1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the FastISel class. 11 // 12 // "Fast" instruction selection is designed to emit very poor code quickly. 13 // Also, it is not designed to be able to do much lowering, so most illegal 14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 15 // also not intended to be able to do much optimization, except in a few cases 16 // where doing optimizations reduces overall compile time. For example, folding 17 // constants into immediate fields is often done, because it's cheap and it 18 // reduces the number of instructions later phases have to examine. 19 // 20 // "Fast" instruction selection is able to fail gracefully and transfer 21 // control to the SelectionDAG selector for operations that it doesn't 22 // support. In many cases, this allows us to avoid duplicating a lot of 23 // the complicated lowering logic that SelectionDAG currently has. 24 // 25 // The intended use for "fast" instruction selection is "-O0" mode 26 // compilation, where the quality of the generated code is irrelevant when 27 // weighed against the speed at which the code can be generated. Also, 28 // at -O0, the LLVM optimizers are not running, and this makes the 29 // compile time of codegen a much higher portion of the overall compile 30 // time. Despite its limitations, "fast" instruction selection is able to 31 // handle enough code on its own to provide noticeable overall speedups 32 // in -O0 compiles. 33 // 34 // Basic operations are supported in a target-independent way, by reading 35 // the same instruction descriptions that the SelectionDAG selector reads, 36 // and identifying simple arithmetic operations that can be directly selected 37 // from simple operators. More complicated operations currently require 38 // target-specific code. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/CodeGen/Analysis.h" 43 #include "llvm/CodeGen/FastISel.h" 44 #include "llvm/ADT/Optional.h" 45 #include "llvm/ADT/Statistic.h" 46 #include "llvm/Analysis/BranchProbabilityInfo.h" 47 #include "llvm/Analysis/Loads.h" 48 #include "llvm/CodeGen/Analysis.h" 49 #include "llvm/CodeGen/FunctionLoweringInfo.h" 50 #include "llvm/CodeGen/MachineFrameInfo.h" 51 #include "llvm/CodeGen/MachineInstrBuilder.h" 52 #include "llvm/CodeGen/MachineModuleInfo.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/StackMaps.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugInfo.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/GlobalVariable.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Operator.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Target/TargetInstrInfo.h" 65 #include "llvm/Target/TargetLibraryInfo.h" 66 #include "llvm/Target/TargetLowering.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include "llvm/Target/TargetSubtargetInfo.h" 69 using namespace llvm; 70 71 #define DEBUG_TYPE "isel" 72 73 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 74 "target-independent selector"); 75 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 76 "target-specific selector"); 77 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 78 79 void FastISel::ArgListEntry::setAttributes(ImmutableCallSite *CS, 80 unsigned AttrIdx) { 81 IsSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 82 IsZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 83 IsInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 84 IsSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 85 IsNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 86 IsByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 87 IsInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 88 IsReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 89 Alignment = CS->getParamAlignment(AttrIdx); 90 } 91 92 /// Set the current block to which generated machine instructions will be 93 /// appended, and clear the local CSE map. 94 void FastISel::startNewBlock() { 95 LocalValueMap.clear(); 96 97 // Instructions are appended to FuncInfo.MBB. If the basic block already 98 // contains labels or copies, use the last instruction as the last local 99 // value. 100 EmitStartPt = nullptr; 101 if (!FuncInfo.MBB->empty()) 102 EmitStartPt = &FuncInfo.MBB->back(); 103 LastLocalValue = EmitStartPt; 104 } 105 106 bool FastISel::lowerArguments() { 107 if (!FuncInfo.CanLowerReturn) 108 // Fallback to SDISel argument lowering code to deal with sret pointer 109 // parameter. 110 return false; 111 112 if (!fastLowerArguments()) 113 return false; 114 115 // Enter arguments into ValueMap for uses in non-entry BBs. 116 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 117 E = FuncInfo.Fn->arg_end(); 118 I != E; ++I) { 119 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(I); 120 assert(VI != LocalValueMap.end() && "Missed an argument?"); 121 FuncInfo.ValueMap[I] = VI->second; 122 } 123 return true; 124 } 125 126 void FastISel::flushLocalValueMap() { 127 LocalValueMap.clear(); 128 LastLocalValue = EmitStartPt; 129 recomputeInsertPt(); 130 SavedInsertPt = FuncInfo.InsertPt; 131 } 132 133 bool FastISel::hasTrivialKill(const Value *V) { 134 // Don't consider constants or arguments to have trivial kills. 135 const Instruction *I = dyn_cast<Instruction>(V); 136 if (!I) 137 return false; 138 139 // No-op casts are trivially coalesced by fast-isel. 140 if (const auto *Cast = dyn_cast<CastInst>(I)) 141 if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) && 142 !hasTrivialKill(Cast->getOperand(0))) 143 return false; 144 145 // Even the value might have only one use in the LLVM IR, it is possible that 146 // FastISel might fold the use into another instruction and now there is more 147 // than one use at the Machine Instruction level. 148 unsigned Reg = lookUpRegForValue(V); 149 if (Reg && !MRI.use_empty(Reg)) 150 return false; 151 152 // GEPs with all zero indices are trivially coalesced by fast-isel. 153 if (const auto *GEP = dyn_cast<GetElementPtrInst>(I)) 154 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 155 return false; 156 157 // Only instructions with a single use in the same basic block are considered 158 // to have trivial kills. 159 return I->hasOneUse() && 160 !(I->getOpcode() == Instruction::BitCast || 161 I->getOpcode() == Instruction::PtrToInt || 162 I->getOpcode() == Instruction::IntToPtr) && 163 cast<Instruction>(*I->user_begin())->getParent() == I->getParent(); 164 } 165 166 unsigned FastISel::getRegForValue(const Value *V) { 167 EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true); 168 // Don't handle non-simple values in FastISel. 169 if (!RealVT.isSimple()) 170 return 0; 171 172 // Ignore illegal types. We must do this before looking up the value 173 // in ValueMap because Arguments are given virtual registers regardless 174 // of whether FastISel can handle them. 175 MVT VT = RealVT.getSimpleVT(); 176 if (!TLI.isTypeLegal(VT)) { 177 // Handle integer promotions, though, because they're common and easy. 178 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 179 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 180 else 181 return 0; 182 } 183 184 // Look up the value to see if we already have a register for it. 185 unsigned Reg = lookUpRegForValue(V); 186 if (Reg) 187 return Reg; 188 189 // In bottom-up mode, just create the virtual register which will be used 190 // to hold the value. It will be materialized later. 191 if (isa<Instruction>(V) && 192 (!isa<AllocaInst>(V) || 193 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 194 return FuncInfo.InitializeRegForValue(V); 195 196 SavePoint SaveInsertPt = enterLocalValueArea(); 197 198 // Materialize the value in a register. Emit any instructions in the 199 // local value area. 200 Reg = materializeRegForValue(V, VT); 201 202 leaveLocalValueArea(SaveInsertPt); 203 204 return Reg; 205 } 206 207 unsigned FastISel::materializeConstant(const Value *V, MVT VT) { 208 unsigned Reg = 0; 209 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 210 if (CI->getValue().getActiveBits() <= 64) 211 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 212 } else if (isa<AllocaInst>(V)) 213 Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); 214 else if (isa<ConstantPointerNull>(V)) 215 // Translate this as an integer zero so that it can be 216 // local-CSE'd with actual integer zeros. 217 Reg = getRegForValue( 218 Constant::getNullValue(DL.getIntPtrType(V->getContext()))); 219 else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 220 if (CF->isNullValue()) 221 Reg = fastMaterializeFloatZero(CF); 222 else 223 // Try to emit the constant directly. 224 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); 225 226 if (!Reg) { 227 // Try to emit the constant by using an integer constant with a cast. 228 const APFloat &Flt = CF->getValueAPF(); 229 EVT IntVT = TLI.getPointerTy(); 230 231 uint64_t x[2]; 232 uint32_t IntBitWidth = IntVT.getSizeInBits(); 233 bool isExact; 234 (void)Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, 235 APFloat::rmTowardZero, &isExact); 236 if (isExact) { 237 APInt IntVal(IntBitWidth, x); 238 239 unsigned IntegerReg = 240 getRegForValue(ConstantInt::get(V->getContext(), IntVal)); 241 if (IntegerReg != 0) 242 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg, 243 /*Kill=*/false); 244 } 245 } 246 } else if (const auto *Op = dyn_cast<Operator>(V)) { 247 if (!selectOperator(Op, Op->getOpcode())) 248 if (!isa<Instruction>(Op) || 249 !fastSelectInstruction(cast<Instruction>(Op))) 250 return 0; 251 Reg = lookUpRegForValue(Op); 252 } else if (isa<UndefValue>(V)) { 253 Reg = createResultReg(TLI.getRegClassFor(VT)); 254 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 255 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 256 } 257 return Reg; 258 } 259 260 /// Helper for getRegForValue. This function is called when the value isn't 261 /// already available in a register and must be materialized with new 262 /// instructions. 