
1233   Type *RetTy = CS.getType();
1234 
1235   ArgListTy Args;
1236   ArgListEntry Entry;
1237   Args.reserve(CS.arg_size());
1238 
1239   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1240        i != e; ++i) {
1241     Value *V = *i;
1242 
1243     // Skip empty types
1244     if (V->getType()->isEmptyTy())
1245       continue;
1246 
1247     Entry.Val = V;
1248     Entry.Ty = V->getType();
1249 
1250     // Skip the first return-type Attribute to get to params.
1251     Entry.setAttributes(&CS, i - CS.arg_begin());
1252     Args.push_back(Entry);
1253   }
1254 
1255   // Check if target-independent constraints permit a tail call here.
1256   // Target-dependent constraints are checked within fastLowerCall.
1257   bool IsTailCall = CI->isTailCall();
1258   if (IsTailCall && !isInTailCallPosition(CS, TM))
1259     IsTailCall = false;
1260 
1261   CallLoweringInfo CLI;
1262   CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS)
1263       .setTailCall(IsTailCall);
1264 
1265   return lowerCallTo(CLI);
1266 }
1267 
1268 bool FastISel::selectCall(const User *I) {
1269   const CallInst *Call = cast<CallInst>(I);
1270 
1271   // Handle simple inline asms.
1272   if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
1273     // If the inline asm has side effects, then make sure that no local value
1274     // lives across by flushing the local value map.
1275     if (IA->hasSideEffects())
1276       flushLocalValueMap();
1277 
1278     // Don't attempt to handle constraints.
1279     if (!IA->getConstraintString().empty())
1280       return false;
1281 
1282     unsigned ExtraInfo = 0;
1283     if (IA->hasSideEffects())
1284       ExtraInfo |= InlineAsm::Extra_HasSideEffects;
1285     if (IA->isAlignStack())
1286       ExtraInfo |= InlineAsm::Extra_IsAlignStack;
1287 
1288     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1289             TII.get(TargetOpcode::INLINEASM))
1290         .addExternalSymbol(IA->getAsmString().c_str())
1291         .addImm(ExtraInfo);
1292     return true;
1293   }
1294 
1295   MachineModuleInfo &MMI = FuncInfo.MF->getMMI();
1296   computeUsesVAFloatArgument(*Call, MMI);
1297 
1298   // Handle intrinsic function calls.
1299   if (const auto *II = dyn_cast<IntrinsicInst>(Call))
1300     return selectIntrinsicCall(II);
1301 
1302   // Usually, it does not make sense to initialize a value,
1303   // make an unrelated function call and use the value, because
1304   // it tends to be spilled on the stack. So, we move the pointer
1305   // to the last local value to the beginning of the block, so that
1306   // all the values which have already been materialized,
1307   // appear after the call. It also makes sense to skip intrinsics
1308   // since they tend to be inlined.
1309   flushLocalValueMap();
1310 
1311   return lowerCall(Call);
1312 }
1313 
1314 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
1315   switch (II->getIntrinsicID()) {
1316   default:
1317     break;
1318   // At -O0 we don't care about the lifetime intrinsics.
1319   case Intrinsic::lifetime_start:
1320   case Intrinsic::lifetime_end:
1321   // The donothing intrinsic does, well, nothing.
1322   case Intrinsic::donothing:
1323   // Neither does the sideeffect intrinsic.
1324   case Intrinsic::sideeffect:
1325   // Neither does the assume intrinsic; it's also OK not to codegen its operand.
1326   case Intrinsic::assume:
1327     return true;
1328   case Intrinsic::dbg_declare: {
1329     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
1330     assert(DI->getVariable() && "Missing variable");
1331     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1332       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1333       return true;
1334     }
1335 
1336     const Value *Address = DI->getAddress();
1337     if (!Address || isa<UndefValue>(Address)) {
1338       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1339       return true;
1340     }
1341 
1342     // Byval arguments with frame indices were already handled after argument
1343     // lowering and before isel.
1344     const auto *Arg =
1345         dyn_cast<Argument>(Address->stripInBoundsConstantOffsets());
1346     if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX)
1347       return true;
1348 
1349     Optional<MachineOperand> Op;
1350     if (unsigned Reg = lookUpRegForValue(Address))
1351       Op = MachineOperand::CreateReg(Reg, false);
1352 
1353     // If we have a VLA that has a "use" in a metadata node that's then used
1354     // here but it has no other uses, then we have a problem. E.g.,
1355     //
1356     //   int foo (const int *x) {
1357     //     char a[*x];
1358     //     return 0;
1359     //   }
1360     //
1361     // If we assign 'a' a vreg and fast isel later on has to use the selection
1362     // DAG isel, it will want to copy the value to the vreg. However, there are
1363     // no uses, which goes counter to what selection DAG isel expects.
1364     if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
1365         (!isa<AllocaInst>(Address) ||
1366          !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
1367       Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
1368                                      false);
1369 
1370     if (Op) {
1371       assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1372              "Expected inlined-at fields to agree");
1373       if (Op->isReg()) {
1374         Op->setIsDebug(true);
1375         // A dbg.declare describes the address of a source variable, so lower it
1376         // into an indirect DBG_VALUE.
