1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the FastISel class.
10 //
11 // "Fast" instruction selection is designed to emit very poor code quickly.
12 // Also, it is not designed to be able to do much lowering, so most illegal
13 // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
14 // also not intended to be able to do much optimization, except in a few cases
15 // where doing optimizations reduces overall compile time.  For example, folding
16 // constants into immediate fields is often done, because it's cheap and it
17 // reduces the number of instructions later phases have to examine.
18 //
19 // "Fast" instruction selection is able to fail gracefully and transfer
20 // control to the SelectionDAG selector for operations that it doesn't
21 // support.  In many cases, this allows us to avoid duplicating a lot of
22 // the complicated lowering logic that SelectionDAG currently has.
23 //
24 // The intended use for "fast" instruction selection is "-O0" mode
25 // compilation, where the quality of the generated code is irrelevant when
26 // weighed against the speed at which the code can be generated.  Also,
27 // at -O0, the LLVM optimizers are not running, and this makes the
28 // compile time of codegen a much higher portion of the overall compile
29 // time.  Despite its limitations, "fast" instruction selection is able to
30 // handle enough code on its own to provide noticeable overall speedups
31 // in -O0 compiles.
32 //
33 // Basic operations are supported in a target-independent way, by reading
34 // the same instruction descriptions that the SelectionDAG selector reads,
35 // and identifying simple arithmetic operations that can be directly selected
36 // from simple operators.  More complicated operations currently require
37 // target-specific code.
38 //
39 //===----------------------------------------------------------------------===//
40 
41 #include "llvm/CodeGen/FastISel.h"
42 #include "llvm/ADT/APFloat.h"
43 #include "llvm/ADT/APSInt.h"
44 #include "llvm/ADT/DenseMap.h"
45 #include "llvm/ADT/Optional.h"
46 #include "llvm/ADT/SmallPtrSet.h"
47 #include "llvm/ADT/SmallString.h"
48 #include "llvm/ADT/SmallVector.h"
49 #include "llvm/ADT/Statistic.h"
50 #include "llvm/Analysis/BranchProbabilityInfo.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/CodeGen/Analysis.h"
53 #include "llvm/CodeGen/FunctionLoweringInfo.h"
54 #include "llvm/CodeGen/ISDOpcodes.h"
55 #include "llvm/CodeGen/MachineBasicBlock.h"
56 #include "llvm/CodeGen/MachineFrameInfo.h"
57 #include "llvm/CodeGen/MachineInstr.h"
58 #include "llvm/CodeGen/MachineInstrBuilder.h"
59 #include "llvm/CodeGen/MachineMemOperand.h"
60 #include "llvm/CodeGen/MachineModuleInfo.h"
61 #include "llvm/CodeGen/MachineOperand.h"
62 #include "llvm/CodeGen/MachineRegisterInfo.h"
63 #include "llvm/CodeGen/StackMaps.h"
64 #include "llvm/CodeGen/TargetInstrInfo.h"
65 #include "llvm/CodeGen/TargetLowering.h"
66 #include "llvm/CodeGen/TargetSubtargetInfo.h"
67 #include "llvm/CodeGen/ValueTypes.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Attributes.h"
70 #include "llvm/IR/BasicBlock.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfo.h"
76 #include "llvm/IR/DebugLoc.h"
77 #include "llvm/IR/DerivedTypes.h"
78 #include "llvm/IR/DiagnosticInfo.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/GlobalValue.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstrTypes.h"
84 #include "llvm/IR/Instruction.h"
85 #include "llvm/IR/Instructions.h"
86 #include "llvm/IR/IntrinsicInst.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Mangler.h"
89 #include "llvm/IR/Metadata.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCInstrDesc.h"
97 #include "llvm/MC/MCRegisterInfo.h"
98 #include "llvm/Support/Casting.h"
99 #include "llvm/Support/Debug.h"
100 #include "llvm/Support/ErrorHandling.h"
101 #include "llvm/Support/MachineValueType.h"
102 #include "llvm/Support/MathExtras.h"
103 #include "llvm/Support/raw_ostream.h"
104 #include "llvm/Target/TargetMachine.h"
105 #include "llvm/Target/TargetOptions.h"
106 #include <algorithm>
107 #include <cassert>
108 #include <cstdint>
109 #include <iterator>
110 #include <utility>
111 
112 using namespace llvm;
113 using namespace PatternMatch;
114 
115 #define DEBUG_TYPE "isel"
116 
117 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
118                                          "target-independent selector");
119 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
120                                     "target-specific selector");
121 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
122 
123 /// Set the current block to which generated machine instructions will be
124 /// appended.
125 void FastISel::startNewBlock() {
126   assert(LocalValueMap.empty() &&
127          "local values should be cleared after finishing a BB");
128 
129   // Instructions are appended to FuncInfo.MBB. If the basic block already
130   // contains labels or copies, use the last instruction as the last local
131   // value.
132   EmitStartPt = nullptr;
133   if (!FuncInfo.MBB->empty())
134     EmitStartPt = &FuncInfo.MBB->back();
135   LastLocalValue = EmitStartPt;
136 }
137 
138 void FastISel::finishBasicBlock() { flushLocalValueMap(); }
139 
140 bool FastISel::lowerArguments() {
141   if (!FuncInfo.CanLowerReturn)
142     // Fallback to SDISel argument lowering code to deal with sret pointer
143     // parameter.
144     return false;
145 
146   if (!fastLowerArguments())
147     return false;
148 
149   // Enter arguments into ValueMap for uses in non-entry BBs.
150   for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
151                                     E = FuncInfo.Fn->arg_end();
152        I != E; ++I) {
153     DenseMap<const Value *, Register>::iterator VI = LocalValueMap.find(&*I);
154     assert(VI != LocalValueMap.end() && "Missed an argument?");
155     FuncInfo.ValueMap[&*I] = VI->second;
156   }
157   return true;
158 }
159 
160 /// Return the defined register if this instruction defines exactly one
161 /// virtual register and uses no other virtual registers. Otherwise return 0.
162 static Register findLocalRegDef(MachineInstr &MI) {
163   Register RegDef;
164   for (const MachineOperand &MO : MI.operands()) {
165     if (!MO.isReg())
166       continue;
167     if (MO.isDef()) {
168       if (RegDef)
169         return Register();
170       RegDef = MO.getReg();
171     } else if (MO.getReg().isVirtual()) {
172       // This is another use of a vreg. Don't delete it.
173       return Register();
174     }
175   }
176   return RegDef;
177 }
178 
179 static bool isRegUsedByPhiNodes(Register DefReg,
180                                 FunctionLoweringInfo &FuncInfo) {
181   for (auto &P : FuncInfo.PHINodesToUpdate)
182     if (P.second == DefReg)
183       return true;
184   return false;
185 }
186 
187 void FastISel::flushLocalValueMap() {
188   // If FastISel bails out, it could leave local value instructions behind
189   // that aren't used for anything.  Detect and erase those.
190   if (LastLocalValue != EmitStartPt) {
191     // Save the first instruction after local values, for later.
192     MachineBasicBlock::iterator FirstNonValue(LastLocalValue);
193     ++FirstNonValue;
194 
195     MachineBasicBlock::reverse_iterator RE =
196         EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt)
197                     : FuncInfo.MBB->rend();
198     MachineBasicBlock::reverse_iterator RI(LastLocalValue);
199     for (; RI != RE;) {
200       MachineInstr &LocalMI = *RI;
201       // Increment before erasing what it points to.
202       ++RI;
203       Register DefReg = findLocalRegDef(LocalMI);
204       if (!DefReg)
205         continue;
206       if (FuncInfo.RegsWithFixups.count(DefReg))
207         continue;
208       bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo);
209       if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) {
210         if (EmitStartPt == &LocalMI)
211           EmitStartPt = EmitStartPt->getPrevNode();
212         LLVM_DEBUG(dbgs() << "removing dead local value materialization"
213                           << LocalMI);
214         LocalMI.eraseFromParent();
215       }
216     }
217 
218     if (FirstNonValue != FuncInfo.MBB->end()) {
219       // See if there are any local value instructions left.  If so, we want to
220       // make sure the first one has a debug location; if it doesn't, use the
221       // first non-value instruction's debug location.
222 
223       // If EmitStartPt is non-null, this block had copies at the top before
224       // FastISel started doing anything; it points to the last one, so the
225       // first local value instruction is the one after EmitStartPt.
226       // If EmitStartPt is null, the first local value instruction is at the
227       // top of the block.
228       MachineBasicBlock::iterator FirstLocalValue =
229           EmitStartPt ? ++MachineBasicBlock::iterator(EmitStartPt)
230                       : FuncInfo.MBB->begin();
231       if (FirstLocalValue != FirstNonValue && !FirstLocalValue->getDebugLoc())
232         FirstLocalValue->setDebugLoc(FirstNonValue->getDebugLoc());
233     }
234   }
235 
236   LocalValueMap.clear();
237   LastLocalValue = EmitStartPt;
238   recomputeInsertPt();
239   SavedInsertPt = FuncInfo.InsertPt;
240 }
241 
242 Register FastISel::getRegForValue(const Value *V) {
243   EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
244   // Don't handle non-simple values in FastISel.
245   if (!RealVT.isSimple())
246     return Register();
247 
248   // Ignore illegal types. We must do this before looking up the value
249   // in ValueMap because Arguments are given virtual registers regardless
250   // of whether FastISel can handle them.
251   MVT VT = RealVT.getSimpleVT();
252   if (!TLI.isTypeLegal(VT)) {
253     // Handle integer promotions, though, because they're common and easy.
254     if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
255       VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
256     else
257       return Register();
258   }
259 
260   // Look up the value to see if we already have a register for it.
261   Register Reg = lookUpRegForValue(V);
262   if (Reg)
263     return Reg;
264 
265   // In bottom-up mode, just create the virtual register which will be used
266   // to hold the value. It will be materialized later.