263 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 264 unsigned Reg = 0; 265 // Give the target-specific code a try first. 266 if (isa<Constant>(V)) 267 Reg = fastMaterializeConstant(cast<Constant>(V)); 268 269 // If target-specific code couldn't or didn't want to handle the value, then 270 // give target-independent code a try. 271 if (!Reg) 272 Reg = materializeConstant(V, VT); 273 274 // Don't cache constant materializations in the general ValueMap. 275 // To do so would require tracking what uses they dominate. 276 if (Reg) { 277 LocalValueMap[V] = Reg; 278 LastLocalValue = MRI.getVRegDef(Reg); 279 } 280 return Reg; 281 } 282 283 unsigned FastISel::lookUpRegForValue(const Value *V) { 284 // Look up the value to see if we already have a register for it. We 285 // cache values defined by Instructions across blocks, and other values 286 // only locally. This is because Instructions already have the SSA 287 // def-dominates-use requirement enforced. 288 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 289 if (I != FuncInfo.ValueMap.end()) 290 return I->second; 291 return LocalValueMap[V]; 292 } 293 294 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 295 if (!isa<Instruction>(I)) { 296 LocalValueMap[I] = Reg; 297 return; 298 } 299 300 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 301 if (AssignedReg == 0) 302 // Use the new register. 303 AssignedReg = Reg; 304 else if (Reg != AssignedReg) { 305 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 306 for (unsigned i = 0; i < NumRegs; i++) 307 FuncInfo.RegFixups[AssignedReg + i] = Reg + i; 308 309 AssignedReg = Reg; 310 } 311 } 312 313 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 314 unsigned IdxN = getRegForValue(Idx); 315 if (IdxN == 0) 316 // Unhandled operand. Halt "fast" selection and bail. 317 return std::pair<unsigned, bool>(0, false); 318 319 bool IdxNIsKill = hasTrivialKill(Idx); 320 321 // If the index is smaller or larger than intptr_t, truncate or extend it. 322 MVT PtrVT = TLI.getPointerTy(); 323 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 324 if (IdxVT.bitsLT(PtrVT)) { 325 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN, 326 IdxNIsKill); 327 IdxNIsKill = true; 328 } else if (IdxVT.bitsGT(PtrVT)) { 329 IdxN = 330 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill); 331 IdxNIsKill = true; 332 } 333 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 334 } 335 336 void FastISel::recomputeInsertPt() { 337 if (getLastLocalValue()) { 338 FuncInfo.InsertPt = getLastLocalValue(); 339 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 340 ++FuncInfo.InsertPt; 341 } else 342 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 343 344 // Now skip past any EH_LABELs, which must remain at the beginning. 345 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 346 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 347 ++FuncInfo.InsertPt; 348 } 349 350 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 351 MachineBasicBlock::iterator E) { 352 assert(I && E && std::distance(I, E) > 0 && "Invalid iterator!"); 353 while (I != E) { 354 MachineInstr *Dead = &*I; 355 ++I; 356 Dead->eraseFromParent(); 357 ++NumFastIselDead; 358 } 359 recomputeInsertPt(); 360 } 361 362 FastISel::SavePoint FastISel::enterLocalValueArea() { 363 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 364 DebugLoc OldDL = DbgLoc; 365 recomputeInsertPt(); 366 DbgLoc = DebugLoc(); 367 SavePoint SP = {OldInsertPt, OldDL}; 368 return SP; 369 } 370 371 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 372 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 373 LastLocalValue = std::prev(FuncInfo.InsertPt); 374 375 // Restore the previous insert position. 376 FuncInfo.InsertPt = OldInsertPt.InsertPt; 377 DbgLoc = OldInsertPt.DL; 378 } 379 380 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { 381 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 382 if (VT == MVT::Other || !VT.isSimple()) 383 // Unhandled type. Halt "fast" selection and bail. 384 return false; 385 386 // We only handle legal types. For example, on x86-32 the instruction 387 // selector contains all of the 64-bit instructions from x86-64, 388 // under the assumption that i64 won't be used if the target doesn't 389 // support it. 390 if (!TLI.isTypeLegal(VT)) { 391 // MVT::i1 is special. Allow AND, OR, or XOR because they 392 // don't require additional zeroing, which makes them easy. 393 if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 394 ISDOpcode == ISD::XOR)) 395 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 396 else 397 return false; 398 } 399 400 // Check if the first operand is a constant, and handle it as "ri". At -O0, 401 // we don't have anything that canonicalizes operand order. 402 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 403 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 404 unsigned Op1 = getRegForValue(I->getOperand(1)); 405 if (!Op1) 406 return false; 407 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 408 409 unsigned ResultReg = 410 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill, 411 CI->getZExtValue(), VT.getSimpleVT()); 412 if (!ResultReg) 413 return false; 414 415 // We successfully emitted code for the given LLVM Instruction. 416 updateValueMap(I, ResultReg); 417 return true; 418 } 419 420 unsigned Op0 = getRegForValue(I->getOperand(0)); 421 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 422 return false; 423 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 424 425 // Check if the second operand is a constant and handle it appropriately. 426 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 427 uint64_t Imm = CI->getZExtValue(); 428 429 // Transform "sdiv exact X, 8" -> "sra X, 3". 430 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 431 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { 432 Imm = Log2_64(Imm); 433 ISDOpcode = ISD::SRA; 434 } 435 436 // Transform "urem x, pow2" -> "and x, pow2-1". 437 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 438 isPowerOf2_64(Imm)) { 439 --Imm; 440 ISDOpcode = ISD::AND; 441 } 442 443 unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 444 Op0IsKill, Imm, VT.getSimpleVT()); 445 if (!ResultReg) 446 return false; 447 448 // We successfully emitted code for the given LLVM Instruction. 449 updateValueMap(I, ResultReg); 450 return true; 451 } 452 453 // Check if the second operand is a constant float. 454 if (const auto *CF = dyn_cast<ConstantFP>(I->getOperand(1))) { 455 unsigned ResultReg = fastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(), 456 ISDOpcode, Op0, Op0IsKill, CF); 457 if (ResultReg) { 458 // We successfully emitted code for the given LLVM Instruction. 459 updateValueMap(I, ResultReg); 460 return true; 461 } 462 } 463 464 unsigned Op1 = getRegForValue(I->getOperand(1)); 465 if (!Op1) // Unhandled operand. Halt "fast" selection and bail. 466 return false; 467 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 468 469 // Now we have both operands in registers. Emit the instruction. 470 unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 471 ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill); 472 if (!ResultReg) 473 // Target-specific code wasn't able to find a machine opcode for 474 // the given ISD opcode and type. Halt "fast" selection and bail. 475 return false; 476 477 // We successfully emitted code for the given LLVM Instruction. 478 updateValueMap(I, ResultReg); 479 return true; 480 } 481 482 bool FastISel::selectGetElementPtr(const User *I) { 483 unsigned N = getRegForValue(I->getOperand(0)); 484 if (!N) // Unhandled operand. Halt "fast" selection and bail. 485 return false; 486 bool NIsKill = hasTrivialKill(I->getOperand(0)); 487 488 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 489 // into a single N = N + TotalOffset. 490 uint64_t TotalOffs = 0; 491 // FIXME: What's a good SWAG number for MaxOffs? 492 uint64_t MaxOffs = 2048; 493 Type *Ty = I->getOperand(0)->getType(); 494 MVT VT = TLI.getPointerTy(); 495 for (GetElementPtrInst::const_op_iterator OI = I->op_begin() + 1, 496 E = I->op_end(); 497 OI != E; ++OI) { 498 const Value *Idx = *OI; 499 if (auto *StTy = dyn_cast<StructType>(Ty)) { 500 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 501 if (Field) { 502 // N = N + Offset 503 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 504 if (TotalOffs >= MaxOffs) { 505 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 506 if (!N) // Unhandled operand. Halt "fast" selection and bail. 507 return false; 508 NIsKill = true; 509 TotalOffs = 0; 510 } 511 } 512 Ty = StTy->getElementType(Field); 513 } else { 514 Ty = cast<SequentialType>(Ty)->getElementType(); 515 516 // If this is a constant subscript, handle it quickly. 517 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 518 if (CI->isZero()) 519 continue; 520 // N = N + Offset 521 TotalOffs += 522 DL.getTypeAllocSize(Ty) * cast<ConstantInt>(CI)->getSExtValue(); 523 if (TotalOffs >= MaxOffs) { 524 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 525 if (!N) // Unhandled operand. Halt "fast" selection and bail. 526 return false; 527 NIsKill = true; 528 TotalOffs = 0; 529 } 530 continue; 531 } 532 if (TotalOffs) { 533 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 534 if (!N) // Unhandled operand. Halt "fast" selection and bail. 535 return false; 536 NIsKill = true; 537 TotalOffs = 0; 538 } 539 540 // N = N + Idx * ElementSize; 541 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 542 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 543 unsigned IdxN = Pair.first; 544 bool IdxNIsKill = Pair.second; 545 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 546 return false; 547 548 if (ElementSize != 1) { 549 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 550 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 551 return false; 552 IdxNIsKill = true; 553 } 554 N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 555 if (!N) // Unhandled operand. Halt "fast" selection and bail. 556 return false; 557 } 558 } 559 if (TotalOffs) { 560 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 561 if (!N) // Unhandled operand. Halt "fast" selection and bail. 562 return false; 563 } 564 565 // We successfully emitted code for the given LLVM Instruction. 