1377         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1378                 TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true,
1379                 Op->getReg(), DI->getVariable(), DI->getExpression());
1380       } else
1381         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1382                 TII.get(TargetOpcode::DBG_VALUE))
1383             .add(*Op)
1384             .addImm(0)
1385             .addMetadata(DI->getVariable())
1386             .addMetadata(DI->getExpression());
1387     } else {
1388       // We can't yet handle anything else here because it would require
1389       // generating code, thus altering codegen because of debug info.
1390       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1391     }
1392     return true;
1393   }
1394   case Intrinsic::dbg_value: {
1395     // This form of DBG_VALUE is target-independent.
1396     const DbgValueInst *DI = cast<DbgValueInst>(II);
1397     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1398     const Value *V = DI->getValue();
1399     assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1400            "Expected inlined-at fields to agree");
1401     if (!V) {
1402       // Currently the optimizer can produce this; insert an undef to
1403       // help debugging.  Probably the optimizer should not do this.
1404       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U,
1405               DI->getVariable(), DI->getExpression());
1406     } else if (const auto *CI = dyn_cast<ConstantInt>(V)) {
1407       if (CI->getBitWidth() > 64)
1408         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1409             .addCImm(CI)
1410             .addImm(0U)
1411             .addMetadata(DI->getVariable())
1412             .addMetadata(DI->getExpression());
1413       else
1414         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1415             .addImm(CI->getZExtValue())
1416             .addImm(0U)
1417             .addMetadata(DI->getVariable())
1418             .addMetadata(DI->getExpression());
1419     } else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
1420       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1421           .addFPImm(CF)
1422           .addImm(0U)
1423           .addMetadata(DI->getVariable())
1424           .addMetadata(DI->getExpression());
1425     } else if (unsigned Reg = lookUpRegForValue(V)) {
1426       // FIXME: This does not handle register-indirect values at offset 0.
1427       bool IsIndirect = false;
1428       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg,
1429               DI->getVariable(), DI->getExpression());
1430     } else {
1431       // We can't yet handle anything else here because it would require
1432       // generating code, thus altering codegen because of debug info.
1433       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1434     }
1435     return true;
1436   }
1437   case Intrinsic::objectsize: {
1438     ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1439     unsigned long long Res = CI->isZero() ? -1ULL : 0;
1440     Constant *ResCI = ConstantInt::get(II->getType(), Res);
1441     unsigned ResultReg = getRegForValue(ResCI);
1442     if (!ResultReg)
1443       return false;
1444     updateValueMap(II, ResultReg);
1445     return true;
1446   }
1447   case Intrinsic::launder_invariant_group:
1448   case Intrinsic::expect: {
1449     unsigned ResultReg = getRegForValue(II->getArgOperand(0));
1450     if (!ResultReg)
1451       return false;
1452     updateValueMap(II, ResultReg);
1453     return true;
1454   }
1455   case Intrinsic::experimental_stackmap:
1456     return selectStackmap(II);
1457   case Intrinsic::experimental_patchpoint_void:
1458   case Intrinsic::experimental_patchpoint_i64:
1459     return selectPatchpoint(II);
1460 
1461   case Intrinsic::xray_customevent:
1462     return selectXRayCustomEvent(II);
1463   case Intrinsic::xray_typedevent:
1464     return selectXRayTypedEvent(II);
1465   }
1466 
1467   return fastLowerIntrinsicCall(II);
1468 }
1469 
1470 bool FastISel::selectCast(const User *I, unsigned Opcode) {
1471   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1472   EVT DstVT = TLI.getValueType(DL, I->getType());
1473 
1474   if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
1475       !DstVT.isSimple())
1476     // Unhandled type. Halt "fast" selection and bail.
1477     return false;
1478 
1479   // Check if the destination type is legal.
1480   if (!TLI.isTypeLegal(DstVT))
1481     return false;
1482 
1483   // Check if the source operand is legal.
1484   if (!TLI.isTypeLegal(SrcVT))
1485     return false;
1486 
1487   unsigned InputReg = getRegForValue(I->getOperand(0));
1488   if (!InputReg)
1489     // Unhandled operand.  Halt "fast" selection and bail.
1490     return false;
1491 
1492   bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
1493 
1494   unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
1495                                   Opcode, InputReg, InputRegIsKill);
1496   if (!ResultReg)
1497     return false;
1498 
1499   updateValueMap(I, ResultReg);
1500   return true;
1501 }
1502 
1503 bool FastISel::selectBitCast(const User *I) {
1504   // If the bitcast doesn't change the type, just use the operand value.
1505   if (I->getType() == I->getOperand(0)->getType()) {
1506     unsigned Reg = getRegForValue(I->getOperand(0));
1507     if (!Reg)
1508       return false;
1509     updateValueMap(I, Reg);
1510     return true;
1511   }
1512 
1513   // Bitcasts of other values become reg-reg copies or BITCAST operators.
1514   EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1515   EVT DstEVT = TLI.getValueType(DL, I->getType());
1516   if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
1517       !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
1518     // Unhandled type. Halt "fast" selection and bail.
