1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the FastISel class. 11 // 12 // "Fast" instruction selection is designed to emit very poor code quickly. 13 // Also, it is not designed to be able to do much lowering, so most illegal 14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 15 // also not intended to be able to do much optimization, except in a few cases 16 // where doing optimizations reduces overall compile time. For example, folding 17 // constants into immediate fields is often done, because it's cheap and it 18 // reduces the number of instructions later phases have to examine. 19 // 20 // "Fast" instruction selection is able to fail gracefully and transfer 21 // control to the SelectionDAG selector for operations that it doesn't 22 // support. In many cases, this allows us to avoid duplicating a lot of 23 // the complicated lowering logic that SelectionDAG currently has. 24 // 25 // The intended use for "fast" instruction selection is "-O0" mode 26 // compilation, where the quality of the generated code is irrelevant when 27 // weighed against the speed at which the code can be generated. Also, 28 // at -O0, the LLVM optimizers are not running, and this makes the 29 // compile time of codegen a much higher portion of the overall compile 30 // time. Despite its limitations, "fast" instruction selection is able to 31 // handle enough code on its own to provide noticeable overall speedups 32 // in -O0 compiles. 33 // 34 // Basic operations are supported in a target-independent way, by reading 35 // the same instruction descriptions that the SelectionDAG selector reads, 36 // and identifying simple arithmetic operations that can be directly selected 37 // from simple operators. More complicated operations currently require 38 // target-specific code. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/ADT/Optional.h" 43 #include "llvm/ADT/Statistic.h" 44 #include "llvm/Analysis/BranchProbabilityInfo.h" 45 #include "llvm/Analysis/Loads.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/CodeGen/Analysis.h" 48 #include "llvm/CodeGen/FastISel.h" 49 #include "llvm/CodeGen/FunctionLoweringInfo.h" 50 #include "llvm/CodeGen/MachineFrameInfo.h" 51 #include "llvm/CodeGen/MachineInstrBuilder.h" 52 #include "llvm/CodeGen/MachineModuleInfo.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/StackMaps.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugInfo.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/GetElementPtrTypeIterator.h" 59 #include "llvm/IR/GlobalVariable.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Mangler.h" 63 #include "llvm/IR/Operator.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetInstrInfo.h" 68 #include "llvm/Target/TargetLowering.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Target/TargetSubtargetInfo.h" 71 using namespace llvm; 72 73 #define DEBUG_TYPE "isel" 74 75 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 76 "target-independent selector"); 77 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 78 "target-specific selector"); 79 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 80 81 void FastISel::ArgListEntry::setAttributes(ImmutableCallSite *CS, 82 unsigned AttrIdx) { 83 IsSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 84 IsZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 85 IsInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 86 IsSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 87 IsNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 88 IsByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 89 IsInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 90 IsReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 91 IsSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf); 92 IsSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError); 93 Alignment = CS->getParamAlignment(AttrIdx); 94 } 95 96 /// Set the current block to which generated machine instructions will be 97 /// appended, and clear the local CSE map. 98 void FastISel::startNewBlock() { 99 LocalValueMap.clear(); 100 101 // Instructions are appended to FuncInfo.MBB. If the basic block already 102 // contains labels or copies, use the last instruction as the last local 103 // value. 104 EmitStartPt = nullptr; 105 if (!FuncInfo.MBB->empty()) 106 EmitStartPt = &FuncInfo.MBB->back(); 107 LastLocalValue = EmitStartPt; 108 } 109 110 bool FastISel::lowerArguments() { 111 if (!FuncInfo.CanLowerReturn) 112 // Fallback to SDISel argument lowering code to deal with sret pointer 113 // parameter. 114 return false; 115 116 if (!fastLowerArguments()) 117 return false; 118 119 // Enter arguments into ValueMap for uses in non-entry BBs. 120 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 121 E = FuncInfo.Fn->arg_end(); 122 I != E; ++I) { 123 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I); 124 assert(VI != LocalValueMap.end() && "Missed an argument?"); 125 FuncInfo.ValueMap[&*I] = VI->second; 126 } 127 return true; 128 } 129 130 void FastISel::flushLocalValueMap() { 131 LocalValueMap.clear(); 132 LastLocalValue = EmitStartPt; 133 recomputeInsertPt(); 134 SavedInsertPt = FuncInfo.InsertPt; 135 } 136 137 bool FastISel::hasTrivialKill(const Value *V) { 138 // Don't consider constants or arguments to have trivial kills. 139 const Instruction *I = dyn_cast<Instruction>(V); 140 if (!I) 141 return false; 142 143 // No-op casts are trivially coalesced by fast-isel. 144 if (const auto *Cast = dyn_cast<CastInst>(I)) 145 if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) && 146 !hasTrivialKill(Cast->getOperand(0))) 147 return false; 148 149 // Even the value might have only one use in the LLVM IR, it is possible that 150 // FastISel might fold the use into another instruction and now there is more 151 // than one use at the Machine Instruction level. 152 unsigned Reg = lookUpRegForValue(V); 153 if (Reg && !MRI.use_empty(Reg)) 154 return false; 155 156 // GEPs with all zero indices are trivially coalesced by fast-isel. 157 if (const auto *GEP = dyn_cast<GetElementPtrInst>(I)) 158 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 159 return false; 160 161 // Only instructions with a single use in the same basic block are considered 162 // to have trivial kills. 163 return I->hasOneUse() && 164 !(I->getOpcode() == Instruction::BitCast || 165 I->getOpcode() == Instruction::PtrToInt || 166 I->getOpcode() == Instruction::IntToPtr) && 167 cast<Instruction>(*I->user_begin())->getParent() == I->getParent(); 168 } 169 170 unsigned FastISel::getRegForValue(const Value *V) { 171 EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true); 172 // Don't handle non-simple values in FastISel. 173 if (!RealVT.isSimple()) 174 return 0; 175 176 // Ignore illegal types. We must do this before looking up the value 177 // in ValueMap because Arguments are given virtual registers regardless 178 // of whether FastISel can handle them. 179 MVT VT = RealVT.getSimpleVT(); 180 if (!TLI.isTypeLegal(VT)) { 181 // Handle integer promotions, though, because they're common and easy. 182 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 183 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 184 else 185 return 0; 186 } 187 188 // Look up the value to see if we already have a register for it. 189 unsigned Reg = lookUpRegForValue(V); 190 if (Reg) 191 return Reg; 192 193 // In bottom-up mode, just create the virtual register which will be used 194 // to hold the value. It will be materialized later. 195 if (isa<Instruction>(V) && 196 (!isa<AllocaInst>(V) || 197 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 198 return FuncInfo.InitializeRegForValue(V); 199 200 SavePoint SaveInsertPt = enterLocalValueArea(); 201 202 // Materialize the value in a register. Emit any instructions in the 203 // local value area. 204 Reg = materializeRegForValue(V, VT); 205 206 leaveLocalValueArea(SaveInsertPt); 207 208 return Reg; 209 } 210 211 unsigned FastISel::materializeConstant(const Value *V, MVT VT) { 212 unsigned Reg = 0; 213 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 214 if (CI->getValue().getActiveBits() <= 64) 215 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 216 } else if (isa<AllocaInst>(V)) 217 Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); 218 else if (isa<ConstantPointerNull>(V)) 219 // Translate this as an integer zero so that it can be 220 // local-CSE'd with actual integer zeros. 221 Reg = getRegForValue( 222 Constant::getNullValue(DL.getIntPtrType(V->getContext()))); 223 else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 224 if (CF->isNullValue()) 225 Reg = fastMaterializeFloatZero(CF); 226 else 227 // Try to emit the constant directly. 228 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); 229 230 if (!Reg) { 231 // Try to emit the constant by using an integer constant with a cast. 232 const APFloat &Flt = CF->getValueAPF(); 233 EVT IntVT = TLI.getPointerTy(DL); 234 235 uint64_t x[2]; 236 uint32_t IntBitWidth = IntVT.getSizeInBits(); 237 bool isExact; 238 (void)Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, 239 APFloat::rmTowardZero, &isExact); 240 if (isExact) { 241 APInt IntVal(IntBitWidth, x); 242 243 unsigned IntegerReg = 244 getRegForValue(ConstantInt::get(V->getContext(), IntVal)); 245 if (IntegerReg != 0) 246 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg, 247 /*Kill=*/false); 248 } 249 } 250 } else if (const auto *Op = dyn_cast<Operator>(V)) { 251 if (!selectOperator(Op, Op->getOpcode())) 252 if (!isa<Instruction>(Op) || 253 !fastSelectInstruction(cast<Instruction>(Op))) 254 return 0; 255 Reg = lookUpRegForValue(Op); 256 } else if (isa<UndefValue>(V)) { 257 Reg = createResultReg(TLI.getRegClassFor(VT)); 258 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 259 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 260 } 261 return Reg; 262 } 263 264 /// Helper for getRegForValue. This function is called when the value isn't 265 /// already available in a register and must be materialized with new 266 /// instructions. 