1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the FastISel class. 11 // 12 // "Fast" instruction selection is designed to emit very poor code quickly. 13 // Also, it is not designed to be able to do much lowering, so most illegal 14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 15 // also not intended to be able to do much optimization, except in a few cases 16 // where doing optimizations reduces overall compile time. For example, folding 17 // constants into immediate fields is often done, because it's cheap and it 18 // reduces the number of instructions later phases have to examine. 19 // 20 // "Fast" instruction selection is able to fail gracefully and transfer 21 // control to the SelectionDAG selector for operations that it doesn't 22 // support. In many cases, this allows us to avoid duplicating a lot of 23 // the complicated lowering logic that SelectionDAG currently has. 24 // 25 // The intended use for "fast" instruction selection is "-O0" mode 26 // compilation, where the quality of the generated code is irrelevant when 27 // weighed against the speed at which the code can be generated. Also, 28 // at -O0, the LLVM optimizers are not running, and this makes the 29 // compile time of codegen a much higher portion of the overall compile 30 // time. Despite its limitations, "fast" instruction selection is able to 31 // handle enough code on its own to provide noticeable overall speedups 32 // in -O0 compiles. 33 // 34 // Basic operations are supported in a target-independent way, by reading 35 // the same instruction descriptions that the SelectionDAG selector reads, 36 // and identifying simple arithmetic operations that can be directly selected 37 // from simple operators. More complicated operations currently require 38 // target-specific code. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/CodeGen/Analysis.h" 43 #include "llvm/CodeGen/FastISel.h" 44 #include "llvm/ADT/Optional.h" 45 #include "llvm/ADT/Statistic.h" 46 #include "llvm/Analysis/BranchProbabilityInfo.h" 47 #include "llvm/Analysis/Loads.h" 48 #include "llvm/CodeGen/Analysis.h" 49 #include "llvm/CodeGen/FunctionLoweringInfo.h" 50 #include "llvm/CodeGen/MachineFrameInfo.h" 51 #include "llvm/CodeGen/MachineInstrBuilder.h" 52 #include "llvm/CodeGen/MachineModuleInfo.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/StackMaps.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugInfo.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/GlobalVariable.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Operator.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Target/TargetInstrInfo.h" 65 #include "llvm/Target/TargetLibraryInfo.h" 66 #include "llvm/Target/TargetLowering.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include "llvm/Target/TargetSubtargetInfo.h" 69 using namespace llvm; 70 71 #define DEBUG_TYPE "isel" 72 73 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 74 "target-independent selector"); 75 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 76 "target-specific selector"); 77 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 78 79 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 80 /// and called function attributes. 81 void FastISel::ArgListEntry::setAttributes(ImmutableCallSite *CS, 82 unsigned AttrIdx) { 83 isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 84 isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 85 isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 86 isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 87 isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 88 isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 89 isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 90 isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 91 Alignment = CS->getParamAlignment(AttrIdx); 92 } 93 94 /// startNewBlock - Set the current block to which generated machine 95 /// instructions will be appended, and clear the local CSE map. 96 /// 97 void FastISel::startNewBlock() { 98 LocalValueMap.clear(); 99 100 // Instructions are appended to FuncInfo.MBB. If the basic block already 101 // contains labels or copies, use the last instruction as the last local 102 // value. 103 EmitStartPt = nullptr; 104 if (!FuncInfo.MBB->empty()) 105 EmitStartPt = &FuncInfo.MBB->back(); 106 LastLocalValue = EmitStartPt; 107 } 108 109 bool FastISel::LowerArguments() { 110 if (!FuncInfo.CanLowerReturn) 111 // Fallback to SDISel argument lowering code to deal with sret pointer 112 // parameter. 113 return false; 114 115 if (!FastLowerArguments()) 116 return false; 117 118 // Enter arguments into ValueMap for uses in non-entry BBs. 119 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 120 E = FuncInfo.Fn->arg_end(); I != E; ++I) { 121 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(I); 122 assert(VI != LocalValueMap.end() && "Missed an argument?"); 123 FuncInfo.ValueMap[I] = VI->second; 124 } 125 return true; 126 } 127 128 void FastISel::flushLocalValueMap() { 129 LocalValueMap.clear(); 130 LastLocalValue = EmitStartPt; 131 recomputeInsertPt(); 132 } 133 134 bool FastISel::hasTrivialKill(const Value *V) { 135 // Don't consider constants or arguments to have trivial kills. 136 const Instruction *I = dyn_cast<Instruction>(V); 137 if (!I) 138 return false; 139 140 // No-op casts are trivially coalesced by fast-isel. 141 if (const CastInst *Cast = dyn_cast<CastInst>(I)) 142 if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) && 143 !hasTrivialKill(Cast->getOperand(0))) 144 return false; 145 146 // Even the value might have only one use in the LLVM IR, it is possible that 147 // FastISel might fold the use into another instruction and now there is more 148 // than one use at the Machine Instruction level. 149 unsigned Reg = lookUpRegForValue(V); 150 if (Reg && !MRI.use_empty(Reg)) 151 return false; 152 153 // GEPs with all zero indices are trivially coalesced by fast-isel. 154 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 155 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 156 return false; 157 158 // Only instructions with a single use in the same basic block are considered 159 // to have trivial kills. 160 return I->hasOneUse() && 161 !(I->getOpcode() == Instruction::BitCast || 162 I->getOpcode() == Instruction::PtrToInt || 163 I->getOpcode() == Instruction::IntToPtr) && 164 cast<Instruction>(*I->user_begin())->getParent() == I->getParent(); 165 } 166 167 unsigned FastISel::getRegForValue(const Value *V) { 168 EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true); 169 // Don't handle non-simple values in FastISel. 170 if (!RealVT.isSimple()) 171 return 0; 172 173 // Ignore illegal types. We must do this before looking up the value 174 // in ValueMap because Arguments are given virtual registers regardless 175 // of whether FastISel can handle them. 176 MVT VT = RealVT.getSimpleVT(); 177 if (!TLI.isTypeLegal(VT)) { 178 // Handle integer promotions, though, because they're common and easy. 179 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 180 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 181 else 182 return 0; 183 } 184 185 // Look up the value to see if we already have a register for it. 186 unsigned Reg = lookUpRegForValue(V); 187 if (Reg != 0) 188 return Reg; 189 190 // In bottom-up mode, just create the virtual register which will be used 191 // to hold the value. It will be materialized later. 192 if (isa<Instruction>(V) && 193 (!isa<AllocaInst>(V) || 194 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 195 return FuncInfo.InitializeRegForValue(V); 196 197 SavePoint SaveInsertPt = enterLocalValueArea(); 198 199 // Materialize the value in a register. Emit any instructions in the 200 // local value area. 201 Reg = materializeRegForValue(V, VT); 202 203 leaveLocalValueArea(SaveInsertPt); 204 205 return Reg; 206 } 207 208 unsigned FastISel::MaterializeConstant(const Value *V, MVT VT) { 209 unsigned Reg = 0; 210 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 211 if (CI->getValue().getActiveBits() <= 64) 212 Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 213 } else if (isa<AllocaInst>(V)) 214 Reg = TargetMaterializeAlloca(cast<AllocaInst>(V)); 215 else if (isa<ConstantPointerNull>(V)) 216 // Translate this as an integer zero so that it can be 217 // local-CSE'd with actual integer zeros. 218 Reg = 219 getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getContext()))); 220 else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 221 if (CF->isNullValue()) 222 Reg = TargetMaterializeFloatZero(CF); 223 else 224 // Try to emit the constant directly. 225 Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF); 226 227 if (!Reg) { 228 // Try to emit the constant by using an integer constant with a cast. 229 const APFloat &Flt = CF->getValueAPF(); 230 EVT IntVT = TLI.getPointerTy(); 231 232 uint64_t x[2]; 233 uint32_t IntBitWidth = IntVT.getSizeInBits(); 234 bool isExact; 235 (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, 236 APFloat::rmTowardZero, &isExact); 237 if (isExact) { 238 APInt IntVal(IntBitWidth, x); 239 240 unsigned IntegerReg = 241 getRegForValue(ConstantInt::get(V->getContext(), IntVal)); 242 if (IntegerReg != 0) 243 Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, 244 IntegerReg, /*Kill=*/false); 245 } 246 } 247 } else if (const Operator *Op = dyn_cast<Operator>(V)) { 248 if (!SelectOperator(Op, Op->getOpcode())) 249 if (!isa<Instruction>(Op) || 250 !TargetSelectInstruction(cast<Instruction>(Op))) 251 return 0; 252 Reg = lookUpRegForValue(Op); 253 } else if (isa<UndefValue>(V)) { 254 Reg = createResultReg(TLI.getRegClassFor(VT)); 255 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 256 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 257 } 258 return Reg; 259 } 260 261 /// materializeRegForValue - Helper for getRegForValue. This function is 262 /// called when the value isn't already available in a register and must 263 /// be materialized with new instructions. 