267   if (isa<Instruction>(V) &&
268       (!isa<AllocaInst>(V) ||
269        !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
270     return FuncInfo.InitializeRegForValue(V);
271 
272   SavePoint SaveInsertPt = enterLocalValueArea();
273 
274   // Materialize the value in a register. Emit any instructions in the
275   // local value area.
276   Reg = materializeRegForValue(V, VT);
277 
278   leaveLocalValueArea(SaveInsertPt);
279 
280   return Reg;
281 }
282 
283 Register FastISel::materializeConstant(const Value *V, MVT VT) {
284   Register Reg;
285   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
286     if (CI->getValue().getActiveBits() <= 64)
287       Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
288   } else if (isa<AllocaInst>(V))
289     Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
290   else if (isa<ConstantPointerNull>(V))
291     // Translate this as an integer zero so that it can be
292     // local-CSE'd with actual integer zeros.
293     Reg =
294         getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getType())));
295   else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
296     if (CF->isNullValue())
297       Reg = fastMaterializeFloatZero(CF);
298     else
299       // Try to emit the constant directly.
300       Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
301 
302     if (!Reg) {
303       // Try to emit the constant by using an integer constant with a cast.
304       const APFloat &Flt = CF->getValueAPF();
305       EVT IntVT = TLI.getPointerTy(DL);
306       uint32_t IntBitWidth = IntVT.getSizeInBits();
307       APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false);
308       bool isExact;
309       (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact);
310       if (isExact) {
311         Register IntegerReg =
312             getRegForValue(ConstantInt::get(V->getContext(), SIntVal));
313         if (IntegerReg)
314           Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
315                            IntegerReg);
316       }
317     }
318   } else if (const auto *Op = dyn_cast<Operator>(V)) {
319     if (!selectOperator(Op, Op->getOpcode()))
320       if (!isa<Instruction>(Op) ||
321           !fastSelectInstruction(cast<Instruction>(Op)))
322         return 0;
323     Reg = lookUpRegForValue(Op);
324   } else if (isa<UndefValue>(V)) {
325     Reg = createResultReg(TLI.getRegClassFor(VT));
326     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
327             TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
328   }
329   return Reg;
330 }
331 
332 /// Helper for getRegForValue. This function is called when the value isn't
333 /// already available in a register and must be materialized with new
334 /// instructions.
335 Register FastISel::materializeRegForValue(const Value *V, MVT VT) {
336   Register Reg;
337   // Give the target-specific code a try first.
338   if (isa<Constant>(V))
339     Reg = fastMaterializeConstant(cast<Constant>(V));
340 
341   // If target-specific code couldn't or didn't want to handle the value, then
342   // give target-independent code a try.
343   if (!Reg)
344     Reg = materializeConstant(V, VT);
345 
346   // Don't cache constant materializations in the general ValueMap.
347   // To do so would require tracking what uses they dominate.
348   if (Reg) {
349     LocalValueMap[V] = Reg;
350     LastLocalValue = MRI.getVRegDef(Reg);
351   }
352   return Reg;
353 }
354 
355 Register FastISel::lookUpRegForValue(const Value *V) {
356   // Look up the value to see if we already have a register for it. We
357   // cache values defined by Instructions across blocks, and other values
358   // only locally. This is because Instructions already have the SSA
359   // def-dominates-use requirement enforced.
360   DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(V);
361   if (I != FuncInfo.ValueMap.end())
362     return I->second;
363   return LocalValueMap[V];
364 }
365 
366 void FastISel::updateValueMap(const Value *I, Register Reg, unsigned NumRegs) {
367   if (!isa<Instruction>(I)) {
368     LocalValueMap[I] = Reg;
369     return;
370   }
371 
372   Register &AssignedReg = FuncInfo.ValueMap[I];
373   if (!AssignedReg)
374     // Use the new register.
375     AssignedReg = Reg;
376   else if (Reg != AssignedReg) {
377     // Arrange for uses of AssignedReg to be replaced by uses of Reg.
378     for (unsigned i = 0; i < NumRegs; i++) {
379       FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
380       FuncInfo.RegsWithFixups.insert(Reg + i);
381     }
382 
383     AssignedReg = Reg;
384   }
385 }
386 
387 Register FastISel::getRegForGEPIndex(const Value *Idx) {
388   Register IdxN = getRegForValue(Idx);
389   if (!IdxN)
390     // Unhandled operand. Halt "fast" selection and bail.
391     return Register();
392 
393   // If the index is smaller or larger than intptr_t, truncate or extend it.
394   MVT PtrVT = TLI.getPointerTy(DL);
395   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
396   if (IdxVT.bitsLT(PtrVT)) {
397     IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN);
398   } else if (IdxVT.bitsGT(PtrVT)) {
399     IdxN =
400         fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN);
401   }
402   return IdxN;
403 }
404 
405 void FastISel::recomputeInsertPt() {
406   if (getLastLocalValue()) {
407     FuncInfo.InsertPt = getLastLocalValue();
408     FuncInfo.MBB = FuncInfo.InsertPt->getParent();
409     ++FuncInfo.InsertPt;
410   } else
411     FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
412 
413   // Now skip past any EH_LABELs, which must remain at the beginning.
414   while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
415          FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
416     ++FuncInfo.InsertPt;
417 }
418 
419 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
420                               MachineBasicBlock::iterator E) {
421   assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 &&
422          "Invalid iterator!");
423   while (I != E) {
424     if (SavedInsertPt == I)
425       SavedInsertPt = E;
426     if (EmitStartPt == I)
427       EmitStartPt = E.isValid() ? &*E : nullptr;
428     if (LastLocalValue == I)
429       LastLocalValue = E.isValid() ? &*E : nullptr;
430 
431     MachineInstr *Dead = &*I;
432     ++I;
433     Dead->eraseFromParent();
434     ++NumFastIselDead;
435   }
436   recomputeInsertPt();
437 }
438 
439 FastISel::SavePoint FastISel::enterLocalValueArea() {
440   SavePoint OldInsertPt = FuncInfo.InsertPt;
441   recomputeInsertPt();
442   return OldInsertPt;
443 }
444 
445 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
446   if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
447     LastLocalValue = &*std::prev(FuncInfo.InsertPt);
448 
449   // Restore the previous insert position.
450   FuncInfo.InsertPt = OldInsertPt;
451 }
452 
453 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
454   EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
455   if (VT == MVT::Other || !VT.isSimple())
456     // Unhandled type. Halt "fast" selection and bail.
457     return false;
458 
459   // We only handle legal types. For example, on x86-32 the instruction
460   // selector contains all of the 64-bit instructions from x86-64,
461   // under the assumption that i64 won't be used if the target doesn't
462   // support it.
463   if (!TLI.isTypeLegal(VT)) {
464     // MVT::i1 is special. Allow AND, OR, or XOR because they
465     // don't require additional zeroing, which makes them easy.
466     if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
467                           ISDOpcode == ISD::XOR))
468       VT = TLI.getTypeToTransformTo(I->getContext(), VT);
469     else
470       return false;
471   }
472 
473   // Check if the first operand is a constant, and handle it as "ri".  At -O0,
474   // we don't have anything that canonicalizes operand order.
475   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
476     if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
477       Register Op1 = getRegForValue(I->getOperand(1));
478       if (!Op1)
479         return false;
480 
481       Register ResultReg =
482           fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, CI->getZExtValue(),
483                        VT.getSimpleVT());
484       if (!ResultReg)
485         return false;
486 
487       // We successfully emitted code for the given LLVM Instruction.
488       updateValueMap(I, ResultReg);
489       return true;
490     }
491 
492   Register Op0 = getRegForValue(I->getOperand(0));
493   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
494     return false;
495 
496   // Check if the second operand is a constant and handle it appropriately.
497   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
498     uint64_t Imm = CI->getSExtValue();
499 
500     // Transform "sdiv exact X, 8" -> "sra X, 3".
501     if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
502         cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
503       Imm = Log2_64(Imm);
504       ISDOpcode = ISD::SRA;
505     }
506 
507     // Transform "urem x, pow2" -> "and x, pow2-1".
508     if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
509         isPowerOf2_64(Imm)) {
510       --Imm;
511       ISDOpcode = ISD::AND;
512     }
513 
514     Register ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, Imm,
515                                       VT.getSimpleVT());
516     if (!ResultReg)
517       return false;
518 
519     // We successfully emitted code for the given LLVM Instruction.
520     updateValueMap(I, ResultReg);
521     return true;
522   }
523 
524   Register Op1 = getRegForValue(I->getOperand(1));
525   if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
526     return false;
527 
528   // Now we have both operands in registers. Emit the instruction.
529   Register ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
530                                    ISDOpcode, Op0, Op1);
531   if (!ResultReg)
532     // Target-specific code wasn't able to find a machine opcode for
533     // the given ISD opcode and type. Halt "fast" selection and bail.
534     return false;
535 
536   // We successfully emitted code for the given LLVM Instruction.
537   updateValueMap(I, ResultReg);
538   return true;
539 }
540 
541 bool FastISel::selectGetElementPtr(const User *I) {
542   Register N = getRegForValue(I->getOperand(0));
543   if (!N) // Unhandled operand. Halt "fast" selection and bail.
544     return false;
545 
546   // FIXME: The code below does not handle vector GEPs. Halt "fast" selection
547   // and bail.
548   if (isa<VectorType>(I->getType()))
549     return false;
550 
551   // Keep a running tab of the total offset to coalesce multiple N = N + Offset
552   // into a single N = N + TotalOffset.
553   uint64_t TotalOffs = 0;
554   // FIXME: What's a good SWAG number for MaxOffs?
555   uint64_t MaxOffs = 2048;
556   MVT VT = TLI.getPointerTy(DL);
557   for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
558        GTI != E; ++GTI) {
559     const Value *Idx = GTI.getOperand();
560     if (StructType *StTy = GTI.getStructTypeOrNull()) {
561       uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
562       if (Field) {
563         // N = N + Offset
564         TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
565         if (TotalOffs >= MaxOffs) {
566           N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
567           if (!N) // Unhandled operand. Halt "fast" selection and bail.
568             return false;
569           TotalOffs = 0;
570         }
571       }
572     } else {
573       Type *Ty = GTI.getIndexedType();
574 
575       // If this is a constant subscript, handle it quickly.
