1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the FastISel class. 10 // 11 // "Fast" instruction selection is designed to emit very poor code quickly. 12 // Also, it is not designed to be able to do much lowering, so most illegal 13 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 14 // also not intended to be able to do much optimization, except in a few cases 15 // where doing optimizations reduces overall compile time. For example, folding 16 // constants into immediate fields is often done, because it's cheap and it 17 // reduces the number of instructions later phases have to examine. 18 // 19 // "Fast" instruction selection is able to fail gracefully and transfer 20 // control to the SelectionDAG selector for operations that it doesn't 21 // support. In many cases, this allows us to avoid duplicating a lot of 22 // the complicated lowering logic that SelectionDAG currently has. 23 // 24 // The intended use for "fast" instruction selection is "-O0" mode 25 // compilation, where the quality of the generated code is irrelevant when 26 // weighed against the speed at which the code can be generated. Also, 27 // at -O0, the LLVM optimizers are not running, and this makes the 28 // compile time of codegen a much higher portion of the overall compile 29 // time. Despite its limitations, "fast" instruction selection is able to 30 // handle enough code on its own to provide noticeable overall speedups 31 // in -O0 compiles. 32 // 33 // Basic operations are supported in a target-independent way, by reading 34 // the same instruction descriptions that the SelectionDAG selector reads, 35 // and identifying simple arithmetic operations that can be directly selected 36 // from simple operators. More complicated operations currently require 37 // target-specific code. 38 // 39 //===----------------------------------------------------------------------===// 40 41 #include "llvm/CodeGen/FastISel.h" 42 #include "llvm/ADT/APFloat.h" 43 #include "llvm/ADT/APSInt.h" 44 #include "llvm/ADT/DenseMap.h" 45 #include "llvm/ADT/Optional.h" 46 #include "llvm/ADT/SmallPtrSet.h" 47 #include "llvm/ADT/SmallString.h" 48 #include "llvm/ADT/SmallVector.h" 49 #include "llvm/ADT/Statistic.h" 50 #include "llvm/Analysis/BranchProbabilityInfo.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/CodeGen/Analysis.h" 53 #include "llvm/CodeGen/FunctionLoweringInfo.h" 54 #include "llvm/CodeGen/ISDOpcodes.h" 55 #include "llvm/CodeGen/MachineBasicBlock.h" 56 #include "llvm/CodeGen/MachineFrameInfo.h" 57 #include "llvm/CodeGen/MachineInstr.h" 58 #include "llvm/CodeGen/MachineInstrBuilder.h" 59 #include "llvm/CodeGen/MachineMemOperand.h" 60 #include "llvm/CodeGen/MachineModuleInfo.h" 61 #include "llvm/CodeGen/MachineOperand.h" 62 #include "llvm/CodeGen/MachineRegisterInfo.h" 63 #include "llvm/CodeGen/StackMaps.h" 64 #include "llvm/CodeGen/TargetInstrInfo.h" 65 #include "llvm/CodeGen/TargetLowering.h" 66 #include "llvm/CodeGen/TargetSubtargetInfo.h" 67 #include "llvm/CodeGen/ValueTypes.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/Constants.h" 74 #include "llvm/IR/DataLayout.h" 75 #include "llvm/IR/DebugInfo.h" 76 #include "llvm/IR/DebugLoc.h" 77 #include "llvm/IR/DerivedTypes.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GetElementPtrTypeIterator.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Mangler.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Operator.h" 90 #include "llvm/IR/PatternMatch.h" 91 #include "llvm/IR/Type.h" 92 #include "llvm/IR/User.h" 93 #include "llvm/IR/Value.h" 94 #include "llvm/MC/MCContext.h" 95 #include "llvm/MC/MCInstrDesc.h" 96 #include "llvm/MC/MCRegisterInfo.h" 97 #include "llvm/Support/Casting.h" 98 #include "llvm/Support/Debug.h" 99 #include "llvm/Support/ErrorHandling.h" 100 #include "llvm/Support/MachineValueType.h" 101 #include "llvm/Support/MathExtras.h" 102 #include "llvm/Support/raw_ostream.h" 103 #include "llvm/Target/TargetMachine.h" 104 #include "llvm/Target/TargetOptions.h" 105 #include <algorithm> 106 #include <cassert> 107 #include <cstdint> 108 #include <iterator> 109 #include <utility> 110 111 using namespace llvm; 112 using namespace PatternMatch; 113 114 #define DEBUG_TYPE "isel" 115 116 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 117 "target-independent selector"); 118 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 119 "target-specific selector"); 120 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 121 122 /// Set the current block to which generated machine instructions will be 123 /// appended. 124 void FastISel::startNewBlock() { 125 assert(LocalValueMap.empty() && 126 "local values should be cleared after finishing a BB"); 127 128 // Instructions are appended to FuncInfo.MBB. If the basic block already 129 // contains labels or copies, use the last instruction as the last local 130 // value. 131 EmitStartPt = nullptr; 132 if (!FuncInfo.MBB->empty()) 133 EmitStartPt = &FuncInfo.MBB->back(); 134 LastLocalValue = EmitStartPt; 135 } 136 137 void FastISel::finishBasicBlock() { flushLocalValueMap(); } 138 139 bool FastISel::lowerArguments() { 140 if (!FuncInfo.CanLowerReturn) 141 // Fallback to SDISel argument lowering code to deal with sret pointer 142 // parameter. 143 return false; 144 145 if (!fastLowerArguments()) 146 return false; 147 148 // Enter arguments into ValueMap for uses in non-entry BBs. 149 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 150 E = FuncInfo.Fn->arg_end(); 151 I != E; ++I) { 152 DenseMap<const Value *, Register>::iterator VI = LocalValueMap.find(&*I); 153 assert(VI != LocalValueMap.end() && "Missed an argument?"); 154 FuncInfo.ValueMap[&*I] = VI->second; 155 } 156 return true; 157 } 158 159 /// Return the defined register if this instruction defines exactly one 160 /// virtual register and uses no other virtual registers. Otherwise return 0. 161 static Register findLocalRegDef(MachineInstr &MI) { 162 Register RegDef; 163 for (const MachineOperand &MO : MI.operands()) { 164 if (!MO.isReg()) 165 continue; 166 if (MO.isDef()) { 167 if (RegDef) 168 return Register(); 169 RegDef = MO.getReg(); 170 } else if (MO.getReg().isVirtual()) { 171 // This is another use of a vreg. Don't delete it. 172 return Register(); 173 } 174 } 175 return RegDef; 176 } 177 178 static bool isRegUsedByPhiNodes(Register DefReg, 179 FunctionLoweringInfo &FuncInfo) { 180 for (auto &P : FuncInfo.PHINodesToUpdate) 181 if (P.second == DefReg) 182 return true; 183 return false; 184 } 185 186 void FastISel::flushLocalValueMap() { 187 // If FastISel bails out, it could leave local value instructions behind 188 // that aren't used for anything. Detect and erase those. 189 if (LastLocalValue != EmitStartPt) { 190 // Save the first instruction after local values, for later. 191 MachineBasicBlock::iterator FirstNonValue(LastLocalValue); 192 ++FirstNonValue; 193 194 MachineBasicBlock::reverse_iterator RE = 195 EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt) 196 : FuncInfo.MBB->rend(); 197 MachineBasicBlock::reverse_iterator RI(LastLocalValue); 198 for (; RI != RE;) { 199 MachineInstr &LocalMI = *RI; 200 // Increment before erasing what it points to. 201 ++RI; 202 Register DefReg = findLocalRegDef(LocalMI); 203 if (!DefReg) 204 continue; 205 if (FuncInfo.RegsWithFixups.count(DefReg)) 206 continue; 207 bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo); 208 if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) { 209 if (EmitStartPt == &LocalMI) 210 EmitStartPt = EmitStartPt->getPrevNode(); 211 LLVM_DEBUG(dbgs() << "removing dead local value materialization" 212 << LocalMI); 213 LocalMI.eraseFromParent(); 214 } 215 } 216 217 if (FirstNonValue != FuncInfo.MBB->end()) { 218 // See if there are any local value instructions left. If so, we want to 219 // make sure the first one has a debug location; if it doesn't, use the 220 // first non-value instruction's debug location. 221 222 // If EmitStartPt is non-null, this block had copies at the top before 223 // FastISel started doing anything; it points to the last one, so the 224 // first local value instruction is the one after EmitStartPt. 225 // If EmitStartPt is null, the first local value instruction is at the 226 // top of the block. 227 MachineBasicBlock::iterator FirstLocalValue = 228 EmitStartPt ? ++MachineBasicBlock::iterator(EmitStartPt) 229 : FuncInfo.MBB->begin(); 230 if (FirstLocalValue != FirstNonValue && !FirstLocalValue->getDebugLoc()) 231 FirstLocalValue->setDebugLoc(FirstNonValue->getDebugLoc()); 232 } 233 } 234 235 LocalValueMap.clear(); 236 LastLocalValue = EmitStartPt; 237 recomputeInsertPt(); 238 SavedInsertPt = FuncInfo.InsertPt; 239 } 240 241 Register FastISel::getRegForValue(const Value *V) { 242 EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true); 243 // Don't handle non-simple values in FastISel. 244 if (!RealVT.isSimple()) 245 return Register(); 246 247 // Ignore illegal types. We must do this before looking up the value 248 // in ValueMap because Arguments are given virtual registers regardless 249 // of whether FastISel can handle them. 250 MVT VT = RealVT.getSimpleVT(); 251 if (!TLI.isTypeLegal(VT)) { 252 // Handle integer promotions, though, because they're common and easy. 253 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 254 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 255 else 256 return Register(); 257 } 258 259 // Look up the value to see if we already have a register for it. 260 Register Reg = lookUpRegForValue(V); 261 if (Reg) 262 return Reg; 263 264 // In bottom-up mode, just create the virtual register which will be used 265 // to hold the value. It will be materialized later. 266 if (isa<Instruction>(V) && 267 (!isa<AllocaInst>(V) || 268 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 269 return FuncInfo.InitializeRegForValue(V); 270 271 SavePoint SaveInsertPt = enterLocalValueArea(); 272 273 // Materialize the value in a register. Emit any instructions in the 274 // local value area. 275 Reg = materializeRegForValue(V, VT); 276 277 leaveLocalValueArea(SaveInsertPt); 278 279 return Reg; 280 } 281 282 Register FastISel::materializeConstant(const Value *V, MVT VT) { 283 Register Reg; 284 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 285 if (CI->getValue().getActiveBits() <= 64) 286 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 287 } else if (isa<AllocaInst>(V)) 288 Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); 289 else if (isa<ConstantPointerNull>(V)) 290 // Translate this as an integer zero so that it can be 291 // local-CSE'd with actual integer zeros. 