1519     return false;
1520 
1521   MVT SrcVT = SrcEVT.getSimpleVT();
1522   MVT DstVT = DstEVT.getSimpleVT();
1523   unsigned Op0 = getRegForValue(I->getOperand(0));
1524   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
1525     return false;
1526   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
1527 
1528   // First, try to perform the bitcast by inserting a reg-reg copy.
1529   unsigned ResultReg = 0;
1530   if (SrcVT == DstVT) {
1531     const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT);
1532     const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
1533     // Don't attempt a cross-class copy. It will likely fail.
1534     if (SrcClass == DstClass) {
1535       ResultReg = createResultReg(DstClass);
1536       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1537               TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
1538     }
1539   }
1540 
1541   // If the reg-reg copy failed, select a BITCAST opcode.
1542   if (!ResultReg)
1543     ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
1544 
1545   if (!ResultReg)
1546     return false;
1547 
1548   updateValueMap(I, ResultReg);
1549   return true;
1550 }
1551 
1552 // Remove local value instructions starting from the instruction after
1553 // SavedLastLocalValue to the current function insert point.
1554 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
1555 {
1556   MachineInstr *CurLastLocalValue = getLastLocalValue();
1557   if (CurLastLocalValue != SavedLastLocalValue) {
1558     // Find the first local value instruction to be deleted.
1559     // This is the instruction after SavedLastLocalValue if it is non-NULL.
1560     // Otherwise it's the first instruction in the block.
1561     MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
1562     if (SavedLastLocalValue)
1563       ++FirstDeadInst;
1564     else
1565       FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
1566     setLastLocalValue(SavedLastLocalValue);
1567     removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
1568   }
1569 }
1570 
1571 bool FastISel::selectInstruction(const Instruction *I) {
1572   MachineInstr *SavedLastLocalValue = getLastLocalValue();
1573   // Just before the terminator instruction, insert instructions to
1574   // feed PHI nodes in successor blocks.
1575   if (isa<TerminatorInst>(I)) {
1576     if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
1577       // PHI node handling may have generated local value instructions,
1578       // even though it failed to handle all PHI nodes.
1579       // We remove these instructions because SelectionDAGISel will generate
1580       // them again.
1581       removeDeadLocalValueCode(SavedLastLocalValue);
1582       return false;
1583     }
1584   }
1585 
1586   // FastISel does not handle any operand bundles except OB_funclet.
1587   if (ImmutableCallSite CS = ImmutableCallSite(I))
1588     for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i)
1589       if (CS.getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet)
1590         return false;
1591 
1592   DbgLoc = I->getDebugLoc();
1593 
1594   SavedInsertPt = FuncInfo.InsertPt;
1595 
1596   if (const auto *Call = dyn_cast<CallInst>(I)) {
1597     const Function *F = Call->getCalledFunction();
1598     LibFunc Func;
1599 
1600     // As a special case, don't handle calls to builtin library functions that
1601     // may be translated directly to target instructions.
1602     if (F && !F->hasLocalLinkage() && F->hasName() &&
1603         LibInfo->getLibFunc(F->getName(), Func) &&
1604         LibInfo->hasOptimizedCodeGen(Func))
1605       return false;
1606 
1607     // Don't handle Intrinsic::trap if a trap function is specified.
1608     if (F && F->getIntrinsicID() == Intrinsic::trap &&
1609         Call->hasFnAttr("trap-func-name"))
1610       return false;
1611   }
1612 
1613   // First, try doing target-independent selection.
1614   if (!SkipTargetIndependentISel) {
1615     if (selectOperator(I, I->getOpcode())) {
1616       ++NumFastIselSuccessIndependent;
1617       DbgLoc = DebugLoc();
1618       return true;
1619     }
1620     // Remove dead code.
1621     recomputeInsertPt();
1622     if (SavedInsertPt != FuncInfo.InsertPt)
1623       removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1624     SavedInsertPt = FuncInfo.InsertPt;
1625   }
1626   // Next, try calling the target to attempt to handle the instruction.
1627   if (fastSelectInstruction(I)) {
1628     ++NumFastIselSuccessTarget;
1629     DbgLoc = DebugLoc();
1630     return true;
1631   }
1632   // Remove dead code.
1633   recomputeInsertPt();
1634   if (SavedInsertPt != FuncInfo.InsertPt)
1635     removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1636 
1637   DbgLoc = DebugLoc();
1638   // Undo phi node updates, because they will be added again by SelectionDAG.
1639   if (isa<TerminatorInst>(I)) {
1640     // PHI node handling may have generated local value instructions.
1641     // We remove them because SelectionDAGISel will generate them again.
1642     removeDeadLocalValueCode(SavedLastLocalValue);
1643     FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
1644   }
1645   return false;
1646 }
1647 
1648 /// Emit an unconditional branch to the given block, unless it is the immediate
1649 /// (fall-through) successor, and update the CFG.
1650 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc,
1651                               const DebugLoc &DbgLoc) {
1652   if (FuncInfo.MBB->getBasicBlock()->size() > 1 &&
1653       FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
1654     // For more accurate line information if this is the only instruction
1655     // in the block then emit it, otherwise we have the unconditional
1656     // fall-through case, which needs no instructions.