576       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
577         if (CI->isZero())
578           continue;
579         // N = N + Offset
580         uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
581         TotalOffs += DL.getTypeAllocSize(Ty) * IdxN;
582         if (TotalOffs >= MaxOffs) {
583           N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
584           if (!N) // Unhandled operand. Halt "fast" selection and bail.
585             return false;
586           TotalOffs = 0;
587         }
588         continue;
589       }
590       if (TotalOffs) {
591         N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
592         if (!N) // Unhandled operand. Halt "fast" selection and bail.
593           return false;
594         TotalOffs = 0;
595       }
596 
597       // N = N + Idx * ElementSize;
598       uint64_t ElementSize = DL.getTypeAllocSize(Ty);
599       Register IdxN = getRegForGEPIndex(Idx);
600       if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
601         return false;
602 
603       if (ElementSize != 1) {
604         IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
605         if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
606           return false;
607       }
608       N = fastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
609       if (!N) // Unhandled operand. Halt "fast" selection and bail.
610         return false;
611     }
612   }
613   if (TotalOffs) {
614     N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
615     if (!N) // Unhandled operand. Halt "fast" selection and bail.
616       return false;
617   }
618 
619   // We successfully emitted code for the given LLVM Instruction.
620   updateValueMap(I, N);
621   return true;
622 }
623 
624 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
625                                    const CallInst *CI, unsigned StartIdx) {
626   for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) {
627     Value *Val = CI->getArgOperand(i);
628     // Check for constants and encode them with a StackMaps::ConstantOp prefix.
629     if (const auto *C = dyn_cast<ConstantInt>(Val)) {
630       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
631       Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
632     } else if (isa<ConstantPointerNull>(Val)) {
633       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
634       Ops.push_back(MachineOperand::CreateImm(0));
635     } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
636       // Values coming from a stack location also require a special encoding,
637       // but that is added later on by the target specific frame index
638       // elimination implementation.
639       auto SI = FuncInfo.StaticAllocaMap.find(AI);
640       if (SI != FuncInfo.StaticAllocaMap.end())
641         Ops.push_back(MachineOperand::CreateFI(SI->second));
642       else
643         return false;
644     } else {
645       Register Reg = getRegForValue(Val);
646       if (!Reg)
647         return false;
648       Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
649     }
650   }
651   return true;
652 }
653 
654 bool FastISel::selectStackmap(const CallInst *I) {
655   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
656   //                                  [live variables...])
657   assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
658          "Stackmap cannot return a value.");
659 
660   // The stackmap intrinsic only records the live variables (the arguments
661   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
662   // intrinsic, this won't be lowered to a function call. This means we don't
663   // have to worry about calling conventions and target-specific lowering code.
664   // Instead we perform the call lowering right here.
665   //
666   // CALLSEQ_START(0, 0...)
667   // STACKMAP(id, nbytes, ...)
668   // CALLSEQ_END(0, 0)
669   //
670   SmallVector<MachineOperand, 32> Ops;
671 
672   // Add the <id> and <numBytes> constants.
673   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
674          "Expected a constant integer.");
675   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
676   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
677 
678   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
679          "Expected a constant integer.");
680   const auto *NumBytes =
681       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
682   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
683 
684   // Push live variables for the stack map (skipping the first two arguments
685   // <id> and <numBytes>).
686   if (!addStackMapLiveVars(Ops, I, 2))
687     return false;
688 
689   // We are not adding any register mask info here, because the stackmap doesn't
690   // clobber anything.
691 
692   // Add scratch registers as implicit def and early clobber.
693   CallingConv::ID CC = I->getCallingConv();
694   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
695   for (unsigned i = 0; ScratchRegs[i]; ++i)
696     Ops.push_back(MachineOperand::CreateReg(
697         ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
698         /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
699 
700   // Issue CALLSEQ_START
701   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
702   auto Builder =
703       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown));
704   const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
705   for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
706     Builder.addImm(0);
707 
708   // Issue STACKMAP.
709   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
710                                     TII.get(TargetOpcode::STACKMAP));
711   for (auto const &MO : Ops)
712     MIB.add(MO);
713 
714   // Issue CALLSEQ_END
715   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
716   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
717       .addImm(0)
718       .addImm(0);
719 
720   // Inform the Frame Information that we have a stackmap in this function.
721   FuncInfo.MF->getFrameInfo().setHasStackMap();
722 
723   return true;
724 }
725 
726 /// Lower an argument list according to the target calling convention.
727 ///
728 /// This is a helper for lowering intrinsics that follow a target calling
729 /// convention or require stack pointer adjustment. Only a subset of the
730 /// intrinsic's operands need to participate in the calling convention.
731 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
732                                  unsigned NumArgs, const Value *Callee,
733                                  bool ForceRetVoidTy, CallLoweringInfo &CLI) {
734   ArgListTy Args;
735   Args.reserve(NumArgs);
736 
737   // Populate the argument list.
738   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) {
739     Value *V = CI->getOperand(ArgI);
740 
741     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
742 
743     ArgListEntry Entry;
744     Entry.Val = V;
745     Entry.Ty = V->getType();
746     Entry.setAttributes(CI, ArgI);
747     Args.push_back(Entry);
748   }
749 
750   Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
751                                : CI->getType();
752   CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
753 
754   return lowerCallTo(CLI);
755 }
756 
757 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
758     const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
759     StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
760   SmallString<32> MangledName;
761   Mangler::getNameWithPrefix(MangledName, Target, DL);
762   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
763   return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
764 }
765 
766 bool FastISel::selectPatchpoint(const CallInst *I) {
767   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
768   //                                                 i32 <numBytes>,
769   //                                                 i8* <target>,
770   //                                                 i32 <numArgs>,
771   //                                                 [Args...],
772   //                                                 [live variables...])
773   CallingConv::ID CC = I->getCallingConv();
774   bool IsAnyRegCC = CC == CallingConv::AnyReg;
775   bool HasDef = !I->getType()->isVoidTy();
776   Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();
777 
778   // Get the real number of arguments participating in the call <numArgs>
779   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
780          "Expected a constant integer.");
781   const auto *NumArgsVal =
782       cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
783   unsigned NumArgs = NumArgsVal->getZExtValue();
784 
785   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
786   // This includes all meta-operands up to but not including CC.
787   unsigned NumMetaOpers = PatchPointOpers::CCPos;
788   assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs &&
789          "Not enough arguments provided to the patchpoint intrinsic");
790 
791   // For AnyRegCC the arguments are lowered later on manually.
792   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
793   CallLoweringInfo CLI;
794   CLI.setIsPatchPoint();
795   if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
796     return false;
797 
798   assert(CLI.Call && "No call instruction specified.");
799 
800   SmallVector<MachineOperand, 32> Ops;
801 
802   // Add an explicit result reg if we use the anyreg calling convention.
803   if (IsAnyRegCC && HasDef) {
804     assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
805     CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
806     CLI.NumResultRegs = 1;
807     Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true));
808   }
809 
810   // Add the <id> and <numBytes> constants.
811   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
812          "Expected a constant integer.");
813   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
814   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
815 
816   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
817          "Expected a constant integer.");
818   const auto *NumBytes =
819       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
820   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
821 
822   // Add the call target.
823   if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
824     uint64_t CalleeConstAddr =
825       cast<ConstantInt>(C->getOperand(0))->getZExtValue();
826     Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
827   } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
828     if (C->getOpcode() == Instruction::IntToPtr) {
829       uint64_t CalleeConstAddr =
830         cast<ConstantInt>(C->getOperand(0))->getZExtValue();
831       Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
832     } else
833       llvm_unreachable("Unsupported ConstantExpr.");
834   } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
835     Ops.push_back(MachineOperand::CreateGA(GV, 0));
836   } else if (isa<ConstantPointerNull>(Callee))
837     Ops.push_back(MachineOperand::CreateImm(0));
838   else
839     llvm_unreachable("Unsupported callee address.");
840 
841   // Adjust <numArgs> to account for any arguments that have been passed on
842   // the stack instead.
843   unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
844   Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
845 
846   // Add the calling convention
847   Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
848 
849   // Add the arguments we omitted previously. The register allocator should
850   // place these in any free register.
851   if (IsAnyRegCC) {
852     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
853       Register Reg = getRegForValue(I->getArgOperand(i));
854       if (!Reg)
855         return false;
856       Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
857     }
858   }
859 
860   // Push the arguments from the call instruction.
861   for (auto Reg : CLI.OutRegs)
862     Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
863 
864   // Push live variables for the stack map.
865   if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
866     return false;
867 
868   // Push the register mask info.
869   Ops.push_back(MachineOperand::CreateRegMask(
870       TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
871 
872   // Add scratch registers as implicit def and early clobber.
873   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
874   for (unsigned i = 0; ScratchRegs[i]; ++i)
875     Ops.push_back(MachineOperand::CreateReg(
876         ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
877         /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
878 
879   // Add implicit defs (return values).
880   for (auto Reg : CLI.InRegs)
881     Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true,
882                                             /*isImp=*/true));
883 
884   // Insert the patchpoint instruction before the call generated by the target.
885   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc,
886                                     TII.get(TargetOpcode::PATCHPOINT));
887 
888   for (auto &MO : Ops)
889     MIB.add(MO);
890 
891   MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
892 
893   // Delete the original call instruction.
894   CLI.Call->eraseFromParent();
895 
896   // Inform the Frame Information that we have a patchpoint in this function.
897   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
898 
899   if (CLI.NumResultRegs)
900     updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
901   return true;
902 }
903 
904 bool FastISel::selectXRayCustomEvent(const CallInst *I) {
905   const auto &Triple = TM.getTargetTriple();
906   if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
907     return true; // don't do anything to this instruction.
908   SmallVector<MachineOperand, 8> Ops;
909   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
910                                           /*isDef=*/false));
911   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
912                                           /*isDef=*/false));
913   MachineInstrBuilder MIB =
914       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
915               TII.get(TargetOpcode::PATCHABLE_EVENT_CALL));
916   for (auto &MO : Ops)
917     MIB.add(MO);
918 
919   // Insert the Patchable Event Call instruction, that gets lowered properly.