264 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 265 unsigned Reg = 0; 266 // Give the target-specific code a try first. 267 if (isa<Constant>(V)) 268 Reg = TargetMaterializeConstant(cast<Constant>(V)); 269 270 // If target-specific code couldn't or didn't want to handle the value, then 271 // give target-independent code a try. 272 if (!Reg) 273 Reg = MaterializeConstant(V, VT); 274 275 // Don't cache constant materializations in the general ValueMap. 276 // To do so would require tracking what uses they dominate. 277 if (Reg) { 278 LocalValueMap[V] = Reg; 279 LastLocalValue = MRI.getVRegDef(Reg); 280 } 281 return Reg; 282 } 283 284 unsigned FastISel::lookUpRegForValue(const Value *V) { 285 // Look up the value to see if we already have a register for it. We 286 // cache values defined by Instructions across blocks, and other values 287 // only locally. This is because Instructions already have the SSA 288 // def-dominates-use requirement enforced. 289 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 290 if (I != FuncInfo.ValueMap.end()) 291 return I->second; 292 return LocalValueMap[V]; 293 } 294 295 /// UpdateValueMap - Update the value map to include the new mapping for this 296 /// instruction, or insert an extra copy to get the result in a previous 297 /// determined register. 298 /// NOTE: This is only necessary because we might select a block that uses 299 /// a value before we select the block that defines the value. It might be 300 /// possible to fix this by selecting blocks in reverse postorder. 301 void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 302 if (!isa<Instruction>(I)) { 303 LocalValueMap[I] = Reg; 304 return; 305 } 306 307 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 308 if (AssignedReg == 0) 309 // Use the new register. 310 AssignedReg = Reg; 311 else if (Reg != AssignedReg) { 312 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 313 for (unsigned i = 0; i < NumRegs; i++) 314 FuncInfo.RegFixups[AssignedReg+i] = Reg+i; 315 316 AssignedReg = Reg; 317 } 318 } 319 320 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 321 unsigned IdxN = getRegForValue(Idx); 322 if (IdxN == 0) 323 // Unhandled operand. Halt "fast" selection and bail. 324 return std::pair<unsigned, bool>(0, false); 325 326 bool IdxNIsKill = hasTrivialKill(Idx); 327 328 // If the index is smaller or larger than intptr_t, truncate or extend it. 329 MVT PtrVT = TLI.getPointerTy(); 330 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 331 if (IdxVT.bitsLT(PtrVT)) { 332 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, 333 IdxN, IdxNIsKill); 334 IdxNIsKill = true; 335 } 336 else if (IdxVT.bitsGT(PtrVT)) { 337 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, 338 IdxN, IdxNIsKill); 339 IdxNIsKill = true; 340 } 341 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 342 } 343 344 void FastISel::recomputeInsertPt() { 345 if (getLastLocalValue()) { 346 FuncInfo.InsertPt = getLastLocalValue(); 347 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 348 ++FuncInfo.InsertPt; 349 } else 350 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 351 352 // Now skip past any EH_LABELs, which must remain at the beginning. 353 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 354 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 355 ++FuncInfo.InsertPt; 356 } 357 358 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 359 MachineBasicBlock::iterator E) { 360 assert (I && E && std::distance(I, E) > 0 && "Invalid iterator!"); 361 while (I != E) { 362 MachineInstr *Dead = &*I; 363 ++I; 364 Dead->eraseFromParent(); 365 ++NumFastIselDead; 366 } 367 recomputeInsertPt(); 368 } 369 370 FastISel::SavePoint FastISel::enterLocalValueArea() { 371 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 372 DebugLoc OldDL = DbgLoc; 373 recomputeInsertPt(); 374 DbgLoc = DebugLoc(); 375 SavePoint SP = { OldInsertPt, OldDL }; 376 return SP; 377 } 378 379 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 380 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 381 LastLocalValue = std::prev(FuncInfo.InsertPt); 382 383 // Restore the previous insert position. 384 FuncInfo.InsertPt = OldInsertPt.InsertPt; 385 DbgLoc = OldInsertPt.DL; 386 } 387 388 /// SelectBinaryOp - Select and emit code for a binary operator instruction, 389 /// which has an opcode which directly corresponds to the given ISD opcode. 390 /// 391 bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) { 392 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 393 if (VT == MVT::Other || !VT.isSimple()) 394 // Unhandled type. Halt "fast" selection and bail. 395 return false; 396 397 // We only handle legal types. For example, on x86-32 the instruction 398 // selector contains all of the 64-bit instructions from x86-64, 399 // under the assumption that i64 won't be used if the target doesn't 400 // support it. 401 if (!TLI.isTypeLegal(VT)) { 402 // MVT::i1 is special. Allow AND, OR, or XOR because they 403 // don't require additional zeroing, which makes them easy. 404 if (VT == MVT::i1 && 405 (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 406 ISDOpcode == ISD::XOR)) 407 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 408 else 409 return false; 410 } 411 412 // Check if the first operand is a constant, and handle it as "ri". At -O0, 413 // we don't have anything that canonicalizes operand order. 414 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 415 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 416 unsigned Op1 = getRegForValue(I->getOperand(1)); 417 if (Op1 == 0) return false; 418 419 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 420 421 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, 422 Op1IsKill, CI->getZExtValue(), 423 VT.getSimpleVT()); 424 if (ResultReg == 0) return false; 425 426 // We successfully emitted code for the given LLVM Instruction. 427 UpdateValueMap(I, ResultReg); 428 return true; 429 } 430 431 432 unsigned Op0 = getRegForValue(I->getOperand(0)); 433 if (Op0 == 0) // Unhandled operand. Halt "fast" selection and bail. 434 return false; 435 436 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 437 438 // Check if the second operand is a constant and handle it appropriately. 439 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 440 uint64_t Imm = CI->getZExtValue(); 441 442 // Transform "sdiv exact X, 8" -> "sra X, 3". 443 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 444 cast<BinaryOperator>(I)->isExact() && 445 isPowerOf2_64(Imm)) { 446 Imm = Log2_64(Imm); 447 ISDOpcode = ISD::SRA; 448 } 449 450 // Transform "urem x, pow2" -> "and x, pow2-1". 451 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 452 isPowerOf2_64(Imm)) { 453 --Imm; 454 ISDOpcode = ISD::AND; 455 } 456 457 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 458 Op0IsKill, Imm, VT.getSimpleVT()); 459 if (ResultReg == 0) return false; 460 461 // We successfully emitted code for the given LLVM Instruction. 462 UpdateValueMap(I, ResultReg); 463 return true; 464 } 465 466 // Check if the second operand is a constant float. 467 if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) { 468 unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(), 469 ISDOpcode, Op0, Op0IsKill, CF); 470 if (ResultReg != 0) { 471 // We successfully emitted code for the given LLVM Instruction. 472 UpdateValueMap(I, ResultReg); 473 return true; 474 } 475 } 476 477 unsigned Op1 = getRegForValue(I->getOperand(1)); 478 if (Op1 == 0) 479 // Unhandled operand. Halt "fast" selection and bail. 480 return false; 481 482 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 483 484 // Now we have both operands in registers. Emit the instruction. 485 unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 486 ISDOpcode, 487 Op0, Op0IsKill, 488 Op1, Op1IsKill); 489 if (ResultReg == 0) 490 // Target-specific code wasn't able to find a machine opcode for 491 // the given ISD opcode and type. Halt "fast" selection and bail. 492 return false; 493 494 // We successfully emitted code for the given LLVM Instruction. 495 UpdateValueMap(I, ResultReg); 496 return true; 497 } 498 499 bool FastISel::SelectGetElementPtr(const User *I) { 500 unsigned N = getRegForValue(I->getOperand(0)); 501 if (N == 0) 502 // Unhandled operand. Halt "fast" selection and bail. 503 return false; 504 505 bool NIsKill = hasTrivialKill(I->getOperand(0)); 506 507 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 508 // into a single N = N + TotalOffset. 509 uint64_t TotalOffs = 0; 510 // FIXME: What's a good SWAG number for MaxOffs? 511 uint64_t MaxOffs = 2048; 512 Type *Ty = I->getOperand(0)->getType(); 513 MVT VT = TLI.getPointerTy(); 514 for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1, 515 E = I->op_end(); OI != E; ++OI) { 516 const Value *Idx = *OI; 517 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 518 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 519 if (Field) { 520 // N = N + Offset 521 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 522 if (TotalOffs >= MaxOffs) { 523 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 524 if (N == 0) 525 // Unhandled operand. Halt "fast" selection and bail. 526 return false; 527 NIsKill = true; 528 TotalOffs = 0; 529 } 530 } 531 Ty = StTy->getElementType(Field); 532 } else { 533 Ty = cast<SequentialType>(Ty)->getElementType(); 534 535 // If this is a constant subscript, handle it quickly. 