1657   } else {
1658     // The unconditional branch case.
1659     TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr,
1660                      SmallVector<MachineOperand, 0>(), DbgLoc);
1661   }
1662   if (FuncInfo.BPI) {
1663     auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
1664         FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock());
1665     FuncInfo.MBB->addSuccessor(MSucc, BranchProbability);
1666   } else
1667     FuncInfo.MBB->addSuccessorWithoutProb(MSucc);
1668 }
1669 
1670 void FastISel::finishCondBranch(const BasicBlock *BranchBB,
1671                                 MachineBasicBlock *TrueMBB,
1672                                 MachineBasicBlock *FalseMBB) {
1673   // Add TrueMBB as successor unless it is equal to the FalseMBB: This can
1674   // happen in degenerate IR and MachineIR forbids to have a block twice in the
1675   // successor/predecessor lists.
1676   if (TrueMBB != FalseMBB) {
1677     if (FuncInfo.BPI) {
1678       auto BranchProbability =
1679           FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
1680       FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability);
1681     } else
1682       FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB);
1683   }
1684 
1685   fastEmitBranch(FalseMBB, DbgLoc);
1686 }
1687 
1688 /// Emit an FNeg operation.
1689 bool FastISel::selectFNeg(const User *I) {
1690   unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
1691   if (!OpReg)
1692     return false;
1693   bool OpRegIsKill = hasTrivialKill(I);
1694 
1695   // If the target has ISD::FNEG, use it.
1696   EVT VT = TLI.getValueType(DL, I->getType());
1697   unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
1698                                   OpReg, OpRegIsKill);
1699   if (ResultReg) {
1700     updateValueMap(I, ResultReg);
1701     return true;
1702   }
1703 
1704   // Bitcast the value to integer, twiddle the sign bit with xor,
1705   // and then bitcast it back to floating-point.
1706   if (VT.getSizeInBits() > 64)
1707     return false;
1708   EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
1709   if (!TLI.isTypeLegal(IntVT))
1710     return false;
1711 
1712   unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
1713                                ISD::BITCAST, OpReg, OpRegIsKill);
1714   if (!IntReg)
1715     return false;
1716 
1717   unsigned IntResultReg = fastEmit_ri_(
1718       IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true,
1719       UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
1720   if (!IntResultReg)
1721     return false;
1722 
1723   ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
1724                          IntResultReg, /*IsKill=*/true);
1725   if (!ResultReg)
1726     return false;
1727 
1728   updateValueMap(I, ResultReg);
1729   return true;
1730 }
1731 
1732 bool FastISel::selectExtractValue(const User *U) {
1733   const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
1734   if (!EVI)
1735     return false;
1736 
1737   // Make sure we only try to handle extracts with a legal result.  But also
1738   // allow i1 because it's easy.
1739   EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
1740   if (!RealVT.isSimple())
1741     return false;
1742   MVT VT = RealVT.getSimpleVT();
1743   if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
1744     return false;
1745 
1746   const Value *Op0 = EVI->getOperand(0);
1747   Type *AggTy = Op0->getType();
1748 
1749   // Get the base result register.
1750   unsigned ResultReg;
1751   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
1752   if (I != FuncInfo.ValueMap.end())
1753     ResultReg = I->second;
1754   else if (isa<Instruction>(Op0))
1755     ResultReg = FuncInfo.InitializeRegForValue(Op0);
1756   else
1757     return false; // fast-isel can't handle aggregate constants at the moment
1758 
1759   // Get the actual result register, which is an offset from the base register.
1760   unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
1761 
1762   SmallVector<EVT, 4> AggValueVTs;
1763   ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);
1764 
1765   for (unsigned i = 0; i < VTIndex; i++)
1766     ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
1767 
1768   updateValueMap(EVI, ResultReg);
1769   return true;
1770 }
1771 
1772 bool FastISel::selectOperator(const User *I, unsigned Opcode) {
1773   switch (Opcode) {
1774   case Instruction::Add:
1775     return selectBinaryOp(I, ISD::ADD);
1776   case Instruction::FAdd:
1777     return selectBinaryOp(I, ISD::FADD);
1778   case Instruction::Sub:
1779     return selectBinaryOp(I, ISD::SUB);
1780   case Instruction::FSub:
1781     // FNeg is currently represented in LLVM IR as a special case of FSub.