920   return true;
921 }
922 
923 bool FastISel::selectXRayTypedEvent(const CallInst *I) {
924   const auto &Triple = TM.getTargetTriple();
925   if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
926     return true; // don't do anything to this instruction.
927   SmallVector<MachineOperand, 8> Ops;
928   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
929                                           /*isDef=*/false));
930   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
931                                           /*isDef=*/false));
932   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)),
933                                           /*isDef=*/false));
934   MachineInstrBuilder MIB =
935       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
936               TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL));
937   for (auto &MO : Ops)
938     MIB.add(MO);
939 
940   // Insert the Patchable Typed Event Call instruction, that gets lowered properly.
941   return true;
942 }
943 
944 /// Returns an AttributeList representing the attributes applied to the return
945 /// value of the given call.
946 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
947   SmallVector<Attribute::AttrKind, 2> Attrs;
948   if (CLI.RetSExt)
949     Attrs.push_back(Attribute::SExt);
950   if (CLI.RetZExt)
951     Attrs.push_back(Attribute::ZExt);
952   if (CLI.IsInReg)
953     Attrs.push_back(Attribute::InReg);
954 
955   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
956                             Attrs);
957 }
958 
959 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
960                            unsigned NumArgs) {
961   MCContext &Ctx = MF->getContext();
962   SmallString<32> MangledName;
963   Mangler::getNameWithPrefix(MangledName, SymName, DL);
964   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
965   return lowerCallTo(CI, Sym, NumArgs);
966 }
967 
968 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol,
969                            unsigned NumArgs) {
970   FunctionType *FTy = CI->getFunctionType();
971   Type *RetTy = CI->getType();
972 
973   ArgListTy Args;
974   Args.reserve(NumArgs);
975 
976   // Populate the argument list.
977   // Attributes for args start at offset 1, after the return attribute.
978   for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
979     Value *V = CI->getOperand(ArgI);
980 
981     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
982 
983     ArgListEntry Entry;
984     Entry.Val = V;
985     Entry.Ty = V->getType();
986     Entry.setAttributes(CI, ArgI);
987     Args.push_back(Entry);
988   }
989   TLI.markLibCallAttributes(MF, CI->getCallingConv(), Args);
990 
991   CallLoweringInfo CLI;
992   CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), *CI, NumArgs);
993 
994   return lowerCallTo(CLI);
995 }
996 
997 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
998   // Handle the incoming return values from the call.
999   CLI.clearIns();
1000   SmallVector<EVT, 4> RetTys;
1001   ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);
1002 
1003   SmallVector<ISD::OutputArg, 4> Outs;
1004   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);
1005 
1006   bool CanLowerReturn = TLI.CanLowerReturn(
1007       CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
1008 
1009   // FIXME: sret demotion isn't supported yet - bail out.
1010   if (!CanLowerReturn)
1011     return false;
1012 
1013   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
1014     EVT VT = RetTys[I];
1015     MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
1016     unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
1017     for (unsigned i = 0; i != NumRegs; ++i) {
1018       ISD::InputArg MyFlags;
1019       MyFlags.VT = RegisterVT;
1020       MyFlags.ArgVT = VT;
1021       MyFlags.Used = CLI.IsReturnValueUsed;
1022       if (CLI.RetSExt)
1023         MyFlags.Flags.setSExt();
1024       if (CLI.RetZExt)
1025         MyFlags.Flags.setZExt();
1026       if (CLI.IsInReg)
1027         MyFlags.Flags.setInReg();
1028       CLI.Ins.push_back(MyFlags);
1029     }
1030   }
1031 
1032   // Handle all of the outgoing arguments.
1033   CLI.clearOuts();
1034   for (auto &Arg : CLI.getArgs()) {
1035     Type *FinalType = Arg.Ty;
1036     if (Arg.IsByVal)
1037       FinalType = Arg.IndirectType;
1038     bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1039         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
1040 
1041     ISD::ArgFlagsTy Flags;
1042     if (Arg.IsZExt)
1043       Flags.setZExt();
1044     if (Arg.IsSExt)
1045       Flags.setSExt();
1046     if (Arg.IsInReg)
1047       Flags.setInReg();
1048     if (Arg.IsSRet)
1049       Flags.setSRet();
1050     if (Arg.IsSwiftSelf)
1051       Flags.setSwiftSelf();
1052     if (Arg.IsSwiftAsync)
1053       Flags.setSwiftAsync();
1054     if (Arg.IsSwiftError)
1055       Flags.setSwiftError();
1056     if (Arg.IsCFGuardTarget)
1057       Flags.setCFGuardTarget();
1058     if (Arg.IsByVal)
1059       Flags.setByVal();
1060     if (Arg.IsInAlloca) {
1061       Flags.setInAlloca();
1062       // Set the byval flag for CCAssignFn callbacks that don't know about
1063       // inalloca. This way we can know how many bytes we should've allocated
1064       // and how many bytes a callee cleanup function will pop.  If we port
1065       // inalloca to more targets, we'll have to add custom inalloca handling in
1066       // the various CC lowering callbacks.
1067       Flags.setByVal();
1068     }
1069     if (Arg.IsPreallocated) {
1070       Flags.setPreallocated();
1071       // Set the byval flag for CCAssignFn callbacks that don't know about
1072       // preallocated. This way we can know how many bytes we should've
1073       // allocated and how many bytes a callee cleanup function will pop.  If we
1074       // port preallocated to more targets, we'll have to add custom
1075       // preallocated handling in the various CC lowering callbacks.
1076       Flags.setByVal();
1077     }
1078     MaybeAlign MemAlign = Arg.Alignment;
1079     if (Arg.IsByVal || Arg.IsInAlloca || Arg.IsPreallocated) {
1080       unsigned FrameSize = DL.getTypeAllocSize(Arg.IndirectType);
1081 
1082       // For ByVal, alignment should come from FE. BE will guess if this info
1083       // is not there, but there are cases it cannot get right.
1084       if (!MemAlign)
1085         MemAlign = Align(TLI.getByValTypeAlignment(Arg.IndirectType, DL));
1086       Flags.setByValSize(FrameSize);
1087     } else if (!MemAlign) {
1088       MemAlign = DL.getABITypeAlign(Arg.Ty);
1089     }
1090     Flags.setMemAlign(*MemAlign);
1091     if (Arg.IsNest)
1092       Flags.setNest();
1093     if (NeedsRegBlock)
1094       Flags.setInConsecutiveRegs();
1095     Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
1096     CLI.OutVals.push_back(Arg.Val);
1097     CLI.OutFlags.push_back(Flags);
1098   }
1099 
1100   if (!fastLowerCall(CLI))
1101     return false;
1102 
1103   // Set all unused physreg defs as dead.
1104   assert(CLI.Call && "No call instruction specified.");
1105   CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1106 
1107   if (CLI.NumResultRegs && CLI.CB)
1108     updateValueMap(CLI.CB, CLI.ResultReg, CLI.NumResultRegs);
1109 
1110   // Set labels for heapallocsite call.
1111   if (CLI.CB)
1112     if (MDNode *MD = CLI.CB->getMetadata("heapallocsite"))
1113       CLI.Call->setHeapAllocMarker(*MF, MD);
1114 
1115   return true;
1116 }
1117 
1118 bool FastISel::lowerCall(const CallInst *CI) {
1119   FunctionType *FuncTy = CI->getFunctionType();
1120   Type *RetTy = CI->getType();
1121 
1122   ArgListTy Args;
1123   ArgListEntry Entry;
1124   Args.reserve(CI->arg_size());
1125 
1126   for (auto i = CI->arg_begin(), e = CI->arg_end(); i != e; ++i) {
1127     Value *V = *i;
1128 
1129     // Skip empty types
1130     if (V->getType()->isEmptyTy())
1131       continue;
1132 
1133     Entry.Val = V;
1134     Entry.Ty = V->getType();
1135 
1136     // Skip the first return-type Attribute to get to params.
1137     Entry.setAttributes(CI, i - CI->arg_begin());
1138     Args.push_back(Entry);
1139   }
1140 
1141   // Check if target-independent constraints permit a tail call here.
1142   // Target-dependent constraints are checked within fastLowerCall.
1143   bool IsTailCall = CI->isTailCall();
1144   if (IsTailCall && !isInTailCallPosition(*CI, TM))
1145     IsTailCall = false;
1146   if (IsTailCall && MF->getFunction()
1147                             .getFnAttribute("disable-tail-calls")
1148                             .getValueAsBool())
1149     IsTailCall = false;
1150 
1151   CallLoweringInfo CLI;
1152   CLI.setCallee(RetTy, FuncTy, CI->getCalledOperand(), std::move(Args), *CI)
1153       .setTailCall(IsTailCall);
1154 
1155   if (const Function *F = CI->getCalledFunction())
1156     if (F->hasFnAttribute("dontcall")) {
1157       unsigned LocCookie = 0;
1158       if (MDNode *MD = CI->getMetadata("srcloc"))
1159         LocCookie =
1160             mdconst::extract<ConstantInt>(MD->getOperand(0))->getZExtValue();
1161       DiagnosticInfoDontCall D(F->getName(), LocCookie);
1162       F->getContext().diagnose(D);
1163     }
1164 
1165   return lowerCallTo(CLI);
1166 }
1167 
1168 bool FastISel::selectCall(const User *I) {
1169   const CallInst *Call = cast<CallInst>(I);
1170 
1171   // Handle simple inline asms.
1172   if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledOperand())) {
1173     // Don't attempt to handle constraints.