536 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 537 if (CI->isZero()) continue; 538 // N = N + Offset 539 TotalOffs += 540 DL.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 541 if (TotalOffs >= MaxOffs) { 542 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 543 if (N == 0) 544 // Unhandled operand. Halt "fast" selection and bail. 545 return false; 546 NIsKill = true; 547 TotalOffs = 0; 548 } 549 continue; 550 } 551 if (TotalOffs) { 552 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 553 if (N == 0) 554 // Unhandled operand. Halt "fast" selection and bail. 555 return false; 556 NIsKill = true; 557 TotalOffs = 0; 558 } 559 560 // N = N + Idx * ElementSize; 561 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 562 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 563 unsigned IdxN = Pair.first; 564 bool IdxNIsKill = Pair.second; 565 if (IdxN == 0) 566 // Unhandled operand. Halt "fast" selection and bail. 567 return false; 568 569 if (ElementSize != 1) { 570 IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 571 if (IdxN == 0) 572 // Unhandled operand. Halt "fast" selection and bail. 573 return false; 574 IdxNIsKill = true; 575 } 576 N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 577 if (N == 0) 578 // Unhandled operand. Halt "fast" selection and bail. 579 return false; 580 } 581 } 582 if (TotalOffs) { 583 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 584 if (N == 0) 585 // Unhandled operand. Halt "fast" selection and bail. 586 return false; 587 } 588 589 // We successfully emitted code for the given LLVM Instruction. 590 UpdateValueMap(I, N); 591 return true; 592 } 593 594 /// \brief Add a stackmap or patchpoint intrinsic call's live variable operands 595 /// to a stackmap or patchpoint machine instruction. 596 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 597 const CallInst *CI, unsigned StartIdx) { 598 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { 599 Value *Val = CI->getArgOperand(i); 600 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 601 if (auto *C = dyn_cast<ConstantInt>(Val)) { 602 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 603 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 604 } else if (isa<ConstantPointerNull>(Val)) { 605 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 606 Ops.push_back(MachineOperand::CreateImm(0)); 607 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 608 // Values coming from a stack location also require a sepcial encoding, 609 // but that is added later on by the target specific frame index 610 // elimination implementation. 611 auto SI = FuncInfo.StaticAllocaMap.find(AI); 612 if (SI != FuncInfo.StaticAllocaMap.end()) 613 Ops.push_back(MachineOperand::CreateFI(SI->second)); 614 else 615 return false; 616 } else { 617 unsigned Reg = getRegForValue(Val); 618 if (Reg == 0) 619 return false; 620 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 621 } 622 } 623 624 return true; 625 } 626 627 bool FastISel::SelectStackmap(const CallInst *I) { 628 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 629 // [live variables...]) 630 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 631 "Stackmap cannot return a value."); 632 633 // The stackmap intrinsic only records the live variables (the arguments 634 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 635 // intrinsic, this won't be lowered to a function call. This means we don't 636 // have to worry about calling conventions and target-specific lowering code. 637 // Instead we perform the call lowering right here. 638 // 639 // CALLSEQ_START(0) 640 // STACKMAP(id, nbytes, ...) 641 // CALLSEQ_END(0, 0) 642 // 643 SmallVector<MachineOperand, 32> Ops; 644 645 // Add the <id> and <numBytes> constants. 646 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 647 "Expected a constant integer."); 648 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 649 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 650 651 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 652 "Expected a constant integer."); 653 const auto *NumBytes = 654 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 655 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 656 657 // Push live variables for the stack map (skipping the first two arguments 658 // <id> and <numBytes>). 659 if (!addStackMapLiveVars(Ops, I, 2)) 660 return false; 661 662 // We are not adding any register mask info here, because the stackmap doesn't 663 // clobber anything. 664 665 // Add scratch registers as implicit def and early clobber. 666 CallingConv::ID CC = I->getCallingConv(); 667 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 668 for (unsigned i = 0; ScratchRegs[i]; ++i) 669 Ops.push_back(MachineOperand::CreateReg( 670 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 671 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 672 673 // Issue CALLSEQ_START 674 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 675 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)) 676 .addImm(0); 677 678 // Issue STACKMAP. 679 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 680 TII.get(TargetOpcode::STACKMAP)); 681 for (auto const &MO : Ops) 682 MIB.addOperand(MO); 683 684 // Issue CALLSEQ_END 685 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 686 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 687 .addImm(0).addImm(0); 688 689 // Inform the Frame Information that we have a stackmap in this function. 690 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 691 692 return true; 693 } 694 695 /// \brief Lower an argument list according to the target calling convention. 696 /// 697 /// This is a helper for lowering intrinsics that follow a target calling 698 /// convention or require stack pointer adjustment. Only a subset of the 699 /// intrinsic's operands need to participate in the calling convention. 700 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 701 unsigned NumArgs, const Value *Callee, 702 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 703 ArgListTy Args; 704 Args.reserve(NumArgs); 705 706 // Populate the argument list. 707 // Attributes for args start at offset 1, after the return attribute. 708 ImmutableCallSite CS(CI); 709 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 710 ArgI != ArgE; ++ArgI) { 711 Value *V = CI->getOperand(ArgI); 712 713 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 714 715 ArgListEntry Entry; 716 Entry.Val = V; 717 Entry.Ty = V->getType(); 718 Entry.setAttributes(&CS, AttrI); 719 Args.push_back(Entry); 720 } 721 722 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 723 : CI->getType(); 724 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 725 726 return LowerCallTo(CLI); 727 } 728 729 bool FastISel::SelectPatchpoint(const CallInst *I) { 730 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 731 // i32 <numBytes>, 732 // i8* <target>, 733 // i32 <numArgs>, 734 // [Args...], 735 // [live variables...]) 736 CallingConv::ID CC = I->getCallingConv(); 737 bool IsAnyRegCC = CC == CallingConv::AnyReg; 738 bool HasDef = !I->getType()->isVoidTy(); 739 Value *Callee = I->getOperand(PatchPointOpers::TargetPos); 740 741 // Get the real number of arguments participating in the call <numArgs> 742 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 743 "Expected a constant integer."); 744 const auto *NumArgsVal = 745 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 746 unsigned NumArgs = NumArgsVal->getZExtValue(); 747 748 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 749 // This includes all meta-operands up to but not including CC. 750 unsigned NumMetaOpers = PatchPointOpers::CCPos; 751 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs && 752 "Not enough arguments provided to the patchpoint intrinsic"); 753 754 // For AnyRegCC the arguments are lowered later on manually. 755 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 756 CallLoweringInfo CLI; 757 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 758 return false; 759 760 assert(CLI.Call && "No call instruction specified."); 761 762 SmallVector<MachineOperand, 32> Ops; 763 764 // Add an explicit result reg if we use the anyreg calling convention. 765 if (IsAnyRegCC && HasDef) { 766 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 767 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); 768 CLI.NumResultRegs = 1; 769 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true)); 770 } 771 772 // Add the <id> and <numBytes> constants. 773 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 774 "Expected a constant integer."); 775 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 776 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 777 778 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 779 "Expected a constant integer."); 780 const auto *NumBytes = 781 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 782 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 783 784 // Assume that the callee is a constant address or null pointer. 785 // FIXME: handle function symbols in the future. 786 uint64_t CalleeAddr; 787 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) 788 CalleeAddr = cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 789 else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 790 if (C->getOpcode() == Instruction::IntToPtr) 791 CalleeAddr = cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 792 else 793 llvm_unreachable("Unsupported ConstantExpr."); 794 } else if (isa<ConstantPointerNull>(Callee)) 795 CalleeAddr = 0; 796 else 797 llvm_unreachable("Unsupported callee address."); 798 799 Ops.push_back(MachineOperand::CreateImm(CalleeAddr)); 800 801 // Adjust <numArgs> to account for any arguments that have been passed on 802 // the stack instead. 