267 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 268 unsigned Reg = 0; 269 // Give the target-specific code a try first. 270 if (isa<Constant>(V)) 271 Reg = fastMaterializeConstant(cast<Constant>(V)); 272 273 // If target-specific code couldn't or didn't want to handle the value, then 274 // give target-independent code a try. 275 if (!Reg) 276 Reg = materializeConstant(V, VT); 277 278 // Don't cache constant materializations in the general ValueMap. 279 // To do so would require tracking what uses they dominate. 280 if (Reg) { 281 LocalValueMap[V] = Reg; 282 LastLocalValue = MRI.getVRegDef(Reg); 283 } 284 return Reg; 285 } 286 287 unsigned FastISel::lookUpRegForValue(const Value *V) { 288 // Look up the value to see if we already have a register for it. We 289 // cache values defined by Instructions across blocks, and other values 290 // only locally. This is because Instructions already have the SSA 291 // def-dominates-use requirement enforced. 292 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 293 if (I != FuncInfo.ValueMap.end()) 294 return I->second; 295 return LocalValueMap[V]; 296 } 297 298 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 299 if (!isa<Instruction>(I)) { 300 LocalValueMap[I] = Reg; 301 return; 302 } 303 304 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 305 if (AssignedReg == 0) 306 // Use the new register. 307 AssignedReg = Reg; 308 else if (Reg != AssignedReg) { 309 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 310 for (unsigned i = 0; i < NumRegs; i++) 311 FuncInfo.RegFixups[AssignedReg + i] = Reg + i; 312 313 AssignedReg = Reg; 314 } 315 } 316 317 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 318 unsigned IdxN = getRegForValue(Idx); 319 if (IdxN == 0) 320 // Unhandled operand. Halt "fast" selection and bail. 321 return std::pair<unsigned, bool>(0, false); 322 323 bool IdxNIsKill = hasTrivialKill(Idx); 324 325 // If the index is smaller or larger than intptr_t, truncate or extend it. 326 MVT PtrVT = TLI.getPointerTy(DL); 327 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 328 if (IdxVT.bitsLT(PtrVT)) { 329 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN, 330 IdxNIsKill); 331 IdxNIsKill = true; 332 } else if (IdxVT.bitsGT(PtrVT)) { 333 IdxN = 334 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill); 335 IdxNIsKill = true; 336 } 337 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 338 } 339 340 void FastISel::recomputeInsertPt() { 341 if (getLastLocalValue()) { 342 FuncInfo.InsertPt = getLastLocalValue(); 343 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 344 ++FuncInfo.InsertPt; 345 } else 346 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 347 348 // Now skip past any EH_LABELs, which must remain at the beginning. 349 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 350 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 351 ++FuncInfo.InsertPt; 352 } 353 354 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 355 MachineBasicBlock::iterator E) { 356 assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 && 357 "Invalid iterator!"); 358 while (I != E) { 359 MachineInstr *Dead = &*I; 360 ++I; 361 Dead->eraseFromParent(); 362 ++NumFastIselDead; 363 } 364 recomputeInsertPt(); 365 } 366 367 FastISel::SavePoint FastISel::enterLocalValueArea() { 368 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 369 DebugLoc OldDL = DbgLoc; 370 recomputeInsertPt(); 371 DbgLoc = DebugLoc(); 372 SavePoint SP = {OldInsertPt, OldDL}; 373 return SP; 374 } 375 376 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 377 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 378 LastLocalValue = &*std::prev(FuncInfo.InsertPt); 379 380 // Restore the previous insert position. 381 FuncInfo.InsertPt = OldInsertPt.InsertPt; 382 DbgLoc = OldInsertPt.DL; 383 } 384 385 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { 386 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 387 if (VT == MVT::Other || !VT.isSimple()) 388 // Unhandled type. Halt "fast" selection and bail. 389 return false; 390 391 // We only handle legal types. For example, on x86-32 the instruction 392 // selector contains all of the 64-bit instructions from x86-64, 393 // under the assumption that i64 won't be used if the target doesn't 394 // support it. 395 if (!TLI.isTypeLegal(VT)) { 396 // MVT::i1 is special. Allow AND, OR, or XOR because they 397 // don't require additional zeroing, which makes them easy. 398 if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 399 ISDOpcode == ISD::XOR)) 400 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 401 else 402 return false; 403 } 404 405 // Check if the first operand is a constant, and handle it as "ri". At -O0, 406 // we don't have anything that canonicalizes operand order. 407 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 408 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 409 unsigned Op1 = getRegForValue(I->getOperand(1)); 410 if (!Op1) 411 return false; 412 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 413 414 unsigned ResultReg = 415 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill, 416 CI->getZExtValue(), VT.getSimpleVT()); 417 if (!ResultReg) 418 return false; 419 420 // We successfully emitted code for the given LLVM Instruction. 421 updateValueMap(I, ResultReg); 422 return true; 423 } 424 425 unsigned Op0 = getRegForValue(I->getOperand(0)); 426 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 427 return false; 428 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 429 430 // Check if the second operand is a constant and handle it appropriately. 431 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 432 uint64_t Imm = CI->getSExtValue(); 433 434 // Transform "sdiv exact X, 8" -> "sra X, 3". 435 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 436 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { 437 Imm = Log2_64(Imm); 438 ISDOpcode = ISD::SRA; 439 } 440 441 // Transform "urem x, pow2" -> "and x, pow2-1". 442 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 443 isPowerOf2_64(Imm)) { 444 --Imm; 445 ISDOpcode = ISD::AND; 446 } 447 448 unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 449 Op0IsKill, Imm, VT.getSimpleVT()); 450 if (!ResultReg) 451 return false; 452 453 // We successfully emitted code for the given LLVM Instruction. 454 updateValueMap(I, ResultReg); 455 return true; 456 } 457 458 unsigned Op1 = getRegForValue(I->getOperand(1)); 459 if (!Op1) // Unhandled operand. Halt "fast" selection and bail. 460 return false; 461 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 462 463 // Now we have both operands in registers. Emit the instruction. 464 unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 465 ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill); 466 if (!ResultReg) 467 // Target-specific code wasn't able to find a machine opcode for 468 // the given ISD opcode and type. Halt "fast" selection and bail. 469 return false; 470 471 // We successfully emitted code for the given LLVM Instruction. 472 updateValueMap(I, ResultReg); 473 return true; 474 } 475 476 bool FastISel::selectGetElementPtr(const User *I) { 477 unsigned N = getRegForValue(I->getOperand(0)); 478 if (!N) // Unhandled operand. Halt "fast" selection and bail. 479 return false; 480 bool NIsKill = hasTrivialKill(I->getOperand(0)); 481 482 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 483 // into a single N = N + TotalOffset. 484 uint64_t TotalOffs = 0; 485 // FIXME: What's a good SWAG number for MaxOffs? 486 uint64_t MaxOffs = 2048; 487 MVT VT = TLI.getPointerTy(DL); 488 for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I); 489 GTI != E; ++GTI) { 490 const Value *Idx = GTI.getOperand(); 491 if (auto *StTy = dyn_cast<StructType>(*GTI)) { 492 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue(); 493 if (Field) { 494 // N = N + Offset 495 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 496 if (TotalOffs >= MaxOffs) { 497 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 498 if (!N) // Unhandled operand. Halt "fast" selection and bail. 499 return false; 500 NIsKill = true; 501 TotalOffs = 0; 502 } 503 } 504 } else { 505 Type *Ty = GTI.getIndexedType(); 506 507 // If this is a constant subscript, handle it quickly. 508 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 509 if (CI->isZero()) 510 continue; 511 // N = N + Offset 512 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); 513 TotalOffs += DL.getTypeAllocSize(Ty) * IdxN; 514 if (TotalOffs >= MaxOffs) { 515 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 516 if (!N) // Unhandled operand. Halt "fast" selection and bail. 517 return false; 518 NIsKill = true; 519 TotalOffs = 0; 520 } 521 continue; 522 } 523 if (TotalOffs) { 524 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 525 if (!N) // Unhandled operand. Halt "fast" selection and bail. 526 return false; 527 NIsKill = true; 528 TotalOffs = 0; 529 } 530 531 // N = N + Idx * ElementSize; 532 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 533 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 534 unsigned IdxN = Pair.first; 535 bool IdxNIsKill = Pair.second; 536 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 537 return false; 538 539 if (ElementSize != 1) { 540 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 541 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 542 return false; 543 IdxNIsKill = true; 544 } 545 N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 546 if (!N) // Unhandled operand. Halt "fast" selection and bail. 547 return false; 548 } 549 } 550 if (TotalOffs) { 551 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 552 if (!N) // Unhandled operand. Halt "fast" selection and bail. 553 return false; 554 } 555 556 // We successfully emitted code for the given LLVM Instruction. 