566 updateValueMap(I, N); 567 return true; 568 } 569 570 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 571 const CallInst *CI, unsigned StartIdx) { 572 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { 573 Value *Val = CI->getArgOperand(i); 574 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 575 if (const auto *C = dyn_cast<ConstantInt>(Val)) { 576 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 577 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 578 } else if (isa<ConstantPointerNull>(Val)) { 579 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 580 Ops.push_back(MachineOperand::CreateImm(0)); 581 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 582 // Values coming from a stack location also require a sepcial encoding, 583 // but that is added later on by the target specific frame index 584 // elimination implementation. 585 auto SI = FuncInfo.StaticAllocaMap.find(AI); 586 if (SI != FuncInfo.StaticAllocaMap.end()) 587 Ops.push_back(MachineOperand::CreateFI(SI->second)); 588 else 589 return false; 590 } else { 591 unsigned Reg = getRegForValue(Val); 592 if (!Reg) 593 return false; 594 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 595 } 596 } 597 return true; 598 } 599 600 bool FastISel::selectStackmap(const CallInst *I) { 601 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 602 // [live variables...]) 603 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 604 "Stackmap cannot return a value."); 605 606 // The stackmap intrinsic only records the live variables (the arguments 607 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 608 // intrinsic, this won't be lowered to a function call. This means we don't 609 // have to worry about calling conventions and target-specific lowering code. 610 // Instead we perform the call lowering right here. 611 // 612 // CALLSEQ_START(0) 613 // STACKMAP(id, nbytes, ...) 614 // CALLSEQ_END(0, 0) 615 // 616 SmallVector<MachineOperand, 32> Ops; 617 618 // Add the <id> and <numBytes> constants. 619 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 620 "Expected a constant integer."); 621 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 622 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 623 624 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 625 "Expected a constant integer."); 626 const auto *NumBytes = 627 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 628 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 629 630 // Push live variables for the stack map (skipping the first two arguments 631 // <id> and <numBytes>). 632 if (!addStackMapLiveVars(Ops, I, 2)) 633 return false; 634 635 // We are not adding any register mask info here, because the stackmap doesn't 636 // clobber anything. 637 638 // Add scratch registers as implicit def and early clobber. 639 CallingConv::ID CC = I->getCallingConv(); 640 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 641 for (unsigned i = 0; ScratchRegs[i]; ++i) 642 Ops.push_back(MachineOperand::CreateReg( 643 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 644 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 645 646 // Issue CALLSEQ_START 647 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 648 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)) 649 .addImm(0); 650 651 // Issue STACKMAP. 652 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 653 TII.get(TargetOpcode::STACKMAP)); 654 for (auto const &MO : Ops) 655 MIB.addOperand(MO); 656 657 // Issue CALLSEQ_END 658 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 659 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 660 .addImm(0) 661 .addImm(0); 662 663 // Inform the Frame Information that we have a stackmap in this function. 664 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 665 666 return true; 667 } 668 669 /// \brief Lower an argument list according to the target calling convention. 670 /// 671 /// This is a helper for lowering intrinsics that follow a target calling 672 /// convention or require stack pointer adjustment. Only a subset of the 673 /// intrinsic's operands need to participate in the calling convention. 674 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 675 unsigned NumArgs, const Value *Callee, 676 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 677 ArgListTy Args; 678 Args.reserve(NumArgs); 679 680 // Populate the argument list. 681 // Attributes for args start at offset 1, after the return attribute. 682 ImmutableCallSite CS(CI); 683 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 684 ArgI != ArgE; ++ArgI) { 685 Value *V = CI->getOperand(ArgI); 686 687 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 688 689 ArgListEntry Entry; 690 Entry.Val = V; 691 Entry.Ty = V->getType(); 692 Entry.setAttributes(&CS, AttrI); 693 Args.push_back(Entry); 694 } 695 696 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 697 : CI->getType(); 698 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 699 700 return lowerCallTo(CLI); 701 } 702 703 bool FastISel::selectPatchpoint(const CallInst *I) { 704 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 705 // i32 <numBytes>, 706 // i8* <target>, 707 // i32 <numArgs>, 708 // [Args...], 709 // [live variables...]) 710 CallingConv::ID CC = I->getCallingConv(); 711 bool IsAnyRegCC = CC == CallingConv::AnyReg; 712 bool HasDef = !I->getType()->isVoidTy(); 713 Value *Callee = I->getOperand(PatchPointOpers::TargetPos); 714 715 // Get the real number of arguments participating in the call <numArgs> 716 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 717 "Expected a constant integer."); 718 const auto *NumArgsVal = 719 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 720 unsigned NumArgs = NumArgsVal->getZExtValue(); 721 722 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 723 // This includes all meta-operands up to but not including CC. 724 unsigned NumMetaOpers = PatchPointOpers::CCPos; 725 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs && 726 "Not enough arguments provided to the patchpoint intrinsic"); 727 728 // For AnyRegCC the arguments are lowered later on manually. 729 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 730 CallLoweringInfo CLI; 731 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 732 return false; 733 734 assert(CLI.Call && "No call instruction specified."); 735 736 SmallVector<MachineOperand, 32> Ops; 737 738 // Add an explicit result reg if we use the anyreg calling convention. 739 if (IsAnyRegCC && HasDef) { 740 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 741 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); 742 CLI.NumResultRegs = 1; 743 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true)); 744 } 745 746 // Add the <id> and <numBytes> constants. 747 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 748 "Expected a constant integer."); 749 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 750 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 751 752 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 753 "Expected a constant integer."); 754 const auto *NumBytes = 755 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 756 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 757 758 // Assume that the callee is a constant address or null pointer. 759 // FIXME: handle function symbols in the future. 760 uint64_t CalleeAddr; 761 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) 762 CalleeAddr = cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 763 else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 764 if (C->getOpcode() == Instruction::IntToPtr) 765 CalleeAddr = cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 766 else 767 llvm_unreachable("Unsupported ConstantExpr."); 768 } else if (isa<ConstantPointerNull>(Callee)) 769 CalleeAddr = 0; 770 else 771 llvm_unreachable("Unsupported callee address."); 772 773 Ops.push_back(MachineOperand::CreateImm(CalleeAddr)); 774 775 // Adjust <numArgs> to account for any arguments that have been passed on 776 // the stack instead. 777 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 778 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 779 780 // Add the calling convention 781 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 782 783 // Add the arguments we omitted previously. The register allocator should 784 // place these in any free register. 785 if (IsAnyRegCC) { 786 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 787 unsigned Reg = getRegForValue(I->getArgOperand(i)); 788 if (!Reg) 789 return false; 790 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 791 } 792 } 793 794 // Push the arguments from the call instruction. 795 for (auto Reg : CLI.OutRegs) 796 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 797 798 // Push live variables for the stack map. 799 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 800 return false; 801 802 // Push the register mask info. 803 Ops.push_back(MachineOperand::CreateRegMask(TRI.getCallPreservedMask(CC))); 804 805 // Add scratch registers as implicit def and early clobber. 