1174     if (!IA->getConstraintString().empty())
1175       return false;
1176 
1177     unsigned ExtraInfo = 0;
1178     if (IA->hasSideEffects())
1179       ExtraInfo |= InlineAsm::Extra_HasSideEffects;
1180     if (IA->isAlignStack())
1181       ExtraInfo |= InlineAsm::Extra_IsAlignStack;
1182     if (Call->isConvergent())
1183       ExtraInfo |= InlineAsm::Extra_IsConvergent;
1184     ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
1185 
1186     MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1187                                       TII.get(TargetOpcode::INLINEASM));
1188     MIB.addExternalSymbol(IA->getAsmString().c_str());
1189     MIB.addImm(ExtraInfo);
1190 
1191     const MDNode *SrcLoc = Call->getMetadata("srcloc");
1192     if (SrcLoc)
1193       MIB.addMetadata(SrcLoc);
1194 
1195     return true;
1196   }
1197 
1198   // Handle intrinsic function calls.
1199   if (const auto *II = dyn_cast<IntrinsicInst>(Call))
1200     return selectIntrinsicCall(II);
1201 
1202   return lowerCall(Call);
1203 }
1204 
1205 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
1206   switch (II->getIntrinsicID()) {
1207   default:
1208     break;
1209   // At -O0 we don't care about the lifetime intrinsics.
1210   case Intrinsic::lifetime_start:
1211   case Intrinsic::lifetime_end:
1212   // The donothing intrinsic does, well, nothing.
1213   case Intrinsic::donothing:
1214   // Neither does the sideeffect intrinsic.
1215   case Intrinsic::sideeffect:
1216   // Neither does the assume intrinsic; it's also OK not to codegen its operand.
1217   case Intrinsic::assume:
1218   // Neither does the llvm.experimental.noalias.scope.decl intrinsic
1219   case Intrinsic::experimental_noalias_scope_decl:
1220     return true;
1221   case Intrinsic::dbg_declare: {
1222     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
1223     assert(DI->getVariable() && "Missing variable");
1224     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1225       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
1226                         << " (!hasDebugInfo)\n");
1227       return true;
1228     }
1229 
1230     const Value *Address = DI->getAddress();
1231     if (!Address || isa<UndefValue>(Address)) {
1232       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
1233                         << " (bad/undef address)\n");
1234       return true;
1235     }
1236 
1237     // Byval arguments with frame indices were already handled after argument
1238     // lowering and before isel.
1239     const auto *Arg =
1240         dyn_cast<Argument>(Address->stripInBoundsConstantOffsets());
1241     if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX)
1242       return true;
1243 
1244     Optional<MachineOperand> Op;
1245     if (Register Reg = lookUpRegForValue(Address))
1246       Op = MachineOperand::CreateReg(Reg, false);
1247 
1248     // If we have a VLA that has a "use" in a metadata node that's then used
1249     // here but it has no other uses, then we have a problem. E.g.,
1250     //
1251     //   int foo (const int *x) {
1252     //     char a[*x];
1253     //     return 0;
1254     //   }
1255     //
1256     // If we assign 'a' a vreg and fast isel later on has to use the selection
1257     // DAG isel, it will want to copy the value to the vreg. However, there are
1258     // no uses, which goes counter to what selection DAG isel expects.
1259     if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
1260         (!isa<AllocaInst>(Address) ||
1261          !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
1262       Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
1263                                      false);
1264 
1265     if (Op) {
1266       assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1267              "Expected inlined-at fields to agree");
1268       // A dbg.declare describes the address of a source variable, so lower it
1269       // into an indirect DBG_VALUE.
1270       auto Builder =
1271           BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1272                   TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, *Op,
1273                   DI->getVariable(), DI->getExpression());
1274 
1275       // If using instruction referencing, mutate this into a DBG_INSTR_REF,
1276       // to be later patched up by finalizeDebugInstrRefs. Tack a deref onto
1277       // the expression, we don't have an "indirect" flag in DBG_INSTR_REF.
1278       if (FuncInfo.MF->useDebugInstrRef() && Op->isReg()) {
1279         Builder->setDesc(TII.get(TargetOpcode::DBG_INSTR_REF));
1280         Builder->getOperand(1).ChangeToImmediate(0);
1281         auto *NewExpr =
1282            DIExpression::prepend(DI->getExpression(), DIExpression::DerefBefore);
1283         Builder->getOperand(3).setMetadata(NewExpr);
1284       }
1285     } else {
1286       // We can't yet handle anything else here because it would require
1287       // generating code, thus altering codegen because of debug info.
1288       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
1289                         << " (no materialized reg for address)\n");
1290     }
1291     return true;
1292   }
1293   case Intrinsic::dbg_value: {
1294     // This form of DBG_VALUE is target-independent.
1295     const DbgValueInst *DI = cast<DbgValueInst>(II);
1296     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1297     const Value *V = DI->getValue();
1298     assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1299            "Expected inlined-at fields to agree");
1300     if (!V || isa<UndefValue>(V) || DI->hasArgList()) {
1301       // DI is either undef or cannot produce a valid DBG_VALUE, so produce an
1302       // undef DBG_VALUE to terminate any prior location.
1303       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U,
1304               DI->getVariable(), DI->getExpression());
1305     } else if (const auto *CI = dyn_cast<ConstantInt>(V)) {
1306       // See if there's an expression to constant-fold.
1307       DIExpression *Expr = DI->getExpression();
1308       if (Expr)
1309         std::tie(Expr, CI) = Expr->constantFold(CI);
1310       if (CI->getBitWidth() > 64)
1311         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1312             .addCImm(CI)
1313             .addImm(0U)
1314             .addMetadata(DI->getVariable())
1315             .addMetadata(Expr);
1316       else
1317         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1318             .addImm(CI->getZExtValue())
1319             .addImm(0U)
1320             .addMetadata(DI->getVariable())
1321             .addMetadata(Expr);
1322     } else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
1323       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1324           .addFPImm(CF)
1325           .addImm(0U)
1326           .addMetadata(DI->getVariable())
1327           .addMetadata(DI->getExpression());
1328     } else if (Register Reg = lookUpRegForValue(V)) {
1329       // FIXME: This does not handle register-indirect values at offset 0.
1330       bool IsIndirect = false;
1331       auto Builder =
1332           BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg,
1333                   DI->getVariable(), DI->getExpression());
1334 
1335       // If using instruction referencing, mutate this into a DBG_INSTR_REF,
1336       // to be later patched up by finalizeDebugInstrRefs.
1337       if (FuncInfo.MF->useDebugInstrRef()) {
1338         Builder->setDesc(TII.get(TargetOpcode::DBG_INSTR_REF));
1339         Builder->getOperand(1).ChangeToImmediate(0);
1340       }
1341     } else {
1342       // We don't know how to handle other cases, so we drop.
1343       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1344     }
1345     return true;
1346   }
1347   case Intrinsic::dbg_label: {
1348     const DbgLabelInst *DI = cast<DbgLabelInst>(II);
1349     assert(DI->getLabel() && "Missing label");
1350     if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1351       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1352       return true;
1353     }
1354 
1355     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1356             TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel());
1357     return true;
1358   }
1359   case Intrinsic::objectsize:
1360     llvm_unreachable("llvm.objectsize.* should have been lowered already");
1361 
1362   case Intrinsic::is_constant:
1363     llvm_unreachable("llvm.is.constant.* should have been lowered already");
1364 
1365   case Intrinsic::launder_invariant_group:
1366   case Intrinsic::strip_invariant_group:
1367   case Intrinsic::expect: {
1368     Register ResultReg = getRegForValue(II->getArgOperand(0));
1369     if (!ResultReg)
1370       return false;
1371     updateValueMap(II, ResultReg);
1372     return true;
1373   }
1374   case Intrinsic::experimental_stackmap:
1375     return selectStackmap(II);
1376   case Intrinsic::experimental_patchpoint_void:
1377   case Intrinsic::experimental_patchpoint_i64:
1378     return selectPatchpoint(II);
1379 
1380   case Intrinsic::xray_customevent:
1381     return selectXRayCustomEvent(II);
1382   case Intrinsic::xray_typedevent:
1383     return selectXRayTypedEvent(II);
1384   }
1385 
1386   return fastLowerIntrinsicCall(II);
1387 }
1388 
1389 bool FastISel::selectCast(const User *I, unsigned Opcode) {
1390   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1391   EVT DstVT = TLI.getValueType(DL, I->getType());
1392 
1393   if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
1394       !DstVT.isSimple())
1395     // Unhandled type. Halt "fast" selection and bail.
1396     return false;
1397 
1398   // Check if the destination type is legal.
1399   if (!TLI.isTypeLegal(DstVT))
1400     return false;
1401 
1402   // Check if the source operand is legal.
1403   if (!TLI.isTypeLegal(SrcVT))
1404     return false;
1405 
1406   Register InputReg = getRegForValue(I->getOperand(0));
1407   if (!InputReg)
1408     // Unhandled operand.  Halt "fast" selection and bail.
1409     return false;
1410 
1411   Register ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
1412                                   Opcode, InputReg);
1413   if (!ResultReg)
1414     return false;
1415 
1416   updateValueMap(I, ResultReg);
1417   return true;
1418 }
1419 
1420 bool FastISel::selectBitCast(const User *I) {
1421   // If the bitcast doesn't change the type, just use the operand value.
1422   if (I->getType() == I->getOperand(0)->getType()) {
1423     Register Reg = getRegForValue(I->getOperand(0));
1424     if (!Reg)
1425       return false;
1426     updateValueMap(I, Reg);
1427     return true;
1428   }
1429 
1430   // Bitcasts of other values become reg-reg copies or BITCAST operators.
1431   EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1432   EVT DstEVT = TLI.getValueType(DL, I->getType());
1433   if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
1434       !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
1435     // Unhandled type. Halt "fast" selection and bail.
1436     return false;
1437 
1438   MVT SrcVT = SrcEVT.getSimpleVT();
1439   MVT DstVT = DstEVT.getSimpleVT();
1440   Register Op0 = getRegForValue(I->getOperand(0));
1441   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
1442     return false;
1443 
1444   // First, try to perform the bitcast by inserting a reg-reg copy.
1445   Register ResultReg;
1446   if (SrcVT == DstVT) {
1447     const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT);
1448     const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
1449     // Don't attempt a cross-class copy. It will likely fail.
