1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the FastISel class. 11 // 12 // "Fast" instruction selection is designed to emit very poor code quickly. 13 // Also, it is not designed to be able to do much lowering, so most illegal 14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 15 // also not intended to be able to do much optimization, except in a few cases 16 // where doing optimizations reduces overall compile time. For example, folding 17 // constants into immediate fields is often done, because it's cheap and it 18 // reduces the number of instructions later phases have to examine. 19 // 20 // "Fast" instruction selection is able to fail gracefully and transfer 21 // control to the SelectionDAG selector for operations that it doesn't 22 // support. In many cases, this allows us to avoid duplicating a lot of 23 // the complicated lowering logic that SelectionDAG currently has. 24 // 25 // The intended use for "fast" instruction selection is "-O0" mode 26 // compilation, where the quality of the generated code is irrelevant when 27 // weighed against the speed at which the code can be generated. Also, 28 // at -O0, the LLVM optimizers are not running, and this makes the 29 // compile time of codegen a much higher portion of the overall compile 30 // time. Despite its limitations, "fast" instruction selection is able to 31 // handle enough code on its own to provide noticeable overall speedups 32 // in -O0 compiles. 33 // 34 // Basic operations are supported in a target-independent way, by reading 35 // the same instruction descriptions that the SelectionDAG selector reads, 36 // and identifying simple arithmetic operations that can be directly selected 37 // from simple operators. More complicated operations currently require 38 // target-specific code. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #define DEBUG_TYPE "isel" 43 #include "llvm/CodeGen/FastISel.h" 44 #include "llvm/ADT/Optional.h" 45 #include "llvm/ADT/Statistic.h" 46 #include "llvm/Analysis/Loads.h" 47 #include "llvm/CodeGen/Analysis.h" 48 #include "llvm/CodeGen/FunctionLoweringInfo.h" 49 #include "llvm/CodeGen/MachineInstrBuilder.h" 50 #include "llvm/CodeGen/MachineModuleInfo.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/DebugInfo.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GlobalVariable.h" 56 #include "llvm/IR/Instructions.h" 57 #include "llvm/IR/IntrinsicInst.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Target/TargetInstrInfo.h" 62 #include "llvm/Target/TargetLibraryInfo.h" 63 #include "llvm/Target/TargetLowering.h" 64 #include "llvm/Target/TargetMachine.h" 65 using namespace llvm; 66 67 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 68 "target-independent selector"); 69 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 70 "target-specific selector"); 71 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 72 73 /// startNewBlock - Set the current block to which generated machine 74 /// instructions will be appended, and clear the local CSE map. 75 /// 76 void FastISel::startNewBlock() { 77 LocalValueMap.clear(); 78 79 EmitStartPt = 0; 80 81 // Advance the emit start point past any EH_LABEL instructions. 82 MachineBasicBlock::iterator 83 I = FuncInfo.MBB->begin(), E = FuncInfo.MBB->end(); 84 while (I != E && I->getOpcode() == TargetOpcode::EH_LABEL) { 85 EmitStartPt = I; 86 ++I; 87 } 88 LastLocalValue = EmitStartPt; 89 } 90 91 bool FastISel::LowerArguments() { 92 if (!FuncInfo.CanLowerReturn) 93 // Fallback to SDISel argument lowering code to deal with sret pointer 94 // parameter. 95 return false; 96 97 if (!FastLowerArguments()) 98 return false; 99 100 // Enter arguments into ValueMap for uses in non-entry BBs. 101 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 102 E = FuncInfo.Fn->arg_end(); I != E; ++I) { 103 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(I); 104 assert(VI != LocalValueMap.end() && "Missed an argument?"); 105 FuncInfo.ValueMap[I] = VI->second; 106 } 107 return true; 108 } 109 110 void FastISel::flushLocalValueMap() { 111 LocalValueMap.clear(); 112 LastLocalValue = EmitStartPt; 113 recomputeInsertPt(); 114 } 115 116 bool FastISel::hasTrivialKill(const Value *V) const { 117 // Don't consider constants or arguments to have trivial kills. 118 const Instruction *I = dyn_cast<Instruction>(V); 119 if (!I) 120 return false; 121 122 // No-op casts are trivially coalesced by fast-isel. 123 if (const CastInst *Cast = dyn_cast<CastInst>(I)) 124 if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) && 125 !hasTrivialKill(Cast->getOperand(0))) 126 return false; 127 128 // GEPs with all zero indices are trivially coalesced by fast-isel. 129 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 130 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 131 return false; 132 133 // Only instructions with a single use in the same basic block are considered 134 // to have trivial kills. 135 return I->hasOneUse() && 136 !(I->getOpcode() == Instruction::BitCast || 137 I->getOpcode() == Instruction::PtrToInt || 138 I->getOpcode() == Instruction::IntToPtr) && 139 cast<Instruction>(*I->use_begin())->getParent() == I->getParent(); 140 } 141 142 unsigned FastISel::getRegForValue(const Value *V) { 143 EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true); 144 // Don't handle non-simple values in FastISel. 145 if (!RealVT.isSimple()) 146 return 0; 147 148 // Ignore illegal types. We must do this before looking up the value 149 // in ValueMap because Arguments are given virtual registers regardless 150 // of whether FastISel can handle them. 151 MVT VT = RealVT.getSimpleVT(); 152 if (!TLI.isTypeLegal(VT)) { 153 // Handle integer promotions, though, because they're common and easy. 154 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 155 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 156 else 157 return 0; 158 } 159 160 // Look up the value to see if we already have a register for it. 161 unsigned Reg = lookUpRegForValue(V); 162 if (Reg != 0) 163 return Reg; 164 165 // In bottom-up mode, just create the virtual register which will be used 166 // to hold the value. It will be materialized later. 167 if (isa<Instruction>(V) && 168 (!isa<AllocaInst>(V) || 169 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 170 return FuncInfo.InitializeRegForValue(V); 171 172 SavePoint SaveInsertPt = enterLocalValueArea(); 173 174 // Materialize the value in a register. Emit any instructions in the 175 // local value area. 176 Reg = materializeRegForValue(V, VT); 177 178 leaveLocalValueArea(SaveInsertPt); 179 180 return Reg; 181 } 182 183 /// materializeRegForValue - Helper for getRegForValue. This function is 184 /// called when the value isn't already available in a register and must 185 /// be materialized with new instructions. 