806 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 807 for (unsigned i = 0; ScratchRegs[i]; ++i) 808 Ops.push_back(MachineOperand::CreateReg( 809 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 810 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 811 812 // Add implicit defs (return values). 813 for (auto Reg : CLI.InRegs) 814 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true, 815 /*IsImpl=*/true)); 816 817 // Insert the patchpoint instruction before the call generated by the target. 818 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc, 819 TII.get(TargetOpcode::PATCHPOINT)); 820 821 for (auto &MO : Ops) 822 MIB.addOperand(MO); 823 824 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 825 826 // Delete the original call instruction. 827 CLI.Call->eraseFromParent(); 828 829 // Inform the Frame Information that we have a patchpoint in this function. 830 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 831 832 if (CLI.NumResultRegs) 833 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 834 return true; 835 } 836 837 /// Returns an AttributeSet representing the attributes applied to the return 838 /// value of the given call. 839 static AttributeSet getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 840 SmallVector<Attribute::AttrKind, 2> Attrs; 841 if (CLI.RetSExt) 842 Attrs.push_back(Attribute::SExt); 843 if (CLI.RetZExt) 844 Attrs.push_back(Attribute::ZExt); 845 if (CLI.IsInReg) 846 Attrs.push_back(Attribute::InReg); 847 848 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 849 Attrs); 850 } 851 852 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, 853 unsigned NumArgs) { 854 ImmutableCallSite CS(CI); 855 856 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 857 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 858 Type *RetTy = FTy->getReturnType(); 859 860 ArgListTy Args; 861 Args.reserve(NumArgs); 862 863 // Populate the argument list. 864 // Attributes for args start at offset 1, after the return attribute. 865 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 866 Value *V = CI->getOperand(ArgI); 867 868 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 869 870 ArgListEntry Entry; 871 Entry.Val = V; 872 Entry.Ty = V->getType(); 873 Entry.setAttributes(&CS, ArgI + 1); 874 Args.push_back(Entry); 875 } 876 877 CallLoweringInfo CLI; 878 CLI.setCallee(RetTy, FTy, SymName, std::move(Args), CS, NumArgs); 879 880 return lowerCallTo(CLI); 881 } 882 883 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { 884 // Handle the incoming return values from the call. 885 CLI.clearIns(); 886 SmallVector<EVT, 4> RetTys; 887 ComputeValueVTs(TLI, CLI.RetTy, RetTys); 888 889 SmallVector<ISD::OutputArg, 4> Outs; 890 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI); 891 892 bool CanLowerReturn = TLI.CanLowerReturn( 893 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 894 895 // FIXME: sret demotion isn't supported yet - bail out. 896 if (!CanLowerReturn) 897 return false; 898 899 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 900 EVT VT = RetTys[I]; 901 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 902 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 903 for (unsigned i = 0; i != NumRegs; ++i) { 904 ISD::InputArg MyFlags; 905 MyFlags.VT = RegisterVT; 906 MyFlags.ArgVT = VT; 907 MyFlags.Used = CLI.IsReturnValueUsed; 908 if (CLI.RetSExt) 909 MyFlags.Flags.setSExt(); 910 if (CLI.RetZExt) 911 MyFlags.Flags.setZExt(); 912 if (CLI.IsInReg) 913 MyFlags.Flags.setInReg(); 914 CLI.Ins.push_back(MyFlags); 915 } 916 } 917 918 // Handle all of the outgoing arguments. 919 CLI.clearOuts(); 920 for (auto &Arg : CLI.getArgs()) { 921 Type *FinalType = Arg.Ty; 922 if (Arg.IsByVal) 923 FinalType = cast<PointerType>(Arg.Ty)->getElementType(); 924 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 925 FinalType, CLI.CallConv, CLI.IsVarArg); 926 927 ISD::ArgFlagsTy Flags; 928 if (Arg.IsZExt) 929 Flags.setZExt(); 930 if (Arg.IsSExt) 931 Flags.setSExt(); 932 if (Arg.IsInReg) 933 Flags.setInReg(); 934 if (Arg.IsSRet) 935 Flags.setSRet(); 936 if (Arg.IsByVal) 937 Flags.setByVal(); 938 if (Arg.IsInAlloca) { 939 Flags.setInAlloca(); 940 // Set the byval flag for CCAssignFn callbacks that don't know about 941 // inalloca. This way we can know how many bytes we should've allocated 942 // and how many bytes a callee cleanup function will pop. If we port 943 // inalloca to more targets, we'll have to add custom inalloca handling in 944 // the various CC lowering callbacks. 945 Flags.setByVal(); 946 } 947 if (Arg.IsByVal || Arg.IsInAlloca) { 948 PointerType *Ty = cast<PointerType>(Arg.Ty); 949 Type *ElementTy = Ty->getElementType(); 950 unsigned FrameSize = DL.getTypeAllocSize(ElementTy); 951 // For ByVal, alignment should come from FE. BE will guess if this info is 952 // not there, but there are cases it cannot get right. 953 unsigned FrameAlign = Arg.Alignment; 954 if (!FrameAlign) 955 FrameAlign = TLI.getByValTypeAlignment(ElementTy); 956 Flags.setByValSize(FrameSize); 957 Flags.setByValAlign(FrameAlign); 958 } 959 if (Arg.IsNest) 960 Flags.setNest(); 961 if (NeedsRegBlock) 962 Flags.setInConsecutiveRegs(); 963 unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty); 964 Flags.setOrigAlign(OriginalAlignment); 965 966 CLI.OutVals.push_back(Arg.Val); 967 CLI.OutFlags.push_back(Flags); 968 } 969 970 if (!fastLowerCall(CLI)) 971 return false; 972 973 // Set all unused physreg defs as dead. 974 assert(CLI.Call && "No call instruction specified."); 975 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 976 977 if (CLI.NumResultRegs && CLI.CS) 978 updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs); 979 980 return true; 981 } 982 983 bool FastISel::lowerCall(const CallInst *CI) { 984 ImmutableCallSite CS(CI); 985 986 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 987 FunctionType *FuncTy = cast<FunctionType>(PT->getElementType()); 988 Type *RetTy = FuncTy->getReturnType(); 989 990 ArgListTy Args; 991 ArgListEntry Entry; 992 Args.reserve(CS.arg_size()); 993 994 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 995 i != e; ++i) { 996 Value *V = *i; 997 998 // Skip empty types 999 if (V->getType()->isEmptyTy()) 1000 continue; 1001 1002 Entry.Val = V; 1003 Entry.Ty = V->getType(); 1004 1005 // Skip the first return-type Attribute to get to params. 1006 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 1007 Args.push_back(Entry); 1008 } 1009 1010 // Check if target-independent constraints permit a tail call here. 1011 // Target-dependent constraints are checked within fastLowerCall. 1012 bool IsTailCall = CI->isTailCall(); 1013 if (IsTailCall && !isInTailCallPosition(CS, TM)) 1014 IsTailCall = false; 1015 1016 CallLoweringInfo CLI; 1017 CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS) 1018 .setTailCall(IsTailCall); 1019 1020 return lowerCallTo(CLI); 1021 } 1022 1023 bool FastISel::selectCall(const User *I) { 1024 const CallInst *Call = cast<CallInst>(I); 1025 1026 // Handle simple inline asms. 1027 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 1028 // If the inline asm has side effects, then make sure that no local value 1029 // lives across by flushing the local value map. 1030 if (IA->hasSideEffects()) 1031 flushLocalValueMap(); 1032 1033 // Don't attempt to handle constraints. 1034 if (!IA->getConstraintString().empty()) 1035 return false; 1036 1037 unsigned ExtraInfo = 0; 1038 if (IA->hasSideEffects()) 1039 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1040 if (IA->isAlignStack()) 1041 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1042 1043 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1044 TII.get(TargetOpcode::INLINEASM)) 1045 .addExternalSymbol(IA->getAsmString().c_str()) 1046 .addImm(ExtraInfo); 1047 return true; 1048 } 1049 1050 MachineModuleInfo &MMI = FuncInfo.MF->getMMI(); 1051 ComputeUsesVAFloatArgument(*Call, &MMI); 1052 1053 // Handle intrinsic function calls. 1054 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1055 return selectIntrinsicCall(II); 1056 1057 // Usually, it does not make sense to initialize a value, 1058 // make an unrelated function call and use the value, because 1059 // it tends to be spilled on the stack. So, we move the pointer 1060 // to the last local value to the beginning of the block, so that 1061 // all the values which have already been materialized, 1062 // appear after the call. It also makes sense to skip intrinsics 1063 // since they tend to be inlined. 1064 flushLocalValueMap(); 1065 1066 return lowerCall(Call); 1067 } 1068 1069 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { 1070 switch (II->getIntrinsicID()) { 1071 default: 1072 break; 1073 // At -O0 we don't care about the lifetime intrinsics. 1074 case Intrinsic::lifetime_start: 1075 case Intrinsic::lifetime_end: 1076 // The donothing intrinsic does, well, nothing. 1077 case Intrinsic::donothing: 1078 return true; 1079 case Intrinsic::dbg_declare: { 1080 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1081 DIVariable DIVar(DI->getVariable()); 1082 assert((!DIVar || DIVar.isVariable()) && 1083 "Variable in DbgDeclareInst should be either null or a DIVariable."); 1084 if (!DIVar || !FuncInfo.MF->getMMI().hasDebugInfo()) { 1085 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1086 return true; 1087 } 1088 1089 const Value *Address = DI->getAddress(); 1090 if (!Address || isa<UndefValue>(Address)) { 1091 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1092 return true; 1093 } 1094 1095 unsigned Offset = 0; 1096 Optional<MachineOperand> Op; 1097 if (const auto *Arg = dyn_cast<Argument>(Address)) 1098 // Some arguments' frame index is recorded during argument lowering. 