803 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 804 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 805 806 // Add the calling convention 807 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 808 809 // Add the arguments we omitted previously. The register allocator should 810 // place these in any free register. 811 if (IsAnyRegCC) { 812 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 813 unsigned Reg = getRegForValue(I->getArgOperand(i)); 814 if (!Reg) 815 return false; 816 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 817 } 818 } 819 820 // Push the arguments from the call instruction. 821 for (auto Reg : CLI.OutRegs) 822 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 823 824 // Push live variables for the stack map. 825 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 826 return false; 827 828 // Push the register mask info. 829 Ops.push_back(MachineOperand::CreateRegMask(TRI.getCallPreservedMask(CC))); 830 831 // Add scratch registers as implicit def and early clobber. 832 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 833 for (unsigned i = 0; ScratchRegs[i]; ++i) 834 Ops.push_back(MachineOperand::CreateReg( 835 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 836 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 837 838 // Add implicit defs (return values). 839 for (auto Reg : CLI.InRegs) 840 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true, 841 /*IsImpl=*/true)); 842 843 // Insert the patchpoint instruction before the call generated by the target. 844 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc, 845 TII.get(TargetOpcode::PATCHPOINT)); 846 847 for (auto &MO : Ops) 848 MIB.addOperand(MO); 849 850 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 851 852 // Delete the original call instruction. 853 CLI.Call->eraseFromParent(); 854 855 // Inform the Frame Information that we have a patchpoint in this function. 856 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 857 858 if (CLI.NumResultRegs) 859 UpdateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 860 return true; 861 } 862 863 /// Returns an AttributeSet representing the attributes applied to the return 864 /// value of the given call. 865 static AttributeSet getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 866 SmallVector<Attribute::AttrKind, 2> Attrs; 867 if (CLI.RetSExt) 868 Attrs.push_back(Attribute::SExt); 869 if (CLI.RetZExt) 870 Attrs.push_back(Attribute::ZExt); 871 if (CLI.IsInReg) 872 Attrs.push_back(Attribute::InReg); 873 874 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 875 Attrs); 876 } 877 878 bool FastISel::LowerCallTo(const CallInst *CI, const char *SymName, 879 unsigned NumArgs) { 880 ImmutableCallSite CS(CI); 881 882 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 883 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 884 Type *RetTy = FTy->getReturnType(); 885 886 ArgListTy Args; 887 Args.reserve(NumArgs); 888 889 // Populate the argument list. 890 // Attributes for args start at offset 1, after the return attribute. 891 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 892 Value *V = CI->getOperand(ArgI); 893 894 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 895 896 ArgListEntry Entry; 897 Entry.Val = V; 898 Entry.Ty = V->getType(); 899 Entry.setAttributes(&CS, ArgI + 1); 900 Args.push_back(Entry); 901 } 902 903 CallLoweringInfo CLI; 904 CLI.setCallee(RetTy, FTy, SymName, std::move(Args), CS, NumArgs); 905 906 return LowerCallTo(CLI); 907 } 908 909 bool FastISel::LowerCallTo(CallLoweringInfo &CLI) { 910 // Handle the incoming return values from the call. 911 CLI.clearIns(); 912 SmallVector<EVT, 4> RetTys; 913 ComputeValueVTs(TLI, CLI.RetTy, RetTys); 914 915 SmallVector<ISD::OutputArg, 4> Outs; 916 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI); 917 918 bool CanLowerReturn = TLI.CanLowerReturn(CLI.CallConv, *FuncInfo.MF, 919 CLI.IsVarArg, Outs, 920 CLI.RetTy->getContext()); 921 922 // FIXME: sret demotion isn't supported yet - bail out. 923 if (!CanLowerReturn) 924 return false; 925 926 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 927 EVT VT = RetTys[I]; 928 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 929 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 930 for (unsigned i = 0; i != NumRegs; ++i) { 931 ISD::InputArg MyFlags; 932 MyFlags.VT = RegisterVT; 933 MyFlags.ArgVT = VT; 934 MyFlags.Used = CLI.IsReturnValueUsed; 935 if (CLI.RetSExt) 936 MyFlags.Flags.setSExt(); 937 if (CLI.RetZExt) 938 MyFlags.Flags.setZExt(); 939 if (CLI.IsInReg) 940 MyFlags.Flags.setInReg(); 941 CLI.Ins.push_back(MyFlags); 942 } 943 } 944 945 // Handle all of the outgoing arguments. 946 CLI.clearOuts(); 947 for (auto &Arg : CLI.getArgs()) { 948 Type *FinalType = Arg.Ty; 949 if (Arg.isByVal) 950 FinalType = cast<PointerType>(Arg.Ty)->getElementType(); 951 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 952 FinalType, CLI.CallConv, CLI.IsVarArg); 953 954 ISD::ArgFlagsTy Flags; 955 if (Arg.isZExt) 956 Flags.setZExt(); 957 if (Arg.isSExt) 958 Flags.setSExt(); 959 if (Arg.isInReg) 960 Flags.setInReg(); 961 if (Arg.isSRet) 962 Flags.setSRet(); 963 if (Arg.isByVal) 964 Flags.setByVal(); 965 if (Arg.isInAlloca) { 966 Flags.setInAlloca(); 967 // Set the byval flag for CCAssignFn callbacks that don't know about 968 // inalloca. This way we can know how many bytes we should've allocated 969 // and how many bytes a callee cleanup function will pop. If we port 970 // inalloca to more targets, we'll have to add custom inalloca handling in 971 // the various CC lowering callbacks. 972 Flags.setByVal(); 973 } 974 if (Arg.isByVal || Arg.isInAlloca) { 975 PointerType *Ty = cast<PointerType>(Arg.Ty); 976 Type *ElementTy = Ty->getElementType(); 977 unsigned FrameSize = DL.getTypeAllocSize(ElementTy); 978 // For ByVal, alignment should come from FE. BE will guess if this info is 979 // not there, but there are cases it cannot get right. 980 unsigned FrameAlign = Arg.Alignment; 981 if (!FrameAlign) 982 FrameAlign = TLI.getByValTypeAlignment(ElementTy); 983 Flags.setByValSize(FrameSize); 984 Flags.setByValAlign(FrameAlign); 985 } 986 if (Arg.isNest) 987 Flags.setNest(); 988 if (NeedsRegBlock) 989 Flags.setInConsecutiveRegs(); 990 unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty); 991 Flags.setOrigAlign(OriginalAlignment); 992 993 CLI.OutVals.push_back(Arg.Val); 994 CLI.OutFlags.push_back(Flags); 995 } 996 997 if (!FastLowerCall(CLI)) 998 return false; 999 1000 // Set all unused physreg defs as dead. 1001 assert(CLI.Call && "No call instruction specified."); 1002 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1003 1004 if (CLI.NumResultRegs && CLI.CS) 1005 UpdateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs); 1006 1007 return true; 1008 } 1009 1010 bool FastISel::LowerCall(const CallInst *CI) { 1011 ImmutableCallSite CS(CI); 1012 1013 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 1014 FunctionType *FuncTy = cast<FunctionType>(PT->getElementType()); 1015 Type *RetTy = FuncTy->getReturnType(); 1016 1017 ArgListTy Args; 1018 ArgListEntry Entry; 1019 Args.reserve(CS.arg_size()); 1020 1021 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1022 i != e; ++i) { 1023 Value *V = *i; 1024 1025 // Skip empty types 1026 if (V->getType()->isEmptyTy()) 1027 continue; 1028 1029 Entry.Val = V; 1030 Entry.Ty = V->getType(); 1031 1032 // Skip the first return-type Attribute to get to params. 1033 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 1034 Args.push_back(Entry); 1035 } 1036 1037 // Check if target-independent constraints permit a tail call here. 1038 // Target-dependent constraints are checked within FastLowerCall. 1039 bool IsTailCall = CI->isTailCall(); 1040 if (IsTailCall && !isInTailCallPosition(CS, TM)) 1041 IsTailCall = false; 1042 1043 CallLoweringInfo CLI; 1044 CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS) 1045 .setTailCall(IsTailCall); 1046 1047 return LowerCallTo(CLI); 1048 } 1049 1050 bool FastISel::SelectCall(const User *I) { 1051 const CallInst *Call = cast<CallInst>(I); 1052 1053 // Handle simple inline asms. 1054 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 1055 // If the inline asm has side effects, then make sure that no local value 1056 // lives across by flushing the local value map. 1057 if (IA->hasSideEffects()) 1058 flushLocalValueMap(); 1059 1060 // Don't attempt to handle constraints. 1061 if (!IA->getConstraintString().empty()) 1062 return false; 1063 1064 unsigned ExtraInfo = 0; 1065 if (IA->hasSideEffects()) 1066 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1067 if (IA->isAlignStack()) 1068 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1069 1070 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1071 TII.get(TargetOpcode::INLINEASM)) 1072 .addExternalSymbol(IA->getAsmString().c_str()) 1073 .addImm(ExtraInfo); 1074 return true; 1075 } 1076 1077 MachineModuleInfo &MMI = FuncInfo.MF->getMMI(); 1078 ComputeUsesVAFloatArgument(*Call, &MMI); 1079 1080 // Handle intrinsic function calls. 1081 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1082 return SelectIntrinsicCall(II); 1083 1084 // Usually, it does not make sense to initialize a value, 1085 // make an unrelated function call and use the value, because 1086 // it tends to be spilled on the stack. So, we move the pointer 1087 // to the last local value to the beginning of the block, so that 1088 // all the values which have already been materialized, 1089 // appear after the call. It also makes sense to skip intrinsics 1090 // since they tend to be inlined. 1091 flushLocalValueMap(); 1092 1093 return LowerCall(Call); 1094 } 1095 1096 bool FastISel::SelectIntrinsicCall(const IntrinsicInst *II) { 1097 switch (II->getIntrinsicID()) { 1098 default: break; 1099 // At -O0 we don't care about the lifetime intrinsics. 