186 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 187 unsigned Reg = 0; 188 189 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 190 if (CI->getValue().getActiveBits() <= 64) 191 Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 192 } else if (isa<AllocaInst>(V)) { 193 Reg = TargetMaterializeAlloca(cast<AllocaInst>(V)); 194 } else if (isa<ConstantPointerNull>(V)) { 195 // Translate this as an integer zero so that it can be 196 // local-CSE'd with actual integer zeros. 197 Reg = 198 getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext()))); 199 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 200 if (CF->isNullValue()) { 201 Reg = TargetMaterializeFloatZero(CF); 202 } else { 203 // Try to emit the constant directly. 204 Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF); 205 } 206 207 if (!Reg) { 208 // Try to emit the constant by using an integer constant with a cast. 209 const APFloat &Flt = CF->getValueAPF(); 210 EVT IntVT = TLI.getPointerTy(); 211 212 uint64_t x[2]; 213 uint32_t IntBitWidth = IntVT.getSizeInBits(); 214 bool isExact; 215 (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, 216 APFloat::rmTowardZero, &isExact); 217 if (isExact) { 218 APInt IntVal(IntBitWidth, x); 219 220 unsigned IntegerReg = 221 getRegForValue(ConstantInt::get(V->getContext(), IntVal)); 222 if (IntegerReg != 0) 223 Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, 224 IntegerReg, /*Kill=*/false); 225 } 226 } 227 } else if (const Operator *Op = dyn_cast<Operator>(V)) { 228 if (!SelectOperator(Op, Op->getOpcode())) 229 if (!isa<Instruction>(Op) || 230 !TargetSelectInstruction(cast<Instruction>(Op))) 231 return 0; 232 Reg = lookUpRegForValue(Op); 233 } else if (isa<UndefValue>(V)) { 234 Reg = createResultReg(TLI.getRegClassFor(VT)); 235 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 236 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 237 } 238 239 // If target-independent code couldn't handle the value, give target-specific 240 // code a try. 241 if (!Reg && isa<Constant>(V)) 242 Reg = TargetMaterializeConstant(cast<Constant>(V)); 243 244 // Don't cache constant materializations in the general ValueMap. 245 // To do so would require tracking what uses they dominate. 246 if (Reg != 0) { 247 LocalValueMap[V] = Reg; 248 LastLocalValue = MRI.getVRegDef(Reg); 249 } 250 return Reg; 251 } 252 253 unsigned FastISel::lookUpRegForValue(const Value *V) { 254 // Look up the value to see if we already have a register for it. We 255 // cache values defined by Instructions across blocks, and other values 256 // only locally. This is because Instructions already have the SSA 257 // def-dominates-use requirement enforced. 258 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 259 if (I != FuncInfo.ValueMap.end()) 260 return I->second; 261 return LocalValueMap[V]; 262 } 263 264 /// UpdateValueMap - Update the value map to include the new mapping for this 265 /// instruction, or insert an extra copy to get the result in a previous 266 /// determined register. 267 /// NOTE: This is only necessary because we might select a block that uses 268 /// a value before we select the block that defines the value. It might be 269 /// possible to fix this by selecting blocks in reverse postorder. 270 void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 271 if (!isa<Instruction>(I)) { 272 LocalValueMap[I] = Reg; 273 return; 274 } 275 276 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 277 if (AssignedReg == 0) 278 // Use the new register. 279 AssignedReg = Reg; 280 else if (Reg != AssignedReg) { 281 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 282 for (unsigned i = 0; i < NumRegs; i++) 283 FuncInfo.RegFixups[AssignedReg+i] = Reg+i; 284 285 AssignedReg = Reg; 286 } 287 } 288 289 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 290 unsigned IdxN = getRegForValue(Idx); 291 if (IdxN == 0) 292 // Unhandled operand. Halt "fast" selection and bail. 293 return std::pair<unsigned, bool>(0, false); 294 295 bool IdxNIsKill = hasTrivialKill(Idx); 296 297 // If the index is smaller or larger than intptr_t, truncate or extend it. 298 MVT PtrVT = TLI.getPointerTy(); 299 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 300 if (IdxVT.bitsLT(PtrVT)) { 301 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, 302 IdxN, IdxNIsKill); 303 IdxNIsKill = true; 304 } 305 else if (IdxVT.bitsGT(PtrVT)) { 306 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, 307 IdxN, IdxNIsKill); 308 IdxNIsKill = true; 309 } 310 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 311 } 312 313 void FastISel::recomputeInsertPt() { 314 if (getLastLocalValue()) { 315 FuncInfo.InsertPt = getLastLocalValue(); 316 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 317 ++FuncInfo.InsertPt; 318 } else 319 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 320 321 // Now skip past any EH_LABELs, which must remain at the beginning. 322 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 323 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 324 ++FuncInfo.InsertPt; 325 } 326 327 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 328 MachineBasicBlock::iterator E) { 329 assert (I && E && std::distance(I, E) > 0 && "Invalid iterator!"); 330 while (I != E) { 331 MachineInstr *Dead = &*I; 332 ++I; 333 Dead->eraseFromParent(); 334 ++NumFastIselDead; 335 } 336 recomputeInsertPt(); 337 } 338 339 FastISel::SavePoint FastISel::enterLocalValueArea() { 340 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 341 DebugLoc OldDL = DL; 342 recomputeInsertPt(); 343 DL = DebugLoc(); 344 SavePoint SP = { OldInsertPt, OldDL }; 345 return SP; 346 } 347 348 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 349 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 350 LastLocalValue = llvm::prior(FuncInfo.InsertPt); 351 352 // Restore the previous insert position. 353 FuncInfo.InsertPt = OldInsertPt.InsertPt; 354 DL = OldInsertPt.DL; 355 } 356 357 /// SelectBinaryOp - Select and emit code for a binary operator instruction, 358 /// which has an opcode which directly corresponds to the given ISD opcode. 359 /// 360 bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) { 361 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 362 if (VT == MVT::Other || !VT.isSimple()) 363 // Unhandled type. Halt "fast" selection and bail. 364 return false; 365 366 // We only handle legal types. For example, on x86-32 the instruction 367 // selector contains all of the 64-bit instructions from x86-64, 368 // under the assumption that i64 won't be used if the target doesn't 369 // support it. 370 if (!TLI.isTypeLegal(VT)) { 371 // MVT::i1 is special. Allow AND, OR, or XOR because they 372 // don't require additional zeroing, which makes them easy. 373 if (VT == MVT::i1 && 374 (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 375 ISDOpcode == ISD::XOR)) 376 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 377 else 378 return false; 379 } 380 381 // Check if the first operand is a constant, and handle it as "ri". At -O0, 382 // we don't have anything that canonicalizes operand order. 