292 Reg = 293 getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getType()))); 294 else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 295 if (CF->isNullValue()) 296 Reg = fastMaterializeFloatZero(CF); 297 else 298 // Try to emit the constant directly. 299 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); 300 301 if (!Reg) { 302 // Try to emit the constant by using an integer constant with a cast. 303 const APFloat &Flt = CF->getValueAPF(); 304 EVT IntVT = TLI.getPointerTy(DL); 305 uint32_t IntBitWidth = IntVT.getSizeInBits(); 306 APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false); 307 bool isExact; 308 (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact); 309 if (isExact) { 310 Register IntegerReg = 311 getRegForValue(ConstantInt::get(V->getContext(), SIntVal)); 312 if (IntegerReg) 313 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, 314 IntegerReg); 315 } 316 } 317 } else if (const auto *Op = dyn_cast<Operator>(V)) { 318 if (!selectOperator(Op, Op->getOpcode())) 319 if (!isa<Instruction>(Op) || 320 !fastSelectInstruction(cast<Instruction>(Op))) 321 return 0; 322 Reg = lookUpRegForValue(Op); 323 } else if (isa<UndefValue>(V)) { 324 Reg = createResultReg(TLI.getRegClassFor(VT)); 325 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 326 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 327 } 328 return Reg; 329 } 330 331 /// Helper for getRegForValue. This function is called when the value isn't 332 /// already available in a register and must be materialized with new 333 /// instructions. 334 Register FastISel::materializeRegForValue(const Value *V, MVT VT) { 335 Register Reg; 336 // Give the target-specific code a try first. 337 if (isa<Constant>(V)) 338 Reg = fastMaterializeConstant(cast<Constant>(V)); 339 340 // If target-specific code couldn't or didn't want to handle the value, then 341 // give target-independent code a try. 342 if (!Reg) 343 Reg = materializeConstant(V, VT); 344 345 // Don't cache constant materializations in the general ValueMap. 346 // To do so would require tracking what uses they dominate. 347 if (Reg) { 348 LocalValueMap[V] = Reg; 349 LastLocalValue = MRI.getVRegDef(Reg); 350 } 351 return Reg; 352 } 353 354 Register FastISel::lookUpRegForValue(const Value *V) { 355 // Look up the value to see if we already have a register for it. We 356 // cache values defined by Instructions across blocks, and other values 357 // only locally. This is because Instructions already have the SSA 358 // def-dominates-use requirement enforced. 359 DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(V); 360 if (I != FuncInfo.ValueMap.end()) 361 return I->second; 362 return LocalValueMap[V]; 363 } 364 365 void FastISel::updateValueMap(const Value *I, Register Reg, unsigned NumRegs) { 366 if (!isa<Instruction>(I)) { 367 LocalValueMap[I] = Reg; 368 return; 369 } 370 371 Register &AssignedReg = FuncInfo.ValueMap[I]; 372 if (!AssignedReg) 373 // Use the new register. 374 AssignedReg = Reg; 375 else if (Reg != AssignedReg) { 376 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 377 for (unsigned i = 0; i < NumRegs; i++) { 378 FuncInfo.RegFixups[AssignedReg + i] = Reg + i; 379 FuncInfo.RegsWithFixups.insert(Reg + i); 380 } 381 382 AssignedReg = Reg; 383 } 384 } 385 386 Register FastISel::getRegForGEPIndex(const Value *Idx) { 387 Register IdxN = getRegForValue(Idx); 388 if (!IdxN) 389 // Unhandled operand. Halt "fast" selection and bail. 390 return Register(); 391 392 // If the index is smaller or larger than intptr_t, truncate or extend it. 393 MVT PtrVT = TLI.getPointerTy(DL); 394 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 395 if (IdxVT.bitsLT(PtrVT)) { 396 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN); 397 } else if (IdxVT.bitsGT(PtrVT)) { 398 IdxN = 399 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN); 400 } 401 return IdxN; 402 } 403 404 void FastISel::recomputeInsertPt() { 405 if (getLastLocalValue()) { 406 FuncInfo.InsertPt = getLastLocalValue(); 407 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 408 ++FuncInfo.InsertPt; 409 } else 410 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 411 412 // Now skip past any EH_LABELs, which must remain at the beginning. 413 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 414 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 415 ++FuncInfo.InsertPt; 416 } 417 418 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 419 MachineBasicBlock::iterator E) { 420 assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 && 421 "Invalid iterator!"); 422 while (I != E) { 423 if (SavedInsertPt == I) 424 SavedInsertPt = E; 425 if (EmitStartPt == I) 426 EmitStartPt = E.isValid() ? &*E : nullptr; 427 if (LastLocalValue == I) 428 LastLocalValue = E.isValid() ? &*E : nullptr; 429 430 MachineInstr *Dead = &*I; 431 ++I; 432 Dead->eraseFromParent(); 433 ++NumFastIselDead; 434 } 435 recomputeInsertPt(); 436 } 437 438 FastISel::SavePoint FastISel::enterLocalValueArea() { 439 SavePoint OldInsertPt = FuncInfo.InsertPt; 440 recomputeInsertPt(); 441 return OldInsertPt; 442 } 443 444 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 445 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 446 LastLocalValue = &*std::prev(FuncInfo.InsertPt); 447 448 // Restore the previous insert position. 449 FuncInfo.InsertPt = OldInsertPt; 450 } 451 452 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { 453 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 454 if (VT == MVT::Other || !VT.isSimple()) 455 // Unhandled type. Halt "fast" selection and bail. 456 return false; 457 458 // We only handle legal types. For example, on x86-32 the instruction 459 // selector contains all of the 64-bit instructions from x86-64, 460 // under the assumption that i64 won't be used if the target doesn't 461 // support it. 462 if (!TLI.isTypeLegal(VT)) { 463 // MVT::i1 is special. Allow AND, OR, or XOR because they 464 // don't require additional zeroing, which makes them easy. 465 if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 466 ISDOpcode == ISD::XOR)) 467 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 468 else 469 return false; 470 } 471 472 // Check if the first operand is a constant, and handle it as "ri". At -O0, 473 // we don't have anything that canonicalizes operand order. 474 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 475 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 476 Register Op1 = getRegForValue(I->getOperand(1)); 477 if (!Op1) 478 return false; 479 480 Register ResultReg = 481 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, CI->getZExtValue(), 482 VT.getSimpleVT()); 483 if (!ResultReg) 484 return false; 485 486 // We successfully emitted code for the given LLVM Instruction. 487 updateValueMap(I, ResultReg); 488 return true; 489 } 490 491 Register Op0 = getRegForValue(I->getOperand(0)); 492 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 493 return false; 494 495 // Check if the second operand is a constant and handle it appropriately. 496 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 497 uint64_t Imm = CI->getSExtValue(); 498 499 // Transform "sdiv exact X, 8" -> "sra X, 3". 500 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 501 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { 502 Imm = Log2_64(Imm); 503 ISDOpcode = ISD::SRA; 504 } 505 506 // Transform "urem x, pow2" -> "and x, pow2-1". 507 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 508 isPowerOf2_64(Imm)) { 509 --Imm; 510 ISDOpcode = ISD::AND; 511 } 512 513 Register ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, Imm, 514 VT.getSimpleVT()); 515 if (!ResultReg) 516 return false; 517 518 // We successfully emitted code for the given LLVM Instruction. 519 updateValueMap(I, ResultReg); 520 return true; 521 } 522 523 Register Op1 = getRegForValue(I->getOperand(1)); 524 if (!Op1) // Unhandled operand. Halt "fast" selection and bail. 525 return false; 526 527 // Now we have both operands in registers. Emit the instruction. 528 Register ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 529 ISDOpcode, Op0, Op1); 530 if (!ResultReg) 531 // Target-specific code wasn't able to find a machine opcode for 532 // the given ISD opcode and type. Halt "fast" selection and bail. 533 return false; 534 535 // We successfully emitted code for the given LLVM Instruction. 536 updateValueMap(I, ResultReg); 537 return true; 538 } 539 540 bool FastISel::selectGetElementPtr(const User *I) { 541 Register N = getRegForValue(I->getOperand(0)); 542 if (!N) // Unhandled operand. Halt "fast" selection and bail. 543 return false; 544 545 // FIXME: The code below does not handle vector GEPs. Halt "fast" selection 546 // and bail. 547 if (isa<VectorType>(I->getType())) 548 return false; 549 550 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 551 // into a single N = N + TotalOffset. 552 uint64_t TotalOffs = 0; 553 // FIXME: What's a good SWAG number for MaxOffs? 554 uint64_t MaxOffs = 2048; 555 MVT VT = TLI.getPointerTy(DL); 556 for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I); 557 GTI != E; ++GTI) { 558 const Value *Idx = GTI.getOperand(); 559 if (StructType *StTy = GTI.getStructTypeOrNull()) { 560 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue(); 561 if (Field) { 562 // N = N + Offset 563 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 564 if (TotalOffs >= MaxOffs) { 565 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); 566 if (!N) // Unhandled operand. Halt "fast" selection and bail. 567 return false; 568 TotalOffs = 0; 569 } 570 } 571 } else { 572 Type *Ty = GTI.getIndexedType(); 573 574 // If this is a constant subscript, handle it quickly. 575 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 576 if (CI->isZero()) 577 continue; 578 // N = N + Offset 579 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); 580 TotalOffs += DL.getTypeAllocSize(Ty) * IdxN; 581 if (TotalOffs >= MaxOffs) { 582 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); 583 if (!N) // Unhandled operand. Halt "fast" selection and bail. 584 return false; 585 TotalOffs = 0; 586 } 587 continue; 588 } 589 if (TotalOffs) { 590 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); 591 if (!N) // Unhandled operand. Halt "fast" selection and bail. 592 return false; 593 TotalOffs = 0; 594 } 595 596 // N = N + Idx * ElementSize; 597 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 598 Register IdxN = getRegForGEPIndex(Idx); 599 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 600 return false; 601 602 if (ElementSize != 1) { 603 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT); 604 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 605 return false; 606 } 607 N = fastEmit_rr(VT, VT, ISD::ADD, N, IdxN); 608 if (!N) // Unhandled operand. Halt "fast" selection and bail. 609 return false; 610 } 611 } 612 if (TotalOffs) { 613 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); 614 if (!N) // Unhandled operand. Halt "fast" selection and bail. 615 return false; 616 } 617 618 // We successfully emitted code for the given LLVM Instruction. 