1450     if (SrcClass == DstClass) {
1451       ResultReg = createResultReg(DstClass);
1452       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1453               TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
1454     }
1455   }
1456 
1457   // If the reg-reg copy failed, select a BITCAST opcode.
1458   if (!ResultReg)
1459     ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0);
1460 
1461   if (!ResultReg)
1462     return false;
1463 
1464   updateValueMap(I, ResultReg);
1465   return true;
1466 }
1467 
1468 bool FastISel::selectFreeze(const User *I) {
1469   Register Reg = getRegForValue(I->getOperand(0));
1470   if (!Reg)
1471     // Unhandled operand.
1472     return false;
1473 
1474   EVT ETy = TLI.getValueType(DL, I->getOperand(0)->getType());
1475   if (ETy == MVT::Other || !TLI.isTypeLegal(ETy))
1476     // Unhandled type, bail out.
1477     return false;
1478 
1479   MVT Ty = ETy.getSimpleVT();
1480   const TargetRegisterClass *TyRegClass = TLI.getRegClassFor(Ty);
1481   Register ResultReg = createResultReg(TyRegClass);
1482   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1483           TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg);
1484 
1485   updateValueMap(I, ResultReg);
1486   return true;
1487 }
1488 
1489 // Remove local value instructions starting from the instruction after
1490 // SavedLastLocalValue to the current function insert point.
1491 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
1492 {
1493   MachineInstr *CurLastLocalValue = getLastLocalValue();
1494   if (CurLastLocalValue != SavedLastLocalValue) {
1495     // Find the first local value instruction to be deleted.
1496     // This is the instruction after SavedLastLocalValue if it is non-NULL.
1497     // Otherwise it's the first instruction in the block.
1498     MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
1499     if (SavedLastLocalValue)
1500       ++FirstDeadInst;
1501     else
1502       FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
1503     setLastLocalValue(SavedLastLocalValue);
1504     removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
1505   }
1506 }
1507 
1508 bool FastISel::selectInstruction(const Instruction *I) {
1509   // Flush the local value map before starting each instruction.
1510   // This improves locality and debugging, and can reduce spills.
1511   // Reuse of values across IR instructions is relatively uncommon.
1512   flushLocalValueMap();
1513 
1514   MachineInstr *SavedLastLocalValue = getLastLocalValue();
1515   // Just before the terminator instruction, insert instructions to
1516   // feed PHI nodes in successor blocks.
1517   if (I->isTerminator()) {
1518     if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
1519       // PHI node handling may have generated local value instructions,
1520       // even though it failed to handle all PHI nodes.
1521       // We remove these instructions because SelectionDAGISel will generate
1522       // them again.
1523       removeDeadLocalValueCode(SavedLastLocalValue);
1524       return false;
1525     }
1526   }
1527 
1528   // FastISel does not handle any operand bundles except OB_funclet.
1529   if (auto *Call = dyn_cast<CallBase>(I))
1530     for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i)
1531       if (Call->getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet)
1532         return false;
1533 
1534   DbgLoc = I->getDebugLoc();
1535 
1536   SavedInsertPt = FuncInfo.InsertPt;
1537 
1538   if (const auto *Call = dyn_cast<CallInst>(I)) {
1539     const Function *F = Call->getCalledFunction();
1540     LibFunc Func;
1541 
1542     // As a special case, don't handle calls to builtin library functions that
1543     // may be translated directly to target instructions.
1544     if (F && !F->hasLocalLinkage() && F->hasName() &&
1545         LibInfo->getLibFunc(F->getName(), Func) &&
1546         LibInfo->hasOptimizedCodeGen(Func))
1547       return false;
1548 
1549     // Don't handle Intrinsic::trap if a trap function is specified.
1550     if (F && F->getIntrinsicID() == Intrinsic::trap &&
1551         Call->hasFnAttr("trap-func-name"))
1552       return false;
1553   }
1554 
1555   // First, try doing target-independent selection.
1556   if (!SkipTargetIndependentISel) {
1557     if (selectOperator(I, I->getOpcode())) {
1558       ++NumFastIselSuccessIndependent;
1559       DbgLoc = DebugLoc();
1560       return true;
1561     }
1562     // Remove dead code.
1563     recomputeInsertPt();
1564     if (SavedInsertPt != FuncInfo.InsertPt)
1565       removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1566     SavedInsertPt = FuncInfo.InsertPt;
1567   }
1568   // Next, try calling the target to attempt to handle the instruction.
1569   if (fastSelectInstruction(I)) {
1570     ++NumFastIselSuccessTarget;
1571     DbgLoc = DebugLoc();
1572     return true;
1573   }
1574   // Remove dead code.
1575   recomputeInsertPt();
1576   if (SavedInsertPt != FuncInfo.InsertPt)
1577     removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1578 
1579   DbgLoc = DebugLoc();
1580   // Undo phi node updates, because they will be added again by SelectionDAG.
1581   if (I->isTerminator()) {
1582     // PHI node handling may have generated local value instructions.
1583     // We remove them because SelectionDAGISel will generate them again.
1584     removeDeadLocalValueCode(SavedLastLocalValue);
1585     FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
1586   }
1587   return false;
1588 }
1589 
1590 /// Emit an unconditional branch to the given block, unless it is the immediate
1591 /// (fall-through) successor, and update the CFG.
1592 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc,
1593                               const DebugLoc &DbgLoc) {
1594   if (FuncInfo.MBB->getBasicBlock()->sizeWithoutDebug() > 1 &&
1595       FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
1596     // For more accurate line information if this is the only non-debug
1597     // instruction in the block then emit it, otherwise we have the
1598     // unconditional fall-through case, which needs no instructions.
1599   } else {
1600     // The unconditional branch case.
1601     TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr,
1602                      SmallVector<MachineOperand, 0>(), DbgLoc);
1603   }
1604   if (FuncInfo.BPI) {
1605     auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
1606         FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock());
1607     FuncInfo.MBB->addSuccessor(MSucc, BranchProbability);
1608   } else
1609     FuncInfo.MBB->addSuccessorWithoutProb(MSucc);
1610 }
1611 
1612 void FastISel::finishCondBranch(const BasicBlock *BranchBB,
1613                                 MachineBasicBlock *TrueMBB,
1614                                 MachineBasicBlock *FalseMBB) {
1615   // Add TrueMBB as successor unless it is equal to the FalseMBB: This can
1616   // happen in degenerate IR and MachineIR forbids to have a block twice in the
1617   // successor/predecessor lists.
1618   if (TrueMBB != FalseMBB) {
1619     if (FuncInfo.BPI) {
1620       auto BranchProbability =
1621           FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
1622       FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability);
1623     } else
1624       FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB);
1625   }
1626 
1627   fastEmitBranch(FalseMBB, DbgLoc);
1628 }
1629 
1630 /// Emit an FNeg operation.
1631 bool FastISel::selectFNeg(const User *I, const Value *In) {
1632   Register OpReg = getRegForValue(In);
1633   if (!OpReg)
1634     return false;
1635 
1636   // If the target has ISD::FNEG, use it.
1637   EVT VT = TLI.getValueType(DL, I->getType());
1638   Register ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
1639                                   OpReg);
1640   if (ResultReg) {
1641     updateValueMap(I, ResultReg);
1642     return true;
1643   }
1644 
1645   // Bitcast the value to integer, twiddle the sign bit with xor,
1646   // and then bitcast it back to floating-point.
1647   if (VT.getSizeInBits() > 64)
1648     return false;
1649   EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
1650   if (!TLI.isTypeLegal(IntVT))
1651     return false;
1652 
1653   Register IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
1654                                ISD::BITCAST, OpReg);
1655   if (!IntReg)
1656     return false;
1657 
1658   Register IntResultReg = fastEmit_ri_(
1659       IntVT.getSimpleVT(), ISD::XOR, IntReg,
1660       UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
1661   if (!IntResultReg)
1662     return false;
1663 
1664   ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
1665                          IntResultReg);
1666   if (!ResultReg)
1667     return false;
1668 
1669   updateValueMap(I, ResultReg);
1670   return true;
1671 }
1672 
1673 bool FastISel::selectExtractValue(const User *U) {
1674   const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
1675   if (!EVI)
1676     return false;
1677 
1678   // Make sure we only try to handle extracts with a legal result.  But also
1679   // allow i1 because it's easy.
1680   EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
1681   if (!RealVT.isSimple())
1682     return false;
1683   MVT VT = RealVT.getSimpleVT();
1684   if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
1685     return false;
1686 
1687   const Value *Op0 = EVI->getOperand(0);
1688   Type *AggTy = Op0->getType();
1689 
1690   // Get the base result register.
1691   unsigned ResultReg;
1692   DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(Op0);
1693   if (I != FuncInfo.ValueMap.end())
1694     ResultReg = I->second;
1695   else if (isa<Instruction>(Op0))
1696     ResultReg = FuncInfo.InitializeRegForValue(Op0);
1697   else
1698     return false; // fast-isel can't handle aggregate constants at the moment
1699 
1700   // Get the actual result register, which is an offset from the base register.