1099 Offset = FuncInfo.getArgumentFrameIndex(Arg); 1100 if (Offset) 1101 Op = MachineOperand::CreateFI(Offset); 1102 if (!Op) 1103 if (unsigned Reg = lookUpRegForValue(Address)) 1104 Op = MachineOperand::CreateReg(Reg, false); 1105 1106 // If we have a VLA that has a "use" in a metadata node that's then used 1107 // here but it has no other uses, then we have a problem. E.g., 1108 // 1109 // int foo (const int *x) { 1110 // char a[*x]; 1111 // return 0; 1112 // } 1113 // 1114 // If we assign 'a' a vreg and fast isel later on has to use the selection 1115 // DAG isel, it will want to copy the value to the vreg. However, there are 1116 // no uses, which goes counter to what selection DAG isel expects. 1117 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1118 (!isa<AllocaInst>(Address) || 1119 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1120 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1121 false); 1122 1123 if (Op) { 1124 if (Op->isReg()) { 1125 Op->setIsDebug(true); 1126 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1127 TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0, 1128 DI->getVariable(), DI->getExpression()); 1129 } else 1130 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1131 TII.get(TargetOpcode::DBG_VALUE)) 1132 .addOperand(*Op) 1133 .addImm(0) 1134 .addMetadata(DI->getVariable()) 1135 .addMetadata(DI->getExpression()); 1136 } else { 1137 // We can't yet handle anything else here because it would require 1138 // generating code, thus altering codegen because of debug info. 1139 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1140 } 1141 return true; 1142 } 1143 case Intrinsic::dbg_value: { 1144 // This form of DBG_VALUE is target-independent. 1145 const DbgValueInst *DI = cast<DbgValueInst>(II); 1146 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1147 const Value *V = DI->getValue(); 1148 if (!V) { 1149 // Currently the optimizer can produce this; insert an undef to 1150 // help debugging. Probably the optimizer should not do this. 1151 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1152 .addReg(0U) 1153 .addImm(DI->getOffset()) 1154 .addMetadata(DI->getVariable()) 1155 .addMetadata(DI->getExpression()); 1156 } else if (const auto *CI = dyn_cast<ConstantInt>(V)) { 1157 if (CI->getBitWidth() > 64) 1158 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1159 .addCImm(CI) 1160 .addImm(DI->getOffset()) 1161 .addMetadata(DI->getVariable()) 1162 .addMetadata(DI->getExpression()); 1163 else 1164 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1165 .addImm(CI->getZExtValue()) 1166 .addImm(DI->getOffset()) 1167 .addMetadata(DI->getVariable()) 1168 .addMetadata(DI->getExpression()); 1169 } else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 1170 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1171 .addFPImm(CF) 1172 .addImm(DI->getOffset()) 1173 .addMetadata(DI->getVariable()) 1174 .addMetadata(DI->getExpression()); 1175 } else if (unsigned Reg = lookUpRegForValue(V)) { 1176 // FIXME: This does not handle register-indirect values at offset 0. 1177 bool IsIndirect = DI->getOffset() != 0; 1178 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg, 1179 DI->getOffset(), DI->getVariable(), DI->getExpression()); 1180 } else { 1181 // We can't yet handle anything else here because it would require 1182 // generating code, thus altering codegen because of debug info. 1183 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1184 } 1185 return true; 1186 } 1187 case Intrinsic::objectsize: { 1188 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1)); 1189 unsigned long long Res = CI->isZero() ? -1ULL : 0; 1190 Constant *ResCI = ConstantInt::get(II->getType(), Res); 1191 unsigned ResultReg = getRegForValue(ResCI); 1192 if (!ResultReg) 1193 return false; 1194 updateValueMap(II, ResultReg); 1195 return true; 1196 } 1197 case Intrinsic::expect: { 1198 unsigned ResultReg = getRegForValue(II->getArgOperand(0)); 1199 if (!ResultReg) 1200 return false; 1201 updateValueMap(II, ResultReg); 1202 return true; 1203 } 1204 case Intrinsic::experimental_stackmap: 1205 return selectStackmap(II); 1206 case Intrinsic::experimental_patchpoint_void: 1207 case Intrinsic::experimental_patchpoint_i64: 1208 return selectPatchpoint(II); 1209 } 1210 1211 return fastLowerIntrinsicCall(II); 1212 } 1213 1214 bool FastISel::selectCast(const User *I, unsigned Opcode) { 1215 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 1216 EVT DstVT = TLI.getValueType(I->getType()); 1217 1218 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || 1219 !DstVT.isSimple()) 1220 // Unhandled type. Halt "fast" selection and bail. 1221 return false; 1222 1223 // Check if the destination type is legal. 1224 if (!TLI.isTypeLegal(DstVT)) 1225 return false; 1226 1227 // Check if the source operand is legal. 1228 if (!TLI.isTypeLegal(SrcVT)) 1229 return false; 1230 1231 unsigned InputReg = getRegForValue(I->getOperand(0)); 1232 if (!InputReg) 1233 // Unhandled operand. Halt "fast" selection and bail. 1234 return false; 1235 1236 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 1237 1238 unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 1239 Opcode, InputReg, InputRegIsKill); 1240 if (!ResultReg) 1241 return false; 1242 1243 updateValueMap(I, ResultReg); 1244 return true; 1245 } 1246 1247 bool FastISel::selectBitCast(const User *I) { 1248 // If the bitcast doesn't change the type, just use the operand value. 1249 if (I->getType() == I->getOperand(0)->getType()) { 1250 unsigned Reg = getRegForValue(I->getOperand(0)); 1251 if (!Reg) 1252 return false; 1253 updateValueMap(I, Reg); 1254 return true; 1255 } 1256 1257 // Bitcasts of other values become reg-reg copies or BITCAST operators. 1258 EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType()); 1259 EVT DstEVT = TLI.getValueType(I->getType()); 1260 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1261 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1262 // Unhandled type. Halt "fast" selection and bail. 1263 return false; 1264 1265 MVT SrcVT = SrcEVT.getSimpleVT(); 1266 MVT DstVT = DstEVT.getSimpleVT(); 1267 unsigned Op0 = getRegForValue(I->getOperand(0)); 1268 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 1269 return false; 1270 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 1271 1272 // First, try to perform the bitcast by inserting a reg-reg copy. 1273 unsigned ResultReg = 0; 1274 if (SrcVT == DstVT) { 1275 const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT); 1276 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); 1277 // Don't attempt a cross-class copy. It will likely fail. 1278 if (SrcClass == DstClass) { 1279 ResultReg = createResultReg(DstClass); 1280 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1281 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); 1282 } 1283 } 1284 1285 // If the reg-reg copy failed, select a BITCAST opcode. 1286 if (!ResultReg) 1287 ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); 1288 1289 if (!ResultReg) 1290 return false; 1291 1292 updateValueMap(I, ResultReg); 1293 return true; 1294 } 1295 1296 bool FastISel::selectInstruction(const Instruction *I) { 1297 // Just before the terminator instruction, insert instructions to 1298 // feed PHI nodes in successor blocks. 1299 if (isa<TerminatorInst>(I)) 1300 if (!handlePHINodesInSuccessorBlocks(I->getParent())) 1301 return false; 1302 1303 DbgLoc = I->getDebugLoc(); 1304 1305 SavedInsertPt = FuncInfo.InsertPt; 1306 1307 if (const auto *Call = dyn_cast<CallInst>(I)) { 1308 const Function *F = Call->getCalledFunction(); 1309 LibFunc::Func Func; 1310 1311 // As a special case, don't handle calls to builtin library functions that 1312 // may be translated directly to target instructions. 1313 if (F && !F->hasLocalLinkage() && F->hasName() && 1314 LibInfo->getLibFunc(F->getName(), Func) && 1315 LibInfo->hasOptimizedCodeGen(Func)) 1316 return false; 1317 1318 // Don't handle Intrinsic::trap if a trap funciton is specified. 1319 if (F && F->getIntrinsicID() == Intrinsic::trap && 1320 !TM.Options.getTrapFunctionName().empty()) 1321 return false; 1322 } 1323 1324 // First, try doing target-independent selection. 1325 if (!SkipTargetIndependentISel) { 1326 if (selectOperator(I, I->getOpcode())) { 1327 ++NumFastIselSuccessIndependent; 1328 DbgLoc = DebugLoc(); 1329 return true; 1330 } 1331 // Remove dead code. 1332 recomputeInsertPt(); 1333 if (SavedInsertPt != FuncInfo.InsertPt) 1334 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1335 SavedInsertPt = FuncInfo.InsertPt; 1336 } 1337 // Next, try calling the target to attempt to handle the instruction. 1338 if (fastSelectInstruction(I)) { 1339 ++NumFastIselSuccessTarget; 1340 DbgLoc = DebugLoc(); 1341 return true; 1342 } 1343 // Remove dead code. 1344 recomputeInsertPt(); 1345 if (SavedInsertPt != FuncInfo.InsertPt) 1346 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1347 1348 DbgLoc = DebugLoc(); 1349 // Undo phi node updates, because they will be added again by SelectionDAG. 1350 if (isa<TerminatorInst>(I)) 1351 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 1352 return false; 1353 } 1354 1355 /// Emit an unconditional branch to the given block, unless it is the immediate 1356 /// (fall-through) successor, and update the CFG. 1357 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DbgLoc) { 1358 if (FuncInfo.MBB->getBasicBlock()->size() > 1 && 1359 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1360 // For more accurate line information if this is the only instruction 1361 // in the block then emit it, otherwise we have the unconditional 1362 // fall-through case, which needs no instructions. 1363 } else { 1364 // The unconditional branch case. 1365 TII.InsertBranch(*FuncInfo.MBB, MSucc, nullptr, 1366 SmallVector<MachineOperand, 0>(), DbgLoc); 1367 } 1368 uint32_t BranchWeight = 0; 1369 if (FuncInfo.BPI) 1370 BranchWeight = FuncInfo.BPI->getEdgeWeight(FuncInfo.MBB->getBasicBlock(), 1371 MSucc->getBasicBlock()); 1372 FuncInfo.MBB->addSuccessor(MSucc, BranchWeight); 1373 } 1374 1375 /// Emit an FNeg operation. 