619 updateValueMap(I, N); 620 return true; 621 } 622 623 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 624 const CallInst *CI, unsigned StartIdx) { 625 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { 626 Value *Val = CI->getArgOperand(i); 627 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 628 if (const auto *C = dyn_cast<ConstantInt>(Val)) { 629 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 630 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 631 } else if (isa<ConstantPointerNull>(Val)) { 632 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 633 Ops.push_back(MachineOperand::CreateImm(0)); 634 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 635 // Values coming from a stack location also require a special encoding, 636 // but that is added later on by the target specific frame index 637 // elimination implementation. 638 auto SI = FuncInfo.StaticAllocaMap.find(AI); 639 if (SI != FuncInfo.StaticAllocaMap.end()) 640 Ops.push_back(MachineOperand::CreateFI(SI->second)); 641 else 642 return false; 643 } else { 644 Register Reg = getRegForValue(Val); 645 if (!Reg) 646 return false; 647 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 648 } 649 } 650 return true; 651 } 652 653 bool FastISel::selectStackmap(const CallInst *I) { 654 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 655 // [live variables...]) 656 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 657 "Stackmap cannot return a value."); 658 659 // The stackmap intrinsic only records the live variables (the arguments 660 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 661 // intrinsic, this won't be lowered to a function call. This means we don't 662 // have to worry about calling conventions and target-specific lowering code. 663 // Instead we perform the call lowering right here. 664 // 665 // CALLSEQ_START(0, 0...) 666 // STACKMAP(id, nbytes, ...) 667 // CALLSEQ_END(0, 0) 668 // 669 SmallVector<MachineOperand, 32> Ops; 670 671 // Add the <id> and <numBytes> constants. 672 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 673 "Expected a constant integer."); 674 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 675 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 676 677 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 678 "Expected a constant integer."); 679 const auto *NumBytes = 680 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 681 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 682 683 // Push live variables for the stack map (skipping the first two arguments 684 // <id> and <numBytes>). 685 if (!addStackMapLiveVars(Ops, I, 2)) 686 return false; 687 688 // We are not adding any register mask info here, because the stackmap doesn't 689 // clobber anything. 690 691 // Add scratch registers as implicit def and early clobber. 692 CallingConv::ID CC = I->getCallingConv(); 693 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 694 for (unsigned i = 0; ScratchRegs[i]; ++i) 695 Ops.push_back(MachineOperand::CreateReg( 696 ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, 697 /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); 698 699 // Issue CALLSEQ_START 700 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 701 auto Builder = 702 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)); 703 const MCInstrDesc &MCID = Builder.getInstr()->getDesc(); 704 for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I) 705 Builder.addImm(0); 706 707 // Issue STACKMAP. 708 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 709 TII.get(TargetOpcode::STACKMAP)); 710 for (auto const &MO : Ops) 711 MIB.add(MO); 712 713 // Issue CALLSEQ_END 714 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 715 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 716 .addImm(0) 717 .addImm(0); 718 719 // Inform the Frame Information that we have a stackmap in this function. 720 FuncInfo.MF->getFrameInfo().setHasStackMap(); 721 722 return true; 723 } 724 725 /// Lower an argument list according to the target calling convention. 726 /// 727 /// This is a helper for lowering intrinsics that follow a target calling 728 /// convention or require stack pointer adjustment. Only a subset of the 729 /// intrinsic's operands need to participate in the calling convention. 730 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 731 unsigned NumArgs, const Value *Callee, 732 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 733 ArgListTy Args; 734 Args.reserve(NumArgs); 735 736 // Populate the argument list. 737 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) { 738 Value *V = CI->getOperand(ArgI); 739 740 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 741 742 ArgListEntry Entry; 743 Entry.Val = V; 744 Entry.Ty = V->getType(); 745 Entry.setAttributes(CI, ArgI); 746 Args.push_back(Entry); 747 } 748 749 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 750 : CI->getType(); 751 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 752 753 return lowerCallTo(CLI); 754 } 755 756 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee( 757 const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy, 758 StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) { 759 SmallString<32> MangledName; 760 Mangler::getNameWithPrefix(MangledName, Target, DL); 761 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 762 return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs); 763 } 764 765 bool FastISel::selectPatchpoint(const CallInst *I) { 766 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 767 // i32 <numBytes>, 768 // i8* <target>, 769 // i32 <numArgs>, 770 // [Args...], 771 // [live variables...]) 772 CallingConv::ID CC = I->getCallingConv(); 773 bool IsAnyRegCC = CC == CallingConv::AnyReg; 774 bool HasDef = !I->getType()->isVoidTy(); 775 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts(); 776 777 // Get the real number of arguments participating in the call <numArgs> 778 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 779 "Expected a constant integer."); 780 const auto *NumArgsVal = 781 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 782 unsigned NumArgs = NumArgsVal->getZExtValue(); 783 784 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 785 // This includes all meta-operands up to but not including CC. 786 unsigned NumMetaOpers = PatchPointOpers::CCPos; 787 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs && 788 "Not enough arguments provided to the patchpoint intrinsic"); 789 790 // For AnyRegCC the arguments are lowered later on manually. 791 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 792 CallLoweringInfo CLI; 793 CLI.setIsPatchPoint(); 794 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 795 return false; 796 797 assert(CLI.Call && "No call instruction specified."); 798 799 SmallVector<MachineOperand, 32> Ops; 800 801 // Add an explicit result reg if we use the anyreg calling convention. 802 if (IsAnyRegCC && HasDef) { 803 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 804 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); 805 CLI.NumResultRegs = 1; 806 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true)); 807 } 808 809 // Add the <id> and <numBytes> constants. 810 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 811 "Expected a constant integer."); 812 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 813 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 814 815 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 816 "Expected a constant integer."); 817 const auto *NumBytes = 818 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 819 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 820 821 // Add the call target. 822 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) { 823 uint64_t CalleeConstAddr = 824 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 825 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 826 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 827 if (C->getOpcode() == Instruction::IntToPtr) { 828 uint64_t CalleeConstAddr = 829 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 830 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 831 } else 832 llvm_unreachable("Unsupported ConstantExpr."); 833 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) { 834 Ops.push_back(MachineOperand::CreateGA(GV, 0)); 835 } else if (isa<ConstantPointerNull>(Callee)) 836 Ops.push_back(MachineOperand::CreateImm(0)); 837 else 838 llvm_unreachable("Unsupported callee address."); 839 840 // Adjust <numArgs> to account for any arguments that have been passed on 841 // the stack instead. 842 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 843 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 844 845 // Add the calling convention 846 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 847 848 // Add the arguments we omitted previously. The register allocator should 849 // place these in any free register. 850 if (IsAnyRegCC) { 851 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 852 Register Reg = getRegForValue(I->getArgOperand(i)); 853 if (!Reg) 854 return false; 855 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 856 } 857 } 858 859 // Push the arguments from the call instruction. 860 for (auto Reg : CLI.OutRegs) 861 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 862 863 // Push live variables for the stack map. 864 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 865 return false; 866 867 // Push the register mask info. 868 Ops.push_back(MachineOperand::CreateRegMask( 869 TRI.getCallPreservedMask(*FuncInfo.MF, CC))); 870 871 // Add scratch registers as implicit def and early clobber. 