383 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 384 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 385 unsigned Op1 = getRegForValue(I->getOperand(1)); 386 if (Op1 == 0) return false; 387 388 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 389 390 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, 391 Op1IsKill, CI->getZExtValue(), 392 VT.getSimpleVT()); 393 if (ResultReg == 0) return false; 394 395 // We successfully emitted code for the given LLVM Instruction. 396 UpdateValueMap(I, ResultReg); 397 return true; 398 } 399 400 401 unsigned Op0 = getRegForValue(I->getOperand(0)); 402 if (Op0 == 0) // Unhandled operand. Halt "fast" selection and bail. 403 return false; 404 405 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 406 407 // Check if the second operand is a constant and handle it appropriately. 408 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 409 uint64_t Imm = CI->getZExtValue(); 410 411 // Transform "sdiv exact X, 8" -> "sra X, 3". 412 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 413 cast<BinaryOperator>(I)->isExact() && 414 isPowerOf2_64(Imm)) { 415 Imm = Log2_64(Imm); 416 ISDOpcode = ISD::SRA; 417 } 418 419 // Transform "urem x, pow2" -> "and x, pow2-1". 420 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 421 isPowerOf2_64(Imm)) { 422 --Imm; 423 ISDOpcode = ISD::AND; 424 } 425 426 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 427 Op0IsKill, Imm, VT.getSimpleVT()); 428 if (ResultReg == 0) return false; 429 430 // We successfully emitted code for the given LLVM Instruction. 431 UpdateValueMap(I, ResultReg); 432 return true; 433 } 434 435 // Check if the second operand is a constant float. 436 if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) { 437 unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(), 438 ISDOpcode, Op0, Op0IsKill, CF); 439 if (ResultReg != 0) { 440 // We successfully emitted code for the given LLVM Instruction. 441 UpdateValueMap(I, ResultReg); 442 return true; 443 } 444 } 445 446 unsigned Op1 = getRegForValue(I->getOperand(1)); 447 if (Op1 == 0) 448 // Unhandled operand. Halt "fast" selection and bail. 449 return false; 450 451 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 452 453 // Now we have both operands in registers. Emit the instruction. 454 unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 455 ISDOpcode, 456 Op0, Op0IsKill, 457 Op1, Op1IsKill); 458 if (ResultReg == 0) 459 // Target-specific code wasn't able to find a machine opcode for 460 // the given ISD opcode and type. Halt "fast" selection and bail. 461 return false; 462 463 // We successfully emitted code for the given LLVM Instruction. 464 UpdateValueMap(I, ResultReg); 465 return true; 466 } 467 468 bool FastISel::SelectGetElementPtr(const User *I) { 469 unsigned N = getRegForValue(I->getOperand(0)); 470 if (N == 0) 471 // Unhandled operand. Halt "fast" selection and bail. 472 return false; 473 474 bool NIsKill = hasTrivialKill(I->getOperand(0)); 475 476 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 477 // into a single N = N + TotalOffset. 478 uint64_t TotalOffs = 0; 479 // FIXME: What's a good SWAG number for MaxOffs? 480 uint64_t MaxOffs = 2048; 481 Type *Ty = I->getOperand(0)->getType(); 482 MVT VT = TLI.getPointerTy(); 483 for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1, 484 E = I->op_end(); OI != E; ++OI) { 485 const Value *Idx = *OI; 486 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 487 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 488 if (Field) { 489 // N = N + Offset 490 TotalOffs += TD.getStructLayout(StTy)->getElementOffset(Field); 491 if (TotalOffs >= MaxOffs) { 492 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 493 if (N == 0) 494 // Unhandled operand. Halt "fast" selection and bail. 495 return false; 496 NIsKill = true; 497 TotalOffs = 0; 498 } 499 } 500 Ty = StTy->getElementType(Field); 501 } else { 502 Ty = cast<SequentialType>(Ty)->getElementType(); 503 504 // If this is a constant subscript, handle it quickly. 505 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 506 if (CI->isZero()) continue; 507 // N = N + Offset 508 TotalOffs += 509 TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 510 if (TotalOffs >= MaxOffs) { 511 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 512 if (N == 0) 513 // Unhandled operand. Halt "fast" selection and bail. 514 return false; 515 NIsKill = true; 516 TotalOffs = 0; 517 } 518 continue; 519 } 520 if (TotalOffs) { 521 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 522 if (N == 0) 523 // Unhandled operand. Halt "fast" selection and bail. 524 return false; 525 NIsKill = true; 526 TotalOffs = 0; 527 } 528 529 // N = N + Idx * ElementSize; 530 uint64_t ElementSize = TD.getTypeAllocSize(Ty); 531 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 532 unsigned IdxN = Pair.first; 533 bool IdxNIsKill = Pair.second; 534 if (IdxN == 0) 535 // Unhandled operand. Halt "fast" selection and bail. 536 return false; 537 538 if (ElementSize != 1) { 539 IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 540 if (IdxN == 0) 541 // Unhandled operand. Halt "fast" selection and bail. 542 return false; 543 IdxNIsKill = true; 544 } 545 N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 546 if (N == 0) 547 // Unhandled operand. Halt "fast" selection and bail. 548 return false; 549 } 550 } 551 if (TotalOffs) { 552 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 553 if (N == 0) 554 // Unhandled operand. Halt "fast" selection and bail. 555 return false; 556 } 557 558 // We successfully emitted code for the given LLVM Instruction. 559 UpdateValueMap(I, N); 560 return true; 561 } 562 563 bool FastISel::SelectCall(const User *I) { 564 const CallInst *Call = cast<CallInst>(I); 565 566 // Handle simple inline asms. 567 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 568 // Don't attempt to handle constraints. 569 if (!IA->getConstraintString().empty()) 570 return false; 571 572 unsigned ExtraInfo = 0; 573 if (IA->hasSideEffects()) 574 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 575 if (IA->isAlignStack()) 576 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 577 578 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 579 TII.get(TargetOpcode::INLINEASM)) 580 .addExternalSymbol(IA->getAsmString().c_str()) 581 .addImm(ExtraInfo); 582 return true; 583 } 584 585 MachineModuleInfo &MMI = FuncInfo.MF->getMMI(); 586 ComputeUsesVAFloatArgument(*Call, &MMI); 587 588 const Function *F = Call->getCalledFunction(); 589 if (!F) return false; 590 591 // Handle selected intrinsic function calls. 