1376 bool FastISel::selectFNeg(const User *I) { 1377 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); 1378 if (!OpReg) 1379 return false; 1380 bool OpRegIsKill = hasTrivialKill(I); 1381 1382 // If the target has ISD::FNEG, use it. 1383 EVT VT = TLI.getValueType(I->getType()); 1384 unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, 1385 OpReg, OpRegIsKill); 1386 if (ResultReg) { 1387 updateValueMap(I, ResultReg); 1388 return true; 1389 } 1390 1391 // Bitcast the value to integer, twiddle the sign bit with xor, 1392 // and then bitcast it back to floating-point. 1393 if (VT.getSizeInBits() > 64) 1394 return false; 1395 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1396 if (!TLI.isTypeLegal(IntVT)) 1397 return false; 1398 1399 unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1400 ISD::BITCAST, OpReg, OpRegIsKill); 1401 if (!IntReg) 1402 return false; 1403 1404 unsigned IntResultReg = fastEmit_ri_( 1405 IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true, 1406 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); 1407 if (!IntResultReg) 1408 return false; 1409 1410 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, 1411 IntResultReg, /*IsKill=*/true); 1412 if (!ResultReg) 1413 return false; 1414 1415 updateValueMap(I, ResultReg); 1416 return true; 1417 } 1418 1419 bool FastISel::selectExtractValue(const User *U) { 1420 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1421 if (!EVI) 1422 return false; 1423 1424 // Make sure we only try to handle extracts with a legal result. But also 1425 // allow i1 because it's easy. 1426 EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true); 1427 if (!RealVT.isSimple()) 1428 return false; 1429 MVT VT = RealVT.getSimpleVT(); 1430 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1431 return false; 1432 1433 const Value *Op0 = EVI->getOperand(0); 1434 Type *AggTy = Op0->getType(); 1435 1436 // Get the base result register. 1437 unsigned ResultReg; 1438 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 1439 if (I != FuncInfo.ValueMap.end()) 1440 ResultReg = I->second; 1441 else if (isa<Instruction>(Op0)) 1442 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1443 else 1444 return false; // fast-isel can't handle aggregate constants at the moment 1445 1446 // Get the actual result register, which is an offset from the base register. 1447 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1448 1449 SmallVector<EVT, 4> AggValueVTs; 1450 ComputeValueVTs(TLI, AggTy, AggValueVTs); 1451 1452 for (unsigned i = 0; i < VTIndex; i++) 1453 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1454 1455 updateValueMap(EVI, ResultReg); 1456 return true; 1457 } 1458 1459 bool FastISel::selectOperator(const User *I, unsigned Opcode) { 1460 switch (Opcode) { 1461 case Instruction::Add: 1462 return selectBinaryOp(I, ISD::ADD); 1463 case Instruction::FAdd: 1464 return selectBinaryOp(I, ISD::FADD); 1465 case Instruction::Sub: 1466 return selectBinaryOp(I, ISD::SUB); 1467 case Instruction::FSub: 1468 // FNeg is currently represented in LLVM IR as a special case of FSub. 1469 if (BinaryOperator::isFNeg(I)) 1470 return selectFNeg(I); 1471 return selectBinaryOp(I, ISD::FSUB); 1472 case Instruction::Mul: 1473 return selectBinaryOp(I, ISD::MUL); 1474 case Instruction::FMul: 1475 return selectBinaryOp(I, ISD::FMUL); 1476 case Instruction::SDiv: 1477 return selectBinaryOp(I, ISD::SDIV); 1478 case Instruction::UDiv: 1479 return selectBinaryOp(I, ISD::UDIV); 1480 case Instruction::FDiv: 1481 return selectBinaryOp(I, ISD::FDIV); 1482 case Instruction::SRem: 1483 return selectBinaryOp(I, ISD::SREM); 1484 case Instruction::URem: 1485 return selectBinaryOp(I, ISD::UREM); 1486 case Instruction::FRem: 1487 return selectBinaryOp(I, ISD::FREM); 1488 case Instruction::Shl: 1489 return selectBinaryOp(I, ISD::SHL); 1490 case Instruction::LShr: 1491 return selectBinaryOp(I, ISD::SRL); 1492 case Instruction::AShr: 1493 return selectBinaryOp(I, ISD::SRA); 1494 case Instruction::And: 1495 return selectBinaryOp(I, ISD::AND); 1496 case Instruction::Or: 1497 return selectBinaryOp(I, ISD::OR); 1498 case Instruction::Xor: 1499 return selectBinaryOp(I, ISD::XOR); 1500 1501 case Instruction::GetElementPtr: 1502 return selectGetElementPtr(I); 1503 1504 case Instruction::Br: { 1505 const BranchInst *BI = cast<BranchInst>(I); 1506 1507 if (BI->isUnconditional()) { 1508 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1509 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1510 fastEmitBranch(MSucc, BI->getDebugLoc()); 1511 return true; 1512 } 1513 1514 // Conditional branches are not handed yet. 1515 // Halt "fast" selection and bail. 1516 return false; 1517 } 1518 1519 case Instruction::Unreachable: 1520 if (TM.Options.TrapUnreachable) 1521 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1522 else 1523 return true; 1524 1525 case Instruction::Alloca: 1526 // FunctionLowering has the static-sized case covered. 1527 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1528 return true; 1529 1530 // Dynamic-sized alloca is not handled yet. 1531 return false; 1532 1533 case Instruction::Call: 1534 return selectCall(I); 1535 1536 case Instruction::BitCast: 1537 return selectBitCast(I); 1538 1539 case Instruction::FPToSI: 1540 return selectCast(I, ISD::FP_TO_SINT); 1541 case Instruction::ZExt: 1542 return selectCast(I, ISD::ZERO_EXTEND); 1543 case Instruction::SExt: 1544 return selectCast(I, ISD::SIGN_EXTEND); 1545 case Instruction::Trunc: 1546 return selectCast(I, ISD::TRUNCATE); 1547 case Instruction::SIToFP: 1548 return selectCast(I, ISD::SINT_TO_FP); 1549 1550 case Instruction::IntToPtr: // Deliberate fall-through. 1551 case Instruction::PtrToInt: { 1552 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 1553 EVT DstVT = TLI.getValueType(I->getType()); 1554 if (DstVT.bitsGT(SrcVT)) 1555 return selectCast(I, ISD::ZERO_EXTEND); 1556 if (DstVT.bitsLT(SrcVT)) 1557 return selectCast(I, ISD::TRUNCATE); 1558 unsigned Reg = getRegForValue(I->getOperand(0)); 1559 if (!Reg) 1560 return false; 1561 updateValueMap(I, Reg); 1562 return true; 1563 } 1564 1565 case Instruction::ExtractValue: 1566 return selectExtractValue(I); 1567 1568 case Instruction::PHI: 1569 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1570 1571 default: 1572 // Unhandled instruction. Halt "fast" selection and bail. 1573 return false; 1574 } 1575 } 1576 1577 FastISel::FastISel(FunctionLoweringInfo &FuncInfo, 1578 const TargetLibraryInfo *LibInfo, 1579 bool SkipTargetIndependentISel) 1580 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1581 MFI(*FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1582 TM(FuncInfo.MF->getTarget()), DL(*MF->getSubtarget().getDataLayout()), 1583 TII(*MF->getSubtarget().getInstrInfo()), 1584 TLI(*MF->getSubtarget().getTargetLowering()), 1585 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), 1586 SkipTargetIndependentISel(SkipTargetIndependentISel) {} 1587 1588 FastISel::~FastISel() {} 1589 1590 bool FastISel::fastLowerArguments() { return false; } 1591 1592 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } 1593 1594 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1595 return false; 1596 } 1597 1598 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } 1599 1600 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/, 1601 bool /*Op0IsKill*/) { 1602 return 0; 1603 } 1604 1605 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, 1606 bool /*Op0IsKill*/, unsigned /*Op1*/, 1607 bool /*Op1IsKill*/) { 1608 return 0; 1609 } 1610 1611 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1612 return 0; 1613 } 1614 1615 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, 1616 const ConstantFP * /*FPImm*/) { 1617 return 0; 1618 } 1619 1620 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, 1621 bool /*Op0IsKill*/, uint64_t /*Imm*/) { 1622 return 0; 1623 } 1624 1625 unsigned FastISel::fastEmit_rf(MVT, MVT, unsigned, unsigned /*Op0*/, 1626 bool /*Op0IsKill*/, 1627 const ConstantFP * /*FPImm*/) { 1628 return 0; 1629 } 1630 1631 unsigned FastISel::fastEmit_rri(MVT, MVT, unsigned, unsigned /*Op0*/, 1632 bool /*Op0IsKill*/, unsigned /*Op1*/, 1633 bool /*Op1IsKill*/, uint64_t /*Imm*/) { 1634 return 0; 1635 } 1636 1637 /// This method is a wrapper of fastEmit_ri. It first tries to emit an 1638 /// instruction with an immediate operand using fastEmit_ri. 1639 /// If that fails, it materializes the immediate into a register and try 1640 /// fastEmit_rr instead. 1641 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, 1642 bool Op0IsKill, uint64_t Imm, MVT ImmType) { 1643 // If this is a multiply by a power of two, emit this as a shift left. 1644 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1645 Opcode = ISD::SHL; 1646 Imm = Log2_64(Imm); 1647 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1648 // div x, 8 -> srl x, 3 1649 Opcode = ISD::SRL; 1650 Imm = Log2_64(Imm); 1651 } 1652 1653 // Horrible hack (to be removed), check to make sure shift amounts are 1654 // in-range. 