1782     if (BinaryOperator::isFNeg(I))
1783       return selectFNeg(I);
1784     return selectBinaryOp(I, ISD::FSUB);
1785   case Instruction::Mul:
1786     return selectBinaryOp(I, ISD::MUL);
1787   case Instruction::FMul:
1788     return selectBinaryOp(I, ISD::FMUL);
1789   case Instruction::SDiv:
1790     return selectBinaryOp(I, ISD::SDIV);
1791   case Instruction::UDiv:
1792     return selectBinaryOp(I, ISD::UDIV);
1793   case Instruction::FDiv:
1794     return selectBinaryOp(I, ISD::FDIV);
1795   case Instruction::SRem:
1796     return selectBinaryOp(I, ISD::SREM);
1797   case Instruction::URem:
1798     return selectBinaryOp(I, ISD::UREM);
1799   case Instruction::FRem:
1800     return selectBinaryOp(I, ISD::FREM);
1801   case Instruction::Shl:
1802     return selectBinaryOp(I, ISD::SHL);
1803   case Instruction::LShr:
1804     return selectBinaryOp(I, ISD::SRL);
1805   case Instruction::AShr:
1806     return selectBinaryOp(I, ISD::SRA);
1807   case Instruction::And:
1808     return selectBinaryOp(I, ISD::AND);
1809   case Instruction::Or:
1810     return selectBinaryOp(I, ISD::OR);
1811   case Instruction::Xor:
1812     return selectBinaryOp(I, ISD::XOR);
1813 
1814   case Instruction::GetElementPtr:
1815     return selectGetElementPtr(I);
1816 
1817   case Instruction::Br: {
1818     const BranchInst *BI = cast<BranchInst>(I);
1819 
1820     if (BI->isUnconditional()) {
1821       const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1822       MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1823       fastEmitBranch(MSucc, BI->getDebugLoc());
1824       return true;
1825     }
1826 
1827     // Conditional branches are not handed yet.
1828     // Halt "fast" selection and bail.
1829     return false;
1830   }
1831 
1832   case Instruction::Unreachable:
1833     if (TM.Options.TrapUnreachable)
1834       return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
1835     else
1836       return true;
1837 
1838   case Instruction::Alloca:
1839     // FunctionLowering has the static-sized case covered.
1840     if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1841       return true;
1842 
1843     // Dynamic-sized alloca is not handled yet.
1844     return false;
1845 
1846   case Instruction::Call:
1847     return selectCall(I);
1848 
1849   case Instruction::BitCast:
1850     return selectBitCast(I);
1851 
1852   case Instruction::FPToSI:
1853     return selectCast(I, ISD::FP_TO_SINT);
1854   case Instruction::ZExt:
1855     return selectCast(I, ISD::ZERO_EXTEND);
1856   case Instruction::SExt:
1857     return selectCast(I, ISD::SIGN_EXTEND);
1858   case Instruction::Trunc:
1859     return selectCast(I, ISD::TRUNCATE);
1860   case Instruction::SIToFP:
1861     return selectCast(I, ISD::SINT_TO_FP);
1862 
1863   case Instruction::IntToPtr: // Deliberate fall-through.
1864   case Instruction::PtrToInt: {
1865     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1866     EVT DstVT = TLI.getValueType(DL, I->getType());
1867     if (DstVT.bitsGT(SrcVT))
1868       return selectCast(I, ISD::ZERO_EXTEND);
1869     if (DstVT.bitsLT(SrcVT))
1870       return selectCast(I, ISD::TRUNCATE);
1871     unsigned Reg = getRegForValue(I->getOperand(0));
1872     if (!Reg)
1873       return false;
1874     updateValueMap(I, Reg);
1875     return true;
1876   }
1877 
1878   case Instruction::ExtractValue:
1879     return selectExtractValue(I);
1880 
1881   case Instruction::PHI:
1882     llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1883 
1884   default:
1885     // Unhandled instruction. Halt "fast" selection and bail.
1886     return false;
1887   }
1888 }
1889 
1890 FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
1891                    const TargetLibraryInfo *LibInfo,
1892                    bool SkipTargetIndependentISel)
1893     : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
1894       MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
1895       TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
1896       TII(*MF->getSubtarget().getInstrInfo()),
1897       TLI(*MF->getSubtarget().getTargetLowering()),
1898       TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
1899       SkipTargetIndependentISel(SkipTargetIndependentISel) {}
1900 
1901 FastISel::~FastISel() = default;
1902 
1903 bool FastISel::fastLowerArguments() { return false; }
1904 
1905 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
1906 
1907 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
1908   return false;
1909 }
1910 
1911 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
1912 
1913 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/,
1914                               bool /*Op0IsKill*/) {
1915   return 0;
1916 }
1917 
1918 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
1919                                bool /*Op0IsKill*/, unsigned /*Op1*/,
1920                                bool /*Op1IsKill*/) {
1921   return 0;
1922 }
1923 
1924 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1925   return 0;
1926 }
1927 
1928 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
1929                               const ConstantFP * /*FPImm*/) {
1930   return 0;
1931 }
1932 
1933 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
1934                                bool /*Op0IsKill*/, uint64_t /*Imm*/) {
1935   return 0;
1936 }
1937 
1938 /// This method is a wrapper of fastEmit_ri. It first tries to emit an
1939 /// instruction with an immediate operand using fastEmit_ri.
1940 /// If that fails, it materializes the immediate into a register and try
1941 /// fastEmit_rr instead.
1942 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
1943                                 bool Op0IsKill, uint64_t Imm, MVT ImmType) {
1944   // If this is a multiply by a power of two, emit this as a shift left.
1945   if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1946     Opcode = ISD::SHL;
1947     Imm = Log2_64(Imm);
1948   } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1949     // div x, 8 -> srl x, 3
1950     Opcode = ISD::SRL;
1951     Imm = Log2_64(Imm);
1952   }
1953 
1954   // Horrible hack (to be removed), check to make sure shift amounts are
1955   // in-range.