592 switch (F->getIntrinsicID()) { 593 default: break; 594 // At -O0 we don't care about the lifetime intrinsics. 595 case Intrinsic::lifetime_start: 596 case Intrinsic::lifetime_end: 597 // The donothing intrinsic does, well, nothing. 598 case Intrinsic::donothing: 599 return true; 600 601 case Intrinsic::dbg_declare: { 602 const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call); 603 if (!DIVariable(DI->getVariable()).Verify() || 604 !FuncInfo.MF->getMMI().hasDebugInfo()) { 605 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 606 return true; 607 } 608 609 const Value *Address = DI->getAddress(); 610 if (!Address || isa<UndefValue>(Address)) { 611 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 612 return true; 613 } 614 615 Optional<MachineOperand> Op; 616 if (const Argument *Arg = dyn_cast<Argument>(Address)) 617 // Some arguments' frame index is recorded during argument lowering. 618 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 619 Op = MachineOperand::CreateFI(FI); 620 if (!Op) 621 if (unsigned Reg = lookUpRegForValue(Address)) 622 Op = MachineOperand::CreateReg(Reg, false); 623 624 // If we have a VLA that has a "use" in a metadata node that's then used 625 // here but it has no other uses, then we have a problem. E.g., 626 // 627 // int foo (const int *x) { 628 // char a[*x]; 629 // return 0; 630 // } 631 // 632 // If we assign 'a' a vreg and fast isel later on has to use the selection 633 // DAG isel, it will want to copy the value to the vreg. However, there are 634 // no uses, which goes counter to what selection DAG isel expects. 635 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 636 (!isa<AllocaInst>(Address) || 637 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 638 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 639 false); 640 641 if (Op && Op->isReg()) 642 Op->setIsDebug(true); 643 644 if (Op) 645 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 646 TII.get(TargetOpcode::DBG_VALUE)).addOperand(*Op).addImm(0) 647 .addMetadata(DI->getVariable()); 648 else 649 // We can't yet handle anything else here because it would require 650 // generating code, thus altering codegen because of debug info. 651 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 652 return true; 653 } 654 case Intrinsic::dbg_value: { 655 // This form of DBG_VALUE is target-independent. 656 const DbgValueInst *DI = cast<DbgValueInst>(Call); 657 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 658 const Value *V = DI->getValue(); 659 if (!V) { 660 // Currently the optimizer can produce this; insert an undef to 661 // help debugging. Probably the optimizer should not do this. 662 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 663 .addReg(0U).addImm(DI->getOffset()) 664 .addMetadata(DI->getVariable()); 665 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 666 if (CI->getBitWidth() > 64) 667 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 668 .addCImm(CI).addImm(DI->getOffset()) 669 .addMetadata(DI->getVariable()); 670 else 671 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 672 .addImm(CI->getZExtValue()).addImm(DI->getOffset()) 673 .addMetadata(DI->getVariable()); 674 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 675 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 676 .addFPImm(CF).addImm(DI->getOffset()) 677 .addMetadata(DI->getVariable()); 678 } else if (unsigned Reg = lookUpRegForValue(V)) { 679 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 680 .addReg(Reg, RegState::Debug).addImm(DI->getOffset()) 681 .addMetadata(DI->getVariable()); 682 } else { 683 // We can't yet handle anything else here because it would require 684 // generating code, thus altering codegen because of debug info. 685 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 686 } 687 return true; 688 } 689 case Intrinsic::objectsize: { 690 ConstantInt *CI = cast<ConstantInt>(Call->getArgOperand(1)); 691 unsigned long long Res = CI->isZero() ? -1ULL : 0; 692 Constant *ResCI = ConstantInt::get(Call->getType(), Res); 693 unsigned ResultReg = getRegForValue(ResCI); 694 if (ResultReg == 0) 695 return false; 696 UpdateValueMap(Call, ResultReg); 697 return true; 698 } 699 case Intrinsic::expect: { 700 unsigned ResultReg = getRegForValue(Call->getArgOperand(0)); 701 if (ResultReg == 0) 702 return false; 703 UpdateValueMap(Call, ResultReg); 704 return true; 705 } 706 } 707 708 // Usually, it does not make sense to initialize a value, 709 // make an unrelated function call and use the value, because 710 // it tends to be spilled on the stack. So, we move the pointer 711 // to the last local value to the beginning of the block, so that 712 // all the values which have already been materialized, 713 // appear after the call. It also makes sense to skip intrinsics 714 // since they tend to be inlined. 715 if (!isa<IntrinsicInst>(Call)) 716 flushLocalValueMap(); 717 718 // An arbitrary call. Bail. 719 return false; 720 } 721 722 bool FastISel::SelectCast(const User *I, unsigned Opcode) { 723 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 724 EVT DstVT = TLI.getValueType(I->getType()); 725 726 if (SrcVT == MVT::Other || !SrcVT.isSimple() || 727 DstVT == MVT::Other || !DstVT.isSimple()) 728 // Unhandled type. Halt "fast" selection and bail. 729 return false; 730 731 // Check if the destination type is legal. 732 if (!TLI.isTypeLegal(DstVT)) 733 return false; 734 735 // Check if the source operand is legal. 736 if (!TLI.isTypeLegal(SrcVT)) 737 return false; 738 739 unsigned InputReg = getRegForValue(I->getOperand(0)); 740 if (!InputReg) 741 // Unhandled operand. Halt "fast" selection and bail. 742 return false; 743 744 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 745 746 unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(), 747 DstVT.getSimpleVT(), 748 Opcode, 749 InputReg, InputRegIsKill); 750 if (!ResultReg) 751 return false; 752 753 UpdateValueMap(I, ResultReg); 754 return true; 755 } 756 757 bool FastISel::SelectBitCast(const User *I) { 758 // If the bitcast doesn't change the type, just use the operand value. 759 if (I->getType() == I->getOperand(0)->getType()) { 760 unsigned Reg = getRegForValue(I->getOperand(0)); 761 if (Reg == 0) 762 return false; 763 UpdateValueMap(I, Reg); 764 return true; 765 } 766 767 // Bitcasts of other values become reg-reg copies or BITCAST operators. 