1100 case Intrinsic::lifetime_start: 1101 case Intrinsic::lifetime_end: 1102 // The donothing intrinsic does, well, nothing. 1103 case Intrinsic::donothing: 1104 return true; 1105 case Intrinsic::dbg_declare: { 1106 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1107 DIVariable DIVar(DI->getVariable()); 1108 assert((!DIVar || DIVar.isVariable()) && 1109 "Variable in DbgDeclareInst should be either null or a DIVariable."); 1110 if (!DIVar || !FuncInfo.MF->getMMI().hasDebugInfo()) { 1111 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1112 return true; 1113 } 1114 1115 const Value *Address = DI->getAddress(); 1116 if (!Address || isa<UndefValue>(Address)) { 1117 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1118 return true; 1119 } 1120 1121 unsigned Offset = 0; 1122 Optional<MachineOperand> Op; 1123 if (const Argument *Arg = dyn_cast<Argument>(Address)) 1124 // Some arguments' frame index is recorded during argument lowering. 1125 Offset = FuncInfo.getArgumentFrameIndex(Arg); 1126 if (Offset) 1127 Op = MachineOperand::CreateFI(Offset); 1128 if (!Op) 1129 if (unsigned Reg = lookUpRegForValue(Address)) 1130 Op = MachineOperand::CreateReg(Reg, false); 1131 1132 // If we have a VLA that has a "use" in a metadata node that's then used 1133 // here but it has no other uses, then we have a problem. E.g., 1134 // 1135 // int foo (const int *x) { 1136 // char a[*x]; 1137 // return 0; 1138 // } 1139 // 1140 // If we assign 'a' a vreg and fast isel later on has to use the selection 1141 // DAG isel, it will want to copy the value to the vreg. However, there are 1142 // no uses, which goes counter to what selection DAG isel expects. 1143 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1144 (!isa<AllocaInst>(Address) || 1145 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1146 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1147 false); 1148 1149 if (Op) { 1150 if (Op->isReg()) { 1151 Op->setIsDebug(true); 1152 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1153 TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0, 1154 DI->getVariable()); 1155 } else 1156 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1157 TII.get(TargetOpcode::DBG_VALUE)) 1158 .addOperand(*Op) 1159 .addImm(0) 1160 .addMetadata(DI->getVariable()); 1161 } else { 1162 // We can't yet handle anything else here because it would require 1163 // generating code, thus altering codegen because of debug info. 1164 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1165 } 1166 return true; 1167 } 1168 case Intrinsic::dbg_value: { 1169 // This form of DBG_VALUE is target-independent. 1170 const DbgValueInst *DI = cast<DbgValueInst>(II); 1171 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1172 const Value *V = DI->getValue(); 1173 if (!V) { 1174 // Currently the optimizer can produce this; insert an undef to 1175 // help debugging. Probably the optimizer should not do this. 1176 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1177 .addReg(0U).addImm(DI->getOffset()) 1178 .addMetadata(DI->getVariable()); 1179 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1180 if (CI->getBitWidth() > 64) 1181 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1182 .addCImm(CI).addImm(DI->getOffset()) 1183 .addMetadata(DI->getVariable()); 1184 else 1185 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1186 .addImm(CI->getZExtValue()).addImm(DI->getOffset()) 1187 .addMetadata(DI->getVariable()); 1188 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 1189 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1190 .addFPImm(CF).addImm(DI->getOffset()) 1191 .addMetadata(DI->getVariable()); 1192 } else if (unsigned Reg = lookUpRegForValue(V)) { 1193 // FIXME: This does not handle register-indirect values at offset 0. 1194 bool IsIndirect = DI->getOffset() != 0; 1195 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, 1196 Reg, DI->getOffset(), DI->getVariable()); 1197 } else { 1198 // We can't yet handle anything else here because it would require 1199 // generating code, thus altering codegen because of debug info. 1200 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1201 } 1202 return true; 1203 } 1204 case Intrinsic::objectsize: { 1205 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1)); 1206 unsigned long long Res = CI->isZero() ? -1ULL : 0; 1207 Constant *ResCI = ConstantInt::get(II->getType(), Res); 1208 unsigned ResultReg = getRegForValue(ResCI); 1209 if (ResultReg == 0) 1210 return false; 1211 UpdateValueMap(II, ResultReg); 1212 return true; 1213 } 1214 case Intrinsic::expect: { 1215 unsigned ResultReg = getRegForValue(II->getArgOperand(0)); 1216 if (ResultReg == 0) 1217 return false; 1218 UpdateValueMap(II, ResultReg); 1219 return true; 1220 } 1221 case Intrinsic::experimental_stackmap: 1222 return SelectStackmap(II); 1223 case Intrinsic::experimental_patchpoint_void: 1224 case Intrinsic::experimental_patchpoint_i64: 1225 return SelectPatchpoint(II); 1226 } 1227 1228 return FastLowerIntrinsicCall(II); 1229 } 1230 1231 bool FastISel::SelectCast(const User *I, unsigned Opcode) { 1232 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 1233 EVT DstVT = TLI.getValueType(I->getType()); 1234 1235 if (SrcVT == MVT::Other || !SrcVT.isSimple() || 1236 DstVT == MVT::Other || !DstVT.isSimple()) 1237 // Unhandled type. Halt "fast" selection and bail. 1238 return false; 1239 1240 // Check if the destination type is legal. 1241 if (!TLI.isTypeLegal(DstVT)) 1242 return false; 1243 1244 // Check if the source operand is legal. 1245 if (!TLI.isTypeLegal(SrcVT)) 1246 return false; 1247 1248 unsigned InputReg = getRegForValue(I->getOperand(0)); 1249 if (!InputReg) 1250 // Unhandled operand. Halt "fast" selection and bail. 1251 return false; 1252 1253 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 1254 1255 unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(), 1256 DstVT.getSimpleVT(), 1257 Opcode, 1258 InputReg, InputRegIsKill); 1259 if (!ResultReg) 1260 return false; 1261 1262 UpdateValueMap(I, ResultReg); 1263 return true; 1264 } 1265 1266 bool FastISel::SelectBitCast(const User *I) { 1267 // If the bitcast doesn't change the type, just use the operand value. 1268 if (I->getType() == I->getOperand(0)->getType()) { 1269 unsigned Reg = getRegForValue(I->getOperand(0)); 1270 if (Reg == 0) 1271 return false; 1272 UpdateValueMap(I, Reg); 1273 return true; 1274 } 1275 1276 // Bitcasts of other values become reg-reg copies or BITCAST operators. 1277 EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType()); 1278 EVT DstEVT = TLI.getValueType(I->getType()); 1279 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1280 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1281 // Unhandled type. Halt "fast" selection and bail. 1282 return false; 1283 1284 MVT SrcVT = SrcEVT.getSimpleVT(); 1285 MVT DstVT = DstEVT.getSimpleVT(); 1286 unsigned Op0 = getRegForValue(I->getOperand(0)); 1287 if (Op0 == 0) 1288 // Unhandled operand. Halt "fast" selection and bail. 1289 return false; 1290 1291 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 1292 1293 // First, try to perform the bitcast by inserting a reg-reg copy. 1294 unsigned ResultReg = 0; 1295 if (SrcVT == DstVT) { 1296 const TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT); 1297 const TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT); 1298 // Don't attempt a cross-class copy. It will likely fail. 1299 if (SrcClass == DstClass) { 1300 ResultReg = createResultReg(DstClass); 1301 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1302 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); 1303 } 1304 } 1305 1306 // If the reg-reg copy failed, select a BITCAST opcode. 1307 if (!ResultReg) 1308 ResultReg = FastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); 1309 1310 if (!ResultReg) 1311 return false; 1312 1313 UpdateValueMap(I, ResultReg); 1314 return true; 1315 } 1316 1317 bool 1318 FastISel::SelectInstruction(const Instruction *I) { 1319 // Just before the terminator instruction, insert instructions to 1320 // feed PHI nodes in successor blocks. 1321 if (isa<TerminatorInst>(I)) 1322 if (!HandlePHINodesInSuccessorBlocks(I->getParent())) 1323 return false; 1324 1325 DbgLoc = I->getDebugLoc(); 1326 1327 MachineBasicBlock::iterator SavedInsertPt = FuncInfo.InsertPt; 1328 1329 if (const CallInst *Call = dyn_cast<CallInst>(I)) { 1330 const Function *F = Call->getCalledFunction(); 1331 LibFunc::Func Func; 1332 1333 // As a special case, don't handle calls to builtin library functions that 1334 // may be translated directly to target instructions. 1335 if (F && !F->hasLocalLinkage() && F->hasName() && 1336 LibInfo->getLibFunc(F->getName(), Func) && 1337 LibInfo->hasOptimizedCodeGen(Func)) 1338 return false; 1339 1340 // Don't handle Intrinsic::trap if a trap funciton is specified. 1341 if (F && F->getIntrinsicID() == Intrinsic::trap && 1342 !TM.Options.getTrapFunctionName().empty()) 1343 return false; 1344 } 1345 1346 // First, try doing target-independent selection. 1347 if (SelectOperator(I, I->getOpcode())) { 1348 ++NumFastIselSuccessIndependent; 1349 DbgLoc = DebugLoc(); 1350 return true; 1351 } 1352 // Remove dead code. However, ignore call instructions since we've flushed 1353 // the local value map and recomputed the insert point. 1354 if (!isa<CallInst>(I)) { 1355 recomputeInsertPt(); 1356 if (SavedInsertPt != FuncInfo.InsertPt) 1357 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1358 } 1359 1360 // Next, try calling the target to attempt to handle the instruction. 