872 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 873 for (unsigned i = 0; ScratchRegs[i]; ++i) 874 Ops.push_back(MachineOperand::CreateReg( 875 ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, 876 /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); 877 878 // Add implicit defs (return values). 879 for (auto Reg : CLI.InRegs) 880 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true, 881 /*isImp=*/true)); 882 883 // Insert the patchpoint instruction before the call generated by the target. 884 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc, 885 TII.get(TargetOpcode::PATCHPOINT)); 886 887 for (auto &MO : Ops) 888 MIB.add(MO); 889 890 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 891 892 // Delete the original call instruction. 893 CLI.Call->eraseFromParent(); 894 895 // Inform the Frame Information that we have a patchpoint in this function. 896 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 897 898 if (CLI.NumResultRegs) 899 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 900 return true; 901 } 902 903 bool FastISel::selectXRayCustomEvent(const CallInst *I) { 904 const auto &Triple = TM.getTargetTriple(); 905 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 906 return true; // don't do anything to this instruction. 907 SmallVector<MachineOperand, 8> Ops; 908 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 909 /*isDef=*/false)); 910 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 911 /*isDef=*/false)); 912 MachineInstrBuilder MIB = 913 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 914 TII.get(TargetOpcode::PATCHABLE_EVENT_CALL)); 915 for (auto &MO : Ops) 916 MIB.add(MO); 917 918 // Insert the Patchable Event Call instruction, that gets lowered properly. 919 return true; 920 } 921 922 bool FastISel::selectXRayTypedEvent(const CallInst *I) { 923 const auto &Triple = TM.getTargetTriple(); 924 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 925 return true; // don't do anything to this instruction. 926 SmallVector<MachineOperand, 8> Ops; 927 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 928 /*isDef=*/false)); 929 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 930 /*isDef=*/false)); 931 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)), 932 /*isDef=*/false)); 933 MachineInstrBuilder MIB = 934 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 935 TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL)); 936 for (auto &MO : Ops) 937 MIB.add(MO); 938 939 // Insert the Patchable Typed Event Call instruction, that gets lowered properly. 940 return true; 941 } 942 943 /// Returns an AttributeList representing the attributes applied to the return 944 /// value of the given call. 945 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 946 SmallVector<Attribute::AttrKind, 2> Attrs; 947 if (CLI.RetSExt) 948 Attrs.push_back(Attribute::SExt); 949 if (CLI.RetZExt) 950 Attrs.push_back(Attribute::ZExt); 951 if (CLI.IsInReg) 952 Attrs.push_back(Attribute::InReg); 953 954 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 955 Attrs); 956 } 957 958 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, 959 unsigned NumArgs) { 960 MCContext &Ctx = MF->getContext(); 961 SmallString<32> MangledName; 962 Mangler::getNameWithPrefix(MangledName, SymName, DL); 963 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 964 return lowerCallTo(CI, Sym, NumArgs); 965 } 966 967 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol, 968 unsigned NumArgs) { 969 FunctionType *FTy = CI->getFunctionType(); 970 Type *RetTy = CI->getType(); 971 972 ArgListTy Args; 973 Args.reserve(NumArgs); 974 975 // Populate the argument list. 976 // Attributes for args start at offset 1, after the return attribute. 977 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 978 Value *V = CI->getOperand(ArgI); 979 980 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 981 982 ArgListEntry Entry; 983 Entry.Val = V; 984 Entry.Ty = V->getType(); 985 Entry.setAttributes(CI, ArgI); 986 Args.push_back(Entry); 987 } 988 TLI.markLibCallAttributes(MF, CI->getCallingConv(), Args); 989 990 CallLoweringInfo CLI; 991 CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), *CI, NumArgs); 992 993 return lowerCallTo(CLI); 994 } 995 996 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { 997 // Handle the incoming return values from the call. 998 CLI.clearIns(); 999 SmallVector<EVT, 4> RetTys; 1000 ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys); 1001 1002 SmallVector<ISD::OutputArg, 4> Outs; 1003 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL); 1004 1005 bool CanLowerReturn = TLI.CanLowerReturn( 1006 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 1007 1008 // FIXME: sret demotion isn't supported yet - bail out. 1009 if (!CanLowerReturn) 1010 return false; 1011 1012 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 1013 EVT VT = RetTys[I]; 1014 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 1015 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 1016 for (unsigned i = 0; i != NumRegs; ++i) { 1017 ISD::InputArg MyFlags; 1018 MyFlags.VT = RegisterVT; 1019 MyFlags.ArgVT = VT; 1020 MyFlags.Used = CLI.IsReturnValueUsed; 1021 if (CLI.RetSExt) 1022 MyFlags.Flags.setSExt(); 1023 if (CLI.RetZExt) 1024 MyFlags.Flags.setZExt(); 1025 if (CLI.IsInReg) 1026 MyFlags.Flags.setInReg(); 1027 CLI.Ins.push_back(MyFlags); 1028 } 1029 } 1030 1031 // Handle all of the outgoing arguments. 1032 CLI.clearOuts(); 1033 for (auto &Arg : CLI.getArgs()) { 1034 Type *FinalType = Arg.Ty; 1035 if (Arg.IsByVal) 1036 FinalType = Arg.IndirectType; 1037 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1038 FinalType, CLI.CallConv, CLI.IsVarArg); 1039 1040 ISD::ArgFlagsTy Flags; 1041 if (Arg.IsZExt) 1042 Flags.setZExt(); 1043 if (Arg.IsSExt) 1044 Flags.setSExt(); 1045 if (Arg.IsInReg) 1046 Flags.setInReg(); 1047 if (Arg.IsSRet) 1048 Flags.setSRet(); 1049 if (Arg.IsSwiftSelf) 1050 Flags.setSwiftSelf(); 1051 if (Arg.IsSwiftAsync) 1052 Flags.setSwiftAsync(); 1053 if (Arg.IsSwiftError) 1054 Flags.setSwiftError(); 1055 if (Arg.IsCFGuardTarget) 1056 Flags.setCFGuardTarget(); 1057 if (Arg.IsByVal) 1058 Flags.setByVal(); 1059 if (Arg.IsInAlloca) { 1060 Flags.setInAlloca(); 1061 // Set the byval flag for CCAssignFn callbacks that don't know about 1062 // inalloca. This way we can know how many bytes we should've allocated 1063 // and how many bytes a callee cleanup function will pop. If we port 1064 // inalloca to more targets, we'll have to add custom inalloca handling in 1065 // the various CC lowering callbacks. 1066 Flags.setByVal(); 1067 } 1068 if (Arg.IsPreallocated) { 1069 Flags.setPreallocated(); 1070 // Set the byval flag for CCAssignFn callbacks that don't know about 1071 // preallocated. This way we can know how many bytes we should've 1072 // allocated and how many bytes a callee cleanup function will pop. If we 1073 // port preallocated to more targets, we'll have to add custom 1074 // preallocated handling in the various CC lowering callbacks. 1075 Flags.setByVal(); 1076 } 1077 MaybeAlign MemAlign = Arg.Alignment; 1078 if (Arg.IsByVal || Arg.IsInAlloca || Arg.IsPreallocated) { 1079 Type *ElementTy = Arg.IndirectType; 1080 assert(ElementTy && "Indirect type not set in ArgListEntry"); 1081 1082 unsigned FrameSize = DL.getTypeAllocSize(ElementTy); 1083 1084 // For ByVal, alignment should come from FE. BE will guess if this info 1085 // is not there, but there are cases it cannot get right. 1086 if (!MemAlign) 1087 MemAlign = Align(TLI.getByValTypeAlignment(ElementTy, DL)); 1088 Flags.setByValSize(FrameSize); 1089 } else if (!MemAlign) { 1090 MemAlign = DL.getABITypeAlign(Arg.Ty); 1091 } 1092 Flags.setMemAlign(*MemAlign); 1093 if (Arg.IsNest) 1094 Flags.setNest(); 1095 if (NeedsRegBlock) 1096 Flags.setInConsecutiveRegs(); 1097 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 1098 CLI.OutVals.push_back(Arg.Val); 1099 CLI.OutFlags.push_back(Flags); 1100 } 1101 1102 if (!fastLowerCall(CLI)) 1103 return false; 1104 1105 // Set all unused physreg defs as dead. 1106 assert(CLI.Call && "No call instruction specified."); 1107 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1108 1109 if (CLI.NumResultRegs && CLI.CB) 1110 updateValueMap(CLI.CB, CLI.ResultReg, CLI.NumResultRegs); 1111 1112 // Set labels for heapallocsite call. 1113 if (CLI.CB) 1114 if (MDNode *MD = CLI.CB->getMetadata("heapallocsite")) 1115 CLI.Call->setHeapAllocMarker(*MF, MD); 1116 1117 return true; 1118 } 1119 1120 bool FastISel::lowerCall(const CallInst *CI) { 1121 FunctionType *FuncTy = CI->getFunctionType(); 1122 Type *RetTy = CI->getType(); 1123 1124 ArgListTy Args; 1125 ArgListEntry Entry; 1126 Args.reserve(CI->arg_size()); 1127 1128 for (auto i = CI->arg_begin(), e = CI->arg_end(); i != e; ++i) { 1129 Value *V = *i; 1130 1131 // Skip empty types 1132 if (V->getType()->isEmptyTy()) 1133 continue; 1134 1135 Entry.Val = V; 1136 Entry.Ty = V->getType(); 1137 1138 // Skip the first return-type Attribute to get to params. 1139 Entry.setAttributes(CI, i - CI->arg_begin()); 1140 Args.push_back(Entry); 1141 } 1142 1143 // Check if target-independent constraints permit a tail call here. 1144 // Target-dependent constraints are checked within fastLowerCall. 1145 bool IsTailCall = CI->isTailCall(); 1146 if (IsTailCall && !isInTailCallPosition(*CI, TM)) 1147 IsTailCall = false; 1148 if (IsTailCall && MF->getFunction() 1149 .getFnAttribute("disable-tail-calls") 1150 .getValueAsBool()) 1151 IsTailCall = false; 1152 1153 CallLoweringInfo CLI; 1154 CLI.setCallee(RetTy, FuncTy, CI->getCalledOperand(), std::move(Args), *CI) 1155 .setTailCall(IsTailCall); 1156 1157 return lowerCallTo(CLI); 1158 } 1159 1160 bool FastISel::selectCall(const User *I) { 1161 const CallInst *Call = cast<CallInst>(I); 1162 1163 // Handle simple inline asms. 1164 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledOperand())) { 1165 // Don't attempt to handle constraints. 1166 if (!IA->getConstraintString().empty()) 1167 return false; 1168 1169 unsigned ExtraInfo = 0; 1170 if (IA->hasSideEffects()) 1171 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1172 if (IA->isAlignStack()) 1173 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1174 if (Call->isConvergent()) 1175 ExtraInfo |= InlineAsm::Extra_IsConvergent; 1176 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 1177 1178 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1179 TII.get(TargetOpcode::INLINEASM)); 1180 MIB.addExternalSymbol(IA->getAsmString().c_str()); 1181 MIB.addImm(ExtraInfo); 1182 1183 const MDNode *SrcLoc = Call->getMetadata("srcloc"); 1184 if (SrcLoc) 1185 MIB.addMetadata(SrcLoc); 1186 1187 return true; 1188 } 1189 1190 // Handle intrinsic function calls. 