768 EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType()); 769 EVT DstEVT = TLI.getValueType(I->getType()); 770 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 771 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 772 // Unhandled type. Halt "fast" selection and bail. 773 return false; 774 775 MVT SrcVT = SrcEVT.getSimpleVT(); 776 MVT DstVT = DstEVT.getSimpleVT(); 777 unsigned Op0 = getRegForValue(I->getOperand(0)); 778 if (Op0 == 0) 779 // Unhandled operand. Halt "fast" selection and bail. 780 return false; 781 782 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 783 784 // First, try to perform the bitcast by inserting a reg-reg copy. 785 unsigned ResultReg = 0; 786 if (SrcVT == DstVT) { 787 const TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT); 788 const TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT); 789 // Don't attempt a cross-class copy. It will likely fail. 790 if (SrcClass == DstClass) { 791 ResultReg = createResultReg(DstClass); 792 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 793 ResultReg).addReg(Op0); 794 } 795 } 796 797 // If the reg-reg copy failed, select a BITCAST opcode. 798 if (!ResultReg) 799 ResultReg = FastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); 800 801 if (!ResultReg) 802 return false; 803 804 UpdateValueMap(I, ResultReg); 805 return true; 806 } 807 808 bool 809 FastISel::SelectInstruction(const Instruction *I) { 810 // Just before the terminator instruction, insert instructions to 811 // feed PHI nodes in successor blocks. 812 if (isa<TerminatorInst>(I)) 813 if (!HandlePHINodesInSuccessorBlocks(I->getParent())) 814 return false; 815 816 DL = I->getDebugLoc(); 817 818 MachineBasicBlock::iterator SavedInsertPt = FuncInfo.InsertPt; 819 820 // As a special case, don't handle calls to builtin library functions that 821 // may be translated directly to target instructions. 822 if (const CallInst *Call = dyn_cast<CallInst>(I)) { 823 const Function *F = Call->getCalledFunction(); 824 LibFunc::Func Func; 825 if (F && !F->hasLocalLinkage() && F->hasName() && 826 LibInfo->getLibFunc(F->getName(), Func) && 827 LibInfo->hasOptimizedCodeGen(Func)) 828 return false; 829 } 830 831 // First, try doing target-independent selection. 832 if (SelectOperator(I, I->getOpcode())) { 833 ++NumFastIselSuccessIndependent; 834 DL = DebugLoc(); 835 return true; 836 } 837 // Remove dead code. However, ignore call instructions since we've flushed 838 // the local value map and recomputed the insert point. 839 if (!isa<CallInst>(I)) { 840 recomputeInsertPt(); 841 if (SavedInsertPt != FuncInfo.InsertPt) 842 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 843 } 844 845 // Next, try calling the target to attempt to handle the instruction. 846 SavedInsertPt = FuncInfo.InsertPt; 847 if (TargetSelectInstruction(I)) { 848 ++NumFastIselSuccessTarget; 849 DL = DebugLoc(); 850 return true; 851 } 852 // Check for dead code and remove as necessary. 853 recomputeInsertPt(); 854 if (SavedInsertPt != FuncInfo.InsertPt) 855 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 856 857 DL = DebugLoc(); 858 return false; 859 } 860 861 /// FastEmitBranch - Emit an unconditional branch to the given block, 862 /// unless it is the immediate (fall-through) successor, and update 863 /// the CFG. 864 void 865 FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) { 866 867 if (FuncInfo.MBB->getBasicBlock()->size() > 1 && 868 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 869 // For more accurate line information if this is the only instruction 870 // in the block then emit it, otherwise we have the unconditional 871 // fall-through case, which needs no instructions. 872 } else { 873 // The unconditional branch case. 874 TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL, 875 SmallVector<MachineOperand, 0>(), DL); 876 } 877 FuncInfo.MBB->addSuccessor(MSucc); 878 } 879 880 /// SelectFNeg - Emit an FNeg operation. 881 /// 882 bool 883 FastISel::SelectFNeg(const User *I) { 884 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); 885 if (OpReg == 0) return false; 886 887 bool OpRegIsKill = hasTrivialKill(I); 888 889 // If the target has ISD::FNEG, use it. 890 EVT VT = TLI.getValueType(I->getType()); 891 unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), 892 ISD::FNEG, OpReg, OpRegIsKill); 893 if (ResultReg != 0) { 894 UpdateValueMap(I, ResultReg); 895 return true; 896 } 897 898 // Bitcast the value to integer, twiddle the sign bit with xor, 899 // and then bitcast it back to floating-point. 900 if (VT.getSizeInBits() > 64) return false; 901 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 902 if (!TLI.isTypeLegal(IntVT)) 903 return false; 904 905 unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 906 ISD::BITCAST, OpReg, OpRegIsKill); 907 if (IntReg == 0) 908 return false; 909 910 unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR, 911 IntReg, /*Kill=*/true, 912 UINT64_C(1) << (VT.getSizeInBits()-1), 913 IntVT.getSimpleVT()); 914 if (IntResultReg == 0) 915 return false; 916 917 ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), 918 ISD::BITCAST, IntResultReg, /*Kill=*/true); 919 if (ResultReg == 0) 920 return false; 921 922 UpdateValueMap(I, ResultReg); 923 return true; 924 } 925 926 bool 927 FastISel::SelectExtractValue(const User *U) { 928 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 929 if (!EVI) 930 return false; 931 932 // Make sure we only try to handle extracts with a legal result. But also 933 // allow i1 because it's easy. 934 EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true); 935 if (!RealVT.isSimple()) 936 return false; 937 MVT VT = RealVT.getSimpleVT(); 938 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 939 return false; 940 941 const Value *Op0 = EVI->getOperand(0); 942 Type *AggTy = Op0->getType(); 943 944 // Get the base result register. 945 unsigned ResultReg; 946 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 947 if (I != FuncInfo.ValueMap.end()) 948 ResultReg = I->second; 949 else if (isa<Instruction>(Op0)) 950 ResultReg = FuncInfo.InitializeRegForValue(Op0); 951 else 952 return false; // fast-isel can't handle aggregate constants at the moment 953 954 // Get the actual result register, which is an offset from the base register. 