1655 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1656 Imm >= VT.getSizeInBits()) 1657 return 0; 1658 1659 // First check if immediate type is legal. If not, we can't use the ri form. 1660 unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1661 if (ResultReg) 1662 return ResultReg; 1663 unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1664 if (!MaterialReg) { 1665 // This is a bit ugly/slow, but failing here means falling out of 1666 // fast-isel, which would be very slow. 1667 IntegerType *ITy = 1668 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); 1669 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1670 if (!MaterialReg) 1671 return 0; 1672 } 1673 return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, 1674 /*IsKill=*/true); 1675 } 1676 1677 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) { 1678 return MRI.createVirtualRegister(RC); 1679 } 1680 1681 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op, 1682 unsigned OpNum) { 1683 if (TargetRegisterInfo::isVirtualRegister(Op)) { 1684 const TargetRegisterClass *RegClass = 1685 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 1686 if (!MRI.constrainRegClass(Op, RegClass)) { 1687 // If it's not legal to COPY between the register classes, something 1688 // has gone very wrong before we got here. 1689 unsigned NewOp = createResultReg(RegClass); 1690 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1691 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 1692 return NewOp; 1693 } 1694 } 1695 return Op; 1696 } 1697 1698 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode, 1699 const TargetRegisterClass *RC) { 1700 unsigned ResultReg = createResultReg(RC); 1701 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1702 1703 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); 1704 return ResultReg; 1705 } 1706 1707 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode, 1708 const TargetRegisterClass *RC, unsigned Op0, 1709 bool Op0IsKill) { 1710 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1711 1712 unsigned ResultReg = createResultReg(RC); 1713 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1714 1715 if (II.getNumDefs() >= 1) 1716 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1717 .addReg(Op0, getKillRegState(Op0IsKill)); 1718 else { 1719 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1720 .addReg(Op0, getKillRegState(Op0IsKill)); 1721 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1722 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1723 } 1724 1725 return ResultReg; 1726 } 1727 1728 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 1729 const TargetRegisterClass *RC, unsigned Op0, 1730 bool Op0IsKill, unsigned Op1, 1731 bool Op1IsKill) { 1732 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1733 1734 unsigned ResultReg = createResultReg(RC); 1735 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1736 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1737 1738 if (II.getNumDefs() >= 1) 1739 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1740 .addReg(Op0, getKillRegState(Op0IsKill)) 1741 .addReg(Op1, getKillRegState(Op1IsKill)); 1742 else { 1743 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1744 .addReg(Op0, getKillRegState(Op0IsKill)) 1745 .addReg(Op1, getKillRegState(Op1IsKill)); 1746 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1747 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1748 } 1749 return ResultReg; 1750 } 1751 1752 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 1753 const TargetRegisterClass *RC, unsigned Op0, 1754 bool Op0IsKill, unsigned Op1, 1755 bool Op1IsKill, unsigned Op2, 1756 bool Op2IsKill) { 1757 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1758 1759 unsigned ResultReg = createResultReg(RC); 1760 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1761 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1762 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 1763 1764 if (II.getNumDefs() >= 1) 1765 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1766 .addReg(Op0, getKillRegState(Op0IsKill)) 1767 .addReg(Op1, getKillRegState(Op1IsKill)) 1768 .addReg(Op2, getKillRegState(Op2IsKill)); 1769 else { 1770 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1771 .addReg(Op0, getKillRegState(Op0IsKill)) 1772 .addReg(Op1, getKillRegState(Op1IsKill)) 1773 .addReg(Op2, getKillRegState(Op2IsKill)); 1774 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1775 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1776 } 1777 return ResultReg; 1778 } 1779 1780 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 1781 const TargetRegisterClass *RC, unsigned Op0, 1782 bool Op0IsKill, uint64_t Imm) { 1783 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1784 1785 unsigned ResultReg = createResultReg(RC); 1786 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1787 1788 if (II.getNumDefs() >= 1) 1789 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1790 .addReg(Op0, getKillRegState(Op0IsKill)) 1791 .addImm(Imm); 1792 else { 1793 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1794 .addReg(Op0, getKillRegState(Op0IsKill)) 1795 .addImm(Imm); 1796 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1797 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1798 } 1799 return ResultReg; 1800 } 1801 1802 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, 1803 const TargetRegisterClass *RC, unsigned Op0, 1804 bool Op0IsKill, uint64_t Imm1, 1805 uint64_t Imm2) { 1806 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1807 1808 unsigned ResultReg = createResultReg(RC); 1809 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1810 1811 if (II.getNumDefs() >= 1) 1812 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1813 .addReg(Op0, getKillRegState(Op0IsKill)) 1814 .addImm(Imm1) 1815 .addImm(Imm2); 1816 else { 1817 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1818 .addReg(Op0, getKillRegState(Op0IsKill)) 1819 .addImm(Imm1) 1820 .addImm(Imm2); 1821 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1822 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1823 } 1824 return ResultReg; 1825 } 1826 1827 unsigned FastISel::fastEmitInst_rf(unsigned MachineInstOpcode, 1828 const TargetRegisterClass *RC, unsigned Op0, 1829 bool Op0IsKill, const ConstantFP *FPImm) { 1830 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1831 1832 unsigned ResultReg = createResultReg(RC); 1833 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1834 1835 if (II.getNumDefs() >= 1) 1836 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1837 .addReg(Op0, getKillRegState(Op0IsKill)) 1838 .addFPImm(FPImm); 1839 else { 1840 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1841 .addReg(Op0, getKillRegState(Op0IsKill)) 1842 .addFPImm(FPImm); 1843 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1844 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1845 } 1846 return ResultReg; 1847 } 1848 1849 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 1850 const TargetRegisterClass *RC, unsigned Op0, 1851 bool Op0IsKill, unsigned Op1, 1852 bool Op1IsKill, uint64_t Imm) { 1853 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1854 1855 unsigned ResultReg = createResultReg(RC); 1856 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1857 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1858 1859 if (II.getNumDefs() >= 1) 1860 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1861 .addReg(Op0, getKillRegState(Op0IsKill)) 1862 .addReg(Op1, getKillRegState(Op1IsKill)) 1863 .addImm(Imm); 1864 else { 1865 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1866 .addReg(Op0, getKillRegState(Op0IsKill)) 1867 .addReg(Op1, getKillRegState(Op1IsKill)) 1868 .addImm(Imm); 1869 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1870 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1871 } 1872 return ResultReg; 1873 } 1874 1875 unsigned FastISel::fastEmitInst_rrii(unsigned MachineInstOpcode, 1876 const TargetRegisterClass *RC, 1877 unsigned Op0, bool Op0IsKill, unsigned Op1, 1878 bool Op1IsKill, uint64_t Imm1, 1879 uint64_t Imm2) { 1880 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1881 1882 unsigned ResultReg = createResultReg(RC); 1883 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1884 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1885 1886 if (II.getNumDefs() >= 1) 1887 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1888 .addReg(Op0, getKillRegState(Op0IsKill)) 1889 .addReg(Op1, getKillRegState(Op1IsKill)) 1890 .addImm(Imm1) 1891 .addImm(Imm2); 1892 else { 1893 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1894 .addReg(Op0, getKillRegState(Op0IsKill)) 1895 .addReg(Op1, getKillRegState(Op1IsKill)) 1896 .addImm(Imm1) 1897 .addImm(Imm2); 1898 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1899 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1900 } 1901 return ResultReg; 1902 } 1903 1904 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode, 1905 const TargetRegisterClass *RC, uint64_t Imm) { 1906 unsigned ResultReg = createResultReg(RC); 1907 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1908 1909 if (II.getNumDefs() >= 1) 1910 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1911 .addImm(Imm); 1912 else { 1913 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); 1914 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1915 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1916 } 1917 return ResultReg; 1918 } 1919 1920 unsigned FastISel::fastEmitInst_ii(unsigned MachineInstOpcode, 1921 const TargetRegisterClass *RC, uint64_t Imm1, 1922 uint64_t Imm2) { 1923 unsigned ResultReg = createResultReg(RC); 1924 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1925 1926 if (II.getNumDefs() >= 1) 1927 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1928 .addImm(Imm1) 1929 .addImm(Imm2); 1930 else { 1931 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm1) 1932 .addImm(Imm2); 1933 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1934 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1935 } 1936 return ResultReg; 1937 } 1938 1939 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, 1940 bool Op0IsKill, uint32_t Idx) { 1941 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1942 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 1943 "Cannot yet extract from physregs"); 1944 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 1945 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 1946 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), 1947 ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx); 1948 return ResultReg; 1949 } 1950 1951 /// Emit MachineInstrs to compute the value of Op with all but the least 1952 /// significant bit set to zero. 1953 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 1954 return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 1955 } 1956 1957 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 1958 /// Emit code to ensure constants are copied into registers when needed. 