557 updateValueMap(I, N); 558 return true; 559 } 560 561 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 562 const CallInst *CI, unsigned StartIdx) { 563 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { 564 Value *Val = CI->getArgOperand(i); 565 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 566 if (const auto *C = dyn_cast<ConstantInt>(Val)) { 567 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 568 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 569 } else if (isa<ConstantPointerNull>(Val)) { 570 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 571 Ops.push_back(MachineOperand::CreateImm(0)); 572 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 573 // Values coming from a stack location also require a sepcial encoding, 574 // but that is added later on by the target specific frame index 575 // elimination implementation. 576 auto SI = FuncInfo.StaticAllocaMap.find(AI); 577 if (SI != FuncInfo.StaticAllocaMap.end()) 578 Ops.push_back(MachineOperand::CreateFI(SI->second)); 579 else 580 return false; 581 } else { 582 unsigned Reg = getRegForValue(Val); 583 if (!Reg) 584 return false; 585 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 586 } 587 } 588 return true; 589 } 590 591 bool FastISel::selectStackmap(const CallInst *I) { 592 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 593 // [live variables...]) 594 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 595 "Stackmap cannot return a value."); 596 597 // The stackmap intrinsic only records the live variables (the arguments 598 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 599 // intrinsic, this won't be lowered to a function call. This means we don't 600 // have to worry about calling conventions and target-specific lowering code. 601 // Instead we perform the call lowering right here. 602 // 603 // CALLSEQ_START(0...) 604 // STACKMAP(id, nbytes, ...) 605 // CALLSEQ_END(0, 0) 606 // 607 SmallVector<MachineOperand, 32> Ops; 608 609 // Add the <id> and <numBytes> constants. 610 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 611 "Expected a constant integer."); 612 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 613 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 614 615 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 616 "Expected a constant integer."); 617 const auto *NumBytes = 618 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 619 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 620 621 // Push live variables for the stack map (skipping the first two arguments 622 // <id> and <numBytes>). 623 if (!addStackMapLiveVars(Ops, I, 2)) 624 return false; 625 626 // We are not adding any register mask info here, because the stackmap doesn't 627 // clobber anything. 628 629 // Add scratch registers as implicit def and early clobber. 630 CallingConv::ID CC = I->getCallingConv(); 631 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 632 for (unsigned i = 0; ScratchRegs[i]; ++i) 633 Ops.push_back(MachineOperand::CreateReg( 634 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 635 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 636 637 // Issue CALLSEQ_START 638 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 639 auto Builder = 640 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)); 641 const MCInstrDesc &MCID = Builder.getInstr()->getDesc(); 642 for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I) 643 Builder.addImm(0); 644 645 // Issue STACKMAP. 646 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 647 TII.get(TargetOpcode::STACKMAP)); 648 for (auto const &MO : Ops) 649 MIB.addOperand(MO); 650 651 // Issue CALLSEQ_END 652 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 653 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 654 .addImm(0) 655 .addImm(0); 656 657 // Inform the Frame Information that we have a stackmap in this function. 658 FuncInfo.MF->getFrameInfo().setHasStackMap(); 659 660 return true; 661 } 662 663 /// \brief Lower an argument list according to the target calling convention. 664 /// 665 /// This is a helper for lowering intrinsics that follow a target calling 666 /// convention or require stack pointer adjustment. Only a subset of the 667 /// intrinsic's operands need to participate in the calling convention. 668 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 669 unsigned NumArgs, const Value *Callee, 670 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 671 ArgListTy Args; 672 Args.reserve(NumArgs); 673 674 // Populate the argument list. 675 // Attributes for args start at offset 1, after the return attribute. 676 ImmutableCallSite CS(CI); 677 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 678 ArgI != ArgE; ++ArgI) { 679 Value *V = CI->getOperand(ArgI); 680 681 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 682 683 ArgListEntry Entry; 684 Entry.Val = V; 685 Entry.Ty = V->getType(); 686 Entry.setAttributes(&CS, AttrI); 687 Args.push_back(Entry); 688 } 689 690 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 691 : CI->getType(); 692 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 693 694 return lowerCallTo(CLI); 695 } 696 697 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee( 698 const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy, 699 StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) { 700 SmallString<32> MangledName; 701 Mangler::getNameWithPrefix(MangledName, Target, DL); 702 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 703 return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs); 704 } 705 706 bool FastISel::selectPatchpoint(const CallInst *I) { 707 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 708 // i32 <numBytes>, 709 // i8* <target>, 710 // i32 <numArgs>, 711 // [Args...], 712 // [live variables...]) 713 CallingConv::ID CC = I->getCallingConv(); 714 bool IsAnyRegCC = CC == CallingConv::AnyReg; 715 bool HasDef = !I->getType()->isVoidTy(); 716 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts(); 717 718 // Get the real number of arguments participating in the call <numArgs> 719 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 720 "Expected a constant integer."); 721 const auto *NumArgsVal = 722 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 723 unsigned NumArgs = NumArgsVal->getZExtValue(); 724 725 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 726 // This includes all meta-operands up to but not including CC. 727 unsigned NumMetaOpers = PatchPointOpers::CCPos; 728 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs && 729 "Not enough arguments provided to the patchpoint intrinsic"); 730 731 // For AnyRegCC the arguments are lowered later on manually. 732 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 733 CallLoweringInfo CLI; 734 CLI.setIsPatchPoint(); 735 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 736 return false; 737 738 assert(CLI.Call && "No call instruction specified."); 739 740 SmallVector<MachineOperand, 32> Ops; 741 742 // Add an explicit result reg if we use the anyreg calling convention. 743 if (IsAnyRegCC && HasDef) { 744 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 745 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); 746 CLI.NumResultRegs = 1; 747 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true)); 748 } 749 750 // Add the <id> and <numBytes> constants. 751 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 752 "Expected a constant integer."); 753 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 754 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 755 756 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 757 "Expected a constant integer."); 758 const auto *NumBytes = 759 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 760 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 761 762 // Add the call target. 763 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) { 764 uint64_t CalleeConstAddr = 765 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 766 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 767 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 768 if (C->getOpcode() == Instruction::IntToPtr) { 769 uint64_t CalleeConstAddr = 770 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 771 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 772 } else 773 llvm_unreachable("Unsupported ConstantExpr."); 774 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) { 775 Ops.push_back(MachineOperand::CreateGA(GV, 0)); 776 } else if (isa<ConstantPointerNull>(Callee)) 777 Ops.push_back(MachineOperand::CreateImm(0)); 778 else 779 llvm_unreachable("Unsupported callee address."); 780 781 // Adjust <numArgs> to account for any arguments that have been passed on 782 // the stack instead. 783 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 784 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 785 786 // Add the calling convention 787 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 788 789 // Add the arguments we omitted previously. The register allocator should 790 // place these in any free register. 791 if (IsAnyRegCC) { 792 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 793 unsigned Reg = getRegForValue(I->getArgOperand(i)); 794 if (!Reg) 795 return false; 796 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 797 } 798 } 799 800 // Push the arguments from the call instruction. 801 for (auto Reg : CLI.OutRegs) 802 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 803 804 // Push live variables for the stack map. 805 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 806 return false; 807 808 // Push the register mask info. 809 Ops.push_back(MachineOperand::CreateRegMask( 810 TRI.getCallPreservedMask(*FuncInfo.MF, CC))); 811 812 // Add scratch registers as implicit def and early clobber. 813 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 814 for (unsigned i = 0; ScratchRegs[i]; ++i) 815 Ops.push_back(MachineOperand::CreateReg( 816 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 817 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 818 819 // Add implicit defs (return values). 