955 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 956 957 SmallVector<EVT, 4> AggValueVTs; 958 ComputeValueVTs(TLI, AggTy, AggValueVTs); 959 960 for (unsigned i = 0; i < VTIndex; i++) 961 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 962 963 UpdateValueMap(EVI, ResultReg); 964 return true; 965 } 966 967 bool 968 FastISel::SelectOperator(const User *I, unsigned Opcode) { 969 switch (Opcode) { 970 case Instruction::Add: 971 return SelectBinaryOp(I, ISD::ADD); 972 case Instruction::FAdd: 973 return SelectBinaryOp(I, ISD::FADD); 974 case Instruction::Sub: 975 return SelectBinaryOp(I, ISD::SUB); 976 case Instruction::FSub: 977 // FNeg is currently represented in LLVM IR as a special case of FSub. 978 if (BinaryOperator::isFNeg(I)) 979 return SelectFNeg(I); 980 return SelectBinaryOp(I, ISD::FSUB); 981 case Instruction::Mul: 982 return SelectBinaryOp(I, ISD::MUL); 983 case Instruction::FMul: 984 return SelectBinaryOp(I, ISD::FMUL); 985 case Instruction::SDiv: 986 return SelectBinaryOp(I, ISD::SDIV); 987 case Instruction::UDiv: 988 return SelectBinaryOp(I, ISD::UDIV); 989 case Instruction::FDiv: 990 return SelectBinaryOp(I, ISD::FDIV); 991 case Instruction::SRem: 992 return SelectBinaryOp(I, ISD::SREM); 993 case Instruction::URem: 994 return SelectBinaryOp(I, ISD::UREM); 995 case Instruction::FRem: 996 return SelectBinaryOp(I, ISD::FREM); 997 case Instruction::Shl: 998 return SelectBinaryOp(I, ISD::SHL); 999 case Instruction::LShr: 1000 return SelectBinaryOp(I, ISD::SRL); 1001 case Instruction::AShr: 1002 return SelectBinaryOp(I, ISD::SRA); 1003 case Instruction::And: 1004 return SelectBinaryOp(I, ISD::AND); 1005 case Instruction::Or: 1006 return SelectBinaryOp(I, ISD::OR); 1007 case Instruction::Xor: 1008 return SelectBinaryOp(I, ISD::XOR); 1009 1010 case Instruction::GetElementPtr: 1011 return SelectGetElementPtr(I); 1012 1013 case Instruction::Br: { 1014 const BranchInst *BI = cast<BranchInst>(I); 1015 1016 if (BI->isUnconditional()) { 1017 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1018 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1019 FastEmitBranch(MSucc, BI->getDebugLoc()); 1020 return true; 1021 } 1022 1023 // Conditional branches are not handed yet. 1024 // Halt "fast" selection and bail. 1025 return false; 1026 } 1027 1028 case Instruction::Unreachable: 1029 // Nothing to emit. 1030 return true; 1031 1032 case Instruction::Alloca: 1033 // FunctionLowering has the static-sized case covered. 1034 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1035 return true; 1036 1037 // Dynamic-sized alloca is not handled yet. 1038 return false; 1039 1040 case Instruction::Call: 1041 return SelectCall(I); 1042 1043 case Instruction::BitCast: 1044 return SelectBitCast(I); 1045 1046 case Instruction::FPToSI: 1047 return SelectCast(I, ISD::FP_TO_SINT); 1048 case Instruction::ZExt: 1049 return SelectCast(I, ISD::ZERO_EXTEND); 1050 case Instruction::SExt: 1051 return SelectCast(I, ISD::SIGN_EXTEND); 1052 case Instruction::Trunc: 1053 return SelectCast(I, ISD::TRUNCATE); 1054 case Instruction::SIToFP: 1055 return SelectCast(I, ISD::SINT_TO_FP); 1056 1057 case Instruction::IntToPtr: // Deliberate fall-through. 1058 case Instruction::PtrToInt: { 1059 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 1060 EVT DstVT = TLI.getValueType(I->getType()); 1061 if (DstVT.bitsGT(SrcVT)) 1062 return SelectCast(I, ISD::ZERO_EXTEND); 1063 if (DstVT.bitsLT(SrcVT)) 1064 return SelectCast(I, ISD::TRUNCATE); 1065 unsigned Reg = getRegForValue(I->getOperand(0)); 1066 if (Reg == 0) return false; 1067 UpdateValueMap(I, Reg); 1068 return true; 1069 } 1070 1071 case Instruction::ExtractValue: 1072 return SelectExtractValue(I); 1073 1074 case Instruction::PHI: 1075 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1076 1077 default: 1078 // Unhandled instruction. Halt "fast" selection and bail. 1079 return false; 1080 } 1081 } 1082 1083 FastISel::FastISel(FunctionLoweringInfo &funcInfo, 1084 const TargetLibraryInfo *libInfo) 1085 : FuncInfo(funcInfo), 1086 MRI(FuncInfo.MF->getRegInfo()), 1087 MFI(*FuncInfo.MF->getFrameInfo()), 1088 MCP(*FuncInfo.MF->getConstantPool()), 1089 TM(FuncInfo.MF->getTarget()), 1090 TD(*TM.getDataLayout()), 1091 TII(*TM.getInstrInfo()), 1092 TLI(*TM.getTargetLowering()), 1093 TRI(*TM.getRegisterInfo()), 1094 LibInfo(libInfo) { 1095 } 1096 1097 FastISel::~FastISel() {} 1098 1099 bool FastISel::FastLowerArguments() { 1100 return false; 1101 } 1102 1103 unsigned FastISel::FastEmit_(MVT, MVT, 1104 unsigned) { 1105 return 0; 1106 } 1107 1108 unsigned FastISel::FastEmit_r(MVT, MVT, 1109 unsigned, 1110 unsigned /*Op0*/, bool /*Op0IsKill*/) { 1111 return 0; 1112 } 1113 1114 unsigned FastISel::FastEmit_rr(MVT, MVT, 1115 unsigned, 1116 unsigned /*Op0*/, bool /*Op0IsKill*/, 1117 unsigned /*Op1*/, bool /*Op1IsKill*/) { 1118 return 0; 1119 } 1120 1121 unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1122 return 0; 1123 } 1124 1125 unsigned FastISel::FastEmit_f(MVT, MVT, 1126 unsigned, const ConstantFP * /*FPImm*/) { 1127 return 0; 1128 } 1129 1130 unsigned FastISel::FastEmit_ri(MVT, MVT, 1131 unsigned, 1132 unsigned /*Op0*/, bool /*Op0IsKill*/, 1133 uint64_t /*Imm*/) { 1134 return 0; 1135 } 1136 1137 unsigned FastISel::FastEmit_rf(MVT, MVT, 1138 unsigned, 1139 unsigned /*Op0*/, bool /*Op0IsKill*/, 1140 const ConstantFP * /*FPImm*/) { 1141 return 0; 1142 } 1143 1144 unsigned FastISel::FastEmit_rri(MVT, MVT, 1145 unsigned, 1146 unsigned /*Op0*/, bool /*Op0IsKill*/, 1147 unsigned /*Op1*/, bool /*Op1IsKill*/, 1148 uint64_t /*Imm*/) { 1149 return 0; 1150 } 1151 1152 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries 1153 /// to emit an instruction with an immediate operand using FastEmit_ri. 1154 /// If that fails, it materializes the immediate into a register and try 1155 /// FastEmit_rr instead. 1156 unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode, 1157 unsigned Op0, bool Op0IsKill, 1158 uint64_t Imm, MVT ImmType) { 1159 // If this is a multiply by a power of two, emit this as a shift left. 1160 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1161 Opcode = ISD::SHL; 1162 Imm = Log2_64(Imm); 1163 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1164 // div x, 8 -> srl x, 3 1165 Opcode = ISD::SRL; 1166 Imm = Log2_64(Imm); 1167 } 1168 1169 // Horrible hack (to be removed), check to make sure shift amounts are 1170 // in-range. 1171 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1172 Imm >= VT.getSizeInBits()) 1173 return 0; 1174 1175 // First check if immediate type is legal. If not, we can't use the ri form. 1176 unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1177 if (ResultReg != 0) 1178 return ResultReg; 1179 unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1180 if (MaterialReg == 0) { 1181 // This is a bit ugly/slow, but failing here means falling out of 1182 // fast-isel, which would be very slow. 1183 IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(), 1184 VT.getSizeInBits()); 1185 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1186 assert (MaterialReg != 0 && "Unable to materialize imm."); 1187 if (MaterialReg == 0) return 0; 1188 } 1189 return FastEmit_rr(VT, VT, Opcode, 1190 Op0, Op0IsKill, 1191 MaterialReg, /*Kill=*/true); 1192 } 1193 1194 unsigned FastISel::createResultReg(const TargetRegisterClass* RC) { 1195 return MRI.createVirtualRegister(RC); 1196 } 1197 1198 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode, 1199 const TargetRegisterClass* RC) { 1200 unsigned ResultReg = createResultReg(RC); 1201 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1202 1203 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg); 1204 return