1191 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1192 return selectIntrinsicCall(II); 1193 1194 return lowerCall(Call); 1195 } 1196 1197 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { 1198 switch (II->getIntrinsicID()) { 1199 default: 1200 break; 1201 // At -O0 we don't care about the lifetime intrinsics. 1202 case Intrinsic::lifetime_start: 1203 case Intrinsic::lifetime_end: 1204 // The donothing intrinsic does, well, nothing. 1205 case Intrinsic::donothing: 1206 // Neither does the sideeffect intrinsic. 1207 case Intrinsic::sideeffect: 1208 // Neither does the assume intrinsic; it's also OK not to codegen its operand. 1209 case Intrinsic::assume: 1210 // Neither does the llvm.experimental.noalias.scope.decl intrinsic 1211 case Intrinsic::experimental_noalias_scope_decl: 1212 return true; 1213 case Intrinsic::dbg_declare: { 1214 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1215 assert(DI->getVariable() && "Missing variable"); 1216 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1217 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI 1218 << " (!hasDebugInfo)\n"); 1219 return true; 1220 } 1221 1222 const Value *Address = DI->getAddress(); 1223 if (!Address || isa<UndefValue>(Address)) { 1224 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI 1225 << " (bad/undef address)\n"); 1226 return true; 1227 } 1228 1229 // Byval arguments with frame indices were already handled after argument 1230 // lowering and before isel. 1231 const auto *Arg = 1232 dyn_cast<Argument>(Address->stripInBoundsConstantOffsets()); 1233 if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX) 1234 return true; 1235 1236 Optional<MachineOperand> Op; 1237 if (Register Reg = lookUpRegForValue(Address)) 1238 Op = MachineOperand::CreateReg(Reg, false); 1239 1240 // If we have a VLA that has a "use" in a metadata node that's then used 1241 // here but it has no other uses, then we have a problem. E.g., 1242 // 1243 // int foo (const int *x) { 1244 // char a[*x]; 1245 // return 0; 1246 // } 1247 // 1248 // If we assign 'a' a vreg and fast isel later on has to use the selection 1249 // DAG isel, it will want to copy the value to the vreg. However, there are 1250 // no uses, which goes counter to what selection DAG isel expects. 1251 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1252 (!isa<AllocaInst>(Address) || 1253 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1254 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1255 false); 1256 1257 if (Op) { 1258 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1259 "Expected inlined-at fields to agree"); 1260 // A dbg.declare describes the address of a source variable, so lower it 1261 // into an indirect DBG_VALUE. 1262 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1263 TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, 1264 *Op, DI->getVariable(), DI->getExpression()); 1265 } else { 1266 // We can't yet handle anything else here because it would require 1267 // generating code, thus altering codegen because of debug info. 1268 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI 1269 << " (no materialized reg for address)\n"); 1270 } 1271 return true; 1272 } 1273 case Intrinsic::dbg_value: { 1274 // This form of DBG_VALUE is target-independent. 1275 const DbgValueInst *DI = cast<DbgValueInst>(II); 1276 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1277 const Value *V = DI->getValue(); 1278 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1279 "Expected inlined-at fields to agree"); 1280 if (!V || isa<UndefValue>(V)) { 1281 // Currently the optimizer can produce this; insert an undef to 1282 // help debugging. 1283 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U, 1284 DI->getVariable(), DI->getExpression()); 1285 } else if (const auto *CI = dyn_cast<ConstantInt>(V)) { 1286 if (CI->getBitWidth() > 64) 1287 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1288 .addCImm(CI) 1289 .addImm(0U) 1290 .addMetadata(DI->getVariable()) 1291 .addMetadata(DI->getExpression()); 1292 else 1293 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1294 .addImm(CI->getZExtValue()) 1295 .addImm(0U) 1296 .addMetadata(DI->getVariable()) 1297 .addMetadata(DI->getExpression()); 1298 } else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 1299 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1300 .addFPImm(CF) 1301 .addImm(0U) 1302 .addMetadata(DI->getVariable()) 1303 .addMetadata(DI->getExpression()); 1304 } else if (Register Reg = lookUpRegForValue(V)) { 1305 // FIXME: This does not handle register-indirect values at offset 0. 1306 bool IsIndirect = false; 1307 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg, 1308 DI->getVariable(), DI->getExpression()); 1309 } else { 1310 // We don't know how to handle other cases, so we drop. 1311 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1312 } 1313 return true; 1314 } 1315 case Intrinsic::dbg_label: { 1316 const DbgLabelInst *DI = cast<DbgLabelInst>(II); 1317 assert(DI->getLabel() && "Missing label"); 1318 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1319 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1320 return true; 1321 } 1322 1323 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1324 TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel()); 1325 return true; 1326 } 1327 case Intrinsic::objectsize: 1328 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1329 1330 case Intrinsic::is_constant: 1331 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1332 1333 case Intrinsic::launder_invariant_group: 1334 case Intrinsic::strip_invariant_group: 1335 case Intrinsic::expect: { 1336 Register ResultReg = getRegForValue(II->getArgOperand(0)); 1337 if (!ResultReg) 1338 return false; 1339 updateValueMap(II, ResultReg); 1340 return true; 1341 } 1342 case Intrinsic::experimental_stackmap: 1343 return selectStackmap(II); 1344 case Intrinsic::experimental_patchpoint_void: 1345 case Intrinsic::experimental_patchpoint_i64: 1346 return selectPatchpoint(II); 1347 1348 case Intrinsic::xray_customevent: 1349 return selectXRayCustomEvent(II); 1350 case Intrinsic::xray_typedevent: 1351 return selectXRayTypedEvent(II); 1352 } 1353 1354 return fastLowerIntrinsicCall(II); 1355 } 1356 1357 bool FastISel::selectCast(const User *I, unsigned Opcode) { 1358 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1359 EVT DstVT = TLI.getValueType(DL, I->getType()); 1360 1361 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || 1362 !DstVT.isSimple()) 1363 // Unhandled type. Halt "fast" selection and bail. 1364 return false; 1365 1366 // Check if the destination type is legal. 1367 if (!TLI.isTypeLegal(DstVT)) 1368 return false; 1369 1370 // Check if the source operand is legal. 1371 if (!TLI.isTypeLegal(SrcVT)) 1372 return false; 1373 1374 Register InputReg = getRegForValue(I->getOperand(0)); 1375 if (!InputReg) 1376 // Unhandled operand. Halt "fast" selection and bail. 1377 return false; 1378 1379 Register ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 1380 Opcode, InputReg); 1381 if (!ResultReg) 1382 return false; 1383 1384 updateValueMap(I, ResultReg); 1385 return true; 1386 } 1387 1388 bool FastISel::selectBitCast(const User *I) { 1389 // If the bitcast doesn't change the type, just use the operand value. 1390 if (I->getType() == I->getOperand(0)->getType()) { 1391 Register Reg = getRegForValue(I->getOperand(0)); 1392 if (!Reg) 1393 return false; 1394 updateValueMap(I, Reg); 1395 return true; 1396 } 1397 1398 // Bitcasts of other values become reg-reg copies or BITCAST operators. 1399 EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1400 EVT DstEVT = TLI.getValueType(DL, I->getType()); 1401 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1402 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1403 // Unhandled type. Halt "fast" selection and bail. 1404 return false; 1405 1406 MVT SrcVT = SrcEVT.getSimpleVT(); 1407 MVT DstVT = DstEVT.getSimpleVT(); 1408 Register Op0 = getRegForValue(I->getOperand(0)); 1409 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 1410 return false; 1411 1412 // First, try to perform the bitcast by inserting a reg-reg copy. 1413 Register ResultReg; 1414 if (SrcVT == DstVT) { 1415 const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT); 1416 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); 1417 // Don't attempt a cross-class copy. It will likely fail. 1418 if (SrcClass == DstClass) { 1419 ResultReg = createResultReg(DstClass); 1420 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1421 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); 1422 } 1423 } 1424 1425 // If the reg-reg copy failed, select a BITCAST opcode. 1426 if (!ResultReg) 1427 ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0); 1428 1429 if (!ResultReg) 1430 return false; 1431 1432 updateValueMap(I, ResultReg); 1433 return true; 1434 } 1435 1436 bool FastISel::selectFreeze(const User *I) { 1437 Register Reg = getRegForValue(I->getOperand(0)); 1438 if (!Reg) 1439 // Unhandled operand. 1440 return false; 1441 1442 EVT ETy = TLI.getValueType(DL, I->getOperand(0)->getType()); 1443 if (ETy == MVT::Other || !TLI.isTypeLegal(ETy)) 1444 // Unhandled type, bail out. 1445 return false; 1446 1447 MVT Ty = ETy.getSimpleVT(); 1448 const TargetRegisterClass *TyRegClass = TLI.getRegClassFor(Ty); 1449 Register ResultReg = createResultReg(TyRegClass); 1450 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1451 TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg); 1452 1453 updateValueMap(I, ResultReg); 1454 return true; 1455 } 1456 1457 // Remove local value instructions starting from the instruction after 1458 // SavedLastLocalValue to the current function insert point. 1459 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue) 1460 { 1461 MachineInstr *CurLastLocalValue = getLastLocalValue(); 1462 if (CurLastLocalValue != SavedLastLocalValue) { 1463 // Find the first local value instruction to be deleted. 1464 // This is the instruction after SavedLastLocalValue if it is non-NULL. 1465 // Otherwise it's the first instruction in the block. 1466 MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue); 1467 if (SavedLastLocalValue) 1468 ++FirstDeadInst; 1469 else 1470 FirstDeadInst = FuncInfo.MBB->getFirstNonPHI(); 1471 setLastLocalValue(SavedLastLocalValue); 1472 removeDeadCode(FirstDeadInst, FuncInfo.InsertPt); 1473 } 1474 } 1475 1476 bool FastISel::selectInstruction(const Instruction *I) { 1477 // Flush the local value map before starting each instruction. 