1361 SavedInsertPt = FuncInfo.InsertPt; 1362 if (TargetSelectInstruction(I)) { 1363 ++NumFastIselSuccessTarget; 1364 DbgLoc = DebugLoc(); 1365 return true; 1366 } 1367 // Check for dead code and remove as necessary. 1368 recomputeInsertPt(); 1369 if (SavedInsertPt != FuncInfo.InsertPt) 1370 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1371 1372 DbgLoc = DebugLoc(); 1373 // Undo phi node updates, because they will be added again by SelectionDAG. 1374 if (isa<TerminatorInst>(I)) 1375 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 1376 return false; 1377 } 1378 1379 /// FastEmitBranch - Emit an unconditional branch to the given block, 1380 /// unless it is the immediate (fall-through) successor, and update 1381 /// the CFG. 1382 void 1383 FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DbgLoc) { 1384 if (FuncInfo.MBB->getBasicBlock()->size() > 1 && 1385 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1386 // For more accurate line information if this is the only instruction 1387 // in the block then emit it, otherwise we have the unconditional 1388 // fall-through case, which needs no instructions. 1389 } else { 1390 // The unconditional branch case. 1391 TII.InsertBranch(*FuncInfo.MBB, MSucc, nullptr, 1392 SmallVector<MachineOperand, 0>(), DbgLoc); 1393 } 1394 uint32_t BranchWeight = 0; 1395 if (FuncInfo.BPI) 1396 BranchWeight = FuncInfo.BPI->getEdgeWeight(FuncInfo.MBB->getBasicBlock(), 1397 MSucc->getBasicBlock()); 1398 FuncInfo.MBB->addSuccessor(MSucc, BranchWeight); 1399 } 1400 1401 /// SelectFNeg - Emit an FNeg operation. 1402 /// 1403 bool 1404 FastISel::SelectFNeg(const User *I) { 1405 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); 1406 if (OpReg == 0) return false; 1407 1408 bool OpRegIsKill = hasTrivialKill(I); 1409 1410 // If the target has ISD::FNEG, use it. 1411 EVT VT = TLI.getValueType(I->getType()); 1412 unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), 1413 ISD::FNEG, OpReg, OpRegIsKill); 1414 if (ResultReg != 0) { 1415 UpdateValueMap(I, ResultReg); 1416 return true; 1417 } 1418 1419 // Bitcast the value to integer, twiddle the sign bit with xor, 1420 // and then bitcast it back to floating-point. 1421 if (VT.getSizeInBits() > 64) return false; 1422 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1423 if (!TLI.isTypeLegal(IntVT)) 1424 return false; 1425 1426 unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1427 ISD::BITCAST, OpReg, OpRegIsKill); 1428 if (IntReg == 0) 1429 return false; 1430 1431 unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR, 1432 IntReg, /*Kill=*/true, 1433 UINT64_C(1) << (VT.getSizeInBits()-1), 1434 IntVT.getSimpleVT()); 1435 if (IntResultReg == 0) 1436 return false; 1437 1438 ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), 1439 ISD::BITCAST, IntResultReg, /*Kill=*/true); 1440 if (ResultReg == 0) 1441 return false; 1442 1443 UpdateValueMap(I, ResultReg); 1444 return true; 1445 } 1446 1447 bool 1448 FastISel::SelectExtractValue(const User *U) { 1449 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1450 if (!EVI) 1451 return false; 1452 1453 // Make sure we only try to handle extracts with a legal result. But also 1454 // allow i1 because it's easy. 1455 EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true); 1456 if (!RealVT.isSimple()) 1457 return false; 1458 MVT VT = RealVT.getSimpleVT(); 1459 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1460 return false; 1461 1462 const Value *Op0 = EVI->getOperand(0); 1463 Type *AggTy = Op0->getType(); 1464 1465 // Get the base result register. 1466 unsigned ResultReg; 1467 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 1468 if (I != FuncInfo.ValueMap.end()) 1469 ResultReg = I->second; 1470 else if (isa<Instruction>(Op0)) 1471 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1472 else 1473 return false; // fast-isel can't handle aggregate constants at the moment 1474 1475 // Get the actual result register, which is an offset from the base register. 1476 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1477 1478 SmallVector<EVT, 4> AggValueVTs; 1479 ComputeValueVTs(TLI, AggTy, AggValueVTs); 1480 1481 for (unsigned i = 0; i < VTIndex; i++) 1482 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1483 1484 UpdateValueMap(EVI, ResultReg); 1485 return true; 1486 } 1487 1488 bool 1489 FastISel::SelectOperator(const User *I, unsigned Opcode) { 1490 switch (Opcode) { 1491 case Instruction::Add: 1492 return SelectBinaryOp(I, ISD::ADD); 1493 case Instruction::FAdd: 1494 return SelectBinaryOp(I, ISD::FADD); 1495 case Instruction::Sub: 1496 return SelectBinaryOp(I, ISD::SUB); 1497 case Instruction::FSub: 1498 // FNeg is currently represented in LLVM IR as a special case of FSub. 1499 if (BinaryOperator::isFNeg(I)) 1500 return SelectFNeg(I); 1501 return SelectBinaryOp(I, ISD::FSUB); 1502 case Instruction::Mul: 1503 return SelectBinaryOp(I, ISD::MUL); 1504 case Instruction::FMul: 1505 return SelectBinaryOp(I, ISD::FMUL); 1506 case Instruction::SDiv: 1507 return SelectBinaryOp(I, ISD::SDIV); 1508 case Instruction::UDiv: 1509 return SelectBinaryOp(I, ISD::UDIV); 1510 case Instruction::FDiv: 1511 return SelectBinaryOp(I, ISD::FDIV); 1512 case Instruction::SRem: 1513 return SelectBinaryOp(I, ISD::SREM); 1514 case Instruction::URem: 1515 return SelectBinaryOp(I, ISD::UREM); 1516 case Instruction::FRem: 1517 return SelectBinaryOp(I, ISD::FREM); 1518 case Instruction::Shl: 1519 return SelectBinaryOp(I, ISD::SHL); 1520 case Instruction::LShr: 1521 return SelectBinaryOp(I, ISD::SRL); 1522 case Instruction::AShr: 1523 return SelectBinaryOp(I, ISD::SRA); 1524 case Instruction::And: 1525 return SelectBinaryOp(I, ISD::AND); 1526 case Instruction::Or: 1527 return SelectBinaryOp(I, ISD::OR); 1528 case Instruction::Xor: 1529 return SelectBinaryOp(I, ISD::XOR); 1530 1531 case Instruction::GetElementPtr: 1532 return SelectGetElementPtr(I); 1533 1534 case Instruction::Br: { 1535 const BranchInst *BI = cast<BranchInst>(I); 1536 1537 if (BI->isUnconditional()) { 1538 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1539 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1540 FastEmitBranch(MSucc, BI->getDebugLoc()); 1541 return true; 1542 } 1543 1544 // Conditional branches are not handed yet. 1545 // Halt "fast" selection and bail. 1546 return false; 1547 } 1548 1549 case Instruction::Unreachable: 1550 if (TM.Options.TrapUnreachable) 1551 return FastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1552 else 1553 return true; 1554 1555 case Instruction::Alloca: 1556 // FunctionLowering has the static-sized case covered. 1557 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1558 return true; 1559 1560 // Dynamic-sized alloca is not handled yet. 1561 return false; 1562 1563 case Instruction::Call: 1564 return SelectCall(I); 1565 1566 case Instruction::BitCast: 1567 return SelectBitCast(I); 1568 1569 case Instruction::FPToSI: 1570 return SelectCast(I, ISD::FP_TO_SINT); 1571 case Instruction::ZExt: 1572 return SelectCast(I, ISD::ZERO_EXTEND); 1573 case Instruction::SExt: 1574 return SelectCast(I, ISD::SIGN_EXTEND); 1575 case Instruction::Trunc: 1576 return SelectCast(I, ISD::TRUNCATE); 1577 case Instruction::SIToFP: 1578 return SelectCast(I, ISD::SINT_TO_FP); 1579 1580 case Instruction::IntToPtr: // Deliberate fall-through. 1581 case Instruction::PtrToInt: { 1582 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 1583 EVT DstVT = TLI.getValueType(I->getType()); 1584 if (DstVT.bitsGT(SrcVT)) 1585 return SelectCast(I, ISD::ZERO_EXTEND); 1586 if (DstVT.bitsLT(SrcVT)) 1587 return SelectCast(I, ISD::TRUNCATE); 1588 unsigned Reg = getRegForValue(I->getOperand(0)); 1589 if (Reg == 0) return false; 1590 UpdateValueMap(I, Reg); 1591 return true; 1592 } 1593 1594 case Instruction::ExtractValue: 1595 return SelectExtractValue(I); 1596 1597 case Instruction::PHI: 1598 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1599 1600 default: 1601 // Unhandled instruction. Halt "fast" selection and bail. 1602 return false; 1603 } 1604 } 1605 1606 FastISel::FastISel(FunctionLoweringInfo &funcInfo, 1607 const TargetLibraryInfo *libInfo) 1608 : FuncInfo(funcInfo), MF(funcInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1609 MFI(*FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1610 TM(FuncInfo.MF->getTarget()), DL(*TM.getSubtargetImpl()->getDataLayout()), 1611 TII(*TM.getSubtargetImpl()->getInstrInfo()), 1612 TLI(*TM.getSubtargetImpl()->getTargetLowering()), 1613 TRI(*TM.getSubtargetImpl()->getRegisterInfo()), LibInfo(libInfo) {} 1614 1615 FastISel::~FastISel() {} 1616 1617 bool FastISel::FastLowerArguments() { 1618 return false; 1619 } 1620 1621 bool FastISel::FastLowerCall(CallLoweringInfo &/*CLI*/) { 1622 return false; 1623 } 1624 1625 bool FastISel::FastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1626 return false; 1627 } 1628 1629 unsigned FastISel::FastEmit_(MVT, MVT, 1630 unsigned) { 1631 return 0; 1632 } 1633 1634 unsigned FastISel::FastEmit_r(MVT, MVT, 1635 unsigned, 1636 unsigned /*Op0*/, bool /*Op0IsKill*/) { 1637 return 0; 1638 } 1639 1640 unsigned FastISel::FastEmit_rr(MVT, MVT, 1641 unsigned, 1642 unsigned /*Op0*/, bool /*Op0IsKill*/, 1643 unsigned /*Op1*/, bool /*Op1IsKill*/) { 1644 return 0; 1645 } 1646 1647 unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1648 return 0; 1649 } 1650 1651 unsigned FastISel::FastEmit_f(MVT, MVT, 1652 unsigned, const ConstantFP * /*FPImm*/) { 1653 return 0; 1654 } 1655 1656 unsigned FastISel::FastEmit_ri(MVT, MVT, 1657 unsigned, 1658 unsigned /*Op0*/, bool /*Op0IsKill*/, 1659 uint64_t /*Imm*/) { 1660 return 0; 1661 } 1662 1663 unsigned FastISel::FastEmit_rf(MVT, MVT, 1664 unsigned, 1665 unsigned /*Op0*/, bool /*Op0IsKill*/, 1666 const ConstantFP * /*FPImm*/) { 1667 return 0; 1668 } 1669 1670 unsigned FastISel::FastEmit_rri(MVT, MVT, 1671 unsigned, 1672 unsigned /*Op0*/, bool /*Op0IsKill*/, 1673 unsigned /*Op1*/, bool /*Op1IsKill*/, 1674 uint64_t /*Imm*/) { 1675 return 0; 1676 } 1677 1678 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries 1679 /// to emit an instruction with an immediate operand using FastEmit_ri. 1680 /// If that fails, it materializes the immediate into a register and try 1681 /// FastEmit_rr instead. 