ResultReg; 1205 } 1206 1207 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode, 1208 const TargetRegisterClass *RC, 1209 unsigned Op0, bool Op0IsKill) { 1210 unsigned ResultReg = createResultReg(RC); 1211 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1212 1213 if (II.getNumDefs() >= 1) 1214 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1215 .addReg(Op0, Op0IsKill * RegState::Kill); 1216 else { 1217 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1218 .addReg(Op0, Op0IsKill * RegState::Kill); 1219 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1220 ResultReg).addReg(II.ImplicitDefs[0]); 1221 } 1222 1223 return ResultReg; 1224 } 1225 1226 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode, 1227 const TargetRegisterClass *RC, 1228 unsigned Op0, bool Op0IsKill, 1229 unsigned Op1, bool Op1IsKill) { 1230 unsigned ResultReg = createResultReg(RC); 1231 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1232 1233 if (II.getNumDefs() >= 1) 1234 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1235 .addReg(Op0, Op0IsKill * RegState::Kill) 1236 .addReg(Op1, Op1IsKill * RegState::Kill); 1237 else { 1238 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1239 .addReg(Op0, Op0IsKill * RegState::Kill) 1240 .addReg(Op1, Op1IsKill * RegState::Kill); 1241 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1242 ResultReg).addReg(II.ImplicitDefs[0]); 1243 } 1244 return ResultReg; 1245 } 1246 1247 unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode, 1248 const TargetRegisterClass *RC, 1249 unsigned Op0, bool Op0IsKill, 1250 unsigned Op1, bool Op1IsKill, 1251 unsigned Op2, bool Op2IsKill) { 1252 unsigned ResultReg = createResultReg(RC); 1253 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1254 1255 if (II.getNumDefs() >= 1) 1256 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1257 .addReg(Op0, Op0IsKill * RegState::Kill) 1258 .addReg(Op1, Op1IsKill * RegState::Kill) 1259 .addReg(Op2, Op2IsKill * RegState::Kill); 1260 else { 1261 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1262 .addReg(Op0, Op0IsKill * RegState::Kill) 1263 .addReg(Op1, Op1IsKill * RegState::Kill) 1264 .addReg(Op2, Op2IsKill * RegState::Kill); 1265 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1266 ResultReg).addReg(II.ImplicitDefs[0]); 1267 } 1268 return ResultReg; 1269 } 1270 1271 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode, 1272 const TargetRegisterClass *RC, 1273 unsigned Op0, bool Op0IsKill, 1274 uint64_t Imm) { 1275 unsigned ResultReg = createResultReg(RC); 1276 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1277 1278 if (II.getNumDefs() >= 1) 1279 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1280 .addReg(Op0, Op0IsKill * RegState::Kill) 1281 .addImm(Imm); 1282 else { 1283 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1284 .addReg(Op0, Op0IsKill * RegState::Kill) 1285 .addImm(Imm); 1286 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1287 ResultReg).addReg(II.ImplicitDefs[0]); 1288 } 1289 return ResultReg; 1290 } 1291 1292 unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode, 1293 const TargetRegisterClass *RC, 1294 unsigned Op0, bool Op0IsKill, 1295 uint64_t Imm1, uint64_t Imm2) { 1296 unsigned ResultReg = createResultReg(RC); 1297 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1298 1299 if (II.getNumDefs() >= 1) 1300 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1301 .addReg(Op0, Op0IsKill * RegState::Kill) 1302 .addImm(Imm1) 1303 .addImm(Imm2); 1304 else { 1305 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1306 .addReg(Op0, Op0IsKill * RegState::Kill) 1307 .addImm(Imm1) 1308 .addImm(Imm2); 1309 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1310 ResultReg).addReg(II.ImplicitDefs[0]); 1311 } 1312 return ResultReg; 1313 } 1314 1315 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode, 1316 const TargetRegisterClass *RC, 1317 unsigned Op0, bool Op0IsKill, 1318 const ConstantFP *FPImm) { 1319 unsigned ResultReg = createResultReg(RC); 1320 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1321 1322 if (II.getNumDefs() >= 1) 1323 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1324 .addReg(Op0, Op0IsKill * RegState::Kill) 1325 .addFPImm(FPImm); 1326 else { 1327 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1328 .addReg(Op0, Op0IsKill * RegState::Kill) 1329 .addFPImm(FPImm); 1330 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1331 ResultReg).addReg(II.ImplicitDefs[0]); 1332 } 1333 return ResultReg; 1334 } 1335 1336 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode, 1337 const TargetRegisterClass *RC, 1338 unsigned Op0, bool Op0IsKill, 1339 unsigned Op1, bool Op1IsKill, 1340 uint64_t Imm) { 1341 unsigned ResultReg = createResultReg(RC); 1342 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1343 1344 if (II.getNumDefs() >= 1) 1345 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1346 .addReg(Op0, Op0IsKill * RegState::Kill) 1347 .addReg(Op1, Op1IsKill * RegState::Kill) 1348 .addImm(Imm); 1349 else { 1350 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1351 .addReg(Op0, Op0IsKill * RegState::Kill) 1352 .addReg(Op1, Op1IsKill * RegState::Kill) 1353 .addImm(Imm); 1354 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1355 ResultReg).addReg(II.ImplicitDefs[0]); 1356 } 1357 return ResultReg; 1358 } 1359 1360 unsigned FastISel::FastEmitInst_rrii(unsigned MachineInstOpcode, 1361 const TargetRegisterClass *RC, 1362 unsigned Op0, bool Op0IsKill, 1363 unsigned Op1, bool Op1IsKill, 1364 uint64_t Imm1, uint64_t Imm2) { 1365 unsigned ResultReg = createResultReg(RC); 1366 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1367 1368 if (II.getNumDefs() >= 1) 1369 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1370 .addReg(Op0, Op0IsKill * RegState::Kill) 1371 .addReg(Op1, Op1IsKill * RegState::Kill) 1372 .addImm(Imm1).addImm(Imm2); 1373 else { 1374 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1375 .addReg(Op0, Op0IsKill * RegState::Kill) 1376 .addReg(Op1, Op1IsKill * RegState::Kill) 1377 .addImm(Imm1).addImm(Imm2); 1378 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1379 ResultReg).addReg(II.ImplicitDefs[0]); 1380 } 1381 return ResultReg; 1382 } 1383 1384 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode, 1385 const TargetRegisterClass *RC, 1386 uint64_t Imm) { 1387 unsigned ResultReg = createResultReg(RC); 1388 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1389 1390 if (II.getNumDefs() >= 1) 1391 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm); 1392 else { 1393 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm); 1394 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1395 ResultReg).addReg(II.ImplicitDefs[0]); 1396 } 1397 return ResultReg; 1398 } 1399 1400 unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode, 