1956   if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1957       Imm >= VT.getSizeInBits())
1958     return 0;
1959 
1960   // First check if immediate type is legal. If not, we can't use the ri form.
1961   unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1962   if (ResultReg)
1963     return ResultReg;
1964   unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1965   bool IsImmKill = true;
1966   if (!MaterialReg) {
1967     // This is a bit ugly/slow, but failing here means falling out of
1968     // fast-isel, which would be very slow.
1969     IntegerType *ITy =
1970         IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
1971     MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1972     if (!MaterialReg)
1973       return 0;
1974     // FIXME: If the materialized register here has no uses yet then this
1975     // will be the first use and we should be able to mark it as killed.
1976     // However, the local value area for materialising constant expressions
1977     // grows down, not up, which means that any constant expressions we generate
1978     // later which also use 'Imm' could be after this instruction and therefore
1979     // after this kill.
1980     IsImmKill = false;
1981   }
1982   return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill);
1983 }
1984 
1985 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) {
1986   return MRI.createVirtualRegister(RC);
1987 }
1988 
1989 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
1990                                             unsigned OpNum) {
1991   if (TargetRegisterInfo::isVirtualRegister(Op)) {
1992     const TargetRegisterClass *RegClass =
1993         TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
1994     if (!MRI.constrainRegClass(Op, RegClass)) {
1995       // If it's not legal to COPY between the register classes, something
1996       // has gone very wrong before we got here.
1997       unsigned NewOp = createResultReg(RegClass);
1998       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1999               TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
2000       return NewOp;
2001     }
2002   }
2003   return Op;
2004 }
2005 
2006 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode,
2007                                  const TargetRegisterClass *RC) {
2008   unsigned ResultReg = createResultReg(RC);
2009   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2010 
2011   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
2012   return ResultReg;
2013 }
2014 
2015 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2016                                   const TargetRegisterClass *RC, unsigned Op0,
2017                                   bool Op0IsKill) {
2018   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2019 
2020   unsigned ResultReg = createResultReg(RC);
2021   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2022 
2023   if (II.getNumDefs() >= 1)
2024     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2025         .addReg(Op0, getKillRegState(Op0IsKill));
2026   else {
2027     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2028         .addReg(Op0, getKillRegState(Op0IsKill));
2029     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2030             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2031   }
2032 
2033   return ResultReg;
2034 }
2035 
2036 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2037                                    const TargetRegisterClass *RC, unsigned Op0,
2038                                    bool Op0IsKill, unsigned Op1,
2039                                    bool Op1IsKill) {
2040   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2041 
2042   unsigned ResultReg = createResultReg(RC);
2043   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2044   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2045 
2046   if (II.getNumDefs() >= 1)
2047     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2048         .addReg(Op0, getKillRegState(Op0IsKill))
2049         .addReg(Op1, getKillRegState(Op1IsKill));
2050   else {
2051     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2052         .addReg(Op0, getKillRegState(Op0IsKill))
2053         .addReg(Op1, getKillRegState(Op1IsKill));
2054     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2055             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2056   }
2057   return ResultReg;
2058 }
2059 
2060 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
2061                                     const TargetRegisterClass *RC, unsigned Op0,
2062                                     bool Op0IsKill, unsigned Op1,
2063                                     bool Op1IsKill, unsigned Op2,
2064                                     bool Op2IsKill) {
2065   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2066 
2067   unsigned ResultReg = createResultReg(RC);
2068   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2069   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2070   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
2071 
2072   if (II.getNumDefs() >= 1)
2073     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2074         .addReg(Op0, getKillRegState(Op0IsKill))
2075         .addReg(Op1, getKillRegState(Op1IsKill))
2076         .addReg(Op2, getKillRegState(Op2IsKill));
2077   else {
2078     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2079         .addReg(Op0, getKillRegState(Op0IsKill))
2080         .addReg(Op1, getKillRegState(Op1IsKill))
2081         .addReg(Op2, getKillRegState(Op2IsKill));
2082     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2083             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2084   }
2085   return ResultReg;
2086 }
2087 
2088 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2089                                    const TargetRegisterClass *RC, unsigned Op0,
2090                                    bool Op0IsKill, uint64_t Imm) {
2091   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2092 
2093   unsigned ResultReg = createResultReg(RC);
2094   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2095 
2096   if (II.getNumDefs() >= 1)
2097     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2098         .addReg(Op0, getKillRegState(Op0IsKill))
2099         .addImm(Imm);
2100   else {
2101     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2102         .addReg(Op0, getKillRegState(Op0IsKill))
2103         .addImm(Imm);
2104     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2105             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2106   }
2107   return ResultReg;
2108 }
2109 
2110 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
2111                                     const TargetRegisterClass *RC, unsigned Op0,
2112                                     bool Op0IsKill, uint64_t Imm1,
2113                                     uint64_t Imm2) {
2114   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2115 
2116   unsigned ResultReg = createResultReg(RC);
2117   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2118 
2119   if (II.getNumDefs() >= 1)
2120     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2121         .addReg(Op0, getKillRegState(Op0IsKill))
2122         .addImm(Imm1)
2123         .addImm(Imm2);
2124   else {
2125     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2126         .addReg(Op0, getKillRegState(Op0IsKill))