1701   unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
1702 
1703   SmallVector<EVT, 4> AggValueVTs;
1704   ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);
1705 
1706   for (unsigned i = 0; i < VTIndex; i++)
1707     ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
1708 
1709   updateValueMap(EVI, ResultReg);
1710   return true;
1711 }
1712 
1713 bool FastISel::selectOperator(const User *I, unsigned Opcode) {
1714   switch (Opcode) {
1715   case Instruction::Add:
1716     return selectBinaryOp(I, ISD::ADD);
1717   case Instruction::FAdd:
1718     return selectBinaryOp(I, ISD::FADD);
1719   case Instruction::Sub:
1720     return selectBinaryOp(I, ISD::SUB);
1721   case Instruction::FSub:
1722     return selectBinaryOp(I, ISD::FSUB);
1723   case Instruction::Mul:
1724     return selectBinaryOp(I, ISD::MUL);
1725   case Instruction::FMul:
1726     return selectBinaryOp(I, ISD::FMUL);
1727   case Instruction::SDiv:
1728     return selectBinaryOp(I, ISD::SDIV);
1729   case Instruction::UDiv:
1730     return selectBinaryOp(I, ISD::UDIV);
1731   case Instruction::FDiv:
1732     return selectBinaryOp(I, ISD::FDIV);
1733   case Instruction::SRem:
1734     return selectBinaryOp(I, ISD::SREM);
1735   case Instruction::URem:
1736     return selectBinaryOp(I, ISD::UREM);
1737   case Instruction::FRem:
1738     return selectBinaryOp(I, ISD::FREM);
1739   case Instruction::Shl:
1740     return selectBinaryOp(I, ISD::SHL);
1741   case Instruction::LShr:
1742     return selectBinaryOp(I, ISD::SRL);
1743   case Instruction::AShr:
1744     return selectBinaryOp(I, ISD::SRA);
1745   case Instruction::And:
1746     return selectBinaryOp(I, ISD::AND);
1747   case Instruction::Or:
1748     return selectBinaryOp(I, ISD::OR);
1749   case Instruction::Xor:
1750     return selectBinaryOp(I, ISD::XOR);
1751 
1752   case Instruction::FNeg:
1753     return selectFNeg(I, I->getOperand(0));
1754 
1755   case Instruction::GetElementPtr:
1756     return selectGetElementPtr(I);
1757 
1758   case Instruction::Br: {
1759     const BranchInst *BI = cast<BranchInst>(I);
1760 
1761     if (BI->isUnconditional()) {
1762       const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1763       MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1764       fastEmitBranch(MSucc, BI->getDebugLoc());
1765       return true;
1766     }
1767 
1768     // Conditional branches are not handed yet.
1769     // Halt "fast" selection and bail.
1770     return false;
1771   }
1772 
1773   case Instruction::Unreachable:
1774     if (TM.Options.TrapUnreachable)
1775       return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
1776     else
1777       return true;
1778 
1779   case Instruction::Alloca:
1780     // FunctionLowering has the static-sized case covered.
1781     if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1782       return true;
1783 
1784     // Dynamic-sized alloca is not handled yet.
1785     return false;
1786 
1787   case Instruction::Call:
1788     // On AIX, call lowering uses the DAG-ISEL path currently so that the
1789     // callee of the direct function call instruction will be mapped to the
1790     // symbol for the function's entry point, which is distinct from the
1791     // function descriptor symbol. The latter is the symbol whose XCOFF symbol
1792     // name is the C-linkage name of the source level function.
1793     if (TM.getTargetTriple().isOSAIX())
1794       return false;
1795     return selectCall(I);
1796 
1797   case Instruction::BitCast:
1798     return selectBitCast(I);
1799 
1800   case Instruction::FPToSI:
1801     return selectCast(I, ISD::FP_TO_SINT);
1802   case Instruction::ZExt:
1803     return selectCast(I, ISD::ZERO_EXTEND);
1804   case Instruction::SExt:
1805     return selectCast(I, ISD::SIGN_EXTEND);
1806   case Instruction::Trunc:
1807     return selectCast(I, ISD::TRUNCATE);
1808   case Instruction::SIToFP:
1809     return selectCast(I, ISD::SINT_TO_FP);
1810 
1811   case Instruction::IntToPtr: // Deliberate fall-through.
1812   case Instruction::PtrToInt: {
1813     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1814     EVT DstVT = TLI.getValueType(DL, I->getType());
1815     if (DstVT.bitsGT(SrcVT))
1816       return selectCast(I, ISD::ZERO_EXTEND);
1817     if (DstVT.bitsLT(SrcVT))
1818       return selectCast(I, ISD::TRUNCATE);
1819     Register Reg = getRegForValue(I->getOperand(0));
1820     if (!Reg)
1821       return false;
1822     updateValueMap(I, Reg);
1823     return true;
1824   }
1825 
1826   case Instruction::ExtractValue:
1827     return selectExtractValue(I);
1828 
1829   case Instruction::Freeze:
1830     return selectFreeze(I);
1831 
1832   case Instruction::PHI:
1833     llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1834 
1835   default:
1836     // Unhandled instruction. Halt "fast" selection and bail.
1837     return false;
1838   }
1839 }
1840 
1841 FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
1842                    const TargetLibraryInfo *LibInfo,
1843                    bool SkipTargetIndependentISel)
1844     : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
1845       MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
1846       TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
1847       TII(*MF->getSubtarget().getInstrInfo()),
1848       TLI(*MF->getSubtarget().getTargetLowering()),
1849       TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
1850       SkipTargetIndependentISel(SkipTargetIndependentISel),
1851       LastLocalValue(nullptr), EmitStartPt(nullptr) {}
1852 
1853 FastISel::~FastISel() = default;
1854 
1855 bool FastISel::fastLowerArguments() { return false; }
1856 
1857 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
1858 
1859 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
1860   return false;
1861 }
1862 
1863 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
1864 
1865 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/) {
1866   return 0;
1867 }
1868 
1869 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
1870                                unsigned /*Op1*/) {
1871   return 0;
1872 }
1873 
1874 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1875   return 0;
1876 }
1877 
1878 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
1879                               const ConstantFP * /*FPImm*/) {
1880   return 0;
1881 }
1882 
1883 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
1884                                uint64_t /*Imm*/) {
1885   return 0;
1886 }
1887 
1888 /// This method is a wrapper of fastEmit_ri. It first tries to emit an
1889 /// instruction with an immediate operand using fastEmit_ri.
1890 /// If that fails, it materializes the immediate into a register and try
1891 /// fastEmit_rr instead.
1892 Register FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
1893                                 uint64_t Imm, MVT ImmType) {
1894   // If this is a multiply by a power of two, emit this as a shift left.
1895   if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1896     Opcode = ISD::SHL;
1897     Imm = Log2_64(Imm);
1898   } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1899     // div x, 8 -> srl x, 3
1900     Opcode = ISD::SRL;
1901     Imm = Log2_64(Imm);
1902   }
1903 
1904   // Horrible hack (to be removed), check to make sure shift amounts are
1905   // in-range.
1906   if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1907       Imm >= VT.getSizeInBits())
1908     return 0;
1909 
1910   // First check if immediate type is legal. If not, we can't use the ri form.
1911   Register ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Imm);
1912   if (ResultReg)
1913     return ResultReg;
1914   Register MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1915   if (!MaterialReg) {
1916     // This is a bit ugly/slow, but failing here means falling out of
1917     // fast-isel, which would be very slow.
1918     IntegerType *ITy =
1919         IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
1920     MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1921     if (!MaterialReg)
1922       return 0;
1923   }
1924   return fastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
1925 }
1926 
1927 Register FastISel::createResultReg(const TargetRegisterClass *RC) {
1928   return MRI.createVirtualRegister(RC);
1929 }
1930 
1931 Register FastISel::constrainOperandRegClass(const MCInstrDesc &II, Register Op,
1932                                             unsigned OpNum) {
1933   if (Op.isVirtual()) {
1934     const TargetRegisterClass *RegClass =
1935         TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
1936     if (!MRI.constrainRegClass(Op, RegClass)) {
1937       // If it's not legal to COPY between the register classes, something
1938       // has gone very wrong before we got here.
1939       Register NewOp = createResultReg(RegClass);
1940       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1941               TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
1942       return NewOp;
1943     }
1944   }
1945   return Op;
1946 }
1947 
1948 Register FastISel::fastEmitInst_(unsigned MachineInstOpcode,
1949                                  const TargetRegisterClass *RC) {
1950   Register ResultReg = createResultReg(RC);
1951   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1952 
1953   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
1954   return ResultReg;
1955 }
1956 
1957 Register FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
1958                                   const TargetRegisterClass *RC, unsigned Op0) {
1959   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1960 
1961   Register ResultReg = createResultReg(RC);
1962   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1963 
1964   if (II.getNumDefs() >= 1)
1965     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1966         .addReg(Op0);
1967   else {
1968     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1969         .addReg(Op0);
1970     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1971             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1972   }
1973 
1974   return ResultReg;
1975 }
1976 
1977 Register FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
1978                                    const TargetRegisterClass *RC, unsigned Op0,
1979                                    unsigned Op1) {
1980   const MCInstrDesc &II = TII.get(MachineInstOpcode);
1981 
1982   Register ResultReg = createResultReg(RC);
1983   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1984   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1985 
1986   if (II.getNumDefs() >= 1)
1987     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1988         .addReg(Op0)
1989         .addReg(Op1);
1990   else {
1991     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1992         .addReg(Op0)
1993         .addReg(Op1);
1994     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1995             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1996   }
1997   return ResultReg;
1998 }
1999 
2000 Register FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
2001                                     const TargetRegisterClass *RC, unsigned Op0,
2002                                     unsigned Op1, unsigned Op2) {
2003   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2004 
2005   Register ResultReg = createResultReg(RC);
2006   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2007   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2008   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
2009 
2010   if (II.getNumDefs() >= 1)
2011     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2012         .addReg(Op0)
2013         .addReg(Op1)
2014         .addReg(Op2);
2015   else {
2016     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2017         .addReg(Op0)
2018         .addReg(Op1)
2019         .addReg(Op2);
2020     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2021             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2022   }
2023   return ResultReg;
2024 }
2025 
2026 Register FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2027                                    const TargetRegisterClass *RC, unsigned Op0,
2028                                    uint64_t Imm) {
2029   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2030 
2031   Register ResultReg = createResultReg(RC);
2032   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2033 
2034   if (II.getNumDefs() >= 1)
2035     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2036         .addReg(Op0)
2037         .addImm(Imm);
2038   else {
2039     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2040         .addReg(Op0)
2041         .addImm(Imm);
2042     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2043             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2044   }
2045   return ResultReg;
2046 }
2047 
2048 Register FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
2049                                     const TargetRegisterClass *RC, unsigned Op0,
2050                                     uint64_t Imm1, uint64_t Imm2) {
2051   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2052 
2053   Register ResultReg = createResultReg(RC);
2054   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2055 
2056   if (II.getNumDefs() >= 1)
2057     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2058         .addReg(Op0)
2059         .addImm(Imm1)
2060         .addImm(Imm2);
2061   else {
2062     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2063         .addReg(Op0)
2064         .addImm(Imm1)
2065         .addImm(Imm2);
2066     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2067             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2068   }
2069   return ResultReg;
2070 }
2071 
2072 Register FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
2073                                   const TargetRegisterClass *RC,
2074                                   const ConstantFP *FPImm) {
2075   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2076 
2077   Register ResultReg = createResultReg(RC);
2078 
2079   if (II.getNumDefs() >= 1)
2080     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2081         .addFPImm(FPImm);
2082   else {
2083     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2084         .addFPImm(FPImm);
2085     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2086             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2087   }
2088   return ResultReg;
2089 }
2090 
2091 Register FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
2092                                     const TargetRegisterClass *RC, unsigned Op0,
2093                                     unsigned Op1, uint64_t Imm) {
2094   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2095 
2096   Register ResultReg = createResultReg(RC);
2097   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2098   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2099 
2100   if (II.getNumDefs() >= 1)
2101     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2102         .addReg(Op0)
2103         .addReg(Op1)
2104         .addImm(Imm);
2105   else {
2106     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2107         .addReg(Op0)
2108         .addReg(Op1)
2109         .addImm(Imm);
2110     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2111             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2112   }
2113   return ResultReg;
2114 }
2115 
2116 Register FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
2117                                   const TargetRegisterClass *RC, uint64_t Imm) {
2118   Register ResultReg = createResultReg(RC);
2119   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2120 
2121   if (II.getNumDefs() >= 1)
2122     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2123         .addImm(Imm);
2124   else {
2125     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
2126     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2127             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2128   }
2129   return ResultReg;
2130 }
2131 
2132 Register FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
2133                                               uint32_t Idx) {
2134   Register ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
2135   assert(Register::isVirtualRegister(Op0) &&
2136          "Cannot yet extract from physregs");
2137   const TargetRegisterClass *RC = MRI.getRegClass(Op0);
2138   MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
2139   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
2140           ResultReg).addReg(Op0, 0, Idx);
2141   return ResultReg;
2142 }
2143 
2144 /// Emit MachineInstrs to compute the value of Op with all but the least
2145 /// significant bit set to zero.