1401 const TargetRegisterClass *RC, 1402 uint64_t Imm1, uint64_t Imm2) { 1403 unsigned ResultReg = createResultReg(RC); 1404 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1405 1406 if (II.getNumDefs() >= 1) 1407 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1408 .addImm(Imm1).addImm(Imm2); 1409 else { 1410 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm1).addImm(Imm2); 1411 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1412 ResultReg).addReg(II.ImplicitDefs[0]); 1413 } 1414 return ResultReg; 1415 } 1416 1417 unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT, 1418 unsigned Op0, bool Op0IsKill, 1419 uint32_t Idx) { 1420 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1421 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 1422 "Cannot yet extract from physregs"); 1423 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 1424 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 1425 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 1426 DL, TII.get(TargetOpcode::COPY), ResultReg) 1427 .addReg(Op0, getKillRegState(Op0IsKill), Idx); 1428 return ResultReg; 1429 } 1430 1431 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op 1432 /// with all but the least significant bit set to zero. 1433 unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 1434 return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 1435 } 1436 1437 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 1438 /// Emit code to ensure constants are copied into registers when needed. 1439 /// Remember the virtual registers that need to be added to the Machine PHI 1440 /// nodes as input. We cannot just directly add them, because expansion 1441 /// might result in multiple MBB's for one BB. As such, the start of the 1442 /// BB might correspond to a different MBB than the end. 1443 bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 1444 const TerminatorInst *TI = LLVMBB->getTerminator(); 1445 1446 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 1447 unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 1448 1449 // Check successor nodes' PHI nodes that expect a constant to be available 1450 // from this block. 1451 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 1452 const BasicBlock *SuccBB = TI->getSuccessor(succ); 1453 if (!isa<PHINode>(SuccBB->begin())) continue; 1454 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 1455 1456 // If this terminator has multiple identical successors (common for 1457 // switches), only handle each succ once. 1458 if (!SuccsHandled.insert(SuccMBB)) continue; 1459 1460 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 1461 1462 // At this point we know that there is a 1-1 correspondence between LLVM PHI 1463 // nodes and Machine PHI nodes, but the incoming operands have not been 1464 // emitted yet. 1465 for (BasicBlock::const_iterator I = SuccBB->begin(); 1466 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1467 1468 // Ignore dead phi's. 1469 if (PN->use_empty()) continue; 1470 1471 // Only handle legal types. Two interesting things to note here. First, 1472 // by bailing out early, we may leave behind some dead instructions, 1473 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 1474 // own moves. Second, this check is necessary because FastISel doesn't 1475 // use CreateRegs to create registers, so it always creates 1476 // exactly one register for each non-void instruction. 1477 EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); 1478 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 1479 // Handle integer promotions, though, because they're common and easy. 1480 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 1481 VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT); 1482 else { 1483 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 1484 return false; 1485 } 1486 } 1487 1488 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 1489 1490 // Set the DebugLoc for the copy. Prefer the location of the operand 1491 // if there is one; use the location of the PHI otherwise. 1492 DL = PN->getDebugLoc(); 1493 if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp)) 1494 DL = Inst->getDebugLoc(); 1495 1496 unsigned Reg = getRegForValue(PHIOp); 1497 if (Reg == 0) { 1498 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 1499 return false; 1500 } 1501 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); 1502 DL = DebugLoc(); 1503 } 1504 } 1505 1506 return true; 1507 } 1508 1509 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 1510 assert(LI->hasOneUse() && 1511 "tryToFoldLoad expected a LoadInst with a single use"); 1512 // We know that the load has a single use, but don't know what it is. If it 1513 // isn't one of the folded instructions, then we can't succeed here. Handle 1514 // this by scanning the single-use users of the load until we get to FoldInst. 1515 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 1516 1517 const Instruction *TheUser = LI->use_back(); 1518 while (TheUser != FoldInst && // Scan up until we find FoldInst. 1519 // Stay in the right block. 1520 TheUser->getParent() == FoldInst->getParent() && 1521 --MaxUsers) { // Don't scan too far. 1522 // If there are multiple or no uses of this instruction, then bail out. 1523 if (!TheUser->hasOneUse()) 1524 return false; 1525 1526 TheUser = TheUser->use_back(); 1527 } 1528 1529 // If we didn't find the fold instruction, then we failed to collapse the 1530 // sequence. 1531 if (TheUser != FoldInst) 1532 return false; 1533 1534 // Don't try to fold volatile loads. Target has to deal with alignment 1535 // constraints. 1536 if (LI->isVolatile()) 1537 return false; 1538 1539 // Figure out which vreg this is going into. If there is no assigned vreg yet 1540 // then there actually was no reference to it. Perhaps the load is referenced 1541 // by a dead instruction. 1542 unsigned LoadReg = getRegForValue(LI); 1543 if (LoadReg == 0) 1544 return false; 1545 1546 // We can't fold if this vreg has no uses or more than one use. Multiple uses 1547 // may mean that the instruction got lowered to multiple MIs, or the use of 1548 // the loaded value ended up being multiple operands of the result. 1549 if (!MRI.hasOneUse(LoadReg)) 1550 return false; 1551 1552 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 1553 MachineInstr *User = &*RI; 1554 1555 // Set the insertion point properly. Folding the load can cause generation of 1556 // other random instructions (like sign extends) for addressing modes; make 1557 // sure they get inserted in a logical place before the new instruction. 1558 FuncInfo.InsertPt = User; 1559 FuncInfo.MBB = User->getParent(); 1560 1561 // Ask the target to try folding the load. 1562 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 1563 } 1564 1565 1566