820 for (auto Reg : CLI.InRegs) 821 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true, 822 /*IsImpl=*/true)); 823 824 // Insert the patchpoint instruction before the call generated by the target. 825 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc, 826 TII.get(TargetOpcode::PATCHPOINT)); 827 828 for (auto &MO : Ops) 829 MIB.addOperand(MO); 830 831 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 832 833 // Delete the original call instruction. 834 CLI.Call->eraseFromParent(); 835 836 // Inform the Frame Information that we have a patchpoint in this function. 837 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 838 839 if (CLI.NumResultRegs) 840 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 841 return true; 842 } 843 844 /// Returns an AttributeSet representing the attributes applied to the return 845 /// value of the given call. 846 static AttributeSet getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 847 SmallVector<Attribute::AttrKind, 2> Attrs; 848 if (CLI.RetSExt) 849 Attrs.push_back(Attribute::SExt); 850 if (CLI.RetZExt) 851 Attrs.push_back(Attribute::ZExt); 852 if (CLI.IsInReg) 853 Attrs.push_back(Attribute::InReg); 854 855 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 856 Attrs); 857 } 858 859 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, 860 unsigned NumArgs) { 861 MCContext &Ctx = MF->getContext(); 862 SmallString<32> MangledName; 863 Mangler::getNameWithPrefix(MangledName, SymName, DL); 864 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 865 return lowerCallTo(CI, Sym, NumArgs); 866 } 867 868 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol, 869 unsigned NumArgs) { 870 ImmutableCallSite CS(CI); 871 872 FunctionType *FTy = CS.getFunctionType(); 873 Type *RetTy = CS.getType(); 874 875 ArgListTy Args; 876 Args.reserve(NumArgs); 877 878 // Populate the argument list. 879 // Attributes for args start at offset 1, after the return attribute. 880 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 881 Value *V = CI->getOperand(ArgI); 882 883 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 884 885 ArgListEntry Entry; 886 Entry.Val = V; 887 Entry.Ty = V->getType(); 888 Entry.setAttributes(&CS, ArgI + 1); 889 Args.push_back(Entry); 890 } 891 892 CallLoweringInfo CLI; 893 CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs); 894 895 return lowerCallTo(CLI); 896 } 897 898 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { 899 // Handle the incoming return values from the call. 900 CLI.clearIns(); 901 SmallVector<EVT, 4> RetTys; 902 ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys); 903 904 SmallVector<ISD::OutputArg, 4> Outs; 905 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL); 906 907 bool CanLowerReturn = TLI.CanLowerReturn( 908 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 909 910 // FIXME: sret demotion isn't supported yet - bail out. 911 if (!CanLowerReturn) 912 return false; 913 914 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 915 EVT VT = RetTys[I]; 916 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 917 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 918 for (unsigned i = 0; i != NumRegs; ++i) { 919 ISD::InputArg MyFlags; 920 MyFlags.VT = RegisterVT; 921 MyFlags.ArgVT = VT; 922 MyFlags.Used = CLI.IsReturnValueUsed; 923 if (CLI.RetSExt) 924 MyFlags.Flags.setSExt(); 925 if (CLI.RetZExt) 926 MyFlags.Flags.setZExt(); 927 if (CLI.IsInReg) 928 MyFlags.Flags.setInReg(); 929 CLI.Ins.push_back(MyFlags); 930 } 931 } 932 933 // Handle all of the outgoing arguments. 934 CLI.clearOuts(); 935 for (auto &Arg : CLI.getArgs()) { 936 Type *FinalType = Arg.Ty; 937 if (Arg.IsByVal) 938 FinalType = cast<PointerType>(Arg.Ty)->getElementType(); 939 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 940 FinalType, CLI.CallConv, CLI.IsVarArg); 941 942 ISD::ArgFlagsTy Flags; 943 if (Arg.IsZExt) 944 Flags.setZExt(); 945 if (Arg.IsSExt) 946 Flags.setSExt(); 947 if (Arg.IsInReg) 948 Flags.setInReg(); 949 if (Arg.IsSRet) 950 Flags.setSRet(); 951 if (Arg.IsSwiftSelf) 952 Flags.setSwiftSelf(); 953 if (Arg.IsSwiftError) 954 Flags.setSwiftError(); 955 if (Arg.IsByVal) 956 Flags.setByVal(); 957 if (Arg.IsInAlloca) { 958 Flags.setInAlloca(); 959 // Set the byval flag for CCAssignFn callbacks that don't know about 960 // inalloca. This way we can know how many bytes we should've allocated 961 // and how many bytes a callee cleanup function will pop. If we port 962 // inalloca to more targets, we'll have to add custom inalloca handling in 963 // the various CC lowering callbacks. 964 Flags.setByVal(); 965 } 966 if (Arg.IsByVal || Arg.IsInAlloca) { 967 PointerType *Ty = cast<PointerType>(Arg.Ty); 968 Type *ElementTy = Ty->getElementType(); 969 unsigned FrameSize = DL.getTypeAllocSize(ElementTy); 970 // For ByVal, alignment should come from FE. BE will guess if this info is 971 // not there, but there are cases it cannot get right. 972 unsigned FrameAlign = Arg.Alignment; 973 if (!FrameAlign) 974 FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL); 975 Flags.setByValSize(FrameSize); 976 Flags.setByValAlign(FrameAlign); 977 } 978 if (Arg.IsNest) 979 Flags.setNest(); 980 if (NeedsRegBlock) 981 Flags.setInConsecutiveRegs(); 982 unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty); 983 Flags.setOrigAlign(OriginalAlignment); 984 985 CLI.OutVals.push_back(Arg.Val); 986 CLI.OutFlags.push_back(Flags); 987 } 988 989 if (!fastLowerCall(CLI)) 990 return false; 991 992 // Set all unused physreg defs as dead. 993 assert(CLI.Call && "No call instruction specified."); 994 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 995 996 if (CLI.NumResultRegs && CLI.CS) 997 updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs); 998 999 return true; 1000 } 1001 1002 bool FastISel::lowerCall(const CallInst *CI) { 1003 ImmutableCallSite CS(CI); 1004 1005 FunctionType *FuncTy = CS.getFunctionType(); 1006 Type *RetTy = CS.getType(); 1007 1008 ArgListTy Args; 1009 ArgListEntry Entry; 1010 Args.reserve(CS.arg_size()); 1011 1012 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1013 i != e; ++i) { 1014 Value *V = *i; 1015 1016 // Skip empty types 1017 if (V->getType()->isEmptyTy()) 1018 continue; 1019 1020 Entry.Val = V; 1021 Entry.Ty = V->getType(); 1022 1023 // Skip the first return-type Attribute to get to params. 1024 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 1025 Args.push_back(Entry); 1026 } 1027 1028 // Check if target-independent constraints permit a tail call here. 1029 // Target-dependent constraints are checked within fastLowerCall. 1030 bool IsTailCall = CI->isTailCall(); 1031 if (IsTailCall && !isInTailCallPosition(CS, TM)) 1032 IsTailCall = false; 1033 1034 CallLoweringInfo CLI; 1035 CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS) 1036 .setTailCall(IsTailCall); 1037 1038 return lowerCallTo(CLI); 1039 } 1040 1041 bool FastISel::selectCall(const User *I) { 1042 const CallInst *Call = cast<CallInst>(I); 1043 1044 // Handle simple inline asms. 1045 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 1046 // If the inline asm has side effects, then make sure that no local value 1047 // lives across by flushing the local value map. 1048 if (IA->hasSideEffects()) 1049 flushLocalValueMap(); 1050 1051 // Don't attempt to handle constraints. 1052 if (!IA->getConstraintString().empty()) 1053 return false; 1054 1055 unsigned ExtraInfo = 0; 1056 if (IA->hasSideEffects()) 1057 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1058 if (IA->isAlignStack()) 1059 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1060 1061 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1062 TII.get(TargetOpcode::INLINEASM)) 1063 .addExternalSymbol(IA->getAsmString().c_str()) 1064 .addImm(ExtraInfo); 1065 return true; 1066 } 1067 1068 MachineModuleInfo &MMI = FuncInfo.MF->getMMI(); 1069 ComputeUsesVAFloatArgument(*Call, &MMI); 1070 1071 // Handle intrinsic function calls. 1072 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1073 return selectIntrinsicCall(II); 1074 1075 // Usually, it does not make sense to initialize a value, 1076 // make an unrelated function call and use the value, because 1077 // it tends to be spilled on the stack. So, we move the pointer 1078 // to the last local value to the beginning of the block, so that 1079 // all the values which have already been materialized, 1080 // appear after the call. It also makes sense to skip intrinsics 1081 // since they tend to be inlined. 1082 flushLocalValueMap(); 1083 1084 return lowerCall(Call); 1085 } 1086 1087 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { 1088 switch (II->getIntrinsicID()) { 1089 default: 1090 break; 1091 // At -O0 we don't care about the lifetime intrinsics. 1092 case Intrinsic::lifetime_start: 1093 case Intrinsic::lifetime_end: 1094 // The donothing intrinsic does, well, nothing. 1095 case Intrinsic::donothing: 1096 // Neither does the assume intrinsic; it's also OK not to codegen its operand. 1097 case Intrinsic::assume: 1098 return true; 1099 case Intrinsic::dbg_declare: { 1100 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1101 assert(DI->getVariable() && "Missing variable"); 1102 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1103 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1104 return true; 1105 } 1106 1107 const Value *Address = DI->getAddress(); 1108 if (!Address || isa<UndefValue>(Address)) { 1109 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1110 return true; 1111 } 1112 1113 unsigned Offset = 0; 1114 Optional<MachineOperand> Op; 1115 if (const auto *Arg = dyn_cast<Argument>(Address)) 1116 // Some arguments' frame index is recorded during argument lowering. 1117 Offset = FuncInfo.getArgumentFrameIndex(Arg); 1118 if (Offset) 1119 Op = MachineOperand::CreateFI(Offset); 1120 if (!Op) 1121 if (unsigned Reg = lookUpRegForValue(Address)) 1122 Op = MachineOperand::CreateReg(Reg, false); 1123 1124 // If we have a VLA that has a "use" in a metadata node that's then used 1125 // here but it has no other uses, then we have a problem. E.g., 1126 // 1127 // int foo (const int *x) { 1128 // char a[*x]; 1129 // return 0; 1130 // } 1131 // 1132 // If we assign 'a' a vreg and fast isel later on has to use the selection 1133 // DAG isel, it will want to copy the value to the vreg. However, there are 1134 // no uses, which goes counter to what selection DAG isel expects. 