2146 Register FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0) {
2147   return fastEmit_ri(VT, VT, ISD::AND, Op0, 1);
2148 }
2149 
2150 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
2151 /// Emit code to ensure constants are copied into registers when needed.
2152 /// Remember the virtual registers that need to be added to the Machine PHI
2153 /// nodes as input.  We cannot just directly add them, because expansion
2154 /// might result in multiple MBB's for one BB.  As such, the start of the
2155 /// BB might correspond to a different MBB than the end.
2156 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
2157   const Instruction *TI = LLVMBB->getTerminator();
2158 
2159   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
2160   FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
2161 
2162   // Check successor nodes' PHI nodes that expect a constant to be available
2163   // from this block.
2164   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
2165     const BasicBlock *SuccBB = TI->getSuccessor(succ);
2166     if (!isa<PHINode>(SuccBB->begin()))
2167       continue;
2168     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
2169 
2170     // If this terminator has multiple identical successors (common for
2171     // switches), only handle each succ once.
2172     if (!SuccsHandled.insert(SuccMBB).second)
2173       continue;
2174 
2175     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
2176 
2177     // At this point we know that there is a 1-1 correspondence between LLVM PHI
2178     // nodes and Machine PHI nodes, but the incoming operands have not been
2179     // emitted yet.
2180     for (const PHINode &PN : SuccBB->phis()) {
2181       // Ignore dead phi's.
2182       if (PN.use_empty())
2183         continue;
2184 
2185       // Only handle legal types. Two interesting things to note here. First,
2186       // by bailing out early, we may leave behind some dead instructions,
2187       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
2188       // own moves. Second, this check is necessary because FastISel doesn't
2189       // use CreateRegs to create registers, so it always creates
2190       // exactly one register for each non-void instruction.
2191       EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true);
2192       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
2193         // Handle integer promotions, though, because they're common and easy.
2194         if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
2195           FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2196           return false;
2197         }
2198       }
2199 
2200       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
2201 
2202       // Set the DebugLoc for the copy. Use the location of the operand if
2203       // there is one; otherwise no location, flushLocalValueMap will fix it.
2204       DbgLoc = DebugLoc();
2205       if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
2206         DbgLoc = Inst->getDebugLoc();
2207 
2208       Register Reg = getRegForValue(PHIOp);
2209       if (!Reg) {
2210         FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2211         return false;
2212       }
2213       FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg));
2214       DbgLoc = DebugLoc();
2215     }
2216   }
2217 
2218   return true;
2219 }
2220 
2221 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
2222   assert(LI->hasOneUse() &&
2223          "tryToFoldLoad expected a LoadInst with a single use");
2224   // We know that the load has a single use, but don't know what it is.  If it
2225   // isn't one of the folded instructions, then we can't succeed here.  Handle
2226   // this by scanning the single-use users of the load until we get to FoldInst.
2227   unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
2228 
2229   const Instruction *TheUser = LI->user_back();
2230   while (TheUser != FoldInst && // Scan up until we find FoldInst.
2231          // Stay in the right block.
2232          TheUser->getParent() == FoldInst->getParent() &&
2233          --MaxUsers) { // Don't scan too far.
2234     // If there are multiple or no uses of this instruction, then bail out.
2235     if (!TheUser->hasOneUse())
2236       return false;
2237 
2238     TheUser = TheUser->user_back();
2239   }
2240 
2241   // If we didn't find the fold instruction, then we failed to collapse the
2242   // sequence.
2243   if (TheUser != FoldInst)
2244     return false;
2245 
2246   // Don't try to fold volatile loads.  Target has to deal with alignment
2247   // constraints.
2248   if (LI->isVolatile())
2249     return false;
2250 
2251   // Figure out which vreg this is going into.  If there is no assigned vreg yet
2252   // then there actually was no reference to it.  Perhaps the load is referenced
2253   // by a dead instruction.
2254   Register LoadReg = getRegForValue(LI);
2255   if (!LoadReg)
2256     return false;
2257 
2258   // We can't fold if this vreg has no uses or more than one use.  Multiple uses
2259   // may mean that the instruction got lowered to multiple MIs, or the use of
2260   // the loaded value ended up being multiple operands of the result.
2261   if (!MRI.hasOneUse(LoadReg))
2262     return false;
2263 
2264   MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
2265   MachineInstr *User = RI->getParent();
2266 
2267   // Set the insertion point properly.  Folding the load can cause generation of
2268   // other random instructions (like sign extends) for addressing modes; make
2269   // sure they get inserted in a logical place before the new instruction.
2270   FuncInfo.InsertPt = User;
2271   FuncInfo.MBB = User->getParent();
2272 
2273   // Ask the target to try folding the load.
2274   return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
2275 }
2276 
2277 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
2278   // Must be an add.
2279   if (!isa<AddOperator>(Add))
2280     return false;
2281   // Type size needs to match.
2282   if (DL.getTypeSizeInBits(GEP->getType()) !=
2283       DL.getTypeSizeInBits(Add->getType()))
2284     return false;
2285   // Must be in the same basic block.
2286   if (isa<Instruction>(Add) &&
2287       FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
2288     return false;
2289   // Must have a constant operand.
2290   return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
2291 }
2292 
2293 MachineMemOperand *
2294 FastISel::createMachineMemOperandFor(const Instruction *I) const {
2295   const Value *Ptr;
2296   Type *ValTy;
2297   MaybeAlign Alignment;
2298   MachineMemOperand::Flags Flags;
2299   bool IsVolatile;
2300 
2301   if (const auto *LI = dyn_cast<LoadInst>(I)) {
2302     Alignment = LI->getAlign();
2303     IsVolatile = LI->isVolatile();
2304     Flags = MachineMemOperand::MOLoad;
2305     Ptr = LI->getPointerOperand();
2306     ValTy = LI->getType();
2307   } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
2308     Alignment = SI->getAlign();
2309     IsVolatile = SI->isVolatile();
2310     Flags = MachineMemOperand::MOStore;
2311     Ptr = SI->getPointerOperand();
2312     ValTy = SI->getValueOperand()->getType();
2313   } else
2314     return nullptr;
2315 
2316   bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal);
2317   bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load);
2318   bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable);
2319   const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
2320 
2321   AAMDNodes AAInfo;
2322   I->getAAMetadata(AAInfo);
2323 
2324   if (!Alignment) // Ensure that codegen never sees alignment 0.
2325     Alignment = DL.getABITypeAlign(ValTy);
2326 
2327   unsigned Size = DL.getTypeStoreSize(ValTy);
2328 
2329   if (IsVolatile)
2330     Flags |= MachineMemOperand::MOVolatile;
2331   if (IsNonTemporal)
2332     Flags |= MachineMemOperand::MONonTemporal;
2333   if (IsDereferenceable)
2334     Flags |= MachineMemOperand::MODereferenceable;
2335   if (IsInvariant)
2336     Flags |= MachineMemOperand::MOInvariant;
2337 
2338   return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
2339                                            *Alignment, AAInfo, Ranges);
2340 }
2341 
2342 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
2343   // If both operands are the same, then try to optimize or fold the cmp.
2344   CmpInst::Predicate Predicate = CI->getPredicate();
2345   if (CI->getOperand(0) != CI->getOperand(1))
2346     return Predicate;
2347 
2348   switch (Predicate) {
2349   default: llvm_unreachable("Invalid predicate!");
2350   case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
2351   case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break;
2352   case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break;
2353   case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break;
2354   case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break;
2355   case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break;
2356   case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break;
2357   case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break;
2358   case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break;
2359   case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break;
2360   case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break;
2361   case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2362   case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break;
2363   case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2364   case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break;
2365   case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break;
2366 
2367   case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break;
2368   case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break;
2369   case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break;
2370   case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2371   case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break;
2372   case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2373   case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break;
2374   case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2375   case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break;
2376   case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break;
2377   }
2378 
2379   return Predicate;
2380 }
2381