1682 unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode, 1683 unsigned Op0, bool Op0IsKill, 1684 uint64_t Imm, MVT ImmType) { 1685 // If this is a multiply by a power of two, emit this as a shift left. 1686 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1687 Opcode = ISD::SHL; 1688 Imm = Log2_64(Imm); 1689 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1690 // div x, 8 -> srl x, 3 1691 Opcode = ISD::SRL; 1692 Imm = Log2_64(Imm); 1693 } 1694 1695 // Horrible hack (to be removed), check to make sure shift amounts are 1696 // in-range. 1697 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1698 Imm >= VT.getSizeInBits()) 1699 return 0; 1700 1701 // First check if immediate type is legal. If not, we can't use the ri form. 1702 unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1703 if (ResultReg != 0) 1704 return ResultReg; 1705 unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1706 if (MaterialReg == 0) { 1707 // This is a bit ugly/slow, but failing here means falling out of 1708 // fast-isel, which would be very slow. 1709 IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(), 1710 VT.getSizeInBits()); 1711 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1712 if (MaterialReg == 0) return 0; 1713 } 1714 return FastEmit_rr(VT, VT, Opcode, 1715 Op0, Op0IsKill, 1716 MaterialReg, /*Kill=*/true); 1717 } 1718 1719 unsigned FastISel::createResultReg(const TargetRegisterClass* RC) { 1720 return MRI.createVirtualRegister(RC); 1721 } 1722 1723 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, 1724 unsigned Op, unsigned OpNum) { 1725 if (TargetRegisterInfo::isVirtualRegister(Op)) { 1726 const TargetRegisterClass *RegClass = 1727 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 1728 if (!MRI.constrainRegClass(Op, RegClass)) { 1729 // If it's not legal to COPY between the register classes, something 1730 // has gone very wrong before we got here. 1731 unsigned NewOp = createResultReg(RegClass); 1732 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1733 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 1734 return NewOp; 1735 } 1736 } 1737 return Op; 1738 } 1739 1740 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode, 1741 const TargetRegisterClass* RC) { 1742 unsigned ResultReg = createResultReg(RC); 1743 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1744 1745 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); 1746 return ResultReg; 1747 } 1748 1749 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode, 1750 const TargetRegisterClass *RC, 1751 unsigned Op0, bool Op0IsKill) { 1752 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1753 1754 unsigned ResultReg = createResultReg(RC); 1755 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1756 1757 if (II.getNumDefs() >= 1) 1758 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1759 .addReg(Op0, Op0IsKill * RegState::Kill); 1760 else { 1761 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1762 .addReg(Op0, Op0IsKill * RegState::Kill); 1763 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1764 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1765 } 1766 1767 return ResultReg; 1768 } 1769 1770 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode, 1771 const TargetRegisterClass *RC, 1772 unsigned Op0, bool Op0IsKill, 1773 unsigned Op1, bool Op1IsKill) { 1774 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1775 1776 unsigned ResultReg = createResultReg(RC); 1777 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1778 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1779 1780 if (II.getNumDefs() >= 1) 1781 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1782 .addReg(Op0, Op0IsKill * RegState::Kill) 1783 .addReg(Op1, Op1IsKill * RegState::Kill); 1784 else { 1785 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1786 .addReg(Op0, Op0IsKill * RegState::Kill) 1787 .addReg(Op1, Op1IsKill * RegState::Kill); 1788 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1789 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1790 } 1791 return ResultReg; 1792 } 1793 1794 unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode, 1795 const TargetRegisterClass *RC, 1796 unsigned Op0, bool Op0IsKill, 1797 unsigned Op1, bool Op1IsKill, 1798 unsigned Op2, bool Op2IsKill) { 1799 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1800 1801 unsigned ResultReg = createResultReg(RC); 1802 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1803 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1804 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 1805 1806 if (II.getNumDefs() >= 1) 1807 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1808 .addReg(Op0, Op0IsKill * RegState::Kill) 1809 .addReg(Op1, Op1IsKill * RegState::Kill) 1810 .addReg(Op2, Op2IsKill * RegState::Kill); 1811 else { 1812 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1813 .addReg(Op0, Op0IsKill * RegState::Kill) 1814 .addReg(Op1, Op1IsKill * RegState::Kill) 1815 .addReg(Op2, Op2IsKill * RegState::Kill); 1816 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1817 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1818 } 1819 return ResultReg; 1820 } 1821 1822 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode, 1823 const TargetRegisterClass *RC, 1824 unsigned Op0, bool Op0IsKill, 1825 uint64_t Imm) { 1826 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1827 1828 unsigned ResultReg = createResultReg(RC); 1829 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1830 1831 if (II.getNumDefs() >= 1) 1832 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1833 .addReg(Op0, Op0IsKill * RegState::Kill) 1834 .addImm(Imm); 1835 else { 1836 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1837 .addReg(Op0, Op0IsKill * RegState::Kill) 1838 .addImm(Imm); 1839 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1840 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1841 } 1842 return ResultReg; 1843 } 1844 1845 unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode, 1846 const TargetRegisterClass *RC, 1847 unsigned Op0, bool Op0IsKill, 1848 uint64_t Imm1, uint64_t Imm2) { 1849 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1850 1851 unsigned ResultReg = createResultReg(RC); 1852 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1853 1854 if (II.getNumDefs() >= 1) 1855 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1856 .addReg(Op0, Op0IsKill * RegState::Kill) 1857 .addImm(Imm1) 1858 .addImm(Imm2); 1859 else { 1860 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1861 .addReg(Op0, Op0IsKill * RegState::Kill) 1862 .addImm(Imm1) 1863 .addImm(Imm2); 1864 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1865 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1866 } 1867 return ResultReg; 1868 } 1869 1870 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode, 1871 const TargetRegisterClass *RC, 1872 unsigned Op0, bool Op0IsKill, 1873 const ConstantFP *FPImm) { 1874 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1875 1876 unsigned ResultReg = createResultReg(RC); 1877 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1878 1879 if (II.getNumDefs() >= 1) 1880 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1881 .addReg(Op0, Op0IsKill * RegState::Kill) 1882 .addFPImm(FPImm); 1883 else { 1884 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1885 .addReg(Op0, Op0IsKill * RegState::Kill) 1886 .addFPImm(FPImm); 1887 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1888 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1889 } 1890 return ResultReg; 1891 } 1892 1893 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode, 1894 const TargetRegisterClass *RC, 1895 unsigned Op0, bool Op0IsKill, 1896 unsigned Op1, bool Op1IsKill, 1897 uint64_t Imm) { 1898 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1899 1900 unsigned ResultReg = createResultReg(RC); 1901 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1902 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1903 1904 if (II.getNumDefs() >= 1) 1905 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1906 .addReg(Op0, Op0IsKill * RegState::Kill) 1907 .addReg(Op1, Op1IsKill * RegState::Kill) 1908 .addImm(Imm); 1909 else { 1910 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1911 .addReg(Op0, Op0IsKill * RegState::Kill) 1912 .addReg(Op1, Op1IsKill * RegState::Kill) 1913 .addImm(Imm); 1914 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1915 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1916 } 1917 return ResultReg; 1918 } 1919 1920 unsigned FastISel::FastEmitInst_rrii(unsigned MachineInstOpcode, 1921 const TargetRegisterClass *RC, 1922 unsigned Op0, bool Op0IsKill, 1923 unsigned Op1, bool Op1IsKill, 1924 uint64_t Imm1, uint64_t Imm2) { 1925 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1926 1927 unsigned ResultReg = createResultReg(RC); 1928 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1929 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1930 1931 if (II.getNumDefs() >= 1) 1932 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1933 .addReg(Op0, Op0IsKill * RegState::Kill) 1934 .addReg(Op1, Op1IsKill * RegState::Kill) 1935 .addImm(Imm1).addImm(Imm2); 1936 else { 1937 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1938 .addReg(Op0, Op0IsKill * RegState::Kill) 1939 .addReg(Op1, Op1IsKill * RegState::Kill) 1940 .addImm(Imm1).addImm(Imm2); 1941 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1942 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1943 } 1944 return ResultReg; 1945 } 1946 1947 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode, 1948 const TargetRegisterClass *RC, 1949 uint64_t Imm) { 1950 unsigned ResultReg = createResultReg(RC); 1951 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1952 1953 if (II.getNumDefs() >= 1) 1954 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg).addImm(Imm); 1955 else { 1956 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); 1957 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1958 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1959 } 1960 return ResultReg; 1961 } 1962 1963 unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode, 1964 const TargetRegisterClass *RC, 1965 uint64_t Imm1, uint64_t Imm2) { 1966 unsigned ResultReg = createResultReg(RC); 1967 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1968 1969 if (II.getNumDefs() >= 1) 1970 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1971 .addImm(Imm1).addImm(Imm2); 1972 else { 1973 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm1).addImm(Imm2); 1974 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1975 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1976 } 1977 return ResultReg; 1978 } 1979 1980 unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT, 1981 unsigned Op0, bool Op0IsKill, 1982 uint32_t Idx) { 1983 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1984 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 1985 "Cannot yet extract from physregs"); 1986 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 1987 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 1988 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 1989 DbgLoc, TII.get(TargetOpcode::COPY), ResultReg) 1990 .addReg(Op0, getKillRegState(Op0IsKill), Idx); 1991 return ResultReg; 1992 } 1993 1994 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op 1995 /// with all but the least significant bit set to zero. 1996 unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 1997 return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 1998 } 1999 2000 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 2001 /// Emit code to ensure constants are copied into registers when needed. 2002 /// Remember the virtual registers that need to be added to the Machine PHI 2003 /// nodes as input. We cannot just directly add them, because expansion 2004 /// might result in multiple MBB's for one BB. As such, the start of the 2005 /// BB might correspond to a different MBB than the end. 2006 bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 2007 const TerminatorInst *TI = LLVMBB->getTerminator(); 2008 2009 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 2010 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 2011 2012 // Check successor nodes' PHI nodes that expect a constant to be available 2013 // from this block. 2014 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 2015 const BasicBlock *SuccBB = TI->getSuccessor(succ); 2016 if (!isa<PHINode>(SuccBB->begin())) continue; 2017 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 2018 2019 // If this terminator has multiple identical successors (common for 2020 // switches), only handle each succ once. 2021 if (!SuccsHandled.insert(SuccMBB)) continue; 2022 2023 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 2024 2025 // At this point we know that there is a 1-1 correspondence between LLVM PHI 2026 // nodes and Machine PHI nodes, but the incoming operands have not been 2027 // emitted yet. 2028 for (BasicBlock::const_iterator I = SuccBB->begin(); 2029 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2030 2031 // Ignore dead phi's. 2032 if (PN->use_empty()) continue; 2033 2034 // Only handle legal types. Two interesting things to note here. First, 2035 // by bailing out early, we may leave behind some dead instructions, 2036 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2037 // own moves. Second, this check is necessary because FastISel doesn't 2038 // use CreateRegs to create registers, so it always creates 2039 // exactly one register for each non-void instruction. 2040 EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); 2041 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2042 // Handle integer promotions, though, because they're common and easy. 2043 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 2044 VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT); 2045 else { 2046 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2047 return false; 2048 } 2049 } 2050 2051 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 2052 2053 // Set the DebugLoc for the copy. Prefer the location of the operand 2054 // if there is one; use the location of the PHI otherwise. 2055 DbgLoc = PN->getDebugLoc(); 2056 if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp)) 2057 DbgLoc = Inst->getDebugLoc(); 2058 2059 unsigned Reg = getRegForValue(PHIOp); 2060 if (!Reg) { 2061 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2062 return false; 2063 } 2064 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); 2065 DbgLoc = DebugLoc(); 2066 } 2067 } 2068 2069 return true; 2070 } 2071 2072 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2073 assert(LI->hasOneUse() && 2074 "tryToFoldLoad expected a LoadInst with a single use"); 2075 // We know that the load has a single use, but don't know what it is. If it 2076 // isn't one of the folded instructions, then we can't succeed here. Handle 2077 // this by scanning the single-use users of the load until we get to FoldInst. 2078 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2079 2080 const Instruction *TheUser = LI->user_back(); 2081 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2082 // Stay in the right block. 2083 TheUser->getParent() == FoldInst->getParent() && 2084 --MaxUsers) { // Don't scan too far. 2085 // If there are multiple or no uses of this instruction, then bail out. 2086 if (!TheUser->hasOneUse()) 2087 return false; 2088 2089 TheUser = TheUser->user_back(); 2090 } 2091 2092 // If we didn't find the fold instruction, then we failed to collapse the 2093 // sequence. 2094 if (TheUser != FoldInst) 2095 return false; 2096 2097 // Don't try to fold volatile loads. Target has to deal with alignment 2098 // constraints. 2099 if (LI->isVolatile()) 2100 return false; 2101 2102 // Figure out which vreg this is going into. If there is no assigned vreg yet 2103 // then there actually was no reference to it. Perhaps the load is referenced 2104 // by a dead instruction. 2105 unsigned LoadReg = getRegForValue(LI); 2106 if (LoadReg == 0) 2107 return false; 2108 2109 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2110 // may mean that the instruction got lowered to multiple MIs, or the use of 2111 // the loaded value ended up being multiple operands of the result. 2112 if (!MRI.hasOneUse(LoadReg)) 2113 return false; 2114 2115 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2116 MachineInstr *User = RI->getParent(); 2117 2118 // Set the insertion point properly. Folding the load can cause generation of 2119 // other random instructions (like sign extends) for addressing modes; make 2120 // sure they get inserted in a logical place before the new instruction. 2121 FuncInfo.InsertPt = User; 2122 FuncInfo.MBB = User->getParent(); 2123 2124 // Ask the target to try folding the load. 2125 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2126 } 2127 2128 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2129 // Must be an add. 2130 if (!isa<AddOperator>(Add)) 2131 return false; 2132 // Type size needs to match. 2133 if (DL.getTypeSizeInBits(GEP->getType()) != 2134 DL.getTypeSizeInBits(Add->getType())) 2135 return false; 2136 // Must be in the same basic block. 2137 if (isa<Instruction>(Add) && 2138 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2139 return false; 2140 // Must have a constant operand. 2141 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2142 } 2143 2144 MachineMemOperand * 2145 FastISel::createMachineMemOperandFor(const Instruction *I) const { 2146 const Value *Ptr; 2147 Type *ValTy; 2148 unsigned Alignment; 2149 unsigned Flags; 2150 bool IsVolatile; 2151 2152 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2153 Alignment = LI->getAlignment(); 2154 IsVolatile = LI->isVolatile(); 2155 Flags = MachineMemOperand::MOLoad; 2156 Ptr = LI->getPointerOperand(); 2157 ValTy = LI->getType(); 2158 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2159 Alignment = SI->getAlignment(); 2160 IsVolatile = SI->isVolatile(); 2161 Flags = MachineMemOperand::MOStore; 2162 Ptr = SI->getPointerOperand(); 2163 ValTy = SI->getValueOperand()->getType(); 2164 } else { 2165 return nullptr; 2166 } 2167 2168 bool IsNonTemporal = I->getMetadata("nontemporal") != nullptr; 2169 bool IsInvariant = I->getMetadata("invariant.load") != nullptr; 2170 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2171 2172 AAMDNodes AAInfo; 2173 I->getAAMetadata(AAInfo); 2174 2175 if (Alignment == 0) // Ensure that codegen never sees alignment 0. 2176 Alignment = DL.getABITypeAlignment(ValTy); 2177 2178 unsigned Size = 2179 TM.getSubtargetImpl()->getDataLayout()->getTypeStoreSize(ValTy); 2180 2181 if (IsVolatile) 2182 Flags |= MachineMemOperand::MOVolatile; 2183 if (IsNonTemporal) 2184 Flags |= MachineMemOperand::MONonTemporal; 2185 if (IsInvariant) 2186 Flags |= MachineMemOperand::MOInvariant; 2187 2188 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2189 Alignment, AAInfo, Ranges); 2190 } 2191