1135 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1136 (!isa<AllocaInst>(Address) || 1137 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1138 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1139 false); 1140 1141 if (Op) { 1142 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1143 "Expected inlined-at fields to agree"); 1144 if (Op->isReg()) { 1145 Op->setIsDebug(true); 1146 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1147 TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0, 1148 DI->getVariable(), DI->getExpression()); 1149 } else 1150 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1151 TII.get(TargetOpcode::DBG_VALUE)) 1152 .addOperand(*Op) 1153 .addImm(0) 1154 .addMetadata(DI->getVariable()) 1155 .addMetadata(DI->getExpression()); 1156 } else { 1157 // We can't yet handle anything else here because it would require 1158 // generating code, thus altering codegen because of debug info. 1159 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1160 } 1161 return true; 1162 } 1163 case Intrinsic::dbg_value: { 1164 // This form of DBG_VALUE is target-independent. 1165 const DbgValueInst *DI = cast<DbgValueInst>(II); 1166 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1167 const Value *V = DI->getValue(); 1168 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1169 "Expected inlined-at fields to agree"); 1170 if (!V) { 1171 // Currently the optimizer can produce this; insert an undef to 1172 // help debugging. Probably the optimizer should not do this. 1173 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1174 .addReg(0U) 1175 .addImm(DI->getOffset()) 1176 .addMetadata(DI->getVariable()) 1177 .addMetadata(DI->getExpression()); 1178 } else if (const auto *CI = dyn_cast<ConstantInt>(V)) { 1179 if (CI->getBitWidth() > 64) 1180 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1181 .addCImm(CI) 1182 .addImm(DI->getOffset()) 1183 .addMetadata(DI->getVariable()) 1184 .addMetadata(DI->getExpression()); 1185 else 1186 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1187 .addImm(CI->getZExtValue()) 1188 .addImm(DI->getOffset()) 1189 .addMetadata(DI->getVariable()) 1190 .addMetadata(DI->getExpression()); 1191 } else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 1192 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1193 .addFPImm(CF) 1194 .addImm(DI->getOffset()) 1195 .addMetadata(DI->getVariable()) 1196 .addMetadata(DI->getExpression()); 1197 } else if (unsigned Reg = lookUpRegForValue(V)) { 1198 // FIXME: This does not handle register-indirect values at offset 0. 1199 bool IsIndirect = DI->getOffset() != 0; 1200 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg, 1201 DI->getOffset(), DI->getVariable(), DI->getExpression()); 1202 } else { 1203 // We can't yet handle anything else here because it would require 1204 // generating code, thus altering codegen because of debug info. 1205 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1206 } 1207 return true; 1208 } 1209 case Intrinsic::objectsize: { 1210 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1)); 1211 unsigned long long Res = CI->isZero() ? -1ULL : 0; 1212 Constant *ResCI = ConstantInt::get(II->getType(), Res); 1213 unsigned ResultReg = getRegForValue(ResCI); 1214 if (!ResultReg) 1215 return false; 1216 updateValueMap(II, ResultReg); 1217 return true; 1218 } 1219 case Intrinsic::invariant_group_barrier: 1220 case Intrinsic::expect: { 1221 unsigned ResultReg = getRegForValue(II->getArgOperand(0)); 1222 if (!ResultReg) 1223 return false; 1224 updateValueMap(II, ResultReg); 1225 return true; 1226 } 1227 case Intrinsic::experimental_stackmap: 1228 return selectStackmap(II); 1229 case Intrinsic::experimental_patchpoint_void: 1230 case Intrinsic::experimental_patchpoint_i64: 1231 return selectPatchpoint(II); 1232 } 1233 1234 return fastLowerIntrinsicCall(II); 1235 } 1236 1237 bool FastISel::selectCast(const User *I, unsigned Opcode) { 1238 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1239 EVT DstVT = TLI.getValueType(DL, I->getType()); 1240 1241 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || 1242 !DstVT.isSimple()) 1243 // Unhandled type. Halt "fast" selection and bail. 1244 return false; 1245 1246 // Check if the destination type is legal. 1247 if (!TLI.isTypeLegal(DstVT)) 1248 return false; 1249 1250 // Check if the source operand is legal. 1251 if (!TLI.isTypeLegal(SrcVT)) 1252 return false; 1253 1254 unsigned InputReg = getRegForValue(I->getOperand(0)); 1255 if (!InputReg) 1256 // Unhandled operand. Halt "fast" selection and bail. 1257 return false; 1258 1259 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 1260 1261 unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 1262 Opcode, InputReg, InputRegIsKill); 1263 if (!ResultReg) 1264 return false; 1265 1266 updateValueMap(I, ResultReg); 1267 return true; 1268 } 1269 1270 bool FastISel::selectBitCast(const User *I) { 1271 // If the bitcast doesn't change the type, just use the operand value. 1272 if (I->getType() == I->getOperand(0)->getType()) { 1273 unsigned Reg = getRegForValue(I->getOperand(0)); 1274 if (!Reg) 1275 return false; 1276 updateValueMap(I, Reg); 1277 return true; 1278 } 1279 1280 // Bitcasts of other values become reg-reg copies or BITCAST operators. 1281 EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1282 EVT DstEVT = TLI.getValueType(DL, I->getType()); 1283 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1284 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1285 // Unhandled type. Halt "fast" selection and bail. 1286 return false; 1287 1288 MVT SrcVT = SrcEVT.getSimpleVT(); 1289 MVT DstVT = DstEVT.getSimpleVT(); 1290 unsigned Op0 = getRegForValue(I->getOperand(0)); 1291 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 1292 return false; 1293 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 1294 1295 // First, try to perform the bitcast by inserting a reg-reg copy. 1296 unsigned ResultReg = 0; 1297 if (SrcVT == DstVT) { 1298 const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT); 1299 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); 1300 // Don't attempt a cross-class copy. It will likely fail. 1301 if (SrcClass == DstClass) { 1302 ResultReg = createResultReg(DstClass); 1303 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1304 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); 1305 } 1306 } 1307 1308 // If the reg-reg copy failed, select a BITCAST opcode. 1309 if (!ResultReg) 1310 ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); 1311 1312 if (!ResultReg) 1313 return false; 1314 1315 updateValueMap(I, ResultReg); 1316 return true; 1317 } 1318 1319 // Remove local value instructions starting from the instruction after 1320 // SavedLastLocalValue to the current function insert point. 1321 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue) 1322 { 1323 MachineInstr *CurLastLocalValue = getLastLocalValue(); 1324 if (CurLastLocalValue != SavedLastLocalValue) { 1325 // Find the first local value instruction to be deleted. 1326 // This is the instruction after SavedLastLocalValue if it is non-NULL. 1327 // Otherwise it's the first instruction in the block. 1328 MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue); 1329 if (SavedLastLocalValue) 1330 ++FirstDeadInst; 1331 else 1332 FirstDeadInst = FuncInfo.MBB->getFirstNonPHI(); 1333 setLastLocalValue(SavedLastLocalValue); 1334 removeDeadCode(FirstDeadInst, FuncInfo.InsertPt); 1335 } 1336 } 1337 1338 bool FastISel::selectInstruction(const Instruction *I) { 1339 MachineInstr *SavedLastLocalValue = getLastLocalValue(); 1340 // Just before the terminator instruction, insert instructions to 1341 // feed PHI nodes in successor blocks. 1342 if (isa<TerminatorInst>(I)) { 1343 if (!handlePHINodesInSuccessorBlocks(I->getParent())) { 1344 // PHI node handling may have generated local value instructions, 1345 // even though it failed to handle all PHI nodes. 1346 // We remove these instructions because SelectionDAGISel will generate 1347 // them again. 1348 removeDeadLocalValueCode(SavedLastLocalValue); 1349 return false; 1350 } 1351 } 1352 1353 // FastISel does not handle any operand bundles except OB_funclet. 1354 if (ImmutableCallSite CS = ImmutableCallSite(I)) 1355 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) 1356 if (CS.getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet) 1357 return false; 1358 1359 DbgLoc = I->getDebugLoc(); 1360 1361 SavedInsertPt = FuncInfo.InsertPt; 1362 1363 if (const auto *Call = dyn_cast<CallInst>(I)) { 1364 const Function *F = Call->getCalledFunction(); 1365 LibFunc::Func Func; 1366 1367 // As a special case, don't handle calls to builtin library functions that 1368 // may be translated directly to target instructions. 1369 if (F && !F->hasLocalLinkage() && F->hasName() && 1370 LibInfo->getLibFunc(F->getName(), Func) && 1371 LibInfo->hasOptimizedCodeGen(Func)) 1372 return false; 1373 1374 // Don't handle Intrinsic::trap if a trap function is specified. 1375 if (F && F->getIntrinsicID() == Intrinsic::trap && 1376 Call->hasFnAttr("trap-func-name")) 1377 return false; 1378 } 1379 1380 // First, try doing target-independent selection. 1381 if (!SkipTargetIndependentISel) { 1382 if (selectOperator(I, I->getOpcode())) { 1383 ++NumFastIselSuccessIndependent; 1384 DbgLoc = DebugLoc(); 1385 return true; 1386 } 1387 // Remove dead code. 1388 recomputeInsertPt(); 1389 if (SavedInsertPt != FuncInfo.InsertPt) 1390 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1391 SavedInsertPt = FuncInfo.InsertPt; 1392 } 1393 // Next, try calling the target to attempt to handle the instruction. 