2127         .addImm(Imm1)
2128         .addImm(Imm2);
2129     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2130             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2131   }
2132   return ResultReg;
2133 }
2134 
2135 unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
2136                                   const TargetRegisterClass *RC,
2137                                   const ConstantFP *FPImm) {
2138   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2139 
2140   unsigned ResultReg = createResultReg(RC);
2141 
2142   if (II.getNumDefs() >= 1)
2143     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2144         .addFPImm(FPImm);
2145   else {
2146     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2147         .addFPImm(FPImm);
2148     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2149             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2150   }
2151   return ResultReg;
2152 }
2153 
2154 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
2155                                     const TargetRegisterClass *RC, unsigned Op0,
2156                                     bool Op0IsKill, unsigned Op1,
2157                                     bool Op1IsKill, uint64_t Imm) {
2158   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2159 
2160   unsigned ResultReg = createResultReg(RC);
2161   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2162   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2163 
2164   if (II.getNumDefs() >= 1)
2165     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2166         .addReg(Op0, getKillRegState(Op0IsKill))
2167         .addReg(Op1, getKillRegState(Op1IsKill))
2168         .addImm(Imm);
2169   else {
2170     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2171         .addReg(Op0, getKillRegState(Op0IsKill))
2172         .addReg(Op1, getKillRegState(Op1IsKill))
2173         .addImm(Imm);
2174     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2175             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2176   }
2177   return ResultReg;
2178 }
2179 
2180 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
2181                                   const TargetRegisterClass *RC, uint64_t Imm) {
2182   unsigned ResultReg = createResultReg(RC);
2183   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2184 
2185   if (II.getNumDefs() >= 1)
2186     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2187         .addImm(Imm);
2188   else {
2189     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
2190     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2191             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2192   }
2193   return ResultReg;
2194 }
2195 
2196 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
2197                                               bool Op0IsKill, uint32_t Idx) {
2198   unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
2199   assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
2200          "Cannot yet extract from physregs");
2201   const TargetRegisterClass *RC = MRI.getRegClass(Op0);
2202   MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
2203   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
2204           ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx);
2205   return ResultReg;
2206 }
2207 
2208 /// Emit MachineInstrs to compute the value of Op with all but the least
2209 /// significant bit set to zero.
2210 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
2211   return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
2212 }
2213 
2214 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
2215 /// Emit code to ensure constants are copied into registers when needed.
2216 /// Remember the virtual registers that need to be added to the Machine PHI
2217 /// nodes as input.  We cannot just directly add them, because expansion
2218 /// might result in multiple MBB's for one BB.  As such, the start of the
2219 /// BB might correspond to a different MBB than the end.
2220 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
2221   const TerminatorInst *TI = LLVMBB->getTerminator();
2222 
2223   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
2224   FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
2225 
2226   // Check successor nodes' PHI nodes that expect a constant to be available
2227   // from this block.
2228   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
2229     const BasicBlock *SuccBB = TI->getSuccessor(succ);
2230     if (!isa<PHINode>(SuccBB->begin()))
2231       continue;
2232     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
2233 
2234     // If this terminator has multiple identical successors (common for
2235     // switches), only handle each succ once.
2236     if (!SuccsHandled.insert(SuccMBB).second)
2237       continue;
2238 
2239     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
2240 
2241     // At this point we know that there is a 1-1 correspondence between LLVM PHI
2242     // nodes and Machine PHI nodes, but the incoming operands have not been
2243     // emitted yet.
2244     for (const PHINode &PN : SuccBB->phis()) {
2245       // Ignore dead phi's.
2246       if (PN.use_empty())
2247         continue;
2248 
2249       // Only handle legal types. Two interesting things to note here. First,
2250       // by bailing out early, we may leave behind some dead instructions,
2251       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
2252       // own moves. Second, this check is necessary because FastISel doesn't
2253       // use CreateRegs to create registers, so it always creates
2254       // exactly one register for each non-void instruction.
2255       EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true);
2256       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
2257         // Handle integer promotions, though, because they're common and easy.
2258         if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
2259           FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2260           return false;
2261         }
2262       }
2263 
2264       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
2265 
2266       // Set the DebugLoc for the copy. Prefer the location of the operand
2267       // if there is one; use the location of the PHI otherwise.
2268       DbgLoc = PN.getDebugLoc();
2269       if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
2270         DbgLoc = Inst->getDebugLoc();
2271 
2272       unsigned Reg = getRegForValue(PHIOp);
2273       if (!Reg) {
2274         FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2275         return false;
2276       }
2277       FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg));
2278       DbgLoc = DebugLoc();
2279     }
2280   }
2281 
2282   return true;
2283 }
2284 
2285 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
2286   assert(LI->hasOneUse() &&
2287          "tryToFoldLoad expected a LoadInst with a single use");
2288   // We know that the load has a single use, but don't know what it is.  If it
2289   // isn't one of the folded instructions, then we can't succeed here.  Handle
2290   // this by scanning the single-use users of the load until we get to FoldInst.
2291   unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
2292 
2293   const Instruction *TheUser = LI->user_back();
2294   while (TheUser != FoldInst && // Scan up until we find FoldInst.