1959 /// Remember the virtual registers that need to be added to the Machine PHI 1960 /// nodes as input. We cannot just directly add them, because expansion 1961 /// might result in multiple MBB's for one BB. As such, the start of the 1962 /// BB might correspond to a different MBB than the end. 1963 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 1964 const TerminatorInst *TI = LLVMBB->getTerminator(); 1965 1966 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 1967 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 1968 1969 // Check successor nodes' PHI nodes that expect a constant to be available 1970 // from this block. 1971 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 1972 const BasicBlock *SuccBB = TI->getSuccessor(succ); 1973 if (!isa<PHINode>(SuccBB->begin())) 1974 continue; 1975 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 1976 1977 // If this terminator has multiple identical successors (common for 1978 // switches), only handle each succ once. 1979 if (!SuccsHandled.insert(SuccMBB)) 1980 continue; 1981 1982 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 1983 1984 // At this point we know that there is a 1-1 correspondence between LLVM PHI 1985 // nodes and Machine PHI nodes, but the incoming operands have not been 1986 // emitted yet. 1987 for (BasicBlock::const_iterator I = SuccBB->begin(); 1988 const auto *PN = dyn_cast<PHINode>(I); ++I) { 1989 1990 // Ignore dead phi's. 1991 if (PN->use_empty()) 1992 continue; 1993 1994 // Only handle legal types. Two interesting things to note here. First, 1995 // by bailing out early, we may leave behind some dead instructions, 1996 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 1997 // own moves. Second, this check is necessary because FastISel doesn't 1998 // use CreateRegs to create registers, so it always creates 1999 // exactly one register for each non-void instruction. 2000 EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); 2001 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2002 // Handle integer promotions, though, because they're common and easy. 2003 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { 2004 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2005 return false; 2006 } 2007 } 2008 2009 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 2010 2011 // Set the DebugLoc for the copy. Prefer the location of the operand 2012 // if there is one; use the location of the PHI otherwise. 2013 DbgLoc = PN->getDebugLoc(); 2014 if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) 2015 DbgLoc = Inst->getDebugLoc(); 2016 2017 unsigned Reg = getRegForValue(PHIOp); 2018 if (!Reg) { 2019 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2020 return false; 2021 } 2022 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); 2023 DbgLoc = DebugLoc(); 2024 } 2025 } 2026 2027 return true; 2028 } 2029 2030 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2031 assert(LI->hasOneUse() && 2032 "tryToFoldLoad expected a LoadInst with a single use"); 2033 // We know that the load has a single use, but don't know what it is. If it 2034 // isn't one of the folded instructions, then we can't succeed here. Handle 2035 // this by scanning the single-use users of the load until we get to FoldInst. 2036 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2037 2038 const Instruction *TheUser = LI->user_back(); 2039 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2040 // Stay in the right block. 2041 TheUser->getParent() == FoldInst->getParent() && 2042 --MaxUsers) { // Don't scan too far. 2043 // If there are multiple or no uses of this instruction, then bail out. 2044 if (!TheUser->hasOneUse()) 2045 return false; 2046 2047 TheUser = TheUser->user_back(); 2048 } 2049 2050 // If we didn't find the fold instruction, then we failed to collapse the 2051 // sequence. 2052 if (TheUser != FoldInst) 2053 return false; 2054 2055 // Don't try to fold volatile loads. Target has to deal with alignment 2056 // constraints. 2057 if (LI->isVolatile()) 2058 return false; 2059 2060 // Figure out which vreg this is going into. If there is no assigned vreg yet 2061 // then there actually was no reference to it. Perhaps the load is referenced 2062 // by a dead instruction. 2063 unsigned LoadReg = getRegForValue(LI); 2064 if (!LoadReg) 2065 return false; 2066 2067 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2068 // may mean that the instruction got lowered to multiple MIs, or the use of 2069 // the loaded value ended up being multiple operands of the result. 2070 if (!MRI.hasOneUse(LoadReg)) 2071 return false; 2072 2073 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2074 MachineInstr *User = RI->getParent(); 2075 2076 // Set the insertion point properly. Folding the load can cause generation of 2077 // other random instructions (like sign extends) for addressing modes; make 2078 // sure they get inserted in a logical place before the new instruction. 2079 FuncInfo.InsertPt = User; 2080 FuncInfo.MBB = User->getParent(); 2081 2082 // Ask the target to try folding the load. 2083 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2084 } 2085 2086 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2087 // Must be an add. 2088 if (!isa<AddOperator>(Add)) 2089 return false; 2090 // Type size needs to match. 2091 if (DL.getTypeSizeInBits(GEP->getType()) != 2092 DL.getTypeSizeInBits(Add->getType())) 2093 return false; 2094 // Must be in the same basic block. 2095 if (isa<Instruction>(Add) && 2096 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2097 return false; 2098 // Must have a constant operand. 2099 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2100 } 2101 2102 MachineMemOperand * 2103 FastISel::createMachineMemOperandFor(const Instruction *I) const { 2104 const Value *Ptr; 2105 Type *ValTy; 2106 unsigned Alignment; 2107 unsigned Flags; 2108 bool IsVolatile; 2109 2110 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2111 Alignment = LI->getAlignment(); 2112 IsVolatile = LI->isVolatile(); 2113 Flags = MachineMemOperand::MOLoad; 2114 Ptr = LI->getPointerOperand(); 2115 ValTy = LI->getType(); 2116 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2117 Alignment = SI->getAlignment(); 2118 IsVolatile = SI->isVolatile(); 2119 Flags = MachineMemOperand::MOStore; 2120 Ptr = SI->getPointerOperand(); 2121 ValTy = SI->getValueOperand()->getType(); 2122 } else 2123 return nullptr; 2124 2125 bool IsNonTemporal = I->getMetadata("nontemporal") != nullptr; 2126 bool IsInvariant = I->getMetadata("invariant.load") != nullptr; 2127 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2128 2129 AAMDNodes AAInfo; 2130 I->getAAMetadata(AAInfo); 2131 2132 if (Alignment == 0) // Ensure that codegen never sees alignment 0. 2133 Alignment = DL.getABITypeAlignment(ValTy); 2134 2135 unsigned Size = DL.getTypeStoreSize(ValTy); 2136 2137 if (IsVolatile) 2138 Flags |= MachineMemOperand::MOVolatile; 2139 if (IsNonTemporal) 2140 Flags |= MachineMemOperand::MONonTemporal; 2141 if (IsInvariant) 2142 Flags |= MachineMemOperand::MOInvariant; 2143 2144 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2145 Alignment, AAInfo, Ranges); 2146 } 2147 2148 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { 2149 // If both operands are the same, then try to optimize or fold the cmp. 2150 CmpInst::Predicate Predicate = CI->getPredicate(); 2151 if (CI->getOperand(0) != CI->getOperand(1)) 2152 return Predicate; 2153 2154 switch (Predicate) { 2155 default: llvm_unreachable("Invalid predicate!"); 2156 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; 2157 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; 2158 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; 2159 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; 2160 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; 2161 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; 2162 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; 2163 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; 2164 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; 2165 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; 2166 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; 2167 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2168 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; 2169 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2170 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; 2171 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; 2172 2173 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; 2174 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; 2175 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; 2176 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2177 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; 2178 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2179 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; 2180 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; 2181 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; 2182 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; 2183 } 2184 2185 return Predicate; 2186 } 2187