1394 if (fastSelectInstruction(I)) { 1395 ++NumFastIselSuccessTarget; 1396 DbgLoc = DebugLoc(); 1397 return true; 1398 } 1399 // Remove dead code. 1400 recomputeInsertPt(); 1401 if (SavedInsertPt != FuncInfo.InsertPt) 1402 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1403 1404 DbgLoc = DebugLoc(); 1405 // Undo phi node updates, because they will be added again by SelectionDAG. 1406 if (isa<TerminatorInst>(I)) { 1407 // PHI node handling may have generated local value instructions. 1408 // We remove them because SelectionDAGISel will generate them again. 1409 removeDeadLocalValueCode(SavedLastLocalValue); 1410 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 1411 } 1412 return false; 1413 } 1414 1415 /// Emit an unconditional branch to the given block, unless it is the immediate 1416 /// (fall-through) successor, and update the CFG. 1417 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, 1418 const DebugLoc &DbgLoc) { 1419 if (FuncInfo.MBB->getBasicBlock()->size() > 1 && 1420 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1421 // For more accurate line information if this is the only instruction 1422 // in the block then emit it, otherwise we have the unconditional 1423 // fall-through case, which needs no instructions. 1424 } else { 1425 // The unconditional branch case. 1426 TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr, 1427 SmallVector<MachineOperand, 0>(), DbgLoc); 1428 } 1429 if (FuncInfo.BPI) { 1430 auto BranchProbability = FuncInfo.BPI->getEdgeProbability( 1431 FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock()); 1432 FuncInfo.MBB->addSuccessor(MSucc, BranchProbability); 1433 } else 1434 FuncInfo.MBB->addSuccessorWithoutProb(MSucc); 1435 } 1436 1437 void FastISel::finishCondBranch(const BasicBlock *BranchBB, 1438 MachineBasicBlock *TrueMBB, 1439 MachineBasicBlock *FalseMBB) { 1440 // Add TrueMBB as successor unless it is equal to the FalseMBB: This can 1441 // happen in degenerate IR and MachineIR forbids to have a block twice in the 1442 // successor/predecessor lists. 1443 if (TrueMBB != FalseMBB) { 1444 if (FuncInfo.BPI) { 1445 auto BranchProbability = 1446 FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock()); 1447 FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability); 1448 } else 1449 FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB); 1450 } 1451 1452 fastEmitBranch(FalseMBB, DbgLoc); 1453 } 1454 1455 /// Emit an FNeg operation. 1456 bool FastISel::selectFNeg(const User *I) { 1457 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); 1458 if (!OpReg) 1459 return false; 1460 bool OpRegIsKill = hasTrivialKill(I); 1461 1462 // If the target has ISD::FNEG, use it. 1463 EVT VT = TLI.getValueType(DL, I->getType()); 1464 unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, 1465 OpReg, OpRegIsKill); 1466 if (ResultReg) { 1467 updateValueMap(I, ResultReg); 1468 return true; 1469 } 1470 1471 // Bitcast the value to integer, twiddle the sign bit with xor, 1472 // and then bitcast it back to floating-point. 1473 if (VT.getSizeInBits() > 64) 1474 return false; 1475 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1476 if (!TLI.isTypeLegal(IntVT)) 1477 return false; 1478 1479 unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1480 ISD::BITCAST, OpReg, OpRegIsKill); 1481 if (!IntReg) 1482 return false; 1483 1484 unsigned IntResultReg = fastEmit_ri_( 1485 IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true, 1486 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); 1487 if (!IntResultReg) 1488 return false; 1489 1490 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, 1491 IntResultReg, /*IsKill=*/true); 1492 if (!ResultReg) 1493 return false; 1494 1495 updateValueMap(I, ResultReg); 1496 return true; 1497 } 1498 1499 bool FastISel::selectExtractValue(const User *U) { 1500 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1501 if (!EVI) 1502 return false; 1503 1504 // Make sure we only try to handle extracts with a legal result. But also 1505 // allow i1 because it's easy. 1506 EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true); 1507 if (!RealVT.isSimple()) 1508 return false; 1509 MVT VT = RealVT.getSimpleVT(); 1510 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1511 return false; 1512 1513 const Value *Op0 = EVI->getOperand(0); 1514 Type *AggTy = Op0->getType(); 1515 1516 // Get the base result register. 1517 unsigned ResultReg; 1518 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 1519 if (I != FuncInfo.ValueMap.end()) 1520 ResultReg = I->second; 1521 else if (isa<Instruction>(Op0)) 1522 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1523 else 1524 return false; // fast-isel can't handle aggregate constants at the moment 1525 1526 // Get the actual result register, which is an offset from the base register. 1527 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1528 1529 SmallVector<EVT, 4> AggValueVTs; 1530 ComputeValueVTs(TLI, DL, AggTy, AggValueVTs); 1531 1532 for (unsigned i = 0; i < VTIndex; i++) 1533 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1534 1535 updateValueMap(EVI, ResultReg); 1536 return true; 1537 } 1538 1539 bool FastISel::selectOperator(const User *I, unsigned Opcode) { 1540 switch (Opcode) { 1541 case Instruction::Add: 1542 return selectBinaryOp(I, ISD::ADD); 1543 case Instruction::FAdd: 1544 return selectBinaryOp(I, ISD::FADD); 1545 case Instruction::Sub: 1546 return selectBinaryOp(I, ISD::SUB); 1547 case Instruction::FSub: 1548 // FNeg is currently represented in LLVM IR as a special case of FSub. 1549 if (BinaryOperator::isFNeg(I)) 1550 return selectFNeg(I); 1551 return selectBinaryOp(I, ISD::FSUB); 1552 case Instruction::Mul: 1553 return selectBinaryOp(I, ISD::MUL); 1554 case Instruction::FMul: 1555 return selectBinaryOp(I, ISD::FMUL); 1556 case Instruction::SDiv: 1557 return selectBinaryOp(I, ISD::SDIV); 1558 case Instruction::UDiv: 1559 return selectBinaryOp(I, ISD::UDIV); 1560 case Instruction::FDiv: 1561 return selectBinaryOp(I, ISD::FDIV); 1562 case Instruction::SRem: 1563 return selectBinaryOp(I, ISD::SREM); 1564 case Instruction::URem: 1565 return selectBinaryOp(I, ISD::UREM); 1566 case Instruction::FRem: 1567 return selectBinaryOp(I, ISD::FREM); 1568 case Instruction::Shl: 1569 return selectBinaryOp(I, ISD::SHL); 1570 case Instruction::LShr: 1571 return selectBinaryOp(I, ISD::SRL); 1572 case Instruction::AShr: 1573 return selectBinaryOp(I, ISD::SRA); 1574 case Instruction::And: 1575 return selectBinaryOp(I, ISD::AND); 1576 case Instruction::Or: 1577 return selectBinaryOp(I, ISD::OR); 1578 case Instruction::Xor: 1579 return selectBinaryOp(I, ISD::XOR); 1580 1581 case Instruction::GetElementPtr: 1582 return selectGetElementPtr(I); 1583 1584 case Instruction::Br: { 1585 const BranchInst *BI = cast<BranchInst>(I); 1586 1587 if (BI->isUnconditional()) { 1588 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1589 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1590 fastEmitBranch(MSucc, BI->getDebugLoc()); 1591 return true; 1592 } 1593 1594 // Conditional branches are not handed yet. 1595 // Halt "fast" selection and bail. 1596 return false; 1597 } 1598 1599 case Instruction::Unreachable: 1600 if (TM.Options.TrapUnreachable) 1601 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1602 else 1603 return true; 1604 1605 case Instruction::Alloca: 1606 // FunctionLowering has the static-sized case covered. 1607 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1608 return true; 1609 1610 // Dynamic-sized alloca is not handled yet. 1611 return false; 1612 1613 case Instruction::Call: 1614 return selectCall(I); 1615 1616 case Instruction::BitCast: 1617 return selectBitCast(I); 1618 1619 case Instruction::FPToSI: 1620 return selectCast(I, ISD::FP_TO_SINT); 1621 case Instruction::ZExt: 1622 return selectCast(I, ISD::ZERO_EXTEND); 1623 case Instruction::SExt: 1624 return selectCast(I, ISD::SIGN_EXTEND); 1625 case Instruction::Trunc: 1626 return selectCast(I, ISD::TRUNCATE); 1627 case Instruction::SIToFP: 1628 return selectCast(I, ISD::SINT_TO_FP); 1629 1630 case Instruction::IntToPtr: // Deliberate fall-through. 1631 case Instruction::PtrToInt: { 1632 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1633 EVT DstVT = TLI.getValueType(DL, I->getType()); 1634 if (DstVT.bitsGT(SrcVT)) 1635 return selectCast(I, ISD::ZERO_EXTEND); 1636 if (DstVT.bitsLT(SrcVT)) 1637 return selectCast(I, ISD::TRUNCATE); 1638 unsigned Reg = getRegForValue(I->getOperand(0)); 1639 if (!Reg) 1640 return false; 1641 updateValueMap(I, Reg); 1642 return true; 1643 } 1644 1645 case Instruction::ExtractValue: 1646 return selectExtractValue(I); 1647 1648 case Instruction::PHI: 1649 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1650 1651 default: 1652 // Unhandled instruction. Halt "fast" selection and bail. 1653 return false; 1654 } 1655 } 1656 1657 FastISel::FastISel(FunctionLoweringInfo &FuncInfo, 1658 const TargetLibraryInfo *LibInfo, 1659 bool SkipTargetIndependentISel) 1660 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1661 MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1662 TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()), 1663 TII(*MF->getSubtarget().getInstrInfo()), 1664 TLI(*MF->getSubtarget().getTargetLowering()), 1665 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), 1666 SkipTargetIndependentISel(SkipTargetIndependentISel) {} 1667 1668 FastISel::~FastISel() {} 1669 1670 bool FastISel::fastLowerArguments() { return false; } 1671 1672 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } 1673 1674 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1675 return false; 1676 } 1677 1678 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } 1679 1680 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/, 1681 bool /*Op0IsKill*/) { 1682 return 0; 1683 } 1684 1685 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, 1686 bool /*Op0IsKill*/, unsigned /*Op1*/, 1687 bool /*Op1IsKill*/) { 1688 return 0; 1689 } 1690 1691 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1692 return 0; 1693 } 1694 1695 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, 1696 const ConstantFP * /*FPImm*/) { 1697 return 0; 1698 } 1699 1700 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, 1701 bool /*Op0IsKill*/, uint64_t /*Imm*/) { 1702 return 0; 1703 } 1704 1705 /// This method is a wrapper of fastEmit_ri. It first tries to emit an 1706 /// instruction with an immediate operand using fastEmit_ri. 1707 /// If that fails, it materializes the immediate into a register and try 1708 /// fastEmit_rr instead. 