1478 // This improves locality and debugging, and can reduce spills. 1479 // Reuse of values across IR instructions is relatively uncommon. 1480 flushLocalValueMap(); 1481 1482 MachineInstr *SavedLastLocalValue = getLastLocalValue(); 1483 // Just before the terminator instruction, insert instructions to 1484 // feed PHI nodes in successor blocks. 1485 if (I->isTerminator()) { 1486 if (!handlePHINodesInSuccessorBlocks(I->getParent())) { 1487 // PHI node handling may have generated local value instructions, 1488 // even though it failed to handle all PHI nodes. 1489 // We remove these instructions because SelectionDAGISel will generate 1490 // them again. 1491 removeDeadLocalValueCode(SavedLastLocalValue); 1492 return false; 1493 } 1494 } 1495 1496 // FastISel does not handle any operand bundles except OB_funclet. 1497 if (auto *Call = dyn_cast<CallBase>(I)) 1498 for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) 1499 if (Call->getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet) 1500 return false; 1501 1502 DbgLoc = I->getDebugLoc(); 1503 1504 SavedInsertPt = FuncInfo.InsertPt; 1505 1506 if (const auto *Call = dyn_cast<CallInst>(I)) { 1507 const Function *F = Call->getCalledFunction(); 1508 LibFunc Func; 1509 1510 // As a special case, don't handle calls to builtin library functions that 1511 // may be translated directly to target instructions. 1512 if (F && !F->hasLocalLinkage() && F->hasName() && 1513 LibInfo->getLibFunc(F->getName(), Func) && 1514 LibInfo->hasOptimizedCodeGen(Func)) 1515 return false; 1516 1517 // Don't handle Intrinsic::trap if a trap function is specified. 1518 if (F && F->getIntrinsicID() == Intrinsic::trap && 1519 Call->hasFnAttr("trap-func-name")) 1520 return false; 1521 } 1522 1523 // First, try doing target-independent selection. 1524 if (!SkipTargetIndependentISel) { 1525 if (selectOperator(I, I->getOpcode())) { 1526 ++NumFastIselSuccessIndependent; 1527 DbgLoc = DebugLoc(); 1528 return true; 1529 } 1530 // Remove dead code. 1531 recomputeInsertPt(); 1532 if (SavedInsertPt != FuncInfo.InsertPt) 1533 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1534 SavedInsertPt = FuncInfo.InsertPt; 1535 } 1536 // Next, try calling the target to attempt to handle the instruction. 1537 if (fastSelectInstruction(I)) { 1538 ++NumFastIselSuccessTarget; 1539 DbgLoc = DebugLoc(); 1540 return true; 1541 } 1542 // Remove dead code. 1543 recomputeInsertPt(); 1544 if (SavedInsertPt != FuncInfo.InsertPt) 1545 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1546 1547 DbgLoc = DebugLoc(); 1548 // Undo phi node updates, because they will be added again by SelectionDAG. 1549 if (I->isTerminator()) { 1550 // PHI node handling may have generated local value instructions. 1551 // We remove them because SelectionDAGISel will generate them again. 1552 removeDeadLocalValueCode(SavedLastLocalValue); 1553 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 1554 } 1555 return false; 1556 } 1557 1558 /// Emit an unconditional branch to the given block, unless it is the immediate 1559 /// (fall-through) successor, and update the CFG. 1560 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, 1561 const DebugLoc &DbgLoc) { 1562 if (FuncInfo.MBB->getBasicBlock()->sizeWithoutDebug() > 1 && 1563 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1564 // For more accurate line information if this is the only non-debug 1565 // instruction in the block then emit it, otherwise we have the 1566 // unconditional fall-through case, which needs no instructions. 1567 } else { 1568 // The unconditional branch case. 1569 TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr, 1570 SmallVector<MachineOperand, 0>(), DbgLoc); 1571 } 1572 if (FuncInfo.BPI) { 1573 auto BranchProbability = FuncInfo.BPI->getEdgeProbability( 1574 FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock()); 1575 FuncInfo.MBB->addSuccessor(MSucc, BranchProbability); 1576 } else 1577 FuncInfo.MBB->addSuccessorWithoutProb(MSucc); 1578 } 1579 1580 void FastISel::finishCondBranch(const BasicBlock *BranchBB, 1581 MachineBasicBlock *TrueMBB, 1582 MachineBasicBlock *FalseMBB) { 1583 // Add TrueMBB as successor unless it is equal to the FalseMBB: This can 1584 // happen in degenerate IR and MachineIR forbids to have a block twice in the 1585 // successor/predecessor lists. 1586 if (TrueMBB != FalseMBB) { 1587 if (FuncInfo.BPI) { 1588 auto BranchProbability = 1589 FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock()); 1590 FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability); 1591 } else 1592 FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB); 1593 } 1594 1595 fastEmitBranch(FalseMBB, DbgLoc); 1596 } 1597 1598 /// Emit an FNeg operation. 1599 bool FastISel::selectFNeg(const User *I, const Value *In) { 1600 Register OpReg = getRegForValue(In); 1601 if (!OpReg) 1602 return false; 1603 1604 // If the target has ISD::FNEG, use it. 1605 EVT VT = TLI.getValueType(DL, I->getType()); 1606 Register ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, 1607 OpReg); 1608 if (ResultReg) { 1609 updateValueMap(I, ResultReg); 1610 return true; 1611 } 1612 1613 // Bitcast the value to integer, twiddle the sign bit with xor, 1614 // and then bitcast it back to floating-point. 1615 if (VT.getSizeInBits() > 64) 1616 return false; 1617 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1618 if (!TLI.isTypeLegal(IntVT)) 1619 return false; 1620 1621 Register IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1622 ISD::BITCAST, OpReg); 1623 if (!IntReg) 1624 return false; 1625 1626 Register IntResultReg = fastEmit_ri_( 1627 IntVT.getSimpleVT(), ISD::XOR, IntReg, 1628 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); 1629 if (!IntResultReg) 1630 return false; 1631 1632 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, 1633 IntResultReg); 1634 if (!ResultReg) 1635 return false; 1636 1637 updateValueMap(I, ResultReg); 1638 return true; 1639 } 1640 1641 bool FastISel::selectExtractValue(const User *U) { 1642 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1643 if (!EVI) 1644 return false; 1645 1646 // Make sure we only try to handle extracts with a legal result. But also 1647 // allow i1 because it's easy. 1648 EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true); 1649 if (!RealVT.isSimple()) 1650 return false; 1651 MVT VT = RealVT.getSimpleVT(); 1652 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1653 return false; 1654 1655 const Value *Op0 = EVI->getOperand(0); 1656 Type *AggTy = Op0->getType(); 1657 1658 // Get the base result register. 1659 unsigned ResultReg; 1660 DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(Op0); 1661 if (I != FuncInfo.ValueMap.end()) 1662 ResultReg = I->second; 1663 else if (isa<Instruction>(Op0)) 1664 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1665 else 1666 return false; // fast-isel can't handle aggregate constants at the moment 1667 1668 // Get the actual result register, which is an offset from the base register. 1669 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1670 1671 SmallVector<EVT, 4> AggValueVTs; 1672 ComputeValueVTs(TLI, DL, AggTy, AggValueVTs); 1673 1674 for (unsigned i = 0; i < VTIndex; i++) 1675 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1676 1677 updateValueMap(EVI, ResultReg); 1678 return true; 1679 } 1680 1681 bool FastISel::selectOperator(const User *I, unsigned Opcode) { 1682 switch (Opcode) { 1683 case Instruction::Add: 1684 return selectBinaryOp(I, ISD::ADD); 1685 case Instruction::FAdd: 1686 return selectBinaryOp(I, ISD::FADD); 1687 case Instruction::Sub: 1688 return selectBinaryOp(I, ISD::SUB); 1689 case Instruction::FSub: 1690 return selectBinaryOp(I, ISD::FSUB); 1691 case Instruction::Mul: 1692 return selectBinaryOp(I, ISD::MUL); 1693 case Instruction::FMul: 1694 return selectBinaryOp(I, ISD::FMUL); 1695 case Instruction::SDiv: 1696 return selectBinaryOp(I, ISD::SDIV); 1697 case Instruction::UDiv: 1698 return selectBinaryOp(I, ISD::UDIV); 1699 case Instruction::FDiv: 1700 return selectBinaryOp(I, ISD::FDIV); 1701 case Instruction::SRem: 1702 return selectBinaryOp(I, ISD::SREM); 1703 case Instruction::URem: 1704 return selectBinaryOp(I, ISD::UREM); 1705 case Instruction::FRem: 1706 return selectBinaryOp(I, ISD::FREM); 1707 case Instruction::Shl: 1708 return selectBinaryOp(I, ISD::SHL); 1709 case Instruction::LShr: 1710 return selectBinaryOp(I, ISD::SRL); 1711 case Instruction::AShr: 1712 return selectBinaryOp(I, ISD::SRA); 1713 case Instruction::And: 1714 return selectBinaryOp(I, ISD::AND); 1715 case Instruction::Or: 1716 return selectBinaryOp(I, ISD::OR); 1717 case Instruction::Xor: 1718 return selectBinaryOp(I, ISD::XOR); 1719 1720 case Instruction::FNeg: 1721 return selectFNeg(I, I->getOperand(0)); 1722 1723 case Instruction::GetElementPtr: 1724 return selectGetElementPtr(I); 1725 1726 case Instruction::Br: { 1727 const BranchInst *BI = cast<BranchInst>(I); 1728 1729 if (BI->isUnconditional()) { 1730 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1731 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1732 fastEmitBranch(MSucc, BI->getDebugLoc()); 1733 return true; 1734 } 1735 1736 // Conditional branches are not handed yet. 1737 // Halt "fast" selection and bail. 1738 return false; 1739 } 1740 1741 case Instruction::Unreachable: 1742 if (TM.Options.TrapUnreachable) 1743 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1744 else 1745 return true; 1746 1747 case Instruction::Alloca: 1748 // FunctionLowering has the static-sized case covered. 1749 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1750 return true; 1751 1752 // Dynamic-sized alloca is not handled yet. 1753 return false; 1754 1755 case Instruction::Call: 1756 // On AIX, call lowering uses the DAG-ISEL path currently so that the 1757 // callee of the direct function call instruction will be mapped to the 1758 // symbol for the function's entry point, which is distinct from the 1759 // function descriptor symbol. The latter is the symbol whose XCOFF symbol 1760 // name is the C-linkage name of the source level function. 1761 if (TM.getTargetTriple().isOSAIX()) 1762 return false; 1763 return selectCall(I); 1764 1765 case Instruction::BitCast: 1766 return selectBitCast(I); 1767 1768 case Instruction::FPToSI: 1769 return selectCast(I, ISD::FP_TO_SINT); 1770 case Instruction::ZExt: 1771 return selectCast(I, ISD::ZERO_EXTEND); 1772 case Instruction::SExt: 1773 return selectCast(I, ISD::SIGN_EXTEND); 1774 case Instruction::Trunc: 1775 return selectCast(I, ISD::TRUNCATE); 1776 case Instruction::SIToFP: 1777 return selectCast(I, ISD::SINT_TO_FP); 1778 1779 case Instruction::IntToPtr: // Deliberate fall-through. 