2295          // Stay in the right block.
2296          TheUser->getParent() == FoldInst->getParent() &&
2297          --MaxUsers) { // Don't scan too far.
2298     // If there are multiple or no uses of this instruction, then bail out.
2299     if (!TheUser->hasOneUse())
2300       return false;
2301 
2302     TheUser = TheUser->user_back();
2303   }
2304 
2305   // If we didn't find the fold instruction, then we failed to collapse the
2306   // sequence.
2307   if (TheUser != FoldInst)
2308     return false;
2309 
2310   // Don't try to fold volatile loads.  Target has to deal with alignment
2311   // constraints.
2312   if (LI->isVolatile())
2313     return false;
2314 
2315   // Figure out which vreg this is going into.  If there is no assigned vreg yet
2316   // then there actually was no reference to it.  Perhaps the load is referenced
2317   // by a dead instruction.
2318   unsigned LoadReg = getRegForValue(LI);
2319   if (!LoadReg)
2320     return false;
2321 
2322   // We can't fold if this vreg has no uses or more than one use.  Multiple uses
2323   // may mean that the instruction got lowered to multiple MIs, or the use of
2324   // the loaded value ended up being multiple operands of the result.
2325   if (!MRI.hasOneUse(LoadReg))
2326     return false;
2327 
2328   MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
2329   MachineInstr *User = RI->getParent();
2330 
2331   // Set the insertion point properly.  Folding the load can cause generation of
2332   // other random instructions (like sign extends) for addressing modes; make
2333   // sure they get inserted in a logical place before the new instruction.
2334   FuncInfo.InsertPt = User;
2335   FuncInfo.MBB = User->getParent();
2336 
2337   // Ask the target to try folding the load.
2338   return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
2339 }
2340 
2341 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
2342   // Must be an add.
2343   if (!isa<AddOperator>(Add))
2344     return false;
2345   // Type size needs to match.
2346   if (DL.getTypeSizeInBits(GEP->getType()) !=
2347       DL.getTypeSizeInBits(Add->getType()))
2348     return false;
2349   // Must be in the same basic block.
2350   if (isa<Instruction>(Add) &&
2351       FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
2352     return false;
2353   // Must have a constant operand.
2354   return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
2355 }
2356 
2357 MachineMemOperand *
2358 FastISel::createMachineMemOperandFor(const Instruction *I) const {
2359   const Value *Ptr;
2360   Type *ValTy;
2361   unsigned Alignment;
2362   MachineMemOperand::Flags Flags;
2363   bool IsVolatile;
2364 
2365   if (const auto *LI = dyn_cast<LoadInst>(I)) {
2366     Alignment = LI->getAlignment();
2367     IsVolatile = LI->isVolatile();
2368     Flags = MachineMemOperand::MOLoad;
2369     Ptr = LI->getPointerOperand();
2370     ValTy = LI->getType();
2371   } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
2372     Alignment = SI->getAlignment();
2373     IsVolatile = SI->isVolatile();
2374     Flags = MachineMemOperand::MOStore;
2375     Ptr = SI->getPointerOperand();
2376     ValTy = SI->getValueOperand()->getType();
2377   } else
2378     return nullptr;
2379 
2380   bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr;
2381   bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr;
2382   bool IsDereferenceable =
2383       I->getMetadata(LLVMContext::MD_dereferenceable) != nullptr;
2384   const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
2385 
2386   AAMDNodes AAInfo;
2387   I->getAAMetadata(AAInfo);
2388 
2389   if (Alignment == 0) // Ensure that codegen never sees alignment 0.
2390     Alignment = DL.getABITypeAlignment(ValTy);
2391 
2392   unsigned Size = DL.getTypeStoreSize(ValTy);
2393 
2394   if (IsVolatile)
2395     Flags |= MachineMemOperand::MOVolatile;
2396   if (IsNonTemporal)
2397     Flags |= MachineMemOperand::MONonTemporal;
2398   if (IsDereferenceable)
2399     Flags |= MachineMemOperand::MODereferenceable;
2400   if (IsInvariant)
2401     Flags |= MachineMemOperand::MOInvariant;
2402 
2403   return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
2404                                            Alignment, AAInfo, Ranges);
2405 }
2406 
2407 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
2408   // If both operands are the same, then try to optimize or fold the cmp.
2409   CmpInst::Predicate Predicate = CI->getPredicate();
2410   if (CI->getOperand(0) != CI->getOperand(1))
2411     return Predicate;
2412 
2413   switch (Predicate) {
2414   default: llvm_unreachable("Invalid predicate!");
2415   case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
2416   case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break;
2417   case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break;
2418   case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break;
2419   case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break;
2420   case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break;
2421   case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break;
2422   case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break;
2423   case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break;
2424   case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break;
2425   case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break;
2426   case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2427   case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break;
2428   case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2429   case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break;
2430   case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break;
2431 
2432   case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break;
2433   case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break;
2434   case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break;
2435   case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2436   case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break;
2437   case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2438   case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break;
2439   case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2440   case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break;
2441   case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break;
2442   }
2443 
2444   return Predicate;
2445 }
2446