1709 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, 1710 bool Op0IsKill, uint64_t Imm, MVT ImmType) { 1711 // If this is a multiply by a power of two, emit this as a shift left. 1712 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1713 Opcode = ISD::SHL; 1714 Imm = Log2_64(Imm); 1715 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1716 // div x, 8 -> srl x, 3 1717 Opcode = ISD::SRL; 1718 Imm = Log2_64(Imm); 1719 } 1720 1721 // Horrible hack (to be removed), check to make sure shift amounts are 1722 // in-range. 1723 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1724 Imm >= VT.getSizeInBits()) 1725 return 0; 1726 1727 // First check if immediate type is legal. If not, we can't use the ri form. 1728 unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1729 if (ResultReg) 1730 return ResultReg; 1731 unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1732 bool IsImmKill = true; 1733 if (!MaterialReg) { 1734 // This is a bit ugly/slow, but failing here means falling out of 1735 // fast-isel, which would be very slow. 1736 IntegerType *ITy = 1737 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); 1738 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1739 if (!MaterialReg) 1740 return 0; 1741 // FIXME: If the materialized register here has no uses yet then this 1742 // will be the first use and we should be able to mark it as killed. 1743 // However, the local value area for materialising constant expressions 1744 // grows down, not up, which means that any constant expressions we generate 1745 // later which also use 'Imm' could be after this instruction and therefore 1746 // after this kill. 1747 IsImmKill = false; 1748 } 1749 return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill); 1750 } 1751 1752 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) { 1753 return MRI.createVirtualRegister(RC); 1754 } 1755 1756 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op, 1757 unsigned OpNum) { 1758 if (TargetRegisterInfo::isVirtualRegister(Op)) { 1759 const TargetRegisterClass *RegClass = 1760 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 1761 if (!MRI.constrainRegClass(Op, RegClass)) { 1762 // If it's not legal to COPY between the register classes, something 1763 // has gone very wrong before we got here. 1764 unsigned NewOp = createResultReg(RegClass); 1765 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1766 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 1767 return NewOp; 1768 } 1769 } 1770 return Op; 1771 } 1772 1773 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode, 1774 const TargetRegisterClass *RC) { 1775 unsigned ResultReg = createResultReg(RC); 1776 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1777 1778 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); 1779 return ResultReg; 1780 } 1781 1782 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode, 1783 const TargetRegisterClass *RC, unsigned Op0, 1784 bool Op0IsKill) { 1785 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1786 1787 unsigned ResultReg = createResultReg(RC); 1788 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1789 1790 if (II.getNumDefs() >= 1) 1791 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1792 .addReg(Op0, getKillRegState(Op0IsKill)); 1793 else { 1794 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1795 .addReg(Op0, getKillRegState(Op0IsKill)); 1796 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1797 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1798 } 1799 1800 return ResultReg; 1801 } 1802 1803 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 1804 const TargetRegisterClass *RC, unsigned Op0, 1805 bool Op0IsKill, unsigned Op1, 1806 bool Op1IsKill) { 1807 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1808 1809 unsigned ResultReg = createResultReg(RC); 1810 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1811 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1812 1813 if (II.getNumDefs() >= 1) 1814 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1815 .addReg(Op0, getKillRegState(Op0IsKill)) 1816 .addReg(Op1, getKillRegState(Op1IsKill)); 1817 else { 1818 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1819 .addReg(Op0, getKillRegState(Op0IsKill)) 1820 .addReg(Op1, getKillRegState(Op1IsKill)); 1821 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1822 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1823 } 1824 return ResultReg; 1825 } 1826 1827 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 1828 const TargetRegisterClass *RC, unsigned Op0, 1829 bool Op0IsKill, unsigned Op1, 1830 bool Op1IsKill, unsigned Op2, 1831 bool Op2IsKill) { 1832 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1833 1834 unsigned ResultReg = createResultReg(RC); 1835 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1836 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1837 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 1838 1839 if (II.getNumDefs() >= 1) 1840 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1841 .addReg(Op0, getKillRegState(Op0IsKill)) 1842 .addReg(Op1, getKillRegState(Op1IsKill)) 1843 .addReg(Op2, getKillRegState(Op2IsKill)); 1844 else { 1845 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1846 .addReg(Op0, getKillRegState(Op0IsKill)) 1847 .addReg(Op1, getKillRegState(Op1IsKill)) 1848 .addReg(Op2, getKillRegState(Op2IsKill)); 1849 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1850 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1851 } 1852 return ResultReg; 1853 } 1854 1855 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 1856 const TargetRegisterClass *RC, unsigned Op0, 1857 bool Op0IsKill, uint64_t Imm) { 1858 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1859 1860 unsigned ResultReg = createResultReg(RC); 1861 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1862 1863 if (II.getNumDefs() >= 1) 1864 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1865 .addReg(Op0, getKillRegState(Op0IsKill)) 1866 .addImm(Imm); 1867 else { 1868 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1869 .addReg(Op0, getKillRegState(Op0IsKill)) 1870 .addImm(Imm); 1871 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1872 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1873 } 1874 return ResultReg; 1875 } 1876 1877 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, 1878 const TargetRegisterClass *RC, unsigned Op0, 1879 bool Op0IsKill, uint64_t Imm1, 1880 uint64_t Imm2) { 1881 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1882 1883 unsigned ResultReg = createResultReg(RC); 1884 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1885 1886 if (II.getNumDefs() >= 1) 1887 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1888 .addReg(Op0, getKillRegState(Op0IsKill)) 1889 .addImm(Imm1) 1890 .addImm(Imm2); 1891 else { 1892 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1893 .addReg(Op0, getKillRegState(Op0IsKill)) 1894 .addImm(Imm1) 1895 .addImm(Imm2); 1896 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1897 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1898 } 1899 return ResultReg; 1900 } 1901 1902 unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode, 1903 const TargetRegisterClass *RC, 1904 const ConstantFP *FPImm) { 1905 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1906 1907 unsigned ResultReg = createResultReg(RC); 1908 1909 if (II.getNumDefs() >= 1) 1910 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1911 .addFPImm(FPImm); 1912 else { 1913 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1914 .addFPImm(FPImm); 1915 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1916 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1917 } 1918 return ResultReg; 1919 } 1920 1921 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 1922 const TargetRegisterClass *RC, unsigned Op0, 1923 bool Op0IsKill, unsigned Op1, 1924 bool Op1IsKill, uint64_t Imm) { 1925 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1926 1927 unsigned ResultReg = createResultReg(RC); 1928 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1929 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1930 1931 if (II.getNumDefs() >= 1) 1932 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1933 .addReg(Op0, getKillRegState(Op0IsKill)) 1934 .addReg(Op1, getKillRegState(Op1IsKill)) 1935 .addImm(Imm); 1936 else { 1937 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1938 .addReg(Op0, getKillRegState(Op0IsKill)) 1939 .addReg(Op1, getKillRegState(Op1IsKill)) 1940 .addImm(Imm); 1941 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1942 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1943 } 1944 return ResultReg; 1945 } 1946 1947 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode, 1948 const TargetRegisterClass *RC, uint64_t Imm) { 1949 unsigned ResultReg = createResultReg(RC); 1950 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1951 1952 if (II.getNumDefs() >= 1) 1953 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1954 .addImm(Imm); 1955 else { 1956 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); 1957 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1958 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1959 } 1960 return ResultReg; 1961 } 1962 1963 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, 1964 bool Op0IsKill, uint32_t Idx) { 1965 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1966 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 1967 "Cannot yet extract from physregs"); 1968 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 1969 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 1970 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), 1971 ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx); 1972 return ResultReg; 1973 } 1974 1975 /// Emit MachineInstrs to compute the value of Op with all but the least 1976 /// significant bit set to zero. 1977 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 1978 return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 1979 } 1980 1981 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 1982 /// Emit code to ensure constants are copied into registers when needed. 