1780 case Instruction::PtrToInt: { 1781 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1782 EVT DstVT = TLI.getValueType(DL, I->getType()); 1783 if (DstVT.bitsGT(SrcVT)) 1784 return selectCast(I, ISD::ZERO_EXTEND); 1785 if (DstVT.bitsLT(SrcVT)) 1786 return selectCast(I, ISD::TRUNCATE); 1787 Register Reg = getRegForValue(I->getOperand(0)); 1788 if (!Reg) 1789 return false; 1790 updateValueMap(I, Reg); 1791 return true; 1792 } 1793 1794 case Instruction::ExtractValue: 1795 return selectExtractValue(I); 1796 1797 case Instruction::Freeze: 1798 return selectFreeze(I); 1799 1800 case Instruction::PHI: 1801 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1802 1803 default: 1804 // Unhandled instruction. Halt "fast" selection and bail. 1805 return false; 1806 } 1807 } 1808 1809 FastISel::FastISel(FunctionLoweringInfo &FuncInfo, 1810 const TargetLibraryInfo *LibInfo, 1811 bool SkipTargetIndependentISel) 1812 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1813 MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1814 TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()), 1815 TII(*MF->getSubtarget().getInstrInfo()), 1816 TLI(*MF->getSubtarget().getTargetLowering()), 1817 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), 1818 SkipTargetIndependentISel(SkipTargetIndependentISel), 1819 LastLocalValue(nullptr), EmitStartPt(nullptr) {} 1820 1821 FastISel::~FastISel() = default; 1822 1823 bool FastISel::fastLowerArguments() { return false; } 1824 1825 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } 1826 1827 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1828 return false; 1829 } 1830 1831 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } 1832 1833 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/) { 1834 return 0; 1835 } 1836 1837 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, 1838 unsigned /*Op1*/) { 1839 return 0; 1840 } 1841 1842 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1843 return 0; 1844 } 1845 1846 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, 1847 const ConstantFP * /*FPImm*/) { 1848 return 0; 1849 } 1850 1851 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, 1852 uint64_t /*Imm*/) { 1853 return 0; 1854 } 1855 1856 /// This method is a wrapper of fastEmit_ri. It first tries to emit an 1857 /// instruction with an immediate operand using fastEmit_ri. 1858 /// If that fails, it materializes the immediate into a register and try 1859 /// fastEmit_rr instead. 1860 Register FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, 1861 uint64_t Imm, MVT ImmType) { 1862 // If this is a multiply by a power of two, emit this as a shift left. 1863 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1864 Opcode = ISD::SHL; 1865 Imm = Log2_64(Imm); 1866 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1867 // div x, 8 -> srl x, 3 1868 Opcode = ISD::SRL; 1869 Imm = Log2_64(Imm); 1870 } 1871 1872 // Horrible hack (to be removed), check to make sure shift amounts are 1873 // in-range. 1874 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1875 Imm >= VT.getSizeInBits()) 1876 return 0; 1877 1878 // First check if immediate type is legal. If not, we can't use the ri form. 1879 Register ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Imm); 1880 if (ResultReg) 1881 return ResultReg; 1882 Register MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1883 if (!MaterialReg) { 1884 // This is a bit ugly/slow, but failing here means falling out of 1885 // fast-isel, which would be very slow. 1886 IntegerType *ITy = 1887 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); 1888 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1889 if (!MaterialReg) 1890 return 0; 1891 } 1892 return fastEmit_rr(VT, VT, Opcode, Op0, MaterialReg); 1893 } 1894 1895 Register FastISel::createResultReg(const TargetRegisterClass *RC) { 1896 return MRI.createVirtualRegister(RC); 1897 } 1898 1899 Register FastISel::constrainOperandRegClass(const MCInstrDesc &II, Register Op, 1900 unsigned OpNum) { 1901 if (Op.isVirtual()) { 1902 const TargetRegisterClass *RegClass = 1903 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 1904 if (!MRI.constrainRegClass(Op, RegClass)) { 1905 // If it's not legal to COPY between the register classes, something 1906 // has gone very wrong before we got here. 1907 Register NewOp = createResultReg(RegClass); 1908 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1909 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 1910 return NewOp; 1911 } 1912 } 1913 return Op; 1914 } 1915 1916 Register FastISel::fastEmitInst_(unsigned MachineInstOpcode, 1917 const TargetRegisterClass *RC) { 1918 Register ResultReg = createResultReg(RC); 1919 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1920 1921 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); 1922 return ResultReg; 1923 } 1924 1925 Register FastISel::fastEmitInst_r(unsigned MachineInstOpcode, 1926 const TargetRegisterClass *RC, unsigned Op0) { 1927 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1928 1929 Register ResultReg = createResultReg(RC); 1930 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1931 1932 if (II.getNumDefs() >= 1) 1933 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1934 .addReg(Op0); 1935 else { 1936 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1937 .addReg(Op0); 1938 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1939 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1940 } 1941 1942 return ResultReg; 1943 } 1944 1945 Register FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 1946 const TargetRegisterClass *RC, unsigned Op0, 1947 unsigned Op1) { 1948 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1949 1950 Register ResultReg = createResultReg(RC); 1951 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1952 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1953 1954 if (II.getNumDefs() >= 1) 1955 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1956 .addReg(Op0) 1957 .addReg(Op1); 1958 else { 1959 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1960 .addReg(Op0) 1961 .addReg(Op1); 1962 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1963 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1964 } 1965 return ResultReg; 1966 } 1967 1968 Register FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 1969 const TargetRegisterClass *RC, unsigned Op0, 1970 unsigned Op1, unsigned Op2) { 1971 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1972 1973 Register ResultReg = createResultReg(RC); 1974 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1975 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1976 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 1977 1978 if (II.getNumDefs() >= 1) 1979 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1980 .addReg(Op0) 1981 .addReg(Op1) 1982 .addReg(Op2); 1983 else { 1984 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1985 .addReg(Op0) 1986 .addReg(Op1) 1987 .addReg(Op2); 1988 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1989 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1990 } 1991 return ResultReg; 1992 } 1993 1994 Register FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 1995 const TargetRegisterClass *RC, unsigned Op0, 1996 uint64_t Imm) { 1997 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1998 1999 Register ResultReg = createResultReg(RC); 2000 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2001 2002 if (II.getNumDefs() >= 1) 2003 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2004 .addReg(Op0) 2005 .addImm(Imm); 2006 else { 2007 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2008 .addReg(Op0) 2009 .addImm(Imm); 2010 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2011 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2012 } 2013 return ResultReg; 2014 } 2015 2016 Register FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, 2017 const TargetRegisterClass *RC, unsigned Op0, 2018 uint64_t Imm1, uint64_t Imm2) { 2019 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2020 2021 Register ResultReg = createResultReg(RC); 2022 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2023 2024 if (II.getNumDefs() >= 1) 2025 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2026 .addReg(Op0) 2027 .addImm(Imm1) 2028 .addImm(Imm2); 2029 else { 2030 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2031 .addReg(Op0) 2032 .addImm(Imm1) 2033 .addImm(Imm2); 2034 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2035 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2036 } 2037 return ResultReg; 2038 } 2039 2040 Register FastISel::fastEmitInst_f(unsigned MachineInstOpcode, 2041 const TargetRegisterClass *RC, 2042 const ConstantFP *FPImm) { 2043 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2044 2045 Register ResultReg = createResultReg(RC); 2046 2047 if (II.getNumDefs() >= 1) 2048 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2049 .addFPImm(FPImm); 2050 else { 2051 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2052 .addFPImm(FPImm); 2053 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2054 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2055 } 2056 return ResultReg; 2057 } 2058 2059 Register FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 2060 const TargetRegisterClass *RC, unsigned Op0, 2061 unsigned Op1, uint64_t Imm) { 2062 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2063 2064 Register ResultReg = createResultReg(RC); 2065 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2066 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2067 2068 if (II.getNumDefs() >= 1) 2069 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2070 .addReg(Op0) 2071 .addReg(Op1) 2072 .addImm(Imm); 2073 else { 2074 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2075 .addReg(Op0) 2076 .addReg(Op1) 2077 .addImm(Imm); 2078 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2079 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2080 } 2081 return ResultReg; 2082 } 2083 2084 Register FastISel::fastEmitInst_i(unsigned MachineInstOpcode, 2085 const TargetRegisterClass *RC, uint64_t Imm) { 2086 Register ResultReg = createResultReg(RC); 2087 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2088 2089 if (II.getNumDefs() >= 1) 2090 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2091 .addImm(Imm); 2092 else { 2093 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); 2094 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2095 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2096 } 2097 return ResultReg; 2098 } 2099 2100 Register FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, 2101 uint32_t Idx) { 2102 Register ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 2103 assert(Register::isVirtualRegister(Op0) && 2104 "Cannot yet extract from physregs"); 2105 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 2106 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 2107 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), 2108 ResultReg).addReg(Op0, 0, Idx); 2109 return ResultReg; 2110 } 2111 2112 /// Emit MachineInstrs to compute the value of Op with all but the least 2113 /// significant bit set to zero. 2114 Register FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0) { 2115 return fastEmit_ri(VT, VT, ISD::AND, Op0, 1); 2116 } 2117 2118 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 2119 /// Emit code to ensure constants are copied into registers when needed. 2120 /// Remember the virtual registers that need to be added to the Machine PHI 2121 /// nodes as input. We cannot just directly add them, because expansion 2122 /// might result in multiple MBB's for one BB. As such, the start of the 2123 /// BB might correspond to a different MBB than the end. 2124 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 2125 const Instruction *TI = LLVMBB->getTerminator(); 2126 2127 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 2128 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 2129 2130 // Check successor nodes' PHI nodes that expect a constant to be available 2131 // from this block. 2132 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 2133 const BasicBlock *SuccBB = TI->getSuccessor(succ); 2134 if (!isa<PHINode>(SuccBB->begin())) 2135 continue; 2136 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 2137 2138 // If this terminator has multiple identical successors (common for 2139 // switches), only handle each succ once. 2140 if (!SuccsHandled.insert(SuccMBB).second) 2141 continue; 2142 2143 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 2144 2145 // At this point we know that there is a 1-1 correspondence between LLVM PHI 2146 // nodes and Machine PHI nodes, but the incoming operands have not been 2147 // emitted yet. 2148 for (const PHINode &PN : SuccBB->phis()) { 2149 // Ignore dead phi's. 2150 if (PN.use_empty()) 2151 continue; 2152 2153 // Only handle legal types. Two interesting things to note here. First, 2154 // by bailing out early, we may leave behind some dead instructions, 2155 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2156 // own moves. Second, this check is necessary because FastISel doesn't 2157 // use CreateRegs to create registers, so it always creates 2158 // exactly one register for each non-void instruction. 2159 EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true); 2160 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2161 // Handle integer promotions, though, because they're common and easy. 2162 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { 2163 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2164 return false; 2165 } 2166 } 2167 2168 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 2169 2170 // Set the DebugLoc for the copy. Use the location of the operand if 2171 // there is one; otherwise no location, flushLocalValueMap will fix it. 2172 DbgLoc = DebugLoc(); 2173 if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) 2174 DbgLoc = Inst->getDebugLoc(); 2175 2176 Register Reg = getRegForValue(PHIOp); 2177 if (!Reg) { 2178 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2179 return false; 2180 } 2181 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg)); 2182 DbgLoc = DebugLoc(); 2183 } 2184 } 2185 2186 return true; 2187 } 2188 2189 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2190 assert(LI->hasOneUse() && 2191 "tryToFoldLoad expected a LoadInst with a single use"); 2192 // We know that the load has a single use, but don't know what it is. If it 2193 // isn't one of the folded instructions, then we can't succeed here. Handle 2194 // this by scanning the single-use users of the load until we get to FoldInst. 2195 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2196 2197 const Instruction *TheUser = LI->user_back(); 2198 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2199 // Stay in the right block. 2200 TheUser->getParent() == FoldInst->getParent() && 2201 --MaxUsers) { // Don't scan too far. 2202 // If there are multiple or no uses of this instruction, then bail out. 2203 if (!TheUser->hasOneUse()) 2204 return false; 2205 2206 TheUser = TheUser->user_back(); 2207 } 2208 2209 // If we didn't find the fold instruction, then we failed to collapse the 2210 // sequence. 2211 if (TheUser != FoldInst) 2212 return false; 2213 2214 // Don't try to fold volatile loads. Target has to deal with alignment 2215 // constraints. 2216 if (LI->isVolatile()) 2217 return false; 2218 2219 // Figure out which vreg this is going into. If there is no assigned vreg yet 2220 // then there actually was no reference to it. Perhaps the load is referenced 2221 // by a dead instruction. 2222 Register LoadReg = getRegForValue(LI); 2223 if (!LoadReg) 2224 return false; 2225 2226 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2227 // may mean that the instruction got lowered to multiple MIs, or the use of 2228 // the loaded value ended up being multiple operands of the result. 2229 if (!MRI.hasOneUse(LoadReg)) 2230 return false; 2231 2232 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2233 MachineInstr *User = RI->getParent(); 2234 2235 // Set the insertion point properly. Folding the load can cause generation of 2236 // other random instructions (like sign extends) for addressing modes; make 2237 // sure they get inserted in a logical place before the new instruction. 2238 FuncInfo.InsertPt = User; 2239 FuncInfo.MBB = User->getParent(); 2240 2241 // Ask the target to try folding the load. 2242 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2243 } 2244 2245 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2246 // Must be an add. 2247 if (!isa<AddOperator>(Add)) 2248 return false; 2249 // Type size needs to match. 2250 if (DL.getTypeSizeInBits(GEP->getType()) != 2251 DL.getTypeSizeInBits(Add->getType())) 2252 return false; 2253 // Must be in the same basic block. 2254 if (isa<Instruction>(Add) && 2255 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2256 return false; 2257 // Must have a constant operand. 2258 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2259 } 2260 2261 MachineMemOperand * 2262 FastISel::createMachineMemOperandFor(const Instruction *I) const { 2263 const Value *Ptr; 2264 Type *ValTy; 2265 MaybeAlign Alignment; 2266 MachineMemOperand::Flags Flags; 2267 bool IsVolatile; 2268 2269 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2270 Alignment = LI->getAlign(); 2271 IsVolatile = LI->isVolatile(); 2272 Flags = MachineMemOperand::MOLoad; 2273 Ptr = LI->getPointerOperand(); 2274 ValTy = LI->getType(); 2275 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2276 Alignment = SI->getAlign(); 2277 IsVolatile = SI->isVolatile(); 2278 Flags = MachineMemOperand::MOStore; 2279 Ptr = SI->getPointerOperand(); 2280 ValTy = SI->getValueOperand()->getType(); 2281 } else 2282 return nullptr; 2283 2284 bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal); 2285 bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load); 2286 bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable); 2287 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2288 2289 AAMDNodes AAInfo; 2290 I->getAAMetadata(AAInfo); 2291 2292 if (!Alignment) // Ensure that codegen never sees alignment 0. 2293 Alignment = DL.getABITypeAlign(ValTy); 2294 2295 unsigned Size = DL.getTypeStoreSize(ValTy); 2296 2297 if (IsVolatile) 2298 Flags |= MachineMemOperand::MOVolatile; 2299 if (IsNonTemporal) 2300 Flags |= MachineMemOperand::MONonTemporal; 2301 if (IsDereferenceable) 2302 Flags |= MachineMemOperand::MODereferenceable; 2303 if (IsInvariant) 2304 Flags |= MachineMemOperand::MOInvariant; 2305 2306 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2307 *Alignment, AAInfo, Ranges); 2308 } 2309 2310 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { 2311 // If both operands are the same, then try to optimize or fold the cmp. 2312 CmpInst::Predicate Predicate = CI->getPredicate(); 2313 if (CI->getOperand(0) != CI->getOperand(1)) 2314 return Predicate; 2315 2316 switch (Predicate) { 2317 default: llvm_unreachable("Invalid predicate!"); 2318 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; 2319 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; 2320 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; 2321 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; 2322 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; 2323 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; 2324 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; 2325 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; 2326 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; 2327 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; 2328 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; 2329 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2330 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; 2331 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2332 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; 2333 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; 2334 2335 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; 2336 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; 2337 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; 2338 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2339 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; 2340 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2341 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; 2342 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; 2343 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; 2344 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; 2345 } 2346 2347 return Predicate; 2348 } 2349