1983 /// Remember the virtual registers that need to be added to the Machine PHI 1984 /// nodes as input. We cannot just directly add them, because expansion 1985 /// might result in multiple MBB's for one BB. As such, the start of the 1986 /// BB might correspond to a different MBB than the end. 1987 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 1988 const TerminatorInst *TI = LLVMBB->getTerminator(); 1989 1990 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 1991 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 1992 1993 // Check successor nodes' PHI nodes that expect a constant to be available 1994 // from this block. 1995 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 1996 const BasicBlock *SuccBB = TI->getSuccessor(succ); 1997 if (!isa<PHINode>(SuccBB->begin())) 1998 continue; 1999 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 2000 2001 // If this terminator has multiple identical successors (common for 2002 // switches), only handle each succ once. 2003 if (!SuccsHandled.insert(SuccMBB).second) 2004 continue; 2005 2006 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 2007 2008 // At this point we know that there is a 1-1 correspondence between LLVM PHI 2009 // nodes and Machine PHI nodes, but the incoming operands have not been 2010 // emitted yet. 2011 for (BasicBlock::const_iterator I = SuccBB->begin(); 2012 const auto *PN = dyn_cast<PHINode>(I); ++I) { 2013 2014 // Ignore dead phi's. 2015 if (PN->use_empty()) 2016 continue; 2017 2018 // Only handle legal types. Two interesting things to note here. First, 2019 // by bailing out early, we may leave behind some dead instructions, 2020 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2021 // own moves. Second, this check is necessary because FastISel doesn't 2022 // use CreateRegs to create registers, so it always creates 2023 // exactly one register for each non-void instruction. 2024 EVT VT = TLI.getValueType(DL, PN->getType(), /*AllowUnknown=*/true); 2025 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2026 // Handle integer promotions, though, because they're common and easy. 2027 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { 2028 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2029 return false; 2030 } 2031 } 2032 2033 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 2034 2035 // Set the DebugLoc for the copy. Prefer the location of the operand 2036 // if there is one; use the location of the PHI otherwise. 2037 DbgLoc = PN->getDebugLoc(); 2038 if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) 2039 DbgLoc = Inst->getDebugLoc(); 2040 2041 unsigned Reg = getRegForValue(PHIOp); 2042 if (!Reg) { 2043 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2044 return false; 2045 } 2046 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg)); 2047 DbgLoc = DebugLoc(); 2048 } 2049 } 2050 2051 return true; 2052 } 2053 2054 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2055 assert(LI->hasOneUse() && 2056 "tryToFoldLoad expected a LoadInst with a single use"); 2057 // We know that the load has a single use, but don't know what it is. If it 2058 // isn't one of the folded instructions, then we can't succeed here. Handle 2059 // this by scanning the single-use users of the load until we get to FoldInst. 2060 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2061 2062 const Instruction *TheUser = LI->user_back(); 2063 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2064 // Stay in the right block. 2065 TheUser->getParent() == FoldInst->getParent() && 2066 --MaxUsers) { // Don't scan too far. 2067 // If there are multiple or no uses of this instruction, then bail out. 2068 if (!TheUser->hasOneUse()) 2069 return false; 2070 2071 TheUser = TheUser->user_back(); 2072 } 2073 2074 // If we didn't find the fold instruction, then we failed to collapse the 2075 // sequence. 2076 if (TheUser != FoldInst) 2077 return false; 2078 2079 // Don't try to fold volatile loads. Target has to deal with alignment 2080 // constraints. 2081 if (LI->isVolatile()) 2082 return false; 2083 2084 // Figure out which vreg this is going into. If there is no assigned vreg yet 2085 // then there actually was no reference to it. Perhaps the load is referenced 2086 // by a dead instruction. 2087 unsigned LoadReg = getRegForValue(LI); 2088 if (!LoadReg) 2089 return false; 2090 2091 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2092 // may mean that the instruction got lowered to multiple MIs, or the use of 2093 // the loaded value ended up being multiple operands of the result. 2094 if (!MRI.hasOneUse(LoadReg)) 2095 return false; 2096 2097 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2098 MachineInstr *User = RI->getParent(); 2099 2100 // Set the insertion point properly. Folding the load can cause generation of 2101 // other random instructions (like sign extends) for addressing modes; make 2102 // sure they get inserted in a logical place before the new instruction. 2103 FuncInfo.InsertPt = User; 2104 FuncInfo.MBB = User->getParent(); 2105 2106 // Ask the target to try folding the load. 2107 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2108 } 2109 2110 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2111 // Must be an add. 2112 if (!isa<AddOperator>(Add)) 2113 return false; 2114 // Type size needs to match. 2115 if (DL.getTypeSizeInBits(GEP->getType()) != 2116 DL.getTypeSizeInBits(Add->getType())) 2117 return false; 2118 // Must be in the same basic block. 2119 if (isa<Instruction>(Add) && 2120 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2121 return false; 2122 // Must have a constant operand. 2123 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2124 } 2125 2126 MachineMemOperand * 2127 FastISel::createMachineMemOperandFor(const Instruction *I) const { 2128 const Value *Ptr; 2129 Type *ValTy; 2130 unsigned Alignment; 2131 MachineMemOperand::Flags Flags; 2132 bool IsVolatile; 2133 2134 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2135 Alignment = LI->getAlignment(); 2136 IsVolatile = LI->isVolatile(); 2137 Flags = MachineMemOperand::MOLoad; 2138 Ptr = LI->getPointerOperand(); 2139 ValTy = LI->getType(); 2140 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2141 Alignment = SI->getAlignment(); 2142 IsVolatile = SI->isVolatile(); 2143 Flags = MachineMemOperand::MOStore; 2144 Ptr = SI->getPointerOperand(); 2145 ValTy = SI->getValueOperand()->getType(); 2146 } else 2147 return nullptr; 2148 2149 bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2150 bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr; 2151 bool IsDereferenceable = 2152 I->getMetadata(LLVMContext::MD_dereferenceable) != nullptr; 2153 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2154 2155 AAMDNodes AAInfo; 2156 I->getAAMetadata(AAInfo); 2157 2158 if (Alignment == 0) // Ensure that codegen never sees alignment 0. 2159 Alignment = DL.getABITypeAlignment(ValTy); 2160 2161 unsigned Size = DL.getTypeStoreSize(ValTy); 2162 2163 if (IsVolatile) 2164 Flags |= MachineMemOperand::MOVolatile; 2165 if (IsNonTemporal) 2166 Flags |= MachineMemOperand::MONonTemporal; 2167 if (IsDereferenceable) 2168 Flags |= MachineMemOperand::MODereferenceable; 2169 if (IsInvariant) 2170 Flags |= MachineMemOperand::MOInvariant; 2171 2172 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2173 Alignment, AAInfo, Ranges); 2174 } 2175 2176 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { 2177 // If both operands are the same, then try to optimize or fold the cmp. 2178 CmpInst::Predicate Predicate = CI->getPredicate(); 2179 if (CI->getOperand(0) != CI->getOperand(1)) 2180 return Predicate; 2181 2182 switch (Predicate) { 2183 default: llvm_unreachable("Invalid predicate!"); 2184 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; 2185 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; 2186 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; 2187 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; 2188 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; 2189 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; 2190 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; 2191 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; 2192 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; 2193 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; 2194 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; 2195 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2196 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; 2197 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2198 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; 2199 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; 2200 2201 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; 2202 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; 2203 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; 2204 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2205 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; 2206 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2207 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; 2208 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; 2209 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; 2210 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; 2211 } 2212 2213 return Predicate; 2214 } 2215